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Speaker recognition is an attractive field of research nowadays, which makes use of 

one of the most natural and the least obtrusive biometric measures. It refers to the use 

of a speaker's spoken words to identify his or her identity. In real applications, the 

bandwidth of speech data used is usually limited. This may be one of the factors that 

degrade the recognition performance. In this thesis, we focus on the 

speaker-dependent information in different frequency subbands. 

The use of spectral envelope features extracted from narrowband NB (0 - 4kHz) 

and higher frequency band HB (4 - 8kHz) in text-dependent speaker identification 

(SID) is studied. It is shown that the importance of features from NB and HB in 

speaker recognition is text-dependent. Fusing features from these two bands based on 

their importance is investigated with two different approaches. They are model level 

fusion and feature level fusion. 

ii 



We extend our study on subband spectral envelope features to utterance-level 

SID. The result of text-dependent SED indicated that some words are more reliable in 

discriminating speakers than the others. Based on this result, text-dependent weights 

used in linear combination of likelihood scores from individual word are designed. 

Recognition accuracy can be improved by this method. 

With a better understanding on the contribution of features from NB and HB, we 

can fuse them together in a proper way so as to maximize the benefits from these two 

bands. Similarly, we can assign heavier weights to those words that show higher 

reliability in recognizing speakers for utterance-level SID. The approach of applying 

confidence weights in speaker recognition provides a possible way to improve the 

performance. 
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摘要 

説話人識別是一個引人目屬目的研究領域，它利用了最自然最簡單的生物璧定術。 

本文將針對利用語音來識別説話人的身份。在實際的應用中，語音數據的帶寬通 

常是被限制的，這會導致識別性能的降低。在本文中我們重點研究説話人相關的 

子帶信息。 

在文本相關的説話人璧別實驗中，我們研究了從窄頻帶和高頻帶提取出來 

的頻譜包絡特徵參數。我們發現窄頻帶和高頻帶特徵參數的重要性是文本相關 

的。根據他們的重要性，我們可以把這兩種特徵參數融合在一起加以綜合利用。 

我們詳細討論了兩種融合的辦法。他們是特徵參數層次的融合和模型層次的融 

合。 

我們把對子帶頻譜包絡特徵參數的研究拓展到語句層次的説話人鑑定實驗 

上。以文本相關的説話人鑑定實驗結果顯示某些文字區分説話人的性能比其他文 

字更加可靠。根據不同文字可靠性的表現，我們用文本相關的權重對不同文字的 

似然度得分進行錢性加權組合。用這種辦法我們提高了識別性能。 

在更好的了解窄頻帶和高頻帶特徵參數的重要性之後我們進而可以尋找到 

使性能提高最大化的辦法。類似的，在語句層次的説話人識別實驗中，我們給更 

可靠的語句加以更高的權重。這個施加可信度權重的辦法，給説話人鑑定性能的 

提高帶來了可能。 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

In modem society, there are a wide variety of occasions requiring reliable identity 

recognition. Many commercial applications involve the process of user authentication 

so that services are provided only to authorized users. An example is the personal 

identification number (PINs) for automated teller machines (ATMs). Recently, 

authenticating humans by biometrics receives great attraction as it can provide 

convenience to users while maintaining a high degree of security. Biometrics 

authentication refers to the automatic recognition of individuals based on their 

physiological and/or behavioral characteristics [1]. Recognizing users by voice is one 

of the most commonly used techniques. It offers one of the most natural and the least 

obtrusive biometrics measures. What the user has to do is speaking a few words. In 

this research, we focus on the speaker-dependent information in different frequency 

subbands. 

User authentication of speaker's voice is done either by confirming whether one 

is the claimed person or determining one's exact identity. A wide variety of occasions 

require user authentication so that only authorized users can access the provided 

services. Examples are secure access to buildings and computer systems, 

telephony-based transactions, ATMs and e-commerce. 

Traditionally, user authentication is performed with knowledge-based techniques 

(e.g. passwords) or token-based techniques (e.g. smart cards and keys). However, both 
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Chapter 1 Introduction 

types of systems have their drawbacks and limitations. Passwords may be stolen by 

imposters. Typically, for the convenience of memorizing, people set their passwords 

based on words or digits that they can remember easily (e.g. birthday of family 

members). This increases the risk because the intruder can easily conjecture the 

passwords if they can somehow obtain the users personal information such as birthday. 

Therefore, such system is not secure enough. Using smart cards and keys in access 

control is not reliable enough as they can be duplicated, lost or stolen. 

1.1. Biometrics for User Authentication 

Biometrics-based recognition refers to the automatic recognition of individuals based 

on their physiological and/or behavioral characteristics [1]. Examples of biometrics 

include face, voice, iris and fingerprint. Among various types of biometrics, 

fingerprint has been accepted as an effective way of identity verification for a long 

time. In recent years, many applications start to use other biometrics. For example, the 

Amsterdam Airport Schiphol began to use iris recognition in the border passage 

system in October 2001 (the Schiphol Privium scheme) [2]. 

In general, biometrics can be divided into two types: physiological and 

behavioral (see Figure 1-1). Physiological characteristics, include fingerprint and iris 

pattern, are physical features and they are basically invariant without trauma to the 

individual. On the other hand, behavioral characteristics, including signature and 

voice, may not remain invariant. They are influenced by physical and emotional 

conditions. 
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Typology of identification methods 

Possessions Knowledge 

Characteristics 

Manual and semi-
Biographies 

automated biometrics 

Automated biometrics 

Physiological Behavioral 

Face Fingerprint Hand Eye Signature Voice Keystroke 

Figure 1-1 Typology of identification methods with examples for the biometrics type 

[3] 

Strengths and Weaknesses of using Biometrics-based Recognition 

By using biometrics-based recognition, a user is no longer recognized by what he /she 

remembers (i.e. password) or what he/she possesses (i.e. smart cards). Instead, user 

authentication is done by recognizing the user's biometrics characteristics. Compared 

with the traditional knowledge-based and token-based techniques, biometrics system 

can provide more convenience to users and a sufficiently high degree of security at 

the same time. This is because biometrics cannot be forgotten. Users no longer need 

to remember long and complicated passwords. Also, biometrics are supposed to be 

permanent and unchangeable. It is relatively difficult to copy, steal or forge biometrics 

with as much ease as passwords and keys. Therefore, it can maintain a relatively high 
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degree of security. 

Nevertheless, there are many applications that choose to use traditional 

techniques for user authentication. Indeed, the accuracy of biometrics-based systems 

with current technologies still needs improvement [1]. For example, when a user's 

voice is seriously altered due to sickness or verification is processed under noisy 

environment, it will degrade the recognition performance. These types of problems 

concern the need of more research study on the technology area for robustness. 

General Considerations on Using Biometrics 

In order to be used in user authentication, the physiological or behavioral 

characteristics must meet the following requirements [1]: 

1. Universality: obtainable from every individual. 

2. Distinctiveness: distinctive between different people. 

3. Permanence: sufficiently invariant over a period of time. 

4. Collectability: quantitatively measurable. 

There are also some other considerations on choosing the type of biometrics for 

practical applications. They include the accuracy that the system needs and the 

availability of equipments (e.g. sensor used to collect the biometrics data) so as to 

attain the required level of performance. Another consideration is the willingness of 

users to provide a particular type of biometrics feature to use. Lastly, the required 

level of security is also needed to consider. This is because some types of biometrics 

are easier to be forged by imposters than the others (e.g. signature versus fingerprint). 
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Advantages and Disadvantages of Various Biometrics 

Each type of biometrics has its own advantages and disadvantages. The choice is 

application-dependent. Among the various types of biometrics, fingerprint, iris, face 

and voice are most commonly used. Their strengths and weaknesses are listed in Table 

1-1. 

Biometrics Advantages Disadvantages  
Fingerprint • Highly distinctive. Different • Not applicable to some people 

for different people, even who always have a number of 
different on each finger of the cuts and bruises on their fingers 
same person. due to their occupation.  

Iris • Highly distinctive. • Not suitable to use for people 
• Difficult to change the with visual impairment, 

texture of iris artificially. • Inconvenient to use as it 
requires equipment to scan the 
iris pattern. 

Face • Applicable to all people. • Not highly distinctive between 
• Easy to capture face images different people (e.g. identical 

by camera. twins). 
• Non-intrusive and convenient • Impose a number of restrictions 

to use. on how the facial images are 
obtained (e.g. in a fixed and 
simple background) 

Voice • Easy to collect speech data • Not applicable to people with 
by microphone or telephone. speech impairment. 

• Low equipment cost. • Not permanent. A person's 
• Non-intrusive and convenient voice changes over time due to 

to use. aging, medical conditions or 
emotional state. 

• Not very distinctive between 
people. 

Table 1-1 Comparison of several biometrics technologies 
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1.2. Voice-based User Authentication 

Voice-based user authentication, or named as speaker recognition, is the focus of this 

research. Using voice in user authentication is one of the most natural and unobtrusive 

measures, compared with those using iris and fingerprint. Users are more willing to 

adopt this technique of authentication. Regarding on the practical considerations, 

speaker recognition does not require special measuring equipment. Only microphone 

or telephone is needed. Compared with other biometrics, the equipment cost for 

speaker recognition is relatively low. It provides an economical means for user 

authentication. Therefore, speaker recognition is suitable in many different areas, 

especially for telephone-based applications. 

Figure 1-2 describes the general operation of a speaker recognition system. 

Given an input utterance from an unknown speaker, the acquired speech signal is 

analyzed to extract features of the speaker's voice. Afterwards, the measured features 

are compared with the prototypes of a set of known speakers in the system. A decision 

is made through one of two possibilities. Either the system verifies the claimed 

speaker, or it identifies a person as one of the known speakers in the system. General 

overview of speaker recognition can be found in [4]-[7]. 

Speaker recognition has been studied for a long time. However, there are many 

factors that degrade the recognition performance in real applications. It is mainly 

related to the variability of speech signal [6] [8]. This includes speaker-generated 

variability and variability induced by recording channels and conditions. For example, 

there are researches studying the robustness against the corruption of the speech 

signal by channel and noise [9] [10] and mimicry by humans and computer-aided 

voice [11] [12]. On the other hand, features carrying vocal tract characteristics are 

usually used. In order to improve recognition performance, researchers have also 
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investigated other speaker-dependent features, such as features from excitation source 

[13] [14]. 

Utterance from 
Unknown Speaker 

1 r 

Feature 
Extraction 

I r 

Reference Speaker ^ Pattern 
Prototypes Matching 

V J — 

• 
Decision 
Response 

Figure 1-2 General operation of a speaker recognition system 

1.3. Motivation and Focus of This Work 

In order to improve recognition accuracy, speaker recognition research has been 

focused mainly on exploring speaker-dependent features from speech signal or 

enhancing the robustness against noise and channel variations. In this thesis, we focus 

on the speaker-dependent information in different frequency subbands. 

The bandwidth of human speech is approximately up to 7 kHz [15]. Without 

bandwidth limitation on the speech signal, speaker recognition performed by human 

listeners cannot give perfect accuracy. It is common that we may recognize a person 

wrongly by only listening his/her voice. In real applications, the bandwidth of speech 

7 



Chapter 1 Introduction 

data used is usually limited. It may degrade the performance of a speaker recognition 

system. 

An important application of speaker recognition is on telephone network, which 

has a bandwidth of 0 - 4 kHz. Such a bandwidth is used based on the consideration 

that the transmitted speech signal can be reasonably perceived and understood. 

Speaker recognition is not the major concern. The underlying assumption is that the 

useful speaker information is mostly found at the frequency below 4 kHz. 

However, researchers showed that there are important speaker-dependent 

characteristics beyond telephone bandwidth [16]-[18]. In [16], the speaker 

characteristics in the frequency band between 4 kHz and 10 kHz were investigated. 

The results showed that information in this band is useful to improve speaker 

recognition performance. In the study on the use of independent processing and 

recombination of subbands in speaker recognition with TIMIT database [17] [18], it 

was shown that speaker-specific information is not equally distributed over subbands. 

More speaker-dependent information is found in frequency subbands above 3 kHz. 

