
•4

Recovering 3D Geometry from Single
Line Drawings

XUE, Tianfan

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

July 2011

kC^MG 2012 ill

Abstract

Recovering 3D geometry from a single 2D line drawing is a classic topic in

computer vision. The visual system of human beings can interpret a 2D line

drawing or a 2D image and perceive its 3D model easily. In order to emulate

this ability by a computer vision system, many methods have been proposed

in the literature. In this thesis, we study line drawings of manifold objects

with hidden lines and vertices visible, as they provide necessary information to

reconstruct their complete 3D shapes compared with the line drawings without

hidden lines. A line drawing with hidden lines can be obtained from either the

sketch of the user on the screen or the scan of the line drawing on a piece of

paper. The applications include: virtual reality, user-friendly sketch interface

for conceptual 3D designers in CAD systems, 3D query creation for 3D object

retrieval, and generating 3D objects from images with user sketches.

In 3D reconstruction from a single line drawing, it normally contains two

steps: face identification and 3D reconstruction. Face identification is an im-

portant step, since if the face configuration of an object is known before the

reconstruction of its 3D geometry, the complexity of the reconstruction will

be reduced significantly. However, most existing algorithms for face identi-

fication and 3D reconstruction fail when the line drawing becomes complex.

In this thesis, we propose two new approaches that can efficiently solve this

problem，especially for complicated line drawings. In face identification part,

previous algorithms use an exhaustive searching method, which are too slow to

handle a complex line drawing. To solve this problem, we develop an efficient

i

deduction-based search algorithm for this task, which uses the deduction to cut

unnecessary searching branches. To further accelerate our algorithm, we pro-

pose several geometric properties and a theorem based on the basic property

of manifold objects. Experiments show that our algorithm can deal with more

complex objects and is much more efficient than the cutting edge strategies.

In the 3D reconstruction part, we propose a new approach, called object

cut, to tackle this problem. Given a complex line drawing representing a

manifold object, our algorithm finds the places, called cuts, to separate the

line drawing into much simpler ones. The complex 3D object is obtained by

first reconstructing the 3D objects from these simpler line drawings and then

combining them together. To achieve a natural separation of the object, we

propose several propositions and criteria for cut finding. Furthermore, a theo-

rem is given to guarantee the existence and uniqueness of the separation of a

line drawing along a cut. The experiments show that the proposed approaches

can deal with more complex 3D object reconstruction than state-of-the-art

methods. This work has been published on IEEE Conference on Computer

Vision and Pattern Recognition 2010 [31 .

ii

摘要
從二維線畫圖中恢復出三維物體是計算機視覺中的一個重要課題。人類視覺系統

可以很容易理解二維線畫圖，並且從中推測出它所表示的三維物體。爲了使計算

機也能做到這一點，許多研究人員己經提出了各種理解二維線畫圖的方法。在這

篇論文中，我們將主要關注與包含不可見部份的線畫圖。相比只包含可見部份的

線畫圖，包含不可見部份的線畫圖可以提供更多的信息，而且很容易通過用戶在

屏幕或者紙上的緒製得到。這項研究工作的應用背景有：虚擬現實，為CAD設

計系統提供一個友好的交互系統，為三維物體檢索提供一個便利的檢索方式，從

工程圖或者草圖中恢復三維數據。

從線畫圖中恢復三維信息，一般分成兩個步驟完成:物體錶面檢測以及三維重建。

但是之前的物體表面檢測以及三維重建算法，都不能夠處理複雜的線畫圖。物體

表面檢測是三維重構中的一個重要步驟，因為如果知道物體由哪些表面構成，重

構複雜度將被大大降低。在這篇論文中，我們將提出兩種新的方法，來分別解決

在複雜線畫圖中進行表面檢測，以及從中恢復三維信息兩個問題。

關於物體表面檢測這一步驟，之前的算法一般採用暴力搜索的方式尋找表面，所

以當二維線畫圖比較複雜的時候，算法難以在一個合理的時間内找到所有的面。

爲了解決這個問題，我們提出一個快速的基於推理的搜索算法，使用推理的方法

避免了許多不必要的搜索。爲了進一步提高搜索效率，我們提出了一系列關於流

型的幾何性質并用這些性質來加速算法。實驗結果表明，我們提出的算法與目前

最有效的表面檢測算法進行比較，可以處理更加複雜的二維線畫圖，並且擁有更

高的執行效率。

關於三維重構這一步驟，我們提出一種物體割面的算法。對於流型的二維線畫圖，

我們首先找到一系列割面，并將線畫圖從這些割面處分開，然後對於每一個分割

后的子線畫圖進行三維重構，得到一系列子三維物體。最後將這些子三維物體合

並，得到與原線畫圖對應的三維物體。爲了將線畫圖合理的分開，我們提出了一

系列性質以及準則來尋找割面。同時我們還證明了對於每一個固定的割面，存在

唯一的分割將線畫圖分割開。實驗結果表明，使用物體分割算法比現有算法可以

解決更複雜的物體的分割問題。這部份工作已經在IEEE Conference on Computer

Vision and Pattern Recognition [23]。

iii

Acknowledgement

In the past two years, I have an enjoyable and also fruitful life in the Chinese

University of Hong Kong and Multimedia laboratory. Many people have land

me a hand when I have difficulties in my research career and in my life and their

kindness constitute an irreplaceable part of my life in the Chinese University

of Hong Kong. I wish to give my most sincere gratitude to these people.

First, I want to give my greatest gratitude to my supervisor Prof. Tang.

He is a bright and visionary supervisor. He always comes up some novel ideas

and gives me lots of insight suggestions on my research direction. He is also

a kind and warm-hearted supervisor. He offers us sufficient room to be an

independent researcher and encourages us to find our own way to do research.

He always told us that a researcher should have solid background knowledge

with an extensive view of state-of-the-art technologies. From Prof. Tang, I

not only learn how to deal with a research topic, but I also learn how to be a

eligible researcher.

I would also like to thank my advisor, Prof. Liu. He is also the direct

supervisor on my research. He is an excellent researcher and keeps a serious

attitude towards research, which impresses my a lot. Every time he checks

my papers, he always goes through every detail and do not allow any mistakes

happens in our work. He is also a very working hard person. Every time I

have some problems, he always squeeze some time to solve it, even gives up his

sleeping time. His serious and diligence offer me a great help in my research

career.

iv

My labmates Wei Zhang, Yueming Wang, Kui Jia, Zhenguo Li, Chen Mo

also offered great assistance to my research. They have given me a lot of

insight suggestions and teach me how to carry on a research. I benefit from

their ways of thinking. I also learn from them some programming skill and

fundamental technologies in computer vision and pattern recognition. Without

their help, I will spend much more time to find the correct way to carry on my

work. Besides, I never forget the memorable life in the multimedia laboratory

with all the our labmates: Yueming Wang, Kui Jia, Deli Zhao, Shifeng Chen,

Zhenguo Li, Chunjing Xu, Chen Mo, Wei Zhang (both elder and younger ones),

Liu Ming, Boqing Gong, Hao Du, Zhimin Cao, Ke Liu, Guangkai Liu, Weiwei

Zhang, Meng Wang, Xiaotian He, Rui Zhao, Shi Qiu, Wei Luo, Xixuan Wu,

Bolei Zhou. We have a happy and wonderful life in the Chinese University of

Hong Kong, playing badminton, basketball, tennis, Shanguosha and swimming

together. We also help each others whatever difficulties we are trapped in.

Thank you again for your kindly help in these two years.

Last but not the least, I want to thank to my parents and my girlfriend, Li

Yanjie. They always support me and their encouragement help me pass many

difficulties. Thank you!

V

Contents

1 In t roduct ion 1

1.1 Previous Approaches on Face Identification 3

1.1.1 Face Identification 3

1.1.2 General Objects 4

1.1.3 Manifold Objects 7

1.2 Previous Approaches on 3D Reconstruction 9

1.3 Our approach for Face Identification 11

1.4 Our approach for 3D Reconstruction 13

2 Face Detect ion 14

2.1 GAFI and its Face Identification Results 15

2.2 Our Face Identification Approach . 17

2.2.1 Real Face Detection ig

2.2.2 The Weak Face Adjacency Theorem 20

2.2.3 Searching for Type 1 Lost Faces 22

2.2.4 Searching for Type 2 Lost Faces 23

2.3 Experimental Results 25

3 3D Reconstruct ion 30

3.1 Assumption and Terminology 30

3.2 Finding Cuts from a Line Drawing 34

3.2.1 Propositions for Finding Cuts 34

vi

3.2.2 Searching for Good Cuts 35

3.3 Separation of a Line Drawing from Cuts 38

3.4 3D Reconstruction from a Line Drawing 45

3.5 Experiments 45

4 Conclusion 50

vii

List of Figures

1.1 Pipeline of recovering 3D geometry from a line drawing, (a)

An input line drawing, (b) The face configuration of (a), (c)

Reconstructed 3D object 2

1.2 Example of line drawings representing manifold (a) and non-

manifold (b) objects 4

1.3 The potential faces set and real face set of a line drawing, (a)

An input line drawing, (b) Five potential feces found by the

algorithm. Only the last three faces are the real faces 5

1.4 Differences between the face identification iiietliod for nicinifold

objects and general objects 7

1.5 A fail example of the algorithm in [9]. (a) A line drawing from

which the algorithm in 9| fails to iind the real faces, where the

bold cycle is mistakenly considered as a face, (b) Another line

drawing which this algorithm cannot handle, where the bold

cycle is not detected §

1.6 Ambiguity in recovering 3D geometry from a line drawing, (a)

An input line drawing, (b) One interpretation of this line draw-

ing. (c) The other interpretation of this line drawing 10

1.7 Comparison between the method in [17] and object cut. (a) A

line drawing, (b) Only one internal face, (c) Separation result

by [17]. (d) Five cuts, (e) Separation result by object cut. . . . 12

viii

2.1 Differences between the face identification method for manifold

objects and general objects 16

2.2 (a) A line drawing, (b) Faces found by GAFL GAFI fails to

find the real faces (a, a) and a, h) if

(a) represents a manifold 17

2.3 An example of real face detection where the real faces are marked

by thin cycles, the internal faces are marked by bold cycles, and

unknown faces are marked by dashed cycles, (a) Input line

drawing, (b) Faces found by GAFL (c) Result after the deduc-

tion using Property 2(a). (d) Result after the deduction using

Property 2(b) 19

2.4 (a) A line drawing where a coplanar face set {/i, /s, /g} is de-

noted by dashed cycles, (b) The face set found by GAFI. (c)

The face set obtained by Algorithm 2, where the lost real face

(bold) is found, (d) Two cycles U and /s (dashed) that cannot

coexist according to the weak face adjacency theorem 21

2.5 (a) A line drawing, (b) The face set found by GAFI. (c) The

face set after searching for type 2 lost faces, (d) The face set

after the real face detection 24

2.6 Six line drawings and their real faces found by our algorithm. . 26

2.7 Six more complex line drawings 28

2.8 (a) The line drawing of a tower chain, (b) Times taken by DBS

to find the real faces from these tower chains. . 28

ix

3.1 Examples of most of the terms. In Fig. 3.1(a), edges {u,v)

and {w,x) are two artificial lines. Fig. 3.1(b) shows the re-

sulted sub-manifolds after removing them. In Fig. 3.1(c)，cycle

(a，j, 5, t, k, d, h, e, a) is a face. Face (d, z, h, d) is a neighboring

face of face (c, z, d, c). The dashed arrows show the rotation di-

rections of four faces (a, j , 5, t, k, d, h, e, a), (a, b, c, d, k, /, m,j, a),

(c, i, d, c), and (d, i, h, d). Note that on edges、d, k), (a,力，(d, c),

(c?,i)，and (d, /i), the rotation directions of their two neighbor-

ing faces are opposite. The bold (red) arrows show the rota-

tion direction of cut (c,仏/i,d，c), which is arbitrarily assigned.

