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Abstract 

Optical signal-to-noise ratio (OSNR) and polarization-mode-dispersion 

(PMD) are two important parameters to be monitored in future optical 

networks for proper network management. This thesis is devoted to the 

evaluation of the accuracy of reported irrband polarization-assisted O S N R 

monitoring schemes as well as the proposal of new, accurate O S N R and 

P M D monitoring techniques. 

The first part of the thesis presents our theoretical calculations and 

experimental results on the robustness of three reported irrband 

polarization-assisted O S N R monitoring schemes, namely, 

polarization-nulling, DOP-based O S N R monitoring, and orthogonal 

delayed-homodyne method against P M D for different pulse widths. Our 

detailed quantification of the monitoring errors helps identify system 

conditions which necessitate improvements on these monitoring schemes. 

The second part of the thesis elucidates a new, simple, and 

PMD-insensitive O S N R monitoring scheme based on polarization-nulling 

with off-center naiTowband filtering. Amelioration on the P M D robustness 

is demonstrated with both theoretical calculations and experiments. The 

effects of filter position, filter bandwidth, and filter detuning will also be 

investigated and discussed. 

The final part of the thesis demonstrates two simultaneous O S N R 

and P M D monitoring schemes using polarization techniques. The first one 

employs enhanced R F spectral analysis while the second one is based 

upon degree-of-polarization (DOP). Experimental results demonstrate 

their feasibility to provide a more comprehensive monitoring picture to 

network operators compared with single parameter monitoring modules. 
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摘要 

在未來光網路的網路管理中’光信噪比(OSNR)和偏振模色散(PMD)是兩個重要 

的監測參數°本論文將評估已報導的偏振輔助帶內光信噪比監測方案的準確 

性，並提出新而準確的光信噪比和偏振模色散檢測技術。 

本論文第一部分主要就已報導的三種偏振輔助帶內光信噪比監測方案對偏 

振模色散的魯棒性進行理論和實驗分析°這三種方案包括基於偏振歸零 

(Polarization-Nulling)、偏振度（DOP)、以及正交延遲零拍技術 

(Orthogonal-Delayed Homodyne Method)的光信噪比監測方案。我們利用不 

同脈衝濶度進行r詳細的監測誤差定量分析，這將有助於決定系統是否需要進 

一步改進監測方案。 

本論文的第二部分1«述了一種全新、簡單、基於偏振歸零及偏移窄濾波器 

的光信噪比監測方案。理論計算和實驗均表明’這種改進的方案可使抗偏振模 

色散的魯棒性大爲提高’丨衍論文亦同時就窄濾波器的位置、頻寬及漂移作出了 

分析和討論。 

本論文的最後一部分主要用實驗展示了兩種基於偏振技術的光信噪比和偏 

振模色散同時監測的方案。第一種方案主要採用改進的射頻譜分析方法，第二 

種方案基於偏振度的分析。實驗結果表明’比較單一的監測方案’這種同時監 

測的方案給網路供應商提供r更爲全面的監測手段。 
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On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

Chapter 1 Introduction 

1.1 Drivers for Advanced Optical Performance 

Monitoring (0PM) Techniques 

In recent years, the proliferation of Internet traffic has triggered the rapid 

development of optical networks. Such development generally centers 

around three important elements that make up the service provider's 

network: (i) the network infrastructure hardware, (ii) the applications and 

services that utilize the network infrastructure, and (iii) the monitoring 

and management systems [1]. It is perhaps the last element that is 

capturing the least attention because it is typically not viewed as the 

leading edge technology. Nonetheless, one cannot deny that performance 

monitoring systems are crucial pieces of the network puzzle because it is 

they who help prevent and identify network degradation and failure that 

would otherwise translate to colossal financial loss for both service 

providers and customers. 

Performance monitoring (PM) of traditional S O N E T / S D H 

(synchronous optical network/synchronous digital hierarchy) networks 

typically require optical/electrical/optical (O/E/0) conversion in the data 

path. Service providers may determine (i) the bit/block error rates (BERs) 

at S O N E T line terminating elements (LTEs) by a protocol-dependent 

method called bit interleaved parity-8 (BIP-8) [l]-[4], (ii) Q-factor from bits 

interleaved within the S O N E T frame, and/or (iii) simple loss of signal 

(LOS) using power monitoring fiber taps. The signal-to-noise (SNR) 

degradation and distortion are usually pre-determined by measuring the 

1 
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characteristics of active and passive optical components in advance [5]. As 

a result the efficacy of the P M metrics rests on the assumptions that the 

networks are opaque and static. 

Future optical networks, however, have a number of characteristics 

that drive the need for a new paradigm of more advanced monitoring 

techniques called optical performance monitoring (0PM) [5]-[l0]： 

Firstly, future optical networks will be all-optical, meaning that 

routing will be done entirely in the optical domain and the O/E/0 

conversion points will be eliminated. The monitoring paradigm thus shifts 

from the O/E/0 regeneration approach to optical power tap approach, in 

which a portion of optical power is removed from the fiber and converted 

to an electronic signal for non-intrusive P M after possible optical signal 

processing (Fig. 1.1). 

\ 

I O/E/0 Regeneration Approach Optical Power Tap Approach I 

I Performance I 

I r~"""“ Monitor I 

I Performance ^ I 

I Monitor ^ ^ ^ pi-, I 

I Z O E I 
I _ p i . _ L I _ I 

丨 • o E 〇 • ~ m ^ • I 
Optical Power Tap j 

Figure 1.1: Performance monitoring migrates from the O/E/0 regeneration 

approach to the optical power tap approach 

Secondly, future optical networks will be transparent, meaning that 

they can accommodate signals with different protocols including 

SDH/SONET, Gigabit Ethernet, A T M , IP over W D M and a plurality of 

2 
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Others t ha t are once confined within the boundar ies of the enterprise 

network environment. The monitoring unit therefore may not have prior 

knowledge about the protocol, format, and data-rate of the signal, thus 

new non-intrusive 0 P M techniques that do not need to decode the 

overhead information are required. 

Thirdly, future optical networks will be dynamically reconfigurable, 

meaning the signals will traverse different complex paths consisting of 

different fibers, amplifiers, optical add/drop multiplexers (OADM), optical 

cross-connects (OXC), and plenty of other network elements. The 

monitoring schemes should therefore be insensitive to signal origins and 

its transport path history, be on a pei-channel basis, and tie closely with 

adaptive compensation techniques to provide optimum system conditions 

in a dynamic manner. 

Last but not least, future optical networks will have higher data rates, 

increased wavelength densities, and longer transmission distance. Each of 

these characteristics presents unique challenges to P M . For example, high 

data-rate systems are highly susceptible to deleterious optical fiber-based 

effects such as chromatic dispersion (CD), polarization-mode-dispersion 

(PMD), and nonlineahties, thus monitoring techniques with high 

sensitivities to these effects are desired. Tight wavelength-spacing 

systems, on the other hand, cause overlap of falling and trailing edges 

between neighboring signal channels. This may create problems for 

spectrum-interpolated O S N R monitoring and demand more accurate 

wavelength monitoring. Finally, in long-distance transmission systems, 

impairments will be accumulated from more unknown places, making 

fault localization more difficult. All these create an urgent need for new 

0 P M technologies and strategies that can effectively meet the above 

challenges. 
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1.2 0PM: Definition and Significance 

Owing to its importance, the topic of 0 P M has been hotly discussed in 

literature and the buzzword itself has also taken on multiple definitions 

[11H17]: O n a broad sense, 0 P M may simply mean physical layer 

monitoring of the optical signal quality [17]. A somewhat more restrictive 

sense of 0 P M would be an approach to characterize the channel 

parameters without prior knowledge of origin, transport history, format 

and data content at arbitrary points of the networks [18]. 0 P M is not just 

hype； it does deliver on its promises to a large extent. It serves a number 

of important network functions that spans at least the following： 

參 ZctVe time-varying distortion monitoring and compensation - The 

performance monitors can be used to provide direct feedback for 

adaptive compensators. Some examples include P M D compensation, 

distortion compensation, and dynamic gain equalization (DGE) for 

amplifiers [18]，[24] 

• Fa lilt forecasting, detection, localization, isolation, and resilience 

mechanism activation - The performance monitors can be used to 

anticipate major degradations of components like erbium-doped fiber 

amplifiers (EDFA), O A D M , and OXC, as well as changes in working 

conditions after the initial service rollout. Protection and restoration 

mechanisms will be triggered within timing limits when necessary 

[17H18]. 

• New network functionality such as intelligent path provisioning and 

traffic routing based on 0PM - For example, high capacity and 

priority traffic can be dynamically tuned to high-performance optical 
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channels. In addition, channel commissioning and topology discovery 

can also be based on 0 P M [llHl2]，[24]. 

參 Signal quality characterization for quality of service (QoS) assurance 

and service level agreement (SLA) fulfillment — Under the terms of 

SLA, the service providers guarantee a measurable QoS to customers. 

These QoS measures may be in terms of committed network 

availability, provisioning time, target repair time and procedures and 

a host of others. If the conditions in the agreement are violated, the 

carriers will typically provide a rebate to the customers. OPM-enabled 

QoS measurements will present new opportunities for revenue and 

competitive differentiation for the service providers [8], [17]. 

1.3 The Broad Spectrum of 0PM 

Today the deployment of 0 P M is still in its embryonic stage. Current mass 

deployed performance monitors typically provide information on 

parameters including (i) aggregate signal power, (ii) individual 

component's health status such as amplifier pump laser power or 

temperature controller limits, and (iii) individual channel power, presence, 

wavelength, and/or spectrum-interpolated optical signal-to-noise ratio 

(OSNR) [17]-[18]. An illustration of a long-haul network with 0 P M is 

shown in Fig. 1.2. These parameters, however, represent only a small part 

of the overall monitoring picture. As networks continue to evolve to 

higher-speed with more channel counts to longer distance, more advanced 

0 P M is necessary. Fig. 1.3 shows the broad spectrum of 0 P M with the 

plethora of parameters to be monitored classified into three categories: 

signal loss, signal alignment, and signal quality [20]. 
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Figure 1.2: A long-haul network with 0 P M 
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Figure 1.3: The broad spectrum of 0 P M 
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1.3.1 Signal Loss Monitoring 

Signal loss monitoring refers to the monitoring of in-line component 

failures and fiber cuts that can cause the power loss of the whole channel 

[17]. Component failures may be defined as a change in opacity (e.g. >2 dB) 

and they include individual or multiple component malfunctions and 

improperly installed or configured equipment. The faulty components may 

be active ones, such as transmitters, receivers, and optical amplifiers, i.e. 

pump laser failure, or passive ones, such as arrayed-waveguide grating 

(AWG). On the other hand, fiber cuts are damage to the network fibers due 

to accidents, periodic repair and maintenance, and deliberate malicious 

attack. Signal loss monitoring schemes are typically referred to as optical 

surveillance schemes. 

1.3.2 Signal Alignment Monitoring 

Signal alignment monitoring refers to the monitoring of alignment of 

signal wavelength, filter position, and pulse carver. These frequency and 

time domain alignments are used to ensure that the transmission and 

reception of signal are maintained in a proper condition. 

1.3.3 Signal Quality Monitoring 

Signal quality monitoring refers to the monitoring of a host of disparaging 

effects of optical transmission that must be minimized or controlled [17]. 

The transmission impairments can be classified into three broad 

categories： (i) noise, which is the random signal fluctuations that are often 

treated as a Gaussian process, (ii) distortion, which is modification of the 

signal waveform due to nonlinearities or fiber dispersion effects, and (iii) 

jitter, which is fluctuation in the time registration of the bits. These 
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notable transmission impairments include amplifier noise, amplifier 

distortion and transients, CD, P M D , polarization dependent gain (PDG), 

polarization dependent loss (PDL), fiber nonlinearity induced distortion 

and crosstalk including self-phase modulation (SPM), cross-phase 

modulation (XPM), four-wave mixing (FWM), stimulated Rayleigh 

scattering (SRS), and stimulated Brillouin scattering (SBS), timing jitter, 

interference effects (MPI), pump laser RIN transfer, optical filter 

distortion, and linear crosstalk. In response to these impairments, 0 P M 

has been vigorously pursued in laboratories to provide the following 

physical layer measurements [5], [17]: 

1) average power (per wavelength or aggregate)； 

2) peak power； 

3) optical signal-to-noise ratio； 

4) chromatic dispersion； 

5) polarization-mode dispersion (first and higher order)i 

6) polarization state； 

7) nonlinear distortion； 

8) pulse/bit shape； 

9) jitter； 

10) extinction ratio； 

11) crosstalk； 

12) eye diagram； 

13) Q-factor； 

14) BER； 

The above list is, however, by no means exhaustive as new 

performance metrics always emerge as optical networking technologies 

advance. 
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1.4 Classification of 0PM Techniques 

As listed in previous section, there are multifarious parameters to be 

monitored in the optical networks. Depending on these parameters, 0 P M 

techniques can be classified in different ways detailed in the following 

subsections: 

1.4.1 Time Domain vs. Frequency Domain Monitoring 

Time domain monitoring gathers time-varying information including eye 

diagram, intensity, pulse shape, and time-varying statistics like power, 

polarization state, jitter, and wavelength. Frequency domain monitoring 

gathers spectral information and can be further broken down into optical 

spectral and RF spectral measurements. The optical spectrum is 

conveniently measured using highly sensitive optical techniques and it 

can provide channel power, wavelength, bit-rate, format, optical noise, RZ 

clock, and spectral phase information. The RF spectrum measures the 

spectrum of the signal that is encoded on the optical carrier (assuming 

intensity oiroff keying (OOK) modulation) and it can provide information 

about electrical noise, RZ clock, and low/high frequency tones that are 

commonty used as dispersion indicators [17]. 

1.4.2 Analog Parameter vs. Digital Parameter Monitoring 

Another way to classify 0 P M is to differentiate it between analog and 

digital parameter monitoring. Analog measurement techniques treat the 

optical signal as an analog waveform and attempt to measure specific 

characteristics of this waveform. Examples of analog parameters include 

distortion, O S N R and Q-factor. Digital measurement techniques, on the 

other hand, typically rely on looking into the bit pattern and counting the 
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block/bit error rates - blocks in a digital form are monitored by an error 

detection code ( E D O which allows the detection of an erroneous block 

with a certain probability. An example of digital parameter monitoring is 

the Digital Wrapper scheme. It encapsulates multi-protocol data packets 

into SO NET-like frames and uses BIP-8 as the E D C code to calculate the 

errors for each frame. In ITU-T G.709, it is agreed that applying BIP 

within the Digital Wrapper frame is sufficient for monitoring channels in 

the optical domain [?]. 

