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Resource allocation plays a significant role in designing efficient and reliable wireless net-
works. However, a generic approach is still not available due to the challenging wireless 
environments, the many degrees of freedom of the wireless resources, the heterogeneity of 
wireless networks, etc. We in this thesis investigate several resource allocation problems 
for typical wireless transmission scenarios. In particular, the thesis illustrates the roles of 
learning, competition, and coordination in multiuser communication systems. 

We first study the distributed power control problem for stochastic parallel Gaussian in-
terference channels while, to the best of our knowledge, all the existing works only consider 
deterministic scenarios. We resort to learning theory and propose two distributed learning 
algorithms. Sufficient conditions are provided to guarantee the convergence of the proposed 
algorithms. We further show that the algorithmic convergence speed is "exponential" in 
some sense. 

We further consider the one-to-rnaiiy transmission scenarios, extended from the previous 
one-to-one cases. The distributed power control problem now becomes a generalized Nash 
equilibrium problem. Resorting to variational inequality theory, we show the existence of 
generalized Nash equilibrium. Identifying the variational equilibrium as the network opera-
tion point, we study the sufficient conditions for the uniqueness issue. Then we propose a 
penalty-based distributed algorithm along with convergence analysis. 

We then take a reverse approach, compared to the previous two studies. In particular, 
we present a framework for distributed flow allocation in multiple access networks, where 
the end users can seek wireless flows from multiple access points. Interestingly, this reverse 
approach helps us investigate the problem in question as a convex one. Consequently, the 
two proposed distributed algorithms can converge not only to the unique Nash equilibrium 
but also the globally optimal solution. 
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We finally consider joint relay assignment and admission control for cooperative networks. 
This problem illustrates the value of coordination when it comes to complicated resource 
allocation problems. Indeed, the problem in question is NP-hard. We decompose the problem 
into two subproblems. A good final solution can be obtained by iteratively solving the 
two subproblems. We also propose a simple heuristic algorithm to solve the problem in a 
distributed fashion. 
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摘 要 

資源分配在設計高效可靠的無線網絡中起著十分重要的作用。然而，由於無線環境的 

複雜性，無線資源的多樣性，無線網絡的異構性等因素，通用的資源分配方法尚未被提出。 

本篇論文研究了數個在典型的無線通信環境中的資源分配問題。論文尤其展示了學習，競 

爭和協調在多用戶無線通信系統中的作用。 

論文首先研究隨機並行高斯干擾信道中的分佈式功率控制問題。對該問題，現有的研 

究只考慮確定性的情況。通過應用學習理論，我們提出了兩個分佈式學習算法。論文中給 

出了充分條件以保證算法的收斂。論文進而論證了算法的指數收斂速度。 

在單對單通信問題的基礎上，論文進一步考慮單對多的通信情況。所研究的分佈式功 

率控制問題本質上是一個廣義納什均衡問題。通過應用變分不等式理論，論文證明了廣義 

納什均衡的存在。論文同樣研究了變分平衡的單一性問題並給出了充分條件。接著，論文 

提出了基於懲罰的分佈式算法並分析了算法的收斂性。 

與前兩個功率控制問題相比，論文接著採取了流量分配的逆向方法。具體來說，論文 

為多接入網絡提出了一個分佈式流量分配的解決方案。該方案允許終端用戶接收來自多個 

無線接入點的信息流。有趣的是，這種方法將原本非凸的問題轉換為一個凸問題。因此， 

兩個提出的分佈式算法最終能夠收斂到全局的最優解。 

論文最後聯合考慮協同在網絡中中繼選擇和接入控制的問題。該問題的研究展示了協 

調在復雜資源分配問題上的作用。論文將所研究的NP困難問題其分解為兩個子問題。一 

個良好的解可以通過迭代求解兩個子問題獲得。論文同時也為該問題提出了一個簡單的分 

佈式算法。 
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Chapter 1 

Introduction 

If I have seen a little further it is by standing on the shoulders of Giants. 
Isaac Newton 

1.1 Motivation 

During the past two decades, we have witnessed an ever increasing demand of wireless 
services ranging from delay-sensitive applications (real-time multimedia transmission, for 
one) to delay-insensitive applications. To meet these demands, various wireless techniques 
and standards have been proposed. For instance, the cellular networks, one of the most well-
known wireless networks, has gone through three generations [66]. Nevertheless, a systematic 
and generic approach for efficient design of wireless networks is still far from being achieved 
if not impossible. 

The fundamental contributor that makes the wireless network design challenging is the 
wireless channel. Transmission signals are susceptible to path loss, shadowing, noise, and 
interference in wireless channels. Worse still, these impediments vary over time due to user 
mobility, fading, and many other dynamic factors. Another major challenge comes from 
the fact that the wireless cornmimicatiori resources such as the transmission bandwidth and 
power are often limited. Besides, unlike the wired networks, the transmissions of wireless 
users are not independent of each other. Indeed, one user's signal often acts as interference 
to other users that share the same channel. The quality of wireless communications would 
be severely deteriorated without appropriate interference management techniques. Conse-
quently, equipped with limited resources, communications in complex and dynamic wireless 
environments make it error-prone and thus challenging. 

With the above difficulties in wireless communications, resource allocation plays a sig-
nificant role in designing efficient and reliable wireless networks [27]. Though significant 
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CHAPTER, 1. INTRODUCTION 2 

progress has been made for the resource allocation in wireless networks, a generic approach 
is still not available. In fact, it is quite unlikely we would arrive at a generic approach for 
the resource allocation in wireless networks due to the inherent nature of the problem in 
question. Firstly, there exist a large number of degrees of freedom in wireless networks. In 
particular, typical wireless resources include time slots, frequency bands, orthogonal codes, 
space, and transmit powers in traditional wireless networks. New resources also become 
available when relatively new techniques were proposed these years. For example, relays can 
also be considered as resources that need to be allocated carefully in cooperative networks 
36]. Another example is the antenna resources in wireless networks employing multiple-

iriput-rnultiple-outpiit (MIMO) techniques [24]. With so many different wireless resources 
present, a joint optimal allocation would lead to a prohibitively difficult problem though 
significant performance gains might; be guaranteed. As a result, researchers and network 
designers often just design the allocation schemes for different resources separately. 

Furthermore, the heterogeneity of wireless networks makes the resource allocation more 
challenging. Indeed, different wireless networks may have different design goals. For ex-
ample, how the available resources should be allocated so that the transmission delay can 
be minimized is a critical issue for wireless networks that supports delay-sensitive wireless 
applications. In contrast, how the limited power resource should be carefully exploited to 
maximize the network life time should be given higher priority in wireless sensor networks 
2]. In this scenario, minimizing transmission delay is not the fundamental objective. Also 

in some networks users move in a fast fashion with opportunistic spectrum access while 
users use a large portion of the spectrum in networks employing ultra-wide band (UWB) 
technology but with little mobility [76]. In a word, different application scenarios in general 
require different design approaches for efficient resource allocation in wireless networks. 

Besides, most existing resource allocation schemes are essentially carried out in a cen-
tralized fashion. These schemes implicitly assume the existence of central controllers in the 
corresponding wireless networks. Centralized schemes may be appropriate in wireless net-
works such as cellular networks, where the base stations can allocate the available network 
resources to the end users. Nevertheless, the centralized resource allocation schemes possess 
several disadvantages. First and foremost, the central controllers become the network bottle-
neck. As the size of the network grows, the central controllers must manage more and more 
computing and storage elements. Thus the wireless network does not scale well. Moreover, 
information exchange between central controllers and other network nodes also causes a loss 
of system resources. Last but not the least, central controllers may not even exist in some 
networks (ad hoc networks, for one) where centralized scheme becomes infeasible. There-
fore, distributed protocols and algorithms for wireless resource allocation are often desired in 
many scenarios. However, the requirement for distributed resource allocation schemes often 
imposes further design difficulties including limited communications among the distributed 
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decision makers, the incomplete information at the distributed users, the dynamic changing 
environments, and so on. 

This thesis does not aim to and also cannot provide a comprehensive answer to the 
wireless resource allocation which is such a broad issue as described above. Instead, we 
investigate several resource allocation problems for typical wireless transmission scenarios in 
the hope of shedding some lights on the basic principles and techniques for the allocation of 
wireless resources. In particular, we study both centralized and distributed wireless resource 
allocation schemes depending on the specific application scenarios. Nevertheless, we pay 
more attention to the distributed schemes since they possess obvious advantages over their 
centralized counterparts. 

1.2 Background 

1.2.1 Wireless Communication Schemes 

A wireless network consists of many transmitters and receivers. Given a channel transition 
matrix that characterizes the effects of interference and noise, the problem of interest is to 
decide the optimal communication scheme that achieves the network capacity [16]. However, 
this general problem so far is still open. In this thesis, we consider several special communi-
cation schemes. It should be pointed out that the communication schemes considered in this 
thesis may or may not be optimal in the sense of network information theory. Nevertheless, 
as seen later, the considered schemes are of practical interest. In this subsection, we briefly 
describe the communication schemes studied in this thesis. 

1. Gaussian Interference Channel 

The resource allocation problems studied in Chapter 2 and Chapter 3 are based on 
Gaussian interference channel model. In a Gaussian interference channel, each com-
munication pair communicates in the presence of interference from other independent 
communication pairs as well as background additive Gaussian noise. For illustration 
purpose, we consider a two-user Gaussian interference channel scenario for the time 
being. The extension to the general multiple-user scenario is completely natural. 

In a two-user Gaussian interference channel, the inputs Xi and X2 and the outputs Yi 
and Y2 are related by 

F2 = aXi + X2 + Z2 (1.1) 

where a and b are given interference coefficients, and Zi and Z2 are Gaussian noise 
with zero-mean and variances Ni and N2, respectively. Each user k,k = 1,2, has an 
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average power constraint of P .̂ 
Even in this simple scenario, the determination of the associated capacity region is 
still an open problem. The only known case is the strong interference scenario whose 
capacity region is the same as if there were no interference [25]. A recent breakthrough 
made in [18] shows that a simple Han-Kobayashi type scheme can achieve to within 
one bit of the capacity for arbitrary interference scenarios. 

Fewer results have been obtained in the parallel Gaussian interference channels which 
model a network where the network communication pairs share a number of indepen-
dent channels. Each of these independent channels is a Gaussian interference channel. 

Instead of pursuing the optimal communication scheme for (parallel) Gaussian interfer-
ence channels, we consider a siiboptimal scheme where each individual communication 
pair is only interested in its own signal and simply treats interference as noise when 
decoding, i.e., not allowing joint encoding/decoding and interference cancellation tech-
niques. This communication scheme is very appealing in practice due to the simplicity 
and distributiveness. Indeed, receivers in current practical communication systems gen-
erally treat interference as noise though substantial research works have been carried 
out on interference-aware receivers and significant performance gains are promised by 
multi-user techniques [6 . 

By adopting single user detection scheme where interference is simply treated as noise, 
the set of rates {Ri, R2) in the above two-user Gaussian interference channel setting is 
given by the capacity of single-user Gaussian channels of user 1 and user 2, respectively. 
Specifically, 

丑2 = + (1.2) 

The extension to the parallel Gaussian interference channels is straightforward. In 
particular, the set of rates R2) now is given by 

只 � g ( l + ^ ^ ) (1.3) 

where we use notation i to refer to any one of the independent parallel Gaussian in-
terference channels denoted by the set I. Each user /c, k = 1,2, has a total power 
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constraint Pk over all the parallel Gaussian interference channels, i.e., 

ie'i 

YA 仏 , (1-4) 
iei 

Intuitively, this simple sub optimal communication scheme provides an inner bound of 
the capacity region of parallel Gaussian interference channels. If the channel coefficients 
and power constraints satisfy a certain condition, a somewhat surprising result recently 
given in [60] is that this simple communication scheme indeed achieves the sum-rate 
capacity of the parallel Gaussian interference channels. This result further justifies our 
interest in studying parallel Gaussian interference channels with single user detection 
scheme where interference is simply treated as noise. For more details, we refer to 
Chapter 2 and Chapter 3. 

2. Gaussian Multiple Access Channel 

The flow allocation problem studied in Chapter 4 is based on Gaussian multiple access 
channel model. In a Gaussian multiple access channel, multiple independent trans-
mitters send information to a common receiver in the presence of additive Gaussian 
noise. Unlike the Gaussian interference channel, the capacity region of Gaussian mul-
tiple access channel has been characterized. For ease of exposition, we again consider 
a two-user scenario for the time being. 

In a two-user Gaussian multiple access channel, the inputs Xi and X2 and the output 
Y are related by 

F = + + Z (1.5) 

where Z is Gaussian noise with zero-mean and variance Nq, Each user k,k = 1,2, has 
an average power constraint of P .̂ 

The associated capacity region in two-user Gaussian multiple access channel is the set 
of rates satisfying the following three constraints (see, e.g., [66]): 

彻 测 + 瓷 ) 

R, + R2<log( l + ^ ^ ) . (1.6) 

These constraints are quite natural. In particular, the first constraint describes that 



CHAPTER, 1. INTRODUCTION 6 

user 1 cannot transmit at a rate higher than the capacity of single-user Gaussian channel 
with user 2 absent from the system. Similar interpretation with an exchange of the 
roles of user 1 and user 2 can be carried over for the second constraint. The third 
constraint describes that the sum rate of user 1 and user 2 cannot be higher than the 
capacity of single-user Gaussian channel with the sum of the received powers of the 
two users. 

The next question that naturally arises is how the maximum sum capacity, i.e., log(l + 
can be achieved in this two-user Gaussian multiple access channel. The answer 

hinges on a key idea: successive interference cancellation. 

For illustration of the idea of successive interference cancellation, we describe an ap-
proach that achieves the set of rates 

( 明 、 ( l o g ( l 令 � g ( l 十 為 ) ) . 

It is clear the above set of rates achieves the maximum sum capacity log(l + We 
next describe how this set of rates can be achieved by the network. At the transmitter 
side, each user independently encodes its data adopting a capacity-achieving Gaussian 
channel code. At the receiver side, the decoding consists of three steps. In the first 
step, the receiver decodes the data of user 2 by simply treating user I's signal as noise. 
Thus the rate attained by user 2 is log(l + •p^^). In the second step, the receiver 
reconstructs and subtracts user 2's signal from its aggregate received signal. In the 
third step, the receiver decodes the data of user 1 in the presence of only background 
Gaussian noise. Thus, the rate attained by user 1 is log(l + 悬). 

It should be pointed out that the above approach is not the only optimal scheme in 
terms of sum capacity. Clearly, we also can achieve the maximum sum capacity log(l + 

) by reversing the order of the above interference cancellation which achieves the 
set of rates 

( 风 养 ( l o g ( l + 蟲 ) ， l o g ( l + g ) ) . 

Furthermore, a convex combination of the above two sets of rates, i.e., 

(Ri： R2Y = e{Ri,i?.2)* + (1 — e)(Ri,R2)Ke e (o, i), 

is also optimal in the sense of achieving the maximum sum capacity. Thus, we can time 
share the above two orders of interference cancellation for other system design concerns 
(fairness, for one) while preserving optimality. 

The idea of successive interference cancellation will be utilized in the flow allocation 
problem studied in Chapter 4. 
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3. Cooperative Communications 
Cooperative communications is a new paradigm that allows communication nodes in the 
network to help each other. However, cooperative communications is a rather vague and 
broad concept that has been extensively used in both wireline and wireless networks 
(see, e.g., [33]). Nevertheless, we use this concept in this thesis only to refer to the 
several low complexity cooperative protocols proposed in [36] to achieve spatial diversity 
for wireless networks. Indeed, cooperative communications can improve transmission 
diversity by allowing single-antenna users to exploit other users' antennas, generating 
a virtual MIMO system [36 . 
We next briefly describe how cooperative communications works. Let us consider a 
classic three-node relay model which works in a time-division way. In particular, the 
communication between the source and the destination is carried out in two time slots. 
In the first time slot, the source transmits a signal to the destination which is overheard 
by the relay as well due to the broadcast nature of wireless communications. Then in 
the second time slot the relay forwards its overheard signal to the destination based on 
some cooperative protocol. Based on how the relay functions during the cooperative 
transmission, two basic cooperative protocols: amplify-arid-forward (AF) and decode-
and-forward (DF), were proposed in [36] by Laiieriian et al. 

For illustration, we in the sequel take a more careful look at the AF cooperative protocol 
while we refer to [36] for DF scheme. In the first time slot, the signals Yŝ d and Yg，” 

received at the destination and the relay are 

Ys,d 二 y/^sK^X + 

Ys^r = y/Pshs,rX + Z”� (1.7) 

where 

(a) hs,d and hs,r are the channel coefficients of the source-relay and source-destination 
channels, respectively; 

(b) Ps is the transmission power used by the source; 

(c) X denotes the transmission symbol of the source, the power of which is normalized, 
i . e . � = 1； 

(d) Zs4 and Ẑ r̂ are the white Gaussian noises of the source-relay and source-destination 
channels. We denote by iV,,̂  and iV,,,. the variances of Zs,d and Z…respectively. 

In the second time slot, the relay normalizes its received signal and forwards it to the 
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destination. The signal K’d received at the destination from the relay is 

= \/Prhr,dXr + (1.8) 

where 

(a) Xr denotes the normalized signal, i.e., 

y — Ys’r — + Zs^r 

(b) hr,d is the channel coefficient of the relay-destination channel; 

(c) Pr is the transmission power used by the relay; 

(d) Zr,ci is the white Gaussian noise of the relay-destination channel, the variance of 
which is denoted by Nr^. 

The capacity expression for the above AF scheme is given by [36 

Caf = I log, (l + ^ ^ ^ + , (1.9) 
2 V 丄、S4 丄、s�r 丄、r,d 

where f(x, y) := — . Recall the baseline capacity attained by the point-to-point 
l+x+y “ 

direct transmission scheme: 

Cdt = log2 f l + . (1.10) 
V l�s,d / 

By comparing the two capacity expressions above, it is clear that the AF scheme 
has the potential to achieve more diversity gain than the direct transmission scheme. 
Nevertheless, it should be pointed out that there is also a spectral efficiency loss in 
the above simple AF scheme. Thus, it seems that cooperative protocols (at least the 
described AF) do not have absolute advantage over the traditional direct transmission 
scheme. A natural question arising from this observation is that when we should employ 
cooperative communications in a network setting. We refer to Chapter 5 for more 
details. 

1.2.2 Mathematical Preliminaries 

We in this subsection briefly describe the main mathematical techniques involved in this 
thesis in solving the resource allocation problems. In general, we resort to the relevant 
optimization tools. Nevertheless, different optimization tools are often required in designing 
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different wireless networks. Here we briefly introduce the major optimization tools used 
throughout this thesis. 

1. Convex Optimization 
Convex optimization is a special class of mathematical optimization, which in general 
has the form given by [63 

minimize f{x) 
subject to X e^ (1.11) 

where x is the optimization variable constrained on the set and f{x) is the objective 
function. The aim of this problem is to find the optimal solution x* E ^ such that 
f(x*) < f(x),Vx e If the objective function f(x) is convex with x constrained on a 
convex set then it is called convex optimization problem^. 

Convex optimization is a relatively well-studied area. Efficient algorithms such as 
interior-point methods have been developed for convex optimization problems. Since 
convex optimization problems possess certain (convexity) structures, its prevalent ap-
plication power was beyond people's previous imagination. Communication network 
design is one of the many applications where convex optimization has been widely used. 
We refer to [47] for the wide application of convex optimization for communication net-
work design. 

Nevertheless, the well development of convex optimization theory does not imply that 
applying it to the resource allocation problems in wireless network design is a simple 
task. First, identifying a resource allocation problem as a convex one is not as easy 
as it looks. Indeed, sophisticated reformulation is often required to arrive at a convex 
formulation of the problem in question. Moreover, how to utilize convex optimization 
theory to shed some lights on the structure of the resource allocation problem (may or 
may not be convex) also requires careful analysis and great efforts. Besides, in order 
to develop efficient methods for specific application scenarios (large-scale problems, for 
one), researchers and designers often need to carefully exploit the special structures of 
the specific resource allocation problems even they turn out to be convex optimization 
problems. 

Though most of the problems studied in this thesis are in general not convex, convex 
optimization theory is still used throughout this thesis. For example, some subproblems 
of the resource allocation problems studied may turn out to be convex ones. Besides, 
convex optimization is also used to find bounds on optimal objective values and/or 
approximate solutions in some resource allocation problems studied. 

iFor the detailed definitions of convex function and convex set, we refer to [63]. 
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2. Integer Programming 

Integer programming is also a special class of mathematical optimization. In particular, 
it aims at solving optimization problems with integer variables. It in general has the 
form given by [73 

minimize f(x, y) 

subject to X G C G $2 ^ (1.12) 

Here x is the continuous optimization variable constrained on the set which is a 
subset of m-dimensional real vectors, y is the integer optimization variable constrained 
on the set $2 which is a subset of n-dimensional integer vectors. f{x, y) is the objective 
function. More precisely, the above problem is called mixed integer programming prob-
lem. It would be called pure integer programming problem if there were only integer 
variables y present. 

Obviously, one can find wide applications of integer programming in all walks of life 
since many decision variables in real life are often indivisible. Indeed, many resource 
allocation problems such as scheduling in wireless network design can be formulated as 
integer programs. Unfortunately, unlike convex optimization, it is in general difficult 
to find the optimal solution to integer programs and/or even to check whether a given 
feasible solution is optimal. Indeed, many integer programs are in general NP-hard. 
Therefore, relaxation and decomposition are often required in solving integer programs. 
Sometimes one can even only obtain heuristic algorithms. 

The relay assignment problem in cooperative networks with qiiality-of-service (QoS) 
guarantee studied in this thesis turns out to be integer program. For more details on 
the application of integer programming in this thesis, we refer to Chapter 5. 

3. Game Theory 

Game theory is a branch of applied mathematics that is used to study the interaction 
among distributed decision makers. It has been widely used in economics. Starting 
from the early 1990，s, researchers in communication corrirnimity became increasingly 
interested in applying game theory to networking problems. Indeed, the potentials of 
game theory in modeling the iteraction among the distributed decision makers make 
it a natural tool to model and design dynamic communication networks. It becomes 
even more powerful in designing self-organizing networks (ad hoc networks, for one). A 
comprehensive description on game theory can be found in [46] and is certainly beyond 
the scope of this thesis. We here only briefly introduce some key concepts in game 
theory and focus on strategic form game. 
A strategic form game can be described by a 3-tuple Q = {Af, {$�}祐a/"，{t^JieA/‘} where 
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(a) N - {1,2，...，iV} is the set of N players, 

(b) C 7^恥，with 尺风 being the 风-dimensional Euclidean space, is the set of 
actions of player z, and 

(c) Ui : ^ with 少=UieM is the utility function of player i. 

Note that we implicitly assume that the action sets of the players are continuous. In this 
thesis, we focus on the class of noncooperative games, where each user only cares about 
its^ own utility without cooperation with other players. A widely accepted (though 
debatable) rational outcome of the noncooperative games is called Nash equilibrium 
(NE). We formally define NE as follows. 

Definition 1.1 An action profile a* = ( a ^ , a ^ ) is called Nash equilibrium of the 
noncooperative game Q if and only if 

a* e argm'dx{Ui{ai,a*_i) : â  G € N, (1.13) 

where <2rgmax{t/̂ (ai, a* J : ai G denotes the set of actions that maximize Ui(ai^ a*_i) 
with given and a—i is formed by the actions of all players other than player i. 

Clearly, no player can increase its utility by unilaterally changing its action at an NE. 
Several issues deserving careful investigation exist in game Q. Firstly, a basic question 
is the existence of NE. Another classical issue is the uniqueness of NE of game Q. 
Besides, how to arrive at an NE from initially iioriequilibria states is of practical interest. 
Indeed, one in general cannot expect the distributed players to choose the equilibrium 
actions right away. Instead, these distributed players must be offered time to learn and 
update their actions according to some rules. These predetermined updating rules are 
termed as strategies of the players. In particular, we denote by ) the strategy 
of player i responding to other players' actions a— Commonly used strategies in the 
noncooperative games are as follows. 

(a) Best Response: 

e argmax{[/i(ai,a_i) : a,� G (1.14) 

(b) Gradient Projection Response: 

i) = + aiVa,Ui{ai,a.^..i)), (1.15) 
2The choice for the gender of the players concerned is debatable. For simplicity, we simply use "its" throughout 

this thesis. ^ 
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where denotes the Euclidean projection of x on the set and ai is a 
positive step size. 