Face、a, j ,s , t ,k,d,h,e,Q) is inconsistent with cut d, c),

but face h,d) is consistent with it. Edge (e,/) is a chord

of cycle (a,6,/ ,仏/ i ,e,a), and a virtual line connecting ver-

tices e and g is also a chord of the cycle. In Fig. 3.1(d), cy-

cles (j),q,r,p), (c,g,h,d,c), and (m,l,k,j,m) are cuts. Face

(a, j, s, t, k、d, h, e, a) is a neighboring face of cut (c, g, h, d, c).

Face (c,d,i,c) is connected to cuts (^c, g,h,d,c). Edge (f,g) is

connected to cut (c, g, h, d, c) 32

3.2 Part of a line drawing where the cycle has a chord (vi.Vj). . . . 35

3-3 A searching graph where only part of the new edges (dashed

lines) are shown for clarity . • 37

3.4 (a) An extended manifold, (b) Three separated manifolds. . . . 40

3.5 Part of a line drawing where a cut with n vertices is shown

in bold lines, and all the neighborhoods Â ĵ, z = 1, 2 , . . . , n, are

stretched into 2D open disks . 42

3.6 Experimental results on a set of complex line drawings (a)-(h)

by our algorithm. The second rows shows the partitions of the

line drawings. Each reconstructed 3D object is displayed in two

views with its faces illustrated by different colors 49

X

List of Tables

2.1 Results obtained by SSTS and DBS from the line drawings in

Figure 2.6 29

2.2 Computational times taken by DBS to deal with the line draw-

ings in Figure 2.7 29

xi

Chapter 1

Introduction

2D line drawings interpretation and recovering 3D geometry from 2D line draw-

ings is a classical research topic in computer vision communities. A 2D line

drawing is the projection of the wireframe of a 3D object. An example of a

line drawing is shown in Figure 1.1(a). A 2D line drawing is the most straight

forward way to represent a 3D object, which is widely used in mechanical de-

sign and computer-aided design. So it is highly desirable to design a system

to interpret a 2D line drawing and recover its 3D geometry. In this paper,

we mainly consider a line drawing representing a planar manifold object with

hidden lines and vertices visible, as it provides necessary information to recon-

struct its complete 3D shape compared with a line drawing without hidden

lines. A line drawing with hidden lines can be obtained from either the sketch

of the user on the screen or the scan of the line drawing on a piece of paper.

2D line drawing interpretation has many applications. One application of

this work is an user-friendly CAD design tool. The user first sketches the

wireframe of the 3D object on a screen or on a piece of paper. Then the

3D object is automatically recovered from this wireframe (2D line drawing).

The same interface can also be used as for 3D query generation for 3D object

retrieval. Another application of this work is to build a 3D object from a single

image. Recovering the 3D geometry from a single image is very a difficult task

and previous approaches normally need intensive user interactions. Automatic

1

Chapter 1 Introduction 2

2D line drawing interpretation algorithm provides an easy way to recover 3D

geometry from a single image. The user first sketches the wireframe of the

object on the image and the 3D object is then generated from this wireframe

(2D line drawing). The final 3D object is obtained by mapping the texture

on the image to the 3D object. Correctly recovering 3D geometry from the

line drawing is the key to these approaches and greatly affects the quality of

reconstructed 3D object [1], [6], [11], [13], [20] , [28], [10], [24], [12.

z / K Face //TS^^ 3D
Detection Reconstruction

(a) (b) (c)

Figure 1.1: Pipeline of recovering 3D geometry from a line drawing, (a) An

input line drawing, (b) The face configuration of (a), (c) Reconstructed 3D

object.

Although the visual system of the human beings can easily understand a

2D line drawing, 2D line drawing interpretation and recovering 3D geometry

from 2D line drawings is a challenge task for computer. In past decades, many

works have been proposed to interpret a 2D line drawing and reconstruction

the 3D model from the line drawing [6], [13], [20], [11], [16], [25], [30], [21],

22], [26], [27], [29]. In these works, the 3D reconstruction from a single line

drawing is normally decomposed into two steps: face identification and 3D

reconstruction. Using this method, a correct 3D object can easily be recovered

from a simple line drawing with few lines and vertices. However, when the line

drawing becomes complex, most existing algorithms fail, either because the

computation cost is too high to get a result in a reasonable time, or because it

is easily to be trapped in the local minimum when finding the optimal solution.

Chapter 1 Introduction 3

1.1 Previous Approaches on Face Identifica-

tion

Previous works on reconstruction from 2D line drawing consists of two steps:

face identification and 3D reconstruction [6], [20], [11], [16], [25], [13], [30]. A

3D object consists of faces. If the face configuration of an object is known

before the reconstruction, the complexity of the reconstruction will be reduced

significantly. So most of previous works first find the face configuration, and

then recover the 3D geometry from a 2D line drawing based on the detected face

configuration. Figure 1.1(b) shows the face configuration of the line drawing

shown in Figure 1.1(a), and the recovered 3D object is shown in Figure 1.1(c).

The details of each step will be introduce as follows:

1.1.1 Face Identification

There are two kinds of 3D objects: manifold 3D object and non-manifold 3D

object. A manifold, or more specifically 2-dimensional manifold^ , is a solid

where every point on its surface has a neighborhood topologically equivalent

to an open disk in the 2D Euclidean space [2]. A manifold is an oriented 3D

object, which means it separates the whole 3-dimensional Euclidean space into

two regions: the region inside the object and the region outside the object, and

its volume can be measured by the volume of the inner regions. The object

which is not a manifold is non-manifold object. Non-manifold object normally

consists a set of pieces of sheets.

Figure 1.2(a) shows two examples of manifold object and Figure 1.2(b)

shows an example of non-manifold object. The first row shows the examples

of input line drawings and the second row shows its corresponding 3D models.

Notice that the non-manifold object in Figure 1.2(b) is not a solid object and

iFor the ease of description, we simply refer to the 2-dimensional manifold as manifold.

Chapter 1 Introduction 4

雌 ^ ^

(a) (b)

Figure 1.2: Example of line drawings representing manifold (a) and non-

manifold (b) objects.

only consists of a set of sheets.

Recent face identification methods are either for general objects [16], [25]

or for manifold objects [15], [9]. A general object may either be manifold or

non-manifold, so it is considered to be formed by a set of sheet patches (faces)

without considering if it is a solid or not. The algorithms for sheet objects

in [16] and [25] try to find as many faces as possible even if they are invisible

internal faces of a solid. Here an invisible internal face denotes those faces

that are totally inside the object. For example, in Figure 1.4(c), the two faces

marked by bold lines are internal faces, since they are invisible from the outside

of the object.

1.1.2 General Objects

The face detection algorithms for general objects normally form the face de-

tection problem as an optimization problem. In [25], the authors first find a

set of potential faces from a given line drawing using the circuit space method.

Chapter 1 Introduction 5

z / / / 、 - 、 、 \ 4 4

“ V A) 、（力 k丄 d
(a) (b)

Figure 1.3: The potential faces set and real face set of a line drawing, (a) An

input line drawing, (b) Five potential faces found by the algorithm. Only the

last three faces are the real faces.

For example, the potential faces of the line drawing shown in Figure 1.3(a)

found by [25] is shown in Figure 1.3(b). Then the real face set X' are selected

from the potential face set X by maximizing a target function g{x), subjecting

to that all the faces in X' can coexist. Formally, the real face selection prob-

lem from a potential face set X can be formed as the following optimization

problem [25]:

min g{X') = - R(e)] + ⑷-R(v)] (1.1)

subject to: R{e) < /^+(e),Ve，

faces in X' can coexist.

where R(e) and R{v) are the actual edge and vertex ranks in X' respectively,

and are the upper bound of edge and vertex ranks of the line

drawing. The detail of derivation of i?+(e) and R^{v) are discussed in [25 .

The authors model the face identification problem as to find a subset X' of

the potential face set X as to maximize the edge rank and vertex rank of the

drawing, as long as the faces in X' can coexist. Here two faces cannot coexist if

they share two edges which are not collinear. The optimization problem (1.1)

is in general a NP-hard problem, so the authors in [25] propose a A* algorithm

to find its optimal solution. For a simple line drawing with few vertices, this

algorithm can find its face configuration. However, when the line drawing

Chapter 1 Introduction 6

becomes complex, this algorithm normally takes unacceptable long time to

find all its faces.

To accelerate the algorithm, in [14], the authors prove that the equa-

tion (1.1) can be further simplified as follows:

max f(X') = where X ' C X (1.2)

iex'

subject to: faces in X' can coexist.

where d(i) is the number of vertices in face i. The authors model the face

identification problem as to find a subset X' of the potential face set X as large

as possible, as long as the faces in X' can coexist. Comparing with (1.1), (1.2)

has less constraints and can be solved more efficiently. The authors propose

to remodel the optimization problem (1.2) as a maximum clique problem and

solve it using the branch and bound strategy. This algorithm is much faster

than the one in [25]. However, it is still an algorithm with exponential running

time and cannot deal with complicated line drawings.

To further accelerate the algorithm, in [16], the authors proposes to solve

the problem in (1.2) using a variable-length genetic algorithm. A heuristic rule

and geometric constraint is proposed to do a local search. Since evolutionary

search is considered to be one of efficient way to find the optimal solution for

a NP-hard problem, the proposed algorithm is much faster than the previous

methods. The experiment also shows that this algorithm suffers little of the

exponential explosion when the line drawing grows complex.

The face identification algorithm for general object can also be used to find

faces of manifold object. However, when we want to identify the faces of a

manifold, we only want to have the faces on its surface. For example, the faces

in Figure 1.4(c) are obtained by these algorithms where the two internal faces

(bold) are undesirable. Furthermore, the face detection algorithms for general

objects cannot detect hole cycles in a line drawing of a manifold; instead, they

Chapter 1 Introduction 7

_ _ _

巡 ® 勝
⑷ (b) (c)

Figure 1.4: Differences between the face identification method for manifold
objects and general objects.

output them as faces.

