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Abstract 

Recovering 3D geometry from a single 2D line drawing is a classic topic in 

computer vision. The visual system of human beings can interpret a 2D line 

drawing or a 2D image and perceive its 3D model easily. In order to emulate 

this ability by a computer vision system, many methods have been proposed 

in the literature. In this thesis, we study line drawings of manifold objects 

with hidden lines and vertices visible, as they provide necessary information to 

reconstruct their complete 3D shapes compared with the line drawings without 

hidden lines. A line drawing with hidden lines can be obtained from either the 

sketch of the user on the screen or the scan of the line drawing on a piece of 

paper. The applications include: virtual reality, user-friendly sketch interface 

for conceptual 3D designers in CAD systems, 3D query creation for 3D object 

retrieval, and generating 3D objects from images with user sketches. 

In 3D reconstruction from a single line drawing, it normally contains two 

steps: face identification and 3D reconstruction. Face identification is an im-

portant step, since if the face configuration of an object is known before the 

reconstruction of its 3D geometry, the complexity of the reconstruction will 

be reduced significantly. However, most existing algorithms for face identi-

fication and 3D reconstruction fail when the line drawing becomes complex. 

In this thesis, we propose two new approaches that can efficiently solve this 

problem，especially for complicated line drawings. In face identification part, 

previous algorithms use an exhaustive searching method, which are too slow to 

handle a complex line drawing. To solve this problem, we develop an efficient 
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deduction-based search algorithm for this task, which uses the deduction to cut 

unnecessary searching branches. To further accelerate our algorithm, we pro-

pose several geometric properties and a theorem based on the basic property 

of manifold objects. Experiments show that our algorithm can deal with more 

complex objects and is much more efficient than the cutting edge strategies. 

In the 3D reconstruction part, we propose a new approach, called object 

cut, to tackle this problem. Given a complex line drawing representing a 

manifold object, our algorithm finds the places, called cuts, to separate the 

line drawing into much simpler ones. The complex 3D object is obtained by 

first reconstructing the 3D objects from these simpler line drawings and then 

combining them together. To achieve a natural separation of the object, we 

propose several propositions and criteria for cut finding. Furthermore, a theo-

rem is given to guarantee the existence and uniqueness of the separation of a 

line drawing along a cut. The experiments show that the proposed approaches 

can deal with more complex 3D object reconstruction than state-of-the-art 

methods. This work has been published on IEEE Conference on Computer 

Vision and Pattern Recognition 2010 [31 . 
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摘要 
從二維線畫圖中恢復出三維物體是計算機視覺中的一個重要課題。人類視覺系統 

可以很容易理解二維線畫圖，並且從中推測出它所表示的三維物體。爲了使計算 

機也能做到這一點，許多研究人員己經提出了各種理解二維線畫圖的方法。在這 

篇論文中，我們將主要關注與包含不可見部份的線畫圖。相比只包含可見部份的 

線畫圖，包含不可見部份的線畫圖可以提供更多的信息，而且很容易通過用戶在 

屏幕或者紙上的緒製得到。這項研究工作的應用背景有：虚擬現實，為CAD設 

計系統提供一個友好的交互系統，為三維物體檢索提供一個便利的檢索方式，從 

工程圖或者草圖中恢復三維數據。 

從線畫圖中恢復三維信息，一般分成兩個步驟完成:物體錶面檢測以及三維重建。 

但是之前的物體表面檢測以及三維重建算法，都不能夠處理複雜的線畫圖。物體 

表面檢測是三維重構中的一個重要步驟，因為如果知道物體由哪些表面構成，重 

構複雜度將被大大降低。在這篇論文中，我們將提出兩種新的方法，來分別解決 

在複雜線畫圖中進行表面檢測，以及從中恢復三維信息兩個問題。 

關於物體表面檢測這一步驟，之前的算法一般採用暴力搜索的方式尋找表面，所 

以當二維線畫圖比較複雜的時候，算法難以在一個合理的時間内找到所有的面。 

爲了解決這個問題，我們提出一個快速的基於推理的搜索算法，使用推理的方法 

避免了許多不必要的搜索。爲了進一步提高搜索效率，我們提出了一系列關於流 

型的幾何性質并用這些性質來加速算法。實驗結果表明，我們提出的算法與目前 

最有效的表面檢測算法進行比較，可以處理更加複雜的二維線畫圖，並且擁有更 

高的執行效率。 

關於三維重構這一步驟，我們提出一種物體割面的算法。對於流型的二維線畫圖， 

我們首先找到一系列割面，并將線畫圖從這些割面處分開，然後對於每一個分割 

后的子線畫圖進行三維重構，得到一系列子三維物體。最後將這些子三維物體合 

並，得到與原線畫圖對應的三維物體。爲了將線畫圖合理的分開，我們提出了一 

系列性質以及準則來尋找割面。同時我們還證明了對於每一個固定的割面，存在 

唯一的分割將線畫圖分割開。實驗結果表明，使用物體分割算法比現有算法可以 

解決更複雜的物體的分割問題。這部份工作已經在IEEE Conference on Computer 

Vision and Pattern Recognition [23]。 
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Chapter 1 

Introduction 

2D line drawings interpretation and recovering 3D geometry from 2D line draw-

ings is a classical research topic in computer vision communities. A 2D line 

drawing is the projection of the wireframe of a 3D object. An example of a 

line drawing is shown in Figure 1.1(a). A 2D line drawing is the most straight 

forward way to represent a 3D object, which is widely used in mechanical de-

sign and computer-aided design. So it is highly desirable to design a system 

to interpret a 2D line drawing and recover its 3D geometry. In this paper, 

we mainly consider a line drawing representing a planar manifold object with 

hidden lines and vertices visible, as it provides necessary information to recon-

struct its complete 3D shape compared with a line drawing without hidden 

lines. A line drawing with hidden lines can be obtained from either the sketch 

of the user on the screen or the scan of the line drawing on a piece of paper. 

2D line drawing interpretation has many applications. One application of 

this work is an user-friendly CAD design tool. The user first sketches the 

wireframe of the 3D object on a screen or on a piece of paper. Then the 

3D object is automatically recovered from this wireframe (2D line drawing). 

The same interface can also be used as for 3D query generation for 3D object 

retrieval. Another application of this work is to build a 3D object from a single 

image. Recovering the 3D geometry from a single image is very a difficult task 

and previous approaches normally need intensive user interactions. Automatic 
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Chapter 1 Introduction 2 

2D line drawing interpretation algorithm provides an easy way to recover 3D 

geometry from a single image. The user first sketches the wireframe of the 

object on the image and the 3D object is then generated from this wireframe 

(2D line drawing). The final 3D object is obtained by mapping the texture 

on the image to the 3D object. Correctly recovering 3D geometry from the 

line drawing is the key to these approaches and greatly affects the quality of 

reconstructed 3D object [1], [6], [11], [13], [20] , [28], [10], [24], [12. 

z / K Face //TS^^ 3D 
Detection Reconstruction 

(a) (b) (c) 

Figure 1.1: Pipeline of recovering 3D geometry from a line drawing, (a) An 

input line drawing, (b) The face configuration of (a), (c) Reconstructed 3D 

object. 

Although the visual system of the human beings can easily understand a 

2D line drawing, 2D line drawing interpretation and recovering 3D geometry 

from 2D line drawings is a challenge task for computer. In past decades, many 

works have been proposed to interpret a 2D line drawing and reconstruction 

the 3D model from the line drawing [6], [13], [20], [11], [16], [25], [30], [21], 

22], [26], [27], [29]. In these works, the 3D reconstruction from a single line 

drawing is normally decomposed into two steps: face identification and 3D 

reconstruction. Using this method, a correct 3D object can easily be recovered 

from a simple line drawing with few lines and vertices. However, when the line 

drawing becomes complex, most existing algorithms fail, either because the 

computation cost is too high to get a result in a reasonable time, or because it 

is easily to be trapped in the local minimum when finding the optimal solution. 
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1.1 Previous Approaches on Face Identifica-

tion 

Previous works on reconstruction from 2D line drawing consists of two steps: 

face identification and 3D reconstruction [6], [20], [11], [16], [25], [13], [30]. A 

3D object consists of faces. If the face configuration of an object is known 

before the reconstruction, the complexity of the reconstruction will be reduced 

significantly. So most of previous works first find the face configuration, and 

then recover the 3D geometry from a 2D line drawing based on the detected face 

configuration. Figure 1.1(b) shows the face configuration of the line drawing 

shown in Figure 1.1(a), and the recovered 3D object is shown in Figure 1.1(c). 

The details of each step will be introduce as follows: 

1.1.1 Face Identification 

There are two kinds of 3D objects: manifold 3D object and non-manifold 3D 

object. A manifold, or more specifically 2-dimensional manifold^ , is a solid 

where every point on its surface has a neighborhood topologically equivalent 

to an open disk in the 2D Euclidean space [2]. A manifold is an oriented 3D 

object, which means it separates the whole 3-dimensional Euclidean space into 

two regions: the region inside the object and the region outside the object, and 

its volume can be measured by the volume of the inner regions. The object 

which is not a manifold is non-manifold object. Non-manifold object normally 

consists a set of pieces of sheets. 

Figure 1.2(a) shows two examples of manifold object and Figure 1.2(b) 

shows an example of non-manifold object. The first row shows the examples 

of input line drawings and the second row shows its corresponding 3D models. 