Note that the action set 龟i of player i may or may not depend on the actions of other 
players. If 屯i is independent of a—�,•?: 6 Af, then the problem of finding the NE of 
game G is termed as Nash equilibrium problem (NEP). In contrast, the problem in 
question is is termed as generalized Nash equilibrium problem (GNEP) if depends 
on i.e., ( I>i (a—� ) :Yl j^i jeU ̂尺财；is a set-value mapping, for some i € Af. 

The majority of this thesis on distributed resource allocation design for wireless net-
work is based on the above game-theoretical framework. Indeed, the power allocation 
in parallel Gaussian interference channels is formulated and studied as a stochastic 
noncooperatve game in Chapter 2. The distributed information flow allocation prob-
lem in multiple access networks and the power allocation for one-to-many transmission 
networks are both formulated as GNEPs. Nevertheless, different issues exist in these 
resource allocation problems considered in this thesis and thus need to be addressed 
on a case by case basis. 

1.3 Outline of the Thesis 

In this thesis, we in general focus on the design of the various resource allocation schemes 
in wireless communications and networks, with a special emphasis on distributed schemes. 
The outline of each chapter is as follows. 

Ill chapter 1, we give the motivation of the resource allocation in wireless communications 
and networks. We then describe our objective in this thesis. The various optimization 
techniques used throughout this thesis are also briefly presented to facilitate understanding 
of the remaining chapters. 

Chapter 2 deals with the distributed power control issue for parallel Gaussian interfer-
ence channels. This issue recently draws great interests. However, all existing works only 
studied this problem under deterministic communication channels and required certain per-
fect information to carry out their proposed algorithms. We instead study this problem 
for stochastic parallel Gaussian interference channels. In particular, we take into account 
the randomness of the communication environment and the estimation errors of the desired 
information, and thus formulate a stochastic noiicooperative power control game. We then 
propose a stochastic distributed learning algorithm SDLA-I to help communication pairs 
learn the Nash equilibrium. A careful convergence analysis on SDLA-I is provided based 
on stochastic approximation theory and projected dynamical systems approach. We further 
propose another learning algorithm SDLA-II by including a simple iterate averaging idea 
into SDLA-I to improve the algorithmic convergence performance. 
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Chapter 3 extends the distributed power control problem for one-to-one transmissions 
in Gaussian interference channels to one-to-mariy transmission scenarios. We assume a 
user-centric wireless network where the end users play the roles of decision makers. We 
formulate the power control problem as a noncooperative game. New challenges arise due 
to the coupling issues among power strategy spaces of distributed end users, which make 
standard Nash equilibrium based noncooperative game approach inapplicable. Indeed, our 
problem turns out to be a GNEP. Resorting to variational inequality theory, we show several 
fundamental properties of the GNEP. Then we propose a penalty-based distributed algorithm 
IP2JA, which possesses favorable properties for practical implementation. 

Chapter 4 considers multiple access transmissions, which can be regarded as a special 
communication scenario of the more general interference channel model considered in Chap-
ter 2 and 3. We resort to a flow allocation approach rather than power control for multiple 
access transmissions. As it will become clear later, this "dual" approach possesses some 
particular advantages over the power control method. In particular, we aim to minimize the 
power consumption while satisfying each end user's minimum data rate requirement but not 
violating peak power constraint of each access point and interference constraint monitored by 
regulatory agents. Toward this end, we model the flow allocation problem as a game which is 
proved to be a best-response potential game. Then based on potential game theory, we show 
the existence and uniqueness of NE in the formulated game. Moreover, we demonstrate that 
the NE is actually the globally optimal solution to our problem. Besides, we propose two 
distributed algorithms along with convergence analysis for the network to obtain the NE. 
Meanwhile, we also remark the interesting layered structure of the flow allocation problem 
considered. 

Chapter 5 studies the newly emerging cooperative networks, where relays play a funda-
mental role to fully explore the potentials of cooperative communication technique. However, 
adaptive cooperation with conflict-free relay assignment in a network setting is a challenging 
problem. The problem becomes even more difficult when users have QoS requirements but 
the available spectrum resource is limited, where admission control may be required. In this 
chapter, we jointly study relay assignment and admission control in cooperative networks. 
A one-stage optimization problem is formulated to integrate our multiple objectives. Since 
the problem in question is prohibitively difficult, we resort to an appropriate decomposition 
approach after a careful analysis on the structure of the formulated problem. A simple dis-
tributed algorithm is also proposed to overcome the inherent drawbacks of the centralized 
scheme. 

Chapter 6 concludes the thesis by summarizing the main results and discussing further 
research directions. 

• End of chapter. 



Chapter 2 

Learning for Parallel Gaussian 
Interference Channels 

There is no royal road to learning; no short cut to the acquirement of any art. 
Anthony Trollope 

The interference channel has long drawn interests from both information theory and 
communication communities [16]. Indeed, the interference channel provides a good model 
for many communication systems from digital subscriber lines to wireless communication 
systems. Nevertheless, its capacity region is still unknown in general even in the Gaussian 
scenario. Moreover, compared to the flat interference channel, fewer works have been done 
in frequency-selective interference channels. We refer to [69] for an overview on interference 
channels. 

In this chapter we focus on power control in frequency-selective interference channels with 
Gaussian noise, i.e., parallel Gaussian interference channels. It has been shown recently in 
39] that obtaining globally optimal solution to maximizing the network sum rates is NP-hard 

in general. Nevertheless, a distributed game-theoretic approach originally proposed in [78 
becomes increasingly popular. The key assumption is that each individual communication 
pair is only interested in its own signal and simply treats interference as noise when decoding, 
i.e, not allowing joint encoding/decoding and interference cancellation techniques. 

After the seminal work [78], different approaches have been applied to study the dis-
tributed power control in parallel Gaussian interference channels when the channel power 
gains are deterministic. Specifically, [58] [57] [56] are based on contraction mapping, [62 
is based on piecewise affine mapping, [48] resorts to variational inequality theory, and [38 
formulates an equivalent linear complementary problem. These works focused on character-
izing the Nash equilibrium (NE) such as existence and uniqueness and devising distributed 
algorithms along with convergence analysis. Indeed, the proposed iterative water-filling al-

14 
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gorithm (IWFA) has become a popular candidate for distributed power control in parallel 
Gaussian interference channels. 

Nevertheless, a common assumption in existing works is that a communication pair is 
just interested in maximizing its immediate transmission rate. Besides, it is assumed that 
communication channels remain unchanged during the algorithmic iterations [78] [58] [57 
56] [48] [38]. However, the communication time scale is usually large in common applications 

such as video transmission in wireless data networks [40]. During the whole communication 
period, it is unlikely that channels would remain the same. In these scenarios, a commu-
nication pair may be more interested in maximizing its long term transmission rate rather 
than the immediate one. Besides, existing works require the knowledge of exact CSI and/or 
interference levels to be fed back to the corresponding transmitters during the algorithmic 
iterations. Unfortunately, none of these can be easily obtained in practical communication 
systems if not impossible. The convergence results of existing schemes such as IWFA are no 
longer valid or at least unknown when relevant estimation errors exist. 

In this chapter we take into account the randomness of the communication environment 
and estimation errors of the desired information. We assume each communication pair is 
concerned about the long term transmission rate, i.e., the expected transmission rate. We 
first propose a basic stochastic distributed learning algorithm SDLA-I to help distributed 
communication pairs learn the NE in stochastic transmission environments. The desired 
information in implementing SDLA-I is also allowed to be subject to errors. A careful 
convergence analysis on SDLA-I is also provided based on stochastic approximation the-
ory [51] [35] and projected dynamic systems (PDS) approach [44]. Inspired by the recent 
developments in stochastic approximation theory [50] [34], we propose another learning algo-
rithm SDLA-II by including a simple iterate averaging idea into the basic learning algorithm 
SDLA-I to improve the algorithmic convergence performance. 

The power control algorithms proposed in this chapter belong to the class of stochastic 
power control algorithms. Existing stochastic power control algorithms (see, e.g., [68] [70' 
79] and references therein) cannot be applied to the parallel Gaussian interference channels 

considered in this chapter. Note that the recent work [13] studied the distributed power 
control for time-varying parallel Gaussian interference channels. Nevertheless, the model 
formulated in [13] is essentially a deterministic one. So IWFA could still be applicable in [13 . 
Ill contrast, a,s explained in section 2.1, it would be extremely difficult and/or inconvenient 
to apply IWFA in our model if not impossible. Besides, [13] also requires the knowledge of 
exact CSI and interference levels to be fed back to the corresponding transmitters during 
each iteration of power update. 

The rest of this chapter is organized as follows. Section 2.1 describes the specific system 
model and the problem formulation. In section 2.2, the basic learning algorithm SDLA-I 
is described along with a careful convergence analysis. The PDS approach is adopted in 
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section 2.3 to study the rate of convergence of SDLA-I. We further include the idea of iterate 
averaging and propose SDLA-II in section 2.4. Section 2.5 presents some numerical results. 

2.1 System Model and Problem Formulation 

We consider a scenario consisting of a set of N source-destination pairs indexed by J\f = 
{ 1 , 2 , N } . These communication pairs share a common set JC = { 1 , 2 , K } of frequency-
selective unit-bandwidth channels so that their transmissions may interfere with each other. 
Specifically, the received signal at destination j on the k-th. channel can be described by the 
baseband signal model 

Vj = h^jy/pj^j + E + (2.1) 
明,i&M 

where h^ denotes the channel coefficient from source i to destination j on the A;-th channel, 
p^ denotes the transmission power used by source j on the k-th channel, xj denotes the 
normalized transmission symbol of source j on the k-th channel, and Zj denotes the white 
Gaussian noise with variance n^ at destination j on the k-ih channel. 

For later use, we let 减 = I n time-varying communication scenarios, channel co-
efficients are obviously random variables. We denote by G the random vector composed of 
all the random channel power gain coefficients, i.e., Gj.,\fk G /C,Vj,i G J\f. For the sake 
of greater applicability we shall make no assumption on the specific underlying statistical 
distribution of G. We simply assume that G is bounded almost surely and different realiza-
tions gf's of G are independent and identically distributed (i.i.d.). This i.i.d. assumption on 
G is reasonable in large scale networks. 

We further assume that each user is only interested in its own signal and treats interference 
as noise. Thus, we can write the signal-to-interference-plus-noise-ratio (SINR) at destination 
j on the k-th channel with realization g as 

= ^ ~ " “ k ^ ^ e/C,VjeAf. (2.2) 

The corresponding maximum achievable rate Rj for user j is given by Shannon formula [16 

= (2-3) 
k=l 

where pj = \p],ppdenotes the power allocation strategy of user j, and p—j denotes 
the power allocation strategies of all the other users. The power allocation strategy of 
each user should satisfy certain constraints. Specifically, Pj is regulated by spectral mask 
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constraints, i.e., 0 < Pj < pj, as well as a total power constraint, i.e., T^keKPj ^ P]—. In 
order to avoid trivial cases, we assume for all j £ AT that 湾 < 隱，V/b G JC, and p广工 < 
Ylke)cPj- • 

We now formulate the following noncooperative game to characterize the interaction 
among the users in question: 

Q 二 (2.4) 

In game Q, N is the set of players, i.e., communication pairs. Rj{Pj,P-j) is the utility 
function of user j given by 

RjiPj.P-j) = EG[Rj{Pj^P-j\G)], (2.5) 

where Eg[.] denotes the expected value with respect to G. We shall in the sequel drop the 
subscript to write E[.] instead of Eg[-] when not leading to confusion. Here we implicitly 
assume that Rj(jpj,p—j) exists. We further assume Rj(j)j,p—j) is continuous with respect 
to p.电j is the strategy space of user j defined as 

^J = {Pj e M^ ： e JC}. (2.6) 
keic 

For later use, we denote by $ the product space x ... x 龟n. 
Due to the uncertainty of channel power gains, player j in stochastic game Q wishes 

to maximize its expected transmission rate Rj by choosing appropriate power allocation 
strategy pj. Mathematically, player j solves the following optimization problem 

maximize Rj (pj ,p-j) 

subject to Pj e 屯j 

where Rj {p j ,p—j�and 屯j are given in (2.5) and (2.6), respectively. Note that this is a 
stochastic optimization problem [63 . 

We are interested in understanding if and how the players in stochastic game Q can 
achieve NE, which is a widely adopted rational outcome of noncooperative games. We 
formally define NE of the stochastic power control game G as follows. 

Definition 2.1 A power allocation profile p* 二 (p*, is called an NE of the stochastic 
power control game Q if and only if 

Pj G ： p j e 少J，Vj G Af. (2.7) 

Game Q has been extensively studied when the channel power gains are deterministic. Nev-
ertheless, new challenges arise due to the randomness in the channel power gains caused 
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by the stochastic communication environments. Indeed, player j in stochastic game G may 
not even be able to know its utility function E[Rj(pj,p_j\G)] due to the following rea-
sons. Firstly, the distribution of G is unknown though Rj(jpj,p_j\g) is known. Thus, it is 
impossible to evaluate ¥.[Rj{pj,p_j\G)] analytically or numerically. Indeed, even if the dis-
tribution of G was known, it would require player j to obtain global knowledge to evaluate 

which may result in an unacceptable level of communication overhead. 
Furthermore, even further assuming that player j has the global knowledge about the dis-
tribution of G, evaluation of E[Rj{pj,p_j\G)] involves multi-dimensional integration and 
is thus computationally expensive. Since player j does not know its exact utility function 

it is impossible for player j to compute a best response, which is an essen-
tial component in IWFA. So IWFA cannot be applied to the stochastic game G investigated 
in this chapter. 

2.2 Stochastic Algorithm for Learning 

2.2.1 Algorithm Design 

We aim to design a distributed scheme so that an NE of the stochastic game Q can be 
obtained even with so many difficulties described in the previous section. Obviously, such a 
distributed scheme makes sense only when NE exists. Thus, we first address the existence 
of NE in the following proposition. 

Proposition 2.1 At least one NE exists in the stochastic power control game Q. 

Proof It is obvious that $ is a convex, nonempty, and compact set. Besides, Rj(j)j,p—j) is 
jointly continuous by assumption. Noting further that Rj{pj,p-j\g) is concave with respect 
to pj, we conclude that Rj{pj,p-j) = E[Rj{pj,p-j\G)] is also concave with respect to 
Pj since expectation operation preserves concavity. The existence of NE thus follows from 
standard results in game theory [46 . 

In stochastic communication environments, a desired distributed scheme must offer users 
time to "learn" the environments gradually. Hopefully, an NE can be achieved as users in 
game Q keep taking adaptive strategies during the learning process. Toward this end, we 
first define f � a s 

产 = — — 4 4 " " " " " r , (2.8) 

which represents the ratio of the received energy of user f s signal to the total received signal 
energy at destination j on the A>th channel We let f j = [ f j ,…，Jff . Since Rj�Pj, :P-j\g� 
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Step 1: Initialization: 

Each player j e Af starts with an arbitrarily feasible power allocation vector, i.e., P j { 0 ) G Set 
n := 0. 

Step 2: Computation: 
Each player j E Af computes p j { n + 1) by 

Pj{n + 1) = V � + ci刺總、, (2.9) 

where V^j [•] denotes the projection onto 屯j with respect to the Euclidean norm, (aj(n))^o is step 
size sequence. 

Step 3: Convergence Verification: 
If stopping criteria are satisfied, then stop; otherwise, set n := n + 1, and go to Step 2. 

Table 2.1: Detail steps of SDLA-I 

is concave with respect to p j and f j / p j is the associated gradient, we have for any p j G 屯j 

< Rj{Pj,P-j\g) + {fj/Pjf{qj-Pj)yqj e 屯j. 

Now we are in a position to describe the distributed learning algorithm SDLA-I for game 
G to reach NE. We formally summarize SDLA-I in Tabel 2.1. 

In equation (2.9), fj{n) = ( / / ( n ) , /产 ( n ) ) ' i ’ where ff{n) is an approximate estimate 
of fj{n + 1). Thus, receiver j can just locally measure the total received signal energy 
and extract its own signal energy on each subchannel. Then receiver j notifies transmitter 
j through control channel the corresponding ratio vector f j . Note that SDLA-I does not 
require an exact estimate. Mathematically, 

RjiP3.P-j{n)\g{n^l)) <Rj{pj{n),p_j{n)\g{n ^ 1)) 

+ — Pj{n)) + e八n),Vpj e 龟j, (2.10) 

where cj > 0 measures the accuracy of the estimation f j . Note that all existing algorithms 
for distributed power control in parallel Gaussian interference channels require the knowledge 
of exact CSI and/or interference level to be fed back to the corresponding transmitters [78 
58] [57] [56] [48] [38] [13]. Unfortunately, it is hard to obtain perfect knowledge of these 

information in practical communication systems if not impossible. The convergence results 
on existing schemes such as IWFA are no longer valid or at least unknown when relevant 
estimation errors exist. Thus, as described above, our proposed SDLA-I is more robust and 
requires less communication overhead. Nevertheless, the estimation errors of f j should not 
be too "bad". We later will formalize the quantitative criteria which specify how exact f j 
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should be. 
A careful reader may concern about the computation complexity of SDLA-I since each 

player needs to conduct a projection operation during every iteration and projection is in 
general time-consuming. We address this issue through the following proposition which in 
fact provides a close form solution for the projection operation in (2.9)，implying that SDLA-I 
can be carried out efficiently. 

Proposition 2.2 The close form solution for the projection operation (2.9) is given by 

fk(jj) ...k 
Pj{n+1) = — G JC, (2.11) 

Pj W 

where [x]̂  = max(a,min(x, 6)), and Xj > 0 is chosen to satisfy + 1) 广工. 

Proof We can prove this proposition by analyzing the well-known Karush-Kuhn-Tucker 
(KKT) conditions in optimization theory [57] [63]. To begin with, note that the projection 
operation (2.9) is equivalent to the following optimization problem: 

minimize - || Pj{n + 1) — {pj{n) + \\l 

subject to [ • + 1) < p r ’ 
keK： 

0 < p ^ { n + l ) < p ^ j , y k e } C . (2.12) 

This quadratic optimization problem is strictly convex. Therefore, the corresponding solution 
Pj {n 4-1) can be obtained from the KKT conditions which are both necessary and sufficient 
for the optimality [63]. Toward this end, consider the Lagrangiaii: 

1 f^in) 
= 遏 P�(n + 1)—剩 + 齢 、 

+ + 1) — P'D + E • 如 + 1)—湾)一 E 制(n + 1)， （2.13) 
ke)C keJC keK： 

where Xj, Uj 二 [ w ; , … ， v j = are the associated Lagrangian multipliers. 
Then the KKT conditions are given by 

fk(rn) 
• + 1) — ( • ) + 潟 ) + A, + u^ -V，= oyk e K 

u) > 0, p�(n + l)绅 u^(p^(n + l)-p^) = 0,VkeK： 

< > 0, + 1 ) > 0 , +1 ) = 0,VA;G/C 

A, > 0 , X： P^ri + 1 ) < pr, + 1) - PT) = 0. (2-14) 
fce/c fce/c 
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Now for any k e JC, we observe that if p){n + 1) = 0, we have u卜 0 by complementary 

slackness condition. Furthermore, we have - v � = p ] ( n ) + aj{n)：^ — \j < 0. By a similar 

argument, we can obtain that p]{n + 1) = p]{n) + - Xj if 0 < p^n + 1) < p), and 

+ a j ( n ) 錯 - > pj iip]{n + 1) = p]. This completes the proof. 

2.2.2 Convergence Analysis 

In this subsection, we study the convergence property of SDLA-L Toward this end, we first in-
troduce some further notations for ease of exposition. We denote by D{n) = diag(Di(n�, 
Div(n)) the NKxNK-dimensional block diagonal matrix where Dj{n) = diag{aj{n)^..., aj{n)) 
IS 8i K X i^-dimensional diagonal matrix with uniform diagonal entry aj (n). Then the iter-
ation step (2.9) in SDLA-I can be rewritten in a compact form given by 

p(n + l) =P^lq(n)j, (2.15) 

where g(n) = p(n) + D(n)鶴 with f{n) = ( / i ( n ) , D e n o t e by Sj{n)= 
A ___ 

fj(n)/pj{n), Sj{n) = fj{n)/pj{n) and Sj = E[Vp.Rj{pj ,p_j|G)]. We group all the sj(n)'s, 
and ŝ -'s into column vectors s{n), s{n), and s, respectively. We further denote by 

r the N X iV-dimensional matrix with [T]ij defined as 

1 if i = j, 

[T],, = , E 
——^——)ifi^J. 

Sjj 

With these notations in mind, the following lemma summarizes some main (in)equalities, 
which will be used in the later proofs of the convergence results of SDLA-L 

Lemma 2.1 The following (in)equalities hold: 

(i) ^ power allocation profile p* e (公 is an NE of the stochastic game Q if and only if for 
any (ij > 0 

= + (2.16) 

where f j = PjSj{p*). 

(a) For any p,p e 

I ^ (̂P) - <̂3>(p) ||<|| p - p II . (2.17) 
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(iii) For any p e and p e (!>， 

{p-pf{V^{p)-p)>0. (2.18) 

Proof (i). We know that if € ^ is an NE, then for any aj > 0 [7； 

Pj = 八 + G Af. (2.19) 

The result follows if the interchange of mathematical expectations and gradient signs is 
justified. Recall that the realization g is bounded by assumption. Then it is straight-
forward to verify || Vp^Rj{Pj,P-.j\g) || is also bounded. Thus, = 

[53]. ‘ ] ‘ 
(ii). This is a well-known result on the nonexpansive property of projection, the proof of 

which can be found in, e.g., [7 . 

(iii). Since V龟(p) minimizes | \\ P - P Wl over all p e we have 

(P - - p ) > 0 , V p E R题， （2.20) 

by optimality condition [7]. Noting another obvious fact: 

(巧(P) - P)了(巧CP) - P ) > 0,Vp G (2.21) 

we conclude that (p — pY{V^{p) — p) > 0 for any p G R^^ and p G 少. 

The following lemma inspired by [48] provides another inequality (2.22) that will be used 
later. As a byproduct, we also characterize the uniqueness property of NE in game G with 
deterministic channel power gains in the following lemma. We refer to [58] [48] and references 
therein for a more detail discussion on the uniqueness property of NE in deterministic game 
a. 

Lemma 2.2 For given channel power gain realization g, ifTyO (positive definite), then 
there exists a unique NE p*{g) G 少，and 

s{p\9f{p%9)-p) > r{s) II p — p * � II•，Vp G (2.22) 

with 

t{S) = Amin(r) (2.23) 
max 
ieM kGJC ^ ‘ ’ 

where Amin(r) > 0 denotes the minimal eigenvalue of the symmetric part of F，and = 
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Proof Following Proposition 2 in [48], if T 0 under given g, then 

is{q\g) - s{p\g)f{p - q) > T{S) || p - g Vp, g € (2.24) 

with T(s) specified in (2.23). That is, is strongly monotone on (P. The uniqueness of 
NE p*(g) e follows (see, e.g., [21]). 

Furthermore, by the equivalence of standard NE problem and variational inequality (VI)\ 
we have 

-s(p*lgf(p — p1 > 0,Vp G (2.25) 

Substituting p* for q in (2.24), we obtain 

(^(pI^) - s{p\g)Y\p — p*) > T(s) II p - p* ||2, Vp e (2.26) 

Thus, the desired inequality (2.22) immediately follows from (2.25) and (2.26). This com-
pletes the proof. 

We now describe the convergence results of SDLA-I in the following theorem. 

Theorem 2.1 Let Tn be the a-field generated by Assume that: 

(i) T y 0 holds almost surely, 

(a) The step sizes ai{n) > 0 satisfy: 

oo 

y " min ai{n) = +oc, (2.27) 
OO 

Y. W < G M. (2.28) 
n=0 

(Hi) The estimation errors Ci (n) > 0 satisfy: 

oo 

E Hai{n)ei{n)\Tn] < +oo,Vz G Af. (2.29) 
n=0 

Then (p(n))二o generated by SDLA-I converges to the unique NE p* of the stochastic game 
G in the mean square sense，i.e., lirri几...• || p(n) - p* ||2= 0 almost surely. 

Proof See Appendix A. 