1.1.3 Manifold Objects

The algorithms in [15] and [9] are for face identification from line drawings of

manifolds. Liu et al.'s algorithm [15] is a global search algorithm consisting

of two steps: searching for cycles from a line drawing and searching for real

faces from these cycles. The first step uses a depth first search strategy to find

all the cycles from a line drawing. The number of cycles found by the depth

first search increases exponentially with the increase of the number vertices in

the line drawing. And in the second step, the key to find a real face set is

that each edge of the line drawing is passed by exactly two real faces. Based

on this geometry property, Liu et al. use an exhaustive tree search method to

find a set of faces which passes each edge exactly twice. This step also suffers

the exponential explosion problem. Therefore, when dealing with a complex

manifold, the combinatorial explosion renders this method difficult to obtain

the result in an acceptable time, and thus prevents it from practical use.

Li et al.'s algorithm [9] is a local search algorithm, which first finds out all

the faces formed from a local set of vertices and then gradually enlarges the

Chapter 1 Introduction 8

⑷ (b)

Figure 1.5: A fail example of the algorithm in [9]. (a) A line drawing from

which the algorithm in [9] fails to find the real faces, where the bold cycle is

mistakenly considered as a face, (b) Another line drawing which this algorithm

cannot handle, where the bold cycle is not detected.

set to find more faces. The authors propose a greedy search rule where a cycle

with fewer edges has a higher priority to become a face. However, this rule

may make the search trapped in local optima. Take the line drawing shown in

Figure 1.5(a) as an example. In a local vertex set {d, b, j, z, f , a, c, e, g, h}, cycle

(J,g,h,e,b,d,f、is mistakenly considered as a face by the algorithm since it

has the fewest edges among all the cycles in this vertex set. This error further

prevents the detection of the real face (a, j, i, c, e, 6, d, f , a) and results in wrong

face identification. Figure 1.5(b) shows another example where this algorithm

cannot obtain the correct result. It fails to find cycle j\ = (a, h, i, / , e，j, c, b’ a)

when cycles /s =、h,g , f , i ,h) and /s = M e , j , c) are found, because /： is

blocked by f^ and /g. A cycle is not considered as a face if it is blocked by

more than two faces [9 .

Chapter 1 Introduction 21

1.2 Previous Approaches on 3D Reconstruc-

tion

Previous works on the line drawing interpretation consider a line drawing

as an orthogonal projection of a 3D wireframe of an object. Suppose there

is a 2D line drawing L and we need to recover the corresponding 3D ob-

ject O. The 3D coordinate of the vertices of a 3D object O are denoted as

(工1，2/1,之 1), fe, 2/2,之2),.. •, (Xn, 2/n, ^n), and 2D orthogonal projections of these

3D coordinates are denoted as (x^yi),(工 2, ？/2),..., y j which can be got

from the input line drawing (n is the number of vertices in the object). Then

recovering 3D geometry of a line drawing equals to estimating the z coordinates

(2；1, Z2,…,Zn) from the input x and y coordinates {x2,2/2),..., On, Vn)-

Recovering the 3D geometry from a 2D line drawing is an ill-pose problem.

Given a 2D line drawing, there are many corresponding 3D objects whose

2D projections equal to this line drawing. For example, both the 3D objects

shown in Figure 1.6(b) and Figure 1.6(c) have the same projections as the

line drawing shown in Figure 1.6(a) [11]. However, only one interpretation is

most consistent with human's interpretation. For example, given a line drawing

shown in Figure 1.6(a), the 3D object shown in Figure 1.6(c) is more reasonable

and more consistent with human's interpretation than the 3D object shown in

Figure 1.6(b). Therefore recovering the 3D geometry from a 2D line drawing

is to find the 3D object that is most consistent with human's understanding

from all these possible 3D objects.

Given a 2D line drawing, each 3D object whose 2D projection equal to this

line drawing can be uniquely defined by a n-dimensional vector (2；1,勿，...，Zn)

representing its 2; coordinate. Therefore, recovering the 3D geometry from a

line drawing is modeled as the following optimization problem [19 .

Chapter 1 Introduction 10

(a) (b) (c)

Figure 1.6: Ambiguity in recovering 3D geometry from a line drawing, (a) An

input line drawing, (b) One interpretation of this line drawing, (c) The other

interpretation of this line drawing.

min f{zi ,z2,. . . ,zn) (1.3)

where f{zi, • • •, ̂ n) evaluates how a 3D object represented by the vector

(2；1, 2：2, • • •，Zn) is consistent with human's interpretation.

Many works have been proposed [8], [11], [19] to discuss how to define the

optimization target function /(•) to better evaluate a 3D object. In [19], Marill

proposes a minimum standard deviation of angles (MSDA) principle, that is a

good 3D reconstruction should minimize the standard deviation of the angles

in the reconstructed object. In [8], Leclerc and Fischler claim that for many 2D

line drawing, MSDA is not enough to correctly recover its 3D geometry. So they

propose first to detect the planar faces in the line drawing and then to enforce

that the vertices on the same face should lying on the same plane, which is

called the face planarity principle. Notice that the face configuration of the line

drawing required in this step is already detected using the method discussed in

section 1.1. In [11], Lipson and Shpitalni propose 13 image regularities to define

the optimization function in (1.3), including face planarity, line parallelism, line

verticality, isometry, corner orthogonality, skewed facial orthogonality, skewed

facial symmetry, line orthogonality, MSDA, face perpendicularity, prismatic

face, line collinearity, planarity of skewed chains. Using these principles and

Chapter 1 Introduction 11

image regularities to define an optimization function, this method can correctly

recover the 3D geometry of a simple line drawing.

However, when a line drawing becomes complex, most previous algorithms

3], [4], [5], [8], [11], [13], [19] fail in the reconstruction, getting trapped in local

minima due to the large number of variables in the objective functions [17 .

To solve this problem, some researchers propose to separate a complex line

drawing into multiple simpler line drawings, then independently reconstruct

the 3D objects from these line drawings, and finally merge them to form a

complete object [4], [17]. This approach well solves the problem mentioned

above and using this decomposition approach, the one in [17] can handle most

complex objects comparing with the previous method. Its key step is how

to separate a complex line drawing. The authors propose to do it from the

internal faces of the line drawing. An internal face is a face inside an object

with only its edges visible on the surface and these edges are all from the

line drawing. However, this method may fail when a complex object has no

or too few internal faces. One example is given in Figure 1.7(a) where there

is only one internal face (Figure 1.7(b)), from which the separation is shown

in Figure 1.7(c). We can see that the bigger object in Figure 1.7(c) is still

complex.

1.3 Our approach for Face Identification

In this thesis, we propose a novel method to efficiently find the faces from the

line drawing representing a manifold object. Our algorithm is based on the

result obtained by the algorithm in [16]. Given a line drawing of a manifold,

the algorithm in [16] outputs a set of faces including some internal faces and

all or most of the real faces. We do not find all the cycles in the line drawing,

which is time-consuming and normally there are tremendous cycles which make

the real face selection hard to process. Instead we use the output of [16] as the

Chapter 1 Introduction 12

One internal face ^ ^ ^ Separation ^ ^ ^

^
03) w ^ (^) w

r ^ ^ - ^ w 胜 s — 齒

Five cuts y ^ t m \W

(d) 『 『 (e) I F

Figure 1.7: Comparison between the method in [17] and object cut. (a) A line

drawing, (b) Only one internal face, (c) Separation result by [17]. (d) Five

cuts, (e) Separation result by object cut.

set of potential faces, which is less time consuming and less potential faces are

found. To find the real face set from these potential faces, we develop a fast

deduction-based search method to find all the real faces with the internal faces

removed. Unlike previous approaches [14], [25] using a brutal-force search

method to find the correct face configuration, which suffers an exponential

exploration when the line drawing become complex, the execution time of our

algorithm increase nearly linearly with the increase of the number of vertices.

To further remove the errors in the faces found by [16], we propose several

geometric properties and a theorem. Our experimental results show that our

algorithm can deal complex line drawings of manifolds much more efficiently

than previous algorithms.

Chapter 1 Introduction 25

1.4 Our approach for 3D Reconstruction

In this thesis, we propose a novel approach, called object cut, to decompose

a complex line drawing into multiple simpler line drawings. We use cuts but

not internal faces to partition a line drawing. An internal face is a special

case of a cut. One example is shown in Figure 1.7. From Figure 1.7(a), our

algorithm can find five cuts (Figure 1.7(d)), based on which the line drawing

is separated into five simpler ones (Figure 1.7(e)). Note that only one of these

cuts is an internal face since the other four cuts contain edges not from the

original line drawing. Obviously, the reconstruction problem from the line

drawings in Figure 1.7(e) is easier to handle than those in Figure 1.7(c). We

develop several propositions and criteria for cut finding, and present a theorem

showing the existence and uniqueness of the separation of a line drawing along

a given cut. Our experimental results indicate that our approach can deal with

3D reconstruction of more complex objects than previous methods. This work

has been published on IEEE Conference on Computer Vision and Pattern

Recognition 2010 [31 .

Chapter 2

Face Detection

As mentioned in Chapter 1, recovering 3D geometry from a line drawing con-

sists of two steps: face detection and 3D reconstruction. In this chapter, we

focus on face detection step, we develop an efficient deduction-based search

algorithm for this task. Unlike previous methods [14] [25] using a brutal-force

search to find the correct face configuration, which suffers exponential explo-

ration of execution time when line drawing becomes complex, we propose a

novel method to efficiently find the real faces from the line drawing of a man-

ifold, by exploiting the result obtained by the algorithm in [16]. We use it

but not the one in [25] because the former is much more efficient than the

latter while they generate the same result. In what follows, GAFI stands for

the algorithm in [16] since it uses a genetic algorithm for face identification.

Given a line drawing of a manifold, GAFI outputs a set of faces including some

internal faces and all or most of the real faces. Based on this set and the line

drawing, we develop a fast deduction-based search method to find all the real

faces with the internal faces removed. Several geometric properties and a weak

face adjacency theorem are presented to help the search. Our experimental re-

sults show that our algorithm can deal with more complex objects and is much

more efficient than the state-of-the-art method [15] for face identification from

line drawings of manifolds.

14

Chapter 2 Face Detection 15

2.1 GAFI and its Face Identification Results

Because GAFI [16] is used to find the initial set of faces for our algorithm, we

give more description of it in this section. Although GAFI is designed for face

identification from line drawings of sheet objects, due to its efficiency, we still

use it to detect faces from line drawings of manifolds by treating the manifolds

as sheet objects. Before proceeding to the description of GAFI, we first list

several terms that are extensively used in the rest of the paper.

• Mani fo ld . A manifold, or more specifically 2-dimensional manifold, is a

solid where every point on its surface has a neighborhood topologically

equivalent to an open disk in the 2D Euclidean space [2]. Manifolds

considered in this paper are made up of flat faces. One property of

planar manifold is that each edge is shared exactly by two real faces [7:.