Analog parameter Digital parameter 

Advantages Faster, simpler, more More accurate and 

economical sensitive 

Disadvantages Less accurate and sensitive More expensive and 

slower, needs 

standardization 

Main uses Fault localization, fault End-to-end performance 

identification, performance guarantee, resilience 

optimization mechanism activation, 

SLA verification 

Typical Nodes and amplifiers in Digital equipment at ends 

locations optical layer of optical paths 

Table 1.1: Comparison of analog and digital parameter monitoring 

A comparison of analog and digital parameter monitoring is made in 

Table 1.1. In general, analog techniques are less accurate, but are faster, 

simpler, and relatively less expensive for performance assessment, 

particularly for troubleshooting [23]. In contrast, digital techniques are 

slower and more expensive, but can guarantee in-service reliable 

measurements of the end-to-end performance of an optical channel. 
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Analog and digital monitoring techniques will therefore play 

complementary role and both techniques appear to have a promising 

future in next-generation optical networks. 

1.4.3 Three-Tier 0PM 

D W D M signals 

llllllilllllllli , 
广 了 、 丨 • 

Â -sttie丨. Optical 3-rd t i e r ^ k 

V ^ f l R k ^ Monitor 

^ ^ ^ ^ ^ ^ ^ ^ ^ Tunable Filter 
^ ^ \J| Receiver 

p • Power ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J ^ P > — 

Uh . iJUUJJUL 
Channel # Wavelength I^IW W W W W W Vit- p Error rate/Q-factor by channel 

Wavelength 

Figure 1.4： Three-tier 0 P M (Adapted from [21]) 

A third way to break down 0 P M is to divide it into three different tiers 

(Fig. 1.4) [21]. On the first tier, we have optical channel monitoring (OCM), 

which is concerned with low-end perchannel power and wavelength 

monitoring. An O C M monitor is usually implemented by a filter or a 

grating to separate the wavelength components, plus a detector array to 

convert the optical signal into electrical signal for further processing [22]. 

The main use of O C M is in dynamic gain equalization for amplifiers. 

However, it also finds use in applications such as fault isolation and 

channel routing supervision. 
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O n the second tier, we have basic optical performance monitoring 

(0PM), which provides per-channel power and wavelength monitoring as 

well as spectral O S N R monitoring. The information obtained enables 

service providers to have a tighter control over the D W D M wavelengths in 

order to accommodate higher spectral efficiency. 0 P M is slightly costly 

than O C M and so the monitors should be placed in a less massive way 

through the networks. 

O n the third tier, we have advanced 0 P M or signal quality monitoring, 

which is concerned with high-end per-channel signal quality monitoring. 

It measures the bit-error ratio (BER) of each channel and provides a 

quantitative assessment of a multitude of signal impairments including 

noise and distortion. Advanced 0 P M is used in fault management, QoS 

assurance, and dynamic dispersion compensation. It is however the most 

complex and expensive technology category. A summary of the three-tier 

0 P M is shown in Fig. 1.5. 

Advanced 0 P M 

• A ^ 

“ r ^^ 
^ Compromise between cost and accuracy /^^irect b e r ^ 

气 [ O p t i c a l Layer Monitoring ^ 1 ̂ M onitoring ) 
I / Indirect B E R \ ' Z 

态 I I • Digital Wrapper Frame 
I ( Performance ) ^ . I , , 

I V Monitorin ) 'Q - factor | • Evaluate end -to-end 

I 'Eye Diagram i perfonnance 

I (OP̂ l̂jtColrneO • Channel power j • Ensure Q o S and S L A 
I 1」 • Channel wavelength | 

[一 ̂ '̂^̂•；；；̂^ _^qSNR J 
• Channel power Uses: 

• Channel wavelength . Diagnose system problems 
Uses: • Channel equalization 
• Channel equalization •Auto-discovery 
•Auto-discovery • Troubleshooing 
• Troubleshooting _ 

Accuracy and complexity 

Figure 1.5: Summary of the three-tier 0 P M (Adapted from Ref[7]) 

12 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

1.5 Challenges and Requirements of 0PM 

Techniques 

To be effective, any monitoring technique should satisfy some general 

requirements [6], [15]-[16]. These can be classified into technical 

requirements, commercial requirements, and value-added options. 

• Technical requirements - From the technical perspective, desirable 

0 P M options should have signal degradation discovery capability, 

transparency in terms of bit rate, modulation format, and protocol, 

non-intrusiveness (in-service measurement), high update speed, 

accurac}^ reliability, and stability. 

• Commercial requirements - From the commercial perspective, 

desirable 0 P M options should have low production cost, low power 

consumption, compactness, simplicity, and interoperability between 

different vendors. Cost is the major concern here as the capital 

expense due to 0 P M must be recovered through savings over time in 

operational expenses. In 2004, the total market for embedded O P M s 

is on the order of US$10-20 million. Unfortunately, price has 

continued unabated to the point where a 100-GHz-capable 0 P M in 

moderate volume is selling for about US$3,000 [24]. A positive sign 

may be that many recent optical technologies such as tunable filters 

and spectrometers have become available and made many 0 P M 

options more economical [17]. 

• Value-added options - An increasing focus of 0 P M development is 

placed on comprehensiveness (whether the 0 P M option can monitor 

multiple parameters simultaneously), fault localization capability 
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(whether the 0 P M option can locate the source of degradation), and 

scalability (whether the 0 P M option can adapt to high data-rate 

systems). 

Besides, 0 P M deployment also faces some other important challenges： 

參 Standards and interoperability - Since there are no large incumbent 

suppliers of OPMs, the industry does not quickly coalesce around a 

single standard interface. Thus, aggressive and concrete measures to 

standardize 0 P M are needed before it is too late or too expensive to 

retrofit proprietary 0 P M methods. 

• Inter-layer coordination - Interactions between 0 P M and higher-level 

element management systems (EMS) and network management 

system (NMS) become a critical issue. Questions arise such as what 

information should be passed around the network in order to keep the 

network management scalable. These aspects have been addressed in 

recent 0 P M drafts within the IETF [26]. 

• Network design issue - Concern centers around where we should put 

the 0 P M modules and how much monitoring functions are needed. 

One consideration for the placement of 0 P M modules, for example, is 

whether it should be centralized or distributed [6], Centralized 0 P M 

collects information from other segments of optical transmission links 

and processes the information at a strategic point. It facilitates 

centralized decision-making and fault localization. Distributed 0 P M 

can collect and process information easily, but as the number of 

monitoring modules increases, cost and means to integrate the 0 P M 

with the in-line components are of concern. Another more complicated 

problem is how to place the monitors with minimum redundancy. This 

monitor placement problem is formulated as an optimization problem 
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in [25] and is shown to be NP-complete. It is expected that more 

research in this area will be carried out. 

1.6 Thesis Outline 

In this thesis, we address two of the most challenging problems, O S N R 

and P M D monitoring, in 0 P M . The thesis is organized as follows: 

Chapter 1: This chapter introduces the background of 0 P M ranging 

from its drivers, definition, significance, classification, requirements, and 

challenges. 

Chapter 2: This chapter narrows down to O S N R and P M D monitoring 

techniques with their classification and review presented. 

Chapter 3: This chapter reports on our comprehensive study on the 

P M D robustness of three reported irrband polarization-assisted O S N R 

monitoring schemes. 

Chapter 4' This chapter introduces our newly proposed 

PMD-insensitive O S N R monitoring scheme. The effectiveness of this 

scheme as well as the effects of filter position, filter bandwidth, and filter 

detuning will be investigated. 

Chapter 5: This chapter demonstrates the feasibility of two 

simultaneous O S N R and P M D monitoring methods using enhanced RF 

spectral analysis and enhanced D O P monitoring. 

Chapter 6: This chapter summarizes the thesis and discusses the 

possible future work. 
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Chapter 2 Review on OSNR 
and PMD Monitoring 

2.1 Optical Signal-to-Noise-Ratio (OSNR) 

Monitoring 

According to TIA-EIA-526-19 standard [27], the definition of O S N R is 

101og(/!sig//!use), where Psig is the signal power measured with a filter with 

3-dB bandwidth large enough to cover the whole signal spectrum, i.e. 0.2 

n m for lOGb/s N R Z signal, and Pase is noise measured with a filter of 

known noise equivalent bandwidth (NEB). N is typically referenced to 

0.1-nm N E B , although a 1-nm N E B is sometimes used (Fig. 2.1). 

丰 
Power 

D W D M s—ls A A A 

AALM 
% p 
『 a s e  

— • A 
Reference bandwidth: 0.1 nm 

Figure 2.1: O S N R measurement in D W D M system 

O S N R is important because it suggests a degree of impairment when 

the optical signal is carried in links with optical amplifiers. Optical 

amplifiers introduce additional impairments because the amplified 

spontaneous emission (ASE) noise will contribute electrical noise after 
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0/E conversion in the receivers. In practice, the use of amplifiers will 

improve the signal as the increase in the signal amplitude will help 

overcome the noise generated in the receiver's front end. However, the 

optical background noise that accompanies the desired optical signal will 

be amplified along with signal as well. Consequently, the O S N R will tend 

to degrade as it passes through the transmission system [28]. One of the 

consequences of having a low O S N R is that no matter how strong the 

signal presented to a good receiver, there will be errors associated with the 

presence of the ASE. Thus, there exists a minimum acceptable O S N R for 

a given B E R [29]. 

As a result of the above property, O S N R has been vigorously pursued 

as an important analog performance metric for (i) link setup, control, and 

optimization, such as tuning a dynamic gain equalizer [18]，(ii) in-service 

signal quality characterization for QoS assurance [7]，(iii) correlation with 

end-terminal B E R for fault management purposes [30], and (iv) path 

performance prediction for intelligent routing [12][17]. Desirable O S N R 

monitoring techniques should be simple, accurate, low-cost，with large 

dynamic range and sensitivity, and requiring low monitoring power. To 

date, numerous O S N R monitoring techniques have been proposed and 

they can be classified as out-of-band, in which the A S E noise is measured 

outside the channel bandwidth, or in-band, in which the ASE noise is 

measured within the channel bandwidth [6]. 

2.2 Out-of-band OSNR Monitoring Techniques 

2.2.1 Optical Spectral Analysis 

One of the most commonly used techniques for out-of-band O S N R 

monitoring is optical spectral analysis (OSA). A small portion (〜1-5。/̂) of 
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the transmitted optical signal is tapped and sent to an optical spectrum 

analyzer. The A S E noise spectrum lying between the channels can be used 

to derive an estimate of the iirband A S E noise by linear interpolation. 

However, there are two general cases in which spectral monitoring 

becomes problematic： dense W D M channel packing and dynamic 

reconfigurable networks [3l]. For networks with dense W D M channel 

spacing, such as 10 Gb/s RZ modulated channels on a 50-GHz ITU grid, 

there is insufficient spectrum available for monitoring between the 

channels and the O S N R measurement is hindered by crosstalk from 

adjacent channels. For dynamic reconfigurable networks, each channel 

may traverse a different route with a different number of Erbium-doped 

fiber amplifiers (EDFAs), OXC, and O A D M . Thus, each channel may 

experience unequal E D F A gains and different background shaping by the 

filters of O X C and O A D M . The upshot is that the out-of-band A S E noise 

may not be equal to the in-band A S E noise (Fig.2.2). Besides, O S N R 

monitoring using a high-resolution O S A is costly, bulky, and inconvenient. 

To solve the last problem, several more compact out-of-band approaches 

based on arrayed-waveguide-grating (AWG) or tunable filters have been 

proposed. 

t In-band ASE * Out-of-band ASE 
1 ) 而 n o i s e level noise level 

AMA 
D W D M signals • 

A 

Figure 2.2' Out-of-band noise level may not be equal to in-band noise level 

in spectrum-interpolated noise measurement 
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2.2.2 Arrayed Waveguide Grating/Tunable Filter Assisted 

Power Measurements 

An A W G module monolithically integrated with eight photodiodes was 

proposed in [32] to realize a compact O S N R monitor. The W D M signals are 

tapped and demultiplexed into individual signal wavelengths by the A W G . 

Each channel power is then detected and converted into a corresponding 

voltage by the photodiode. This voltage is proportional to the signal + ASE 

noise power of that channel. On the other hand, one of the ports of A W G is 

left unused and the voltage detected is proportional to the ASE noise 

power. With these two parameters, the O S N R can be calculated. However, 

the major problem of using A W G is the crosstalk issue when the channel 

number is large. To reduce the crosstalk, a double-resolution-AWG'based 

O S N R monitoring circuit was further proposed [33]. The O S N R could be 

monitored up to 37.5dB/0.1nm with <l-dB errors. 

Another commonly used component in place of A W G is tunable filter 

[34]-[35]. The optical filtering approach usually uses two optical filters 

alternately： one with wide enough bandwidth to accommodate the signal 

spectrum for measuring the signal power and the other with narrow 

enough bandwidth to reject the adjacent channels for measuring the noise 

power. However, this requires filter with very deep transfer function for 

noise measurement. Recently, O S N R monitoring based on double-pass 

filtering and dithered tunable reflector has been proposed to solve this 

problem [36]. The O S N R can be monitored up to 44dB/0.1nm with errors 

<0.4 dB. 
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2.2.3 RF Spectral Analysis 

2.2.3.1 Low/High RF Noise Monitoring 

Another approach to out-of-band O S N R monitoring is to make use of the 

RF spectrum of the signal. This involves monitoring the signal power 

using an optical power meter and the electrical noise using an RF 

spectrum analyzer at spectral null locations at which the signal is not 

present. Both low-frequency (4050 kHz) and high frequency (e.g. 9.8 G H z 

for 2.5 Gb/s signal) spectral null regions have been proposed in this regard 

[37]-[38]. O S N R monitoring using RF spectrum is simple and potentially 

low-cost. However, low-frequency monitoring suffers because it is 

susceptible to low-frequency noise tails that would exaggerate the 

strength of the noise. Moreover, it is suitable for signal with short pattern 

length only. On the other hand, high-frequency monitoring tends to 

suffer crosstalk from adjacent channels and may require high-speed RF 

spectrum analyzer as the data rates go up. 

2.2.3.2 Subcarrier CNR Correlation 

Alternatively, a subcarrier can be added out-of-band of the signal 

spectrum. The O S N R of the signal can be correlated to the electrical 

carriei'-to-noise ratio (CNR) of the subcarrier [5]. This scheme is simple 

and allows simultaneous monitoring of multiple channels. However, the 

measurements are sensitive to dispersion effects such as C D and P M D due 

to high-frequency fading and the subcarrier consumes extra bandwidth. 

2.3 Iirband OSNR Monitoring Techniques 

As we have discussed in Section 2.2.1, out-of-band O S N R monitoring is 

unreliable in dynamic reconfigurable networks and 
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tight-wavelength-spacing systems. Many approaches have thus been 

proposed to measure the in-band noise. All these methods rely on at least 

one of the following properties to differentiate the signal and noise: (i) 

signal is polarized while noise is unpolarized, (ii) signal is coherent while 

noise is incoherent, (iii) signal and noise have different duty cycles, and (iv) 

signal and noise are differently distributed in the phase space. 

2.3.1 Polarization-Assisted OSNR Monitoring 

Polarization-assisted O S N R monitoring is based on the principle that an 

optical signal has a well-defined polarization, whereas ASE noise is 

unpolarized as it is essentially white noise. Thus, polarization techniques 

can be employed to separate the signal and noise. 