From these findings, we have with a number of questions about the contribution 

of features in different frequency subbands. For example, what are the contributions 

from the features in the narrowband and higher frequency band for speaker 

recognition? How to fuse the decision from the features of these two bands in a proper 

way based on their relative importance? All these questions motivate us to study the 

importance of features in the narrowband and higher frequency band. 

Previous works on subband processing in speaker recognition were focused 

mainly on two issues. They are optimal division of the frequency domain (e.g. [18]) 

and recombination of classification results from different subbands (e.g. [19]). We 

believe that a better understanding on the contribution of features from narrowband 

and higher frequency band is essential to these two issues. For example, if features 
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from higher frequency band are found to be more important in speaker recognition for 

some words, we may consider partitioning that region into finer subbands. 

Speaker recognition over telephone is required in many applications. Therefore, 

we focus our study on the features from telephone bandwidth and higher frequency 

band. To be more precisely named the frequency bands, frequency ranged between 0 -

8 kHz, 0 - 4 kHz and 4 - 8 kHz are called wideband (WB), narrowband (NB) and 

higher frequency band (HB) in the thesis. 

State-of-the-art speaker recognition systems use features that carry mainly vocal 

tract characteristics. These features are namely mel-frequency cepstral coefficient 

(MFCC) [20]. In this research, we focus our study on spectral envelope features that 

carry features of vocal tract. 

We choose to study the contribution of features from NB and HB on word basis. 

Text-dependent speaker identification is performed. Text-dependent systems mean 

that training and testing data come from the same word. In many real applications, 

utterances containing digit strings are used. There has been no similar study on the 

contribution of features from subbands using Cantonese digits. Therefore, utterances 

containing digit strings are used in this study. 

1.4. Thesis Outline 

The thesis will be divided into seven chapters. A brief introduction of the 

fundamentals of speaker recognition will be given in the next chapter. In Chapter 3, 

the details of data collection will be described. We will also talk about the baseline of 

text-dependent speaker identification (SID) using MFCC features. Afterwards, 

text-dependent SID using spectral envelope features in NB, HB and WB will be 

studied in Chapter 4. In Chapter 5, combining the use of spectral envelope features 
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from NB and HB in feature level and model level will be investigated. In Chapter 6， 

the use of text-dependent weights for linear combination of scores from individual 

words in utterance-level SID will be studied. Also, applying text-dependent subband 

feature weights in utterance-level SID will be discussed. Finally, conclusions and 

some suggested future work will be given. 
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Chapter 2 

Fundamentals of Automatic Speaker Recognition 

This chapter provides the background theory of speech production and introduces the 

general principles of automatic speaker recognition. It also briefly describes the 

conventional approach of statistical speaker recognition based on short-time spectral 

features. 

2.1. Speech Production 

A schematic diagram of the human speech production mechanism is shown in Figure 

2-1 [1]. Lungs, trachea, larynx (organ of voice production), throat, oral cavity (mouth) 

and nasal cavity are involved in speech production. The throat and oral cavities are 

usually grouped together and named as vocal tract. It begins at the output of the 

larynx, and terminates at the input to the lips. Vocal folds or vocal cords, soft palate or 

velum, tongue, teeth and lips are known as articulators. They move to different 

positions to produce various speech sounds. Here, only a brief description of speech 

production will be given. The reader is referred to [1] for more details. 

In brief, speech is produced as follows. Air is expelled from the lungs through 

the trachea. Then the air flow passes through the vocal tract and is modulated in 

frequency by the resonances of the vocal tract, which its shape is changed by the 

articulators. Speech is produced as a sequence of sounds. The positions of articulators 

(e.g. jaw, tongue, lips and mouth) change over time to produce different speech 

sounds. 
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Hard palate \ \ 

Soft p a l a t e � \ J 

Esophagus / / / / \ Oral (or buccal) cavity 

- D i a p h r a g m 

Figure 2-1 A schematic diagram of the human speech production mechanism [1: 

Basically, speech can be classified into two types: voiced and unvoiced. They are 

produced with different excitation sources. When voiced speech is produced, the 

tensed vocal cords within the larynx are caused to vibrate periodically by the air flow. 

As a result, the air flow is chopped into quasi-periodic pulses and its period equals to 

the fundamental frequency (i.e. pitch). For unvoiced speech, the vocal cords are 

relaxed and do not vibrate. The air flow passes through a constriction in the vocal 

tract and becomes turbulent noise which is aperiodic in nature. 

Based on the place and maimer of articulation, speech sounds can be further 

categorized into several types, such as fricatives and nasals. For details, the reader is 
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referred to [2:. 

2.2. Features of Speaker's Voice in Speech Signal 

Generally，features of speaker's voice can be physiologically or behaviorally based. In 

the process of speech production, physiological characteristics exhibit in several areas. 

For example, the shape of vocal tract contains speaker's information that can be 

estimated from the spectral shape (e.g. formant location and spectral tilt) of the voiced 

signal. The excitation source, which drives the human vocal mechanism, also contains 

speaker-dependent information. It can be characterized by the fundamental frequency 

of oscillation which depends on the length, tension and mass of the vocal folds. Also, 

variations in the velum and size of nasal cavities give different spectral spectrum 

when nasal sounds are produced. Other physiological speaker-dependent 

characteristics include maximum phonation time (the maximum duration that a 

syllable can attain) and glottal air flow (amount of air going through vocal folds) [3；. 

On the other hand, speaker-dependent behavioral characteristics include speaking 

rate, intonation and other speaking styles, such as preference in the choice of words. 

However, some of the features mentioned above are difficult to be measured 

from the speech signal. For example, except for fundamental frequency, voice source 

characteristics, such as glottal source waveform, are not easy to extract from the 

speech signal. 

Based on the practical consideration, features that can be captured from the 

speech signal are used in speaker recognition, such as short-term and long-term 

spectral energy, overall energy, and fundamental frequency [4]. The details of feature 

extraction will be discussed later in this chapter. 
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Source-Filter Model 

As we have mentioned above, speech production can be viewed as air is forced 

through vocal cords and then filtered by the shape of the vocal tract. From an 

engineering perspective, usually a source-filter model is used to model the speech 

production process. Speech can be modeled as a quasi-periodic pulse (periodic over 

individual frames) when producing voiced speech or a noise-like turbulent flow of air 

when producing unvoiced speech followed by a linear time-invariant filter 

representing the vocal tract (see Figure 2-2). 

Excitation v(n)—^^• Vocal tract h(n) • Speech signal s(n) 

Linear time-invariant filter 

Figure 2-2 Source-filter model for speech production process 

Let s(n) denotes the speech signal, h(n) is the impulse response of vocal tract and 

v(n) is the excitation source. Speech is composed of a convolution of an excitation 

source and the impulse response of the vocal tract. In frequency domain, speech can 

be represented as 

S{co) = H{(d)V{(d) (2.1) 

By using source-filter model to represent the process of speech production, it can 

help us to understand the physical meaning of the speech spectrum. For most speech 

sounds, the shape of vocal tract varies slowly compared to the variations in the 

excitation source. So in the speech spectrum, the spectral envelope denotes the slowly 

varying shape of vocal tract (see Figure 2-3). As the shape of vocal tract contains 

speaker-dependent information, spectral envelope features are extracted and used in 
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speaker recognition. 

VOICED 

UNVOICED 

7 1 — — ^ 
~ • f • f • f 

EXCITATION V O C A L T R A C T S P E E C H 
S P E C T R U M S P E C T R U M S P E C T R U M 

Figure 2-3 Spectra of voiced and unvoiced sounds. The spectral envelope gives the 
vocal tract spectrum [5: 

Cepstral Analysis 

The goal of feature extraction is to extract the vocal tract transfer function H(o)) from 

the speech spectrum S(G)). Since H(O)) and V(O)) in equation (2.1) are combined by 

multiplication, we cannot separate them directly to get H(g)). However, by taking 

logarithms of the spectral magnitude on both sides, we have 

log风动I 二 \\ogV(cD)\ + \logH(co)\ (2.2) 

In this way, the two individual components are combined by addition. The more 

important vocal tract shape information can then be separated from the less 

informative pitch information. 

Cepstral analysis was firstly applied in speech signal processing [9]. It is 

performed based on the output from equation (2.2) to extract the vocal tract transfer 

function. The steps are shown in Figure 2-4. 
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s{n) S{o)) log I Cs {n) 
Input 

——^ FFT ——^ Log 丨 I ~ ^ IFFT ——^ Cepstrum 
Speech 

Figure 2-4 Steps of finding cepstrum 

After finding the magnitude spectrum | S{(d) \ computed by FFT for each 

speech frame, logarithm of the magnitude spectrum is computed and let 

C, {co) 二 log I S{co) I. By taking inverse FFT on Q {co), the cepstrum Cs(n), which is 

spectrum of the log spectrum, is found. The whole process of finding cepstrum can be 

represented as follows: 

cepstrum (frame) = FFT^ (log | FFT (frame) | ) 

Afterwards, the slowly varying component, which corresponds to the spectral 

envelope, produces the low-time part of the cepstrum. The component with fast 

variations, which corresponds to the excitation, results at larger values on the time 

axis of the cepstrum. Therefore, the low-order cepstral values are used to give the 

spectral envelope features. 

2.3. Basics of Speaker Recognition 

There are two different tasks of interest in speaker recognition: speaker identification 

(SID) and speaker verification (SV). In speaker identification, an input utterance is 

analyzed and compared with the models of a set of known speakers in the system. The 

speaker of the input utterance is then identified as one of the speakers in the system 

whose model best matches with the input utterance. 

For speaker verification, the task is to determine if the input utterance is from the 
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claimed speaker. After analyzing the input utterance, it is compared with the model of 

the claimed speaker. A score that quantitatively measures the matching with the 

claimed speaker model is found. If the score is larger than a pre-determined threshold, 

the input utterance will be accepted as from the claimed speaker, otherwise, it will be 

rejected. 

On the other hand, speaker recognition can also be classified based on the 

constraints on the materials used to train and test the system. It can be divided into 

three categories: text-dependent, text-independent and vocabulary-dependent. In 

text-dependent system, the training and testing data come from same phrase or word, 

while text-independent system has no such constraint on data. For 

vocabulary-dependent system, the training and testing data come from a limited 

vocabulary such as digits. 

2.4. Existing Approaches of Speaker Recognition 

A speaker recognition system mainly consists of two components: feature extraction 

and speaker modeling. For feature extraction, it concerns extracting a set of 

discriminative features so as to retain or enhance the inter-speaker variation while 

minimizing the intra-speaker variation. Speaker modeling involves constructing 

speaker models from the features extracted from the speech signal. These two 

components determine the success of a speaker recognition system. The approaches 

currently employed in these two components will be described in the following 

sections. 
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2.4.1. Feature Extraction 

2.4.1.1 Overview 

Indeed, there exist various choices of speaker-dependent features that can be derived 

from the speech signal. They include pitch, speech intensity and formant frequencies 

:5]. Usually features from spectral envelope are used in speaker recognition. They 

include cepstral coefficients derived from linear predictive (LP) analysis [5] and 

filter-bank analysis [2]. Nowadays, mel-frequency cepstral coefficient (MFCC) [6] is 

commonly used due to its reported good performance [8]. The details of MFCC will 

be discussed in the next section. 

2.4.1.2 Mel-Frequency Cepstral Coefficient (MFCC) 

In practice, cepstral coefficients derived from a mel-frequency filterbank are used and 

this type of feature is called mel-frequency cepstral coefficient (MFCC). Figure 2-5 

shows the steps of extracting MFCC features. 

八一 

• _ _ ’ 一 n 
PRE-EMPHASIS 

—— —— It / 
• FFT > 1 kl^ • / 

l ) 0 0 0 ( X ) C \ f TRTNTFORM X - … x t 

MEL-SCALE FILTERBANK 

Figure 2-5 Steps of extracting MFCC features [10: 
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After finding the magnitude spectrum computed by FFT for each speech frame, 

it is processed in a simulated mel-scale filterbank. 