Notice that the non-manifold object in Figure 1.2(b) is not a solid object and 

iFor the ease of description, we simply refer to the 2-dimensional manifold as manifold. 
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雌 ^ ^ 

(a) (b) 

Figure 1.2: Example of line drawings representing manifold (a) and non-

manifold (b) objects. 

only consists of a set of sheets. 

Recent face identification methods are either for general objects [16], [25] 

or for manifold objects [15], [9]. A general object may either be manifold or 

non-manifold, so it is considered to be formed by a set of sheet patches (faces) 

without considering if it is a solid or not. The algorithms for sheet objects 

in [16] and [25] try to find as many faces as possible even if they are invisible 

internal faces of a solid. Here an invisible internal face denotes those faces 

that are totally inside the object. For example, in Figure 1.4(c), the two faces 

marked by bold lines are internal faces, since they are invisible from the outside 

of the object. 

1.1.2 General Objects 

The face detection algorithms for general objects normally form the face de-

tection problem as an optimization problem. In [25], the authors first find a 

set of potential faces from a given line drawing using the circuit space method. 
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z / / / 、 - 、 、 \ 4 4 

“ V A ) 、（力 k丄 d 
(a) (b) 

Figure 1.3: The potential faces set and real face set of a line drawing, (a) An 

input line drawing, (b) Five potential faces found by the algorithm. Only the 

last three faces are the real faces. 

For example, the potential faces of the line drawing shown in Figure 1.3(a) 

found by [25] is shown in Figure 1.3(b). Then the real face set X' are selected 

from the potential face set X by maximizing a target function g{x), subjecting 

to that all the faces in X' can coexist. Formally, the real face selection prob-

lem from a potential face set X can be formed as the following optimization 

problem [25]: 

min g{X') = - R(e)] + ⑷-R(v)] (1.1) 

subject to: R{e) < /^+(e),Ve， 

faces in X' can coexist. 

where R(e) and R{v) are the actual edge and vertex ranks in X' respectively, 

and are the upper bound of edge and vertex ranks of the line 

drawing. The detail of derivation of i?+(e) and R^{v) are discussed in [25 . 

The authors model the face identification problem as to find a subset X' of 

the potential face set X as to maximize the edge rank and vertex rank of the 

drawing, as long as the faces in X' can coexist. Here two faces cannot coexist if 

they share two edges which are not collinear. The optimization problem (1.1) 

is in general a NP-hard problem, so the authors in [25] propose a A* algorithm 

to find its optimal solution. For a simple line drawing with few vertices, this 

algorithm can find its face configuration. However, when the line drawing 
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becomes complex, this algorithm normally takes unacceptable long time to 

find all its faces. 

To accelerate the algorithm, in [14], the authors prove that the equa-

tion (1.1) can be further simplified as follows: 

max f(X') = where X ' C X (1.2) 

iex' 

subject to: faces in X' can coexist. 

where d(i) is the number of vertices in face i. The authors model the face 

identification problem as to find a subset X' of the potential face set X as large 

as possible, as long as the faces in X' can coexist. Comparing with (1.1), (1.2) 

has less constraints and can be solved more efficiently. The authors propose 

to remodel the optimization problem (1.2) as a maximum clique problem and 

solve it using the branch and bound strategy. This algorithm is much faster 

than the one in [25]. However, it is still an algorithm with exponential running 

time and cannot deal with complicated line drawings. 

To further accelerate the algorithm, in [16], the authors proposes to solve 

the problem in (1.2) using a variable-length genetic algorithm. A heuristic rule 

and geometric constraint is proposed to do a local search. Since evolutionary 

search is considered to be one of efficient way to find the optimal solution for 

a NP-hard problem, the proposed algorithm is much faster than the previous 

methods. The experiment also shows that this algorithm suffers little of the 

exponential explosion when the line drawing grows complex. 

The face identification algorithm for general object can also be used to find 

faces of manifold object. However, when we want to identify the faces of a 

manifold, we only want to have the faces on its surface. For example, the faces 

in Figure 1.4(c) are obtained by these algorithms where the two internal faces 

(bold) are undesirable. Furthermore, the face detection algorithms for general 

objects cannot detect hole cycles in a line drawing of a manifold; instead, they 
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_ _ _ 

巡 ® 勝 
⑷ (b) (c) 

Figure 1.4: Differences between the face identification method for manifold 
objects and general objects. 

output them as faces. 

1.1.3 Manifold Objects 

The algorithms in [15] and [9] are for face identification from line drawings of 

manifolds. Liu et al.'s algorithm [15] is a global search algorithm consisting 

of two steps: searching for cycles from a line drawing and searching for real 

faces from these cycles. The first step uses a depth first search strategy to find 

all the cycles from a line drawing. The number of cycles found by the depth 

first search increases exponentially with the increase of the number vertices in 

the line drawing. And in the second step, the key to find a real face set is 

that each edge of the line drawing is passed by exactly two real faces. Based 

on this geometry property, Liu et al. use an exhaustive tree search method to 

find a set of faces which passes each edge exactly twice. This step also suffers 

the exponential explosion problem. Therefore, when dealing with a complex 

manifold, the combinatorial explosion renders this method difficult to obtain 

the result in an acceptable time, and thus prevents it from practical use. 

Li et al.'s algorithm [9] is a local search algorithm, which first finds out all 

the faces formed from a local set of vertices and then gradually enlarges the 
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⑷ (b) 

Figure 1.5: A fail example of the algorithm in [9]. (a) A line drawing from 

which the algorithm in [9] fails to find the real faces, where the bold cycle is 

mistakenly considered as a face, (b) Another line drawing which this algorithm 

cannot handle, where the bold cycle is not detected. 

set to find more faces. The authors propose a greedy search rule where a cycle 

with fewer edges has a higher priority to become a face. However, this rule 

may make the search trapped in local optima. Take the line drawing shown in 

Figure 1.5(a) as an example. In a local vertex set {d, b, j, z, f , a, c, e, g, h}, cycle 

(J,g,h,e,b,d,f、is mistakenly considered as a face by the algorithm since it 

has the fewest edges among all the cycles in this vertex set. This error further 

prevents the detection of the real face (a, j, i, c, e, 6, d, f , a) and results in wrong 

face identification. Figure 1.5(b) shows another example where this algorithm 

cannot obtain the correct result. It fails to find cycle j\ = (a, h, i, / , e，j, c, b’ a) 

when cycles /s =、h,g , f , i ,h ) and /s = M e , j , c ) are found, because /： is 

blocked by f^ and /g. A cycle is not considered as a face if it is blocked by 

more than two faces [9 . 
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1.2 Previous Approaches on 3D Reconstruc-

tion 

Previous works on the line drawing interpretation consider a line drawing 

as an orthogonal projection of a 3D wireframe of an object. Suppose there 

is a 2D line drawing L and we need to recover the corresponding 3D ob-

ject O. The 3D coordinate of the vertices of a 3D object O are denoted as 

(工1，2/1,之 1), fe, 2/2,之2),.. •, (Xn, 2/n, ^n), and 2D orthogonal projections of these 

3D coordinates are denoted as (x^yi),(工 2, ？/2),..., y j which can be got 

from the input line drawing (n is the number of vertices in the object). Then 

recovering 3D geometry of a line drawing equals to estimating the z coordinates 

(2；1, Z2,…,Zn) from the input x and y coordinates {x2,2/2),..., On, Vn)-

Recovering the 3D geometry from a 2D line drawing is an ill-pose problem. 

Given a 2D line drawing, there are many corresponding 3D objects whose 

2D projections equal to this line drawing. For example, both the 3D objects 

shown in Figure 1.6(b) and Figure 1.6(c) have the same projections as the 

line drawing shown in Figure 1.6(a) [11]. However, only one interpretation is 

most consistent with human's interpretation. For example, given a line drawing 

shown in Figure 1.6(a), the 3D object shown in Figure 1.6(c) is more reasonable 

and more consistent with human's interpretation than the 3D object shown in 

Figure 1.6(b). Therefore recovering the 3D geometry from a 2D line drawing 

is to find the 3D object that is most consistent with human's understanding 

from all these possible 3D objects. 

Given a 2D line drawing, each 3D object whose 2D projection equal to this 

line drawing can be uniquely defined by a n-dimensional vector (2；1,勿，...，Zn) 

representing its 2; coordinate. Therefore, recovering the 3D geometry from a 

line drawing is modeled as the following optimization problem [19 . 
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(a) (b) (c) 

Figure 1.6: Ambiguity in recovering 3D geometry from a line drawing, (a) An 

input line drawing, (b) One interpretation of this line drawing, (c) The other 

interpretation of this line drawing. 

min f{zi ,z2,. . . ,zn) (1.3) 

where f{zi, • • •, ̂ n) evaluates how a 3D object represented by the vector 

(2；1, 2：2, • • •，Zn) is consistent with human's interpretation. 