2.3.1.1 Polarization Extinction Method 

In polarization extinction method [39], a polarization controller (PC) is 

used together with a polarizer in front of a tunable optical filter and a 

power meter (Fig. 2.3). The PC is adjusted until the power meter indicates 

minimum power, which corresponds to half the A S E power. Then the 

polarization controller is set to the orthogonal state and the power meter 

indicates the maximum power, which corresponds to the signal power plus 

half the A S E power. With the maximum and minimum power, O S N R can 

be calculated by 

aSWy?(dB/0.1 n m ) =广瞧 ~ 尸 ( 2 . 1 ) 

^^min 

where the N E B of the filter is assumed to be 0.1 nm. This method is 

simple and has no high-speed electronics processing, but it is susceptible 

to P M D degradation. 
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Figure 2.3: Principle and O S N R monitoring module using polarization 

extinction 

2.3.1.2 Polarization-Nulling 

Polarization-nulling is based upon the same principle as the polarization 

extinction method except that a rotating quarter-wave plate and a 

rotating linear polarizer are used to continuously searching for the 

maximum power and minimum power [40]. This method is simple, has 

large dynamic range, requires relatively low monitoring power, and has 

on-the-fly processing. However, it is also susceptible to P M D degradation. 

(a) (b) 4 
I O S N R monitoring using polarization-nulling:‘ 

X/4 Plate Polarizer I 一 2 

I I ̂  I ^ 一 Power I f 0 0 

春 年 meter ^ -^p, = -i5dBm 
I 1—1 1—1 I -2 • P j = -20 c lBm 

I Tunable | . = 

I optical filter |  

V J 10 15 20 25 30 35 

OSNRosa _ 

Figure 2.4: (a) O S N R monitoring module using polarization nulling (b) 

Monitoring- results in a back-to'back configuration for six N R Z channels 

with errors < 0.4dB (Adapted from [40]) 
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2.3.1.3 Degree-of-Polarization (DOP) Based OSNR 

Monitoring 

Another slight variation to polarization-nulling is to use the degree-of-

polarization (DOP) [41]. D O P is an important property of light sources 

used to describe how much of the total light power is polarized. 

Mathematically, it is defined as the polarized light power divided by the 

total light power, i.e. the signal power divided by the sum of signal and 

ASE noise power. 

p p n 
D ( ) p _ po l a r i z ed 一 po l a r i zed _ " s i g ( 2 。 ） 

p p + p p + P • 
total po la r i zed impo la r i zcd s ig a s e 

Thus the iirband O S N R can be estimated from the D O P of a channel 

as follows： 

OSNR = 10 lQg( DOP ) (2.3) 
��-DOP 

The advantage of using D O P for irrband O S N R monitoring is that the 

information obtained can be used to monitor P M D as well. However, the 

monitoring dynamic range is small and D O P is significantly affected by 

P M D as well. 

^ 、 
(a) 、（b) ^ 
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Figure 2.5: (a) DOP-based O S N R monitoring module (b) Monitoring errors 

in a back-to-back configuration with errors <1 dB up to 25dB/0.1nm 

(Adapted from Ref[4l]) 
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2.3.2 Irrband RF Spectral Analysis 

Another approach for irrband O S N R monitoring is to use irrband RF 

spectral analysis. There are two methods proposed- orthogonal 

delayed-homodyne method and half clock frequency constellation 

monitoring. 

2.3.2.1 Orthogonal Delayed Homodyne'Method 

In orthogonal delayed homodyne method [42], a P M D emulator is added at 

the monitoring module and the P M D introduced will cause any given 

optical frequency component to split between the two orthogonal modes 

called principle states of polarization (PSP) and propagate down the fiber 

at different speeds. This speed differential, called the differential group 

delay (DGD), will dephase the given frequency component on each PSP 

with respect to the carrier and generate a dip in the electrical spectrum 

after detection due to destructive interference (Fig. 2.6). When the signal 

is launched at 45。(in Jones Space) relative to the PSPs, the minimum dip 

frequency is related to the D G D introduced by the P M D emulator by iniin = 

DGD). By measuring this narrowband RF dip power (i.e. the 

electrical noise) using an RF spectrum analyzer, together with the total 

optical power measured by an optical power meter, the O S N R can be 

calculated [37]. Fig. 2.7 reproduces the experimental results. This method 

is simple and can deal with consider values of P M D . However, it requires a 

high rate of spectral analysis, obtains spectral nulling of the signal in a 

very localized region that contains a small amount of energy, and is 

sensitive to chromatic dispersion. 
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(a) Principle: Depolarized Optical Spectrum 

r , 
Frequency Domain: ‘ i 

I C l X _ I 
Slow axis PSPl [ III [ ^ ^̂ ^ I 

_ I 1\ I ( \ I I 
Single C h a n n e l I 丨 UJL j 
Optical Spectrum Fast axis PSP2 I 丄 V 力 | 

\，-4dgd I 
I D̂ D ] 

r I Destructive 
I (b) OSNR monitoring by orthogonal delayed- ' 了一 llntei-feren̂   
I h o m o d y n e method: [ f ~ " p ^ ^ ~ ~ ] 

iL^TpC^ fiber ^ RF I at f _ 

I Large-DGD > Receiver - ̂  Spectrum || Ya-^ = 1/2DGD 
I element ~ — ^ Analyzer , | f R f I 

RF amplifier j > ‘ 

Figure 2.6: (a) Graphical representation of the generation of an RF 

spectral dip due to destructive interference when there is P M D (b) O S N R 

monitoring module by orthogonal delayed'homodyne method 
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Figure 2.7: (a) Experimentally measured RF dip power versus O S N R (b) 

Measured O S N R versus transmission distance, errors <0.5 dB (Adapted 

from [42]) 

25 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

2.3.2.2 Half Clock Frequency Constellation Monitoring 

Half clock frequency constellation monitoring uses an analysis of a narrow 

bandwidth of the electrical data spectrum at precisely half the data clock 

frequency [43]. The half clock frequency component is found to have the 

nice property that it is conjugate symmetric, thus if an RF demodulation is 

done the resulting demodulated signal will appear along a single axis in 

the demodulated phase-space. The S N R can then be derived by taking the 

ratio of the length of the line to its width, and the O S N R can be finally 

correlated with the SNR. As this technique is inherently narrowband, it 

offers the advantage of very high sensitivity (avoiding the requirement of 

optical pre-amplification). However, it is fairly complicated and sensitive 

to chromatic dispersion, has small dynamic range, and cannot detect 

narrowband signal degradations that occur at frequencies other than the 

half-clock. 

2.3.3 Interferometric Approach 

The third approach to differentiate the signal and noise is to use a 

Mach-Zehnder interferometer [44]. Due to the coherence of the optical 

signal, the signal can interfere at the output of the Mach-Zehnder 

interferometer while the ASE noise cannot. This method is simple, 

potentially low-cost，and relatively insensitive to P M D . However, it 

requires accurate matching of the coupling ratio of the 3-dB couplers. 

2.3.4 Nonlinear Method 

Nonlinear detection based on two-photon measurement can be used to 

monitor O S N R as well [45]. It is based on the concept that a PRBS signal 

has an average duty cycle less than 0.5 while the A S E noise has a duty 
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cycle of 1. As the average nonlinear signal produced is inversely 

proportional to the duty cycle, different O S N R will correspond to different 

average output power. This nonlinear detection method has high 

sensitivity, small polarization dependence, and bit-rate scalability. 

However, it has a small dynamic range and is affected by chromatic 

dispersion. 

2.4 Polarization-Mode-Dispersion (PMD) Monitoring 

P M D is another important optical parameter to be monitored in future 

optical networks. To a first-order approximation, P M D splits the optical 

pulses into two pulses polarized along the orthogonal PSPs and the two 

pulses will travel down the fiber at slightly different speeds. The resulting 

time difference is called the D G D [46]. The three major causes of P M D are 

(i) intrinsic geometric asymmetries in the fiber core, (ii) external 

mechanical stress-induced variations in the fiber core, and (iii) 

birefringence of in-line components. The intrinsic geometric asymmetries 

arise when slightly elliptical instead of perfectly circular optical fibers are 

manufactured. These asymmetries will remain fairly constant over time. 

On the other hand, the external mechanical stress-induced asymmetries 

stem from a variety of sources including daily and seasonal heating and 

cooling, nearby vibration sources, and periodic repair and maintenance. 

These asymmetries are typically dynamic in nature (Fig. 2.8). 
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Figure 2.8: Graphic representation of the D G D between the two PSPs 

caused by intrinsic geometric asymmetry and extrinsic mechanical 

stress-induced asymmetry of the fiber core 

P M D is a deleterious effect in high-speed (>10-Gb/s) optical systems 

because the splitting pulse will cause crosstalk and inter-symbol 

interference (ISI), It has been shown in several reports that the acceptable 

average D G D varies between 10% and 20% of a bit time depending mostly 

on the modulation format, outage probability, and receiver architecture 

[47]-[49]. It is particularly difficult to tackle P M D because the P M D effects 

are stochastic, time-varying, and temperature dependent, and worsen as 

the bit rate goes up. Moreover, instantaneous first-order P M D will follow a 

Maxwellian probability distribution which always has some finite 

possibility of severe system penalties. Although much of the fiber sold 

today is rated as "low P M D " fiber (< O.lps/Vkm), the presence of high-PMD 

legacy fiber and the P M D of in-line optical components make it necessary 

to monitor and compensate the effects of P M D . 

Overall, desirable P M D monitoring methods should be simple, 

inexpensive, has fast monitoring speed (< ms), be highly correlated with 
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P M D and BER, has high sensitivity and wide dynamic range (〜bit time), 

and has low probability of hitting a local maximum [46],[50]-[51]. In the 

following subsections, we will review several reported P M D monitoring 

techniques. 

2.4.1 Degree-of-Polarization (DOP) Monitoring 

The D O P of a signal represents how much of all the time components or 

frequency components of an optical signal are polarized along the same 

SOP. The D O P varies from 1, when the components are polarized along 

the same SOP, to 0, when the polarizations of the components are 

randomly scrambled. The principle of using D O P for P M D monitoring is as 

follows: When a pulse having a D O P of 1 (polarized along the same SOP) 

enters at a 45" angle with respect to PSPs of a fiber with first-order P M D , 

the leading edge of the pulse is polarized along the fastest PSP, while the 

middle of the pulse has the same SOP as the input pulse, and the trailing 

edge is polarized along the slowest PSP. Hence the output optical signal is 

no longer polarized along the same SOP and D O P is degraded [52]. This is 

illustrated in Fig. 2.9 and Fig. 2.10. 
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Figure 2.9: Impact of P M D on polarized optical signal and on its D O P 
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Figure 2.10: Theoretical results of minimum D O P versus D G D (relative to 

the bit time, Tb) as the pulse width (W) of an RZ signal varies, assuming 
ideal rectangular pulse 

P M D monitoring based on D O P has a number of advantages including 

(i) it can be high-speed (kHz response time) and there is no need for 

high-speed electronics device, (ii) it is simple, (iii) it is bit-rate 

independent, and (iv) it is unaffected by chromatic dispersion and sign of 

the modulator chirp. However, it also suffers from several disadvantages 

including (i) it is dependent on the input SOP, and (ii) it is affected by the 

modulation format, magnitude of the modulator chirp, fiber nonlineahty, 

and A S E noise, (iii) it has low sensitivity for monitoring N R Z signal, and 

(iv) it has small dynamic range for monitoring RZ signal [46] [50] [66]. 
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2.4.2 RF Spectral Analysis 

2.4.2.1 PMD-Induced RF Dip Power Measurement 

As explained before, P M D will cause any given optical frequency 

component to split between the two orthogonal PSPs and propagate down 

the fiber at different speeds. This speed differential will dephase the given 

frequency component on each PSP with respect to the carrier and generate 

a dip in the electrical spectrum after detection due to destructive 

interference. The dip frequency, fmin, is related to the D G D by iniin = 

DGD). A band-pass filter (BPF) observing the intensity of a number of 

different notch components including the quarter bit rate frequency 

component, the half bit rate frequency component, and the bit rate 

frequency component can be used as first-order P M D monitors (Fig. 2.11) 

[53]-[59]. However, this method requires high-speed electrical circuits 

with the order of the bit rate and the sinusoidal P M D detection curve 

limits the maximum detection range. The method vising multiple BPF is 

also proposed to widen the P M D detection range beyond 1-bit period but it 

has a more complicated compensation circuit and control algorithm [60]. 
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Figure 2.11' (a) Proposed different frequency components for P M D 

monitoring (b) Received RF power variation versus D G D for 1/8’ quarter, 

half, and bit rate frequency components 

2.4.2.2 Subcarrier-Based RF Power Fading Measurement 

Subcarrierbased P M D monitoring allows simultaneous and independent 

P M D monitoring for W D M systems [61]. A subcarrier with the same power 

but slightly different frequency is added to each of the W D M channels. 

The subcarrier power fading due to P M D is strongly correlated to the 

PMD-induced degradation of that channel but is independent of that of 
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Other channels. The advantages of this scheme include (i) it can monitor 

several W D M channels simultaneously and independently by a single 

module, and (ii) the monitoring sensitivity and dynamic range can be 

easily adjusted by properly choosing the subcarrier frequency. However, 

this technique also suffers several disadvantages including (i) the RF 

power fading is affected by chromatic dispersion, nonlinearities, and 

four-wave mixing, (ii) the subcarrier adds power penalty to the signal, and 

(iii) it requires modification at the transmitter side. 

2.4.3 Eye-Opening Penalty Monitoring 

Measurement of the opening in the eye pattern can be another useful 

P M D monitor. The eye monitor consists of two decision circuits in parallel. 

The first acts as the simple decision gate in a conventional receiver, and 

the second functions as a monitor gate with variable threshold to 

characterize the edges of the eye at variable phase. Since this technique 

evaluates the eye opening at the sample time, it needs a valid clock signal, 

called the synchronous control signal. While the eye opening is tightly 

correlated to the BER, it is affected by other distortion sources such as 

chromatic dispersion and nonlinearities [46]，[50]，[62]-[63]. 

2.4.4 Phase Diversity Detection 

Phase diversity detection is an asynchronous method which measures the 

phase difference of a given frequency component after PSP filtering and 

electrical detection by using a Gilbert cell mixer. The P M D is then inferred 

fi.om the measured phase. This detection scheme is not affected by other 

distortion sources such as chromatic dispersion. However, it requires PSP 

tracking at the receiver, which is faii.ly complicated, and is also affected by 

higher-order P M D [46]，[64]. 
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2.4.5 Arrival Time Measurement of Polarization-Scrambled 

Light 

This method measures the arrival time variations of 

polarization-scrambled light by integrating the voltage-controlled 

oscillator (VCO) input signal of the clock recovery phase-locked loop (PLL) 

in the receiver. It allows detection of P M D at or below the eye pattern 

visibility limit, has high monitoring sensitivity, and is usable in the 

presence of higher-order P M D . However, it requires polarization 

scrambling at the transmitter and has small dynamic range [65]. 