Psychophysical studies have shown that the human ear resolves frequencies 

non-linearly across the audio spectrum [11]. Amel is a unit of measured of perceived 

pitch or frequency of a tone [1] and it can be approximated by [12: 

= 2595 log,ofl + ^ 1 (2.3) 
V /UU 乂 

Figure 2-6 shows the mapping between the linear frequency scale (Hz) and the 

perceived frequency scale (mel). The mapping is approximately linear below 1 kHz 

and logarithmic above [13:. 
W如pctl fieq. 

i ^ - • 
J B ircC „ ‘ 
I X 

2000 ！ 、 ： K 
I ‘ “ Mel 
s 厂.乂:+. 
i -‘ 

1000 - ： 

i \ 
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Figure 2-6 Warping the linear frequency scale to two commonly used non-linear 
frequency scale: Mel-scale and Bark-scale [19] 

Mel-scale models the sensitivity of the human ear in a closer way than a purely 

linear scale. It is suggested that designing a front-end to operate in a similar manner as 

human auditory system can improve recognition performance. Nowadays, mel-scale 

frequency analysis has been widely used in modem speech recognition [14]. It is also 

commonly used in speaker recognition. 

On the other hand, it is found that the perception of a particular frequency by the 
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auditory system, say fo, is influenced by energy in a critical band of frequencies 

around fo [1]. Therefore, it is suggested to use the log total energy in critical bands 

around the mel frequencies to compute cepstral coefficients. Figure 2-7 shows the 

mel-scale filterbank used. The filters are triangular shape and they are equally spaced 

along the mel-scale in the Nyquist range. 

Therefore, each magnitude coefficient of the spectrum is multiplied by the 

corresponding mel-scale triangular filter gain and the results are accumulated. Then 

the log-energy filter outputs are cosine transformed to produce the cepstral 

coefficients Q using the following formula: 

(/ —0.5)\i = 0，l,… (2.4) 
V A ^ ^ \N J 

where Nis the number of filterbanks used and mj is log filterbank amplitude. 

I :國 
0 1000 2000 3000 4000 

FREQUENCY (Hz) 

Figure 2-7 The triangular mel-scale filterbank distributed in the Nyquist range [2； 
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2.4.2. Speaker Modeling 

2.4.2.1 Overview 

There are mainly two approaches for speaker modeling: template models and 

stochastic models. With template models, the test utterance is compared with a 

collection of templates developed for each of the speakers in training and decision is 

made based on the distances to the templates. Example of template model is vector 

quantization (VQ) codebook [15]. It makes use of standard clustering procedures on 

the training data and stores multiple templates in term of a VQ codebook to 

characterize frames of speech. However, this approach is particularly sensitive to 

variation in background noise and it is not robust enough to use. 

Instead of modeling speakers by templates, stochastic modeling uses probability 

distribution to represent features of a speaker's voice. The conditional probability 

distribution is estimated for each speaker from a set of training data. The speaker's 

identity of the test utterance is determined by measuring the likelihood of the input 

utterance given the speaker model in the system. This approach is widely used 

nowadays as it can offer good flexibility and result in a theoretically meaningful 

probabilistic likelihood score [3:. 

One of the most popular stochastic techniques for modeling is Hidden Markov 

Model (HMM). It models both the underlying speech sounds and the temporal 

sequencing among these sounds. However, the temporal change of speech does not 

contain too much speaker-dependent information in text-independent task. Recently, 

Gaussian mixture model (GMM) [10] is commonly used in speaker recognition 

because it is computationally inexpensive and provides high recognition accuracy 

[16]. 
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2.4.2.2 Gaussian Mixture Model (GMM) 

The distribution of feature vectors extracted from a person's speech is modeled by a 

Gaussian mixture density. Let ^ be a £)-dimensional feature vector, the mixture 

density for a speaker is computed by 
M 

p{x\6) = YPiU^) (2.5) 
i=\ 

It is a weighted sum of M unimodal Gaussian densities, bi{x). bi{x) can be 

expressed as, 

b,(x) = yHexp A)’(E(又-A-) ( 2 . 6 ) 

( 2 ; r 广和 I 2 J 

where //. is a i ) x 1 mean vector and is 这 D x D covariance matrix, pi is the 

mixture weight and satisfy the constraint = 1. The entire GMM model can be 

represented by the notation 6 = {p., ‘战，^z}, where / = 1, ...，M. 

Theoretically, full covariance matrix is required. Diagonal covariance matrices 

are used in practice because they provide more computational efficiency. 

We can interpret the physical meaning of using GMM to model the distribution 

of features of a speaker's voice in the following way. Speech is made up of different 

phonetic classes. Each individual mixture component may correspond to a phonetic 

class. Also, the Gaussian mixture density is used to model the underlying long-term 

sample distribution of observations obtained from utterances of the speaker. GMM not 

only models the distribution in individual phonetic class, but also models the 

probability of having these phonetic classes in speaker's utterance. 
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2.4.3. Speaker Identification (SID) 

This research is focused on the task of speaker identification (SID). The 

implementation details on how to train GMM and how to make decision based on the 

input utterance in SID will be discussed. 

Training of GMM 

The goal of training is to estimate the parameters of GMM that best matches the 

distribution of the training feature vectors. The most popular and well-established 

approach is known as the maximum likelihood (ML) estimation [10]. It is aimed at 

finding the model parameters that maximize the likelihood of the GMM given the 

training data (see equation (2.7)). 

0MLE = arg max p i x | (2.7) 
0 

where 6 and x denote model parameters of the GMM and training data respectively. 

Figure 2-8 shows the steps of training GMM model. To begin, the model 

parameters are initialized by partitioning all speech frames into K clusters, where K is 

the number of mixture components. This is done by clustering algorithm such as 

clustering them in random. Then, the feature vectors in each cluster gives the mixture 

weight, while means and covariances are derived directly from the vectors in each 

cluster. 

The estimation of ML parameters can be obtained iteratively using the 

expectation-maximization (EM) algorithm [18]. The basic idea of EM algorithm is to 

estimate a new set of model parameters from the initial one such that the value of the 

model likelihood increases monotonically. It is implemented by choosing the 

Gaussian component with the maximum likelihood from the estimated mixture model. 
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A new set of model parameters can then be found. Afterwards, the new model 

becomes the initial model for the next iteration and this process is repeated iteratively 

until the model parameters converge. This is a critical stage as if the parameters of a 

GMM model are not well estimated, they cannot reflect the actual distribution of the 

speaker's features. It will affect the recognition performance. 

； ‘： 

Input ^ Feature 丨 一 Initialize ^ Re-estimate 丨 一 GMM 
utterance extraction GMM GMM model 

Training of GMM 

Figure 2-8 Steps of training GMM model 

Identification Process 

广 \ I 

Speaker 1 ~~• 

1 / 
Input Feature _ ^ ： Select ^^^^ Identified 

speech Extraction ： Maximum ~ • speaker 

——, 
Speaker S • 

\ J ^ “ 

Figure 2-9 Block diagram of a speaker identification system 

Figure 2-9 shows the block diagram of a speaker identification system. Suppose there 

are S speakers in the system. After extracting features from the input utterance with 

feature vector sequenceX = ，then the a posteriori probability of X, Pr(d\X), 
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from each of the S speakers in the system is computed. The decision rule of 

identification is to find the speaker model which has the largest value of Pr(d\X) 

(equation (2.8)). 

^ = argmaxPr((9, \X) (2.8) 
l<s<S 

By applying Bayes' rule, it is equal to 

左=argmaxA。《）Pr (� ) (2.9) 
1 奶s p(X) 

Assuming equal prior probabilities of speakers, the term p(X) and Pr(ds) are constant 

for all speakers. Therefore, equation (2.9) is simplified to 

^ -a rgmax j9 (X | (9J (2.10) 
l<s<S 

Using logarithms and the independence between observations, the decision rule 

becomes 
N 1 T 
S = arg max — ̂  logp(Xf | (9J (2.11) 

T t=\ 

The likelihood score for each frame, I J , is found by equation (2.5). In 

order to normalize the utterance duration, the log-likelihood value is divided by T, 

which is the number of frames of the input utterance. 
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Chapter 3 

Data Collection and Baseline System 

3.1. Data Collection 

Design Considerations 

The general considerations on the design of data collection include the constraints on 

the recording materials and do recording in single or multiple sessions [3]. In this 

research, we focus our study on text-dependent speaker identification. On the other 

hand, speakers are required to do recording in multiple sessions. It is known that the 

voice for the same speaker will be changed with time (e.g. changing speaking 

behavior and aging [1]) and it is called intra-speaker variation. A speaker recognition 

system should be able to accommodate natural and expected modifications in speech 

signal characteristics due to this type of variation [2]. Therefore, speech data should 

be collected in multiple sessions. 

In this research, we focus our study on the contribution of features from different 

frequency bands. We choose to implement text-dependent SID on digit basis. 

Therefore, the recording materials only consist of digit strings. 

Usually, the difference of voice between male and female is significant. To focus 

on our study, other factors that might affect the recognition performance should be 

eliminated. To eliminate the effect of gender difference, speech data is collected from 

male speakers only. 
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Recording Set-up 

Speakers are required to do recording inside a confined room that provides a closed 

silent recording environment. At the beginning, speakers are asked to read an 

instruction on recording procedures. They are required to read out the prompted texts 

from the computer screen to the microphone using the set-up as shown in Figure 3-1. 

Speaker can choose from the menu to record a particular utterance again if he has 

spoken it wrongly. 

Speech 
• Microphone • Mixer ~ • AID • DAT-Link ~ • Computer 

data  

Figure 3-1 Set-up for recording 

The microphone used for recording is a head mount microphone (Figure 3-2). It 

works in close-talk operation. The speech data collected in this way can be in high 

quality. 

省、 
•...“ p K ：： 

� 1 ^ m 
Figure 3-2 Head mount microphone [4] 

The analog signal passes through a mixer and is A/D converted at 44.1kHz, 16 

bit using Digital Audio Tape (DAT) recorder. Then, the digital data is down-sampled 
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in real time to 16 kHz by DAT-Link using its built-in digit signal processor and sent 

through a SCSI interface to the hard disk of the computer. Therefore, the output is 16 

bit signed with the most significant byte stored first. It is sampled at 16 kHz and 

quantized using linear Pulse Code Modulation (PCM). The output signal is in mono 

type and only has single channel. 

Recording Materials 

Table 3-1 summarizes the details of recording materials. Speech data from 20 male 

speakers are collected. The time span between sessions ranges from 3 days to 2 weeks. 

The entire data collection is lasted for 2.5 months. 

Number of recording sessions 12 
Time separation between sessions SOI - SOS: 3 days 

SQ9-S1Q: 1 week  
S11-S12: 2weeks  

Types of speech content and 10 utterances of singe digit, i.e. digit ‘0，- ‘9’ 
number of utterances for each type 5 utterances of digit string (2 digits), e.g. '36' 

5 utterances of digit string (8 digits), e.g. 
‘9408 4513’ 

Total number of utterances 100 
Change of the use of recording Change for every 2 consecutive sessions 

materi als  

Table 3-1 Details of recording materials 

The speech content consists of three types: single digit, digit string containing 

two digits and eight digits (see Table 3-1). The digit string is read in the following 

way: e.g. ‘36，is read as 'three-six', instead of ‘thirty-six，in Cantonese. Each type of 

digit string has five different utterances in the same session. For each utterance, it is 

required to record repeatedly for five times. Therefore, there are totally 100 utterances 
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in a single session. 

The digit strings used in recording are different for every two consecutive 

sessions. They are designed in such a way that the total number of occurrences in the 

12 sessions for each digit is approximately the same. Table 3-2 listed the total number 

of occurrences for the 10 Cantonese digits in the 12 recording sessions. The number 

of occurrences is similar among the 10 digits and their average is equal to 360. The 

speech content used in recording is listed in Appendix 1. 

Digit Total number of occurrences in the 12 sessions 

0 ^  

1 ^  

2 360 

3 390 

4 360 

5 330 

6 340 

7 390 

8 350 

9 ^  

Table 3-2 Total number of occurrences in the 12 sessions for the 10 Cantonese digits 

Post-processing of Speech Data 

Speech data are randomly selected to verify if the speakers utter the designated texts 

correctly. Also, all collected speech data are processed to check if there is overflow in 

recording. If so, the corresponding data will be discarded to use. 
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3.2. Baseline System 

3.2.1. Experimental Set-up 

Figure 3-3 shows the steps of baseline system. It mainly consists of 2 steps: training 

of speaker model and evaluation of the system. Each of them will be introduced one 

by one. 