Many works have been proposed [8], [11], [19] to discuss how to define the 

optimization target function /(•) to better evaluate a 3D object. In [19], Marill 

proposes a minimum standard deviation of angles (MSDA) principle, that is a 

good 3D reconstruction should minimize the standard deviation of the angles 

in the reconstructed object. In [8], Leclerc and Fischler claim that for many 2D 

line drawing, MSDA is not enough to correctly recover its 3D geometry. So they 

propose first to detect the planar faces in the line drawing and then to enforce 

that the vertices on the same face should lying on the same plane, which is 

called the face planarity principle. Notice that the face configuration of the line 

drawing required in this step is already detected using the method discussed in 

section 1.1. In [11], Lipson and Shpitalni propose 13 image regularities to define 

the optimization function in (1.3), including face planarity, line parallelism, line 

verticality, isometry, corner orthogonality, skewed facial orthogonality, skewed 

facial symmetry, line orthogonality, MSDA, face perpendicularity, prismatic 

face, line collinearity, planarity of skewed chains. Using these principles and 
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image regularities to define an optimization function, this method can correctly 

recover the 3D geometry of a simple line drawing. 

However, when a line drawing becomes complex, most previous algorithms 

3], [4], [5], [8], [11], [13], [19] fail in the reconstruction, getting trapped in local 

minima due to the large number of variables in the objective functions [17 . 

To solve this problem, some researchers propose to separate a complex line 

drawing into multiple simpler line drawings, then independently reconstruct 

the 3D objects from these line drawings, and finally merge them to form a 

complete object [4], [17]. This approach well solves the problem mentioned 

above and using this decomposition approach, the one in [17] can handle most 

complex objects comparing with the previous method. Its key step is how 

to separate a complex line drawing. The authors propose to do it from the 

internal faces of the line drawing. An internal face is a face inside an object 

with only its edges visible on the surface and these edges are all from the 

line drawing. However, this method may fail when a complex object has no 

or too few internal faces. One example is given in Figure 1.7(a) where there 

is only one internal face (Figure 1.7(b)), from which the separation is shown 

in Figure 1.7(c). We can see that the bigger object in Figure 1.7(c) is still 

complex. 

1.3 Our approach for Face Identification 

In this thesis, we propose a novel method to efficiently find the faces from the 

line drawing representing a manifold object. Our algorithm is based on the 

result obtained by the algorithm in [16]. Given a line drawing of a manifold, 

the algorithm in [16] outputs a set of faces including some internal faces and 

all or most of the real faces. We do not find all the cycles in the line drawing, 

which is time-consuming and normally there are tremendous cycles which make 

the real face selection hard to process. Instead we use the output of [16] as the 



Chapter 1 Introduction 12 

One internal face ^ ^ ^ Separation ^ ^ ^ 

^ 
03) w ^ (^) w 

r ^ ^ - ^ w 胜 s — 齒 

Five cuts y ^ t m \W 

(d) 『 『 (e) I F 

Figure 1.7: Comparison between the method in [17] and object cut. (a) A line 

drawing, (b) Only one internal face, (c) Separation result by [17]. (d) Five 

cuts, (e) Separation result by object cut. 

set of potential faces, which is less time consuming and less potential faces are 

found. To find the real face set from these potential faces, we develop a fast 

deduction-based search method to find all the real faces with the internal faces 

removed. Unlike previous approaches [14], [25] using a brutal-force search 

method to find the correct face configuration, which suffers an exponential 

exploration when the line drawing become complex, the execution time of our 

algorithm increase nearly linearly with the increase of the number of vertices. 

To further remove the errors in the faces found by [16], we propose several 

geometric properties and a theorem. Our experimental results show that our 

algorithm can deal complex line drawings of manifolds much more efficiently 

than previous algorithms. 
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1.4 Our approach for 3D Reconstruction 

In this thesis, we propose a novel approach, called object cut, to decompose 

a complex line drawing into multiple simpler line drawings. We use cuts but 

not internal faces to partition a line drawing. An internal face is a special 

case of a cut. One example is shown in Figure 1.7. From Figure 1.7(a), our 

algorithm can find five cuts (Figure 1.7(d)), based on which the line drawing 

is separated into five simpler ones (Figure 1.7(e)). Note that only one of these 

cuts is an internal face since the other four cuts contain edges not from the 

original line drawing. Obviously, the reconstruction problem from the line 

drawings in Figure 1.7(e) is easier to handle than those in Figure 1.7(c). We 

develop several propositions and criteria for cut finding, and present a theorem 

showing the existence and uniqueness of the separation of a line drawing along 

a given cut. Our experimental results indicate that our approach can deal with 

3D reconstruction of more complex objects than previous methods. This work 

has been published on IEEE Conference on Computer Vision and Pattern 

Recognition 2010 [31 . 



Chapter 2 

Face Detection 

As mentioned in Chapter 1, recovering 3D geometry from a line drawing con-

sists of two steps: face detection and 3D reconstruction. In this chapter, we 

focus on face detection step, we develop an efficient deduction-based search 

algorithm for this task. Unlike previous methods [14] [25] using a brutal-force 

search to find the correct face configuration, which suffers exponential explo-

ration of execution time when line drawing becomes complex, we propose a 

novel method to efficiently find the real faces from the line drawing of a man-

ifold, by exploiting the result obtained by the algorithm in [16]. We use it 

but not the one in [25] because the former is much more efficient than the 

latter while they generate the same result. In what follows, GAFI stands for 

the algorithm in [16] since it uses a genetic algorithm for face identification. 

Given a line drawing of a manifold, GAFI outputs a set of faces including some 

internal faces and all or most of the real faces. Based on this set and the line 

drawing, we develop a fast deduction-based search method to find all the real 

faces with the internal faces removed. Several geometric properties and a weak 

face adjacency theorem are presented to help the search. Our experimental re-

sults show that our algorithm can deal with more complex objects and is much 

more efficient than the state-of-the-art method [15] for face identification from 

line drawings of manifolds. 

14 
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2.1 GAFI and its Face Identification Results 

Because GAFI [16] is used to find the initial set of faces for our algorithm, we 

give more description of it in this section. Although GAFI is designed for face 

identification from line drawings of sheet objects, due to its efficiency, we still 

use it to detect faces from line drawings of manifolds by treating the manifolds 

as sheet objects. Before proceeding to the description of GAFI, we first list 

several terms that are extensively used in the rest of the paper. 

• Mani fo ld . A manifold, or more specifically 2-dimensional manifold, is a 

solid where every point on its surface has a neighborhood topologically 

equivalent to an open disk in the 2D Euclidean space [2]. Manifolds 

considered in this paper are made up of flat faces. One property of 

planar manifold is that each edge is shared exactly by two real faces [7:. 

• Rea l face. A real face is a face on the surface of the manifold. 

• Internal face. An internal face is a face inside a manifold with only its 

edges visible on the surface [4 . 

• Face. A face is either a real face or an internal face. 

• Difference of two faces. In a 2D line drawing, if face is enclosed 

by another face /之，the difference of them is a cycle whose boundary is 

formed by and ,2 with their common edges removed. 

• Potent ia l face cycle (PFC) . A PFC is a non-self-intersecting cycle 

without any edge connecting two of its non-adjacent vertices. 

In Figure 2.1(b), all the cycles are real faces, while in Figure 2.1(c), the 

two bold cycles are internal faces. In Figure 2.2(a), the difference of two faces 

、a,b,i,h,j,k’a) and k) is a cycle (^a,b,i,h,j,mj,k,a). In [16], a 

PFC is called a minimal potential face. In order not to confuse it with a face, 

we use a different term in this paper. As in [4], we also consider an internal face 
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^ ^ ^ 
⑷ (b) (c) 

Figure 2.1: Differences between the face identification method for manifold 
objects and general objects. 

as planar, because it is formed by gluing two planar manifolds or subtracting 

a planar manifold from another. 

In GAFI, face identification is formulated as an optimization problem: find-

ing a face set as large as possible, as long as the found faces can coexist in the 

same object. Each face is a PFC. The coexistence of two faces is constrained 

by a face adjacency theorem, which states that two adjacent planar faces can 

coexist in the same object if and only if their common vertices are colinear [16 . 

For example, in Figure 2.2, cycles (m,n,o,k , l ,m) and cannot both 

be faces since they share three non-colinear vertices. This theorem is obvious 

because the intersection of two planar faces is on a straight line. In this paper, 

this theorem is called the strong face adjacency theorem in order to distinguish 

it from the weak face adjacency theorem defined in Section 2.2.2. 

GAFI is able to efficiently find all the faces from the line drawing of a sheet 

object whose faces are all considered as real faces. Therefore, when it is applied 

to the line drawing of a manifold, the found face set usually contains both real 

faces and undesirable internal faces. Besides, GAFI may miss some real faces 

of the manifold. For example, two real faces in bold cycles in Figure 2.2(a) 

do not appear in its result (Figure 2.2(b)). Through our experiments, we find 
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— 
(a) (b) 

Figure 2.2: (a) A line drawing, (b) Faces found by GAFI. GAFI fails to 

find the real faces (a,b,c,d,g, f,a) and h) if ⑷ represents 

a manifold. 

that there are two cases where GAFI may miss a real face. One is that when 

an internal face shares some non-colinear vertices with a real face, the real 

face may be missed, which is called type 1 error. For example, in Figure 2.2, 

the real face /a = (a, b, c, d, g, f , a) cannot be detected if the internal face 

h = (d, e, / , g, d) is found, due to the strong face adjacency theorem. From 

this example, we can see that this theorem is too restrict to include all real 

faces in its result for a manifold. 