2.4.6 Nonlinear Method 

0 P M based on nonlinear detection using two-photon absorption can 

monitor P M D in addition to O S N R [45]. Pulse splitting due to P M D 

increases the duty cycle of a pulse and thus change the average nonlinear 

output power. Nonlinear P M D monitoring has high sensitivity at small 

D G D values and bit-rate scalability. However, it is SOP dependent, 

sensitive to chromatic dispersion, and requires relatively high monitoring 

power to track the P M D fluctuations. 

2.5 Summary of different OSNR and PMD 

Monitoring Methods 

Fig. 2.12 summarizes the pros and cons of different proposed O S N R and 

P M D monitoring schemes. 
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Chapter 3 On Robustness of 
In-band Polarization-Assisted 
OSNR Monitoring Techniques 
against PMD 

3.1 Introduction 

In chapter 2, we have reviewed several in-band polarization-assisted 

O S N R monitoring schemes, including polarization-nulling, DOP-based 

O S N R monitoring, and the orthogonal delayed-homodyne method based 

upon polarization-assisted RF spectral analysis. These 

polarization-assisted O S N R monitoring techniques are meritorious in that 

they capture and analyze the true in-band noise and can thus avoid errors 

due to mis-estimation of the out-of-band A S E noise springing from tight 

channel spacing, crosstalk due to improper filtering, or unequal E D F A 

gain in dynamic reconfigurable networks. The tradeoff, however, is that 

these schemes tend to be susceptible to P M D degradation. This P M D issue 

has been touched upon in previous papers but the extent of degradation 

has not yet been fully quantified. Since all these schemes must 

demonstrate reasonable P M D robustness before they can be deployed in 

real high-speed optical systems, it would be highly desirable if we have a 

detailed quantification of the O S N R monitoring errors for different degree 

of P M D and different pulse widths. In this chapter, we will explain how 

first-order P M D will affect these schemes and evaluate, both numerically 

and experimentally, the robustness of the three aforementioned in-band 

O S N R monitoring schemes against P M D for 10-Gb/s NRZ，30% RZ，and 

3% RZ signals. Our experimental results show that polarization-nulling 
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and DOP-based O S N R monitoring are extremely sensitive to the influence 

of P M D - For 1-dB O S N R monitoring error (original OSNR： 25dB/0.1nm), 

the m a x i m u m tolerable D G D values for lOGb/s NRZ, 30% RZ, and 3% RZ 

signals are <10 ps, <3 ps, and <0.5 ps, respectively. O n the other hand, 

orthogonal delayed homodyne method exhibits an inherent robustness 

hinting at the feasibility to drastically improve the performance of the 

former two schemes. The numerical calculations and experimental results 

are presented for the three methods in the following sections. 

3.2 Impact of PMD on Polarization-Nulling 

To a first-order approximation, P M D can be described as a D G D between 

the two orthogonal polarization modes of the fiber. The D G D of the fiber 

link will rotate the frequency components of the signal with respect to the 

carrier by an amount equal to rv^Afi^DGD (in Jones space), where zl/is the 

frequency offset from the center carrier, when the signals are launched at 

a 45。with respect to the PSPs [67]. This is referred to as the S O P walk-off 

effect. Consequently, in polarization-nulling when we align a polarizer 

parallel to the signal, the maximum power (signal + V2 A S E noise power) 

will be underestimated because the polarizer is aligned with a single SOP 

only. Similarly, when we align a polarizer perpendicular to the signal, the 

minimum power (V2 A S E noise power) will be overestimated. This is 

illustrated in Fig. 3.1. 
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Impact of PMD on Polarization-Nulling 
Optical spectrum for lO-Gb/s 50% RZ signal 
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Figure 3.1: Impact of P M D on Polarization-Nulling 

The polarization leakage ratio, a, which represents how much proportion 

of the signal power intrudes into the noise measurement, can be 

calculated by [6] [39] 

QC 

« = ̂  (3.1) 

-00 

where S ( f ) is the optical power spectral density. By expressing the sine 

term in (3.1) as the sum of two exponential terms and taking the inverse 

Fourier transform, a can be related to the autocorrelation function of the 

received optical signal Rin as 

a:2R、、、m-RJDGDW���(-DGD� 

4尺,"(0) . 

The autocorrelation i?in is dependent on the pulse shape and pulse 

width. For ideal rectangular pulses, the general expression for the 

autocorrelation function for an RZ signal is given in [68]: 

38 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

) = 脊 [ A ( 学 ) + 孟 M ^ ^ ) ] (3.3) 

where 八 refers to the triangle function 

DGD [(1 J D ⑶ 丨 ⑶ I〈阶 \ 
二、 PV 3.4 

and A, PV, and Tb are the pulse amplitude, pulse width, and bit duration, 

respectively. 

The use of ideal rectangular pulse can greatly simplify the numerical 

calculation but it would also overestimate the power leakage due to the 

S O P walk-off effect [69]. W e therefore consider also a second type of pulse 

shape, the super-Gaussian pulse shape, of which the normalized 

amplitude is expressed as [70] 

U m 二 \ ?''') (3.5) 

where U is the intensity of the super-Gaussian pulse, C is the chirp 

parameter, 7]a\'hm is full-width at half maximum of amplitude, and m is 

the Gaussian pulse order. The autocorrelation of super-Gaussian pulse 

shape is more complicated and we will implement the details using the 

MatlabG.l software. 
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3.2.1 Numerical Results using Ideal Rectangular Pulse 

(a) 1.0 1 

o * Assume ideal rectangular pulse  

0.8 - - o - 10-Gb/s NRZdata 
g, - o - 10-Gb/s 30% RZ data 

5 0.6 - 10-Gb/s 3% RZ data 
oj • 

0 20 40 60 80 

DGD (ps) 

( b ) " ^ ： ： 1 
fn * Assume ideal rectangular pulse 

^ .Q . R - O - 10-Gb/s NRZdata 
^ 10-Gb/s 30% RZ data ^ 
CO H - A - 10-Gb/s 3% RZ data J ^ 
o 5- y 

\ Errors getting >25 d B as polarization H 

• V / leakage ratio close or equal to 0.5 / 

0 -P , ~ — — , — , ^  

0 20 40 60 80 

DGD (ps) 

Figure 3.2: (a) Theoretically calculated polarization leakage ratio and (b) 

O S N R under different D G D values, assuming ideal rectangular pulse 
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Fig. 3.2(a) and Fig. 3.2(b) show the theoretically calculated polarization 

leakage ratio and O S N R (original OSNR: 25dB/0.1nm), respectively, under 

different D G D values using ideal rectangular pulse. From Fig. 3.2(b), we 

can see that the O S N R monitoring errors of polarization-nulling increase 

rapidly with D G D . In addition, the monitoring errors increase in the order 

of NRZ, 30% RZ, and 3% RZ. A time-domain and frequency-domain 

explanation for the effect of signal pulse width is provided in Fig. 3.3. In 

the time-domain explanation in Fig. 3.3(a), when the pulse width 

decreases, the optical pulse replicas on the two orthogonal PSPs will have 

less overlapping with each other under the same D G D , thus the signal 

becomes much more depolarized. In the frequency-do main explanation in 

Fig. 3.3(b), when the pulse width decreases, the optical spectrum will be 

much wider or more spread out from the center carrier, thus the SOP 

walk-off effect is more pronounced causing more depolarization under the 

same D G D . This explains why the monitoring errors increase in the order 

of NRZ, 30% RZ, and 3% RZ. For Consider 30% RZ signal and 3% RZ 

signal. W h e n the D G D exceeds the pulse duration, the signal will become 

completely depolarized and the polarization leakage ratio is 0.5 (Fig. 3.2). 

In this case, the maximum and minimum power recorded in 

polarization-nulling are exactly the same and the corresponding O S N R 

would be minus infinity. W e conclude that polarization-nulling is very 

susceptible to the influence of P M D and modification is needed before this 

monitoring method is to be deployed practically, especially for RZ systems. 
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Figure 3.3: (a) Time-domain and (b) frequency-domain explanation of the 

depolarization effect for different pulse widths under the same D G D 
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3.2.2 Numerical and Experimental Results using 

Super-Gaussian Pulse 

Fig. 3.4 shows the experimental setup to evaluate the impact of P M D on 

polarization-nulling. The signal source was a 1546.46nm D F B laser (for 

NRZ-OOK), a 1546.46nm DFB laser modulated by an electroabsorption 

modulator (EAM) (for 30% RZ.OOK), and a 1552.33nm mode-locked laser 

(for 3% RZ-OOK), which were all externally modulated by a LiNbOs 

intensity modulator with a lO'Gb/s 23】-1 pseudorandom bit stream 

(PRBS). The A S E noise source was created by cascading two EDFAs. 

Variable attenuators were added after the signal and noise sources so that 

the O S N R could be adjusted easily. A first-order P M D emulator was used 

to simulate the effects of different D G D values. At the receiver side, a 

tunable filter was used to extract the signal The O S N R monitoring 

module consisted of a rotating A74 plate and linear polarizer, as reported in 

[40], and the maximum and minimum power were recorded by a power 

meter. The O S N R was set to be 25dB/0.1nm by O S A and the measured 

O S N R values were then recorded and calculated for errors. 

Fig. 3.5 shows the experimentally measured polarization leakage 

ratio and the O S N R monitoring results under different D G D values. 

Compared with that obtained using ideal rectangular pulse, both curves 

show a smoother and less steep trend. This is because the polarization 

leakage is mainly caused by higher frequency components at the edges of 

the mark pulses [66] and the use of less steep pulse in actual transmission 

can relax a little bit the depolarization. The theoretical calculations for the 

polarization leakage ratios and the converted OSNRs using 

Vsupei'-Gaussian pulse with order 2 for N R Z signal and order 1 for RZ 

signal are also shown in Fig. 3.5 (straight lines). For N R Z pulse, the 

experimental results and theoretical calculations are in excellent 
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agreement. For 30% RZ pulse, when the D G D approaches half bit time, 

the experimental results and theoretical calculations show slight 

deviation because the experimentally used pulse is not purely 

super-guassian, but is super-guassian with a small "tail" in the time 

domain. This tail increases the overlapping of the two orthogonal optical 

pulses and hence relaxes a little bit the depolarization extent. For the 3% 

RZ pulse, the polarization leakage ratio is theoretically calculated to be 

0.5 and the converted O S N R is negative infinity at large D G D values. 

However, in actual experiments, the maximum measured power and 

minimum measured power after the polarizer in polarization-nulling will 

always show some difference due to fluctuations of the power meter. 

Hence the maximum O S N R errors saturate at some finite values (Fig. 

3.5(b)). For a 1-dB O S N R monitoring error, the maximum tolerable D G D 

values for NRZ, 30% RZ, and 3% RZ are found to be <10 ps, <3 ps, and 

<0.5 ps, respectively. 
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Figure 3.4: Experimental setup to evaluate O S N R monitoring based 

on polarization-nulling under different D G D values 
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Figure 3.5: (a) Measured polarization leakage ratio and (b) O S N R for 

polarization-nulling under different D G D values (Straight lines: 

numerical calculations using Super-Gaussian pulse) 
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3.3 Impact of PMD on DOP-based OSNR Monitoring 

P M D will affect the D O P in a way similar to what it does to the 

polarization leakage ratio in the polarization-nulling method. For the 

worse case {y= 0.5), the minimum D O P can be expressed as: 

cc 

DOP {DGD) = ̂  (3.6) 

-00 

By taking the inverse Fourier transform, the D O P can be related to 

the autocorrelation function of i?in by 

D()P〈DGD)=R、、、脚 D H I U - D G D ) (3 7) 

2 及m(0) 

For ideal rectangular pulses, using the general expression for the 

autocorrelation function for an RZ signal given in Eqn. (3.3), we obtain the 

following result for minimum DOP: 

1 DGD ^ , DGD-mT^^ , � 
DOPiDGD) = - [ A ( - — ) + X 八("""""^-)] ( 3 . 8 ) 

Again, we consider also the super-Gaussian pulse and the details are 

implemented in the Matlab 6.1 software. 

3.3.1 Numerical and Experimental Results Using Ideal 

Rectangular and Super-Gaussian Pulses 

The experimental setup used to evaluate the effect of P M D on DOP-based 

O S N R monitoring was similar to that described in previous section except 

the monitoring module now consisted of a tunable filter and a D O P 

analyzer. The theoretical calculated D O P degradation and the 

corresponding O S N R under different D G D values using ideal rectangular 

pulse and superGaussian pulse were shown in Fig. 3.6 and Fig. 3.7, 
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respectively. Experimental results were also presented in Fig. 3.7. 
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Figure 3.6: (a) Theoretically calculated D O P and (b) O S N R under different 

D G D values, assuming ideal rectangular pulse 
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Figure 3.7: (a) Measured D O P and (b) O S N R for DOP-based O S N R 

monitoring polarization-nulling under different D G D values (Straight 

lines: numerical calculations using Super-Gaussian pulse) 

It is found that the monitoring errors for DOP-based O S N R 

monitoring are similar to that in polarization-nulling because they are 

based upon the same principle. Thus DOP-based O S N R monitoring is also 
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susceptible to P M D degradation and modification is needed before the 

monitoring scheme is to be deployed practically. 

3.4 Impact of PMD on Orthogonal 

Delayed-Homodyne Method 

Recall that in orthogonal delayed-homodyne method (section 2.3.2.1), we 

use a large-DGD element in the monitoring module and launch the signal 

at 45() (in Jones Space) or 90" (in Stokes Space) relative to the PSPs so that 

the two signal replicas in each PSP can cancel each other after RF 

detection due to destructive interference to produce a dip in the RF 

spectrum. The dip represents the narrowband electrical noise power. 

W h e n P M D is present in the link, the P M D vector of the link and that of 

the local D G D element add to produce a resultant P M D vector of the total 

system (link + D G D element) with a different direction and amplitude. In 

order to produce complete destructive interference, it is necessary to 

launch the signal at 90" (in Stokes Space) relative to the PSPs of the total 

system. This can be achieved by adjusting the PC in front of the local D G D 

element to change the relative angle between the link's P M D vector and 

D G D element's P M D vector (Fig. 3.8). In this case, destructive 

interference still occurs except the minimum dip is now located at a 

different frequency because the effective D G D is changed and is now equal 

to the magnitude of the total system's P M D vector. 

I 
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Figure 3.9: OSNR monitoring error for orthogonal delayed'homodyne 

method under different DGD 

Thus, PMD will change the dip frequency and is expected to cause 

insignificant errors for this method so long as destructive interference can 

still occur and the minimum dip power obtained. We performed 
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experiment to verify this and we obtained O S N R monitoring errors 

smaller than 1 dB for NRZ, 30% RZ, and 3% RZ when the D G D values 

were smaller than 70 ps, as shown in Fig. 3.9. This shows that orthogonal 

delayed homodyne exhibits a higher P M D robustness than the previous 

two methods. 