• Rea l face. A real face is a face on the surface of the manifold.

• Internal face. An internal face is a face inside a manifold with only its

edges visible on the surface [4 .

• Face. A face is either a real face or an internal face.

• Difference of two faces. In a 2D line drawing, if face is enclosed

by another face /之，the difference of them is a cycle whose boundary is

formed by and ,2 with their common edges removed.

• Potent ia l face cycle (PFC) . A PFC is a non-self-intersecting cycle

without any edge connecting two of its non-adjacent vertices.

In Figure 2.1(b), all the cycles are real faces, while in Figure 2.1(c), the

two bold cycles are internal faces. In Figure 2.2(a), the difference of two faces

、a,b,i,h,j,k’a) and k) is a cycle (^a,b,i,h,j,mj,k,a). In [16], a

PFC is called a minimal potential face. In order not to confuse it with a face,

we use a different term in this paper. As in [4], we also consider an internal face

Chapter 2 Face Detection 16

^ ^ ^
⑷ (b) (c)

Figure 2.1: Differences between the face identification method for manifold
objects and general objects.

as planar, because it is formed by gluing two planar manifolds or subtracting

a planar manifold from another.

In GAFI, face identification is formulated as an optimization problem: find-

ing a face set as large as possible, as long as the found faces can coexist in the

same object. Each face is a PFC. The coexistence of two faces is constrained

by a face adjacency theorem, which states that two adjacent planar faces can

coexist in the same object if and only if their common vertices are colinear [16 .

For example, in Figure 2.2, cycles (m,n,o,k , l ,m) and cannot both

be faces since they share three non-colinear vertices. This theorem is obvious

because the intersection of two planar faces is on a straight line. In this paper,

this theorem is called the strong face adjacency theorem in order to distinguish

it from the weak face adjacency theorem defined in Section 2.2.2.

GAFI is able to efficiently find all the faces from the line drawing of a sheet

object whose faces are all considered as real faces. Therefore, when it is applied

to the line drawing of a manifold, the found face set usually contains both real

faces and undesirable internal faces. Besides, GAFI may miss some real faces

of the manifold. For example, two real faces in bold cycles in Figure 2.2(a)

do not appear in its result (Figure 2.2(b)). Through our experiments, we find

Chapter 2 Face Detection 29

—
(a) (b)

Figure 2.2: (a) A line drawing, (b) Faces found by GAFI. GAFI fails to

find the real faces (a,b,c,d,g, f,a) and h) if ⑷ represents

a manifold.

that there are two cases where GAFI may miss a real face. One is that when

an internal face shares some non-colinear vertices with a real face, the real

face may be missed, which is called type 1 error. For example, in Figure 2.2,

the real face /a = (a, b, c, d, g, f , a) cannot be detected if the internal face

h = (d, e, / , g, d) is found, due to the strong face adjacency theorem. From

this example, we can see that this theorem is too restrict to include all real

faces in its result for a manifold.

Another case is that when a real face of a manifold is the difference of an-

other two faces, the real face is replaced by these two faces in the result, which

is called type 2 error. For example, in Figure 2.2, since the difference of faces

/4 = (Ji,i,b,a,k,j,h、and /s = { m j . k j , m) is = (Ji,i,b,a,k,l,m,j,h), the

real face / i is missing while /彳 and f^ are in the face set found by GAFI (see

Figure 2.2(b)). The appearance of this error is because GAFI tries to maximize

the number of found faces.

2.2 Our Face Identification Approach

In this section, we propose a new approach to face identification from line

drawings of manifolds based on the results obtained by GAFI. Since GAFI

treats a line drawing as a sheet object, the faces found by GAFI include real

Chapter 2 Face Detection 18

faces and internal faces. Besides, GAFI may miss some real faces in its re-

sult, as shown in Figure 2.2. In Section 2.2.1, we discuss how to distinguish

real faces from internal faces. In Section 2.2.2, we introduce the weak face

adjacency theorem, which provides a looser constraint on face coexistence. In

Section 2.2.3 and Section 2.2.4, we present solutions to the problems caused

by the type 1 and type 2 errors, respectively.

2.2.1 Real Face Detection

With the face set Ffound found by GAFI, we develop a deduction-based search

method to find the real face set F ^ i from Ffound- In this section, we as-

sume that there are no missing real faces in Ffound, which is called the real

/ace completeness assumption. Since the schemes proposed in Sections 2.2.3

and 2.2.4 are able to find the missing real faces, we can always assume that

Ffound contains all the real faces. Next, we introduce two properties first.

P r o p e r t y 1. Each edge of a line drawing is shared exactly by two real faces.

P r o p e r t y 2. Given a line drawing and the face set Ffound found by GAFI,

⑷讨肌 edge is shared exactly by two faces m Ffound, then these two faces are

real faces; (b) if an edge is already passed by two real faces, then all other faces

passing through this edge are internal faces.

Property 1 is a property of manifolds [7]. Property 2 is a direct corollary of

Property 1 and the real face completeness assumption. Property 2 is used to

determine whether a face is a real face or an internal face. For example, given a

face set found by GAFI as shown in Figure 2.3(b), according to Property 2(a),

faces (a,i，6’a) and a) are real faces since they are the only two faces

passing through edge (a,z). Faces (a,e,h,d,a) and (a,6，/,e，a) are also real

faces since edge (a, e) is passed only by these two faces. Face (a, b, c, d, a) is an

internal face according to the Property 2(b), since edge (a, b) is already passed

Chapter 2 Face Detection 31

A , 應 急

Face search ^ Deduction by Deduction by ^ ^ ^ ^
a f ^ ^ byGAFI ” Property 2(a) r Property 2(b)

(a) (b) (c) (d)

Figure 2.3: An example of real face detection where the real faces are marked

by thin cycles, the internal faces are marked by bold cycles, and unknown

faces are marked by dashed cycles, (a) Input line drawing, (b) Faces found

by GAFL (c) Result after the deduction using Property 2(a). (d) Result after

the deduction using Property 2(b).

by two real faces (a,i,b,a) and (a,6,/,e,a). Based on Property 1, the real

face detection problem is formulated as follows:

D e f i n i t i o n 2.1. Given a line drawing and a face set F satisfying the real

face completeness assumption, the real face detection problem is formulated as

finding a subset F' of F such that every edge of the line drawing is passed by

exactly two faces in F'.

We develop an efficient deduction-based search algorithm to solve this prob-

lem, which is outlined in Algorithm 1. At the beginning of the algorithm, all

the faces in Ffound belong to the 'unknown' set Knknown, meaning that all

these faces are unknown to be real faces or internal faces initially. Then steps

1-7 try to deduce whether a face is a real or internal face using Property 2.

Steps 3 and 4 are based on Property 2(a), and steps 5 and 6 are based on

Property 2(b). The algorithm is fast; after several iterations, each face is clas-

sified as either a real face or an internal face. Figs. 2.3(c) and (d) illustrate

the deduction on the line drawing in Figure 2.3(a).

Chapter 2 Face Detection 20

Algor i thm 1 Real face detection

Input: A line drawing G = (V, E) and the face set Ffound found by GAFI

Cal l FindRealFaces(G,小,Ffound)

Output: The real face set found by the following procedure

Procedure: FindRealFace{G, Freah Kriknown)

1. do

2. for every edge e e E

3. if e is shared by exactly two faces in Funknown U Freal

4. Move all the faces passing through e from Funknown to Freal

5. else if e is shared by two faces in Freal

6. Delete all the faces passing through e from Funknown

7. while Funknown 4>

8. return the real face set Freal

2.2.2 The Weak Face Adjacency Theorem

As mentioned in Section 2.1, it is the strong face adjacency theorem that causes

the type 1 error. In this section, we propose a weak face adjacency theorem to

solve this problem. We first define a new term before giving this theorem.

De f i n i t i o n 2.2. A face set T of a line drawing is called a coplanar face set if

the faces in T can be written as f),..., /爪 such that: for j = 2,..” m, the

vertex set Vertex{fj)r]Vertex{{ft jiZl) contains at least three non-colinear ver-

tices, where Vertex{fj) contains all the vertices of face fj and Vertex {{ftjizl)

contains all the vertices appearing in the face set {ft}{:}.

P r o p e r t y 3. All faces in the same coplanar face set lie on the same plane in

3D space.

Based on Definition 2.2，this property is obvious because in a coplanar face

set, each face shares at least three non-colinear vertices with at least one other

face. In Figure 2.4(a)，three faces f , = h = (l,m,i,j,l),

and fs = (z, c, k,j, i) form a coplanar face set.

Chapter 2 Face Detection 21

(a) h for type 1 (b)

lost faces

變
(c) (d)

Figure 2.4: (a) A line drawing where a coplanar face set {/i , /a, /g} is denoted

by dashed cycles, (b) The face set found by GAFI. (c) The face set obtained

by Algorithm 2, where the lost real face (bold) is found, (d) Two cycles and

h (dashed) that cannot coexist according to the weak face adjacency theorem.

Theorem 2.3. (Weak face adjacency theorem) Let F he a face set of a

"ne drawing. Two faces f i , fj G F cannot coexist if they belong to the same

coplanar face set and have an overlapping region in the 2D line drawing plane.

Proof. According to Property 3, fi and fj lie on the same 3D plane. Further-

more, since they have an overlapping region in the 2D line drawing plane, they

must have an overlapping region in 3D space. Therefore, they cannot coexist

in the same object because the faces of an object do not overlap with each

other in 3D space. 口

The weak face adjacency theorem provides a looser constraint on a face

set than the strong face adjacency theorem. For example, for the line drawing

shown in Figure 2.4(a), the strong face adjacency theorem does not allow fi

to coexist with f? or /s, but the weak face adjacency theorem does. Therefore,

with the weak face adjacency theorem, we can add faces, which are lost due to

Chapter 2 Face Detection 22

the type 1 error, to the face set found by GAFI. How to search for these lost

faces is discussed in the next section.

2.2.3 Searching for Type 1 Lost Faces

Based on the weak face adjacency theorem, we propose a depth-first search

algorithm (Algorithm 2) to find lost faces due to the type 1 error, which are

called type 1 lost faces. This algorithm tries to add as many PFCs as possible

to the set of faces found by GAFI, as long as the PFCs can coexist with these

faces according to the weak face adjacency theorem. In Algorithm 2, the search

for type 1 lost faces is carried out by examining the edges of the line drawing

one by one through a procedure ExtDFS. ExtDFS is an extended version of

a common depth-first search (DFS) algorithm in [18]. The difference between

them is that the DFS algorithm is used to find all cycles in a graph (line

drawing here), while ExtDFS finds all those cycles that are PFCs and can

coexist with all the faces found by GAFI according to the weak face adjacency

theorem. ExtDFS is not difficult to design based on the DFS algorithm by

incorporating the constraints imposed by a PFC and the weak face adjacency

theorem. It is omitted here due to the space limitation.