Training 
Specific to Digit X 

Speech segment I F e a t u r e f S p e a k e r � 
of Digit X Extraction Models 

> y 

Evaluation 1 

[ ^ Calculate …） S e l e c t ^Identified 
Likelihood Score Max. Speaker 

Figure 3-3 Steps of baseline system 

Forced Alignment 

Text-dependent SID is implemented in this study. Segments of speech speaking the 

same digit are used to train digit-specific speaker models. The collected utterances 

may contain a sequence of digits. Hence, alignment is required to find the duration of 

each digit spoken in the utterance. 

The step of forced alignment is not shown in Figure 3-3. It is performed before 

feature extraction. Assuming that the content of the input utterance is known, speech 

recognizer of a particular digit is used to find the duration for that digit within the 

utterance. The alignment result is then used in feature extraction. 
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The speech recognizer^ we used is trained by using data from the male speakers 

set in the CUDIGIT corpus [5], which consists of microphone speech of continuous 

Cantonese digit strings sampled at 16 kHz. The speech recognizer is trained with 

features containing 12 mel-cepstral coefficients with 1 energy parameter, and their 

first and second derivatives, and its recognition accuracy is 97.24%. 

It is important to remove silence/noise frames from both the training and testing 

data to avoid modeling and detecting the environment rather than the speaker [6]. 

Since the speech recognizer we used also contains silence model, performing forced 

alignment can also serve the purpose to find out the duration of silence within the 

utterance. 

Throughout this study, it is assumed that the content of input speech is known. 

Forced alignment will be performed on all speech data, including single-digit 

utterances. 

Training of Speaker Model 

Gaussian mixture model (GMM) is used in the baseline system. With the speech 

segment of digit X spoken by a particular speaker, features will be extracted and used 

to train the model that is specific to digit X for that speaker. The steps of training have 

been discussed in Chapter 2. 

Evaluation 

After feature extraction, the log-likelihood scores, or simply called likelihood scores, 

are computed by using speaker models specific to the input digit. The one with the 

highest score will be identified as the speaker of the input speech (equation (2.11)). 

1 The speech recognizer is provided by Ms. Zhu Yu, M. Phil candidate in the DSP and Speech 
Technology Laboratory, Department of Electronic Engineering, the Chinese University of Hong Kong. 
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Configuration of Baseline System 

In our study, data from the first six sessions (SOI - S06) are used for training the 

speaker models while data from the remaining sessions (S07 - S12) are used for 

evaluating the speaker recognition system (see Table 3-3). 

Data Use 
SOI - S06 Train digit-specific speaker models 
807 - S12 Evaluate the system 

Table 3-3 Use of data in the baseline system 

Mel-frequency cepstral coefficient (MFCC) is used in this baseline system (Digit 

Baseline 1). In generating these features, each digit segment is segmented into 20 ms 

frames at intervals of 10 ms using a Hamming window and it is pre-emphasized with 

coefficient of 0.97. Energy normalization is performed before extracting cepstral 

coefficients. Such configuration is commonly used in speaker recognition [8]. [8] also 

mentioned that usually the zeroth cepstral coefficient is not included in the feature 

vector. This coefficient only represents the average energy of the input speech and it is 

expected not to contain too much information on the speaker's voice. Therefore, in the 

baseline system, the first 22 cepstral coefficients, except the zeroth cepstral coefficient, 

will be used to compose the feature vector. 

As mentioned in Chapter 2, MFCC is found from a mel-frequency filterbank. It 

is required to determine the number of mel-frequency filters. In [9], 24 mel-filters 

were used to extract features for SID. It used the TIMIT database [3] with sampling 

rate of 16 kHz and it is similar with the speech data we collected before. On the other 

hand, using more mel-filters to extract MFCC from wideband speech may give better 

performance. Therefore, using 24 and 32 mel-filters in feature extraction will be 

performed. 
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Also, the number of Gaussian mixtures used in speaker model will be determined 

by trying with different number of Gaussian distributions. 

3.2.2. Results and Analysis 

Table 3-4 and Table 3-5 listed the overall identification rate for the 10 Cantonese 

digits using 24 and 32 mel-filters in feature extraction respectively. From the results, 

it is seen that the identification rate does not depend too much on the number of 

filterbanks. But on average, using 32 mel-filters to extract MFCC gives slightly better 

performance. Therefore, 32 mel-filters are chosen to use in feature extraction. 

Set 1 Use 24 mel-filters 

Overall SID rate (%) 

Digit 8 mix. 16 mix. 24 mix. 32 mix. 64 mix. 

0 97.5 97.55 97.94 98.19 98.16 

1 92.71 94.55 95.41 95.72 95.94 

2 93.49 94.3 94.77 94.99 95.44 

3 96.91 97.55 97.58 97.69 97.72 

4 96.61 97.69 98.36 98.53 98.72 

5 86.56 86.76 86.92 87.76 86.81 

6 91.87 93.9 94.73 95.52 95.94 

7 94.94 97.26 97.57 97.79 98.02 

8 92.66 93.46 94.1 94.44 94.27 

9 95.3 96.33 97.02 97.39 97.5 

Average 93.86 94.94 95.44 95.80 95.85 

Table 3-4 Overall SID rate (%) of using 24 mel-filters in feature extraction 
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Set 2 Use 32 mel-filters 

Overall SID rate (%) 

Digit 8 mix. 16 mix. 24 mix. 32 mix. 64 mix. 

0 97.58 98.03 98.08 98.33 98.33 

1 93.3 94.6 95.33 96.05 96.19 

2 94.41 94.74 95.19 95.69 95.8 

3 97.69 98.14 98.25 97.97 97.69 

4 96.75 97.69 98,08 98.47 98.5 

5 86.34 87.67 87.79 87.48 86.25 

6 91.49 93.84 94.49 95.52 95.55 

7 95.47 96.68 97.52 97.81 98.02 

8 92.74 94.02 94.55 94.52 94.24 

9 95.44 96.44 97.33 97.36 97.69  

Average 94.12 95.19 95.66 95.92 95.83 

Table 3-5 Overall SID rate (%) of using 32 mel-filters in feature extraction 

The objective of speaker modeling is to choose the most appropriate number of 

Gaussian mixtures to adequately model a speaker for good SID. On the other hand, 

the number of Gaussian mixtures used is related to the amount of data available for 

training. We need to consider if the available training data is sufficient enough to train 

so many Gaussian mixtures. Table 3-2 gives the total number of occurrences for the 

10 digits in the 12 sessions and their average equals to 360. Since data from the first 

six sessions are used to train speaker models, there are 180 digit segments available 

for training on average. Suppose the average number of speech frames for a digit 

segment is 20, so approximately 3600 speech frames are used to train a speaker model. 

As a rule of thumb, a Gaussian distribution should require about 100 speech frames to 

train it. Therefore, with the available training data, not more than 64 Gaussian 

mixtures should be used in a speaker model. From Table 3-5, we can find that the 

average identification rate kept increasing with the number of Gaussian mixtures used. 

40 



Chapter 3 Data Collection and Baseline System 

But the identification rate by using digit ‘3,，'5' and ‘8’ started to decrease when the 

number of Gaussian mixtures increased from 24 to 32. Hence, 24 Gaussian mixtures 

are chosen to use in the baseline. 

To conclude, in the baseline system (Digit Baseline 1), 32 mel-filters are used in 

feature extraction and each speaker model is represented by 24 Gaussian mixtures. 

The highlight part in Table 3-5 shows the baseline result. 
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Chapter 4 

Subband Spectral Envelope Features 

This chapter describes the extraction of spectral envelope features from a set of 

prescribed subbands. More precisely, we divide the full band into 0 — 4 kHz (NB) and 

4 - 8 kHz (HB). The narrowband (NB) is further divided into four non-overlapping 

bands. Cepstral analysis is performed in each subband to find the corresponding 

spectral envelope features. The contributions of NB and HB features will be 

investigated via SID experiments. 

4丄 Spectral Envelope Features 

General Principles 

By applying cepstral analysis, spectral envelope features can be extracted. The 

underlying principle is briefly introduced in the following. For more details about 

cepstral analysis, please refer to Chapter 2. 

As we have mentioned in Chapter 2, the speech production process can be 

modeled by a source-filter model. Speech signal can be viewed as a convolution of an 

excitation source and the impulse response of vocal tract. Taking logarithm on the 

short-time power spectrum can change the combination of the above two components 

from multiplication to addition. After applying Discrete Cosine Transform (DCT), 

cepstrum can be found. Low-order cepstral coefficients represent the slowly varying 
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shape of vocal tract, i.e. the spectral envelope in the speech spectrum. Those cepstral 

coefficients are used to represent spectral envelope features. Figure 4-1 shows the 

general process of extracting short-time spectral envelope features. 

speech signal 

y 

Windowing 

+ 

FFT 

+ 

Power Spectrum 

log 
y 

DCT 

y 

Short-time spectral envelope features 

Figure 4-1 Extraction of short-time spectral envelope features 

Comparison with MFCC 

MFCC is one of the methods to find features of spectral envelope (see details in 

Chapter 2). The difference between MFCC and spectral envelope features computed 

by the method described above is that MFCC is computed by filter-bank analysis in 

mel-scale while spectral envelope features are computed directly from FFT spectrum 
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in linear frequency scale. 

If filter-bank analysis is used in feature extraction, the found feature components 

describe the global shape of the spectral envelope. On the other hand, feature 

components that are computed directly from FFT spectrum describe the local spectral 

envelope. If high-order cepstral coefficients are used, the reconstructed spectrum will 

also contain fine harmonics. It indicates features from vocal source are also included. 

4.2. Subband Spectral Envelope Features 

Motivation 

In this study, we focus on the contribution of spectral envelope features in NB and HB 

for speaker recognition. During computation of MFCC from the full band, the 

log-energy filter outputs undergo a cosine transform to produce the cepstral 

coefficients. In the cepstral domain, we cannot tell what frequency each cepstral 

coefficient is representing. Therefore, MFCC computed from full band is not suitable 

for our intended study. 

The spectral envelope computed by filter-bank analysis is smoothed. We want to 

study the contribution of the real spectral envelope. Therefore, we choose to compute 

spectral envelope features from FFT spectrum directly. 

In cepstral domain, feature components are independent to each other, but they 

are not in spectral domain. As mentioned in Chapter 2, diagonal covariance matrices 

in GMM are used in practice for the computational efficiency. The underlying 

assumption is that the feature components are uncorrelated. Therefore, features found 

in cepstral domain are used. 

If the same number of cepstral coefficients is used, the reconstructed spectral 

envelope found from a single band is similar with the one found from subbands 
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partitioned from a single band, except there is discontinuity between consecutive 

subbands in the latter case. An example is illustrated in Figure 4-2. NB is partitioned 

into four non-overlapping subbands, each has bandwidth of 1 kHz. 20 cepstral 

coefficients are used to reconstruct the spectral envelope in NB. We can see that the 

reconstructed spectral envelope are very similar between the two cases. 

R e c o n s t r u c t e d s p e c t r a l enve lope in d日 b y u s i n g d i f ferent n u m b e r s of s u b b a n d s 
-20 1 1 1 1 1 I 1 

Original spectrum 

4 0 - ijt • • • Compute in 1 subband in NB -

\ ft Compute in 4 subbands in NB 

： ^ A 
- 1 4 � - - W \ -

-160 -

- 1 8 0 -

- 2 0 0 - -

oonl I I 1 1 1 1 1  
- 0 1000 2 0 0 0 3000 4 0 0 0 5000 6000 7000 8000 

f r e q u e n c y H z 

Figure 4-2 An example illustrates that the reconstructed spectral envelope found from 
a single band in NB is similar with the one found from subbands partitioned from NB 

Although spectral envelope features can be computed by either from a single 

band or from subbands partitioned from a single band, subband spectral envelope 

features are used in this study. The full band is divided into subbands and spectral 

envelope features in each subband are obtained. In this way, we can choose to use or 
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not use the features from any combination of these subbands. It facilitates the goal of 

our study. It also provides more flexibility in feature extraction. We can freely select 

the number of cepstral coefficients used in each subband based on the importance of 

that subband. 