An interesting finding in our theoretical study is that assuming an 

ideal sine-shaped electrical power spectral density and nulling frequency 

high enough so that the signal component becomes small, even for 

worst-case scenario (i.e. even when all signal components are not nulled 

by destructive interference during electrical noise measurement), the 

monitoring errors can be kept below certain dB which is much smaller 

than that in polarization-nulling method. For example, Fig. 3.10 shows 

the theoretically calculated largest monitoring errors against nulling 

frequency for 10-Gb/s 30% and 3% RZ signal. It can be seen that by 

judiciously choosing a higher nulling frequency, orthogonal 

delayed-homodyne exhibited an "inherent" robustness against P M D in a 

sense that even without nulling, the error can be kept reasonably small. 
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Figure 3.10: Theoretical calculated worst O S N R error against nulling 

frequency for orthogonal delayed homodyne method for (a) 10-Gb/s 30% 

RZ signal and (b) 10-Gb/s 3% RZ signal, assuming ideal rectangular pulse 

and ideal sinc-shaped RF spectrum 

Although this inherent P M D robustness is based on the assumption of 

ideal rectangular pulse and hence ideal RF spectrum and may not be 

attainable in real systems due to expensive nulling at such high RF 

frequency, it does provide us a hint on how to improve the performance of 

the previous two methods under the influence of P M D . This method is 

similar to the orthogonal delayed-homodyne method but is implemented 

in the optical domain. W e can use an optical narrowband filter placed at 

the edge of the optical signal spectrum before polarization-nulling to 

obtain the narrowband A S E noise. Because the signal power extracted by 

the off-center narrowband filter is inherently small, the signal leakage 

due to depolarization under P M D is expected to be small. This newly 

proposed PMD'insensitive O S N R scheme will be elucidated in the 

following chapter. 
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3.5 Summary 

In this chapter, we have evaluated the P M D robustness of O S N R 

monitoring techniques based on polarization-nulling, D O P correlation, 

and orthogonal delayed-homodyne method. Our studies show that 

polarization-nulling and DOP-based O S N R monitoring are very 

susceptible to P M D and modifications are needed before they are to be 

deployed practically. On the other hand, orthogonal delayed-homodyne 

method exhibits an inherent robustness which inspires us a new 

technique to improve the performance of the former two schemes. This 

new technique is to be presented in the next chapter. 
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Chapter 4 PMD-Insensitive 
OSNR Monitoring Based on 
Polarization-Nulling with 
Off-Center Narrowband 
Filtering 

4.1 Introduction 

人丨 Z T N EDFA EDFA EDFA EDFA 入丨 

Monitor Monitor Monitor Monitor 

Figure 4.1: Schematic diagram of a typical transmission link 

Fig, 4.1 shows the schematic diagram of a typical transmission link in real 

systems. As shown in Fig. 4.1，OSNR monitoring is performed after each 

amplifier site. However, since P M D compensation may not be available 

after each amplifier site, the effect of P M D should not be neglected. 

Nevertheless, we found in chapter 3 that several of the irrband 

polarization-assisted O S N R monitoring schemes, including 

polarization-nulling and DOP-based O S N R monitoring, were significantly 

impinged on by the depolarization effect of P M D . This P M D depolarization 

will reduce, respectively, the maximum-minimum power ratio and the 

D O P in the two aforementioned methods and hence cause the O S N R to be 

underestimated. A serious underestimation of O S N R may trigger 
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unnecessary signal-degradation alarms and rerouting mechanisms, and 

creating potential legal contract violation and financial burden for service 

providers. Much research endeavor has therefore been made to decouple 

O S N R and P M D in order to enable accurate, PMD-insensitive irrband 

O S N R monitoring. In this chapter, we will first review two previously 

proposed schemes, namely, improved polarization-nulling and periodic 

polarization encoding. Although P M D insensitivity was reported, these 

two schemes both require a complex configuration. W e will then describe 

our newly proposed PMD-insensitive O S N R monitoring scheme based on 

polarization-nulling with off enter narrowband filtering. Compared with 

previous schemes, our scheme employs a simpler configuration and is 

more readily upgradeable for use in higher data-rate optical systems. 

Theoretical calculations and experimental results on the PMD-induced 

monitoring errors for this scheme will be presented. In addition, the 

effects of filter position, filter bandwidth, and filter detuning will be 

investigated. 

4.2 Previously Proposed Schemes based on 

Polarization-Nulling 

4.2.1 Improved Polarization-Nulling Technique 

The first proposed method, improved polarization-nulling [71], makes use 

of three receivers and an additional BPF to separate the two 

contributions 一 A S E noise and PMD-induced signal power leakage, when 

measuring the minimum power. The proposed technique is shown in Fig. 

4.2(a). The demultiplexed W D M signal was sent to the PBS via an 

automatic PC. The PC was used to maximize the signal power in one arm 

of the PBS. Thus, the signal and ASE noise were split into two 

polarization components (in which one polarization consists of signal and 
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A S E noise, while the other has A S E noise only). The A S E noise-only 

branch is further split into two arms with one arm additionally filtered by 

a B P F to change the optical bandwidth. Assuming the signal leakage in 

the latter two branches is the same, any change in the measured power 

should be due to A S E noise difference； the contribution by the signal 

power leakage can therefore be eliminated. Mathematically, the output 

powers of the three branches are 

广丨= ?“1 - £ ) + 0.5尸脱. （4.1) 

=0.5 尸sfc、+ 0.25ŷ ,se (4.2) 

尸3 二 0.5尸/ + 0.25«尸ase (4.3) 

where and P縱 are the signal power and A S E noise power in watts, 

respectively. s is the signal leakage ratio, a is determined by the 

transmission characteristics of A W G and BPF. Using equations (4.1)-(4.3)， 

the O S N R can be obtained as: 

OSNR = - ^ = ( 叫 尸 2 ) 1 (4.4) 

Since the real-time vale of s is included in the estimation, improved 

polarization-nulling can monitor the O S N R accurately regardless of the 

P M D , nonlinear birefringence, and/or incomplete polarization control. The 

experiment results are reproduced in Fig 4.2(b), which shows that the 

O S N R was measured with accuracy better than ±1 dB. The downside of 

this technique is that it requires multiple receivers and a complicated 

configuration, making it bulky and expensive. 
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Figure 4.2: (a) Improved polarization-nulling technique (b) OSNR 

monitoring results by proposed method against that by OSA (Adapted 

from Ref [71]) 

4.2.2 Periodic Polarization Encoding Technique 

This approach uses periodic polarization encoding of the incoming bit 

stream to result in spectral nulling of the signal and not the noise in a 

predesigned wide spectral band, thus allowing extracting the resident 

O S N R [72]. By replicating the signals with each replica having different 

amplitude with short and well-defined intervals between the replicas, a 

finite impulse response filter (FIR) is essentially synthesized. This filter is 

responsible for setting a predefined spectral region to zero (The spectral 

response chosen is the Kaiser window because it has a high attenuation 

ratio in its spectral side lobes) with the ASE noise unaffected. The optical 

signal is then detected by a photodiode. The analog current produced is 

passed through a heterodyne mixer and a filter is used to extract the 

desired spectral band that afterwards is sampled with a narrowband 

analog-digital (A/D) circuit and processed by a computer. Using this 

approach, a slightly better monitoring performance against P M D 

compared with polarization-nulling was obtained. However, this method 

requires a very complex configuration and precise control. 
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4.3 A new PMD-Insensitive OSNR Monitoring 

Technique based on Polarization-Nulling with 

Off-Center Narrowband Filtering 

In this section, we propose and experimentally demonstrate the use of 

polarization-nulling with off-center narrowband filtering to realize a new 

PMD-insensitive in-band O S N R monitoring scheme. Unlike conventional 

polarization-nulling, this scheme uses an off-center narrowband filter to 

extract a narrowband signal spectrum for nulling to estimate the ASE 

level [73]. Our proposed scheme is especially suitable for use with signals 

with a broad spectrum and is thus applicable to 40-Gb/s or even higher 

data-rate systems using in-band polarization-assisted approach for O S N R 

monitoring. As an illustration, when applied to a 40-Gb/s 12% RZ-OOK 

O T D M system with 10-ps and 20-ps D G D , the monitoring errors were 

reduced from >20 dB to <0.9 dB and <1.6 dB, respectively, demonstrating 

the promising performance of this scheme even under severe P M D 

degradation. In addition to its effectiveness, this technique features 

simplicity, on-the-fly processing, and up grade ability for use in higher 

data-rate optical systems. 
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4.3.1 Principle of Proposed Technique 
、 
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Figure 4.3: Proposed O S N R monitoring module 

Fig. 4.3 shows our proposed O S N R monitoring module which consists of 

two branches： The upper branch consists of a broadband filter to extract 

the desired optical channel and a power meter to measure the total power 

P\ (dBm). The lower branch comprises a narrowband filter positioned at 

the edge of the signal spectrum, and the signal components extracted are 

eliminated by a rotating A74 plate and linear polarizer, as reported in 

conventional polarization-nulling [40]. The narrowband noise power, Pi 

(dBm), is then measured by a power meter. With P\ and P2, we obtain the 

following: 

NEB 
/)�、（dBm/0.1nm) = + + - 101og(-^) (4.5) 

"I+'IIL NEB 

尸sig(dBm) = 101og[10 10 - 丨 ( 4 . 6 ) 

()SNR(DB/(). INM) = P邓-尸“se (4.7) 

where is the A S E noise power referenced to 0.1-nm N E B . The 

constant 3 doubles the measured A S E noise power since only half of the 

A S E noise passes through the polarizer, apoi, am, an, and 咖 are the 

insertion loss of the polarizer, the quarter-wave plate, the broadband filter, 

and the narrowband filter, respectively. NEBn and NEBt^z are the N E B of 
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the broadband filter and the narrowband filter, respectively. Our O S N R 

scheme is based on the assumption that the A S E noise is flat such that the 

narrowband A S E noise is indicative of the overall A S E noise level. 

To illustrate why our proposed scheme shows higher P M D robustness, 

we show in Fig. 4.4 the effects of P M D on conventional 

polarization-nulling and our proposed polarization-nulling scheme with 

off-center narrowband filtering. As explained in chapter 3’ under the 

influence of P M D , the signal will depolarize with a frequency-dependent 

SOP, causing signal power leakage during noise measurement and vice 

versa because the polarizer is aligned with a single S O P only. In 

conventional polarization-nulling, as shown in Fig 4.4(a), the whole 

depolarized signal spectrum will intrude into the noise measurement, 

causing very large monitoring errors. On the other hand, our proposed 

scheme shown in Fig. 4.4(b) exhibits higher P M D robustness due to two 

factors： (i) we first measure the total power without a polarizer to avoid 

any underestimation of the total aggregate power of the signal and the 

ASE； (ii) we use off-center narrowband filtering to extract a fixed portion 

of A S E and only a small portion of signal for the A S E level estimation. 

Specifically, "off-center" filtering helps ensure the amplitude of the signal 

component is small and avert the clock components, while "narrowband" 

filtering helps ensure the signal extracted has a much confined S O P so 

that it can be easily filtered out by a polarizer to exclude it in the noise 

level estimation. In this way, the monitoring errors can be very much 

reduced. 
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Figure 4.4: Effect of P M D on (a) conventional polari541zation-nulling and 

(b) polarization-nulling with off-center narrowband filtering 
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4.3.2 Theoretical Calculations 

With the use of an off-center narrowband filter the equation for the signal 

leakage ratio during ASE noise extraction under the influence of P M D can 

be modified as follows (assuming optical power splitting ratio, y, between 

the two PSPs is equal to 0.5): 

[I "(/-人SU)s\n\ii\f- DGD)df 
a = (4.8) 

> ( / - ‘ / o ) | 2 SU')df 

where a is the signal leakage ratio during noise measurement, Hkf) is the 

optical filter transfer function, fi、is the frequency offset of the filter from 

the center of the optical spectrum. 

To simplify our theoretical calculations, we assume ideal rectangular 

signal pulse and ideal rectangular filter shape. The effect of P M D on the 

measured O S N R (assuming original O S N R = 25dB/0.1nm) is shown in Fig. 

4.6 for 40Gb/s 12% RZ signal, 33% RZ signal, 50% RZ signal, and N R Z 

signal. The errors can be kept below 2 dB for 10-ps D G D in all cases when 

the filter position is offset at about 78-85% from the center carrier and the 

filter bandwidth varies from 0.25 n m to 0.1 n m (The narrower the signal 

spectrum, the narrower the filter bandwidth to be used). 
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Figure 4.5： Theoretical calculated O S N R (original OSNR： 25dB/0.1nm) for 

the proposed O S N R monitoring scheme for 40-Gb/s (a) 12% RZ signal, 

filter bandwidth = 0.25 nm, filter offset from carrier = 2.08 n m (78%), (b) 

33% RZ signal, filter bandwidth = 0.2 nm, filter offset from carrier = 0.78 

n m (81.25%) (c) 50% RZ signal, filter bandwidth 二 0. 15 nm, filter offset 

from carrier 二 0.52 n m (81.25%), and (d) N R Z signal, filter bandwidth = 

O.lniii, filter offset from carrier 二 0.26 n m (81.25%) under different D G D 

values 
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4.3.3 Experimental Results 

The proposed O S N R monitoring scheme was also experimentally 

demonstrated in a 40-Gb/s 〜12% RZ.OOK O T D M system as shown in Fig. 