Algor i t hm 2 Type 1 lost face search

Input: A Line Drawing G = {V.E) and the face set Ffound found by GAFI

1. for each edge ê = (Vi，i, 1；;’2) G E

2. Set the current path p Ci and delete edge ê from E

3. Call ExtDFS(vi^uVi,2.P, Ffound)

Output: The face set Ffound with type 1 lost faces added

Figure 2.4(c) shows the result after performing Algorithm 2 with the initial

face set Ffound as shown in Figure 2.4(b). The bold cycle in Figure 2.4(c) is

the only type 1 lost face found by ExtDFS.

The weak face adjacency theorem can be used to solve the type 1 error

Chapter 2 Face Detection 23

problem for two reasons: First, those real faces violating the strong face ad_

jacency theorem can still be detected using the weak face adjacency theorem.

For example, face h in Figure 2.4(a) is found and added to the face set (Fig-

ure 2.4(c)) although it shares three non-colinear vertices with face /a. Second,

it can efficiently eliminate those PFCs that cannot coexist with the faces found

by GAFI. For example, in Figure 2.4(d), the PFC U = (b,m,l,j,k,c,g,f,b)

is not added to the face set in Figure 2.4(c) because it cannot coexist with

face /5 = (c,仏 h, d, k, c) even under the constraint of the weak face adjacency

theorem.

2.2.4 Searching for Type 2 Lost Faces

With the line drawing in Figure 2.5(a), let us recall the type 2 error: In the face

set found by GAFI (Figure 2.5(b)), a real face (a, b,j, i, c, d, e, f , a) is replaced

by two other faces (a, b, c, d, e, / , a) and (6, c, i, j, b) whose difference is the real

face, which is called a type 2 lost face. In this section, we propose a scheme

to find these lost faces. For simplicity of the following description, when we

say the difference of a face pair, we mean the difference of the two faces of the

pair (see Section 2.1 for the definition of the difference of two faces).

We first check every face pair in the face set F found by GAFI together

with type 1 lost faces added in order to find those pairs whose differences have

the potential to be real faces. Then we add the differences of these face pairs

to F. The following property is used to check whether the difference of a face

pair has the potential to be a real face.

P r o p e r t y 4. Given a line drawing and the face set F found by GAFI with

type 1 lost faces added, if the difference of a face pair { / i , /s} C F is a real

face of the line drawing, then (a) the difference of and /s is a PFC, and (b)

each of the common edges of fi and /之 is passed by at least two other faces in

F besides fi and f。-

Chapter 2 Face Detection 24

L ^ - j t " Face search

Search ^̂ ：̂ !：；；̂ "-̂ X：^
for type 2 ‘

(a) lost faces (b)

書 二 麵
(c) (d)

Figure 2.5: (a) A line drawing, (b) The face set found by GAFI. (c) The face

set after searching for type 2 lost faces, (d) The face set after the real face

detection.

If the difference of two faces is not a PFC, it cannot be a face, which verifies

Property 4(a). If a common edge e of j\ and f : is passed by at most one other

face in F besides and /之，we cannot find two real faces from F that pass

through e since j\ and f】cannot be real faces when their difference is a real

face. In this case, the edge e is not passed through by two real faces, which

contradicts Property 1, and thus Property 4(b) is verified.

In order not to miss a type 2 lost face, we check every face pair { f i j j }

from F. If fi is enclosed by fj (or fj is enclosed by fi) and the face pair

{fi, fj} satisfies the two conditions in Property 4，the difference of fi and fj is

added to F. Since Property 4 is a necessary condition, all the face pairs whose

differences are real faces (type 2 lost faces) cannot be missed in this process.

Although some PFCs that are not real faces may be included in F, they are

eliminated by the real face detection in Algorithm 1. Note that when adding

the difference of a face pair to F, the two faces of the pair are still kept in F in

case they are real faces. If they are not real faces, they can also be eliminated

Chapter 2 Face Detection 25

Algor i t hm 3 Complete face identification algorithm

1. Use GAFI to find an initial face set Ffound

2. Search for type 1 lost faces and add the found PFCs to Ffound

3. Search for type 2 lost faces and add the found PFCs to Ffound

4. Perform real face detection from Ffound and return the real faces

in Algorithm 1.

Figure 2.5 illustrates the procedure of searching for type 2 lost faces. The

face pair (marked in bold in Figure 2.5(b)), whose difference has the potential

to be a real face according to Property 4’ is found, and the difference is added

to F (Figure 2.5(c)). The two faces of this face pair are deleted after the real

face detection (Figure 2.5(d)). The outline of our complete face identification

algorithm is given in Algorithm 3.

2.3 Experimental Results

We have conducted extensive experiments to verify the performance of our

algorithm. As mentioned previously, there are four recent face identification

algorithms [16], [25], [15], [9]. Since the algorithms in [16] and [25] are for sheet

objects (but not suitable for manifolds) and the algorithm in [9] cannot handle

many common line drawings of manifolds such as the two shown in Figure 1.5,

we compare our algorithm with the one in [15] only. In what follows, SSTS

stands for the algorithm in [15] since it uses a state-space tree to search for

real faces, and DBS stands for our algorithm that performs deduction-based

search. Both algorithms are implemented in C++, running on a PC with a

2.4GHz Core 2 CPU, and only one core is used in the computation.

First of all, we test our algorithm DBS on all the line drawings of planar-

faced manifolds appearing in previous papers about line drawing interpretation

or 3D reconstruction from line drawings, such as [11], [16], [25], [13], [28], [8],

4], [15],and [9]. We find that DBS can efficiently identify the real faces from

all the line drawings within several seconds for each. However, SSTS takes

Chapter 2 Face Detection 26

像 騫
⑷ (b)

® m 睡
(c) (d)

⑷ (f)

Figure 2.6: Six line drawings and their real faces found by our algorithm.

unacceptable times for many complex line drawings.

In Figure 2.6, six line drawings are given with their corresponding real face

configurations. We test SSTS and DBS on these line drawings。Table 2.1

summarizes the results. In Table 2.1, the term 'PFCs in the Search' under

‘SSTS，denotes the PFCs that are used as the input to the tree search step

in SSTS; the term TFCs in the Search' under 'DBS' denotes the PFCs that

are the faces and PFCs obtained by steps 1-3 in Algorithm 3, which are the

input to the real face detection (step 4) in Algorithm 3. The table also lists

the computational times of the two algorithms for the line drawings.

From Table 2.1, we can see that both SSTS and DBS are fast to find the

real faces from line drawings (a) and (b). However, SSTS takes much more

times to deal with line drawings (c) and (d). Even worse, SSTS cannot finishes

its search in one day for line drawing (e) or (f). In contrast, DBS is fast enough

Chapter 2 Face Detection 27

to handle every line drawing with about one second or less.

It is not difficult to explain why DBS is efficient but SSTS is not for a

complex line drawing. From Table 2.1, we can see that there are many PFCs

inputted to the tree search step in SSTS for line drawings (e) and (f), which

are 1151 and 1787 PFCs, respectively, generating huge search trees. However,

in DBS, all the four steps are fast and the numbers of PFCs inputted to steps

2, 3, and 4 are all small.

Figure 2.7 shows six more complex line drawings. DBS can identify all the

real faces correctly from them. To save space, we do not show the real face

configurations. Table 2.2 lists the computational times of DBS. We can see

again that DBS is efficient enough for practical use. Note that SSTS cannot

obtain the result in one day for each of the line drawings.

To find out how the computational time of DBS varies for line drawings of

increasing size, 10 tower chains TCi_io are used in this experiment. As shown

in Figure 2.8(a), rCi_ io have 1—10 tower(s), respectively. The times taken

by DBS are given in Figure 2.8(b). It can be seen that the time increases

approximately linearly with the size of the tower chain. For the most complex

tower chain with 264 faces and 536 edges, DBS needs only 42.6 seconds to

identify all the real faces.

So far, we have not found an example in which DBS fails to identify the

real faces. In our future work, we will try to find its limitation with more

complex line drawings of manifolds.

Chapter 2 Face Detection 28

⑷ (b)

(c) (d)

(e) (f)

Figure 2.7： Six more complex line drawings.

會感金

2 4 6 8 10
No. of Towers

(a) (b)

【 i g u ? 2.8: (a) The line drawing of a tower chain, (b) Times taken by DBS to
tind the real faces from these tower chains.

Chapter 2 Face Detection 29

Table 2.1: Results obtained by SSTS and DBS from the line drawings in
Figure 2.6.

Real Faces Edges … ， S 肥 DBS “
呂 PFCs Time PFCs Time “

(a) 16 36 37 0.125s 23— 0.204s —

(b) 10 22 “ 12 0.109s 12 0.156s

(c) 24 289s 30 0.499s

(d) 30 62 - 460 ~~TSSSS 0.748s

(e) 29 63 l l ^ >1 day 37 070 ^~~

(f) 37 81 1787 >1 day 42 1.02s

Table 2.2: Computational times taken by DBS to deal with the line drawings

in Figure 2.7.

(a) (b) (c) (d) (e) y W

Real Faces 42 38 41 36 46 ~

Edges 88— 75 —95 106 “ 138 124

Time 1.25s 0.921s 1.75s 1.05s 2.31s 1.22s

Chapter 3

3D Reconstruction

In this chapter, we propose an approach called object cut to tackle an im-

portant problem in computer vision, 3D object reconstruction from single line

drawings. Given a complex line drawing representing a solid object, our al-

gorithm finds the places, called cuts, to separate the line drawing into much

simpler ones. The complex 3D object is obtained by first reconstructing the 3D

objects from these simpler line drawings and then combining them together.

Several propositions and criteria are presented for cut finding. A theorem is

given to guarantee the existence and uniqueness of the separation of a line

drawing along a cut. Our experiments show that the proposed approach can

deal with more complex 3D object reconstruction than state-of-the-art meth-

ods.

3.1 Assumption and Terminology

In this paper, we consider the reconstruction of the same kind of objects as

that in [17], i.e., planar-faced manifolds, which are the most common solids (see

below for their definition). A line drawing, represented by a single edge-vertex

graph, is the parallel or near parallel projection of the edges of a manifold in a

generic view with all its edges and vertices visible. Same as [17], we also assume

that the faces of a manifold are available from its line drawing. Finding faces

30

Chapter 3 3D Reconstruction 31

from a line drawing with hidden lines visible has been well studied in previous

work [1], [9], [14], [15j, [16], [25]. Next, we list the terms used in the rest of

this paper, most of which are exemplified in Fig. 3.1.

• Mani fo ld . A manifold, or more specifically 2-dimentional manifold, is a

solid where every point on its surface has a neighborhood topologically

equivalent to an open disk in the 2D Euclidean space. Manifolds consid-

ered in this paper are made up of flat faces. In this kind of manifolds,

each edge is shared exactly by two faces [7 .

• Face. A face is a flat patch of a manifold bounded by edges.