We make the following remarks on the assumptions in Theorem 2.1: 
1 Given & set K C and a mapping F : K the variational inequality VI(K, F) is to find a vector r^K 

such that {y - xfF{x) > 0, \/y € K [21]. 



CHAPTER, 2. LEARNING FOE. PARALLEL GAUSSIAN INTERFERENCE CHANNELS 24 

Remark 2.1 Assumption (i) is the major requirement for the convergence of SDLA-L A 
careful thinking reveals that this assumption is indeed intuitive. On the one hand, from the 
game theory point of view, T y 0 implies that each player j has a more significant influence 
on 让s utility than other players do. From, the communication point of view, T y 0 imposes 
upper hounds on the interference received and/or caused by communication pair j. Under 
miZc? interference conditions, communication pair j，s achievable transmission rate is not 
heavily influenced by other communication pairs. Note that all existing algorithms even for 
deterministic distributed power control such as IWFA require more or less similar conditions 
to ensure convergence [78] [58] [57] [56] [48] [38] [13]. 

Remark 2.2 Assumption (ii) is quite standard in stochastic approximation algorithms. In-
deed, condition ‘"E二o miriieAA a;(几)：+oc” ensures that SDLA-I can cover the entire time 
axis to reach the NE in stochastic parallel Gaussian interference channels. Meanwhile, the 
choice of step sizes such that 二• ]E[a,^(??；) I^r^.] < +oo can asyTuptoticdlly suppress CTTOT 

variance during the learning process. 

Remark 2.3 Assumption (iii) provides a quantitative answer to the question on how well 
A 

the estimation f should be. Specifically, 二 � < +oo implies that the total 
estimation errors can be controlled. This assumption is reasonable especially in slow to 
medium time-varying communication environments. Nevertheless, the estimation f may 
not be good enough in fast time-varying scenarios. In this regard, better estimates may be 
required. Noting that f{n) only utilizes the last feedback f(n)’ one possible solution is to 
take advantage of empirical distribution after having observed many realization f ,s. That is, 
distributed communication pairs gradually learn more about the environment. Thus, better 
estimates f{n) may be obtained. Nevertheless, we do not aim to explore this topic which is 
beyond the scope of this chapter. 

To further appreciate how SDLA-I works, let us consider a particular scenario where 
the difference between fj{n)/pj{n) and E[Vp.Rj(jPj(n), p-j(n)|G)] is captured by random 
vector 6j(ji), i.e., 

Mn)/Pj{n) = + Oj{n),\/j € M. (2.30) 

As usual, we group all Gj,s into a column vector 6, i.e., 9 = ".,Gn)t. In other words, 
we simply use an online estimate fj{n)/pj{n) to approximate E[Vp.Rj{pj{n),p-j(n)|G) 
though we are not able to evaluate E[Vp. Rj {pj (n), p-j {n) | G)]. The approximation dif-
ference is captured by Oj. We will show that SDLA-I converges as long as this simple 
approximation is not too "bad". We will formalize these ideas in Theorem 2.2, Toward this 
end, we first prove a simple lemma as follows. 
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Lemma 2.3 The mapping s(jp) where Sj{p) = E[Vp.Rj{pj,p-j\G)] is Lipschitz continuous 
almost surely. That is, there exists a positive constant L such that Vp, q e^, 

II s{p)-s{q) ||<L||p-gf|| (2.31) 

holds almost surely. 

Proof Note that we assume that G is bounded almost surely. Given bounded realization g, 
it is straightforward to verify that s{p\g) where Sj{p\g) = Vp.Rj{pj,P-j\g) has bounded 
derivative and thus Lipschitz continuous. It follows that s(jp) is Lipschitz continuous almost 
surely. 

Theorem 2.2 Let Tn he the cr-field generated by Assume that: 

(i) r ：̂  0 holds almost surely, 

(ii) The step sizes ai (ji) > 0 satisfy: 

2T{S) mina,:(n) > L^ max of (n) + 5(n), (2.32) 

where 6(n) is any bounded positive constant. 

(Hi) The difference random vector 6{n) satisfy: 

E[(9(n)|jg 二 0, (2.33) 

OC 

Y. f < +00. (2.34) 
n = 0 

Then generated by SDLA-I converges to the unique NE p* of the stochastic game 
Q in the mean square sense, i.e., || p(n) — p* |p= 0 almost surely. 

Proof See Appendix B. 

Note that distributed algorithms based on the gradient projection mapping for determin-
istic parallel Gaussian interference channels have been proposed in [57]. Nevertheless, the 
convergence behaviors of those algorithms in [57] are only shown for deterministic scenarios 
and thus cannot be applied to stochastic case. Indeed, Theorem 2 establishes a theoretical 
foundation for the convergence of those deterministic algorithms under stochastic scenarios. 
The key conditions are included in assumption (iii) in Theorem 2. That is, the naive esti-

八 ‘ 

mate fj{n)/pj{n) for E [Vp .Rj {p j (n ) , (n )|G) ] should not be too “bad，，in the sense of 
assumption (iii) in Theorem 2. 

Besides, the requirement (2.32) imposed on step sizes is also reasonable. Consider a 
common step size choice for every communication pair, i.e., a“n) = a(n),Vz G Af. Ignoring 
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the arbitrarily small constant ()(n) for ease of exposition, condition (2.32) is then reduced to 
^ Vn. That is, larger step size can be taken if s is more strongly monotone (i.e., 

larger r{s)). In contrast, smaller step size should be taken if s changes more significantly 
with respect to p (i.e., larger Lipschitz constant L). 

Though Theorem 2 is of interest in theory, we remark that assumptions in Theorem 
2 may not be easily verified. For instance, it is hard to know if the difference random 
vector 0 could satisfy assumption (iii) if little is known about the distribution of G in real 
communication systems. Besides, requirement (2.32) imposed on step sizes involves strongly 
monotone modulus T{S) and Lipschitz constant L, both of which depend on the specific 
channel gain distribution G. In contrast, the step sizes choice in Theorem 1 is relatively 
standard. The requirement there is that the total error in the stochastic gradient obtained 
by local communication pair could be properly controlled. This requirement may be easily 
satisfied when the parallel Gaussian interference channels do not change too fast. 

2.3 Continuous Time Approximation 

Note that previous convergence results do not provide insights on the speed of convergence 
of SDLA-I. Indeed, they may be considered as study of the accuracy of SDLA-I. Equally 
important is the convergence rate of SDLA-I. In this section, we shall shed some lights on 
this question. We note that an exact analysis on the convergence rate of SDLA-I is extremely 
difficult if not impossible due to the various stochastic factors. Therefore, we resort to a PDS 
approach which approximates but still captures the essential behaviors of SDLA-I to help 
us appreciate the convergence speed. Note that a PDS formulation for transient behavior 
analysis for deterministic cognitive radio networks was also briefly described in [59 . 

To begin with, we recall some basic concepts of PDS from [44] to facilitate further dis-
cussions. Consider a closed convex set K G 尺似 and a vector field T whose domain contains 
K. Recall Vk denotes the norm projection. Then define the projection of ^ at a? as 

rr/ 它、 r + 6T) - a? . . 
巧 = — ； 5 — . (2.35) 

TC 

Now we formally define PDS as follows. 

Definition 2.2 The following ordinary d.iffereMial equations 

士⑷ = 1 1 (①⑴尤⑴ ) ) (2-36) 
K 

with an initial value x(0) G K is called projected dynamical system K). 

Note that the right hand side in (2.36) is discontinuous on the boundary of K due to the 
projection operator, which is different from classical dynamical systems. 
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Now let us consider PDS{s, given by p{t) = ll^{p{t),s{p{t))) with initial value 
p(0) G The key results of this PDS are summarized in the following proposition. 

Proposition 2.3 The PDS{s,少)with initial value p(0) has the following properties: 

(i) It has a unique solution p{t) which continuously depends on the vector field s and initial 
value p(0); 

(a) A vector p* G (I> is the NE of the stochastic game Q if and only if it is a stationary 
point of PDS{s,^), i.e., p * � = 0 ; 

(iii) If T y 0 holds almost surely, then stationary point p* of 办、is unique and 
globally exponentially stable, i.e., || p{t) -p* ||<|| p(0) —p* || exp(—rningr(s). t) with 
T{S) given in (2.23). 

Proof (i). Note that s{p) is Lipschitz continuous by Lemma 2.3. Hence PDS{s, is well 
posed and the results follow from Theorem 2.5 in [44 . 

(ii). The equivalence of NE in game G and the set of stationary points in PDS can be 
shown by observing that 少 is convex polyhedron by following [44]. We provide a sketch of 
the proof here for completeness. Define a variational inequality problem V /̂(s，(I>), the aim 
of which is to find a vector p* such that 

(2.37) 

It is known that p* is a solution to Vl {s, if and only if it is an NE of the game G (see, 
e.g., [21]). Noting that $ is convex polyhedron, the stationary points of PDS{s, coincide 
with the solutions of VI{s, (I)) by Theorem 2.4 in [44 . 

(iii). Recall the condition that r 0 holds almost surely implies the strongly monotonic-
ity of s{p). Then the uniqueness and globally exponential stability follow from Theorem 3.7 
in [44]. Indeed, we can associate a Liapunov function \\ p - p* || for PDS{s, (I>) to obtain 
the stability result. 

PDS{s, is the underlying idealized version of SDLA-I. In other words, we can view 
SDLA-I as a stochastic approximation of PDS�B,龟、[44]. Thus, the iteration process 
Op(几))二0 in SDLA-I approximates or tracks the solution p(t) of PDS{s, From the 
above proposition, we know that p{t) converges to p* at an exponential rate. Note that the 
stationary point p* of PDS{8, is also the limit point of (p(n))二o. So we can expect that 

moves in an approximately (subject to the inherent stochastic variations) monotone 
fashion to p* at an exponential rate. This understanding of the iteration process in SDLA-I 
is also instrumental in exploring the idea of iterate averaging, which is detailed in the next 
section. 
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2.4 Learning with Averaging 

Fast convergence performance of distributed learning algorithm for obtaining an NE of the 
power control game G is clearly desirable in real communication systems. From previous 
discussions, we can see that the choice of good step sizes ai(n) has a profound effect on the 
convergence performance of SDLA-L In this section, we discuss how we can improve the 
convergence performance of SDLA-I so that distributed communication pairs can learn the 
NE in a faster fashion. 

Among various approaches proposed in stochastic approximation theory, the concept of 
iterate averaging reported in [50] is an especially appealing and simple way to improve the 
convergence performance. It was shown in [50] that the averaged sequence 
converges to its limit if step size sequence a{n) decays more slowly than used in the 
original Robbins-Monro formulation [51]. This iterate averaging method is optimal in terms 
of convergence rate. We will take advantage of this appealing technique to improve the 
convergence performance of SDLA-I. 

Using the concept of iterate averaging, we add an averaging operation to the basic recur-
sion (2.9) in SDLA-I, i.e., 

巧(n + 1) = V^, [pj{n) + 

+ = 刺 +pj(n + l)). (2.38) 
TL I 丄 

The stochastic learning algorithm with the above modified recursion will be referred to as 
SDLA-II. It can be shown (识n))二• generated by SDLA-II converges to the unique NE p* 
of the stochastic game Q in the mean square sense, i.e., lim„一 ô II p(n) - p* 0 almost 
surely, as long as aj (n) is a suitable decreasing sequence or even fixed step size sequence 
with small enough value. A detail proof for the convergence of SDLA-II can be carried 
out by following similar arguments as [50] and is thus omitted here. We instead provide 
an intuitive exposition on why SDLA-II has faster convergence rate than SDLA-L The idea 
behind SDLA-II is that we can use larger step size in the basic online recursion for p(n) 
and the increased noise effects due to larger step size can be smoothed out by the offline 
averaging recursion for p(n). As a result, SDLA-II converges faster with larger step size 
and is less likely to get stuck at the first few iterations [35]. Indeed, our numerical results 
demonstrate the convergence rate improvement of SDLA-II over SDLA-L 

A careful reflection on the power allocation trajectory (p(n)，p(n))^o generated by 
SDLA-II may reveal a potential handicap in guaranteeing better convergence performance of 
SDLA-II over SDLA-L Specifically, with arbitrarily initial starting point p(0) which is quite 
unlikely near the desired solution of NE p*, it is expected that p{n) moves in an approxi-
mately monotonic fashion to the NE p* at the early stage since the channel power gains of 
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parallel Gaussian interference channels satisfy F 0 and thus the underlying driving force s 
of the recursion of p{n) is strongly monotone. Nevertheless, the noise due to the randomness 
plays a relatively significant role in the recursion compared to the underlying driving force s 
after sufficient number of iterations. In other words, p{n) starts to hover randomly around 
the NE p* when p{n) is near NE p*. Only at this stage can the iterate averaging p(n) be 
successful since the averaging in this stage can produce a mean solution that is nearer to the 
NE p*. This implies that the communication pairs should transmit with power level p(n) 
generated by the basic recursion at the initial stage, and transmit with power level p(n) 
generated by averaging after SDLA-II has sufficiently converged. 

The above reflection does not imply that SDLA-II is of limited use in practical commu-
nication systems. Indeed, SDLA-II has few gains in terms of convergence rate over SDLA-I 
when the initial stage is relatively long compared to the communication period. Never-
theless, the communication time scale can be large in common applications such as video 
transmission in wireless data networks [40]. Thus, SDLA-II will yield better estimate of NE 
p* over SDLA-I in the long run. 

2.5 Numerical Results 

We provide some numerical results in this section for illustration purposes. Simulation pa-
rameters are chosen as follows unless specified otherwise. Inspired by [38] and [59], we set 
both the number of users and number of channels to be 4. The channel power gains g^ are 
chosen randomly from the intervals 嫩.乾(l+i；)) with u e {10%, 20%, 30%, 40%, 50%}. 
Clearly, perturbation parameter v can serve as an indicator for the time varying rates 
of parallel Gaussian interference channels. In particular, larger v implies faster channel 
varying rate. We further let 爽=15 if i = j and 0.75 otherwise. With this choice of 
simulation parameters, one can verify that r 0 almost surely ii v e {10%, 20%, 30%}. 
For clarity, we relax the spectral constraints, i.e., pf = + C X D , Vz e Af^k e JC, The to-
tal power constraint p^^x = lo * X = 40,Vi € M. Besides, the background noise level 
nf = 0.1/iV = 0.025, Vi € V/c e K. We also choose common step size for all users. So we 
simply write ai{n) as a^ in this section. 

We first compare our proposed SDLA-I with the popular IWFA. We let users using IWFA 
have the perfect CSI and interference levels at the corresponding transmitters in every power 
update, while users implementing SDLA-I only have stochastic gradients subject to errors. 
Due to the limited space, we only show the power evolution of user 1 on channel 1 as a 
function of iteration index in Fig. 2.1. As expected, even with perfect CSI and interference 
level, the power evolution generated by IWFA fluctuates significantly. In contrast, users 
in SDLA-I are more concerned about the long term transmission rates. Consequently, the 
power evolution only fluctuates mildly after sufficiently long period of learning about the 
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environment. Another interesting observation here is that constant step sizes also lead to 
convergence of SDLA-I. Indeed, one can show that converges to the neighborhood 
of the unique NE p* with the choice of sufficiently small constant step sizes. We omit the 
details due to limited space. 

Though both constant step size (9(1) and decreasing step size can lead to the 
convergence of SDLA-I in numerical experiments, we observe that a tradeoff exists between 
the convergence rate and exactness of the converged value, which is evaluated by the standard 
normalized squared error (NSE) defined as 

NSE{n) -II p{n) - p* || / || p* || . (2.39) 

The numerical results are shown in Fig. 2.2. As shown, decreasing step size has 
better convergence rate than constant step size (9(1) since goes to 0 very fast and thus 
new channel power gain realization has little effect on power update. However, the solution 
obtained by decreasing step size is not as exact as those by constant step sizes. Nevertheless, 
an appropriate choice of constant step size is necessary to trade off the convergence rate and 
exactness of the converged value. Indeed, the convergence rate with a^ = 0.01 is very slow 
as shown in Fig. 2.2, Besides, numerical results in Fig. 2.2 also demonstrate the exponential 
convergence rate predicted by the continuous time approximation using PDS in section 2.3. 

We show the impact of time-varying rate in parallel Gaussian interference channels on 
the convergence performance of SDLA-I in Fig. 2.3. As described, perturbation parameter 
V can be used to model the time varying rate of parallel Gaussian interference channels in 
our setting. The power evolutions of user 1 on channel 1 as a function of iteration index are 
plotted with different ？/s in Fig. 2.3. It is shown that the power allocation does not converge 
when V e {40%, 50%}. Indeed, one can verify that r 0 can not hold almost surely with 
V G {40%, 50%}. Thus, the convergence of SDLA-I is not guaranteed by Theorem 1. Note 
that r 0 is also required in one way or another in existing distributed power control 
algorithms including IWFA for deterministic parallel Gaussian interference channels. We in 
this numerical example also observe the importance of condition r — 0 for the power control 
in stochastic parallel Gaussian interference channels. 

We next show the performance improvement by iterate averaging in terms of convergence 
rate. In Fig. 2.4, users transmit with power level p{n) under SDLA-I. In contrast, under 
pure SDLA-II, users transmit with power level p{n) which is generated by averaging p{n). 
The mixed SDLA-II in Fig. 2.4 represents a transmission scenario, where users transmit with 
power level p{n) at the first 100 iterations, and afterwards transmit with power level p{n) 
generated by averaging p{n) from the 101-th iteration. As expected, the iterate averaging 
p{n) starts to work after p{n) is near to the NE p*, 

• End of chapter. 
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Figure 2.1: Comparison of IWFA and SDLA-I: In SDLA-I, v = 20% and a^ = 0.5. 
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Figure 2.3: Impact of Time-Varying Rate: an = 0.1. 
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Chapter 3 

Power Control for One-to-Many 
Transmissions 

Punishment is justice for the unjust. 
—一 Saint Augustine 

One-to-many transmission is a basic component of many communication networks [66 . 
Indeed, it can be traced back to the original study of broadcast channels in 1970s [16]. Due 
to its significance, substantial research works have been carried out on resource allocation 
for broadcast channels [37]. Nevertheless, superposition coding, whose complexity can be 
high for practical implementation, is required to achieve the capacity of broadcast channels 
16]. Therefore, low complexity schemes, like code division multiple access (CDMA), were 

proposed and investigated [66]. Indeed, receivers in CDMA networks simply treat other users' 
signals as noises. In such schemes, distributed transmit power control has been extensively 
investigated in the past two decades [14 . 

When there are multiple sources in the network, the distributed power control for one-
to-many transmissions can be regarded as a generalization of distributed power control in 
Gaussian interference channels, where one source only transmits to one destination. In spite 
of its significance, the capacity region of Gaussian interference channels is still unknown 
9]. Nevertheless, distributed power control in Gaussian interference channels recently draws 
great interests (see, e.g., [39] and the references therein). Indeed, noncooperative game 
theory has been vastly applied, and much progress has been made on distributed power 
control in Gaussian interference channels [54] [64] [26] [58] [57] [43]. However, the framework 
of standard Nash equilibrium problem (NEP) used in these works cannot be generalized to 
the one-to-many transmissions considered in this chapter. 

In particular, we investigate the distributed power control problem from the receivers' 
point of view. More precisely, each receiver in our model individually decides its required 

34 
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transmit power from its associated transmitter. This approach is justified especially in 
large wireless networks where distributiveness is significantly preferred. Such scheme is 
also expected in future user-centric wireless networks. Indeed, adopting this approach, the 
receivers can alleviate the computation load imposed on their transmitters. For receiver i, 
its achievable rate also depends on other receivers' strategies which cause interference at 
receiver i. Note that each receiver experiences two kinds of interference. One is endogenous 
interference caused by the transmission from its source to other receivers. The other one is 
extraneous interference caused by other sources' transmission. This is different from existing 
works on distributed power control in Gaussian interference channels where only extraneous 
interference exists [39] [58] [57] [74 . 

Another more fundamental issue in our problem is that those receivers share the same 
source need to competitively access their source's power resource, resulting in coupled strat-
egy spaces among receivers that have the same source. In contrast, the standard Nash equi-
librium (NE) based approach assumes uncoupled strategy spaces among decision makers 
46]. Indeed, our problem turns out to be a generalized Nash equilibrium problem (GNEP) 
19]. Though there are severe analytical difficulties in GNEPs, variational inequality (VI) 

theory plays an important role in solving GNEPs. Resorting to VI theory, we obtain several 
interesting theoretical results. Moreover, a penalty-based distributed algorithm IP^JA is 
proposed. 

Note that a VI approach has also been adopted in [48] to design cognitive radio systems 
under temperature-interference constraints. Besides the obvious difference in the application 
scenarios, [48] and our work differ significantly in the design of distributed algorithms. In 
particular, those distributed algorithms proposed in [48] adopt a Lagrangian pricing scheme 
and involve solving exactly a standard Nash subgame during every update of Lagrangian 
parameters. In contrast, we adopt a penalty-based scheme in our proposed distributed 
algorithm IP^JA, which does not have the restriction mentioned. 

The rest of this chapter is organized as follows. Section 3.1 describes the specific system 
model. In section 3.2, we present a GNEP formulation along with several theoretical results. 
The penalty-based distributed algorithm IP^JA is described in section 3.3. Section 3.4 
presents some numerical results for performance evaluation. 

3.1 System Model 

We consider a general one-to-many transmission network consisting of multiple sources and 
multiple destinations, as shown in Fig.3.1. Specifically, there are a set of transmitters T = 

,Sm}, each of which wishes to simultaneously transmit information to several receivers. 
For a particular source S“ we denote by R, = dJ；̂ } the set of N, destinations 
that source Si transmits information to. Without loss of generality, we assume sources are 
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Figure 3.1: System Model 

associated with distinct receiver sets, i.e., n Rj = 0,V2 ^ j. Note that conceptually 
distinct receivers in the previous assumption might be the same physical receiver in reality. 
We further denote by M = {1,2,...’ M } the index set of transmitters and M^ = { 1 , 2 , i V J 
the index set of receivers associated with transmitter Si. 

The channels between different network nodes are modeled as frequency-flat Gaussian 
interference channels. Extending current work to frequency-selective scenario is straightfor-
ward but with a cost of increased notational complexity. Denote by n f the spectral density 
of the zero-mean additive white Gaussian noise (AWGN) at receiver o f . Without loss of 
generality, the channel bandwidth is normalized to 1. Denote the channel power gain for 
the Si - D\P link by g攻.As for the availability of channel state information (CSI), receiver 
D f is only aware of its local CSI, i.e., pg, which can be obtained through training se-
quences from transmitter Si. Note that many existing distributed power allocation schemes 
(see, e.g., [58][57]) require CSI to be available at the transmitters, which is often achieved 
through feedback from the receivers, resulting in certain extra communication overhead. In 
contrast, transmitters need not know the CSI in our scheme since the receivers are the de-
cision makers. Besides, we also assume throughout this thesis that the channel gains are 
bounded, i.e., 攻| < G,V/c G 6 M. _ 

The power p/) used by source Si for transmission to receiver o f needs to satisfy spectral 
constraints, i.e., p � < p f < v f • Meanwhile, the maximal power available at transmitter 
5. is denoted by In order to avoid trivial cases, we assume that Ejgm,� P̂ f > P£ic� 
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HjeMi P^^ < PmL^ and pf < P^^. We then group the power allocation of transmitter 
Si into a column vector p � G i.e., p � : = 幼 了 . We further group all 
the transmit power into a column vector p G 尺"where N = iVj + iV2 + … + Nm, i.e., 

We assume that each receiver is only interested in its own signal and treats interferences 
as noises. So the signal-to-iriterfererice-plus-iioise-ratio (SINK) at receiver O f is given by 

/ x , � � 7 7 � 
^ . . . � 9 � i P j . (3.1) 

9i,j Pk + I^k卢，fceM ffk，j I^ieMk Pi + 

where Kĵ ^ is a system design parameter. For instance, can represent the processing 
gain in a wireless network that applies direct sequence spread spectrum (DSSS) technique. 
Parameter â -̂  G [0,1] can be used to model the level of endogenous interference. To be more 
specific, let us consider again a wireless network that applies DSSS technique. If source Si 
uses orthogonal sequences for transmission to its different receivers, then there will be no 
endogenous interference in ideal scenarios and thus â ĵ  = 0, Vj G Mj. However, even orthog-
onal sequences in reality could become nonorthogonal at the receivers due to various factors 
such as fading [66]. As a result, endogenous interference may be present. In an extreme 
case, aj = 1 indicates the endogenous interference is as serious as extraneous interference 
for receiver 对).Since including the effect of a: -� in our scheme is straightforward, for ease 
of exposition, we in the sequel only consider the worst case, i.e., = l ,Vj G M,：, Vz G M. 
Similar model was also adopted by [75] to design power control scheme for stochastic wireless 
networks. 