4.6. The signal source was a 10-Gb/s 1550.3-nm fiber mode-locked laser 

externally modulated by a LiNbOs intensity modulator with -1 PRBS 

and the signal output was time-multiplexed to 40-Gb/s. A first-order P M D 

emulator was inserted to simulate the effects of different D G D values. The 

first branch of the O S N R monitoring module consisted of a broadband 

filter (3-dB bandwidth： 1.98 nm, NEB: ~2.2 nm) and an optical power 

meter for measuring the total power. The second branch comprised a 

narrowband optical filter (3-dB bandwidth： 0.22 nm, NEB：〜0.25 nm) for 

measuring the minimum noise power. The signal spectrum has a 3-dB 

bandwidth of 1.6 n m and 20-dB bandwidth of 4.7 nm. For such a broad 

spectrum, the 0.22-nm optical filter is narrow enough to extract a small 

portion of signal power. For RZ signals with larger pulse width and N R Z 

signals, a narrower filter (e.g. NEB： 0.1 nm) should be used to yield better 

performance. The narrowband filter was offset at 2 n m (〜85o/o) from the 

center carrier. The total insertion loss of the polarizer and the 

quarter-wave plate, the insertion loss of the broadband and narrowband 

filter were calibrated to be 4.5 dB, 2.8 dB, and 5.0 dB, respectively. For 

reference, the O S N R was set to be 25dB/0.1 n m by the optical spectrum 

analyzer (OSA). The measurement time for our scheme was within 1 min 

which was mainly limited by the maximum rotation speed of the 

quarter-wave plate and could be further improved. However, rotation of 

S O P during the course of measurement was less a problem because the 

quarter-wave plate and the polarizer would rotate continuously to search 

for the minimum power. 
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Figure 4.6： Experimental setup to evaluate our proposed scheme： (a) 

Back-to-back (b) 200-km S M F (total P M D < 1.5 ps) 

Fig. 4.7 confirms the O S N R monitoring functionality of our proposed 

scheme without P M D . The monitoring error was smaller than 0.4 dB for 

O S N R varying from about 12dB/0.1 n m to 32dB/0.1 nm. Fig. 4.8(a) shows 

the monitoring errors when D G D is introduced. Without employing 

off-center narrowband filtering, the absolute monitoring errors increased 

rapidly with D G D and exceeded 20 dB with only 10-ps D G D . However, 

with narrowband filtering offset at 2 n m from carrier employed, the 

monitoring errors were greatly reduced and remained close to zero. This 

high precision is obtained because the off-center narrowband extracts less 

than 2% of the total signal power before polarization-nulling and hence 

the noise can be estimated with a minimum influence of the depolarized 

signal power when there is P M D . 
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Figure 4.7: O S N R measured by polarization-nulling with 

off-center narrowband filtering versus O S N R measured by 

OSA. Monitoring errors <0.4 dB. 
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Figure 4.8' Measured O S N R (original： 25dB/0.1nm) with and without 

employing off-center narrowband filtering at different D G D values 
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The performance of our scheme after 200-km S M F transmission was 

also investigated. An E D F A was added after each 50-km S M F span and 

the output power from each E D F A was maintained at 1 dBm, 5 dBm, and 

10 dBm, respectively. Fig. 4.9(a) shows that the monitoring errors were 

negligible, indicating that our scheme was rather 

insensitive to chromatic dispersion, typical value of P M D (<1.5 ps in our 

case), and nonlinear effects present in long-haul SMF. For the case of 1 

d B m output power, we further added a 10-ps and 20-ps P M D emulator to 

exacerbate the situation. Maximum absolute errors were found to be <0.9 

dB and <1.6 dB, respectively, thus confirming the feasibility of this 

scheme even under severe P M D degradation in long-haul transmission. 
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Figure 4.9: O S N R monitoring errors in a 200-km S M F link (a) 

P M D <1.5 ps, Pout = 1 dBm, 5 dBm, 10 dBm, respectively, (b) 

with a 10-ps P M D emulator added and Pout = 1 dBm, (c) with 

a 20-ps P M D emulator added and Pout = 1 dBm. 
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4.3.4 Effects of Filter Position, Filter Bandwidth，and Filter 

Detuning 

The performance of our proposed scheme was further investigated with 

the effects of filter position. The experimental setup was the same as in 

Fig. 4.6 and the filter was offset at 0 nm (without offset), 1 nm, and 2 n m 

from the carrier and the respective O S N R monitoring errors were 

measured respectively for different D G D values. The results are shown in 

Fig 4.10. As expected, the further away the filtering position was from the 

carrier, the smaller the error was, because the signal components that 

would intrude into the noise measurements were smaller. Nevertheless a 

balance was also needed to ensure the filter was kept essentially iirband. 
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Figure 4.10: Measured O S N R using different filter offset position under 

different D G D values 

Another consideration was the filter bandwidth. A filter with 

narrower bandwidth could extract signal with much confined SOP but too 

narrow a filter bandwidth would substantially reduce the output power. In 
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our experiment, a 0.22-nm filter on 4.7-nm 20-dB bandwidth signal was 

enough to improve the monitoring performance significantly. Indeed, a 

compromise was needed between the filter position and filter bandwidth. 

From our theoretical calculations assuming ideal rectangular pulse and 

filter shape, a general rule is to use a filter bandwidth of 10% of the 

modulated signal bandwidth and offset this filter at about 78-85% from 

the center carrier to obtain <2 dB error (original OSNR： 25dB/0.1nm) at 

10-ps D G D . 

Since the filter offset position will affect the monitoring accuracy 

under P M D , we further investigate the effect of filter detuning with a step 

size of 0.2 nm. The results are shown in Fig. 4.11. It was shown that the 

errors were negligible when there was no P M D , and could be kept below 2 

dB so long as the filter position was offset at 1.8 n m (77%) or more from 

center carrier when there was a P M D of 10 ps. In this case, a drift of 0.2 

n m for the filter towards the carrier in our experiment will cause about a 

1-dB additional O S N R monitoring error. 
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Figure 4.11: Effects of filter detuning (step size: 0.2 nm) for two cases: (i) 

without P M D , (ii) with 10-ps P M D 
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4.4 Summary 

In this chapter, we have proposed a new and simple O S N R monitoring 

scheme based on polarization-nulling with off-center narrowband filtering. 

The off-center narrowband filter helps extract a narrowband signal 

spectrum for nulling to estimate the ASE level, thus minimizing the 

influence of the depolarized signal even when there is large P M D . 

Experimental results demonstrated the excellent performance of this 

scheme. For instance, with 25dB/0.1nm O S N R set by the O S A and 10-ps 

D G D , the monitoring error in 40-Gb/s 12% RZ.OOK O T D M system was 

measured to be >20 dB using conventional polarization-nulling, and was 

reduced to <0.9 dB by employing narrowband filtering. The proposed 

technique is simple and easily upgradeable and is expected to be a 

promising candidate for iii-band O S N R monitoring in future networks. 
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Chapter 5 Simultaneous 
OSNR and PMD Monitoring 
using Polarization Techniques 

5.1 Introduction 

As we have studied in previous chapters, irrband O S N R and P M D are two 

important parameters to be monitored in high-speed optical networks. In 

chapter 3’ we show that several polarization-assisted approaches to 

monitor irrband O S N R are significantly affected by the depolarization 

effect of P M D . In chapter 4, we present several research attempts to 

decouple the two parameters for accurate irrband O S N R monitoring. The 

question is that if polarization-assisted methods can monitor OSNR and 

P M D individually, then why not have them monitor both parameters 

simultaneously to give a more comprehensive monitoring picture? To date, 

there has been minimal research done in simultaneously monitor both 

parameters in a simple manner. In this chapter, we demonstrate that 

simultaneous O S N R and P M D monitoring can be achieved by using (i) 

enhanced RF spectral analysis assisted with a local large-DGD element 

and polarization scrambling at the receiver side, and (ii) DOP-based 

monitoring with polarization scrambling at the transmitter side. 

5.2 Previously Proposed Scheme 

A simple simultaneous O S N R and P M D monitoring module based on 

polarization-nulling assisted by polarization scrambling and orthogonal 

polarization detection was first proposed in [74] (Fig. 5.1(a)). A PC is 
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placed in front of the demultiplexer to scramble the polarization state of 

the incoming monitoring signal. After the demultiplexer, the monitoring 

signal will be split into two arms using a polarization beam splitter (PBS). 

In one arm, the monitoring signal is detected directly by a photodiode, 

electrical amplifier, and a voltmeter. In another arm, the monitoring 

signal first passes through a BPF with a narrower bandwidth to reduce 

the A S E noise, and is then detected by a photodiode, electrical amplifier, 

and a voltmeter. The maximum and minimum voltages of each arm are 

noted and expressed as follows: 

『=C；丨[/)““) +0.5/^ J (5.1) 

F r =G,[Ps々 、+ 0.5 尸把 e] (5.2) 

j / y 肌 、 + (5.3) 

厂广“=G2 [ ？ , ( 5 . 4 ) 

where a is the noise power filtering factor of the narrowband filter. The 

O S N R and depolarization factor can then be obtained by a simple 

analysis： 

——^ (5.5) 

“ 丄 『 ) ] (5.6) 

The method was reported to be able to monitor O S N R from 18 dB/O.lnm to 

36dB/0.1nm and P M D from 0 ps to 70 ps in 10-Gb/s N R Z systems (Fig. 5(b)， 

(c)). 
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Figure 5.1: (a) Simultaneous OSNR/PMD monitoring module (b) O S N R 

monitoring results for different P M D (0 ps and 70 ps) (c) P M D monitoring 

results for different OSNR (Adapted from Ref[74]) 

5.3 Simultaneous OSNR and PMD Monitoring by 

Enhanced RF Spectral Analysis 

In this section, we report on another technique to simultaneously monitor 

O S N R and P M D by analyzing the position shift and the minimum power 

of the RF spectral dip induced by cascading a large-DGD component with 

polarization scrambling at the monitoring module. Using a lOGb/s 3% 

RZ-OOK system we show that P M D can be monitored from 0 ps to 70 ps 
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with an average error of -1.8% (maximum error <5%) irrespective of the 

O S N R . Meanwhile, O S N R can be monitored from 15dB/0.1nm to 

35dB/0.1nm with errors <1 dB irrespective of the P M D . This scheme is 

simple, has large dynamic range, improves the P M D monitoring 

sensitivity at low-frequency components, and is potentially low-cost. 

5.3.1 Proposed Scheme 
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Figure 5.2: Proposed OSNR/PMD monitor based on enhanced RF spectral 

dip analysis assisted with a local large-DGD element 

Fig. 5.2 shows our proposed module for simultaneously monitoring P M D 

and O S N R . The monitoring signal is sent to an optical filter, a polarization 

controller (PC) and a piece of polarization maintaining (PM) fiber with a 

large D G D value. The D G D will generate a dip in the resulting electrical 

spectrum by destructive interference and the dip frequency is related to 

the D G D by f= 1/(2*DGD). To monitor P M D , we scramble the PC in front 

of the P M fiber and note the position shift of the RF spectral dip (i.e. the 

minimum dip frequency 4in and the maximum dip frequency 4ax) by an 

RF spectrum analyzer. The principle is as follows： By considering the 

transmission fiber as one trunk of fiber and the P M fiber in the monitoring 

module as another, we can express the overall D G D of the cascaded two 

trunks of fibers as follows [75]: 

DGD 二 丨 = + + 2/i,/?, cos( (p) (5.7) 
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where B\, B-i are the D G D of the two trunks respectively, and cp is the 

coupling angle between two trunks. From Eqn. (5.7)，the maximum and 

minimum overall D G D can be expressed as: 

DGD:觀 二 ff; + m + 2PJ’_ = (A, + IhY (5.8) 

D G D l , = P) + - = (/?, - (5.9) 

Hence, assuming B\ > 伪， 

= ( D G D _ + D G D „ J / 2 ( 5 . 1 0 ) 

(5.11) 

Since ̂ ax is proportional to D G D m m and fmm is proportional to DGDmax, 

we can calculate /3\ and P2, 

The cascade of a large-DGD component and the use of position shift as 

a monitoring parameter in our scheme actually pose some advantages 

over the previous R F powei-based P M D monitoring scheme. In previous 

scheme, when the transmission link has a small D G D , the R F spectral dip 

will be at a very high frequency and the power of the low frequency 

components changes very little, causing low monitoring sensitivity. The 

cascade of a local large-DGD component can help move the dip position to 

the low-frequency part of the spectrum even when the transmission link 

D G D is small. Monitoring at low-frequency components with a higher 

sensitivity is highly desirable because it not only eliminates the use of 

high-speed electronics for higher frequency components, but is also 

insensitive to higher-order P M D [46]. In addition, since the position shift 

instead of the absolute RF power of the dip is used, our P M D monitoring 

scheme is strictly dependent on the transmission link D G D and is 

independent of the signal bit rate. Therefore, no prior knowledge between 

the R F power level and D G D values is needed. 

O n the other hand, to monitor O S N R , we note the minimum dip 
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power during PC scrambling. The minimum power corresponds to the 

receiver noise power within a narrow resolution bandwidth after signal 

elimination. This noise power is predominantly the beat noise power 

which is inversely proportional to the OSNR. The relationship of 

minimum dip power versus O S N R can be precalibrated for different 

optical power. We can then estimate the O S N R by measuring the optical 

power and the receiver noise power, as in orthogonal delayed homodyne 

method [42]. The presence of P M D may change the dip frequency but the 

minimum power will remain fairly constant within a considerable P M D 

range, as explained in chapter 3. 

5.3.2 Experimental Results 

The proposed monitoring scheme was experimentally demonstrated in a 

10-Gb/s 3% RZ-OOK system. A pulse source, generated from a 10-Gb/s 

1550.3-nm fiber mode-locked laser, was externally modulated by a 

LiNbO:i intensity modulator with -1 PRBS. The O S N R was changed 

by combining the signal with an ASE noise source with different power. A 

P M D emulator was inserted in the link to simulate different system D G D 

values. At the receiver side, a small portion (10%) of the signal power was 

sent to the monitoring module. Due to laboratory availability, the P M 

fiber used had a D G D of 〜409 ps and the nulling frequency was at -1.22 

GHz. In actual deployment, the P M fiber can have a smaller D G D value. 

Indeed, a tradeoff has to be made when considering the D G D value of the 

P M fiber. A large-DGD P M fiber can move the spectral dip further to the 

low frequency part, but the position shift will be smaller for the same 

transmission link D G D value, resulting in a smaller monitoring 

sensitivity. A typical D G D value used is 200 ps which produces a dip at 

2.5 GHz. In this case, the dip position will change about 50 M H z when 

the transmission link D G D is only 2 ps. 
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Fig. 5.3(a)-(b) confirms the P M D and O S N R monitoring functionality 

of our proposed scheme. The monitoring errors for P M D have an average 

error of -1.8% and maximum error <5%, with O S N R varying from 15 

dB/O.lnm to 35 dB/O.lnm. On the other hand, the monitoring errors for 

O S N R were <1 dB, with P M D varying from 0 ps to 70 ps. Fig. 5.4(a) shows 

the RF spectrum when the P M D emulator was set at 40 ps. The minimum 

and maximum dip frequency measured was 1.113 G H z and 1.355 GHz, 

respectively, giving an estimated P M D of 40.1 ps. For O S N R estimation, 

Fig. 5.4(b) shows the minimum power measurement (=-41.17 dBm) when 

the O S N R was set at 35dB/0.1nm, giving an estimated O S N R of 

34.35dB/0.1nm. 
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Figure 5.3: (a) P M D monitoring results for 10-Gb/s 3% RZ-OOKby 

proposed method versus that by P M D emulator, O S N R varying from 15 

dB to 35 dB (b) O S N R monitoring results for 10-Gb/s 3% RZ-OOK by 

proposed method against that by OSA, P M D varying from 0 ps to 70 ps 
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Figure 5.4: (a) RF spectrum showing the position shift of the dip for P M D 

estimation (b) RF spectrum showing the minimum power of the dip for 

O S N R estimation 

5.4 DOP-based Simultaneous OSNR and PMD 

Monitoring 

The use of D O P to monitor O S N R and P M D has a number of advantages 

including (i) there is no need for high-speed electronics, (ii) it is simple, 

and (iii) it is unaffected by chromatic dispersion, and (iv) it is scalable to 

higher bit-rate systems. However, in chapter 3，we found that DOP-based 

O S N R monitoring is highly susceptible to the influence of P M D . Moreover, 

the use of D O P in a feedback configuration requires dithering and 

decreases the response time. Therefore, the use of D O P in a feed-forward 

configuration with a polarization scrambler at the transmitter has been 

proposed [76]-[77]. In this section, we demonstrate that, by putting the 

P M D monitor in a feed-forward configuration and applying a polarization 

scrambler at the transmitter side, O S N R and P M D can be simultaneously 

monitored using a conventional D O P analyzer, thereby making the 
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DOP-based O S N R monitoring technique practical for use in a real system 

without sacrificing the traditional use of D O P as a P M D monitoring 

metric. 