• In ternal Face. An internal face is a face inside a manifold only with its

edges visible on the surface. It is not a real face but is formed by gluing

two manifolds together [17'.

• Degree of a vertex. The number of edges adjacent to a vertex is called

the degree of the vertex.

• Artif icial line. An artificial line is a line used to indicate the coplanarity

of two cycles [17 .

• Chord. A chord of a cycle is an edge or a virtual line inside the cycle

that connects two nonadjacent vertices of the cycle. A virtual line does

not appear as an edge in the original line drawing.

• Neighbor ing face. If a face has a sharing edge with another face /s,

then /2 is called a neighboring face of f i . If an edge is on the boundary

of a face, then the face is called a neighboring face of the edge.

• Ro ta t i on direction of a face. For a manifold consisting of planar

faces, there exists an assignment of a rotation direction for each face

simultaneously such that the rotation directions of any two neighboring

faces on their sharing edge(s) are opposite [23 .

• Cut . A cut is a planar cycle on the surface of a manifold, formed by

Chapter 3 3D Reconstruction 32

Figure 3.1: Examples of most of the terms. In Fig. 3.1(a), edges {u,v) and

0 ’a :) are two artificial lines. Fig. 3.1(b) shows the resulted sub-manifolds

after removing them. In Fig. 3.1(c), cycle (^,j,s,t,k,d,h,e,a?i is a face. Face

(d^hh.d) is a neighboring face of face [c,i,d,c). The dashed arrows show

the rotation directions of four faces (a, j, s, t, k, d, "，e, a), (a, b, c, d, k, I, m, j, a),

(c,、c/，c), and [d,i,h,d). Note that on edges (a,j), {d, c), (d,i), and

rotation directions of their two neighboring faces are opposite. The

bold (red) arrows show the rotation direction of cut (c, g, h, d, c), which is arbi-

trarily assigned. Face (a, j, s, t, k, d, h, e, a) is inconsistent with cut (c, g, h, d, c),

but face、d,i,h,d) is consistent with it. Edge (e,/) is a chord of cycle

(a, b, f , g, h, e, a), and a virtual line connecting vertices e and g is also a chord

of the cycle. In Fig. 3.1(d), cycles (c,仏",d,c)’ and (m,/, A;, j , m)

are cuts. Face [a, j, s,t, k,d,h,e,a) is a neighboring face of cut (c,g,h,d,c).

Face (c,d,i,c) is connected to cuts {c,g,h,d,c). Edge (/ ,p) is connected to
cut (c,g,h,d,c).

Chapter 3 3D Reconstruction 33

cutting the manifold with a plane, consisting of some edges of the man-

ifold and/or new edges on the surface of the manifold, with its enclosed

region not on the surface of the manifold. In this paper, we also assign

a rotation direction to a cut.

• Connec ted faces and edges of a cut. If a face has at least one sharing

point with a cut, then the face is called connected to the cut. If an edge

has a sharing point with a cut and is not an edge of the cut, then the

edge is called connected to the cut.

• Ne ighbor i ng face of a cut. If a cut has at least one sharing edge with

a face, the face is called a neighboring face of the cut.

• Consistency of a face w i th a cut. Given a cut and one of its neigh-

boring faces, if they have the same rotation direction on their sharing

edge(s), they are called consistent; otherwise, they are called inconsis-

tent.

• Pa r t i t i on of a set. Given a non-empty set S, a partition of S is denoted

by P{S) = (5o, 5i) where ^o and are two non-empty sets with Sq U

Si= S and SqHSi^ cj).

Artificial lines, added by the designer, are used to indicate the coplanarity

of two cycles in solid modeling [1], [4], [15], [17]. One example is shown in

Fig. 3.1(a) where two artificial lines (u.v) and {w,x) indicate that the two

bold cycles are coplanar. Without them, it is impossible to know the geometric

relation between the two objects in Fig. 3.1(b). Detecting artificial lines is an

easy task according to the connection between an artificial line and the edges

it connects to [17]. After removing the artificial lines in Fig. 3.1(a), the line

drawing becomes two line drawings without artificial lines (Fig. 3.1(b)). In the

next Sections 3.2 and 3.3, we consider line drawings without artificial lines.

Chapter 3 3D Reconstruction 34

3.2 Finding Cuts from a Line Drawing

The main difference between a cut and an internal face is that the former can

have part or all of its boundary not from the original line drawing, while the

latter consists of edges all from the original line drawing. An internal face

is a special case of a cut. The strict requirement of internal faces makes the

partition algorithm in [17] fail when a complex manifold is without, or with

too few, internal faces (see Fig. 1.7 for example).

According to the definition of a cut, there is an infinite number of cuts on

a manifold. We should find those cuts that really simplify the reconstruction

problem. Internal faces are good cuts to partition a line drawing, such as the

one in Fig. 1.7(b) and the cut、c,g,h,d,c) in Fig. 3.1(d). However, the cut

iP, q, r，P) in Fig. 3.1(d) is not a good cut, and a cut that separates a rectangular

solid into two rectangular solids is not a good cut either, because they do not

simplify the reconstruction. In the next two sub-sections, we present some

propositions and criteria for finding good cuts.

3.2.1 Propositions for Finding Cuts

Given a cycle on the surface of a manifold, determining whether the cycle is

a cut is not a trivial problem due to the lack of 3D geometry in a 2D line

drawing. Here we present three propositions to eliminate cycles that cannot

be cuts.

P r o p e r t y 5. A cycle is not a cut if it is self-intersecting.

When we cut a manifold with a plane to form a cut, the cut becomes two

visible planar faces, which are not self-intersecting obviously.

P r o p e r t y 6. A cycle is not a cut if it has a chord inside it and the chord is

on the surface of the manifold.

尸卿 / As shown in Fig. 3.2, suppose that the cycle (…，叫—将，叫+,’ …，巧—丄，巧，巧.+1,. •.

is a cut with a chord (叫，巧）.Let ^ be a point in the middle of the chord. If

Chapter 3 3D Reconstruction 35

I: 1 ‘

Figure 3.2: Part of a line drawing where the cycle has a chord {vi, Vj).

the chord is an edge of the original line drawing, then ” inside the cut is on

the surface of the manifold. If the chord is not an original edge but is on a

face, then v inside the cut is still on the surface of the manifold. Both cases

contradict the definition of a cut. •

P r o p e r t y 7. A cycle is not a cut if it has two non-collinear edges belonging

to a face and there is an overlapping region between it and the face in the 2D

line drawing plane.

Proof. Since both a cut and a face are planar, if the cut has two non-collinear

edges on the face, they must be coplanar. Furthermore, when they have an

overlapping region in the 2D line drawing plane, they overlap in the 3D space.

Thus, this region inside the cut is on the surface of the manifold, which con-

tradicts the definition of a cut. •

Note that Proposition 7 implies that a face is not a cut.

3.2.2 Searching for Good Cuts

Through observation of common manifold objects, we find that good cuts that

separate a complex manifold into simpler ones usually follow the following

three criteria:

C r i t e r i o n 1. A good cut should have as few new edges as possible.

C r i t e r i o n 2. A good cut should have as few edges as possible.

Cr i t e r i o n 3. A new edge added to form a good cut is usually parallel (or near

parallel) to an original edge of the face which the new edge is on.

Chapter 3 3D Reconstruction 36

We have Criterion 1 because adding too many new edges into the line

drawing introduces many new faces on the surface of the object, making the

reconstruction more complicated. It also gives priority to finding internal faces.

Criterion 2 comes from the observation that a cut with too many edges may

lead to an untidy partition of the line drawing. Criterion 3 is based on the fact

that a large man-made object is often formed by regular/symmetric smaller

objects.

With the criteria and the propositions, we next develop a shortest cycle

algorithm to search for good cuts on a search graph. A search graph is con-

structed based on a line drawing where new edges are added connecting vertices

in each face. Fig. 3.3 shows an example where the dashed lines are part of the

new edges. Note that a new edge connecting two vertices on different faces

is not added because it is not on the surface of the object. Besides, we do

not add new vertices to make the problem too complicated since our current

method can already obtain excellent results that are in accordance with our

visual perception of the object partition (see the experiments).

In a search graph, each edge has a weight defined by

z

1, if e is from the original line drawing,

⑴ ⑷ = (3.1)

、OL. (mirve雄）7(e, e')) + otherwise,

where e is an original or new edge of the search graph, a and P are two

parameters used to balance the criteria, and we set a 二 = 3 in this paper.

is an edge set consisting of all the edges of the face on which the new edge

e lies, and 7(e, e') is a function evaluating the parallelism between two edges

e and e' defined as:

7 (ey) = l—exp(-0.05 吃 (3.2)

where 凡’6 [0, 90] is the angle between e and Take three edges, ei = (a, b),

62 = (J,k), and 63 = (k,h) in Fig. 3.3, for example. We have cu(ei) = 1,

Chapter 3 3D Reconstruction 37

h

Figure 3.3: A searching graph where only part of the new edges (dashed lines)
are shown for clarity.

a;(e2) w 3, and (^(63)冗 6. Given an original edge of the search graph, the

shortest cycle passing through this edge is the one that has the
minimum sum

of the weights of the edges on this cycle. However, not every shortest cycle can

be a cut. The three propositions given in Section 3.2.1 help to eliminate cycles

that cannot be a cut. For example, the shortest cycle passing through edge

(c,d) in Fig. 3.3 is (c,d,i,c), but it cannot be a cut according to Proposition

7 (it is a face actually).

Algorithm 4 lists the steps to find a best cut from a line drawing. In the

algorithm, cj(€) denotes the total weight of a cut c. In step 5, the returned

shortest path p connected with edge ê forms a cut, and c is always the shortest

cut found so far. The procedure ExtDijkstra is an extended version of Dijlu-

stra's shortest path algorithm for finding a shortest path on a weighted graph.

The main difference between them is that Propositions 5-7 are incorporated

into the search in ExtDijkstra. Proposition 5 is used earlier than Propositions

6 and 7 so that most of the paths that cannot be a cut are determined as soon

as possible. Since the conditions in Propositions 6 and 7 need to be tested

when a cycle is formed, they are used later. Note that in step 8, each path in

Pathset{^i,2) connected with edge (场,1，̂;《’2) forms a cycle. Another difference

Chapter 3 3D Reconstruction 38

between ExtDijkstra and Dijkstra's algorithm is that we need to keep the

geometric positions of the vertices and edges of G' so that Propositions 5-7

are used correctly.

Only one cut is obtained by each running of Algorithm 4. When the current

best cut is found, we use the partition method proposed in the next section

to separate the line drawing along this cut. Then Algorithm 4 is run again on

each separated line drawing. This procedure is repeated until some condition

is satisfied. The stopping condition we use is

sum of the edge weights of the best cut
fj, 〉1 (o o\

number of faces of the line drawing • 、 乂

The ratio fi is large when the line drawing is simple (i.e., with fewer faces) and

the cut is not good (i.e., with a large weight).