We also denote the iiiterfereiice-plus-rioise at receiver D � � b y 

工 购 = 必 ) E E + ※ ， （3.2) 
k^j,kEMi k^i,keM leMk 

where p l j is the vector formed by all the transmit powers except that of transmitter Si for 
transmission to receiver o f . Then the maximum achievable rate for receiver D � is given 
by 3 

T^ii) (i) (i) 
i f ⑷ = 对 ) ( 嫂 ③ = l n ( l + ^ ^ ) ， （3.3) 

工j iP~j) 

where we denote p by (and sometimes in the sequel) to emphasize the role o f p f . 
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3.2 A GNEP Approach 

3.2.1 Problem Formulation 

We formulate the power control problem as a noiicooperative game in this section. We 
assume each receiver is a player of game G (defined below). Each player chooses its decision 
individually. More specifically, receiver o f is associated with a utility function given by 

(3.4) 

where w^” is a iioririegative weight factor measuring the relative importance of receiver D，,s 
rate in the network. Denoting 分⑷ ( p⑷）=EjeMiP f _ 户』丄，the strategy set of player D f 
is given by 

对 - : � < < j l p < 趁 ) } . (3.5) 

For later use, we also define the set value mapping 

^(p)=n n ^f(p-i)^ (3.6) 
ieMjeMi 

and the global power strategy set 

$ = {p e : g{p) p} , (3.7) 

where g{p) = b� (p�），...，"� (P(购)厂 P = P = b f ) ， … , a n d 0 

denotes the iV-dimensional zero vector. For player D ? , treating the strategies p^l] of other 
players as exogenous variables, it aims at solving the following optimization problem P-1: 

P-1: maximizepWg^W(pW) (3.8) 

whose optimal solution set is denoted by Now we formally define game G as 
follows: 

G = {N, (3.9) 

where N = UjeMM^ is the set of players, is player D，s utility function, 
and ^fip^^j) is player D f , s strategy space. Note that player D，s strategy p f in power 
control game G is constrained in two aspects. In particular, pf is constrained by both cou-
pling constraint that depends on other players' strategies, i.e., ^ / ^ ( ” ⑷ ） < 0, and individual 
constraints that are independent of other players' strategies, i.e.,过）< pf < pf. This 
makes the problem investigated in this thesis differs from recent works, which involve only 
uncoupled constraints in the noiicooperative game formulated for distributed power control 
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in Gaussian interference channels (see, e.g., [39] [58][57]). 
Indeed, the distributed power control problem that we investigate is a GNEP. Research 

on GNEP has gained momentum recently, especially from the operation research community. 
However, unlike NEP, a systematic approach to GNEP is still lacking. We refer interested 
readers to the survey paper [19]. Here we only recall several basic concepts that are used 
throughout this thesis. 

Definition 3.1 A power allocation tuple p* G ̂ (p*) is called a generalized Nash equilibrium 
(GNE) of game G if and only i / p 严 G 对 ) ( ” [ 卞 ) ， V j G M“Vi G M. 

Accordingly, the problem of finding a GNE p* in game G is called a GNEP. At a GNE no 
player can increase its utility by unilaterally changing its power allocation strategy. 

Before ending this section, we stress that players in game G- are just normative. They 
may or may not be the real decision makers. Indeed, if a central decision maker exists, it 
can compute a GNE and implement the GNE in the network. 

3.2.2 Preliminary Results 

Several issues exist in game G. Firstly, a basic question is the existence of solution(s), since 
the lack of GNE indicates an unstable distributed system. Another classical issue is the 
uniqueness of the solution to game G. A unique GNE is obviously desirable for operators 
to predict and control network behaviors. Besides, how to arrive at a GNE from initially 
noneqiiilibria states is of practical interest. We address the first two issues in this subsection 
and leave the last one to the next section. 

GNEPs in general are extremely hard problems [19]. A current popular approach to a 
GNEP is to apply the relatively well developed theory of VI. We first define a mapping 
F : , H a s F ( p ) 《 ) ( ; > • : ” ( — ： 『 , w h e r e 

(i) rAi) (i) 

](巧,p-3�—(巧，》——K耀)•^械y (3.10) 

Now we state the connection between the GNEP in power control game G and a VI 
problem 少，F), the aim of which is to find a vector p* e ^ such that (p — p*)^F(p*) > 
o,Vpe^. — 

Lemma 3.1 Every solution of F) is a GNE of the power control game G. 

Proof Suppose p* = is an arbitrary solution to Then we have 

e 对)(pL1*)，Vj' e M,,V7： G M, implying that p* E 屯(p*). Now consider any player 
I f . Let q = b P , . . .， ? f， . . . , p j v ? r , where G 对 ) ( p 二 *) is arbitrary. Clearly, q e ^ 
Then, { q - p r F { p ^ ) = ( 必 ) ~ > (), where the inequality follows from 
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the fact that p* is a solution to Note that j f ) is concave in p^f on the set 
屯 W e conclude that j f * maximizes j f over 对 力 ， b a s e d on the 
optimality condition [Prop. 3.1, Section 3] in [7]. That is, p f * e e G M. 
Thus p* is a GNE of game G. 

Lemma 4.1 implies that we can compute a solution to V7(中，F) to find a GNE in game 
(G. However, the reverse is not true. Nevertheless, it is fine just to obtain one GNE (if any) 
in game G through solving F) for practical consideration. 

Observing the special characteristic of GNE p* in game G which is also a solution to 
such GNE p* will be referred to as variational equilibrium (VE) in the rest of 

this thesis [19]. More formally, denoted by 5 0 L ( $ , F) the solution set of V7(少,F), we 
have the following definition. 

Definition 3.2 A GNE p* in game G is called variational equilibrium if p* G F). 

Now we address the issue of existence of GNE(s) in game G in the following proposition. 

Proposition 3.1 At least one GNE exists in the power control game G. 

Proof It is obvious that $ is a convex and compact set. Besides, the mapping F : ^ ^ R^ 
is continuous. Then, based on Corollary 2.2.5 in [21], we conclude that SOL{^, F) is 
nonempty and compact. The existence of GNE in game G thus follows by Lemma 4.1. 

Though the existence of GNE(s) in game G has been confirmed by Proposition 4.1, it 
is generally more involved to establish the uniqueness of GNE. In fact, it is recognized by 
practitioners that GNEPs tend to have nonunique GNEs. This is also true in game G. 
Instead, we provide sufficient conditions to establish the uniqueness of VE in game G. 

Proposition 3.2 A unique VE p* exists in game G if the following conditions hold: 

{Kf + > E (3.n) 
keM 

(对) + l ) " S � E (3-12) 

kemieMk 

for all j e Mi and i G M. 

Proof The entry •巧(fc)F/)(p) of Jacobian matrix VF(p) is given by 

r r 厂 ⑴ , 的 、 � j ( 3 1 3 ) 

⑷ 二 ( i ^ 爾 + 糊 ) ) 2 ( 3 . 1 3 ) 
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where ,.�，.、 

[ K 關 iik = i,l = j; 
= if 於二 i， /— j ; 

.(JCi if k + 

If the conditions (4.11) and (4.12) are satisfied, both VF(p) and are strictly 
diagonally dominant. Noting further all diagonal elements of VF{p) are positive, it follows 
that VF(p) is positive definite and thus F{p) is strictly monotone. Furthermore,屯 is convex 
and compact and F{p) is continuous, based on Theorem 2.3.3 in [21], SOL[屯,F{p)) has at 
most one element. Besides, from the proof of Proposition 1, we know that SOL(^, F(p)) is 
not empty. We conclude that a unique VE p* exists in game G. 

Proposition 4.2 provides sufficient conditions to guarantee the uniqueness of VE in game 
G. A careful thinking reveals that sufficient conditions (4.11) and (4.12) are indeed intuitive. 
On the one hand, from the game theory point of view, these conditions imply that, though 
coupled with other players in both utility functions and constraint spaces, player 对） h a s a 
more significant influence on its utility value than other players do. From the communication 
point of view, these conditions impose upper bounds on the interference received by receiver 

Under mild interference conditions, receiver D，s transmission rate is not heavily 
influenced by other receivers. 

We further point out that conditions (4.11) and (4.12) are not stringent for real appli-
cations. For example, if /T)') represents the processing gain in universal mobile telecom-
munications system (UMTS) - frequency-division duplexing (FDD) networks, then typical 
value of K^^ is 256. Besides, the channel gains in wireless networks usually satisfy that / / . \ 
9 i j � k + i. Then by appropriately control the number Nk of target receivers of trans-
mitter Sk.yk E M, conditions (4.11) and (4.12) can be guaranteed. Note that it is necessary 
to apply certain signal processing techniques (spread spectrum, for one) demonstrated in 
system parameter K ^ . Otherwise, conditions (4.11) and (4.12) cannot be satisfied since 
the receiver o f is confronted with a high interference level mainly caused by signals for 
transmitter 5Vs other receivers. 

Proposition 4.2 does not imply the uniqueness of GNE in game G though it does establish 
the uniqueness of VE in game G. Nevertheless, VEs are more socially stable than other GNEs 
11]. This further justifies our interests in VE. Another justification is given in the following 

proposition. 

Proposition 3.3 Denote by w 二 [ ？ ^ 】 ) , … ， t h e weighting vector on network users' 
rates. 

� The set of GNEs in game G is unchanged with different w ,s. 

� The set of VEs in game G can be changed with different w ,s. 
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Proof (i). Let w and w be any two weighting vectors such that w ^w. The corresponding 
sets of GNEs are denoted by GNE{w) and GNE{w), respectively. Then 3j G M “ i e 
M, luf — Let wf^ and wf be the first different elements in w and w, and w = 
[ i ^ ! i ) ， . " , 对 对 ) , ； F o r any p* = e GNE(w), it can be shown 
that p* = e GNE(w). The reverse argument is also true. Hence, GNE{w)= 
GNE{w). Following a similar argument, we can construct a finite sequence (w =)wi, 
t&2,".�t&n(= w), n < N, such that GNE{wi) = GNE{w2)=…=GNE{i l in ) . Hence, we 
conclude that GNE{w) = GNE{w). 

(ii). Denote by and d屯 the set of interior points and boundary points of respec-
tively. Case 1: If a VE p* e then ty) = 0 since (p — p*尸卞(p*，w) > 0,Vp G 屯 

By the definition of F, F{p*,w) = 0 holds if and only ii w = 0. Then the result follows 
trivially. 
Case 2: If a VE p* e d屯,we assume that its associated weighting vector it; ^ 0 to 
avoid trivial cases. We next show that there exist w and w such that VE{w) + VE{w), 
where VE{w) denotes the set of VEs associated with w. Consider w = [ 1 , 0 , 0 ] ^ and 
w — [0,0’ ."，We have 

/ (1) (l)*wXl) (1) 
0 < = (P^i) V , 到 二 - 濃 丨 ； ? 》 ( ^ j ) ， V P e 办， 

which implies that pi” - < 0. Thus, it is clear that p* = ^ VE{w) 
and p* i VE{w). Similarly, p* = . . . . ^ V五(^) and p* • VE{w). 
Hence, we conclude that VE(w) ^ VE{w). 

Proposition 4.3 implies that different weighting vector ly's may correspond to different 
VE p*'s. This is an intuitive result. From communication engineering point of view, the 
associated desirable network power operation points are expected to vary after network 
operators make certain adjustment in weighting vectors. Nevertheless, it is interesting to 
note that the set of GNEs in game G is independent of weighting vector w. Hence, in 
a certain sense, the relationship between GNEs and VEs in game G is analogous to that 
between Pareto optimal boundary and certain pareto optimal points in the capacity region 
of multiple access channels [67 . 

3.3 Algorithm Design 

In this section, we propose an iterative partially penalized Jacobi algorithm (IP^JA) to 
compute a VE of game G by appropriately modifying the penalty methods proposed in [20 . 
First, note that, compared to standard NEP, the main difficulty in the GNEP of game G 
arises from the coupling power resource constraints at transmitters, i.e., ^^�(p⑷）< ().To 
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Step 1: Initialization: 

Receiver Df\\/j e Mi,Vz G M, starts with an arbitrarily feasible power allocation, i.e., Pj\o) € 
Initialize A: > 1 and f ) � > 0. Set t 0 and n := 0. 

J ] 
Step 2: Jacobi Iteration: 
Receiver D�\\/ j £ Mi^i G M, updates its power allocation -f by 

+ M ) = lpf(n,t) + (3-15) 

where are positive step sizes, and denotes the projection of x onto set 屯)• 
— 免j 

Set n:= n + l. If 7i < Nt and p{n, t) has not converged, repeat Step 2; otherwise, go to Step 3. 

Step 3: Penalty Updating: 
Set pit + 1) = p(n,t). If p{t + 1)祭 and for all receivers, 

| V � ) j f ) + 1))|> P;.')|Vp�4)(P“)(t + 1))|， （3.16) 

then set f^ := kpf,\/j G Mi,\/i e M. Set n := 0 and t:=t-\-l. 

Step 4: Convergence Verification: 
If p(t) has converged, then stop; otherwise, go to Step 2. 

Table 3.1: Detail steps of IP^JA 

resolve this difficulty, we consider a penalized version of receiver 对)，s utility maximization 
problem: 

P-2: maximize^,)^^,) Jf)(嫂 ) ,p � ： 二 — p f ( (必 (p � ) + e)^ (3.14) 

/ • \ 

where py G M++ is penalty parameter, 7 is a positive integer such that 7 > 3, e G IR++ is 
a small value, = {pf € M : pf < pf < p f } , and 必 ( p ⑷ ） = m a x ( 0 , � ) ) . W e 
formally describe IP^JA in Algorithm 3.1. 

The basic idea behind IP^JA is simple. By introducing penalty parameter p, we obtain a 
penalized NEP in a new game G'^(p). In particular, given penalty parameter p , game Gt(p) 
has the same player set as game G but different utility function jf\pf and decoupled 
strategy space 屯 二 n.7eM“ieM 屯 T h e n we inexactly solve a sequence of games Gt(p) to 
approach the original VE of game G. More precisely, if t = 0 in IP^JA, an NE (if any) of 
game & {p) is clearly a VE of game G. If current solution p[t) is not feasible and criteria 
(3.16) are satisfied, penalty parameter p will be increased in the next iteration to force 
feasibility. The philosophy behind updating criteria (3.16) is that the penalty parameter 
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P would be increased when � � ( Z + 1))| becomes relatively small compared to 
•pjO^V {p{t + 1))|. It should be pointed out that criteria (3.16) need to be satisfied for 

all j G Mi,?： G M before updating the penalty parameter p. In other words, we need not 
update penalty parameter p when only a subset of players violate feasibility. This reduces 
the frequency of penalty control and thus communication overhead in the network. 

Before we delve into the theoretical analysis for IP^JA, we make several remarks as 
follows. 

Remark 3.1 Note that � ) i s nonsmooth and not continuously differentiable. So we 
use-f>3 and e G 股++ to make smooth and twice continuously differentiable. 
Otherwise, we would also encounter several unnecessary technical difficulties when dealing 
硫h game Gt(p) even though it was a standard NEP. Due to the existence of e, the final 
solution obtained by IP^JA is not an exact VE of game G. Nevertheless, as shown later, we 
can make the approximate VE as exact as possible by selecting a small enough e. 

Remark 3.2 Recent approaches in communication field to GNEPs need to solve exactly a 
standard NEP (and obtain one associated NE) in every iteration of updating dual pricing 
parameters (see, e.g., [74], [48j, and [49]). In contrast, we do not have such restriction 
in IF^JA. In particular, iP^JA can simply check and update penalty parameter p after Nt 
iterations in solving game G个(p) without considering whether or not the associated NE has 
been reached. In an extreme case，only one single iteration, i.e., Nt = 1； need to be performed 
before penalty updating in IF^JA. 

The following lemma facilitates the analysis of the convergent behavior of IP^JA. 

Lemma 3.2 Given 6 G M and an integer 7 > 3，the function f : R ^ M+ defined by 
f(x) — (max(0”T + is twice continuously differentiable, convex, and 

f\x) = 7(max((),x + h)f \ and f"{x) = 7(7 — l)(max(0,x + b)y \ (3.17) 

Proof We first compute the following: 

f(x + - f{x) — (max (0 ,x^ t - i - b ) - (max(Q,x + 6)广；P - = — 

ix+t+br-{x+br if > - 6 and --\x + b\<t<\x^ b\; 
= < 0 if < —6 and — + 6| s 力引:c + 冲 

(max((M)广 if = —b. 
t 

Then it can be readily verified that 

r fix + t) - fix) 1. f{x^t)-f{x) — J 7(工 + br-' if ^ > -b； 
想 : 1 = /_T —t 0 i f x<-6. 
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Hence, f'{x) = 7(max(0,a: + 6)广—i which is obviously continuous. A similar argument also 
applies to f"(x). Noting that Vx G R, /"(x) > 0, we conclude that f{x) is a convex function. 
This completes the proof. 

We continue our analysis by investigating the properties of the penalized game 
since, as shown later, it plays an important role in justifying the proposed algorithm IP^JA. 
In particular, we summarize the main results in the following proposition. 

Proposition 3.4 Define a mapping F : R^ i-̂  given by 

HP) • = [ 片 ( 3 . 1 8 ) 

where = - V T h e n given penalty parameters p and integer 7 > 3， 

game G十(p) is characterized by the following properties: 

(i) The set of NEs in game (p) is the same as the solution set F) F). 

(ii) At least one NE p* exists in game &{p). 

Furthermore, if conditions (11) and (12) in Proposition 2 are satisfied, then 3(5 > 0 such 
that if e is chosen to satisfy 

( E P̂k̂  - p f < s y j e M i , e m , (3.19) 
jEM^k^j 

where B(” is given by 

B � = 6 ( 7 - l)(("i”(P⑷广 + 必 ( p � )广 2， (3.20) 

then game further has the following properties: 

(iii) There exists a unique NE p* in game G^p). 

M Ifait) 
is a small enough positive step size, for any initial value p(0, t) G ^, the sequence 

(P(几，亡))二 1 generated by Jacobi iteration in IF^JA converges to the unique NE in 
game when Nt —> oc. 

Proof See Appendix D. 

By applying Proposition 4.4, we are now in a position to state the convergent property 
of IP2JA. 

Proposition 3.5 Let ( p ， ) ) £ ? be the sequence generated by 豹 A . If Proposition 4(4iv) 
holds, 
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�置 n j lirnit point p色 of is a GNE of game defined as 

= 讽 如 , 償 " e M ， y f ,p(—如jCM"謂}’ （3.21) 

—ere N and are the same as those of game G but is given by 

= （3.22) 

(a) ift-^O, the limit point p^ approaches to p* which is a GNE of game G. 

Proof The sequence generated by IP'̂ JA is bounded due to the box constraint 
屯.Furthermore, the constraints g{p) < 0 are linear. Then based on Theorem 2.12 in [20], 
the penalty parameters p are updated a finite times. If Proposition 4.4(iv) holds, the first 
part of Proposition 4.5 follows based on Theorem 2.5 in [20]. Since penalty parameters p 
are only updated a finite times and thus finite, 0 if e —> 0. With a slight abuse 
of notation, it follows that G^ —» G if e —> 0. Hence, the corresponding GNEs satisfy that 
p^ p* if e —> 0. 

We remark that IP^JA does not generate an exact GNE to the original game G. Clearly, 
the inexactness of the generated GNE comes from the introduction of parameter e. However, 
parameter e makes the objective function in problem P-2 smooth and twice 
continuously differentiable, which fa,cilitates theoretical analysis and numerical computation. 
Besides, the generated GNE becomes exact when e goes to 0. Hence, we can trade off 
the exactness of the generated GNE and numerical computation convenience by choosing 
different e，s. 

3.4 Numerical Results 

Numerical results are provided in this section for illustration purposes. We choose simula-
tion parameters as follows unless specified otherwise. The number of transmitters is 4 and 
each transmitter is associated with 4 receivers. The weight vector w is set to be the unit 
vector. For clarity, receivers have the same power constraints and design parameters, i.e., 
p{i) = 0.1,pf 二 二 3 2 , V � j . The maximal power of each transmitter is 10. All the 
background noise powers are assumed to be 0.1. As for the parameters in IP^JA, we set 
7 二 4，g 二 0 1, k = 1.5, Nt 二 1. The initial penalty vector p is randomly generated from 
the interval [0.5,1]. We set the mean of exponentially distributed random variable gi'j 
to be I ii k = ?：, and 1 otherwise. Thus, the network can have different transmission node 
densities by tuning parameter I. In particular, larger I implies sparser transmission node 
density. We set / 二 10 unless specified otherwise. 
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Convergence Speed of IP^JA 
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Figure 3.2: Convergence behaviors of IP^JA 

In Fig.3.2, we study the convergence behaviors of IP^JA. Fig.3.2 shows the power allo-
cation of receivers versus iteration number. For clarity, we only show the power evolution 
of the receivers associated with transmitter We can see that IP^JA converges relatively 
fast. This fast convergent property is desirable for practical implementation. 

We next compare our proposed one-to-many transmission scheme with the one-to-one 
opportunistic transmission scheme in Fig.3.3. Only one receiver, whose channel to the corre-
sponding transmitter is the best in terms of channel power gains, is scheduled for receiving 
information in opportunistic transmission scheme [66]. As illustrated, one-to-many trans-
mission scheme performs better than opportunistic transmission scheme. Nevertheless, the 
sum rates in both schemes nearly stop increasing when the power resource Pmax grows be-
yond lOdB. Indeed, the interference becomes a dominated factor in such scenarios. This 
implies that network overall interference cannot be overcome by simply increasing trans-
mit power and thus more advanced approaches for handling interference are expected in 
interference-limited wireless networks. 

Fig.3.4 shows the average rate versus iteration number under 4 different choices of num-
bers of receivers associated with each transmitter. It is shown that the average rate decreases 
as each transmitter is associated with more receivers. This is an intuitive result since the 
power resource of each transmitter is limited. Thus, the power resource required and ob-
tained by the corresponding individual receiver becomes less when the number of receivers 
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Figure 3.3: Comparison of one-to-many and opportunistic transmissions 

associated with each transmitter grows. Another interesting observation in Fig.3.4 is that 
the average rate converges after only 2 iterations. This implies that the desired network 
performance (i.e., average rate) can be obtained in a few iterations even though the power 
allocation in IP^JA has not converged. 

Finally, we study the impacts of weight vector on the utilities of individual user and 
network, respectively. The weight vector is chosen as follows. The studied user d f is 
associated with weight x G {0，0.2,0.4,0.8} while the remaining users are allocated with 
equal weight j ^ . The numerical results are given in Table 3.2, The two studied users 1 
and 16 represent two classes of receivers. More specifically, the channel gain between user 
1 and the corresponding transmitter is better than the mean channel gain. In contrast, the 
channel gain between user 16 and the corresponding transmitter is worse than the mean 
channel gain. As shown in Table 3.2, both user 1 and 16 have higher utilities when their 
corresponding weight factors increase. However, the network utility deteriorates when the 
network weighs user 16 more. The converse is true for user 1. Indeed, as pointed out in 
Proposition 4.3, the network operation points can be varied by tuning the weighting vector. 

• End of chapter. 
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Figure 3.4: Impacts of the number of associated receivers 

Weight 0 I 0.2 I 0.4 0.6 0.8— 
User 1 I 0 I 1.0332 1.5684 2.3272 3.307^ 

Network 2.7295 2.8708 2.9957 3.3345 . 3.8455 
User 16 I 0 I 0.2262 0.7900 1.2154 2.098~ 
Network 2.6691 2.4955 2.3878 2.2656 2.135^ 

Table 3.2: Impacts of Weight Vector 



Chapter 4 

Flow Allocation in Multiple Access 
Networks 

Never follow the beaten track, it leads only where others have been before. 
Alexander Graham Bell 

During the past two decades, we have witnessed an ever increasing demand of high data 
rate services in wireless communications. An end user (EU) is normally just associated with 
one access point (AP) in today's wireless networks such as Wireless Local Area Networks 
(WLANs) to access the Internet. However, researchers realize that the performance of this 
classic scheme may be unsatisfactory to meet the demand of high data rate services from 
EUs. Besides, this single-AP based scheme may be prone to suffer from fading due to the 
single link between EU and the corresponding AP [66]. As a result, more flexible WLANs, 
where EUs can be associated with multiple APs to get access to the Internet, are drawing 
increasingly interests from both academia and industry (see, e.g., [82] and references therein). 