Consideration of Subband Design 

As described in Chapter 2, the excitation source is modulated in frequency by the 

resonances of the vocal tract and speech signal results. The resonance frequencies are 

commonly called formants. The first three formants are usually below 3500Hz [1'. 

Therefore, NB has a relatively high energy concentration. It is expected that features 

of a speaker's voice are comparatively rich in that region. Based on this consideration, 

NB is further partitioned into finer subbands and spectral envelope features are 

extracted from each subband. It can give a more detailed spectral envelope in this 

way. 

Figure 4-3 summarizes how the full band is divided into five subbands for 

feature extraction. The higher frequency band (HB) ranges from 4 kHz to 8 kHz while 

the narrowband (NB) is partitioned evenly into four non-overlapping subbands and 

each subband has bandwidth of 1 kHz. 
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Figure 4-3 Division of frequency bands for extracting subband spectral envelope 

features 

NB is partitioned evenly into four non-overlapping subbands. The reason why 

NB is not partitioned into fewer subbands (e.g. 2) is related to the number of cepstral 

coefficients used. This will be further explained in the next section. 

On the other hand, NB should not be cut into too many subbands. Otherwise, the 

discontinuity between consecutive subbands will become significant and it will affect 

describing the shape of spectral envelope. We can observe this from the example 

illustrated in Figure 4-4. In this example, NB is partitioned into 16 subbands. The first 

three cepstral coefficients in each subband are used to reconstruct the spectral 

envelope. 
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Figure 4-4 An example illustrates that the discontinuity between subbands affect 
describing the spectral envelope if a single band is partitioned into too many subbands 
to compute spectral envelope features 

The SID result of using MFCC features (Digit Baseline 1) is compared with the 

one using WB features extracted by the method described above (the result will be 

shown later in this chapter). Their results are comparable. Based on the above 

considerations, we believe that the current design of subband structure for feature 

extraction is appropriate for the intended goal of investigation. 

Number of Cepstral Coefficients for Each Subband 

The physical meaning of cepstral analysis has been explained in Chapter 2. A more 

detailed spectral envelope can be reconstructed by using more cepstral coefficients. If 
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all cepstral coefficients are used, the reconstructed spectrum will be exactly the same 

as the original one. For each subband, the number of cepstral coefficients used is 

based on how well the spectral envelope can be represented by using only portions of 

cepstral coefficients for that subband. 

We have discussed the reason why NB is divided into four subbands before. 

Another reason is suggested here. In attaining similar reconstructed spectral envelope, 

the number of cepstral coefficients required for a single band is more than that for 

subbands partitioned from a single band. An example is illustrated in Figure 4-5. As 

shown in Figure 4-3, the frequency band that is between 0 and 2 kHz is divided into 

two subbands for feature extraction. In this example, spectral envelope features for 

that frequency band are found in a single band. In the former case, 10 cepstral 

coefficients are used to reconstruct the spectral envelope for the frequency band of 0 -

2 kHz (Figure 4-5). However, if feature extraction is performed in the latter case, 12 

cepstral coefficients are needed to attain similar reconstructed spectral envelope. 

51 



Chapter 4 Subband Spectral Envelope Features 

/ � � � � 
y R e c o n s t r u c t e d s p i ^ t r a l envelope in clB by us ing different numbers of ceps t ra l coef f ic ien ts 

-20 1 \ 1 1 1 1 1  
! \ 

i-J ； : \ 

Uo J K ^ \ -

1̂60 - I 1\ -
I I — • Original spectrum \ 

- I — Compute in 2 subbands ^ 

、 / 一 - Compute in 1 band and use 10 coeff. 

"20^ - , , ••画 Compute in 1 band and use 12 coeff. 

o9n A, I 二 1 1 1 1 1  
0 \ 1000 l o o o 3000 4000 5000 6000 7000 8000 

\ / f r equency Hz 

、、乂 

Figure 4-5 An example illustrates that more cepstral coefficients are required if 
feature extraction is performed in a single band ( 0 - 2 kHz) 

4.3. Feature Extraction Procedures 

The process of extracting subband spectral envelope features is roughly shown as in 

Figure 4-1. Details of the key steps are given below. 

The speech signal is segmented into frames by a 20 ms window progressing at a 

10 ms frame rate. Each frame of speech is pre-emphasized with a coefficient of 0.97. 

Then, each speech frame is multiplied with a Hamming window and followed by 

1024-point Fast Fourier Transform (FFT). The power spectrum is obtained by the 

magnitude square of the FFT values. 

Different speakers, or even the same speaker, may speak in different loudness in 

different occasions. As spectral envelope features are extracted directly from the 
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energy spectrum, the loudness may affect the feature value. Later, the feature 

distribution will be estimated during speaker model training. Therefore, feature values 

from different utterances should be kept in similar range and energy normalization is 

required. 

Speaker may speak in different loudness across the whole utterance. Also, 

spectral envelope features in word level are studied in this work. Therefore, energy 

normalization is performed on a token basis, i.e. normalized with respect to each digit 

segment. The average of frame energy over the digit segment is found. Then, 

magnitudes of the power spectrum are normalized by this value. 

After energy normalization, logarithm of the normalized power spectral 

magnitudes is found. Then DCT is performed in each subband as, 

1 /,. i-i ( k j i 1 ) 
= log(^(m + X , 0) cos - ( m - - ) 

丄 I 7=1 V 丄 J (斗.丄 

k-0 ,1 ,…，（ I� l ) , i = l , 2 ” . . . , 5 

where W(mJ) is the normalized power spectral magnitude at frequency point m of 

frame I, h is the total number of frequency points in the 产 subband and QfkJ) is the 

k仇 cepstral coefficient in the f subband of frame I. 

Different numbers of cepstral coefficients used in each subband have been tried. 

Finally, it is determined that for the first four subbands, the 0仇 to cepstral 

coefficients will be used (i.e. /c = 0 - 4). In the fifth subband, the O'̂  to 7仇 cepstral 

coefficients will be used. An example of reconstructed spectral envelope is shown in 

Figure 4-6. 
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Figure 4-6 An example of reconstructed spectral envelope, in comparison with the 

original spectrum 

The feature vectors extracted from WB, NB and HB are composed as shown in 

Figure 4-7. The total number of coefficients for features extracted from WB, NB and 

HB are equal to 28, 20 and 8 respectively. 

CO - C4 CO - C4 CO - C4 CO - C4 CO - CI Wideband (WB) 

CO - C4 CO - C4 CO - C4 CO - C4 Narrowband (NB) 

CO - C7 Higher Frequency Band (HB) 

Figure 4-7 Layout of feature vector 
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4.4. SID Experiments 

4.4.1. Experimental Set-up 

Spectral envelope features in WB, NB and HB are extracted using the method 

described in the previous section. Speaker identification (SID) experiments are 

performed using the features extracted from these three bands individually. The step is 

the same as the baseline system (Digit Baseline 1) in Chapter 3. 24 Gaussian mixtures 

will be used in each speaker model throughout the study. 

4.4.2. Results and Analysis 

Table 4-1 lists the SID results using NB, HB and WB features. Our goal is to study the 

contribution from NB and HB in speaker recognition. This can be done by comparing 

the SID results of NB and HB features with the one from WB. In Chapter 3, a 

baseline system using MFCC (Digit Baseline 1) has been built. The identification 

result using WB features is first compared with that in Digit Baseline 1. Using the 

same number of Gaussian mixtures, their results are comparable. The overall SID 

accuracy differs by less than 1 %. The result with WB features serves as another 

baseline system for our study. For convenience, it is named as Digit Baseline 2. 

From Table 4-1, we can find that WB features outperformed the NB features. It 

confirms that there is indeed important speaker-specific information outside the 

narrowband region. To have a more detailed study on the contribution of NB and HB 

features, these two sets of results are compared with Digit Baseline 2 individually as 

shown in Table 4-2 and Table 4-3. 
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Overall SID rate (%) 
Digit NB I WB I HB 

0 94.83 97.72 73.94 
1 90.35 94.99 73.96 
2 75.91 
3 96.72 98.22 86.21 
4 94.69 98.89 88.19 
5 84.81 87.92 57.07 
6 87.16 92.64 63.77 
7 91.96 97.15 83.34 
8 90.91 94.83 72 
9 94.49 96.91 76.36 

Average 91.22 95.49 75.08 

Table 4-1 Overall SE) rate (%) of using spectral envelope features from NB, HB and 
WB for the 10 Cantonese digits 

Difference of overall SID rates Rank of difference 
Digit between WB and NB systems (%) in ascending order 

0 2 . 8 9 一 3 
1 4.64 — 7 

2 9 . 3 “ 10 
3 1 . 5 一 1 
4 4 . 2 6 

5 3.11 4 
6 5 . 4 8 — 9 
7 5 . 1 9 — 8 
8 3.92 一 5 
9 2 . 4 2 — 2 

Table 4-2 Compare identification results of using WB and NB features 
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Difference of overall SID rates Rank of difference 
Digit 

between WB and HB systems (%) in ascending order 
0 23.78 8 
1 21.03 6 
2 ^ 4 
3 2 
4 1 
5 30.85 
6 28.87 9 
7 3 
8 22.83 7 
9 20.55 5 

Table 4-3 Compare identification results of using WB and HB features 

By comparing the identification results between using WB features and the NB 

ones, contribution from HB features can be observed. In Table 4-2, we have ranked 

the difference of overall SID rates between WB and NB systems on digit basis. The 

higher ranking the digit obtains, the more relatively important the HB features are. We 

found that digit ‘2’，‘6，and ‘7, attain the greatest improvement when HB features are 

used. 

Similarly, we can make comparison between the results of using WB features 

and the HB ones. Contribution from NB features can be observed. From Table 4-3, we 

can find that digit '5', '6' and '0' show the greatest improvement when NB features 

are used. 

The above observations indicate that different digits rely on the features from 

different frequency bands for speaker recognition. This is probably related to the 

different phonetic composition of the digits. Before further discussion on this issue, a 

brief introduction of Cantonese speech will be given first. For more details, please 

refer to [2 . 
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Cantonese is a monosyllabic and tonal language [2]. Each Chinese character is 

pronounced as a single syllable that carries a specific tone. A character may have 

many pronunciations and a syllable typically corresponds to a number of different 

characters [3]. A Cantonese syllable is divided into the Initial part and the Final part. 

Initials and Finals are composed by phonemes, which concern the manners of 

articulation. 

Phonemes can be classified into four categories: vowels, diphthongs, 

semi-vowels and consonants. Vowels and diphthongs belong to the category of voiced 

speech. To produce these speech sounds, vocal cord vibrates periodically to generate 

quasi-periodic air pulses along the vocal tract. Semi-vowels are described as 

transitional, vowel-like sounds and are similar in nature to the vowels and diphthongs 

1]. For unvoiced sounds, the vocal cord does not vibrate and it is generated by a 

turbulent flow of air at constriction in the vocal tract and sudden flow of air under the 

control of some articulators [1]. Consonants can be further divided into four types: 

fricatives, affricates, nasals and stops. They are classified by their places and manners 

of articulation. 

The phonetic composition of the 10 Cantonese digits using phonetic symbols 

proposed by the Linguistic Society of Hong Kong (LSHK) [4] and International 

Phonetic Association (IPA) are listed in Table 4-4. The phonetic features of each 

component are also given. 
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Digit LSHK IPA Phonetic components  
0 ling4 lig Liquid + Vowel + Nasal 
1 jatl j^t Glide + Vowel + Stop 
2 ji6 ji Glide + Vowel 
3 saaml sam Fricative + Vowel + Nasal 
4 sei3 sei Fricative + Diphthong 
5 ng5 r) Nasal 
6 luk6 luk Liquid + Vowel + Stop 
7 catl ts^^t Affricate + Vowel + Stop 
8 baat3 pat Stop + Vowel + Stop  
9 gau2 k^u Stop + Diphthong  

Table 4-4 Phonetic transcriptions of the 10 Cantonese digits using the LSHK scheme 

:4] and the IPA scheme 

Different phonetic units have different acoustic properties. Since the feature 

parameters are extracted from a particular digit, the recognition performance is 

inevitable related to the phonetic composition of the digit. 