3.3 Separation of a Line Drawing from Cuts

To separate a manifold into simpler ones, cuts of the manifold are found first

and then the manifold is separated from the cuts. In Fig. 3.1(d), some cuts

separate faces of the original manifold into sub-faces, which generates a new

representation of the manifold. We call this representation an extended man-

ifold, which is defined below.

D e f i n i t i o n 3.1. Let C be a set of cuts. Let F, E and V be the face set,

却 set, and vertex set of the original manifold, respectively. The extended

舰河old IS an object with its face set edge set and vertex set

^ext(C) defined as follows: 1) For each face f eF, if C separates f into two

or more sub-faces {/丄 then { / J c otherwise, f e Besides,

Fext(C、contains no other faces not from these two cases. 2) Eext{C) = E \J

{edges of the cuts in C}. 3) Vext{C) = V.

Since we do not consider cuts with new vertices, Kx^(C) is the same as

It is easy to see that an extended manifold is still a manifold, because all

Chapter 3 3D Reconstruction 39

A l g o r i t h m 4 Finding a best cut “ “ “

I npu t : A Line Drawing G = {V, E) ‘

In i t ia l i za t ion: The best cut c — null- a;(c) — 00

1. Create the searching graph G' = (V,E') from G

2. Calculate the weight of each edge of E'

3. for each edge ê = G E

4. Call ExtDijkstra{vi^i,Vi^2)

5. if a shortest path p is found and uj{p, ei) < cj(cc),

t hen c (p, a)

O u t p u t : The best cut c

procedure ExtDijkstra(vi^i,Vi^2)

1. Remove edge K,1,^^,2) from E'

2. d{v) — 00, PathSet(v) ^ </), Vv E 1/;

d{vi,i) — 0; Paths et{vi^i) — { ^ i) } ; S

3. whi le • S

4. Move vertex u eQ with minimum d{u) from Q to 5

5. for each edge (u, v) e E' with v eQ

6. Extend the paths in PathSet(u) by (w, add them to

PathSet{v); remove the paths from PathSet(v) that

cannot form a cut according to Proposition 5

7. if PathSet(v) = then d(v) 00;

else d(v) — minpePai"Set(t；)

8. Remove the paths from PathSet、叫,2) that cannot form a cut when they are

connected with edge according to Propositions 6 and 7

9. Add edge back to E'- if PathSet{vi,2) = return null- else

return the shortest path p in PathSet{vi,2)

end of ExtDijkstra[Vi,i,Vi,2)

Chapter 3 3D Reconstruction 40

(a) (b) h' h"

Figure 3.4: (a) An extended manifold, (b) Three separated manifolds.

the new edges are on the surface of the original manifold and each edge of the

extended manifold is still passed through by exactly two faces of the extended

manifold. Some faces of the original manifold are broken into sub-faces by the

cuts. For example, Fig. 3.4(a) is an extended manifold from the manifold in

Fig. 3.1(c) with a cut set C = c), (m,A; , j , m)}. Newly generated

faces (a, e, h, d, k, j, a) and (5, j , k, t, s) are the result of cut (m,/, k, j, m). Note

that cut (c, g, h, d, c) does not generate any new faces.

Separating an extended manifold along a cut in a 2D line drawing is not

trivial. The difficulties include the lack of 3D geometry in a line drawing

and the fact that the faces and edges connected to a cut can appear in any

directions with respect to the cut. Besides, when the line drawing is separated

into two sides along a cut, it is not obvious which side an edge connected to

the cut should be put in.

Even though there exist these difficulties, humans are quite easy to obtain

a unique separation along a cut. For example, given the extended manifold

shown in Fig. 3.4(a) with the two cuts (c,g,h,d,c) and (m,l,k,j,m、, humans

always generate the separations in Fig. 3.4(b). We can see that the faces con-

nected to a cut are separated into two non-empty sets, each of which contains

Chapter 3 3D Reconstruction 41

the faces on one side. Besides, for each edge connected to the cut, its two

neighboring faces always appear on one side only. This is because if the two

neighboring faces appear on different sides, the line drawing cannot be separ

rated into two sides along the cut. Next, a formal definition of the separation

is given, which is called a partition along a cut

De f i n i t i o n 3.2. Given a cut c，let the set of all the faces connected to c be

F(c)，and let the set of all the edges connected to c he A partition

0/ the extended manifold along c is to find a face set partition P (F (c)) =

(Fo(c) ,Fi (c)) and an edge set partition P(E(c)) = {Eo{c), Ei{c)) simultane-

0似ly such that for any edge e e 五饥(c)，it holds that e 车 Edge{f), V/ e

^i-m(c), m = 0，1，where Edge{f) denotes the set of all the edges of face / .

For example, given the cut c = {mj,kj, m) in Fig. 3.4(a), the face set

partition along c is: Fo((c) 二、(^a,e,h,d,k, j ,a)Aa, l) ,c ,d,k, l ,m, j ,a)、and

Fi(c) = {(5,j, m, n, 5), {sj, k, t, s), (t, k, I, o, t), (n, m, /, o, n)}, and the edge set

partition along c is:五o(c) = {(a, j) , (A:, d)},五i(c) = {(s, j.), (rz, m)，（o,/),(力’ A:)}.

Next we give a theorem showing that the partition along a cut exists and is

unique 1 .

T h e o r e m 3.3. The partition of an extended manifold along a cut exists and

is unique.

Proof. Recall the rotation direction of a face. We can assign a rotation direc-

tion to every face of the manifold^ such that any two neighboring faces have op-

posite rotation directions on their sharing edge(s). Let c = {vi,v2, . . . , Vn, vi)

be a cut with n vertices, and Ni be a neighborhood around Vi on the surface

of the manifold such that Ni is topologically equivalent to a 2D open disk and

small enough with only the edges connected to Vi contained in Ni. According

1 In [17], a theorem is given to show that the partition along an internal face exists and
is unique. Theorem 3.3 in this paper is an extension of it.

2In this proof, the term manifold is used to denote the extended manifold for conciseness.

Chapter 3 3D Reconstruction 42

, -议。奴、、

…
Figure 3.5: Part of a line drawing where a cut with n vertices is shown in bold

lines, and all the neighborhoods Ni,i = 1,2,... ,n, are stretched into 2D open

disks.

to the definition of a manifold, every Ni can be stretched into a 2D open disk

where the faces passing through Vi are located side by side around Vi with-

out overlap. Besides, we arbitrarily assign a rotation direction to the cut, as

shown in Fig. 3.5, which is helpful to create the face set partition and the edge

set partition. Next we state and verify five properties when all the Ni,s are

stretched into 2D disks.

1) In Ni, two edges and {vi.vi^i) of the cut separate the faces

passing through Vi into two non-empty sets: {八丄， f、) ,…， f i ,mA on one side

and {//’i,//’2, • . . , / / ’爪 o n the other side (see Fig. 3.5). Neither set can be

empty because otherwise, Ni is not topologically equivalent to a 2D open disk.

2) All the rotation directions of the faces in Ni are either clockwise or

counter-clockwise. Without loss of generality, suppose that the rotation di-

rection of /i’i is clockwise (Fig. 3.5). Since two faces have opposite rotation

directions on their sharing edge(s), the rotation direction of fi,2 is also clock-

wise, and so are the rotation directions of 八3, …，八爪厂 Similarly, all the

rotation directions of //，i, /^，2,..., /;’爪；are also clockwise.

Chapter 3 3D Reconstruction 43

3) Among the four faces,几1,九叫，//^, / ; 冲 which pass through the cut

and Vi, two of them lying on one side of the cut are consistent with the cut,

while the other two lying on the other side are inconsistent with the cut^ • In

Fig. 3.5, /i,i and lying on the upper side of the cut are consistent with

the cut, while f; ,” //爪；lying on the lower side are inconsistent with the cut.

This property is a direct result of property 2).

4) Suppose that /；’丄 and are consistent with the cut, and and //爪,

are inconsistent with the cut, for i e {1 ,2 , . . . ,n} . To create a face set parti-

tion，let Fo(c) = U L J / u , / u ,…，km . } and i ^ c) = U l A f U J U ^ . . . , Km^ l

That is, Fo(c) contains the faces consistent with the cut and the faces lying

on the same side as these consistent faces, and Fi(c) contains all other faces

passing through v i ,仍 , . . . , o r v^. To create an edge partition, let ^o(c) be

the set of edges whose neighboring faces belong to Fo(c), and 丑i(c) be the

set of edges whose neighboring faces belong to Fi(c). Since for any e e £"(c)，

the two neighboring faces of e lie on the same side of the cut, they must

belong to the same face partition set, i.e., either Fo(c) or Fi(c). Therefore

= (Fo(c), Fi(c)) and P(E(c)) = (Eo(c), E卿 form a partition along

cc that satisfies Definition 3.2. This property and the property 1) show the ex-

istence of a partition along c.

5) The above partition along c is unique. To verify this property, suppose

that there is another face set partition (^(^(c), F/(c)) along c with ^(^(c) ^

Fo(c) (and thus F((c) + Fi(c)). Since none of F(J(c) and is empty, there

must exist an edge e e E(c), the two neighboring faces of which belong to

different face partition sets. In this case, the line drawing cannot be separated

into two sides because e appears in both sides, which shows that (Fo(c), F((c))

is not a valid face set partition. •

Theorem 3.3 and Definition 3.2 already provide a method to partition a line

3lt is possible that there is only one face on one side. In this case, the two faces merge
into one.

Chapter 3 3D Reconstruction 44

Algor i thm 5 Partition of a line drawing along a cut c

1. Create the extended manifold with c

2. Eq(<z) — 0; EI(<L) — (t>- Fo(c) — 0;

乃(<C) — {faces connected to c in the extended manifold}

3. Pick a face f G Fi(c) and move it to i^o⑷

4. for each face f e i^i(c)

5. if / shares an edge connected to c with a face in Fo(c),

then move f to Fo(c)

6. for each edge e connected to c

7. if e is on a face in m = 0 or 1, then 五饥(c) — e

drawing along a cut, which is given in Algorithm 5. After the partition along

(C, c becomes two new faces on the two sides of the partition. In Fig. 3.4(b),

three objects are generated from the partitions along the two cuts (m, I, k, j , m)

and (c,g,h,d,c) in Fig. 3.4(a). Note that the newly face , k', f ,m') is

merged with the original face W,m',1'兄 d,c,b,a) in the biggest object in

Fig. 3.4(b) by deleting the edges connected to the vertices (m, and 1') of degree

2. The following theorem shows that separated line drawings still represent

manifolds.

T h e o r e m 3.4. After the partition along a cut, the line drawing (line drawings)

still represents (represent) a manifold (manifolds).