Another practical motivation comes from the recent interests in femtocell networks, in 
which consumers can install home base stations (BSs) for better indoor wireless voice and 
data communications [12]. However, an EU in femtocell networks tends to suffer from low 
throughput due to the limited capacity of backhaul connection to legacy cellular networks. 
Therefore, allowing the EUs to simultaneously access different home BSs in femtocell net-
works becomes a natural solution to aggregate sum rates of different backhaul links and thus 
avoid traffic bottleneck [12] [29]. For simplicity, we also refer to this multiple home BSs 
access scheme in femtocell networks as multi-AP based scheme. 

In spite of the potentials of multi-AP based scheme, the resource allocation problem 
in such scenarios is challenging. In particular, how the resources at APs can be used effi-
ciently while satisfying the rate requirements from EUs? On the one hand, each EU can be 
connected to multiple APs and each AP may also need to serve multiple EUs, making the 

50 
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resource allocation problem (especially distributed implementation) seemingly prohibitively 
difficult. On the other hand, interference is a severe issue in multi-AP based scheme due to 
the simultaneous transmission from multiple APs to EUs, which often makes the resource 
allocation problem non-convex and thus hard to solve [27 . 

In [29], the authors formulated a general game-based framework for the multi-AP based 
scheme to develop self-organizing femtocell networks. Specifically, the APs send indepen-
dently coded information to multiple EUs over orthogonal channels. In such a scenario, 
they focused on how individual AP independently decides its transmit power over several 
orthogonal channels, each of which has been allocated to one EU, to maximize its own data 
rate. 

However, there exist several issues in the approach adopted in [29]. The first problem 
lies in the non-convexity nature of their formulation. And it is well known that this non-
convexity issue of maximizing the total achievable rate over the available orthogonal channels 
in multi-user scenario makes the problem generally NP-hard [39]. Thus, globally optimal 
performance cannot be obtained by [29]. Moreover, [29] assumed an EU simply treats all 
the other APs，signals as noises when decoding a particular AP's signal. In spite of the 
low complexity, the achievable rate region by this decoding scheme is a strict subset of the 
capacity region of multiple access channel (MAC) [16]. This further degrades the achievable 
date rate of the framework proposed in [29 . 

In contrast, as it will become clear later, we adopt a reverse approach in this chapter 
which avoids the difficulty caused by the non-convexity. In particular, unlike [29], we study 
the power allocation problem from the EUs，point of view, though we also adopt a game-
based approach. In our model, each EU individually decides its flow rate distribution from 
different APs to minimize the total power it consumes while guaranteeing its own quality-
of-service (QoS) requirement (in terms of aggregate flow rate). Note that EUs need to 
competitively access the power resources of APs, resulting in a coupled strategy space among 
EUs. Furthermore, rather than treating the interference from other APs as noises when 
decoding some AP's signal, we adopt successive interference cancellation (SIC) at the EUs 
(decoders) to avoid performance loss (or equivalently to achieve the capacity) [66]. Practical 
implementation scheme of SIC in MAC has already been proposed (see, e.g., [72]). Besides, to 
make our approach more generally applicable, we impose additional interference temperature 
constraints. These constraints are of practical interests. For example, they can be applied 
in cellular networks so that the wireless signals generated in a particular cell would not 
cause too much interference to adjacent cells. Also, interference temperature constraints are 
commonly adopted by cognitive radio (CR) networks [10]. For convenience, we will refer 
to these interference temperature constraints as they are applied in CR networks in this 
chapter. 

Interestingly, this reverse approach helps us investigate the resource allocation problem 
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in question as a convex one. As a result, we are able to show that the Nash equilibrium (NE) 
of our formulated resource allocation game not only exists but also is unique. What is more, 
the unique NE in our formulation also turns out to be the globally optimal solution though 
NE is often known as an inefficient operating point [4]. Hence, the two proposed distributed 
algorithms can converge not only to the unique NE but in fact a globally optimal solution. 

The rest of this chapter is organized as follows. Section 4.1 describes the specific system 
model and presents a game formulation for the problem in question. In section 4.2, we 
characterize the relevant properties of NE in the studied game. We propose two distributed 
algorithms which can satisfy different requirements in real implementation in section 4.3. 
Section 4.4 presents extensive numerical results for performance evaluation. 

4.1 System Model and Problem Formulation 

4.1.1 System Model 

We consider a radio network as shown in Fig.4.1, where N APs denoted byN = {1,2,."’ TV} 
simultaneously transmit information to I EUs denoted by I = {1, 2,…’ / } over I orthogonal 
channels. Each EU receives signals over its pre-assigned channel which is orthogonal to other 
EUs' channels. We assume all the channels have equal bandwidth W but note that extension 
of our work to unequal bandwidth case is straightforward. Without loss of generality, we 
assume channel i is assigned to EU i. Besides, there are K monitoring devices (MDs) denoted 
by K = {1, 2 , K ) , which regulates the interference caused by transmission from APs to 
EUs. The maximum interference level that; MS k can tolerate over channel i is denoted by 

We denote by g^ the channel power gain from AP n to EU i, and gj^^ the channel power 
gain from AP n to MD k over channel i. The power AP n allocates for transmission to EU 
i is denoted by p^. AP n has a total power constraint fP, i.e., T^ieiPi < P""' Besides, due 
to the interference temperature constraints regulated by MDs, the transmit powers of APs 
also need to satisfy EneNP^Pf < e I,VA; G K. 

Unlike most previous works (see, e.g., [77], [58]，[74]) which applied low complexity de-
coding scheme that simply treats other signals as noises when decoding a particular signal, 
we adopt SIC at the EUs to achieve the capacity of Gaussian multiple access channels. Be-
sides, it is assumed that the zero-mean additive white Gaussian noise (AWGN) at EU i has 
spectral density Ni. 

As for the availability of channel state information (CSI), network nodes can obtain their 
desired information through training sequences and channel feedback. In particular, EU i 
is assumed to be aware of its local CSI, i.e., g?, Vn G N, by measuring the received power 
of the training sequences, and g^ Vn G N,V/c G K, by feedback from MDs. However, EU i 
may or may not know other EUs，CSI. 
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Figure 4.1: System Model 

4.1.2 Problem Formulation 

Before we formally formulate our problem, we define for EU i the following self-mapping 
function 

TT, : { l , 2 , . . , i V } ^ { l , 2 , . . . , i V } (4.1) 

such that > � > . . .> g �讽 . I n other words, "7ri(n) 二 m" implies that the channel 
power gain between EU i and AP m is the n-tli largest of all the links connecting EU i 
to APs. We denote by Si = the transmit signal-to-noise ratio (SNR) of EU i where 
Pi = T^nENPi is the total power of APs use for EU i,s information flow. We further denote 
by R;办、the information flow rate from AP 7ri{n) to EU i. We then group the information 
flow rates of EU i into a column vector Ri, i.e., Ri = … ， � 厂 Then we 
have the following lemma. 

Lemma 4.1 Given the information flow rate vector Ri, the minimum required Si is given 
by 

仲》 = E 《办 ) ( 丑 i ) = E ‘ . exp( E i^r—)) • - 1)， （4.2) 
n e N n(EN Q i m = n + l 

—'ere � is the transmit SNR of the link between AP min) and EU i. 



CHAPTER 4. FLOW ALLOCATION IN MULTIPLE ACCESS NETWORKS 54 

Lemma 1 can be derived by studying the capacity region C of Gaussian multiple access 
channels. In particular, C can be characterized by [16]: 

C = ln(l + E 片),VA C N}. (4.3) 
nek neA 

To obtain the minimum required Si for rate vector Ri, we can consider a linear programming 
(LP) problem: 

minimize ^ S? 
n G N 

subject to g^Sl' + 1 — exp(X；代” > (),VA C N 
neA neA 

> 0,Vn e N. (4.4) 

Then we can show that the optimal value of the above LP problem is given by Lemma 1. 
For a more detail derivation of Lemma 1, we refer interested readers to [65 . 

Lemma 1 implies that EU i would require more power resource from APs that have better 
links to EU i. Clearly, this flexible multi-AP based scheme allows the power resource to be 
used more efficiently by taking advantage of the multi-user diversity in the networks. 

Now we model EU i's QoS requirement in terms of rriiriirriurn rate requirement . In 
particular, EU i,s total flow rate Ri should satisfy 

Ri = Y： � = E [才 i ) ( 依 > 丑 � (4.5) 
n G N n G N 

where denotes the inverse function of Si{Ri) defined in (4.2), i.e., = Ri, and 
Si{Ri)]n denotes the n-th coordinate of vector i.e., (丑i)]n = R �抽 . 

To appreciate the EUs，flow distributions, let us now consider a special scenario, where 
only one EU exists and interference constraints are relaxed. Under this setting, we have the 
following proposition. 

Proposition 4.1 Suppose only EU i exists and interference constraints are relaxed in the 
network. Without loss of generality, let UQ be the index such that 『办�)* is the first zero 
element in a rate vector R*. If R* can satisfy EUi,s QoS, i.e., EneN > K奴,then 
RT minimizes its required transmit SNR Si (c.f. equation (4.2)) if and only if 

+ ) ifn<no-l； 

丑r�* 二 Rr-—Enlo-i 丑 r (咖和= no — i., 
0 z/n > no - 1, 
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-ere Rf^ — En<no-i 尺P � * < ln(l + ^ i — ^ ) . 

Proof See Appendix C. 

Proposition 3.1 describes how an EU should allocate its flow requirement over different 
APs. Roughly speaking, an EU always first tries to seek flows from the AP whose link 
to that EU is the best for the moment. If the best AP fails to satisfy that EU's QoS 
requirement, it continues seeking flows from its second best AP. This process continues until 
the EU's QoS is satisfied. Interestingly, this process resembles (but is not the same as) the 
well known waterfilling power allocation strategy [66]. Hence, we regard it as a pseiido-
waterfilling strategy. We further illustrate this pseudo-waterfilling process in Fig.4.2, as well 
as by numerical results provided in Section 4.4. 

Nevertheless, due to the limited power resource of each AP and interference constraints, 
EUs compete with each other to meet their respective minimum rate requirements. Thus, 
Proposition 1 is not sufficient to characterize collective behaviors of EUs. Instead, we further 
resort to game theory to analyze the competitive behaviors between EUs. Toward this end, 
EU i is associated with a utility function given by 

Ji{Ri) = - S i { R i ) , y i e L (4.6) 

Note that EU i with utility function Ji{Ri) aims to minimize its total required transmit SNR 
from APs. This formulation is not directly equivalent to minimizing the power resource EU 



CHAPTER 4. FLOW ALLOCATION IN MULTIPLE ACCESS NETWORKS 56 

i consumes. Indeed, the total power resource pi required by EU i equals NiWSi. Hence, our 
formulation can be viewed as a weighted power minimization problem, where EV i e I is 
weighted by 

The strategy set of EU i is given by 

MR-i) ^{Rien'l-.Y： B!l > Rr\ QliNiWSnRi) < e K, 
nGN neN 

NiWSURi) + E NjWS^iRj) < f ' y n e N}, (4.7) 
ji^hjei 

where denotes the non-negative orthant of iV-dirriensiorial Euclidean space, R—i repre-
sents the rate allocation of all EUs except EU i. In (4.7), the first constraint implies the 
minimum rate required by EU i, the second set of constraints denotes the maximum interfer-
ence levels regulated by each MD over every channel, and the last set of constraints imposes 
a total power constraint to each AP. For later use, we also define the set value mapping 

= (4.8) 
iei 

and the global flow rate allocation strategy set 

[RI,丑2,…，RN] ： E ^ r > RF .〜Vi G I , 
neN 

E 9l iNiWSnRi) < G I，VA: G N}, (4.9) 
neN iel 

For a particular EU i, given the flow rate vectors of other EUs, i.e., R—i, it aims at 
solving the following optimization problem to decide its own flow rate allocation vector Ri： 

maximize Ji{Ri) 
subject to R i e (4.10) 

whose optimal solution set is denoted by B{R-i), i.e., EU i,s best response function. 
Now we are in a position to formulate the following non-cooperative game to characterize 

the interaction between EUs: 

G 二 {I, {MRi ) } ie i } , (4.11) 

where I is the set of players, i.e., EUs, is EU i's strategy space, and Ji(Ri) is EU i's 
utility function. Clearly, the concept of Nash equilibrium (NE) plays a fundamental role in 
characterizing the non-cooperative game G [46]. In particular, no EU can increase its utility 
by unilaterally changing its flow rate allocation strategy at an NE state. We formally define 
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the NE in game G as follows. 

Definition 4.1 Flow rate allocation R* = [JR*,!?*, , Rn] ^^ called Nash equilibrium of the 
non-cooperative game G if and only if，for any EU i E 1，the following condition holds: 

MR：) > Ji{Ri)yRi e (4.12) 

It should be pointed out that game G differs from many conventional non-cooperative 
game models where players' utilities couple with each other but strategy spaces are inde-
pendent (see, e.g., [45]). In contrast, it is interesting to note that players in game G have 
coupled strategy spaces but their associated utilities are independent. Therefore, the ap-
proach used in [45] cannot be directly applied in this thesis. Instead, we resort to other 
approaches to tackle game G, especially in distributed algorithms design, as shown in the 
forthcoming sections. 

A careful reader may be concerned with the increasing hardware complexity of EUs' 
equipments since we formulate the flow allocation game G from EUs, point of view. We 
would like to stress that players in game G are just normative. They may or may not be 
the real decision makers. Indeed, if a central decision maker exists, it can compute the NE 
and then implements the NE in the network. Likewise, the APs in our model can also serve 
as decision makers. So our proposed scheme will not necessarily increase the EUs，hardware 
complexity. Besides, wireless networks in the future might be user-centric. That is, EUs with 
enhanced hardware in future wireless networks would be intelligent and cognitive. Then EUs 
in game G could be the true decision makers without difficulties even if they were incapable 
of implementing our proposed scheme for the time being. 

4.2 Characterization of NE 

The NE state represents a steady state which is central to the understanding of distributed 
wireless information flow allocation in this thesis. The first question arising in game G 
is the existence of NE since lack of such equilibrium implies the instability of a distributed 
system. Moreover, the uniqueness of NE is also desirable for network operators to predict the 
distribution of wireless information flow and thus adjust the network parameters accordingly. 
Besides, it is of great significance to develop (possibly distributed) algorithms to reach the 
NE from initially non-equilibria states [4]. We will address these issues in this and next 
section. 

4.2.1 Feasibility Assumption 

Note that the strategy space 屯 may be empty. As an extreme case, MDs set l\i = 0, 
Vi € I,VA; 6 K. Then it cannot be guaranteed that EUs can meet their minimum flow 
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rate requirements. Therefore, determining the non-emptiness of strategy space 少 is also 
of interest. An admission control scheme aiming at identifying EUs who require infeasible 
minimum flow rate requirements may also be needed. This feasibility identification problem 
is interesting and will be our future work. In this thesis, we make the following assumption. 

Assumption 4.1 There exists a feasible information flow rate allocation R = [ii?, i?®, 
e ^ sudi that EneNgliNiWS^iRP,) < Tfc’“Vi G I,VA: G K，and EieiNiWS^{RP,) < 

f\\/n e N. 

We remark that Assumption 1 should not be regarded as a stringent one. In fact, it is 
just the notable Slater condition with minor modification which is commonly assumed arid 
required in optimization problems [63]. Note that we do not require ZneN R? > R ? 奴 G I, 
to be inactive at BP while Slater condition requires all inequality constraints to be inactive 
at some point. This is not a contradiction since Rf > R^奴,Mi e I, can be recast as 
equality constraints without any performance loss as demonstrated in the following propo-
sition. 

Proposition 4.2 Suppose the NE set E of game G is not empty. Then any R* — [-R*, R^, 
R^] G M satisfies that 

丑r � * = Rr* �vz G I (4.13) 
n G N 

In other words, for any EU i € I, we can replace the ” in EneN > 尺 b y “= ” while 
retaining the same NE set R. 

Proof For any R* G M, suppose there exists some i G I such that EneN 代 > 丑 

Given it can be readily checked that EU i's utility Ji{Ri) is a strictly monotone 
decreasing function of Thus if EneN 抽* > Rf^ EU i can choose another feasible 
flow rate allocation strategy H- such that 

丑 : � R l R l + and � 丨 > 代 ( 4 - 1 4 ) 
n e N 

with the corresponding utility MRI) > MR: ) . This contradicts the assumption that R* 
is an NE. In fact, we can repeat this argument until (4.13) holds. This completes the proof. 

4.2.2 Existence and Uniqueness of NE 

In this subsection, we investigate the existence and uniqueness of NE in game G. Before we 
state the main results in this subsection, we remark that, though the existence of NE in a 
game can often be readily verified, it is generally more involved to establish the uniqueness 
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of NE. In fact, many realistic models do not possess the uniqueness property, motivating the 
investigation of the sufficient conditions for the uniqueness of NE case by case [4]. Never-
theless, by identifying game G as a best-response potential game, we show that a unique NE 
exists in game G [71]. We summarize this result in the following proposition. 

Proposition 4.3 Game G = {I, i)}iei，{'/i(丑i)}iei} possesses a unique NE R*. 

Proof We first claim that the function V{R) : ^ given by 

= (4.15) 
jGl 

is a potential function of game G. Indeed, we have 

arq max JdRi) —arq max —Si(Ri) 

^ max Y. ^ji^j)) 

=arg max V { R i , R - i ) y R - i G (4.16) 

where ^ denotes the global strategy space given EU z's flow rate allocation Ri. Since 
(4.16) holds for any EU i G I，game G by definition is a best-response potential game [71]. In 

A 
other words, we have an associated coordination game G = {I, � ) }�过, {V{Ri , 
where all players share a common utility V{R) such that the best response 13i(R—i) of each 
player i G I in game G is the same as its best response in game G. 

A 
We denote by R the set of maxima of V{R) on the domain $ which is nonempty by 

Assumption 1. Since V{R) is a real-valued continuous function on a nonempty compact (i.e., 
A 

closed and bounded) set M is always nonempty according to the Weierstrass Theorem 
63]. Besides,少 is a convex set, and V{R) is continuously differeiitiable on the interior of 屯 

and strictly concave on 屯.Then, based on Theorem 3 in [55], we conclude that the NE of 
game G is unique. 

Note that NE in general is inefficient and the price of anarchy can even be unbounded 
(see, e.g., [17]). Nevertheless, from the proof of Proposition 3, it is interesting to note that 
the unique NE R* in fact maximizes Z ie iM^i ) - This is a very desirable result which 
implies that the social optimum can be obtained if we can find a scheme to reach the unique 
NE R* by playing 

game G, which is the very topic of the next section. 
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4.3 Distributed Algorithms Design 

In this section, we propose two distributed algorithms for EUs to reach NE along with the 
corresponding theoretical convergence analysis. The design idea of the first algorithm is 
directly based on sequential best-response path (referred to as D-SBRA) [30]. However, as 
shown later, D-SBRA may be inconvenient due to its inherent drawbacks. Hence, we propose 
another algorithm to resolve the difficulties in D-SBRA by further resorting to partial dual 
decomposition (referred to as P-SBRA) [49]. Nevertheless, it will become clear later that 
P-SBRA requires the participation of APs while interaction only occurs among EUs in D-
SBRA. Therefore, network operators can choose either D-SBRA or P-SBRA in practical 
implementation according to specific network situations. 

4.3.1 D-SBRA 

To begin with, we recite the relevant concepts of sequential best-response path from [30]. In 
particular, a sequence ( H力 ) i n strategy space $ is a sequential best-response path if EUs 
response one by one according to best-response strategy. A sequential best-response path 
is admissible if all I EUs have taken their best-response strategies at least once whenever I 
successive periods have passed. We now state the favorable convergent property of game G 
in the following proposition which also justifies the convergence of D-SBRA. 

Proposition 4.4 Every admissible sequential best-response path played in game G converges 
to the unique NE R*. 

Proof We need the following lemma that follows directly from Theorem 2 in [30 . 

Lemma 4.2 If game G has continuous best-response functions, compact strategy sets, and a 
unique NE R*, G is a best-response potential game if and only if every admissible sequential 
best-response path converges to R* • 

Clearly, best-response function Bi{R-i),\/i G I, is continuous on the strategy set 办�(丑—�). 
B e s i d e s , 中 G I, is a compact strategy set. Note that we have shown the existence 
and uniqueness of NE in game G in Proposition 3.3. Hence, Proposition 3.4 follows by 
Lemma 3.2. This completes the proof. 

Proposition 4 implies that there exist infinite ways to reach the NE in game G as long as 
the sequential best-response path is admissible. However, we only provide an ordered-version 
for D-SBRA here due to limited space. We formally summarize D-SBRA for the distributed 
wireless information flow allocation problem in Tabel 4.1. 

Note that each EU needs to know the global CSI and other EUs，strategies in each 
response to compute its own strategy space and obtain best response in D-SBRA. This 
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Step 1: Initialization: 

EUs exchange channel power gain information and start with an arbitrarily feasible flow rate 
allocation, i.e., •R(O) G 屯.Set t := 0;i 1. 
Step 2: Computation: 
EU i calculates its strategy space: 

= ^i{Ri{t + 1 ) , R i - i { t + 1)，jRi+i ⑴，...,Ri{t)). (4.17) 

EU i computes its current flow rate allocation Ri{t + 1) by solving the following best response 
problem: 

Ri(t + 1) = arg max MRi). (4.18) 
Rie^iit) 

EU i broadcasts its new flow rate allocation Ri(t + 1). Set i := i 1. If z < / , go to Step 2; 
otherwise, go to Step 3. 

Step 3: Convergence Verification: 
If stopping criteria are satisfied, then stop; otherwise, set t :=t-\-l;i := 1, and go to Step 2. 

Table 4.1: Detail steps of D-SBRA 

requirement may cause unacceptable level of communication overhead for some wireless net-
works. Worse still, some EUs may take advantage of other EUs by telling false information. 
Ill this scenario, a mechanism guaranteeing truth-telling is the dominant strategy for every 
EU may be required to achieve the global optimum. Therefore, we propose P-SBRA to 
overcome these drawbacks of D-SBRA. 

4.3.2 P-SBRA 

Recall that EU i,s strategy space are constrained in two aspects. In particular, Ri is 
constrained by both individual constraints that are independent of other EUs，strategies, i.e., 
the first two set of constraints in (4.7)，and coupling constraints that depend on other EUs， 

strategies, i.e., the last set of constraints in (4.7). The main cause for the inconveniences in 
D-SBRA comes from the coupling issue among EUs, strategy spaces. To resolve this problem, 
we relax the coupling constraints by resorting to partial dual decomposition approach [49'. 

To begin with, let us introduce some notations for ease of exposition. In particular, we 
denote 屯=Yliei 屯i, where 屯i is EU i,s own independent strategy space given by 

^^ = e � E g m w s n R i ) < 补,e K}. (4.19) 
neN neN 
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We further define 

fl阅= = Y： E -P'yi e N. (4.20) 
祐I iel neN:7ri(n)=Z 

We group all the f{R) into a column vector f[R), i.e., f ( R ) = [ f ( R ) , f ( R ) , , 严 ( R ) f . 
Now let us introduce the Nash game (NG) (denoted by G )̂ cost function "：屯 x 屯“-> 於 

defined as [49]: 

華 x ) = YMR-i,而）=E Jii^i)- (4.21) 
iGi iei 

Here note that we write Ui as a function of R—i and Xi for consistency though it in fact does 
not depend on 丑 S i n c e a unique NE R* exists in game G by Proposition 3.3, based on 
Lemma 1 in [49], R* satisfies 

and f { R * _ . , X i ) < O y i e N . (4.22) 

Construct the following constrained optimization problem 

minimize U{R*; x) 

subject to f\R*]x) < 0,V/ G N, 
x e ^ , (4.23) 

where x) = 紐.尸(丑二，cci). Then it is clear that R* is a solution to (4.23) with 
optimal NG cost U* = U{R*; R*). That is, we can solve (4.23) to obtain the NE of game 
G. Toward this end, we relax the coupled constraints and obtain the corresponding partial 
Lagrangian function given by 

£ ( j r ; cc; A) =U{R*; x) - x) 

= E 華二 ,怎 i ) — E X i h R �怎） 

= E 从 ( 丑 二 ， 尤 》 八 丑 二 , 而 ) ， (4-24) 
zGl lEN iel 

where f{R*-,x) = [f\R*] x),p{R*; x ) , a n d A is the corresponding La-
grangian multiplier vector. Then the following proposition that follows directly from Theo-
rem 2 in [49] comes into handy. 