Another case is that when a real face of a manifold is the difference of an-

other two faces, the real face is replaced by these two faces in the result, which 

is called type 2 error. For example, in Figure 2.2, since the difference of faces 

/4 = (Ji,i,b,a,k,j,h、and /s = { m j . k j , m) is = (Ji,i,b,a,k,l,m,j,h), the 

real face / i is missing while /彳 and f^ are in the face set found by GAFI (see 

Figure 2.2(b)). The appearance of this error is because GAFI tries to maximize 

the number of found faces. 

2.2 Our Face Identification Approach 

In this section, we propose a new approach to face identification from line 

drawings of manifolds based on the results obtained by GAFI. Since GAFI 

treats a line drawing as a sheet object, the faces found by GAFI include real 
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faces and internal faces. Besides, GAFI may miss some real faces in its re-

sult, as shown in Figure 2.2. In Section 2.2.1, we discuss how to distinguish 

real faces from internal faces. In Section 2.2.2, we introduce the weak face 

adjacency theorem, which provides a looser constraint on face coexistence. In 

Section 2.2.3 and Section 2.2.4, we present solutions to the problems caused 

by the type 1 and type 2 errors, respectively. 

2.2.1 Real Face Detection 

With the face set Ffound found by GAFI, we develop a deduction-based search 

method to find the real face set F ^ i from Ffound- In this section, we as-

sume that there are no missing real faces in Ffound, which is called the real 

/ace completeness assumption. Since the schemes proposed in Sections 2.2.3 

and 2.2.4 are able to find the missing real faces, we can always assume that 

Ffound contains all the real faces. Next, we introduce two properties first. 

P r o p e r t y 1. Each edge of a line drawing is shared exactly by two real faces. 

P r o p e r t y 2. Given a line drawing and the face set Ffound found by GAFI, 

⑷讨肌 edge is shared exactly by two faces m Ffound, then these two faces are 

real faces; (b) if an edge is already passed by two real faces, then all other faces 

passing through this edge are internal faces. 

Property 1 is a property of manifolds [7]. Property 2 is a direct corollary of 

Property 1 and the real face completeness assumption. Property 2 is used to 

determine whether a face is a real face or an internal face. For example, given a 

face set found by GAFI as shown in Figure 2.3(b), according to Property 2(a), 

faces (a,i，6’a) and a) are real faces since they are the only two faces 

passing through edge (a,z). Faces (a,e,h,d,a) and (a,6，/,e，a) are also real 

faces since edge (a, e) is passed only by these two faces. Face (a, b, c, d, a) is an 

internal face according to the Property 2(b), since edge (a, b) is already passed 
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a f ^ ^ byGAFI ” Property 2(a) r Property 2(b) 
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Figure 2.3: An example of real face detection where the real faces are marked 

by thin cycles, the internal faces are marked by bold cycles, and unknown 

faces are marked by dashed cycles, (a) Input line drawing, (b) Faces found 

by GAFL (c) Result after the deduction using Property 2(a). (d) Result after 

the deduction using Property 2(b). 

by two real faces (a,i,b,a) and (a,6,/,e,a). Based on Property 1, the real 

face detection problem is formulated as follows: 

D e f i n i t i o n 2.1. Given a line drawing and a face set F satisfying the real 

face completeness assumption, the real face detection problem is formulated as 

finding a subset F' of F such that every edge of the line drawing is passed by 

exactly two faces in F'. 

We develop an efficient deduction-based search algorithm to solve this prob-

lem, which is outlined in Algorithm 1. At the beginning of the algorithm, all 

the faces in Ffound belong to the 'unknown' set Knknown, meaning that all 

these faces are unknown to be real faces or internal faces initially. Then steps 

1-7 try to deduce whether a face is a real or internal face using Property 2. 

Steps 3 and 4 are based on Property 2(a), and steps 5 and 6 are based on 

Property 2(b). The algorithm is fast; after several iterations, each face is clas-

sified as either a real face or an internal face. Figs. 2.3(c) and (d) illustrate 

the deduction on the line drawing in Figure 2.3(a). 
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Algor i thm 1 Real face detection 

Input: A line drawing G = (V, E) and the face set Ffound found by GAFI 

Cal l FindRealFaces(G,小,Ffound) 

Output: The real face set found by the following procedure 

Procedure: FindRealFace{G, Freah Kriknown) 

1. do 

2. for every edge e e E 

3. if e is shared by exactly two faces in Funknown U Freal 

4. Move all the faces passing through e from Funknown to Freal 

5. else if e is shared by two faces in Freal 

6. Delete all the faces passing through e from Funknown 

7. while Funknown 4> 

8. return the real face set Freal 

2.2.2 The Weak Face Adjacency Theorem 

As mentioned in Section 2.1, it is the strong face adjacency theorem that causes 

the type 1 error. In this section, we propose a weak face adjacency theorem to 

solve this problem. We first define a new term before giving this theorem. 

De f i n i t i o n 2.2. A face set T of a line drawing is called a coplanar face set if 

the faces in T can be written as f),..., /爪 such that: for j = 2,..” m, the 

vertex set Vertex{fj)r]Vertex{{ft jiZl) contains at least three non-colinear ver-

tices, where Vertex{fj) contains all the vertices of face fj and Vertex {{ftjizl) 

contains all the vertices appearing in the face set {ft}{:}. 

P r o p e r t y 3. All faces in the same coplanar face set lie on the same plane in 

3D space. 

Based on Definition 2.2，this property is obvious because in a coplanar face 

set, each face shares at least three non-colinear vertices with at least one other 

face. In Figure 2.4(a)，three faces f , = h = (l,m,i,j,l), 

and fs = (z, c, k,j, i) form a coplanar face set. 
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(a) h for type 1 (b) 

lost faces 

變 
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Figure 2.4: (a) A line drawing where a coplanar face set {/i , /a, /g} is denoted 

by dashed cycles, (b) The face set found by GAFI. (c) The face set obtained 

by Algorithm 2, where the lost real face (bold) is found, (d) Two cycles and 

h (dashed) that cannot coexist according to the weak face adjacency theorem. 

Theorem 2.3. (Weak face adjacency theorem) Let F he a face set of a 

"ne drawing. Two faces f i , fj G F cannot coexist if they belong to the same 

coplanar face set and have an overlapping region in the 2D line drawing plane. 

Proof. According to Property 3, fi and fj lie on the same 3D plane. Further-

more, since they have an overlapping region in the 2D line drawing plane, they 

must have an overlapping region in 3D space. Therefore, they cannot coexist 

in the same object because the faces of an object do not overlap with each 

other in 3D space. 口 

The weak face adjacency theorem provides a looser constraint on a face 

set than the strong face adjacency theorem. For example, for the line drawing 

shown in Figure 2.4(a), the strong face adjacency theorem does not allow fi 

to coexist with f? or /s, but the weak face adjacency theorem does. Therefore, 

with the weak face adjacency theorem, we can add faces, which are lost due to 
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the type 1 error, to the face set found by GAFI. How to search for these lost 

faces is discussed in the next section. 

2.2.3 Searching for Type 1 Lost Faces 

Based on the weak face adjacency theorem, we propose a depth-first search 

algorithm (Algorithm 2) to find lost faces due to the type 1 error, which are 

called type 1 lost faces. This algorithm tries to add as many PFCs as possible 

to the set of faces found by GAFI, as long as the PFCs can coexist with these 

faces according to the weak face adjacency theorem. In Algorithm 2, the search 

for type 1 lost faces is carried out by examining the edges of the line drawing 

one by one through a procedure ExtDFS. ExtDFS is an extended version of 

a common depth-first search (DFS) algorithm in [18]. The difference between 

them is that the DFS algorithm is used to find all cycles in a graph (line 

drawing here), while ExtDFS finds all those cycles that are PFCs and can 

coexist with all the faces found by GAFI according to the weak face adjacency 

theorem. ExtDFS is not difficult to design based on the DFS algorithm by 

incorporating the constraints imposed by a PFC and the weak face adjacency 

theorem. It is omitted here due to the space limitation. 

Algor i t hm 2 Type 1 lost face search 

Input: A Line Drawing G = {V.E) and the face set Ffound found by GAFI 

1. for each edge ê  = (Vi，i, 1；;’2) G E 

2. Set the current path p Ci and delete edge ê  from E 

3. Call ExtDFS(vi^uVi,2.P, Ffound) 

Output: The face set Ffound with type 1 lost faces added 

Figure 2.4(c) shows the result after performing Algorithm 2 with the initial 

face set Ffound as shown in Figure 2.4(b). The bold cycle in Figure 2.4(c) is 

the only type 1 lost face found by ExtDFS. 

The weak face adjacency theorem can be used to solve the type 1 error 
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problem for two reasons: First, those real faces violating the strong face ad_ 

jacency theorem can still be detected using the weak face adjacency theorem. 

For example, face h in Figure 2.4(a) is found and added to the face set (Fig-

ure 2.4(c)) although it shares three non-colinear vertices with face /a. Second, 

it can efficiently eliminate those PFCs that cannot coexist with the faces found 

by GAFI. For example, in Figure 2.4(d), the PFC U = (b,m,l,j,k,c,g,f,b) 

is not added to the face set in Figure 2.4(c) because it cannot coexist with 

face /5 = (c,仏 h, d, k, c) even under the constraint of the weak face adjacency 

theorem. 