We expect that features extracted from frequency band with higher energy 

concentration show more relatively importance in speaker recognition. Some 

phonemes have more energy concentrated at lower frequency band while other 

phonemes have more energy concentrated at higher frequency. Therefore, the 

contribution of features from NB and HB in speaker recognition is text-dependent. 

For example, /ng/ is a nasal consonant. It is produced with the velum lowered so 

that air flows through the nasal tract. Hence, sound is radiated at the nostrils. 

Acoustically, there is a concentration of low-frequency energy in the speech signal, 

/ng/ is the core part of digit ‘5’. This indicates that NB features are relatively 

important for digit ‘5，in SID. We can also observe this from the comparison of the 

SID results in WB and HB systems (Table 4-3). 

Vowels are produced with vibration of the vocal cord. The way that the 
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cross-sectional area varies along the vocal tract determines different vowel sounds. 

For example, /i/ is a vowel with the position and height of tongue hump are in the 

front and high respectively, where the tongue hump is the mass of the tongue at its 

narrowest constriction within the vocal tract [1]. The vowel sound produced in this 

way has high-frequency resonance. It means there is a relatively high concentration of 

energy in the higher frequency. This vowel is one of the components of digit '2'. It 

implies that HB features are relatively important for digit '2' in SID. By comparing 

the SID results between WB and NB systems, we can also get this observation (Table 

4-2). 

Figure 4-8 shows examples of spectrograms for some Cantonese digits. 

Spectrogram is a three-dimensional plot of the signal intensity in different frequency 

bands over time. Darker color at particular frequency band implies that there is higher 

energy in that area. In Figure 4-8, we can see that different digits have different 

concentration of energy in NB and HB. Part (a) and (b) of Figure 4-8 show that digit 

‘0, and ‘5, have higher concentration of energy at the narrowband, while part (c) and 

(d) show that digit ‘2, and ‘7, have higher concentration of energy at the higher 

frequency band. It is generally coherent with the results listed in Table 4-2 and Table 

4-3. 

To conclude, higher frequency band does contain important features of a 

speaker's voice. Contributions of features from NB and HB in speaker recognition are 

text-dependent. 
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� � ” ŴWWIBfWIBBMffWWiTTT J , , .„� — ！ z 

(c) Digit ‘2, (d) Digit ‘7, 

Figure 4-8 Examples of spectrograms for selected Cantonese digits (a) Digit '0'; (b) 
Digit ‘5,; (c) Digit '2'; (d) Digit ‘7’ 
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Chapter 5 

Fusion of Subband Features 

In Chapter 4, it was seen that both NB and HB contain useful information for SID. 

This importance is text-dependent. Instead of simply lumping the HB and NB features 

together for SID, features from these two bands can be fused properly based on the 

results in Chapter 4. In this chapter, fusion performed at model level and feature level 

will be investigated. 

5.1. Model Level Fusion 

To use two different types of features to make a joint decision, one of the common 

ways is to fuse them at the model level. It means that classification of the two sources 

of information is performed separately and the classification results are combined in a 

proper way, such as [1]. Fusing of NB and HB features for SID at model level will be 

investigated in this section. 

5.1.1. Experimental Set-up 

Figure 5-1 shows the steps of fusing features from NB and HB at model level. Given 

the input speech, features from NB and HB are extracted. The corresponding 

likelihood scores from the digit-specific speaker models are calculated. Since the 

dimensions of feature vectors from NB and HB are different, the dynamic range of the 
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likelihood scores from these two systems would be different. Before the scores are 

combined, they are normalized by equation (5.1). With input utterance b, 

1 20 

如 & 力 Z Sa,b,j , a = HB or NB 
；=1 

广 (5.1) 

Sa，b’j denotes the likelihood score computed from speaker model j using NB features 

when symbol a equals to NB. Savg^ b is the average of the absolute values of the 

scores from the 20 speaker models. This value is then used to normalize Sa’bj to give 

�,b’j • 

Scores that are given by speaker model j using NB and HB features are linearly 

combined as follows: 

Shb.nbmj 二 i風〜y +(1 —功云拙力J，j = 1, ..., 20 (5.2) 

Speaker model that gives the maximum value of among the 20 

speakers would be recognized as the speaker of the input utterance. Different values 

of a have been tried and the results are given in Table 5-1. 
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Using NB features 
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Figure 5-1 Steps of fusing NB and HB features at model level 

5.1.2. Results and Analysis 

Table 5-1 shows the SID rate by fusing features from NB and HB at model level with 

different values of a. A summary of the results is given in Table 5-2, which lists the 

maximum recognition rate given by model level fusion for the corresponding value of 

a. 
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Overall SID rate (%) 
Values of a 

Digit WB 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 
0 97.72 96.66 97 96.66 96.02 94.74 92.77 89.82 85.65 79.75 
1 94.99 93.21 94.16 94.58 94.44 93.66 91.68 88.79 85.09 79.92 

2 95.61 90.71 93.1 94.3 9449 94.33 92.82 90.76 87.34 82.28 
3 98.22 97.36 97.94 98.55 98.78 98.47 97.72 95.94 94.33 90.88 
4 98.89 97.05 97.92 98.22 98.33 98 97.47 96.28 94.58 91.91 
5 87.92 88.26 89.09 88.26 86.28 83.97 80.33 75.51 70.34 64.47 
6 92.64 88.69 89.48 88.6 87.33 84.74 81.86 78.56 73.9 69.37 
7 ~ 97.15 95.23 96.49 96.57 96.39 95.62 94.17 92.46 90.11 87.08 
8 ~ 94.83 93.52 94.41 95.22 94.83 93.58 91.52 88.38 84.29 78.62 
9 96.91 95.91 96.66 96.69 96.47 95.44 93.8 91.07 87.79 82.45 

Average 95.49 93.66 94.63 94.77 94.34 93.26 91.41 88.76 85.34 80.67 

Table 5-1 Overall SID rate (%) of fusing NB and HB features at model level with 

different values of a 

Overall SID rate (%) 

, M a x . SID rate given by 
Digit Value of a ’ � ^ ^ . Digit Baseline 2 

model level fusion  
‘ Q 0.8 97 97.72 

1 0.7 94.58 94.99 
2 ^ “ 94.49 95.61 
3 0.6 98.78 98.22 
4 ^ 98.33 98.89 
5 ^ 89.09 87.92 
6 ^ 89.48 92.64 
7 “ ^ 96.57 97.15 
8 ^ 95.22 94.83 

" T " ^ 96.69 96.91 
Average 95.02 95.49 

Table 5-2 Summarize the result of fusing features at model level from Table 5-1 

Likelihood scores that are computed by speaker models in NB and HB systems 

have been normalized to the same range. Larger value of a implies that NB features 
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tend to play a more important role than the HB ones in determining the speaker's 

identity. We find that the best performance is given when a ranges between 0.6 and 

0.8. Therefore, it shows that NB features are generally more important than that from 

HB. 

The results of Digit Baseline 2 are also given in Table 5-2 for the ease of 

comparison. Only in the cases of digit '3', ‘5’ and '8', using model level fusion 

outperform Digit Baseline 2 with improvement of 0.56%, 1.17% and 0.39% 

respectively. But on average, Digit Baseline 2 still gives the best performance. Fusing 

features at model level cannot perform as good as that using WB features. The 

possible reasons will be discussed later. 

Speaker of the input speech is called true speaker. If likelihood scores from the 

true speaker model in the NB and HB systems are not the maximum, the overall score 

after linear combination may not be the maximum too. If this is the case, a recognition 

error is caused. Fusing features at model level mainly deals with these cases. It works 

by combining the scores from the HB and NB systems with proper weights such that 

the final score from the true speaker model becomes the largest. However, the result 

showed that this method does not perform as good as expected. 

The likelihood scores of input speech computed from the 20 speaker models in 

the NB and HB systems are sorted and analyzed. The likelihood scores computed by 

model level fusion with the corresponding values of a that gave the highest 

identification rate are also analyzed. 

The number of test utterances that do not have the maximum likelihood scores 

from the true speaker model in the NB and HB systems is counted ((1) in Table 5-3). 

On average, it accounts for 30% of the total test utterances. They are the targets that 

we hope to apply model level fusion to improve recognition performance. The 

number of test utterances that have the maximum likelihood scores from the true 
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speaker model after model level fusion is counted ((2) in Table 5-3). There are 85% of 

those counted in (1). On the other hand, (3) and (4) in Table 5-3 are the number of 

utterances with maximum likelihood scores from the true speaker model only after 

model level fusion, and that only in wideband system respectively. We can see that 

except digit '3', ‘5，and '8', the value listed in (3) is less than the corresponding value 

in (4) for other digits. That explains why only digit '3', '5' and ‘8’ have performance 

gain by using model level fusion, compared with the result of Digit Baseline 2. 

Total number ~ … � nr … � ^ 
% of (2) % of (3) % of (4) 

of test (1) % (2) in � � 义 。 � � in � 
utterances  

~~0 ^ 1033 28.73 925 89.55 11 1.19 39 3.78 
1 ^ 1140 31.71 945 82.89 35 3.70 56 4.91 
2 ^ 1182 32.88 984 83.25 41 4.17 87 7.36 

~ 3 3596 569 15.82 525 92.27 34 6.48 14 2.46 
4 3598 577 16.04 517 89.60 9 1.74 29 5.03 
5 3594 1714 47.69 1322 77.13 95 7.19 63 3.68 

~ “ ^ 1406 41.41 1049 74.61 31 2.96 144 10.24 
T 3793 — 8 4 5 2 2 . 2 8 715 84.62 34 4.76 59 6.98 
i 3596 1185 32.95 1013 85.49 54 5.33 48 4.05 

3 m 953 26.50 834 87.51 19 2.28 30 3.15 

Table 5-3 Analyze the performance of fusing features at model level 

Two reasons are suggested to explain why model level fusion cannot perform as 

good as that in WB system. 

It is difficult to find a set of text-dependent weights such that the combined 

scores from the true speaker model become the largest in all cases. Therefore, the 

effectiveness of this approach is limited. 

Similar approach of model level fusion was studied for large vocabulary word 
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recognition [2]. To get the maximum benefit, [2] suggested that the features used 

should be independent and they should provide similar recognition performance when 

they are used independently. In this experiment, we assumed that the NB and HB 

features are independent to each other and they are modeled individually. When a is 

equal to 0.5, the scores from NB and HB systems are combined in equal weight and 

the average SID rate is equal to 93.26%. The experimental result showed that Digit 

Baseline 2 gave better performance (average SID rate 二 95.49%). It indicated that 

there is correlation between NB and HB features and the correlation is also useful in 

speaker recognition. Similar conclusions about the correlation between features from 

different subbands have been obtained in [3] [4]. Therefore, fusing features at model 

level cannot give much improvement. The correlation between NB and HB features 

should be retained to use for speaker recognition. It comes with the idea of fusing 

features at feature level that will be investigated in the next section. 

5.2. Feature Level Fusion 

In the computation of the likelihood score from the Gaussian mixture component, 

each element of the feature vector is attributed to the same weight. Recently, an 

approach of weighting feature components was investigated for robust speech 

recognition ([5] - [7]). It comes with the idea that some feature components are less 

corrupted by noise. A heavier weight should be given to those components to show 

their relative importance in speech recognition. Similarly, this approach can be 

applied to speaker recognition if some of the feature components are more 

discriminative than the others. For example, [8] studied the method of adjusting 

individual weight for each feature component to achieve minimum error rate. 

In Chapter 4, we find that the importance of features from NB and HB is 
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text-dependent in speaker recognition. It motivates us to fuse features from these two 

bands with text-dependent feature weights. 

5.2.1. Experimental Set-up 

In this experiment, spectral envelope features extracted from WB are used. The 

experimental procedures are the same as the baseline system (Digit Baseline 1) in 

Chapter 3. However, the computation of likelihood score is different. 