Proposition 4.5 R* is the NE of game G if only if there exists corresponding dual variable 
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A* such that 

R* = arg{[nmxU{R; x; \*)]\a^=Ry, (4.25) 
see屯 

(4.26) 

= (4.27) 

Xi > (),V/ e N. (4.28) 

We then resort to a decomposition approach to solve the above set of equations to achieve 
the NE R*. Consider the associated dual function given by 

g{X) = [ma^ C{R\ x; A)]|a.=H 

= m 愁 ( J M R - i , Xi) - Y. Xi)) 
iGi ' leN 

= U M R l ) - E + E E W 
iel leN T?,eN:7ri(n)=Z IEN 

= E 丑 I; A) + E I > f e ， (4.29) 
iei iei leN ^^^^^ 

where R^ = r I , -Rj] is an NE of NG (入）with the same player set as game G 
but different utility function 二(丑—i; Ri； A) = Ji{Ri) - E/eN h EneN:7r,(n)=z �(丑这) ’ 
Vz € I, and decoupled strategy space 屯i,Vi G I. That is, we can solve game to obtain 
g(入).In fact, this new game is trivial since there are no coupling issues in both the 
utilities and strategy spaces among players. In other words, given 入,EU i,Vi e I, only needs 
to solve the following convex optimization problem: 

^t(A) = arg max (4.30) 
^ ‘ /GN n e N : w i ( n ) = l 

Besides, the best-response jBR入)in (4.30) is unique since 屯i is a nonempty bounded convex 
set and Li is strictly concave with respect to Ki on 屯i. Hence, given A, as long as all the 
EUs take their associated best response once, we can obtain the trivial NE 丑卞(入)of game 

The next key step is to update A iteratively, making NE of game Gt(入)converge 
to the unique NE R* of the original game G. Indeed, the dual variable A in the dual problem 

mm g{X) (4.31) 
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Step 1: Initialization: 

EUs start with an arbitrarily feasible flow rate allocation, i.e., R{0) £ 办.Set A := 0;t := 1. 

Step 2: Computation: 

Each EU z G I computes its current flow rate allocation Ri(t-hl) by solving the following problem: 

_ + 1) = arg max - ^ ^ N , W S f ' ' \ R i ) (4.33) 
‘ leN neN:ni{n)=l 

and obtains the associa,ted required Sf如），Vn G N, according to (4.2). 
Each EV i el notifies AP 7ri(n),Vn e N, its required SNR � . 
Step 3: Subgradient Update: 
Each AP / e N updates its dual variable Ai(t 4-1) as follows: 

Mt + 1) = [ A / � — _ p i -Y^NiWSl)]+. (4.34) 
iei 

Step 4: Convergence Verification: 
If stopping criteria axe satisfied, then stop; otherwise, set t :— t + 1, and go to Step 2. 

Table 4.2: Detail steps of P-SBRA 

can be updated by applying iterative subgradient method, i.e., 

\i{t + 1) 二 [MO — _[pi - EM恢次)]'，•' e N, (4.32) 

where t is the iteration index, f3{t) is the positive iteration step size, and [.]+ denotes the 
projection onto the set of non-negative numbers. Now we are in a position to summarize 
P-SBRA in Table 4.2. 

By Proposition 3.5, we note that the iteration process in P-SBRA continues until the 
following complementary conditions are satisfied: 

= (4.35) 
ieii 

Besides, the convergence of subgradient updating process in P-SBRA2 can be guaranteed by 
certain choices of step sizes, such as /3(f) = f ’ A ) � 0 , which satisfies the diminishing step 
size rule [63 . 

Furthermore, given the Lagrangian variable A, each EU only needs to know its local CSI 
to carry out its best response in P-SBRA, resulting in less communication overhead than 
that of D-SBRA. However, this advantage comes with the requirement of the participation of 
APs. Therefore, D-SBRA is desirable when APs may not be able to play such a coordination 
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role. 
Before ending this subsection, we point out that the Lagrangian variable 入 in P-SBRA 

has a nice economic interpretation. In fact, we can view Ai,Vl G N, as a price that EUs need 
to pay for the violation of AP 1,3 total power constraint. In particular, if Eiei NiWS\ > p\ 
then \i in the next run will be increased according to (4.32). Then EUs will experience a 
higher price when asking for flows from AP I and may try to seek flows from other APs. As 
a result, the violation of AP /'s total power constraint may be alleviated in the next run. 
This dynamic process continues until the unique NE R* is reached. However, it should be 
noted that no real payment needs to be carried out in the implementation of P-SBRA. 

4.3.3 Best Response and Layered Structure 

In this subsection, we study how the best responses (4.18) in D-SBRA and (4.33) in P-SBRA 
can be obtained. Note that best response problem (4.18) and (4.33) are both convex and 
thus can be solved very efficiently using standard convex optimization methods (interior point 
method, for one) [63]. Nevertheless, we here resort to subgradient method to help us further 
appreciate the implicit layered structure in our studied problem. Since best response problem 
(4.18) and (4.33) are similar, we only discuss problem (4.33) and the layered structure of 
P-SBRA here for brevity. D-SBRA can be analyzed in a similar fashion. 

To begin with, we denote the objective function in problem (4.33) by Ui{Ri, A), which 
can be explicitly written as 

KiiRi. = + e I (4.36) 
n G N 

Then consider the Lagrangian function for EU i: 

Ci{Ri,X,Ui,Vi) 

n e N n 6 N 

+ E UkM, — E gZ⑷聊 
kGK neN 

=—E(1 + + E 办）+ ̂ ： 一 v^R^, 
neN keK neN keK 

(4.37) 

where Ui = [uî i, and Vi are the associated non-negative Lagrange multipliers. We 
then resort to subgradient method to obtain the optimal solution R*. Toward this end let 

% ’ 

us further consider the associated dual function given by 

PiCiii, V,) 二 m器 LiiRi, A, Ui, Vi). (4.38) 
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The corresponding dual problem 

( 應 0 咖 , ( 4 . 3 9 ) 

can be solved via subgradient method. In particular, with initial feasible K ( 0 ) , the 
sequence (tAi(s), ̂；，乂谷))̂ 。̂obtained from the subgradient method is given by 

叫As + 1) = - — ^ e K, (4.40) 
neN 

Vi{s + 1) = Hs) — ai{s){J2 i ? ; 办 ) � — ( 4 . 4 1 ) 
neN 

where s is the iteration index, ^^(s) is the positive iteration step size. Then the primal 
solution R; (6') during the 5-th iteration is given by 

= arg max Ci{Ri, A, Ui(s),灼(s)). (4.42) 

Now we are in a position to describe the inherent layered structure of P-SBRA as shown 
in Fig. 4.3. In particular, this layered structure can be viewed as a Stackelberg game with 
APs being the leaders and EUs being the followers [4]. On the leader side, based on the 
current SNR requirement S from the EUs, the APs set the corresponding power price 入 to 
guarantee that their power resources are not over utilized. Then on the follower side, given 
current A, each EU z G I chooses its flow rate allocation vector Ri to rriaxirnize its utility lAi. 

Note that, given 入，there also exists internal layered structure of EU i G I. Specifically, 
Ui denotes interference price at the physical layer that EU i needs to pay for its violation of 
the interference constraints set by the MDs. Meanwhile, Vi denotes QoS guarantee price at 
the transport layer that EU i needs to pay if it cannot satisfy the corresponding QoS request. 
Given Ui and Vi, EU i adjusts its flow rate allocation Ri accordingly, and vice versa. After 
all EUs decide their flow rate allocation strategies, the corresponding required SNR S can 
be fed back to the leaders, i.e., APs. Then APs can update their power price A accordingly， 

initiating a new round adjustment. This dynamic process continues until convergence or 
stopping criteria are satisfied. 

We remark that the layered structure of P-SBRA differs from those revealed in the context 
of cross layer optimization, in which layered structure exists only in individual user's protocol 
stack (see, e.g., [15], [23], and references therein). In particular, the layered structure of P-
SBRA includes not only the internal layered structure in individual user's protocol stack but 
also an external layer due to the coordination of APs. 

So far, we can see that SIC plays a fundamental role in our proposed scheme. A careful 
reader might be concerned with practical issues in applying SIC in wireless networks. Indeed, 
current receivers generally treat interference as noise though substantial research works have 



CHAPTER. 4. FLOW ALLOCATION IN MULTIPLE ACCESS NETWORKS 67 

1 
Power Price: Xi Power Price:入2 Power Price:入n 

Power Price: X 星 書。ower Requirement: S 

� V " " ^ • … … … … … E U I ^ ^ 

Transport QoS Guarantee QoS Guarantee QoS Guarantee 
Layer Price: vi Price: V2 Price: Vi 

Decision^Variable: ^ledsioifvariable: Decision Variable: 
Ri R2 Ri 
j 1 ^ I ^ 

Physical interference Interference Interference 
Layer Control Price: Control Price: Control Price: 

U 1 , 1 , U 2 , 1 . . . U K , I U I , 2 , U 2 , 2 . . . U k , 2 UI , I ,U :2 ,丨…UK, I 

Figure 4.3: Layered Structure of P-SBRA 

been carried out on interference-aware receivers. Nevertheless, it is widely accepted that 
current adopted receiving technique is increasingly suboptirrial when the number of interferers 
grows. Therefore, it is believed that the application of interference cancellation including 
SIC, which brings dramatic capacity gain (also shown in the next section), will become 
popular in the future interference-limited wireless networks [6]. Another interesting issue 
is how inexact SIC affects the performance of our proposed scheme. A satisfactory answer 
to this question requires a careful modeling of the inexactness of SIC, which is beyond the 
scope of this thesis. Nevertheless, we are positive about the potentials of SIC. Indeed, [5 
shows that, compared to no interference cancellation, SIC still doubles the system capacity 
even with 50% channel estimation error which causes inexact SIC. 

4.4 Performance Evaluation 

4.4.1 Protocol Evaluation 

We investigate the gain obtained by multi-AP based scheme compared to single-AP based 
scheme in this subsection. In particular, we use outage probability, which is defined as the 
probability that the minimum required power^ by EUs to guarantee the QoS is greater than 
a given power threshold of APs, as the performance metric [45 . 

• i.For simplicity, we normalize Ni and throughout all the simulation results. Thus, our scheme aiming at 
mmimizmg the total transmit SNR also minimizes the total power consumption in this scenario. 
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Figure 4.4: Comparison of single-AP and multi-AP schemes: 2-AP 2-EU case 

For clarity, we assume a uniform QoS requirement, i.e., R ^ 隨 = G I. Without 
loss of generality, we set R = 1. To compare the outage performance in scenarios with 
different number of network nodes, we normalize the total SNR as S 二 t~^^^^Wttt，which 

i g 丄（exp(/e)—1)， 

can be interpreted as total additional SNR required to combat against fading compared to 
the AWGN channel with channel gain g and the same rate requirement R. We set g = 1 
here. Accordingly, all the channel gains in our model are simulated as experiencing Rayleigh 
fading and thus follow exponential distribution, the mean of which is set to be 1. 

We set the number of APs and EUs to be the same, i.e., I 二 N, so that each EU can 
be associated with an AP exactly in single-AP based scheme. We plot the results for 2-AP 
2-EU scenario and 3-AP 3-EU scenario in Fig. 4.4 and Fig. 4.5, respectively. Here, direct 
transmission denotes the single-AP based scheme, and multiple access denotes the multi-AP 
based scheme. As expected, multiple access transmission brings a diversity order of 2 in Fig. 
4 3 and 3 in Fig. 4.5. In contrast, the diversity order of direct transmission is only 1 in both 
scenarios. This evidently demonstrates the benefits brought by multi-AP based scheme over 
that of single-AP based scheme. 

Note that we do not impose peak power constraint at the APs and interference terriper-
ature constraint at the MDs in this simulation since it is not clear how we should define the 
outage probability while incorporating these additional constraints. Instead, we just impose 
a total power threshold for the APs in this simulation. Nevertheless, if we could find an 
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Figure 4.5: Comparison of single-AP and multi-AP schemes: 3-AP 3-EU case 

appropriate definition for the outage probability to take into account these additional con-
straints, we argue that the extra diversity order obtained by multiple access scheme will be 
maintained though a deteriorated outage performance might be observed. 

4.4.2 Convergence and Performance 

We provide some numerical results in this subsection to illustrate the convergence behaviors 
of the two proposed algorithms. Simulation parameters are chosen as follows. The number 
of EUs, the number of APs, and the number of MDs are set to be 16, 8, and 4, respectively. 
Note that all the channel power gains are exponentially distributed. We set the mean of 
9? to be 1 ,Vn G G I, while the mean of g^^ is 0.2, Mn G N,V/c G IL.Mi G I. For 
clarity, we set the peak power constraint at each AP to be the same, i.e., f 二 8,Vn G N, 
and also a uniform interference temperature constraint at each MD over every channel, i.e., 
Tk,i = S,\/k e K,Vz e I, and a uniform QoS requirement, i.e., 产打=R = l,Vi E L 

We plot the results in Fig.4.6 which shows the evolutions of power allocation of APs 
associated with D-SBRA and P-SBRA as a function of iteration index. For clarity, we only 
show the evolutions of power allocation of API, AP4, and APS in Fig.4.6. The initial price 
vector 入 for P-SBRA is randomly generated. We can see both algorithms converge relatively 
fast. Similar fast convergent behaviors of D-SBRA and P-SBRA can be observed with 
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Figure 4.6: Convergence behaviors of D-SBRA and P-SBRA 

other simulation parameters. The fast convergence behaviors of two proposed algorithms 
are desirable for practical implementation. Moreover, as expected, the convergent speed 
of P-SBRA is greater than that of D-SBRA. This is understandable since each EU under 
D-SBRA needs to wait for the responses of all the other EUs before updating its own flow 
allocation while EUs under P-SBRA can update their responses simultaneously. 

To further appreciate the performance, we compare our proposed scheme with the popu-
lar iterative water-filling algorithm (IWFA) which treats interference as noise when decoding. 
We choose IWFA as it has been extensively studied and advocated by many researchers for 
distributed resource allocation in wireless networks (see, e.g., [29] [58] [74] and references 
therein). For fair comparison, we relax the interference constraint for the time being. There 
are 5 APs with peak power p^ = 100 which ensures feasibility. The performance metric 
we use is the ratio of the total energy consumption to the sum flow rates, which represents 
the amount of energy needed for each unit flow rate. The numerical results are shown in 
Pig 4 7 in which SICA denotes our proposed SIC-based algorithms. As illustrated, SICA has 
a remarkable performance improvement over IWFA. These performance gains are due to two 
unique features in SICA. One the one hand, the SIC technique used in our scheme archives 
the capacity of multiple access channels while the performance of IWFA is suboptimal since 
IWFA simply treats interference as noises when decoding. On the other hand, APs in our 
scheme use their powers more wisely than those in IWFA. Indeed, APs in IWFA are selfish 
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Figure 4.7: Comparison of IWFA and SIC A 

and only care about maximizing their own flow rates to EUs, resulting in excessive interfer-
ence and unnecessary power waste. In contrast, APs in our scheme use their powers only 
when EUs require flows from them. Thus, network powers are wisely used and interference 
are kept to the minimum in our rate-on-demand (RoD) scheme. 

4.4.3 Flow Distribution 

To better understand the pseudo-waterfilling strategy in Proposition 1, we provide some 
numerical results in a scenario with just one EU present, i.e., 1 = 1. Common simulation 
parameters are chosen as follows. The number of APs, and the number of MDs are 8 and 
2, respectively. The channel power gains and the peak power constraint at each AP are the 
same as those in previous subsection. 

We plot the results in Table 4.3 where Tk 二 10, V/c 6 K. In fact, with such a high interfer-
ence tolerance level, the unique EU can choose flows from any APs while still satisfying the 
interference constraint. In particular, as shown in the table, the EU can satisfy its flow rate 
requirement 1 served by its "best" APT. However, as flow rate requirement R爪奴 increases 
to 2.5，APT cannot satisfy the EU's QoS even when its peak power 8 is used. As a result, 
the EU seeks flows from its second "best" AP2. Similar behaviors can be observed when 
尺mm further increases to 3 and 3.5, respectively. 
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^nin II API AP2 AP3 AP4 AP5 AP6 AP7 AP8 
一1||0|0|0|0|0|0| 1.336 0 一 

0 0.947 0 ~ 0 ~ 0 ~~Q~ 8.000 0 
~ ~ 0 0 s W _Q__ 

3.5 II 0 8.000 8.000 0 8.000 0 8.000 6.442 
Table 4.3: Transmit Power Distribution with 1 EU and Tk = 10 
‘ i n II API AP2 AP3 AP4 AP5 AP6 AP7 a I ^ 

1 | | 0 | Q | 0 | 0 | 0 | 0 | 1.336 0 
2.5 —_ 0 " O W 0 ~ i r ~ 0 “ 0 8.000 Q ~ 
3 — 0 " S M T 0.316 0 1.757— 0 S.OOT 0 

3.5 II NA I NA I NA I NA I NA I NA I NA I NA 
Table 4.4: Transmit Power Distribution with 1 EU and Tk = 2 

However, this flow seeking behavior largely depends on the simulation parameters and 
might not always be true. In particular, we plot the results in Table 4.4 where Tk = 2, VA: G K. 
In fact, with such a low interference tolerance level, the EU cannot freely choose flows from 
any APs since now the transmission behaviors of APs are regulated and may not be able to 
transmit at their peak powers. This situation can be observed in Table 4.4. In the previous 
simulation results shown in Table 4.3, the flow rate requirement FT— = 3 can be satisfied 
by APT, AP2, APS with power 8, 8, 1.474, respectively. However, this flow rate allocation 
violates the interference constraint in this simulation. In fact, as shown in Table 4.4, the flow 
rate requirement R爪饥=3 now needs to be satisfied by APT, AP2, APS, APS with power 8, 
8, 1.757, 0.316，respectively. Note that the flow allocation problem becomes infeasible when 
丑min increases to 3.5 shown in Table 4.4. 

It is also of interest to see the network flow distribution from the APs, perspective. 
Additional numerical results are provided in Table 4.5 and 4.6 with two EUs present for this 
purpose. In these two tables, the entry {x,y) at the intersection of EU z's row and AP j 's 
column indicates that AP j which is EU z's y-th. best AP allocates x units of power for the 
transmission between AP j and EU i. Table 4.5 where Tk 二 10 shows that AP6, EUl's best 
AP, can satisfy EUl's flow rate requirement 1. The same is true for EU2，s best AP, i.e., 
AP8. However, as flow rate requirement R饥切 increases to 3, AP6 cannot satisfy EUl's QoS, 
and so does APS. As a result, APS, which happens to be the second best AP of both EUl 
and EU2, splits its power resource and provides the additional required flows for EUl and 
EU2, respectively. 

The network flow distribution changes in Table 4.6 where Tk = 2. In particular, when 
the flow rate requirement R—"" = 3, APS now cannot transmit with power 1.875 to EU 
2 as in Table 4.5 due to the low interference tolerance level. In this scenario, additional 
AP is needed to satisfy EU2，s QoS. Indeed, APS now just transmits with power 1.166 to 
EU2. The remaining flows are provided by EU2's 4-th best AP, i.e., APT, with power 5.875. 
Interestingly, AP6, EU2，s third best AP, remains silent in this scenario. 
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II API AP2 AP3 AP4 AP5 AP6 AP7 AP8 
1 II EU 1 (0，6) (0, 7) (0, 2) (0, 8) (0，5) (0.738, 1) (0, 3) ( 0 , 4 ^ " 

II EU 2 II (0, 6) (0, 7) (0，2) (0’ 8) (0，5) (0, 3) (0，4) (O.SS^TIT 
3 II EU 1 II (0，6) (0, 7) (0.226，2) (0，8) (0，5) (8.000, 1) (0, 3) (0, 4) 

EU 2 II (0, 6) (0，7) (1.875, 2) (0, 8) (0, 5) (0，3) (0, 4) (8.000, 1) 
Table 4.5: Transmit Power Distribution with 2 EUs and T̂  = 10 

丑—n II II API AP3 AP4 AP5 AP6 AP7 A g g _ 
II EU 1 II (0, 6) (0, 7) (0, 2) (0, 8) (0，5) (0.738, 1) (0, 3) (0, 4) 
II EU 2 II (0, 6) (0, 7) (0, 2) (0，8) (0, 5) (0, 3) (0, 4) (0.880，1) 

~ ~ 3 E U 1 (0, 6) (0’ 7) (0.226, 2) (0, 8) (0，5) (8.000, 1) (0, 3) (0, 4 ) “ 
EU 2 (0，6) (0，7) (1.166, 2) (0, 8) (0, 5) (0，3) (5.875, 4) (8.000，IT 

Table 4.6: Transmit Power Distribution with 2 EUs and Tk — 2 

4.4.4 A Grid Network Simulation 

To further verify the various arguments mentioned above, we carry out simulation for a 
9 x 9 grid network as shown in Fig. 4.8, where 30 EUs denoted by green dots randomly 
locate within the network, 9 APs denoted by magenta boxes locate at (1.5 • i, 1.5 • j) where 
i j e {1,2,3}, and 4 MDs denoted by red stars locate at the four corners, respectively. The 
channel gain Qij = d^^ where dij denotes the Euclidean distance between node i and node 
j . In such a network, we are interested in how the random distributed EUs allocate their 
information flows based on the proposed algorithms. 

We plot the simulation results in Fig. 4.8 where an information flow exists if there is a 
line between an EU and an AP. To be more specific, if an EU are connected to more than one 
AP, then the connection is denoted by a red line; otherwise, the corresponding connection 
is denoted by a blue line. The three subfigures are associated with either different peak 
power constraint at APs or different interference temperature constraints at MDs. However, 
we assume a uniform rate requirement R讯肌= 1 which remains the same in all the three 
subfigures. 

In the first subfigure, the peak power f = 100’ Vn e N and the interference temperature 
Tk,i — 10, Vk e K,Vi e I. Under such abundant power resource at every AP and high 
interference tolerance level at every MD over each channel, every EU can satisfy its flow rate 
requirement by just seeking flow from its "best" AP. However, this is not true in the second 
subfigure where the peak power is the same but interference temperature Tk,i is set to be 
1. Although the power resource is still abundant, some EUs may need to seek flows from 
more than one AP since their corresponding "best" APs cannot transmit at a high power 
level which violates the interference constraint. As expected, there are 4 EUs seeking flows 
from more than one AP shown in the second subfigure. Similar outcome can be observed 
in the third subfigure where the peak power p^ is only 20 and the interference temperature 
Tk,i is still 10. Now though MDs have a high interference tolerance level, some EUs may 
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need to seek flows from more than one AP since their corresponding "best" APs may not 
have enough power resources to satisfy the QoS requirements. This situation is shown in the 
third figure where 5 EUs seek flows from more than one AP. 

Nevertheless, we can see only a few (0, 4, and 5 in the three siibfigures, respectively) 
EUs out of total 30 EUs seek flows from more than one AP. As mentioned, this result is 
favorable. On the one hand, only a few EUs in the network need to carry out SIC in decoding, 
which reduces the average decoding complexity in a network setting. On the other hand, it 
also reduces the implementation complexity of flow splitting^ in the wired network which is 
carried out for only a few EUs. This implies that the multi-AP based transmission scheme 
using the proposed algorithms brings considerable gains with a moderate cost in complexity. 