5.4.1 Principle of Operation 

10-Gb/s PBRS~1 | H R X 

Laser ^ _ r ^ ^ , H o l a ^ I ^ t o ^ i ^ 「 L ^ A _ e r , 

r ^ S E l ^ J Scrambler I O S N R / P M D I 

Source ~ ~ ^ ^ ^ I Monitoring Vbdde^^ l 

Figure 5.5: Experimental setup for DOP-based simultaneous P M D and 

O S N R monitoring 

Fig 5.5 shows the experimental setup of the DOP-based simultaneous 

O S N R and P M D monitoring scheme. It consists of a polarization 

scrambler at the transmitter side and a D O P analyzer preceded by a 

tunable filter at the receiver side. For O S N R monitoring, a degradation of 

O S N R will cause a reduction in DOP. It is because an increase in the 

unpolarized ASE noise power will decrease the ratio of the polarized 

portion of the total optical power, as explained in chapter 2. For P M D 

monitoring, the D O P of the received signal is reduced depending on both 

the D G D and the power splitting ratio, y, between the two PSPs of the 

transmission link. The use of the transmitter-side polarization scrambler 

is to cause the input SOP of the signal to cover the whole Poincare-sphere. 

When the SOP of the signal is launched at 45° in Jones Space (i.e. y 二 0.5) 

with respect to the two PSPs of the transmission link, the D O P measured 

at the receiver will be minimum. On the other hand, when the SOP of the 

signal aligns with one of the PSPs (i.e. y = 0) of the transmission link, the 
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D O P measured at the receiver will be maximum, corresponding to the 

case when there is no effective D G D . Combining the effects of O S N R and 

P M D together, we can measure the maximum and minimum D O P values 

at the receiver within one scrambling period to decouple the two effects. 

The maximum D O P value is dependent on O S N R only, while the 

minimum D O P value is dependent on both the O S N R and P M D . The 

O S N R and the depolarization factor, a, can be decoupled by the following 

equations： 

()SNR{DB/0.1 n m ) = ( 广 X ^ ^ ) (5.12) 
1 - DUI U.l 

r _ 

, 1 , •召 1、 Zf̂ iQ、 
(又：DOP�_ + (5.13) 

_ 1 0 丨0 ‘ _ 

where DOPmnx and DOFmm are the maximum and minimum D O P 

measured by the D O P analyzer within the scrambling period, respectively. 

NEBi is the noise equivalent bandwidth of the tunable filter before the 

D O P analyzer. The depolarization factor, a, actually varies from 1 to 0.5 

under different D G D in NRZ-OOK systems [46]，but the exact a-DGD 

relationship is dependent on the pulse shape and modulator chirp [69]. 

Thus, to derive D G D from a, a relationship curve has to be calibrated in 

advance, using signal with an O S N R high enough (i..e. 40clB/0.1nm) such 

that the A S E noise will cause negligible influence. In this way, 

simultaneous O S N R and P M D monitoring can be achieved. 

5.4.2 Experimental Results 

The feasibility of this scheme is demonstrated in a 10-Gb/s N R Z 

experiment as shown in Fig. 5.5. The monitoring results are shown in Fig. 

5.6. It is reported that the scheme can measure P M D from 0 to 80 ps 

(maximum error <3 ps) irrespective of O S N R and O S N R from 14dB/0.1nm 
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to 25dB/0.1nm irrespective of P M D (maximum error < IdB). In Fig 5.6(a), 

the maximum P M D monitoring error typically occurs in the case of small 

D G D value because the monitoring sensitivity is lower. In Fig. 5.6(b), as 

the O S N R gets larger, the maximum D O P approaches one so the errors 

get larger by Eqn. (5.12). Beyond 25dB/0.1nm O S N R the D O P approaches 

one and we cannot determine the exact O S N R value but can only say that 

the O S N R of the signal is >25dB/0.1nm. Fortunately it has been shown in 

many reports that an O S N R = 25dB/0.1nm is good enough to maintain a 

B E R better than lO -̂  so it is not necessary to differentiate the higher 

values of O S N R [30]. On the other hand, when the O S N R falls below 

14dB/0.1nm the D O P versus D G D curve will become even flatter when the 

D G D value is small and has low sensitivity, so the P M D monitoring 

results will have relatively larger errors. 

(a) 仆 
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Figure 5.6: (a) P M D monitoring results for 10-Gb/s N R Z signal by 

proposed method versus that by P M D emulator, O S N R varying from 14 

dB to 25 dB (b) O S N R monitoring results for 10-Gb/s N R Z signal by 

proposed method against that by OSA, P M D varying from 0 ps to 80 ps 

5.5 Summary 

In this chapter, we report on the experimental results of two simultaneous 

O S N R and P M D monitoring schemes. The first one is based on enhanced 

RF spectral dip analysis assisted with a local large-DGD element and 

polarization scrambling at the monitoring module. The second one is 

based on maximum and minimum D O P monitoring with polarization 

scrambling at the transmitter. While the first one has better dynamic 

range for O S N R , the latter one is not affected by the chromatic dispersion. 

Experimental results demonstrate the feasibility of both schemes and the 

information obtained will be important for efficient network management. 
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Chapter 6 Conclusions and 
Future Works 

6.1 Summary of the Thesis 

In this thesis, we tackle two of the most challenging issues in the field of 

optical performance monitoring: O S N R monitoring and P M D monitoring. 

The major contribution of this thesis can be summarized as follows: 

1. W e have provided a detailed quantification of the monitoring errors 

of in-band polarization assisted O S N R monitoring schemes against 

D G D for different pulse widths. Our analysis will be valuable for 

network operators to evaluate whether the schemes are good 

enough to be deployed based on system conditions. 

2. W e have proposed and demonstrated a simple PMD-insensitive 

O S N R monitoring scheme by using two filters of which one is 

wideband to extract the whole channel and one is narrowband and 

offset from center carrier to extract the A S E noise with minimum 

influence of depolarized signal under P M D . When applied to a 

40-Gb/s 12% RZ-OOK O T D M system with 10-ps and 20-ps D G D , 

the monitoring errors were reduced from >20 dB to <0.9 dB and 

<1.6 dB, respectively. The experimental results demonstrated the 

promising performance of this scheme even under severe P M D 

degradation. 

3. W e have demonstrated two simultaneous O S N R and P M D 

monitoring techniques with one based on enhanced RF spectral 

analysis and the other based on DOP. For the first scheme based on 

the enhanced RF spectrum analysis, using a 10-Gb/s 3% RZ-OOK 
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system, we showed that P M D could be monitored from 0 ps to 70 ps 

with an average error of 〜1.8% (maximum error <5%) irrespective 

of the O S N R and O S N R could be monitored from 15dB/0.1nm to 

35dB/0.1nm with errors <1 dB irrespective of the P M D . For the 

second scheme based on D O P analysis, using a 10-Gb/s N R Z system, 

we showed that P M D could be monitored from 0 to 80 ps (maximum 

error <3 ps) irrespective of O S N R and O S N R could be monitored 

from 14dB/0,lnm to 25dB/0.1nm irrespective of P M D (maximum 

error <1 dB). These two schemes will be attractive candidates for 

advanced 0 P M applications of the future. 

6.2 Future Works 

There are several aspects in which the research can be continued. In our 

analysis on the robustness of in-band polarization-assisted O S N R 

monitoring schemes against D G D , we assume that the polarization effect 

involved is first-order P M D only. The effects of high-order P M D , PDL, and 

P D G have not been touched upon and further studies concerning these 

ruinous effects can be carried out. In addition, our study is concerned with 

NRZ- and RZ-OOK modulation formats only. More analyses on carried 

suppressed RZ-OOK, alternate-chirped RZ-OOK, and all forms of D P S K 

formats which attract so much attention recently can be performed. 

A common view of the ultimate 0 P M envisions a simple device that 

can analyze an optical signal and characterize multiple parameters and a 

suite of impairments simultaneously. W e have demonstrated 

simultaneous O S N R and P M D monitoring. The most probable next step 

will be to offer O S N R , P M D , and C D monitoring in a simple monitoring 

module as there have been many C D monitoring techniques demonstrated 

which use similar principles to that in P M D monitoring. It is, however, a 
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great research challenge to decouple one type of impairment in the 

presence of others in the same time. Additional research effort in this area 

is surely worthwhile. 

Finally, a great challenge ahead is to determine the "right" monitoring 

information to be collected, i.e. in terms of location, frequency of collecting 

information, and types of monitoring information. This involves working 

with higher layer and mathematical optimization. Further research 

endeavor in this direction will be vital to achieve the most effective 

deployment of physical layer 0 P M . 

87 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 

in Optical Networks  

Bibliography 

[1] Eugene Park, "Next generation performance monitoring systems for 

optical metropolitan networks", submitted to IEEE Communications 

Magazine. 

[2] Bellcore Generic Requirements GR-253-CORE, Synchronous Optical 

Network (SONET) Transport Systems: CommonGeneric Criteria. 

[3] ITU-T G.957 — Optical Interfaces for Equipments and Systems 

Relating to the Synchronous Digital Hierarchy, International 

Telecommunications Union. 

[4] ITU-T G.958 - Digital Line Systems Based on the Synchronous Digital 

Hierarchy for use on Optical Fiber Cables, International 

Telecommunications Union. 

[5] Giammarco Rossi, Timonthy E. Dimmick, and Daniel J. Blumenthal, 

"Optical performance monitoring in reconfigurable W D M optical 

networks using subcarrier multiplexing", IEEE Journal of Lightwave 

Technology, vol. 18，no. 12, pp. 1639-1648, December 2000. 

[6] Lian Kuan Chen, M a n Hong Cheung, Chun Kit Chan, Frank Tong, 

"Performance monitoring in transparent reconfigurable W D M 

networks", in Proc. OECC2003, Shanghai, PRC, 2003, Paper 14D1.1. 

[7] Alex Vukovic, Michel Savoie, Heng Hua, "Performance monitoring 

challenges of next generation networks", Communications Systems 

and Networks (CSN 2003), lASTED Conference, Benalmadena, Spain, 

2003. 

[8j Vinod Ramakrishnan, M . Govindarajan, and John Klonick, "Intelligent 

performance monitoring in optical networks", Telecommunications 

Online, January 2001. 

[9] Abdelhafid Amrani, Jesus Roldan, and Gabriel Junyent, "Optical 

88 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

monitoring system for scalable all-optical networks", in Proc. LEOS 

1997�San Francisco, USA, 1997，paper W E E S . 

[10] A. Richter, W . Fischlei•’ H. Bock, R. Bach, and W . Grupp, "Optical 

performance monitoring in transparent and configurable D W D M 

networks", I EE Proc. -Optoelectronics, vol. 149, no. 1，pp. 1-5，February 

2002. 

[11] Byrav Ramamurthy, Debasish Datta, Helena Feng, Jonathan P. 

Heritage, and Biswanath Mukherjee, "Impact of transmission 

impairments on the teletraffic performance of wavelength-routed 

optical networks", IEEE Journal of Lightwave Technology, vol. 17，no. 

10, pp. 1713 - 1723, October 1999. 

[12] Robert Friskney，Kevin Warbrick, Simon Poliakoff, and Richard 

Heath, "Link-based photonic path performance prediction and control", 

in Proc. ECOC2002, Copenhagen, Denmark, 2002, paper 7.4.3. 

[13] G. R. Hill, P. J. Chidgey, F. Kaufhold, T. Lynch, 0. Sahlen，M. 

Gustavsson, M . Janson, B. Lagerstrom, G. Grasso, F. Meli, S. 

Johansson, J. Ingers, L. Fernandez, S. Rotolo, A. Antonielli, S. 

Tebaldini，E. Vezzoni, R. Gaddedu, N. Caponio, F. Testa, A. Scavennec, 

M . J. O'Mahony, J. Zhou, A. Yu, W . Sohler, U. Rust, and H. Herrmann, 

"A transport network layer based on optical network elements", IEEE 

Journal of Lightwave Technology, vol. 11，no. 5/6, pp. 667 - 679, 

May/June 1993. 

[14] William T. Anderson, Janet Jackel, G. -K. Chang, Hongxing Dai, Wei 

Xin, Matthew Goodman, Chris Allyn, Mario Alvarez, Owen Clarke, 

Albert Gottlieb, Fred Kleytman, Jay Morreale, Virginia Nichols, 

Anastasios Tzathas, Ravindra Vora, Linden Mercer, Henry Dardy, 

Earl Renaud, Leann Williard, James Perreault, Ray McFarland, and 

Terry Gibbons, "The M O N E T project 一 a final report, “ IEEE Journal of 

Lightwave Technology, vol. 18，no. 12, pp. 1988 - 2009, December 

2000. 

89 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

[15] Giampaolo Bendelli, Carlo Cavazzoni, Raffaele Girardi, Roberto Lano, 

"Optical performance monitoring techniques", in Proc. ECOC 2000, 

Munich, Germany, 2000, vol. 4，pp. 113-116. 

[16] Richard Habel, Kim Roberts, Alan Solheim, and James Harley, 

"Optical domain performance monitoring", in Proc. OFC 2000, 

Baltimore, Maryland, 2000, paper WK3-1. 

[17] D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. 

Ostar, M . Preiss, and A. E, Willner, "Optical performance monitoring", 

IEEE Journal of Lightwave Technology, vol. 22, no. 1，pp. 294 - 304, 

January 2004. 

[18] Richard E. Neuhauser, "Optical performance monitoring (0PM) in 

next-generation optical networks", A P O C 2002, (Invited paper), in Proc. 

SPIE 2002, Shanghai, China, 2002，paper 4909-47. 

[19] Q. He，D. Ellis, K. Beckley, R. Maaskant, P. Mock, D. Al.Salameh， 

Richard DeSalvo，R. McLeod, and W.H. Loh, "Enabling the dynamic 

enablers： advanced optical performance monitors，，，in Proc. LEOS2002, 

Scotland, 2002, paper TuJ4. 

[20] Hitoshi Takeshita and Naoya Henmi, "A novel data format free 

bit-by-bit quasi-error monitoring method for optical transport network" 

in Proc. OFC 1999, San Diego, USA, 1999, paper FJ2-1. 

[21] A. L. J. Teixeii.a, P. S, Andre, M . Lima, J. F. Da Rocha, J. L. Pinto, 

"Asychronous optical performance monitor techniques for D W D M 

optical networks", in Proc. ICTON2002, Warsaw, Poland, 2002，paper 

Mo.A.l. 

[22] Dany Yu, and William Yang, "Optical channel performance monitors", 

Light Reading, March 2002. 

[23] Tarof L., Performance Monitoring in the Network, CITO Workshop 

"Control approaches for optical networks - optimizing the 

opto-electronics boundaries", Ottawa, Canada, December 2002. 

[24] Keith Beckley, "Optical performance monitors continue to chase 

90 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

market", Lightwave Magazine, April 2004. 

[25] Sava Stanic，Suresh Subramaniam, Hongsik Choi, Gokhan Sahin, 

and Hyeong-Ah Choi, "On monitoring transparent optical networks", in 

Proc ICPPWV2, Vancouver, Canada, 2002, paper 1530-2016. 