2.2.4 Searching for Type 2 Lost Faces 

With the line drawing in Figure 2.5(a), let us recall the type 2 error: In the face 

set found by GAFI (Figure 2.5(b)), a real face (a, b,j, i, c, d, e, f , a) is replaced 

by two other faces (a, b, c, d, e, / , a) and (6, c, i, j, b) whose difference is the real 

face, which is called a type 2 lost face. In this section, we propose a scheme 

to find these lost faces. For simplicity of the following description, when we 

say the difference of a face pair, we mean the difference of the two faces of the 

pair (see Section 2.1 for the definition of the difference of two faces). 

We first check every face pair in the face set F found by GAFI together 

with type 1 lost faces added in order to find those pairs whose differences have 

the potential to be real faces. Then we add the differences of these face pairs 

to F. The following property is used to check whether the difference of a face 

pair has the potential to be a real face. 

P r o p e r t y 4. Given a line drawing and the face set F found by GAFI with 

type 1 lost faces added, if the difference of a face pair { / i , /s} C F is a real 

face of the line drawing, then (a) the difference of and /s is a PFC, and (b) 

each of the common edges of fi and /之 is passed by at least two other faces in 

F besides fi and f。-
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Figure 2.5: (a) A line drawing, (b) The face set found by GAFI. (c) The face 

set after searching for type 2 lost faces, (d) The face set after the real face 

detection. 

If the difference of two faces is not a PFC, it cannot be a face, which verifies 

Property 4(a). If a common edge e of j\ and f : is passed by at most one other 

face in F besides and /之，we cannot find two real faces from F that pass 

through e since j\ and f】cannot be real faces when their difference is a real 

face. In this case, the edge e is not passed through by two real faces, which 

contradicts Property 1, and thus Property 4(b) is verified. 

In order not to miss a type 2 lost face, we check every face pair { f i j j } 

from F. If fi is enclosed by fj (or fj is enclosed by fi) and the face pair 

{fi, fj} satisfies the two conditions in Property 4，the difference of fi and fj is 

added to F. Since Property 4 is a necessary condition, all the face pairs whose 

differences are real faces (type 2 lost faces) cannot be missed in this process. 

Although some PFCs that are not real faces may be included in F, they are 

eliminated by the real face detection in Algorithm 1. Note that when adding 

the difference of a face pair to F, the two faces of the pair are still kept in F in 

case they are real faces. If they are not real faces, they can also be eliminated 
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Algor i t hm 3 Complete face identification algorithm 

1. Use GAFI to find an initial face set Ffound 

2. Search for type 1 lost faces and add the found PFCs to Ffound 

3. Search for type 2 lost faces and add the found PFCs to Ffound 

4. Perform real face detection from Ffound and return the real faces 

in Algorithm 1. 

Figure 2.5 illustrates the procedure of searching for type 2 lost faces. The 

face pair (marked in bold in Figure 2.5(b)), whose difference has the potential 

to be a real face according to Property 4’ is found, and the difference is added 

to F (Figure 2.5(c)). The two faces of this face pair are deleted after the real 

face detection (Figure 2.5(d)). The outline of our complete face identification 

algorithm is given in Algorithm 3. 

2.3 Experimental Results 

We have conducted extensive experiments to verify the performance of our 

algorithm. As mentioned previously, there are four recent face identification 

algorithms [16], [25], [15], [9]. Since the algorithms in [16] and [25] are for sheet 

objects (but not suitable for manifolds) and the algorithm in [9] cannot handle 

many common line drawings of manifolds such as the two shown in Figure 1.5, 

we compare our algorithm with the one in [15] only. In what follows, SSTS 

stands for the algorithm in [15] since it uses a state-space tree to search for 

real faces, and DBS stands for our algorithm that performs deduction-based 

search. Both algorithms are implemented in C++, running on a PC with a 

2.4GHz Core 2 CPU, and only one core is used in the computation. 

First of all, we test our algorithm DBS on all the line drawings of planar-

faced manifolds appearing in previous papers about line drawing interpretation 

or 3D reconstruction from line drawings, such as [11], [16], [25], [13], [28], [8], 

4], [15],and [9]. We find that DBS can efficiently identify the real faces from 

all the line drawings within several seconds for each. However, SSTS takes 
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Figure 2.6: Six line drawings and their real faces found by our algorithm. 

unacceptable times for many complex line drawings. 

In Figure 2.6, six line drawings are given with their corresponding real face 

configurations. We test SSTS and DBS on these line drawings。Table 2.1 

summarizes the results. In Table 2.1, the term 'PFCs in the Search' under 

‘SSTS，denotes the PFCs that are used as the input to the tree search step 

in SSTS; the term TFCs in the Search' under 'DBS' denotes the PFCs that 

are the faces and PFCs obtained by steps 1-3 in Algorithm 3, which are the 

input to the real face detection (step 4) in Algorithm 3. The table also lists 

the computational times of the two algorithms for the line drawings. 

From Table 2.1, we can see that both SSTS and DBS are fast to find the 

real faces from line drawings (a) and (b). However, SSTS takes much more 

times to deal with line drawings (c) and (d). Even worse, SSTS cannot finishes 

its search in one day for line drawing (e) or (f). In contrast, DBS is fast enough 
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to handle every line drawing with about one second or less. 

It is not difficult to explain why DBS is efficient but SSTS is not for a 

complex line drawing. From Table 2.1, we can see that there are many PFCs 

inputted to the tree search step in SSTS for line drawings (e) and (f), which 

are 1151 and 1787 PFCs, respectively, generating huge search trees. However, 

in DBS, all the four steps are fast and the numbers of PFCs inputted to steps 

2, 3, and 4 are all small. 

Figure 2.7 shows six more complex line drawings. DBS can identify all the 

real faces correctly from them. To save space, we do not show the real face 

configurations. Table 2.2 lists the computational times of DBS. We can see 

again that DBS is efficient enough for practical use. Note that SSTS cannot 

obtain the result in one day for each of the line drawings. 

To find out how the computational time of DBS varies for line drawings of 

increasing size, 10 tower chains TCi_io are used in this experiment. As shown 

in Figure 2.8(a), rCi_ io have 1—10 tower(s), respectively. The times taken 

by DBS are given in Figure 2.8(b). It can be seen that the time increases 

approximately linearly with the size of the tower chain. For the most complex 

tower chain with 264 faces and 536 edges, DBS needs only 42.6 seconds to 

identify all the real faces. 

So far, we have not found an example in which DBS fails to identify the 

real faces. In our future work, we will try to find its limitation with more 

complex line drawings of manifolds. 
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⑷ (b) 

(c) (d) 

(e) (f) 

Figure 2.7： Six more complex line drawings. 

會感金 

2 4 6 8 10 
No. of Towers 

(a) (b) 

【 i g u ? 2.8: (a) The line drawing of a tower chain, (b) Times taken by DBS to 
tind the real faces from these tower chains. 
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Table 2.1: Results obtained by SSTS and DBS from the line drawings in 
Figure 2.6. 

Real Faces Edges … ， S 肥 DBS “ 
呂 PFCs Time PFCs Time “ 

(a) 16 36 37 0.125s 23— 0.204s — 

(b) 10 22 “ 12 0.109s 12 0.156s 

(c) 24 289s 30 0.499s 

(d) 30 62 - 460 ~~TSSSS 0.748s 

(e) 29 63 l l ^ >1 day 37 070 ^~~ 

(f) 37 81 1787 >1 day 42 1.02s 

Table 2.2: Computational times taken by DBS to deal with the line drawings 

in Figure 2.7. 

(a) (b) (c) (d) (e) y W 

Real Faces 42 38 41 36 46 ~ 

Edges 88— 75 —95 106 “ 138 124 

Time 1.25s 0.921s 1.75s 1.05s 2.31s 1.22s 



Chapter 3 

3D Reconstruction 

In this chapter, we propose an approach called object cut to tackle an im-

portant problem in computer vision, 3D object reconstruction from single line 

drawings. Given a complex line drawing representing a solid object, our al-

gorithm finds the places, called cuts, to separate the line drawing into much 

simpler ones. The complex 3D object is obtained by first reconstructing the 3D 

objects from these simpler line drawings and then combining them together. 

Several propositions and criteria are presented for cut finding. A theorem is 

given to guarantee the existence and uniqueness of the separation of a line 

drawing along a cut. Our experiments show that the proposed approach can 

deal with more complex 3D object reconstruction than state-of-the-art meth-

ods. 

3.1 Assumption and Terminology 

In this paper, we consider the reconstruction of the same kind of objects as 

that in [17], i.e., planar-faced manifolds, which are the most common solids (see 

below for their definition). A line drawing, represented by a single edge-vertex 

graph, is the parallel or near parallel projection of the edges of a manifold in a 

generic view with all its edges and vertices visible. Same as [17], we also assume 

that the faces of a manifold are available from its line drawing. Finding faces 

30 
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from a line drawing with hidden lines visible has been well studied in previous 

work [1], [9], [14], [15j, [16], [25]. Next, we list the terms used in the rest of 

this paper, most of which are exemplified in Fig. 3.1. 

• Mani fo ld . A manifold, or more specifically 2-dimentional manifold, is a 

solid where every point on its surface has a neighborhood topologically 

equivalent to an open disk in the 2D Euclidean space. Manifolds consid-

ered in this paper are made up of flat faces. In this kind of manifolds, 

each edge is shared exactly by two faces [7 . 

• Face. A face is a flat patch of a manifold bounded by edges. 