• End of chapter. 
2For the flow splitting technique, we refer readers to [32] and references therein. 
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Figure 4.8: 9 x 9 Grid Network: The first subfigure: = 100，Tk i = 10; The second subfigure. 
P饥=100，Tk,i = 1; The third subfigure: p饥=20, Tk,i = 10. ’ 



Chapter 5 

Relay Assignment in Cooperative 
Networks 

A journey of a thousand miles begins with a single step. 
Lao-tzu 

It is believed that smarter techniques are needed in every detail of the design of the 
future wireless networks to meet the increasing demand of high data rate services. As 
a promising solution, cooperative radio has recently attracted much attention from both 
academia and industry. Indeed, cooperative communication (CC) technique can improve 
transmission diversity and capacity by allowing single-antenna users to exploit other users' 
antennas, generating a virtual multiple-input and multiple-output (MIMO) system [36 . 

Relay assignment plays an important role in reaping the benefits brought by CC. Substan-
tial research works ha,ve been carried out on relay assignment for a single source-destination 
pair. In [31], the diversity performance of many single-relay assignment schemes in the liter-
ature were revisited and a signal-to-noise ratio (SNR) based multiple relay selection scheme 
was proposed. An interesting result on relay selection is that choosing a single "best" relay 
to assist a transmission pair is su伍cient for achieving full diversity even with the presence 
of multiple relays [81. 

Despite the many proposed relay selection protocols for single user scenario, extending re-
lay assignment to wireless networks environment remains challenging. In [61], a, polynomial-
time centralized algorithm was proposed for such extension under an implicit assumption 
that there existed an infinite number of orthogonal channels in the networks. However, 
this assumption may not hold since the available spectrum for users in wireless networks 
is usually quite limited. Moreover, users may have QoS requests in some wireless services 
(online interactive games, for one). Therefore, given limited spectrum resource, an admission 
control scheme is required to ensure admitted user meets its QoS request [41]. Meanwhile, 

76 
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appropriate spectrum allocation scheme is also needed to maximize the number of admitted 
users. One such spectrum allocation algorithm using bipartite matching can be found in 
80]. However, this centralized algorithm may not be practical due to its complexity. Thus, 

other practical algorithms are expected and distributed ones are even more desirable. 
In this chapter, given the limited amount of spectrum resource for multiple users in a 

wireless network, we jointly perform relay assignment and admission control to carefully 
exploit the scarce spectrum. In particular, each user has a QoS request in the form of 
minimal data rate requirement. Our objectives are to maximize the number of admitted 
users while minimizing the spectrum consumption. Noting that these two objectives may 
conflict with one another, we treat them unequally by giving higher priority to the former 
one. Hence, we look for the best solution with respect to maximizing the number of admitted 
users, and, in case of more than one such solution, the best with respect to minimizing the 
spectrum consumption. 

The outline of the rest of this chapter is as follows. Section 5.1 describes the system 
model and problem formulation. In section 5.2, an appropriate decomposition approach is 
presented to tackle the problem in question. A distributed algorithm is proposed in section 
5.3. Section 5.4 presents some numerical results. 

5.1 System Model and Problem Formulation 

5.1.1 Three-Node Relay Model 

Let us consider a classic three-node relay model which works in a time-division way. In 
particular, the communication between the source and the destination is carried out in two 
time slots. In the first time slot, the source transmits a signal to the destination which is 
overheard by the relay as well. Then in the second time slot the relay forwards its overheard 
signal to the destination based on some cooperative protocol. Based on how the relay 
functions during the cooperative transmission, two basic cooperative protocols, amplify-
and-forward (AF) and decode-arid-forward (DF), were proposed in [36] by Lariemari et al 
The detailed description of these two protocols are omitted here. Instead, we directly give 
the capacity expressions for AF, DF and direct transmission (DT) as follows. 

1. AF 

Iaf = \l0g2 (l + A,, + y 二 • (5.1) 
^ \ ^sr + 入rd + 丄 / 

2. DF 
IDF = 2 m i n { — ( 1 + A,,), log2�l + A.^ + A 必 （5.2) 

3. DT 

IDT = 1092(1+ \sd)- (5.3) 
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In (5.1), (5.2), and (5.3), A地 Â r and Xrd denote the SNR of the source-destination, the 
source-relay and the relay-destination channels, respectively. These capacity expressions are 
directly used as performance metric in this thesis without considering specific communication 
techniques. 

5.1.2 Network Model 

We consider an iV-node CRN with each node acting as either a source, a potential relay, or a 
destination. Specifically, denote the set of transmission pairs (users) by Np = {pi,p2,--^PNp} 
where pi = {si.di), and the set of relays by Nr - { n , r s , t a t ^ } . We assume each node 
transmits with the same power P for ease of presentation. The results in this thesis can be 
easily extended for the unequal power case. 

Orthogonal Frequency-Division Multiple Access (OFDMA) is applied to avoid interfer-
ence. We also assume that the locations of nodes are known a priori and the channel gain 
hij between node i and node j only includes the effect of path loss. So the SNR of the 
transmission from node i to node j equals , where dij is the distance between node i 
and node j, NQ is the noise power (assumed to be equal at all the receiving nodes), and v is 
the path loss factor. 

Besides, each user has a QoS request, i.e., minimal data rate requirement R?讯.For 
simplicity, we assume R?饥=BJ^^^yi. Moreover, each user is allowed to cooperate with 
at most one relay. Note that a user may not always be equipped with a relay for either 
insufficient number of relays exist in the network or DT outperforms cooperating with a 
relay for that user. Last but not least, denote by W the bandwidth of a subchannel and 
each subchannel is allocated to a user. The total available bandwidth is VF画工. 

We now discuss our objective functions in this setting. First and foremost, we try to 
maximize the number of admitted users since it is impossible to serve all the users at their 
desired QoS requests due to limited spectrum resource. In case of more than one optimal 
solution, the one with respect to minimizing the spectrum consumption is the most desirable 
solution. 

5.1.3 Problem Formulation 

In this section, we present an integer programming formulation for our problem. We firstly 
introduce a binary variable xi to specify whether or not user i is admitted, i.e., 

{ 1 , if user i is admitted “ 广 
. (5.4) 

0, otherwise 
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We introduce another binary variable yij to indicate whether or not relay j is assigned to 
user i, i.e., 

{ 1 , if relay j is assigned to user i , � 
. (o.oj 

0, otherwise 
Besides, denote by Wi the number of subchannels allocated to user i. If user i chooses 
to cooperate with relay j, the transmission data rate per subchannel of user i is given 
by RI,] = WIciXs,,dnKi,r,.Kj,di) where Ic{-) = IAF{-) for AF and Ic{') = IDF{-) for 
DF. If user i chooses DT (denoted by 0), then the corresponding data rate per subchannel 

= VF/DT(Asi’di). In a word, R, can be written as 

NR NR 

Ri = XiWi[J2 VijRij + (1 - (5.6) 
j=l j=l 

We now present a preliminary form Pj of our problem. 

Np 

maximize (5.7) 
i=l 
Np 

subject to "^XiWiW < (5.8) 
i=l 
RilXiR-�Vi, (5.9) 
Np 

E 2 / M < l , V j , (5.10) 
i二 1 
NR 

(5.11) 

工i e {0,1}yi,yij e {0,i},Vi,Vj,Wi e z+,Vi. (5.12) 

Constraint (5.8) implies the total spectrum limit. Constrain (5.9) applies minimum data 
rate requirement to each user. Constraint (5.10) indicates that each relay can be assigned to 
at most one user. Constraint (5.11) determines that each user can cooperate with at most 
one relay. Note that problem P! is extremely hard due to its complicated combinatorial 
nature in relay assignment, subchannel allocation, and admission control. Worse still, there 
may exist more than one optimal solution to Pi. As a result, we need to find all the optimal 
solutions and then pick up the one that can minimize the total spectrum consumption. The 
following proposition, the proof of which is similar to that in [42], comes in handy. 

Proposition 5.1 The optimal solution to the following optimization problem Pu is the one 
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to PI that minimizes total spectrum consumption: 

Np Np 
maximize eJ^Xi - {I - e)^ w^W (5.13) 

i=l i=l 

—ject to (5.8), (5.9), (5.10)，(5.11), (5.12). (5.14) 

where e is a constant such that ：：：丄 < e < 1. 

5.2 Centralized Scheme 

Noting that problem P// is still NP-hard, a further careful study on the structure of Pu is 
clearly needed in order to make it solvable for practical implementation. Toward this end, 
we decompose Pu into two successive subproblems: relay assignment and admission control. 
Specifically, the algorithm first tries to find a feasible solution to P//, and then maintains 
the feasibility of the solution at each step while attempts to improve it iteratively. Though 
this approach is theoretically suboptimal, its effectiveness is verified by numerical results. 

5.2.1 Generalized Relay Assignment 

To start with, a careful observation indicates that the optimal solution to Pn has a property 
given by the following proposition of which the proof is omitted for brevity. This result is a 
cornerstone for the subsequent analysis. 

Proposition 5.2 Given solution x*, Vi, and y�,\/i,j，the optimal number of subchannels 
allocated to user i is given by 

< = 《 鬧 ， （5.15) 

where R* = Ylfh Vlj^i^j + (1 — T.f=i vW^i,^^ and�f)1 is the smallest integer greater than 
or equal to a. 

Proof We show this proposition by enumerating all the possible cases. 
Case 1: If X* = 0, then w- = 0. If not, i.e., w- > 0, we can always increase the objective 

value in Fn by decreasing a bit value e from Wi while all the constraints are still held. We 
can repeat this process until w^ == Q. 

Case 2: If x* = 1 and Pij = 0, then Wi should satisfy > Rmin- Considering 
the constraint u^ G Z+, we have w; > > Rrnin/Ri.%- By the same argument used 
in Case 1:, we claim that the optimal solution attained at equality, i.e., iv* =�/^min/只i，0 • 

Case 3: If x* 二 1 and Y：^ Vij — 0, then there exist exactly one j € {1,2, ...,Nr} 
such that Vij = 1 and yi,k 二（）for k + j,k G {1 ,2 , iV^^} . In this case, we attain the 
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optimal solution w* 二 following a similar argument as in previous two cases. 
This completes the proof. 

Based on Proposition 5.2, we are now able to give a network graph model for further 
discussions. Consider a graph G = (Vi, V2, E) with weights Wi,j, where Vi is the set of Np 
transmission pairs, V2 is the set of NR potential relays, E is the set of links, i.e., < >G E, 
for i G Vi,j G \̂ 2，and Wij is the number of subchannels needed for user i by cooperating 
with relay j. Now it seems that the optimal relay assignment with respect to graph G can 
be treated as a minimum weighted bipartite graph matching problem that saturates every 
vertex in Vi. The problem is described in three aspects. 

1. Neglect of DT: It is reasonable for user i to choose not to cooperate when DT out-
performs CC. Moreover, the backoff of user i from relay assignment can leave more 
potential relays to other needed users. 

2. Much redundant information: Node i E Vi has links to all the nodes in V2 in graph G. 
Consequently, the storage and computational load can be high which actually can be 
mitigated by better formulation of the graph G. 

3. Imperfect matching with respect to Vi： It is possible that there does not exist a match-
ing that saturates every vertex in Vi for the graph G = {Vi,V2,E). Hence, we cannot 
associate each user with a transmission strategy directly if imperfect matching happens. 

To resolve the first aspect, fictitious vertex is introduced into the graph formulation. 
Specifically, introduce a fictitious relay roi to V2 for user to represent its DT mode. 
Besides, fictitious vertex roi has a unique link to vertex (si.di) e Vi, To resolve the second 
aspect, the following proposition comes into handy. 

Proposition 5.3 Given the transmit SNR A = P/NQ, relay j is preferred to a transmission 
m虹{si.di} if only if their geographical locations satisfy the following condition (5.16) for 
AF and (5.17) for DF, respectively. 

+ (5.16) 

dl > m a x K + ^ d f + + V ^ F + I A ^ ) } , (5.17) 

—ere ^ = Ac?^ + \dl + d^dl, di,而，and 而 denote the distance of Si-(k, 6vr力 and r厂 

respectively. 

Proof Here we only consider DF, and conditions for AF can be derived in a similar way. 
User i employs relay j if and only if the capacity of relay transmission is larger than that of 
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direct transmission, i.e., 

^min{log2(l + A,,), Zo仍(1 + A,̂  + A,^)} > log2(l + A,,) 

which implies the following two conditions 

Zo仍(1 + A,,) > log2{l + Xsd) (5.18) 

— ( 1 + Kd + Kd) > 細2(1 + Kd) (5.19) 

should hold simultaneously. Substituting Xd^ for Kd, M^r ^^ and Xd^^ for A油 and 
then solve the equation set of (5.18) and (5.19), we obtain the conditions under which DF 
is more favored than DT. 

Now we are able to delete unnecessary links in graph G. In particular, for each vertex 
�Si,di) e Vi and vertex rj e V2, check whether their geographical positions satisfy the 
conditions given by Proposition 5.3. If not, delete the link < (Si,di)，rj�. Continue this 
process for all possible combinations of i and j. 

After introducing fictitious vertices and deleting unnecessary links, we attain a modified 
graph G = (V ,̂ E) with weights Wî j, where Vi is the same as the original Vi, V2 is the set of 
relays consisting of both real and fictitious relays, i.e., V2 = { r o i , ' 厂 0 2 ， … ， ' 厂 2 , '厂iv }̂, 
E is the set of essential links attained from E by adding fictitious links and deleting useless 
links in the original graph G, and Wij is the number of subchannels needed for user i by 
cooperating with (real or fictitious) relay j. We now claim the following proposition holds 
which implies we have also resolved the third aspect of the problem caused by the original 
graph G. 

Proposition 5.4 Modified graph G = (Fi, V2, E) contains a matching that saturates every 
vertex in Vi. 

Proof To begin with, for S C Vi, denote by 7}(S) the neighbor set of S in modified graph 
G which is defined as the set of all vertices adjacent to verices in S, i.e., 

r]{S) = {v eVi:3< u, V >e E, u G S}. 

〜 〜 

Now let us consider an 个 G Vi. Note that, by construction of the modified graph G, 
there always exists a unique edge between vertex (s“ 4 ) , i.e., user i, and vertex rô , Vz G SK 
So the cardinality of 7/(5^ is at least as large as that of i.e., 

> I刘. (5.20) 
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Then by Hall's theorem [1], condition (5.20) is both necessary and sufficient for graph G = 
(Vi, V2, E) to contain a matching that saturates every vertex in Vi. This completes the proof. 

We are now in a position to treat the problem in question as a minimum weight bipartite 
matching problem with respect to graph G that can be solved efficiently using existing 
algorithms, such as Hungarian algorithm [28]. By solving this subproblem, we obtain the 
answers to three questions: to cooperate or not, whom to cooperate with, and how the 
spectrum should be allocated. Hence, we regard it as generalized relay assignment problem. 

5.2.2 Admission Control 

In this subsection, we consider another subproblem: admission control. Suppose the number 
of subchannels allocated to user i is w* obtained in the generalized relay assignment process. 
Then the remaining admission control problem can be formulated as 

Np 
z = maximize ^ ( e - (1 - e)w*W)xi (5.21) 

i=l 
Np y^max 

subject to Ylw*Xi < — ( 5 . 2 2 ) 

Xi e {0,1}, Vi. (5.23) 
Denote this problem by P///. Note that Pni can be categorized as 0-1 Knapsack integer 
problem which is generally NP-hard. Anyway, Pni can be solved efficiently by resorting to 
dynamic programming (DP) as long as ^ ^ ^ is not too large. DP is an approach whereby 
an optimal solution for a problem in question is derived recursively from solving some other 
slightly different problems of which the size is smaller than that of the original problem. 

Next we briefly summarize the idea of this approach. A more detail discussion on DP 
can be found in [73]. Firstly, let us define a problem PdP): 

a 

fa{.0) = maximize - (1 - e)w*W)xi (5.24) 
i=i 
a 

subject to Yu 比：工i < A (5.25) 
i=l 

工i € {0,1}, Vi. (5.26) 

Note = A further careful observation indicates the following recursion: 

W ) = e - ( l - e)iv:W + — < ) } . (5.27) 

Then starting with fo(/3) == 0 for > 0, we use recursion (5.27) to derive / � 
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Now we iterate back from / i V p ( ^ ) to obtain the associated optimal solution xl\/i. 
Toward this end, we define an indicator 

i f 严 “ A ) . 
1，otherwise 

\ 

Then if F j v ^ ( ^ ) = 0，we set = 0 as / n A ^ ) = fN^- i ( ^ ) and continue this 
process Otherwise, we set xjv^ = 1 as / i V p ( ^ ) = (e - (1 - e)w*W) + 
f N p - i i ^ w^p) and continue this process for - w ^ ) . Clearly, we can 
obtain the associated optimal solution to the admission control problem after iterating back 
Np times. Now we obtain the answer to the fundamental question of our problem: which 
users should be admitted. 

5.2.3 Iteration Algorithm and Some Remarks 

After obtaining a feasible initial solution by the above procedures, we describe how to it-
eratively upgrade this solution in this section. We firstly introduce some other notations 
to facilitate the description. Denote the set of current admitted nodes by V-f̂  and their 
corresponding selected (generalized) relay set by V^. Now we further modify graph G by 
deleting all the unadmitted nodes and their incident edges and denote the residual graph 
by G*. We now apply Hungarian algorithm to graph (5* again and obtain a new selected 
relay set Substitute for and update the remaining spectrum and remove all 
the admitted nodes and their incident edges in graph (5, producing a new graph G~. Then 
restart generalized relay assignment and admission control subalgorithms for (3- to check 
whether or not more users can be admitted. Repeat this procedure until no more user can 
be admitted any more. 

We have now obtained a good feasible solution to P//. Before ending this section, it 
should be pointed out that the complexity of Hungarian algorithm is 0{{NR + Npf) and 
the complexity of DP is Besides, the algorithm terminates within at most 
Np iterations. Hence, compared with the complexity of exhaustive search, it is a workable 
and efficient approach and its effectiveness will be verified by numerical results. 

5.3 A Simple Distributed Algorithm 

Note that the decomposition approach proposed in previous section is a centralized scheme. 
A simple distributed algorithms are proposed in this section to overcome the drawbacks of 
the centralized one. And in the sequel, we make a more practical assumption that each user 



CHAPTER 5. RELAY ASSIGNMENT IN COOPERATIVE NETWORKS 85 

i only has geographical information of the set of relays given by 

Ai = {rj : ds,,rj < ds“di,drj,<k < dsiA^rj G NR}, (5.29) 

as well as that of its destination in the sequel Under such limited information, the challenge 
here is how to perforin relay assignment and admission control in a distributed fashion with 
as good performance as possible. Toward this end, we exploit timers and assume that the 
network is synchronized. Note that timers are commonly used in networking medium access 
control (MAC) protocols and a timer-based relay selection scheme is also proposed for a 
single isolated source-destination pair setting [8]. In our problem, the tricky part is to design 
good timer schemes so that the performance of distributed algorithms is satisfactory. 

To begin with, user i calculates its needed number of subchannels Wi^r^ for DT that 
can satisfy its QoS request. Then users take turns to broadcast their needed number of 
subchannels, i.e., Based on these information, each user can find the average needed 
number of subchannels by simple calculation, i.e., w = Wi^r^• Then user i initiates 
its first timer T/ such that 

Tl OC - ？钩，rjl. (5.30) 

Suppose timer T^ expires first, then user k can either pick up its best relay rj G A^, or 
chooses not to cooperate if Wk,r0 ^ ' � G A；̂. If the former event occurs, user k should 
broadcast the selected relay rj to prevent other users from selecting r'j afterwards. This 
process continues until all users have decided their transmission strategies. 

Then users compete for admission in the following stage. In particular, each user main-
tains a register value W~ indicating the remaining available spectrum in the networks. And 
user i initiates its second timer Tf such that 

OC H I - ( 5 . 3 1 ) 

where r̂  G {r^} U A^ Suppose the timer Tl expires first, then user k succeeds in competing 
for admission and broadcasts its needed spectrum resource Wi^n^- All the other users update 
^ and user checks whether W is still enough for its Qos request. If not, user i quits from 
competing for admission. Otherwise user i will continue competing in the next run. This 
process continues until no user competes for admission any more, which also completes the 
whole process. 

The design philosophy of T/ is that users with median � � , ^ ^ deserve higher priority in 
relay selection process from a statistical point of view since whether or not these users can 
be admitted hinges heavily on the cooperation of their best relays. The design philosophy of 
Ti is more straightforward. The idea is just to construct an admission set from scratch: the 
user brings the best immediate reward ((e - 1 - eWî r^W)/wî r.W) is admitted in each step, 
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which is similar to the idea of renowned greedy algorithm but carried out in a distributed 
fashion through the application of timers. 

5.4 Numerical Results 

For illustration purposes, we provide simulation results under the following simulation param-
etei.s. Ill particular, we study a disk area with radius 200. All sorts of nodes are distributed 
according to spatial Poisson point process. The densities are 0.001 for source nodes and 
destination nodes, and 0.07 for relay nodes. Effective number of transmission pairs is the 
minimum number of source nodes and destination nodes generated. And the source set and 
destination set are paired randomly. The path loss exponent is 4. The minimum data rate 
for each user is 200Kbps. The total available bandwidth is SGHz and bandwidth of each 
subchannel is lOOKHz. 

Fig.5.1 compares the number of admitted users under different transmission strategies. 
Here, direct transmission scheme (DTS) means all the users transmit directly to their re-
ceivers and the number of admitted users are calculated using the admission control algo-
rithm; invariable cooperation scheme (ICS) means every user always transmit with the help 
of a properly selected relay using the proposed relay assignment algorithm; adaptive coop-
eration scheme (ACS) is the proposed transmission protocol in this thesis. It is shown in 
Fig.5.1 that ACS remarkably outperforms DTS. And we can obtain about 5dB gain in this 
scenario. Note that ICS performs slightly worse than ACS due to its neglect of DT. This 
gap would be larger if the quality of direct channels is improved where CC is less favored. 

Fig.5.2 compares the performance of the distributed scheme to that of centralized scheme 
for AF-based cooperative network. It is shown that the maximum number of admitted users 
of the simple distributed scheme is remarkably close to that of centralized one with only 
a negligible gap under our network where nodes distribute according to spatial Poisson 
point process, which justifies the design philosophy. However, it should be noted that the 
performance of this simple scheme largely depends on network distribution. 

• End of chapter. 
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Chapter 6 

Conclusions and Future Work 

It is a mistake to try to look too far ahead. The chain of destiny can only be grasped one link at 
a time. 

Sir Winston Churchill 

6.1 Conclusions 

This thesis investigates several resource allocation problems for typical wireless transmission 
scenarios. In particular, the thesis illustrates the roles of learning, competition, and coordina-
tion in multiuser communication systems. Centralized and/or distributed wireless resource 
allocation schemes are developed for the various resource allocation problems considered. 
Here we briefly summarize the main results in this thesis as follows. 

Chapter 2 illustrates the value of learning in communication scenarios with stochastic and 
limited information, by investigating the distributed power control problem for stochastic 
parallel Gaussian interference channels. To the best of our knowledge, all the existing works 
only considered deterministic transmission scenarios. Our work fills this gap by studying 
the distributed power control problem in stochastic transmission scenarios. Indeed, existing 
schemes including the popular IWFA cannot work for stochastic communication scenarios. 
We instead resort to learning theory and propose distributed learning algorithms to solve 
this problem. We provide sufficient conditions to guarantee the convergence of the pro-
posed algorithms. Using projected dynamical systems theory, we show that the algorithmic 
convergence speed is "exponential" in some sense. 

Chapter 3 further considers one-to-many transmission scenarios, extended from the one-
to-one cases. Unlike many existing works formulating the distributed power control problem 
as NEPs, the problem we consider is a GNEP. Resorting to VI theory, we show the existence 
of GNE in the formulated noncooperative power control game. Besides, we identify the VE 
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as our desired network operation point. Sufficient conditions for the uniqueness of VE are 
also investigated. Then we propose a penalty-based distributed algorithm IP^JA along with 
convergence analysis. IP^JA can converge without the need for solving exactly an NEP in 
every iteration and is thus desirable for practical implementation. Indeed, this chapter well 
illustrates the roles of competition and coordination in wireless resource allocation designs. 

Chapter 4 presents a general framework for the distributed wireless information flow 
allocation problem in multiple access networks, where the end users can seek wireless flows 
from multiple access points. Unlike Chapter 2 and 3, Chapter 4 takes a reverse approach. 
Interestingly, this reverse approach helps us investigate the resource allocation problem in 
question as a, convex one. As a result, we are able to show that the unique NE of our 
formulated resource allocation game turns out to be the globally optimal solution. Hence, 
the two proposed distributed algorithms can converge not only to the unique NE but in fact 
a globally optimal solution. The roles of competition and coordination are also demonstrated 
in this flow allocation problem. 