Traditionally the log-likelihood score for an input feature vector f 冊 is 

computed by equation (5.3), 

聊•’广)=〔0：而)」(广-广)『2：【1(/層-广） （5.3) 

where 6 冊={//•，！]•} denote the parameters of the Gaussian mixture component. 

jLi冊 and Ya皿 represent the mean vector and diagonal covariance matrix of the 

Gaussian distribution respectively. c(5]顺）is a constant. The superscript NH 

denotes WB features, f 冊 is a 28-dimension vector and consists of two parts as, 

广 = [ 广 广 ] 

where f and f are a 20-dimension and a 8-dimension vectors respectively. The 

superscript N and H denote features from NB and HB. 

To incorporate different weights for NB and HB, the likelihood score would be 

computed as, 

zx 没 纽 , / • ) 二 匚0：謝）一 斯 — 紐 - 1 ( / 浙 ( 5 . 4 ) 

where Wis a weight matrix and it is a diagonal matrix with the following structure: 

W = diag[a,...,a, J3,...,J3] 
‘ V ‘ ^ V ‘ 

20 8 

a and P are adjusted to reflect the relative importance of features from NB and 

HB respectively in speaker recognition with the following constraint: 
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20a+ 8/? = 28 (5.5) 

Different sets of a and P that satisfy equation (5.5) have been tried in the experiment. 

Notice that when both a and P equal to 1, equation (5.4) will become equation (5.3). It 

will give the result of Digit Baseline 2. 

5.2.2. Results and Analysis 

Table 5-4 gives the results of feature level fusion by using different values of a and P. 

The highlighted values are the best SID rates attained for different digits. Based on 

these results, a and P are adjusted in a finer step for higher SID rate. 

Overall SID rate (%) 

I • • • _ Digit 
a p 0 I 1 一 2 3 4 5 6 7 8 9 

1.3 0.25 96.38 92.35 90.99 97.44 97.8 85.92 89.01 95.04 92.55 95.91 
12 0.5 97.3 94.16 93.55 97.8 98.5 87.67 90.93 96.39 93.91 96.64 
1.1 0.75 97.69 94.6 94.8 98.08 98.86 88.26 92.05 96.78 94.52 96.89 
0.9 1.25 97.69 94.63 95.66 9839 98.78 87.76 92.72 96.89 94.63 96.77 
0.8 1.5 97.52 94.24 95.47 98.3 98.67 87.12 92.16 96.63 94.02 96.41 
0.7 1.75 97.13 93.8 94.94 98.22 98.17 86.31 91.34 96.31 93.3 95.8 
0.6 2 96.44 92.32 94.33 97.78 97.83 85.25 89.96 95.62 92.16 94.88 

Digit Baseline 2 97.72 94.99 95.61 98.22 98.89 87.92 92.64 97.15 94.83 96.91 

Table 5-4 Overall SID rate (%) of feature level fusion by using different sets of a and 

P 

a and P are chosen by the following rules. If the SID rate given by feature level 

fusion is larger than that in Digit Baseline 2, the corresponding values of a and P are 

chosen. If there is more than one set of a and P that gives maximum SID rate, these 

values will be further adjusted in a finer step. On the other hand, if the SID rate given 
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by feature level fusion is less than or equal to that in Digit Baseline 2, both a and P 

are chosen to equal to 1. The chosen values of a and p and the corresponding SID rate 

for each digit are summarized in Table 5-5. 

Overall SID rate (%) 
Digit a p Max. SID rate given by Digit Baseline 2 

feature level fusion 
0 1 1 97.72 97.72 
1 0.98 1.05 95.02 94.99 
2 0.95 1.125 95.74 95.61 
3 0.883 1.2925 98.41 98.22 
4 1 1 98.89 98.89 
5 1.1 0.75 88.26 87.92 
6 0.98 1.05 92.81 92.64 
7 1 1 97.15 97.15 
8 1 1 94.83 94.83 

" " “ 9 0 . 9 6 1.1 96.94 96.91 
Average 95.58 95.49 

Table 5-5 List of chosen values of a and (3 and the corresponding SID rate given by 
feature level fusion 

From Table 5-5, we can find that the average improvement given by feature level 

fusion is equal to 0.09%, compared with that of Digit Baseline 2. By examining the 

SID result for individual digits, only digit T , ‘2，，‘3，，'5', '6' and '9' have 

improvement in performance. Also, we can see that the chosen values of a and P are 

approximately equal to 1 for all digits. 

To investigate if a and P depend on the number of feature components used in 

each subband, another experiment is performed. The experimental set-up is same as 

before but the number of feature components used in NB and HB are different (named 

as Feature Set 2). In NB, the to cepstral coefficients from each subband are 
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used. In HB, the O'̂  to cepstral coefficients are used. The result is summarized in 

Table 5-6. 

Overall SID rate (%) 
Digit a P Max. SID rate given Given by using 

by feature level fusion equal feature weights 
0 1.09 0.88 97.91 ^  
1 1.06 0.92 94.94 94.91 
2 1 1 95.49 95.49 
3 0.85 1.2 98.22 98.03 
4 1.09 0.88 99.08 
5 1 1 87.95 87.95 
6 1.06 0.92 92.19 
7 1 1 96.84 96.84 
8 1.03 0.96 95.08 95.02 
9 1.015 0.98 97.08 97.05 

Average 95.48 95.43 

Table 5-6 List of chosen values of a and P and the corresponding SID rate given by 
feature level fusion using Feature Set 2 

From Table 5-6, we can find that the average improvement given by feature level 

fusion using Feature Set 2 is equal to 0.05%. The chosen values of a and P are 

approximately equal to 1 for all digits. These two sets of results imply that the relative 

importance of NB and HB features cannot be varied by adjusting a and P. Therefore, 

the approach of applying text-dependent feature weights cannot give much 

improvement. 

5.3. Discussion 

Results in Chapter 4 showed that the importance of NB and HB features in speaker 

recognition are text-dependent. Fusing features from these two bands at model level 
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and feature level have been investigated. They differ at which level the information of 

importance of these two bands is applied. When features are fused at model level, the 

importance of NB and HB features is incorporated during linear combination of the 

likelihood scores from these two bands. In feature level fusion, this information is 

applied to the feature components with subband feature weights during calculation of 

likelihood score. 

For fusing features at model level, only some digits have improvement in 

performance. The overall performance is worse than that in Digit Baseline 2. On the 

other hand, feature level fusion can give performance as good as that in equal weight 

(i.e. Digit Baseline 2) while for some digits, they can have further improvement. The 

average performance gain given by feature level fusion is equal to 0.09%. 

One of the direct ways to utilize different features is to fuse them at model level. 

To maximize the benefit of model level fusion, data streams should be statistically 

independent [2]. However, it is not the case for features extracted from frequency 

bands and there is correlation between them [3]. Therefore, it is not suitable to 

perform model level fusion. For the approach of feature level fusion, the statistical 

dependencies between the two data streams can be retained. However, the 

improvement given by this approach is small. It is suggested that adjusting feature 

weights a and P cannot affect the contribution of NB and HB features in speaker 

recognition. 

It is believed that fusing features from NB and HB properly to reflect their 

relative importance provides a possible way to improve recognition performance. 

Therefore, it is required to investigate other approaches of fusing features from these 

two bands in future. 
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Chapter 6 

utterance-Level SID with Text-Dependent 

Weights 

It was shown that, for different words, the contributions from subband features might 

be different. This chapter describes the use of subband spectral envelope features for 

SID decision on a complete utterance which consists of a sequence of digits. 

6.1. Motivation 

In previous chapters, subband spectral envelope features for text-dependent SID has 

been studied. Based on the features extracted from a digit segment, the speaker's 

identity is decided. However, in practical applications, identification decision is made 

for the entire utterance. An utterance may consist of one or more digits. SID at 

utterance level means that the classification results from each digit segment are 

combined to determine a speaker's identity. 

From the results in Chapter 4, we find that some words can distinguish 

speakers better than the others for all types of features, i.e. MFCC, or spectral 

envelope features. It motivates us to apply text-dependent weights in utterance-level 

SID. Heavier weight will be assigned to those words that have higher text-dependent 

SID rates. 

In Chapter 4, the use of features from NB and HB in text-dependent SID has 

been studied. It was found that their importance is text-dependent. Based on this result, 
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fusing features from these two bands with text-dependent weights has been 

investigated in Chapter 5. Recognition performance can be improved. Therefore, 

text-dependent subband feature weights used in utterance-level SID will be studied. 

6.2. Utterance-Level SID 

In utterance-level SID, the likelihood scores for individual digits spoken in the 

utterance are linearly combined. Decision is made based on the overall score of the 

utterance. Figure 6-1 shows the steps of utterance-level SID. 

__ Digit 0 
[ ^ \ I 

I Speaker 1 丨 

i ^ - T — ^ i V o 
Features from i | \ 

Digit 0 segment ̂  f “ ^ I 
/ ； Speaker 20 s^ 

Forced Alignment / 丨 ! 

Input _ n s p e e c h 1 / : ； Identified 
— n e e Recognizer … ^ / speaker 

\ ‘ ( ^ I / ^20 
\ I Speaker 1 ； 

Features from ^ : \ \ 
Digit 9 segment ‘ • \ 

i n " ~ ] i / 
；Speaker 20 J 
I \ J \ 

一 一 一 一 一 一 一 一 一 一 _ — — ' 

Figure 6-1 Steps of utterance-level SID 

It is assumed that the content of the input utterance is known. A speech 

recognizer is used to find out the duration of each digit spoken in the utterance. After 
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that, features extracted from a particular digit segment are used to compute the 

likelihood scores from the digit-specific speaker models. The overall score of the 

utterance is given by linear combination of scores of all individual digits. For example, 

if the input utterance is ‘06，’ the overall score of the utterance is computed as follow: 

\ = � \ ) + ^ & p j = l,...,20 (6.1) 

S^, and S. , are the likelihood scores computed from the f speaker model for digit 

‘0，and digit '6' respectively. A^ denotes the text-dependent weight for digit ‘0，. Sj 

is the overall likelihood score from the speaker model. The model that gives the 

highest likelihood score will be identified as the recognized speaker. 

6.3. Baseline System 

In the baseline system, the digit-level likelihood score is computed with equal weights 

for features from different subbands and the scores from different digits are also 

equally weighted to generate the utterance-level decision. 

6.3.1. Implementation Details 

The baseline system follows the steps shown in Figure 6-1. The speech recognizer 

used in the experiment is the same as the one used in Chapter 3. Text-dependent 

weights 2 are equal to 1 for all digits. 

Two baseline systems have been established and evaluated. Utterance Baseline 1 

uses MFCC features as described in Chapter 2 and Utterance Baseline 2 uses spectral 

envelope features extracted from WB as described in Chapter 4. 

Among the 12 sessions of recordings, the first six sessions (SOI — S06) are used 
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to train digit-specific speaker models. The last four sessions (S09 — S12) are used to 

evaluate the system (see Table 6 —1). 

Data Use 
SOI - S06 Train digit-specific speaker models  
S07 - SOS Use in other experiments in this chapter  
S09-S12 Evaluate the system  

Table 6-1 Use of data in Chapter 6 

6.3.2. Results and Analysis 

By examining the identification errors, it is found that over 50 % of data in one 

particular recording session from a speaker (MIO) caused errors in the baseline 

system. The voice of speaker MIO in that session is significantly different from the 

other sessions. It might be due to sickness. The intra-speaker change is exceptionally 

large for this speaker. If data from this speaker is used for evaluation, it would affect 

the effectiveness of the analysis of identification results. Therefore, this speaker is 

excluded from the remaining experiments in this chapter. 

The results of the baseline systems are listed in Table 6-2. The identification 

errors have been analyzed. For single-digit and multi-digit utterances, the number of 

identification errors are counted separately (Table 6-2). 