• In ternal Face. An internal face is a face inside a manifold only with its 

edges visible on the surface. It is not a real face but is formed by gluing 

two manifolds together [17'. 

• Degree of a vertex. The number of edges adjacent to a vertex is called 

the degree of the vertex. 

• Artif icial line. An artificial line is a line used to indicate the coplanarity 

of two cycles [17 . 

• Chord. A chord of a cycle is an edge or a virtual line inside the cycle 

that connects two nonadjacent vertices of the cycle. A virtual line does 

not appear as an edge in the original line drawing. 

• Neighbor ing face. If a face has a sharing edge with another face /s, 

then /2 is called a neighboring face of f i . If an edge is on the boundary 

of a face, then the face is called a neighboring face of the edge. 

• Ro ta t i on direction of a face. For a manifold consisting of planar 

faces, there exists an assignment of a rotation direction for each face 

simultaneously such that the rotation directions of any two neighboring 

faces on their sharing edge(s) are opposite [23 . 

• Cut . A cut is a planar cycle on the surface of a manifold, formed by 
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Figure 3.1: Examples of most of the terms. In Fig. 3.1(a), edges {u,v) and 

0 ’a : ) are two artificial lines. Fig. 3.1(b) shows the resulted sub-manifolds 

after removing them. In Fig. 3.1(c), cycle (^,j,s,t,k,d,h,e,a?i is a face. Face 

(d^hh.d) is a neighboring face of face [c,i,d,c). The dashed arrows show 

the rotation directions of four faces (a, j, s, t, k, d, "，e, a), (a, b, c, d, k, I, m, j, a), 

(c,、c/，c), and [d,i,h,d). Note that on edges (a,j), {d, c), (d,i), and 

rotation directions of their two neighboring faces are opposite. The 

bold (red) arrows show the rotation direction of cut (c, g, h, d, c), which is arbi-

trarily assigned. Face (a, j, s, t, k, d, h, e, a) is inconsistent with cut (c, g, h, d, c), 

but face、d,i,h,d) is consistent with it. Edge (e,/) is a chord of cycle 

(a, b, f , g, h, e, a), and a virtual line connecting vertices e and g is also a chord 

of the cycle. In Fig. 3.1(d), cycles (c,仏",d,c)’ and (m,/, A;, j , m) 

are cuts. Face [a, j, s,t, k,d,h,e,a) is a neighboring face of cut (c,g,h,d,c). 

Face (c,d,i,c) is connected to cuts {c,g,h,d,c). Edge (/ ,p) is connected to 
cut (c,g,h,d,c). 
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cutting the manifold with a plane, consisting of some edges of the man-

ifold and/or new edges on the surface of the manifold, with its enclosed 

region not on the surface of the manifold. In this paper, we also assign 

a rotation direction to a cut. 

• Connec ted faces and edges of a cut. If a face has at least one sharing 

point with a cut, then the face is called connected to the cut. If an edge 

has a sharing point with a cut and is not an edge of the cut, then the 

edge is called connected to the cut. 

• Ne ighbor i ng face of a cut. If a cut has at least one sharing edge with 

a face, the face is called a neighboring face of the cut. 

• Consistency of a face w i th a cut. Given a cut and one of its neigh-

boring faces, if they have the same rotation direction on their sharing 

edge(s), they are called consistent; otherwise, they are called inconsis-

tent. 

• Pa r t i t i on of a set. Given a non-empty set S, a partition of S is denoted 

by P{S) = (5o, 5i) where ^o and are two non-empty sets with Sq U 

Si= S and SqHSi^ cj). 

Artificial lines, added by the designer, are used to indicate the coplanarity 

of two cycles in solid modeling [1], [4], [15], [17]. One example is shown in 

Fig. 3.1(a) where two artificial lines (u.v) and {w,x) indicate that the two 

bold cycles are coplanar. Without them, it is impossible to know the geometric 

relation between the two objects in Fig. 3.1(b). Detecting artificial lines is an 

easy task according to the connection between an artificial line and the edges 

it connects to [17]. After removing the artificial lines in Fig. 3.1(a), the line 

drawing becomes two line drawings without artificial lines (Fig. 3.1(b)). In the 

next Sections 3.2 and 3.3, we consider line drawings without artificial lines. 
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3.2 Finding Cuts from a Line Drawing 

The main difference between a cut and an internal face is that the former can 

have part or all of its boundary not from the original line drawing, while the 

latter consists of edges all from the original line drawing. An internal face 

is a special case of a cut. The strict requirement of internal faces makes the 

partition algorithm in [17] fail when a complex manifold is without, or with 

too few, internal faces (see Fig. 1.7 for example). 

According to the definition of a cut, there is an infinite number of cuts on 

a manifold. We should find those cuts that really simplify the reconstruction 

problem. Internal faces are good cuts to partition a line drawing, such as the 

one in Fig. 1.7(b) and the cut、c,g,h,d,c) in Fig. 3.1(d). However, the cut 

iP, q, r，P) in Fig. 3.1(d) is not a good cut, and a cut that separates a rectangular 

solid into two rectangular solids is not a good cut either, because they do not 

simplify the reconstruction. In the next two sub-sections, we present some 

propositions and criteria for finding good cuts. 

3.2.1 Propositions for Finding Cuts 

Given a cycle on the surface of a manifold, determining whether the cycle is 

a cut is not a trivial problem due to the lack of 3D geometry in a 2D line 

drawing. Here we present three propositions to eliminate cycles that cannot 

be cuts. 

P r o p e r t y 5. A cycle is not a cut if it is self-intersecting. 

When we cut a manifold with a plane to form a cut, the cut becomes two 

visible planar faces, which are not self-intersecting obviously. 

P r o p e r t y 6. A cycle is not a cut if it has a chord inside it and the chord is 

on the surface of the manifold. 

尸卿 / As shown in Fig. 3.2, suppose that the cycle (…，叫—将，叫+,’ …，巧—丄，巧，巧.+1,. •. 

is a cut with a chord (叫，巧）.Let ^ be a point in the middle of the chord. If 
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I: 1 ‘ 

Figure 3.2: Part of a line drawing where the cycle has a chord {vi, Vj). 

the chord is an edge of the original line drawing, then ” inside the cut is on 

the surface of the manifold. If the chord is not an original edge but is on a 

face, then v inside the cut is still on the surface of the manifold. Both cases 

contradict the definition of a cut. • 

P r o p e r t y 7. A cycle is not a cut if it has two non-collinear edges belonging 

to a face and there is an overlapping region between it and the face in the 2D 

line drawing plane. 

Proof. Since both a cut and a face are planar, if the cut has two non-collinear 

edges on the face, they must be coplanar. Furthermore, when they have an 

overlapping region in the 2D line drawing plane, they overlap in the 3D space. 

Thus, this region inside the cut is on the surface of the manifold, which con-

tradicts the definition of a cut. • 

Note that Proposition 7 implies that a face is not a cut. 

3.2.2 Searching for Good Cuts 

Through observation of common manifold objects, we find that good cuts that 

separate a complex manifold into simpler ones usually follow the following 

three criteria: 

C r i t e r i o n 1. A good cut should have as few new edges as possible. 

C r i t e r i o n 2. A good cut should have as few edges as possible. 

Cr i t e r i o n 3. A new edge added to form a good cut is usually parallel (or near 

parallel) to an original edge of the face which the new edge is on. 
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We have Criterion 1 because adding too many new edges into the line 

drawing introduces many new faces on the surface of the object, making the 

reconstruction more complicated. It also gives priority to finding internal faces. 

Criterion 2 comes from the observation that a cut with too many edges may 

lead to an untidy partition of the line drawing. Criterion 3 is based on the fact 

that a large man-made object is often formed by regular/symmetric smaller 

objects. 

With the criteria and the propositions, we next develop a shortest cycle 

algorithm to search for good cuts on a search graph. A search graph is con-

structed based on a line drawing where new edges are added connecting vertices 

in each face. Fig. 3.3 shows an example where the dashed lines are part of the 

new edges. Note that a new edge connecting two vertices on different faces 

is not added because it is not on the surface of the object. Besides, we do 

not add new vertices to make the problem too complicated since our current 

method can already obtain excellent results that are in accordance with our 

visual perception of the object partition (see the experiments). 

In a search graph, each edge has a weight defined by 

z 

1, if e is from the original line drawing, 

⑴ ⑷ = (3.1) 

、OL. (mirve雄）7(e, e')) + otherwise, 

where e is an original or new edge of the search graph, a and P are two 

parameters used to balance the criteria, and we set a 二 = 3 in this paper. 

is an edge set consisting of all the edges of the face on which the new edge 

e lies, and 7(e, e') is a function evaluating the parallelism between two edges 

e and e' defined as: 

7 ( ey ) = l—exp(-0.05 吃 (3.2) 

where 凡’6 [0, 90] is the angle between e and Take three edges, ei = (a, b), 

62 = (J,k), and 63 = (k,h) in Fig. 3.3, for example. We have cu(ei) = 1, 
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h 

Figure 3.3: A searching graph where only part of the new edges (dashed lines) 
are shown for clarity. 

a;(e2) w 3, and (^(63)冗 6. Given an original edge of the search graph, the 

shortest cycle passing through this edge is the one that has the 
minimum sum 

of the weights of the edges on this cycle. However, not every shortest cycle can 

be a cut. The three propositions given in Section 3.2.1 help to eliminate cycles 

that cannot be a cut. For example, the shortest cycle passing through edge 

(c,d) in Fig. 3.3 is (c,d,i,c), but it cannot be a cut according to Proposition 

7 (it is a face actually). 