Chapter 5 illustrates the value of coordination when it comes to the inherently compli-
cated resource allocation problem. Indeed, the joint relay assignment and admission control 
for cooperative networks is NP-hard. We mainly take a centralized approach. In particular, 
we decompose the problem into two subproblems. A good final solution can be obtained 
by iteratively solving the two subproblems. We also propose a simple heuristic algorithm to 
solve the problem in a distributed fashion. 

In a word, the main contributions of the thesis are as follows. 

1. Through illustrating the roles of learning, competition, and coordination in several 
typical wireless resource allocation problems, we shed some lights on the basic principles 
and techniques for wireless network design. 

2. We obtain certain new results for the studied communication scenarios, most of which 
are well-established models in the field of communication. 

6.2 Future Work 

Though several resource allocation problems for typical wireless transmission scenarios have 
been studied carefully in the previous chapters, this thesis is by no means comprehensive 
as wireless resource allocation is such a broad field. In this section, we discuss some open 
problems in the previous chapters which deserve further study, respectively. 

1. Learning for Parallel Gaussian Interference Channels 

Recall the assumption (i) in Theorem 2.1, which guarantees the existence of a unique 
equilibrium solution (almost surely) and is also the major requirement for the conver-
gence of the proposed learning algorithms. Note that assumption (i) is not necessary 
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for the uniqueness of NE. Moreover, assumption (i) may never be met in some special 
scenarios such as the parallel multiple access channels. Thus, investigating the rieces-
sary conditions for the uniqueness issue is of interest. Meanwhile, it is also interesting 
to study weaker conditions than assumption (i) but still guaranteeing the convergence 
of the proposed learning algorithms. 

Also recall the assumption (ii) in Theorem 2.1，which requires the step size sequences to 
be diminishing. It might be inconvenient to implement diminishing step size sequences 
in practical systems. In contrast, the choice of constant step size may be more desir-
able. Indeed, step size in practice is typically kept away from zero in order to allow 
"tracking". Besides, it is simple to implement constant step size in practice. However, 
the convergence analysis in Chapter 2 is not directly applicable to the constant step 
size case. Thus, how the choice of constant step size affects the schemes proposed in 
Chapter 2 deserves further study. 

Furthermore, it is of interest to study how the network operator should schedule the 
transmission links in a way such that the assumption (i) in Theorem 2.1 can be satisfied 
in practical implementation. Clearly, transmission links that are too close to each other 
should not be scheduled to be active simultaneously. Otherwise, the assumption (i) in 
Theorem 2.1 which essentially requires the interference in the network should be weak 
cannot be satisfied. Hence, only a fraction of the transmission links can be active 
at a given time interval. This naturally raises a scheduling question. That is, which 
fraction of the transmission links should be scheduled to be active? This is a challenging 
combinatorial problem. One even more challenging objective is that whether and how 
the combinatorial scheduling problem can be implemented in a distributed fashion. 

Besides, the randomness of the transmission environment only affects the utilities of 
each player while the players' strategy space is deterministic in the stochastic game 
formulation in Chapter 2. Extending existing formulation to the scenarios where ran-
domness also exists in the players' strategy space is of practical interest. For example, 
distributed users have coupled interference constraints in cognitive radio networks (see, 
e.g.，[48]). These interference constraints involve the channel gains from the secondary 
networks to the primary networks. Compared to traditional networks (cellular net-
works, for one), it is even harder to obtain the exact information about the channel 
gains from the secondary networks to the primary networks. Consequently, stochas-
tic issues naturally arise in these interference constraints designed for cognitive radio 
networks. 

2. Power Control for One-to-Many Transmissions 
We in this problem identify the VE as our desired network operation point and provide 
sufficient conditions for the uniqueness of the VE. However, the uniqueness issue of the 
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GNE is still open. In fact, we lose "most" of the GNEs if we restrict our attention to 
the VEs. Thus, it would certainly be desirable to provide sufficient conditions for the 
uniqueness of the GNE as well, if possible. Otherwise, a careful characterization of the 
set of the GNEs might; be pursued. 
If the answer to the uniqueness issue of the GNE is negative, one has to decide which 
GNE the network should be operated at. If the decision has to be made online, some 
protocols need to be designed such that the network can switch between different equi-
librium states. Hopefully, under these switching protocols, the network can operate at 
the most "efficient" GNE for most of the times by switching between different GNEs. 

Recall that we assume each transmitter can send information to all its targeted des-
tinations in Chapter 3. However, the number of destinations that a transmitter can 
send data to in practice is often bounded due to hardware constraint. Besides, the 
connection overhead costs can be too high if a transmitter attempts to communicate 
with too many destinations. Thus, it is desirable to limit the number of simultane-
ous transmissions from one transmitter. This again raises a challenging combinatorial 
problem: which fraction of the destinations should be scheduled to receive information 
from a particular transmitter? Distributed protocols that allow the combinatorial des-
tinations selection problem to be solved in a distributed manner is preferable but more 
challenging to design. 
Besides, the formulation of the power control problem for one-to-many transmissions 
in Chapter 3 is deterministic. That is, we do not take into account the randomness 
of the communication environment and estimation errors of the feedback information. 
However, as argued in Chapter 2, randomness and errors are inevitable in practice. So 
it is also desirable to investigate the problem in question in the presence of stochastic 
factors. Perhaps the analysis can be facilitated by the results in Chapter 2 for power 
allocation in parallel Gaussian interference channels. 

3. Flow Allocation in Multiple Access Networks 
We simply assume the feasibility of this problem in Chapter 4. Therefore, determining 
whether or not the problem in question is feasible deserves further study. If the problem 
is not feasible, an admission control scheme aiming at identifying end users who require 
infeasible QoS requirement may be needed. 

Besides, successive interference cancellation plays a fundamental role in our proposed 
flow allocation scheme. An unexplored but interesting issue here is how inexact suc-
cessive interference cancellation would affect the performance of the various proposed 
schemes. 

A relevant problem is flow allocation in broadcast networks. In particular, each trans-
mitter uses superposition coding to simultaneously send information flows to the end 
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users which adopt successive interference cancellation to decode their received signals. 
This broadcast scenario is essentially a downlink system while the multiple access sce-
nario studied in Chapter 4 is an uplink system. It is known that there is a “duality” 
between uplink system and downlink system for power control problem in traditional 
cellular networks. Nevertheless, it is not clear whether there exist similar duality results 
for the two flow allocation problems in question. This is an interesting problem that 
deserves further study. 

Another research direction is to investigate the flow allocation problem in multiple 
access networks where the network nodes are equipped with multiple antennas. Since 
MIMO can provide extra spatial degrees of freedom, the performance of the proposed 
schemes in Chapter 4 may be further boosted with an increase in the system complexity. 
Similarly, one can also explore whether any duality results exist between flow allocation 
in multiple access networks and flow allocation in broadcast networks when MIMO 
technique is adopted in the system. 

4. Relay Assignment in Cooperative Networks 

The joint relay assignment and admission control is an NP-hard problem. The algo-
rithms we currently propose are largely heuristic. Thus, it requires further study to 
find bounds on the NP-hard optimal solutions. Furthermore, characterizing the perfor-
mance gap between the NP-hard optimal solutions and our proposed schemes is clearly 
of practical interest. Nevertheless, we should point out that a complete answer to these 
issues may be too ambitious to pursue directly. Instead, toward this end, we suggest 
that one narrow down the general case to some special but important cases such as 
uplink and dowlink systems. 

• End of chapter. 



Appendix A 

Proof of Theorem 2.1 

We first derive a recursion inequality characterizing the relationship between || p{n) — p* | 
and II p(n + 1) — p* || in the following lemma. 

Lemma A . l The sequence (p(n))^Q generated by iteration (2.9) satisfies 

II p(n + l)-p* |p< II p{n) — p* ||2 +5C2a2(n) 
+ 2 E a,(n)Q(n) — 2 + — Pi{n)), (A.l) 

i&M ieM 

where p* e ^ is any NE, C is some large enough constant, and a{n) = {Y^ieN ^lip))^-

Proof This proof is inspired by constructions from [22] [3]. Consider a fixed trajectory 
("(W)二。. Recall that q{n) = p{n) + D{n)^ and p(n + 1) = V^[q{n)]. We first have 

A 

I + 1) - p ( n ) ||<|| q{n) - p{n) || = || p(n) + - p (n ) | 
P{n) 

==II D H S ( n ) Ih ( E 办）II 鄉 ） < C X E «？⑷)去=Ca(n), (A.2) 

ieM ieM 

where the first inequality follows from Lemma 2.1(ii) and C is some large enough constant. 
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The existence of C is guaranteed by the boimdedness of s. We proceed by deriving that 

C V ( n ) + II p{n) - p* ||2 - II p{n + 1) - p* 丨广 

^ II P (几 + 1) — P{n) f + II p{n) — p * ||2 — II p{n + 1) — p * f 

=2(p(n + 1) — q{n)f{p* — p{n)) + 2{D{n)s{n)f{p* - p{n)) 

=2(p(n + 1) — q{n)f{p* — q{n)) + 2(p(n + 1) — q{n)f{q{n) — p{n)) 

+ 2{D{n)s{n)f{p*~p{n)) 

> 2 ( p ( n + 1) - q{n)f{q{n) - p(n)) + 2(D(n)s(n)f(p* - p(n)) 

=2(p(n + 1) — p(n)f(q(n) — p(n)) + 2(p(n) — q(n)f(q(n) — p{n)) 

-\-2{D{n)s{n)f{p*-p{n)) 

> - 2 ||p(n + l ) - p{n) IIII q{n) — p(n) || —2 || p(n) - q(n) f +2(D(n)s(n))^(p* — p(n)) 

> — + 2(D(n)s(n)y'^(p* - p(n)) (A.3) 

where the first inequality follows from (A.2), the second inequality follows from Lemma 
2.1 (iii), and the last inequality also follows from (A.2). 

Rearranging terms in (A.3), we proceed as follows: 

II p(n + 1) - p* ||'< II p(n) — p* IP — 2{D{n)s(ri) f(p* — p(n)) 

= I I Pin) — p * f + 5 C V ( n ) - 2 X > 办 ) J “ n ) ) T ( P i * - p , ( n ) ) 

< II p{n) — p* ||2 + 2 [ 
ieAf 

+ 2 ai{n){Ri{pi{n),p_i{n)\g{n + 1)) - B4{p*,p-i{n)\g{n + 1))) 
ieM 

< II p{n) — p* "2 +5CV(n ) + 2 ̂  a“n)e“n) 
ieM 

+ 2 X： ai{n)si{n + lV{pi{n) - p：) (A.4) 
ieN 

where the second inequality follows from (2.10), and the last inequality follows from the 
concavity of R人-\g) with respect to the first argument. This completes the proof. 

We further need the following well-known lemma in stochastic approximation theory [52 . 

Lemma A.2 Let {J；,} be an increasing sequence of cr-algebras and e„,a。，A,r7n he finite， 

nonnegative，Tn-measurahle random variables. If it holds almost surely that E二o(知 < 
oc,E^=o/^n < oc，and 

E(e„+l|J^n) < (1+ + " "n, (A.5) 
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then ien)n=o converges and E二o Vn < oc almost surely. 

Now taking the conditional expectation of both sides in (A.l) yields 

E[|i p(n + l ) - p * f \Tn] 
< E [ | | p ( n ) — p* f + E [ 5 C 2 a 2 ( n ) + 2 ^ ^ a i { n ) e i { n ) \ J ^ n 

ieM 
— E [ 2 ^ o . i { n ) s i { n + - P i { n ) ) \ T n ] 

ieM 

=II p{n) — p* f +E[5C2a2(n) + 2^ ai{n)€i{n)\J'n 

—E[2 X； ai{n)si{n + lf{p* — (A.6) 
ieM 

We see (A.5) is satisfied by substituting =|| p{n) — p* = 0, = E[5(7^a^(n) + 
and rjn = E[2 ZieM ai(n)si(n + -Pi(n))\J^n-

Clearly, ê , ôn, and Pn are finite, nonnegative, •Fn-measurable, and I]二0广丄n = 0 < oo. 
Zl二0 Pn < oo follows from assumption (ii) and (iii) in Theorem 2.1. rjn is also obviously finite, 
and J^n-measurable. The nonnegativeness of r}n follows from Lemma 2.2 and assumption (i) 
in Theorem 2.1. Thus, all the conditions in Lemma A.2 are satisfied. We conclude that 
e„, =11 p{n) — p* II2 converges almost surely, and that 

oo oo 

Y/nn 二 E[2 X： o,(n)si{n + - Pi(n))丨八] (A.7) 
n=0 n=0 ieM 

is finite almost surely. 
We still need to show =|| p{n) - p* converges to 0 almost surely. If this is not 

true, the event A = {w : lim几一ooGnO) = e(yj) > 0} has nonzero probability where w is 
a trajectory on the associated probability space. Then for any w e A, there exists a large 
enough N{w) such that 

oo oo 
E 2 E <ri)siin + lf{p* — Pi{n)) >2 rnina,(n) minT(s) || p* — p{n) f 

n=Niw) ieN n=N{w) ® 
OO 

> 2 ^ minai(n) minT(s) e{w) = +oo (A.8) 
n=Niw) s 

where the first inequality follows from Lemma 2.2 and the last inequality follows from as-
sumption (ii) in Theorem 2.1. Since (A.8) happens with nonzero probability, the random 
sum E ^ o Vn in (A.7) cannot be finite almost surely, resulting in a contradiction. Hence, we 
conclude that (p(n))二o converges to p* almost surely. This completes the proof. 

• End of chapter. 
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Proof of Theorem 2.2 

The proof essentially follows the same arguments as the proof of Theorem 2.1. Specifically, 
we first observe that 

E[|| p(n + l ) - p * I 削 

=E[|| P^(p(n) + D(n)s(n)) - + D(n)s(p*)) f \Tn] 

<E[|| p{n) — p* + D[n){s{n) — s(p*)) f 
=E[|| p(n) — p* + D(n)(s(p(n)) + 0(n) — 

=II p{n) — p* f + E a|(n) || 云i(p(n)) - s.ip*) f 
ieAf 

+ 2 X： ai{n){si{p{n))-財’(Pi(n) - p：) 
ieAf 

+ E[|| D{n)e{n) IJTJ + 2(p(n) -

二 II P{n) - ||2 +E[|| D{n)6{n)�|�+ ^： || - � 
te.\f 

+ 2 X： a,{n){Hp{n)) - HPlViPiW - P：) 
ieM 

< II p{n) — p* ||2 +E[|| D{n)e{n) f + m驳a�(n) II 互(几)）_ MpI f 
ieM 

+ 2 X： - MPlfiPiin) - P：) 
ieM 

< pin) - p* ||2 +E[|| D{n)e{n) f + max a2(n) ̂ ； || (pi(n)-p*) 
— 记 i e M 

-2mhiai{n)r{s) || p{n) - p* 丨广 

二 II p(n) — P* II' + E a?⑷料II EIJJI) ||2 — {2T{S) mma,(n) 
ieM ^ 

-L'm^aUn)) || p(n) - p* 丨广. （B.l) 
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Here the first equality follows from (2.16). The first inequality follows from (2.17). The 
fourth equality follows from assumption E[6{n)\Tn] = 0 . The last inequality follows from 
Lemma 2.3, assumption (i) in Theorem 2.2, and Lemma 2.2. 

Substitute =|| p{n) - p* f , (Xn 二 0’ = E i e A ^ 权 i (几） I P and 7]n = 
(2T(S) MIIIIEAR a“n) — I? a|(n)) || p{n) -p* It is straightforward to verify that all 
the assumptions in Lemma A.2 are satisfied. We conclude that e^ =|| p{n) —p* converges 
almost surely, and that 

oc oo 

= - L'm^xaUn)) ||p(n)—p* (B.2) 
n=0 n=0 

is finite almost surely. 
We further claim that 二II — P* converges to 0 almost surely. Observe that 

2T(S) miriiejv' (HIJI) — I? max-ig^ is bounded away from 0 by assumption (ii), this claim 
holds by following a similar argument by contrapositive as that of the proof for Theorem 
2.1. 

• End of chapter. 



Appendix C 

Proof of Proposition 3.1 

It is equivalent to show that the rate vector R* is the optimal solution to the following 
optimization problem: 

minimize Si{Ri) 

subject to � < ln(l + ； ),Vn G N, 

j^J^i (fi')〉j^min 
neN 

� 2 0，VneN. (C.l) 

We prove the only if part first. Toward this end, we note that the necessary condition 
for optimality is that R^ should satisfy the Karush-Kuhn-Tucker (KKT) conditions [63. 
Consider the Lagrangian: 

L“l^i�7,77,0 

=S,{Ri) + E � - l n ( l + 二 ， ) ) - E + aRr切I - E i?“"))， 
neN � n6N nSN 

(C.2) 
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where 7,77, and ( are the corresponding Lagrange multipliers. Then the KKT conditions 
are given by 

县 ( 丑 扣 � - c = o，vneN 

(C.3) 
-7r,;(n) tt^ (n)-TT,： (n ) 

7r⑷ > 0, i?:⑷ < 111(1 + ), 7产(况产)-ln(l + )) = 0, Vn e N 
, I (C.4) 

’“产 > 0, C � > 0, 7 ; 产 C � = 0 , V n € N 
(C.5) 

c > o , x ; 丑 r � > c ( E 尺r �-只产"'）=0， (C.6) 
n6N ne.N 

where 

杂、Ri) = - i + g • exp( E HT�) .(exp(7?产)）—1). 
O'ilj gi l=n m=l Qi l=m+l 

(C.7) 

TT.fV)* 0 冗•办),『i(") 
Now we claim that R^^* = ln(l + ĵ i y y ~ ) , Vn < no — 1. If this claim is not true, 

3n < no—1 such that 0 < < 从仏）.T h e n it follows that the corresponding 
Lagrangian multiplier《办、=0 and r/p � = 0 by complementary slackness conditions in 
(C.4) and (C.5), respectively. Thus, 

0 — _ 鄉 f j ? * ) 4 . 7 兀 办 + 1 ) — . M n + l ) _ c 
一 d^'(制 1) % 

— 鄉 f / r � 4 - 办十1) — r / i(科1) ( 賜 rp*�-L-�兀么⑷ …兀 i�� 

—aR—奸 1)巧 ~ — 

： 蹄 ( R * ) I “ 糾 — 鄉 { T > * \ 
—di?冗开+1)� i ) � — 紐咖 (九 i J 

— " i y ) e x p ( i ^ “ ’ + 7 r ( _ 
9i 9i 

� 0 , (C.8) 

where the first two equalities follow from (C.3), the third equality follows from the facts 
that > 0 and thus r/；"办+1) 二 0 by complementary slackness conditions in (C.4) and 
� “ … = 0 and r / p � = 0 , the fourth equality follows from (C.7), and the inequality follows 
from the assumption g"产、> (奸丄）and the non-negativeness of 7 『“奸 1) in (C.4). Clearly, 
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(C.8) gives us the desired contradiction. 
We further claim that Rj'^^^^* = 0,\/n > rio — 1. If this claim is not true, 3h�n�— 1 such 

that 0 < R?�""�* < ln(l + N ^ ). It follows that ？f 脚 = 0 by complementary slackness 
conditions in (44). We also have 

E 尺 产 ^ � * + C(仰.....1)*+ E 尺产* 

n<no-l n>no-l 
= [ 朴 E E 丑r持 

n<no-l n<no-l n>no-l 

> +尺 r ⑷ * > 0, ( C . 9 ) 

which implies that C = 0 by complementary slackness conditions in (C.6). Thus, 

()=吞(拟 + f 洲—”产—C 二 赢(丑：)+ 7 产 > ( ) , ( C . I O ) 
X 'I 

resulting in a contradiction. 
Hence, we conclude that R* is the unique solution satisfying the KKT conditions given 

at the beginning of this proof. This completes the proof of only if part. 
Note that problem (C.l) is a convex optimization problem since it can be readily checked 

that the associated objective function and the inequality constraints are continuously differ-
entiable convex functions. Then it follows that KKT conditions are also sufficient for the 
optimality [63]. This completes the proof of if part. 

• End of chapter. 
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Proof of Proposition 4.4 

The existence of F is justified by Lemma 4.2. We can further compute 野 ) ( P � ) , a s 

二) = — ⑷、+ 們 + 力广 1. (D.1) 
八:i 9i,jPj 十丄 [ P - j ) 

(i). Consider an arbitrary NE p*. Given p^l]*, for any receiver D ? , we know that 野 ) i s 
concave in p f on the set 对）by Lemma 4.2. Then we have (pf - > 

, •、 , ’ 、 J J J J 

0, Vp̂ - G 屯)巧，which follows from the optimality condition [Prop. 3.1, Section 3] in [7 . 
Summing over j e Mi,z G M, we conclude that (p — p*)'^F(p*) > 0,Vp G 屯，implying 
that p* is a solution to F). Conversely, for any p* e we have (p -
p*YF{p*) > 0,Vp G 屯.Then for Vj G M,,Vz G M,Vp = {pf .P-j*) e 屯’（兹）— 

> 0, i.e., p f G Hence, is also an NE of game &{p). 
(ii). By Lemma 4.2 and similar arguments in the proof of Proposition 4 . 1 ， (屯， 

is nonempty and compact. Combining the result in (i), the existence of NE in game 
follows. 

(iii). By Lemma 4.2, we can further compute given by 

• 多 ) = 鼻 ， （D.2) 

where B � is given in (3.20), and 4,： = 1 if A: = z and 0 otherwise. When conditions (4.11) 
and (4.12) are satisfied, a sufficient condition for Jacobian matrix VF(p) to be positive 
definite is 

妒 ) （ E Pk em,yi em, (D.3) 

where 8 is some sufficiently small positive real number. Note that the existence of 6 is 
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guaranteed by the density of the reals. Now if G M such that ⑷）=0, then B � = 0 
and (D.3) follows trivially. If 3z e M such that + 0, then 

B�（E E 4"-/f)(7-i)((4)(P(, + e)^("i�p(,-2 
M E P;”)(7-l)("i�)(P � ) ) H g A (D.4) 

Clearly，if we select t such that e < minjeM.,ieM 枢 鋒 “ k 灼 /)巧-i(7—1)—] �”丄+，， 

then (D.3) holds. Thus, the existence of a unique NE p* in game follows from a similar 
argument in the proof of Proposition 4.2. 

(iv). Define mapping : R " h R as 7Zf(p) = pf — and mapping 
: M^ Ĥ  R as = [7̂ ，)(p)]二⑷，where 二《）denotes the projection of x on 屯 f . 

We further let n{p)=[尺;”⑷，…，尺恕⑷)^ and T(p) 二 [ 7 ； � ( p ) ， ， T h e n 
屯， 

II — T{q) IIHI [尺Cp)]+ — [尺� ] + Il2'<ll nv)—尺⑷ IIHI P — cyF{p) 
- { q - IIHI P-Q\\l II Fip) — F{q) ||目-2a{F{p) — F{q)f{p — q) 

<\\p-q\\l 丄丄)2 \\p-q 11^ -2a/? \\p-q ||•二 - 2Pa ^ 1) \\ p - q . 

Here, the first equality follows from the box constraint 屯 which naturally results in decompo-
sition of projection. The first inequality follows from the nonexpansive property of projection 
(see, e.g., [Prop. 3.2，Section 3] in [7]). Note that by our assumption of the bouridedness of 
channel gains, we can show that F{p) is Lipschitz continuous, i.e., || F{p) — F{q) ||2< L | 
p — q II2 for some large enough L � 0 . Also, the positive definite property of Jacobian ma-
trix VF(p) implies F{p) is strongly monotone, i.e., {F{p) - F{q)Y{p -q)> i^\\p-q \\l 
where (3 > 0. Thus, the second inequality holds. Clearly, there exists a > 0 such that 
a = — 2(5a + 1 lies in (0,1), Then it follows that T{jp) is a contraction mapping by 
choosing small enough a. Then by [Prop. 5.4, Section 3] in [7], the Jacobi iteration in IP^JA 
is well defined and its convergence follows. 

• End of chapter. 
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