[26] J. Strand and A. Chiu, IETF Draft-ieft-ipo-Impairments-05. 

[27] TIA/EIA'526-19 standard： OFSTP-19 Optical signal-to-noise ratio 

measurement procedures for dense wavelength-division systems. 

[28] "Optical signal to noise ratio (OSNR)", white paper from Cicadiant 

Systems Inc., December 2002. 

[29] "BER vs. OSNR", white paper from Cicadiant Systems Inc., February 

2003. 

[30] D. C. Kilper and W . Weingartner, "Monitoring optical network 

performance degradation due to amplifier noise", IEEE Journal of 

Lightwave Technology, vol. 21, no. 5，pp. 1171-1178，May 2003. 

[31] D. C. Kilper, S. Chandrasekhar, L. Buhl, A. Agarwal, and D. Maywar, 

"Spectral monitoring of O S N R in high-speed networks", in Proc. ECOC 

2002, Copenhagen, Denmark, 2002, paper p7.4.4. 

[32] H. Suzuki and N. Takachio, "Optical signal quality monitor built into 

W D M linear repeaters using semiconductor arrayed waveguide grating 

filter monolithically integrated with eight photodiodes", Electronics 

Letters, vol. 35，pp. 836-837, M a y 1999. 

[33] Wenlu Chen, Shan Zhong, Zhonghua Zhu, Wei Chen, and Yung-Jui 

(Ray) Chen, ”Adding O S N R and wavelength monitoring functionalities 

on a double-resolution-AWG-based power monitoring circuit", IEEE 

Photonics Technology Letter, vol. 15，no. 6, June 2003. 

[34] K. Asahi, M . Yamashita, T. Hosoi, K. Nakaya, and C. Konoshi, 

"Optical performance monitor built into E D F A repeaters for W D M 

networks", in Proc. OFC 98, San Jose, USA, 1998, paper Th02. 

[35] J. Chappell and S. DeMange, "Optical signal-to-noise ratio 

characterization demands precision and flexibility", WDM Solutions, 

91 



On Optical Signal-to-Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
m Optical Networks  

^ • ^ ― ^ ― — — — — ^ ― — — — — ^ ― — — — — — — 

vol. 2, no. 6’ pp. 55-60, Nov. 2000. 

[36] Chun-Liang Yang and San-Liang Lee, " O S N R monitoring using 

double-pass filtering and dithered tunable reflector", IEEE Photonics 

Technology Letters, vol. 16，no.6, pp.1570-1572，June 2004. 

[37] S. K. Shin, K. J. Park, and Y. C. Chung, ”A novel optical 

signal-to-noise-ratio monitoring technique for W D M networks", in Proc. 

OFC，2000, Baltimore, Maryland, 2000, paper W K 6 . 

[38] C. J. Youn, S. K. Shin, K. J. Park, and Y. C. Chung, "OSNR 

monitoring technique based on high-frequency receiver noise，，，APOC 

2001, in Proc. SPIE 4584, 2001. 

[39] M . Rasztovits-Wiech, M . Banner, and W . R. Leeb, "Optical 

signal-to-noise ratio measurement in W D M networks using 

polarization extinction", in ECOC '98, Madrid, Spain, 1998，pp. 

549-550. 

[40] J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, " O S N R monitoring 

technique using polarization-nulling method", IEEE Photon. TechnoL 

Lett” vol. 13，pp. 88-90’ Jan 2001. 

[41] Mats Petei.sson，Henrik Sunnerud, Magnus Karlsson, and Bengt'Erik 

Olsson, "Performance monitoring in optical networks using stokes 

parameters", IEEE Photonics Technology Letters, vol. 16，no. 2, 

February 2004. 

[42] C. Y. Joun, K. J. Park, J. H. Lee, and Y. C. Chung., " O S N R monitoring 

technique based on orthogonal delayed-homodyne method", IEEE 

Photon. TechnoL Lett” vol. 14, pp.1469-1471, Oct 2002. 

[43] Howard R. Stuart, "Optical performance monitoring using 

narrowband radio frequency analysis at the half-clock frequency", 

Journal of Optical Networking, vol. 3，no. 6，pp. 396-409, June 2004. 

[44] Zhenning Tao, Zhangyuan Chen, Libin Fu, Deming W u , and Anshi Xu, 

"Monitoring of O S N R by using a Mach-Zehnder interferometer", 

Microwave and Optical Technology Letters, vol. 30’ no.l, pp. 63-65, 

92 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

M a y 2001. 

[45] Step ha n Wielandy, Michael Fishteyn, and Benyuan Zhu, "Optical 

performance monitoring using nonlinear detection", IEEE Journal of 

Lightwave Technology, vol. 22，no. 3，pp784-793, March 2004. 

[46] A. E. Willner, S. M . R. Motaghian Nezam, L. S. Yan, Z. Pan, and M . C. 

Hauer, "Monitoring and control of polarization-related impairments in 

optical fiber systems", IEEE Journal of Lightwave Technology, vol. 22, 

no. 1，pp. 106-125, January 2004. 

[47] H. Sunnerud, M . Karlsson, and P. A. Andrekson, "A comparison 

between N R Z and RZ data formats with respect to PMD-induced 

system outage probability", IEEE Photonics Technology Letter, vol. 13， 

no. 5，pp. 448-450, May 2001. 

[48] H. Bulow, “System outage probability due to first- and second- order 

PMD", IEEE Photonics Technology Letter, vol. 10，no. 5, pp. 696-698, 

M a y 1998. 

[49] D. Penninckx, F. Roy, S, Lanne, and J. P. Thiery, "Statistical study of 

dynamic polarization-mode-dispersion compensation based on degree 

of polarization monitoring", Microw. Optic. Technol. Lett, vol. 25, no. 1， 

pp. 41-43, M a y 2000. 

[50] Ivan P. Kaminow and Tingye Li, Optical Fiber Telecommunications 

IVB Systems and Impairments, Academic Press, 2002 

[51] Q. Yu and A. E. Willner, "Performance limits of first-order P M D 

compensators using fixed and variable D G D elements", IEEE 

Photonics Technology Letter, vol. 14，no. 3，pp. 304-306, March 2002. 

[52] C. Fi.ancia，F. Bruyere, J. -P. Thiery, and D. Penninckx, "Simple 

dynamic polarization mode dispersion compensator", lEE Electronics 

Letter, vol. 35, no. 5，pp. 414-415，March 1999. 

[53] S. Bahsoun, J. Negel, and C. Poole, "Measurement of temporal 

variations in fiber transfer characteristics to 20 G H z due to 

polarization-mode-dispei'sion", in Proc. ECOCVO, pp. 1003, 

93 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

postdeadline paper. 

[54] F. Heismann, D. A. Fishman, and D. L. Wilson, "Automatic 

compensation of first order polarization mode dispersion in a 10 Gb/s 

transmission system", in Proc. ECO CVS, vol. 1，pp. 529*530. 

[55] H. Y. Pua, K. Peddanarappagaii, B. Zhu, C. Allen, K. Demarest, and 

R. Hui, "An adaptive first-order polarization-mode-dispersion 

compensation system aided by polarization scrambling' Theory and 

demonstration", IEEE Journal of Lightwave Technology, vol. 18，no. 6, 

pp. 832-841, June 2000. 

[56] T. Takahashi, T. Imai, and M . Aiki, "Automatic compensation 

technique for timewise fluctuating polarization mode dispersion in 

in-line amplifier systems", lEE Electronics Letter, vol. 30, no. 4， 

pp.348-349, February 1994. 

[57] G. Ishikawa and H. Ooi, "Polarization-mode-dispersion sensitivity 

and monitoring in 40-Gb/s O T D M and 10-Gbit/s N R Z transmission 

experiments" in Proc. OFC'98, Washington, U S A , 1998’ paper W C 5 . 

[58] S. M . R. Motagian Nezam, Y. W . Song, A. B. Sahin, Z. Pan, and A. E. 

Willner, “PMD monitoring in W D M systems for N R Z data using a 

chromatic-dispersion regenerated clock" in Proc. O F C 2002, Anaheim, 

USA, 2002, pp. 200-202, paper W E S . 

[59] M . Hayashi, H. Tanaka, and M . Suzuki, "Low frequency band 

monitoring method for P M D compensation", lEE Electronics Letter, 

vol. 38’ no. 24, pp.1564-1565, November 2002. 

[60] D. Sandel, M . Yoshida-Dierolf, R. Noe, A. Schopflin, E. Gottwald, and 

G. Fischer, "Automatic polarization mode dispersion compensation in 

40Gb/s optical transmission systems, “ lEE Electronics Letter, vol. 34’ 

no. 23, pp. 2258-2259, Nov. 1998. 

[61] S. M . R. Motaghian Nezam, Y. Wang, M . Hauer, S. Lee, and A. E. 

Willner, "Simultaneous P M D monitoring of several W D M channels 

using subcarrier tones", in Proc. CLEO 2001, Baltimore, Maryland, 

94 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

2001, pp. 561-563, paper CFEl. 

[62] F. Buchali, S. Lanne, J. —P. Thiery, W . Baumert, and H. Bulow, “Fast 

eye monitor for 10 Gbit/s and its application for optical P M D 

compensation", in Proc. OFC 2001, Anaheim, USA, 2001， 

TuP5-l/TuP5-3. 

[63] F. Buchali, W . Baumert, H. Bulow, and J. Poirrier, “A 40 Gb/s eye 

monitor and its application to adaptive P M D compensation", in Proc. 

OFC2002, Anaheim, USA, 2001, pp. 202-203, paper W E 6 . 

[64] B. W . Hakki, "Polarization mode dispersion compensation by phase 

diversity detection", IEEE Photonics Technology Letters, vol. 9, no. 1， 

January 1997. 

[65] R. Noe, D. Sandel, V. Mirvoda, F. Wust, and S. Hinz, "Polarization 

mode dispersion detected by arrival measurement of 

polarization-scrambled light", IEEE Journal of Lightwave Technology, 

vol. 20, no. 2，February 2002. 

[66] Nobuhiko Kikuchi, "Analysis of signal degree of polarization 

degradation used as control signal for optical polarization mode 

“ dispersion compensation", IEEE Journal of Lightwave Technology, vol. 

19’ no. 4，April 2001. 

[67] S. M . R. Motaghian Nezam, A. Sahin, J. McGeehan, Z. Pan, T. Luo, Y. 

Song, "Polarization state rotation filtering for single sideband 

generation and carrier suppression using a variable dgd element", in 

Proc. OFC2003, Atlanta, USA, 2003, paper FM7. 

[68] S. M . Reza Motaghian Nezam, John E. McGeehan, and Alan E. 

Willner, "Theoretical and experimental analysis of the dependence of a 

signal's degree of polarization on the optical data spectrum", Journal of 

Lightwave Technology, vol. 22, no. 3，pp.763-772, March 2004 

[69] Nobuhiko Kikuchi, “Analysis of signal degree of polarization 

degradation used as control signal for optical polarization mode 

dispersion compensation", IEEE Journal of Lightwave Technology, vol. 

95 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

19, no. 4，pp. 480-486, April 2001. 

[70] Govind P. Agrawal, Nonlinear Fiber Optics, 3rd edition, Academic 

Press, 2001. 

[71] J. H. Lee and Y. C. Chung, "Improved O S N R monitoring technique 

based on polarization-nulling method", lEE Electronics Letter, vol. 37， 

110.15，pp. 972 一 973, July 2001. 

[72] Z. Zalevsky, D. Abraham, V. Eckhouse, and Y. Beiderman, "In-band 

optical signal-to-noise ratio network monitoring using periodic 

polarization modulation", Journal of Optical Networking, vol. 2，pp. 

303-314, Sept 2003. 

[73] M . H. Cheung, L. K. Chen, and C. K. Chan, "A PMD-insensitive 

O S N R monitoring scheme based on polarization-nulling with off-center 

narrowband filtering", in Proc. OFC 2004, Los Angeles, CA, 2004， 

paper FF2. 

[74] L. S. Yan, Y. Q. Shi, X. Steve Yao, and A. E. Willner, "Simultaneous 

montioring of both O S N R and P M D using polarization techniques", in 

Proc. ECOCm�Rimini, Italy, 2003，paper We4.P.133. 

[75] M . Wegmuller，S. D e m m a , C. Vine go ni, and N. Gisin, "Emulator of 

first- and second-order polarization-mode disperision", IEEE Photonics 

Technology Letter, vol. 14, no.5, pp. 630-632，May 2002. 

[76] H. Rosenfeldt, Ch. Knothe, R. Ulrich, E. Brinkmeyer, U. Feiste, C. 

Schubert, J. Berger, R. Ludwig，H. G. Weber, A. Ehrhardt, "Automatic 

P M D compensation at 40 Gbit/s and 80 Gbit/s using a 3-dimensional 

D O P evaluation for feedback", in Proc. OFC2001, Anaheim, USA, 2001， 

paper PD27-1-PD27-3. 

[77] H. Rosenfeldt, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. 

Berger, R. Ludwig, H. G. Weber, A. Ehrhardt, "Feed-forward approach 

for automatic PMD-compensation at 80 Gbit/s over 45 k m installed 

single mode fiber", in Proc, ECOC 2001, Amsterdam, the Netherlands, 

vol.6, pp.68-69, paper PD.B.l.l. 

96 



On Optical Signal-to'Noise Ratio and 
Polarization-Mode-Dispersion Monitoring 
in Optical Networks  

Appendix - List of publications 

1. Lian-Kuan Chen，Man-Hong Cheung, Chun-Kit Chan, Frank Tong, 

"Performance monitoring in transparent reconfigurable W D M 

networks", in Proc. OECC 2003, Shanghai, PRC, 2003, Paper 14D1.1 

(Invited paper). 

2. Man-Hong Cheung, Lian-Kuan Chen, Chun-Kit Chan, "On robustness 

of in-band polarization-assisted O S N R monitoring schemes against 

PMD", in Proc. CLEO/PR 2003, Taipei, Taiwan, 2003, Paper WIJ. 

3. Man-Hong Cheung, Lian-Kuan Chen, Chun-Kit Chan, “A 

PMD-insensitive O S N R monitoring scheme based on 

polarization-nulling with off-center narrowband filtering", in OFC 

2004, Los Angeles, USA, paper FF2. 

4. Guo-Wei Lu, MairHong Cheung. Lian-Kuan Chen, ChuirKit Chan, 

"Simultaneous P M D and O S N R monitoring by enhanced RF spectral 

dip analysis assisted with a local large-DGD element", to appear in 

Proc. ECOC 2004, Stockholm, Sweden. Paper We4.R 

5. Man-Hong Cheung, Lian-Kuan Chen, Chun-Kit Chan, 

“PMD-insensitive O S N R monitoring based on polarization-nulling 

with off-center narrowband filtering", to appear in IEEE Photonics 

Technology Letter, vol. 16, no. 11，Nov 2004. 

97 



i
s
 



CUHK Libraries , 

_ _ _ 丨 

DOMmMBqo 