Algorithm 4 lists the steps to find a best cut from a line drawing. In the 

algorithm, cj(€) denotes the total weight of a cut c. In step 5, the returned 

shortest path p connected with edge ê  forms a cut, and c is always the shortest 

cut found so far. The procedure ExtDijkstra is an extended version of Dijlu-

stra's shortest path algorithm for finding a shortest path on a weighted graph. 

The main difference between them is that Propositions 5-7 are incorporated 

into the search in ExtDijkstra. Proposition 5 is used earlier than Propositions 

6 and 7 so that most of the paths that cannot be a cut are determined as soon 

as possible. Since the conditions in Propositions 6 and 7 need to be tested 

when a cycle is formed, they are used later. Note that in step 8, each path in 

Pathset{^i,2) connected with edge (场,1，̂;《’2) forms a cycle. Another difference 
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between ExtDijkstra and Dijkstra's algorithm is that we need to keep the 

geometric positions of the vertices and edges of G' so that Propositions 5-7 

are used correctly. 

Only one cut is obtained by each running of Algorithm 4. When the current 

best cut is found, we use the partition method proposed in the next section 

to separate the line drawing along this cut. Then Algorithm 4 is run again on 

each separated line drawing. This procedure is repeated until some condition 

is satisfied. The stopping condition we use is 

sum of the edge weights of the best cut 
fj, 〉1 (o o\ 

number of faces of the line drawing • 、 乂 

The ratio fi is large when the line drawing is simple (i.e., with fewer faces) and 

the cut is not good (i.e., with a large weight). 

3.3 Separation of a Line Drawing from Cuts 

To separate a manifold into simpler ones, cuts of the manifold are found first 

and then the manifold is separated from the cuts. In Fig. 3.1(d), some cuts 

separate faces of the original manifold into sub-faces, which generates a new 

representation of the manifold. We call this representation an extended man-

ifold, which is defined below. 

D e f i n i t i o n 3.1. Let C be a set of cuts. Let F, E and V be the face set, 

却 set, and vertex set of the original manifold, respectively. The extended 

舰河old IS an object with its face set edge set and vertex set 

^ext(C) defined as follows: 1) For each face f eF, if C separates f into two 

or more sub-faces {/丄 then { / J c otherwise, f e Besides, 

Fext(C、contains no other faces not from these two cases. 2) Eext{C) = E \J 

{edges of the cuts in C}. 3) Vext{C) = V. 

Since we do not consider cuts with new vertices, Kx^(C) is the same as 

It is easy to see that an extended manifold is still a manifold, because all 
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A l g o r i t h m 4 Finding a best cut “ “ “ 

I npu t : A Line Drawing G = {V, E) ‘ 

In i t ia l i za t ion: The best cut c — null- a;(c) — 00 

1. Create the searching graph G' = (V,E') from G 

2. Calculate the weight of each edge of E' 

3. for each edge ê  = G E 

4. Call ExtDijkstra{vi^i,Vi^2) 

5. if a shortest path p is found and uj{p, ei) < cj(cc), 

t hen c (p, a ) 

O u t p u t : The best cut c 

procedure ExtDijkstra(vi^i,Vi^2) 

1. Remove edge K,1,^^,2) from E' 

2. d{v) — 00, PathSet(v) ^ </), Vv E 1/; 

d{vi,i) — 0; Paths et{vi^i) — { ^ i ) } ; S 

3. whi le • S 

4. Move vertex u eQ with minimum d{u) from Q to 5 

5. for each edge (u, v) e E' with v eQ 

6. Extend the paths in PathSet(u) by (w, add them to 

PathSet{v); remove the paths from PathSet(v) that 

cannot form a cut according to Proposition 5 

7. if PathSet(v) = then d(v) 00; 

else d(v) — minpePai"Set(t；) 

8. Remove the paths from PathSet、叫,2) that cannot form a cut when they are 

connected with edge according to Propositions 6 and 7 

9. Add edge back to E'- if PathSet{vi,2) = return null- else 

return the shortest path p in PathSet{vi,2) 

end of ExtDijkstra[Vi,i,Vi,2) 
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(a) (b) h' h" 

Figure 3.4: (a) An extended manifold, (b) Three separated manifolds. 

the new edges are on the surface of the original manifold and each edge of the 

extended manifold is still passed through by exactly two faces of the extended 

manifold. Some faces of the original manifold are broken into sub-faces by the 

cuts. For example, Fig. 3.4(a) is an extended manifold from the manifold in 

Fig. 3.1(c) with a cut set C = c), (m,A; , j , m)}. Newly generated 

faces (a, e, h, d, k, j, a) and (5, j , k, t, s) are the result of cut (m,/, k, j, m). Note 

that cut (c, g, h, d, c) does not generate any new faces. 

Separating an extended manifold along a cut in a 2D line drawing is not 

trivial. The difficulties include the lack of 3D geometry in a line drawing 

and the fact that the faces and edges connected to a cut can appear in any 

directions with respect to the cut. Besides, when the line drawing is separated 

into two sides along a cut, it is not obvious which side an edge connected to 

the cut should be put in. 

Even though there exist these difficulties, humans are quite easy to obtain 

a unique separation along a cut. For example, given the extended manifold 

shown in Fig. 3.4(a) with the two cuts (c,g,h,d,c) and (m,l,k,j,m、, humans 

always generate the separations in Fig. 3.4(b). We can see that the faces con-

nected to a cut are separated into two non-empty sets, each of which contains 
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the faces on one side. Besides, for each edge connected to the cut, its two 

neighboring faces always appear on one side only. This is because if the two 

neighboring faces appear on different sides, the line drawing cannot be separ 

rated into two sides along the cut. Next, a formal definition of the separation 

is given, which is called a partition along a cut 

De f i n i t i o n 3.2. Given a cut c，let the set of all the faces connected to c be 

F(c)，and let the set of all the edges connected to c he A partition 

0/ the extended manifold along c is to find a face set partition P ( F ( c ) ) = 

(Fo(c) ,Fi (c)) and an edge set partition P(E(c)) = {Eo{c), Ei{c)) simultane-

0似ly such that for any edge e e 五饥(c)，it holds that e 车 Edge{f), V/ e 

^i-m(c), m = 0，1，where Edge{f) denotes the set of all the edges of face / . 

For example, given the cut c = {mj,kj, m) in Fig. 3.4(a), the face set 

partition along c is: Fo((c) 二、(^a,e,h,d,k, j ,a)Aa, l ) ,c ,d,k, l ,m, j ,a)、and 

Fi(c) = {(5,j, m, n, 5), {sj, k, t, s), (t, k, I, o, t), (n, m, /, o, n)}, and the edge set 

partition along c is:五o(c) = {(a, j ) , (A:, d)},五i(c) = {(s, j.), (rz, m)，（o,/),(力’ A:)}. 

Next we give a theorem showing that the partition along a cut exists and is 

unique 1 . 

T h e o r e m 3.3. The partition of an extended manifold along a cut exists and 

is unique. 

Proof. Recall the rotation direction of a face. We can assign a rotation direc-

tion to every face of the manifold^ such that any two neighboring faces have op-

posite rotation directions on their sharing edge(s). Let c = {vi,v2, . . . , Vn, vi) 

be a cut with n vertices, and Ni be a neighborhood around Vi on the surface 

of the manifold such that Ni is topologically equivalent to a 2D open disk and 

small enough with only the edges connected to Vi contained in Ni. According 

1 In [17], a theorem is given to show that the partition along an internal face exists and 
is unique. Theorem 3.3 in this paper is an extension of it. 

2In this proof, the term manifold is used to denote the extended manifold for conciseness. 
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, -议。奴、、 

… 
Figure 3.5: Part of a line drawing where a cut with n vertices is shown in bold 

lines, and all the neighborhoods Ni,i = 1,2,... ,n, are stretched into 2D open 

disks. 

to the definition of a manifold, every Ni can be stretched into a 2D open disk 

where the faces passing through Vi are located side by side around Vi with-

out overlap. Besides, we arbitrarily assign a rotation direction to the cut, as 

shown in Fig. 3.5, which is helpful to create the face set partition and the edge 

set partition. Next we state and verify five properties when all the Ni,s are 

stretched into 2D disks. 

1) In Ni, two edges and {vi.vi^i) of the cut separate the faces 

passing through Vi into two non-empty sets: {八丄， f、 ) ,…， f i ,mA on one side 

and {//’i,//’2, • . . , / / ’爪 o n the other side (see Fig. 3.5). Neither set can be 

empty because otherwise, Ni is not topologically equivalent to a 2D open disk. 

2) All the rotation directions of the faces in Ni are either clockwise or 

counter-clockwise. Without loss of generality, suppose that the rotation di-

rection of /i’i is clockwise (Fig. 3.5). Since two faces have opposite rotation 

directions on their sharing edge(s), the rotation direction of fi,2 is also clock-

wise, and so are the rotation directions of 八3, …，八爪厂 Similarly, all the 

rotation directions of //，i, /^，2,..., /;’爪；are also clockwise. 
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3) Among the four faces,几1,九叫，//^, / ; 冲 which pass through the cut 

and Vi, two of them lying on one side of the cut are consistent with the cut, 

while the other two lying on the other side are inconsistent with the cut^ • In 

Fig. 3.5, /i,i and lying on the upper side of the cut are consistent with 

the cut, while f; ,” //爪；lying on the lower side are inconsistent with the cut. 