尸roo/‘ After the partition^ , the new line drawing (line drawings) is (are)

formed by the faces of the extended manifold and the two new faces from the

cut. We only need to verify that every point on the new faces and their edges

has a neighborhood topologically equivalent to a 2D open disk. Obviously,

every point inside each new face satisfies this requirement. Let p be a point on

an edge of a new face (the cut), say, at the middle of edge (u“ v^.i) in Fig. 3.5

without loss of generality. It is easy to find such a neighborhood around p,

which is formed by points in 八丄 or f^,, edge (均，”h), and the new face. •

^Note that one partition may or may not separate a line drawing into two disjoint line
drawings.

Chapter 3 3D Reconstruction 45

Algorithm 6 3D reconstruction

1. Detect and delete all artificial lines

2. For each separated line drawing, find its best cut and partition it along the

cut; repeat this step until /x > 1

3. Reconstruct 3D manifolds from the separated line drawings

4. Combine the 3D manifolds to obtain a complete object

3.4 3D Reconstruction from a Line Drawing

After partitioning a line drawing along its cuts, we reconstruct 3D manifolds

from these separated line drawings and then obtain the complete large 3D

object through the combination of these smaller 3D manifolds.

It is not difficult to deal with 3D reconstruction from a separated line

drawing because it is simple enough (see the experiments). We use the method

in [13] to carry out this work. The basic idea of this method is to derive the

^-coordinates of all the vertices by minimizing an objective function. Since a

line drawing is considered as a parallel projection of a manifold and its face

topology is known, the 3D object is obtained when all the ^-coordinates are

derived. More details can be found from [13]. After constructing the smaller

3D objects from all the separated line drawings, we merge them together to

have a complex large object using the method in [17.

Algorithm 6 lists our complete algorithm to do 3D reconstruction from a

complex line drawing.

3.5 Experiments

A set of examples is given in this section to demonstrate the performance of

our algorithm. The problem in [17] is that it may fail when a complex line

drawing has too few internal faces. For example, it can only separate the line

Chapter 3 3D Reconstruction 46

drawing in Fig. 1.7(a) into the two line drawings in Fig. 1.7(c). The larger line

drawing in Fig. 1.7(c) is still too complex.

Fig. 3.6 presents a number of complex line drawings together with their

partition and reconstruction results by our algorithm. From the second column

of Fig. 3.6, we can see that our algorithm successfully finds good cuts to

separate the line drawings, which are in accordance with our visual partitions.

For the two objects in Figs. 3.6(a) and (b), our algorithm and the one in [17

obtain the same partition results. Note that besides the separations from the

artificial lines, there is only one internal face in line drawing (d) or (e), and no

internal face in line drawing (f), (g), or (h).

Because our algorithm can separate the complex line drawings into very

simple line drawings based on the found cuts, the 3D reconstruction from

these line drawings becomes much easier. From the third and forth columns in

Fig. 3.6, we can see that the 3D objects are reconstructed very well. Besides,

all the line drawings given in [17] can be dealt with by our algorithm because

internal faces are special cases of cuts.

The computational time of Algorithm 6 depends on the complexity of a line

drawing. It ranges from 10 to 112 seconds for the line drawings in Fig. 3.6.

The algorithm is implemented using C++ and runs on a PC with 2.4GHz Intel

Core2 CPU. Steps 3 and 4 consume the majority of the time, while steps 1

and 2 take about 1 second only for each of the line drawings.

Chapter 3 3D Reconstruction 47

龜 _ 身

/j ^
^B 遍 缚

^ ^ t ^ 身

⑷ (b) (c)

Chapter 3 3D Reconstruction 60

^ ^ 職

. 1 零I 4
“‘ 、二 •>、，•"'鲁

⑷ （e) (f)

Chapter 3 3D Reconstruction 49

、 ^ • — n

- " ‘ \

(g) (h)

Figure 3.6: Experimental results on a set of complex line drawings (a)-(h)

by our algorithm. The second rows shows the partitions of the line drawings.

Each reconstructed 3D object is displayed in two views with its faces illustrated

by different colors.

Chapter 4

Conclusion

In this thesis we develop a set of algorithms to recover the 3D geometry from

a complex 2D line drawing. A 2D line drawing is one of most straight forward

way to represent a 3D object. Recovering 3D geometry from a 2D line drawing

is one of traditional topic in computer vision. The applications of this research

include: flexible sketching interface for 3D model designers, converting existing

industrial wireframe models to solid 3D models, 3D object generation from

images with users' sketch, and 3D query creation for 3D object retrieval.

Previous approaches to recover 3D geometry from a 2D line drawing usu-

ally contains two steps: face configuration identification and 3D reconstruction.

Although previous methods can correctly recover the 3D geometry for a simple

2D line drawing, when the line drawing becomes complex, most of previous

methods fail either because that they have a very high computational cost, or

because that the optimization algorithms are easily trapped in a local mini-

mum. In order to solve this problem, we propose an efficient algorithm for the

face configuration identification which has very low computational cost and a

new 3D reconstruction algorithm which can avoid the local minimum problem

when the line drawing become complex.

In face configuration identification part, we propose an efficient algorithm

for the face identification from line drawings of manifolds. The first step of

our algorithm is to find an initial face set using a previous fast algorithm for

50

Chapter 4 Conclusion

the face identification from line drawings of sheet objects. Since this initial

face set may contain undesirable internal faces and loses some real faces, the

second and the third steps of our algorithm find potential lost faces. From

all the outputs by these three steps, the last step of our algorithm detects the

real faces and removes the others. Several geometric properties and a theorem

have been presented for the design of our algorithm. Extensive experiments

have been done to verify the performance of the algorithm, which is much more

efficient to deal with a complex line drawing than previous ones.

In the 3D reconstruction part, we propose to separate a complex line draw-

ing from cuts, which include internal faces as a special case. We develop

several propositions and a criteria for cut finding. We also present a theorem

that guarantees the existence and uniqueness of the partition of a line drawing

along a cut. Our algorithm can tackle 3D reconstruction for more complex

solid objects than previous algorithms.

In our future work, we will try to find the limitation of our face identification

algorithm with more complex line drawings of manifolds, although currently

we have not found an example in which our algorithm fails to identify the real

faces. We will also try to extend our algorithms for more general objects such

as objects with curved surfaces.

Bibliography

1] S. Agarwal and J. Waggenspack. Decomposition method for extract-

ing face topologies from wireframe models. Computer-Aided Design,

24(3): 123-140, 1992.

2] M. A. Armstrong. Basic Topology. Springer, 1983.

3] L. Cao, J. Liu, and X. Tang. What the back of the object looks like:

3D reconstruction from line drawings without hidden lines. IEEE Trans.

PAMI, 30(3):507-517, 2008.

4] Y. Chen, J. Liu, and X. Tang. A divide-and-conquer approach to 3D

object reconstruction from line drawings. ICCV, 2007.

5] M. Cooper. Line Drawing Interpretation. Springer, 2008.

6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-

tecture from photographs: a hybrid geometry- and image-based approach.

ACM SIGGRAPH, pages 11—20, 1996.

7] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, Inc., 1995.

8] Y. G. Leclerc and M. A. Fischler. An optimization-based approach to the

interpretation of single line drawings as 3D wire frames. International

Journal of Computer Vision, 9(2):113-136, 1992.

52

.9] H. Li, Q. Wang, L. Zhao, Y. Chen, and L. Huang. nD object represen-

tation and detection from single 2D line drawing. LNCS, 3519:363-382,

2005.

10] Z‘ Li, J. Liu, and X. Tang. A Closed-form Solution to 3D Reconstruction

of Piecewise Planar Objects from Single Images. CVPR, pages 1—6, 2007.

11] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3D

object from a single freehand line drawing. Computer-Aided Design,

28(8):651-663, 1996.

12] H. Lipson and M. Shpitalni. Correlation-based reconstruction of a 3d

object from a single freehand sketch. ACM SIGGRAPH, 2007.

13] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-Based Optimization for 3D

Object Reconstruction from Single Line Drawings. IEEE Trans. PAMI,

30(2):315-327, 2008.

14] J. Liu and Y. Lee. A graph-based method for face identification from a

single 2D line drawing. IEEE Trans. PAMI, 23(10):1106-1119, 2001.

15] J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing

representing a manifold object. IEEE Trans. PAMI，24(12):1579-1593,

2002.

16] J. Liu and X. Tang. Evolutionary search for faces from line drawings.

IEEE Trans. PAMI, 27(6):861-872, 2005.

17] J. Liu and X. Tang. Decomposition of complex line drawings with hidden

lines for 3D planar-faced manifold object reconstruction. IEEE Trans.

PAMI, pages 3-15, 2010.

18] R. E. M., J. Nievergelt, and N. Deo. Combinatorial algorithms: theory

and practices. New Jersey: Prentice-Hall, 1977.

53

19] T. Marill. Emulating the human interpretation of line-drawings as three-

dimensional objects. IJCV, 6(2):147—161, 1991.

20] P. Min, J. Chen, and T. Funkhouser. A 2D sketch interface for a 3D model

search engine. ACM SIGGRAPH Technical Sketches, page 138, 2002.

21] A. Piquer, R. Martin, et al. Using skewed mirror symmetry for

optimisation-based 3d line-drawing recognition. In In Proc. 5th I APR

International Workshop on Graphics Recognition (2003. Citeseer, 2003.

22] L. Ros and F. Thomas. Overcoming superstrictness in line drawing inter-

pretation. IEEE Trans. PAMI, pages 456-466, 2002.

23] H. Seifert. Seifert and Threlfall: A Textbook of Topology. Academic Press,

1980.

24] A. Shesh and B. Chen. Peek-in-the-Pic: Flying Through Architectural

Scenes From a Single Image*. Computer Graphics Forum, 27(8):2143-

2153, 2008.

25] M. Shpitalni and H. Lipson. Identification of Faces in a 2D line drawing

projection of a wireframe object. IEEE Trans. PAMI, 18(10):1000—1012,

1996.

26] K. Sugihara. Mathematical structures of line drawings of polyhedrons-

toward man-machine communication by means of line drawings. IEEE

Trans. PAMI, (5):458—469, 1982.

27] K. Sugihara. A necessary and sufficient condition for a picture to represent

a polyhedral scene. IEEE Trans. PAMI, (5):578-586, 1984.

28] A. Turner, D. Chapman, and A. Perm. Sketching space. Computers &

Graphics, 24:869-879, 2000.

54

29] A. Vicent, P. Calleja, and R. Martin. Skewed mirror symmetry in the

3d reconstruction of polyhedral models. Journal of Winter School on

Computer Graphics, 11(3):504-511, 2003.

[30] Y. Wang, Y. Chen, J. Liu, and X. Tang. 3D reconstruction of curved

objects from single 2d line drawings. CVPR, pages 1834-1841, 2009.

31] T. Xue, J. Liu, and X. Tang. Object cut: Complex 3D object reconstruc-

tion through line drawing separation. CVPR, 2010.

55

•；1

'V

• •

• .、. ：•.】.. . . . •

^ f
‘ . V . .‘ 、
' ! • ： 兴 议 • ： ’ . … . " ^ ， - . . . ‘ 厂 .

V

CUHK Libraries mimi
004777722