This property is a direct result of property 2). 

4) Suppose that /；’丄 and are consistent with the cut, and and //爪, 

are inconsistent with the cut, for i e {1 ,2 , . . . ,n} . To create a face set parti-

tion，let Fo(c) = U L J / u , / u ,…，km . } and i ^ c ) = U l A f U J U ^ . . . , Km^ l 

That is, Fo(c) contains the faces consistent with the cut and the faces lying 

on the same side as these consistent faces, and Fi(c) contains all other faces 

passing through v i ,仍 , . . . , o r v^. To create an edge partition, let ^o(c) be 

the set of edges whose neighboring faces belong to Fo(c), and 丑i(c) be the 

set of edges whose neighboring faces belong to Fi(c). Since for any e e £"(c)， 

the two neighboring faces of e lie on the same side of the cut, they must 

belong to the same face partition set, i.e., either Fo(c) or Fi(c). Therefore 

= (Fo(c), Fi(c)) and P(E(c)) = (Eo(c), E卿 form a partition along 

cc that satisfies Definition 3.2. This property and the property 1) show the ex-

istence of a partition along c. 

5) The above partition along c is unique. To verify this property, suppose 

that there is another face set partition (^(^(c), F/(c)) along c with ^(^(c) ^ 

Fo(c) (and thus F((c) + Fi(c)). Since none of F(J(c) and is empty, there 

must exist an edge e e E(c), the two neighboring faces of which belong to 

different face partition sets. In this case, the line drawing cannot be separated 

into two sides because e appears in both sides, which shows that (Fo(c), F((c)) 

is not a valid face set partition. • 

Theorem 3.3 and Definition 3.2 already provide a method to partition a line 

3lt is possible that there is only one face on one side. In this case, the two faces merge 
into one. 
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Algor i thm 5 Partition of a line drawing along a cut c 

1. Create the extended manifold with c 

2. Eq(<z) — 0; EI(<L) — (t>- Fo(c) — 0; 

乃(<C) — {faces connected to c in the extended manifold} 

3. Pick a face f G Fi(c) and move it to i^o⑷ 

4. for each face f e i^i(c) 

5. if / shares an edge connected to c with a face in Fo(c), 

then move f to Fo(c) 

6. for each edge e connected to c 

7. if e is on a face in m = 0 or 1, then 五饥(c) — e 

drawing along a cut, which is given in Algorithm 5. After the partition along 

(C, c becomes two new faces on the two sides of the partition. In Fig. 3.4(b), 

three objects are generated from the partitions along the two cuts (m, I, k, j , m) 

and (c,g,h,d,c) in Fig. 3.4(a). Note that the newly face , k', f ,m') is 

merged with the original face W,m',1'兄 d,c,b,a) in the biggest object in 

Fig. 3.4(b) by deleting the edges connected to the vertices (m, and 1') of degree 

2. The following theorem shows that separated line drawings still represent 

manifolds. 

T h e o r e m 3.4. After the partition along a cut, the line drawing (line drawings) 

still represents (represent) a manifold (manifolds). 

尸roo/‘ After the partition^ , the new line drawing (line drawings) is (are) 

formed by the faces of the extended manifold and the two new faces from the 

cut. We only need to verify that every point on the new faces and their edges 

has a neighborhood topologically equivalent to a 2D open disk. Obviously, 

every point inside each new face satisfies this requirement. Let p be a point on 

an edge of a new face (the cut), say, at the middle of edge (u“ v^.i) in Fig. 3.5 

without loss of generality. It is easy to find such a neighborhood around p, 

which is formed by points in 八丄 or f^,, edge (均，”h), and the new face. • 

^Note that one partition may or may not separate a line drawing into two disjoint line 
drawings. 
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Algorithm 6 3D reconstruction 

1. Detect and delete all artificial lines 

2. For each separated line drawing, find its best cut and partition it along the 

cut; repeat this step until /x > 1 

3. Reconstruct 3D manifolds from the separated line drawings 

4. Combine the 3D manifolds to obtain a complete object 

3.4 3D Reconstruction from a Line Drawing 

After partitioning a line drawing along its cuts, we reconstruct 3D manifolds 

from these separated line drawings and then obtain the complete large 3D 

object through the combination of these smaller 3D manifolds. 

It is not difficult to deal with 3D reconstruction from a separated line 

drawing because it is simple enough (see the experiments). We use the method 

in [13] to carry out this work. The basic idea of this method is to derive the 

^-coordinates of all the vertices by minimizing an objective function. Since a 

line drawing is considered as a parallel projection of a manifold and its face 

topology is known, the 3D object is obtained when all the ^-coordinates are 

derived. More details can be found from [13]. After constructing the smaller 

3D objects from all the separated line drawings, we merge them together to 

have a complex large object using the method in [17. 

Algorithm 6 lists our complete algorithm to do 3D reconstruction from a 

complex line drawing. 

3.5 Experiments 

A set of examples is given in this section to demonstrate the performance of 

our algorithm. The problem in [17] is that it may fail when a complex line 

drawing has too few internal faces. For example, it can only separate the line 



Chapter 3 3D Reconstruction 46 

drawing in Fig. 1.7(a) into the two line drawings in Fig. 1.7(c). The larger line 

drawing in Fig. 1.7(c) is still too complex. 

Fig. 3.6 presents a number of complex line drawings together with their 

partition and reconstruction results by our algorithm. From the second column 

of Fig. 3.6, we can see that our algorithm successfully finds good cuts to 

separate the line drawings, which are in accordance with our visual partitions. 

For the two objects in Figs. 3.6(a) and (b), our algorithm and the one in [17 

obtain the same partition results. Note that besides the separations from the 

artificial lines, there is only one internal face in line drawing (d) or (e), and no 

internal face in line drawing (f), (g), or (h). 

Because our algorithm can separate the complex line drawings into very 

simple line drawings based on the found cuts, the 3D reconstruction from 

these line drawings becomes much easier. From the third and forth columns in 

Fig. 3.6, we can see that the 3D objects are reconstructed very well. Besides, 

all the line drawings given in [17] can be dealt with by our algorithm because 

internal faces are special cases of cuts. 

The computational time of Algorithm 6 depends on the complexity of a line 

drawing. It ranges from 10 to 112 seconds for the line drawings in Fig. 3.6. 

The algorithm is implemented using C++ and runs on a PC with 2.4GHz Intel 

Core2 CPU. Steps 3 and 4 consume the majority of the time, while steps 1 

and 2 take about 1 second only for each of the line drawings. 
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(g) (h) 

Figure 3.6: Experimental results on a set of complex line drawings (a)-(h) 

by our algorithm. The second rows shows the partitions of the line drawings. 

Each reconstructed 3D object is displayed in two views with its faces illustrated 

by different colors. 
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Conclusion 

In this thesis we develop a set of algorithms to recover the 3D geometry from 

a complex 2D line drawing. A 2D line drawing is one of most straight forward 

way to represent a 3D object. Recovering 3D geometry from a 2D line drawing 

is one of traditional topic in computer vision. The applications of this research 

include: flexible sketching interface for 3D model designers, converting existing 

industrial wireframe models to solid 3D models, 3D object generation from 

images with users' sketch, and 3D query creation for 3D object retrieval. 

Previous approaches to recover 3D geometry from a 2D line drawing usu-

ally contains two steps: face configuration identification and 3D reconstruction. 

Although previous methods can correctly recover the 3D geometry for a simple 

2D line drawing, when the line drawing becomes complex, most of previous 

methods fail either because that they have a very high computational cost, or 

because that the optimization algorithms are easily trapped in a local mini-

mum. In order to solve this problem, we propose an efficient algorithm for the 

face configuration identification which has very low computational cost and a 

new 3D reconstruction algorithm which can avoid the local minimum problem 

when the line drawing become complex. 

In face configuration identification part, we propose an efficient algorithm 

for the face identification from line drawings of manifolds. The first step of 

our algorithm is to find an initial face set using a previous fast algorithm for 

50 
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the face identification from line drawings of sheet objects. Since this initial 

face set may contain undesirable internal faces and loses some real faces, the 

second and the third steps of our algorithm find potential lost faces. From 

all the outputs by these three steps, the last step of our algorithm detects the 

real faces and removes the others. Several geometric properties and a theorem 

have been presented for the design of our algorithm. Extensive experiments 

have been done to verify the performance of the algorithm, which is much more 

efficient to deal with a complex line drawing than previous ones. 

In the 3D reconstruction part, we propose to separate a complex line draw-

ing from cuts, which include internal faces as a special case. We develop 

several propositions and a criteria for cut finding. We also present a theorem 

that guarantees the existence and uniqueness of the partition of a line drawing 

along a cut. Our algorithm can tackle 3D reconstruction for more complex 

solid objects than previous algorithms. 

In our future work, we will try to find the limitation of our face identification 

algorithm with more complex line drawings of manifolds, although currently 

we have not found an example in which our algorithm fails to identify the real 

faces. We will also try to extend our algorithms for more general objects such 

as objects with curved surfaces. 
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