80 



Chapter 6 Utterance-Level SID with Text-Dependent Weights 

Number of identification errors 

Feature Utterance level Single-digit Multi-digit 
SID rate (%) utterances utterances 

MFCC 98.66 89 13 
(Utterance Baseline 1) 

Spectral envelope features 98.58 96 12 
(Utterance Baseline 2) 

Table 6-2 Results of baseline systems for utterance-level SID using MFCC features 
(Utterance Baseline 1) and spectral envelope features (Utterance Baseline 2) 

6.4. Text-Dependent Weights 

The baseline results on text-dependent SID (Digit Baseline 1 in Table 3-5 and Digit 

Baseline 2 in Table 4-1) show that some of the words are more reliable in 

discriminating speakers than the others. For example, digit ‘3，and ‘4，give relatively 

high SID rates, compared with that using digit '5' and ‘6,. It indicates that the ten 

digits are not equally effective in discriminating between speakers. Based on the 

text-dependent SID rate, we can assign text-dependent weights used in linear 

combination of likelihood scores from individual digit to give overall score for the 

utterance. 

6.4.1. Implementation Details 

The steps are the same as that in utterance-level baseline system. However, 

text-dependent weights yl are used. The weights are chosen to reflect the effectiveness 

of using a particular digit in discriminating between speakers. They are determined 

based on the text-dependent SID result. The weights will be higher for those digits 

that have higher SID rate so that they can contribute more in determining speaker's 
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identity. 

Sessions S07 - SOS are used to perform text-dependent SID and the results are 

listed in Table 6-3. The SID rates for the 10 digits have been sorted in ascending order. 

The text-dependent weights X will be determined based on this. 

Text-dependent SID rate (%) 

SID rate sorted in Using spectral SID rate sorted in 
Digit Using MFCC ascending order envelope features ascending order 

0 98.58 8 98.25 6 

1 97.83 7 96.75 4 

2 96.66 4 98.08 5 

3 99.5 10 ^ 10 

4 97.5 6 99 8 

5 93.73 1 94^ 2 

6 95.32 2 92.73 1 

7 97.32 5 98.49 7 

8 95.57 3 96.16 3 

9 99.33 9 99.08 9 

Table 6-3 Text-dependent SID rate (%) using MFCC features and spectral envelope 
features for the use of adjusting text-dependent weights i 

Different sets of text-dependent weights A have been tried in the experiment. 

The higher ranking the digit attains, the heavier weight it is assigned. One scheme of 

designing weights is to assign values ranged from 0.1 to 1 to each digit according to 

the ranking of the SID rate. Similar method is also tried but with values in smaller 

range. Another scheme is to divide the digits into two groups based on their SID rates. 

The first five digits that attained the highest SID rate are grouped together while the 

remaining digits form another group. Digits in the same group will be assigned with 

same weight. The weight equals to 1 for the former group while it is equal to 0.5 for 
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the latter group. 

6.4.2. Results and Analysis 

The best performance given by using text-dependent weights are listed in Table 6-4 

and Table 6-5. The corresponding values of text-dependent weights are also given. 

Using MFCC features 

Digit A p ^ 义 

0 0.8 5 0.1 
1 0.7 6 0.2 
2 0.4 7 0.5 
3 1 8 0.3 
4 0.6 9 0.9 

(a) 

Utterance level Number of errors for 
SID rate (%) multi-digit utterances 

Using text-dependent weights 98.72 8 
Utterance Baseline 1 98.66 ^  

(b) 

Table 6-4 Using text-dependent weights in utterance-level SID with MFCC features (a) 
Text-dependent weights for the 10 digits; (b) Result of utterance-level SID 

Using spectral envelope features 

Digit i Digit  
0 0.9 5 0.8 
1 0.85 6 0.8 

一 2 0.9 7 0.95 
一 3 1 8 0.85 
— 4 0.95 — 9 I 1 

(a) 
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Utterance level Number of errors for 
SID rate (%) multi-digit utterances 

Using text-dependent weights 98.59 H  
Utterance Baseline 2 98.58 12 

(b) 

Table 6-5 Using text-dependent weights in utterance-level SID with spectral envelope 
features (a) Text-dependent weights for the 10 digits; (b) Result of utterance-level SID 

Applying text-dependent weights X in utterance-level SID can deal with 

identification errors caused by utterances containing digit string. Those multi-digit 

utterances that caused identification errors in the utterance-level baseline are 

compared with that by using text-dependent weights (Table 6-6). We find that using 

text-dependent weights can correct some identification errors, but at the same time 

some other recognition errors are created. 

Using MFCC Using spectral 
features envelope features 

Number of identification 6 1 
errors solved  
Number of identification 1 0 
errors created  

Table 6-6 Identification errors that belong to multi-digit utterances and solved/created 
by using text-dependent weights in utterance-level SID are counted, in comparison 
with the identification errors in the utterance-level baseline system 

This approach of applying text-dependent weights in utterance-level SID is 

probably effective if the likelihood scores from the true speaker model are the 

maximum for those digits with relatively high text-dependent SID rate. However, it 
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cannot help to solve recognition errors in some cases. 

Digit with low text-dependent SID rate implies that it is not reliable in 

discriminating speakers. If all digits spoken in the utterance have relatively low 

text-dependent SID rate, applying text-dependent weights may not help. One example 

is ‘56，. From the result, we find that over 50% of identification errors are caused by 

utterances containing this digit combination. 

In some cases, applying text-dependent weights in utterance-level SID may 

create more identification errors. The current scheme of applying text-dependent 

weights puts less emphasis on the contribution from digits with low text-dependent 

SID rate. However, if the likelihood scores from the true speaker model are the 

maximum for digits that have relatively low text-dependent SID rate, recognition 

error may then be created by this approach (see Example 1 below). 

Example 1: An identification error is created by applying text-dependent weights 

Digit string ‘56’ is spoken by speaker Ml8 and MFCC features are extracted. It is wrongly identified as 

speaker MOl after applying text-dependent weights. 

The five highest scores with the corresponding speakers are listed.  

Score Score Combine in 
Combine in 

for Speaker for Speaker Speaker text-dependent Speaker 
equal weights 

Digit 5 Digit 6 weights  

-70.772 M12 -67.423 M15 -137.977 MOV -20.6622 M19 

-67.534 M19 -65.917 M07 -137.078 M19 -20.5727 M15 

-67.308 MOl -64.86 M18 -137.047 M07 -20.2964 M08 

-66.503 M06 -64.815 M02 -131.015 MOl -19.5014 M18 

MAX -65.294 M18 -63.707 MOl -130.154 M18 -19.4722 MOl 

After analyzing the identification errors, we find that in some cases, the 

likelihood scores from the true speaker model are the maximum for digits that are 

considered to be relatively unreliable in discriminating speakers. This may suggest 
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that the effectiveness of different digits in identifying speakers is speaker-dependent. 

The idea of designing speaker-dependent text-dependent weights can be explored in 

future. 

From Table 4-1 in Chapter 4, we find that text-dependent SID using NB features 

also shows text-dependent performance. Such text-dependent performance is not 

coherent between NB and WB systems. Some digits exhibit higher reliability in 

discriminating speakers under WB system than that in NB system (e.g. digit ‘2’）. It is 

due to different importance of subband features for different digits. If text-dependent 

weights in NB system are also found, we can use different sets of weights based on 

what kind of speech data (NB or WB) we have to do utterance-level SID. 

6.5. Text-Dependent Feature Weights 

It was shown that the importance of NB and HB features are text-dependent in 

speaker recognition. In Chapter 5, fusing features from NB and HB with feature 

weights for text-dependent SID has been studied. Recognition performance can be 

improved by this approach. Therefore, integrating text-dependent weights for subband 

features in utterance-level SID is investigated. 

6.5.1. Implementation Details 

The steps of this experiment are the same as the utterance-level baseline system. 

Spectral envelope features extracted from WB are used. Text-dependent weights /I 

are equal to 1 for all digits. 

Calculation of likelihood score from individual digit is different in this 

experiment. It is computed by equation (5.4) with text-dependent weights for subband 
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features. 

The feature weights (a and P) for NB and HB are found following the steps 

described in Chapter 5. Sessions 807 - SOS are used for this purpose. The chosen 

values of a and P are listed in Table 6-7. 

Text-dependent SID rate (%) 

Digit a p Using text-dependent Using equal weights for 
weights for subband subband features 

features  

0 ~ 0.78 
1 1 1 96.75 96.75 

2 1 1 9 8 . 0 8 

3 1 . 0 2 0.95 99.58 ^  
4 ~ 1.11 0.725 99.17 ^  
5 1.1 0.75 - 94.49 
6 0.9 “ 1.25 — 93.07 
7 1 1 98.49 98.49 

~ 0.9 1.25 96.24 
9 0.85 “ 1.375 99.25 99.08 

Table 6-7 Chosen values of text-dependent feature weights (a and P) used in 

utterance-level SID 

6.5.2. Results and Analysis 

In Chapter 5, it was shown that applying subband feature weights in text-dependent 

SID can improve the performance. It is expected that this approach can help reducing 

the number of identification errors from both single-digit utterances and multi-digit 

utterances in utterance-level SID. 

Table 6-8 lists the result of using text-dependent feature weights in 

utterance-level SID. The SID rate given by this method is lower than that in Utterance 

Baseline 2. We find that the number of identifications errors caused by single-digit 
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Utterances is increased while the number of errors caused by multi-digit utterances 

remains unchanged. 

Number of identification errors 
Utterance level Single-digit Multi-digit 

SID rate (%) utterances utterances 
Using text-dependent 98.56 97 12 

feature weights  
Utterance Baseline 2 98.58 96 12 

Table 6-8 Result of using text-dependent feature weights in utterance-level SID with 
spectral envelope features 

Applying text-dependent feature weights in utterance-level SID cannot give 

improvement in performance. The possible reason is that data used for adjusting the 

feature weights (a and P) and evaluating the system are come from different sessions, 

i.e. there is data mismatch. In Chapter 5, the same set of speech data is used to adjust 

the feature weights and test the system. Improvement can be achieved by applying 

subband feature weights in this way. However, in this experiment, the data mismatch 

caused that the found values of a and (3 do not fully suit with the testing data. Hence, 

recognition errors may be created. 

6.6. Text-Dependent Weights Applied in Score 

Combination and Subband Features 

Text-dependent weights for utterance-level score combination and text-dependent 

subband feature weights have been studied separately in the previous sections. Using 

both approaches together to perform utterance-level SID is then investigated. 
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6.6.1. Implementation Details 

Spectral envelope features extracted from WB are used. The experimental steps are 

the same as the utterance-level baseline system, except the following two processes. 

Likelihood score for each individual digit is computed by equation (5.4) using 

the subband feature weights listed in Table 6-7. The set of text-dependent weights /I 

that gave the highest utterance-level SID rate in Section 6.4 is used. 

6.6.2. Results and Analysis 

Table 6-9 lists the result of using text-dependent weights in score combination and 

subband feature weights to perform utterance-level SID. 

Using text-dependent weights in score combination and subband feature weights 
Utterance level SID rate (%) 98.55 

Number of identification errors from single-digit utterances 91 
Number of identification errors from multi-digit utterances 13 

Table 6-9 Result of using text-dependent weights in score combination and 
text-dependent feature weights to perform utterance-level SID with spectral envelope 
features 

Using both approaches of subband feature weighting and text-dependent 

weighting in score combination cannot give further improvement than by using either 

one of them. As we have mentioned before, each approach has its own limitation. The 

experimental result indicates that both approaches are not complementary to each 

other. Therefore, no further improvement can be achieved by applying both 

approaches at the same time. 
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6.7. Discussion 

Table 6-10 and Table 6-11 summarize the results of utterance-level SID by applying 

different approaches of text-dependent weights with MFCC and spectral envelope 

features respectively. Among the three approaches we studied in this chapter, the 

approach of using text-dependent weights in score combination gives the best 

performance. 

Using MFCC features 

Utterance level SID rate (%) 

Utterance Baseline 1 98.66 

Using text-dependent weights in score combination 98.72 

Table 6-10 Summarize the results of utterance-level SID with MFCC features 

Using spectral envelope features extracted from WB 

Utterance level SID rate (%) 
Utterance Baseline 2 98.58 

Using text-dependent weights in score combination 98.59 
Using text-dependent feature weights 98.56 

Using text-dependent weights in score combination 98.55 
and text-dependent feature weights  

Table 6-11 Summarize the results of utterance-level SID with spectral envelope 

features 

The results show that applying text-dependent weights in score combination can 

help to reduce identification errors, where the performance gain for using MFCC and 

spectral envelope features are equal to 0.06% and 0.01% respectively. The approach 

of using text-dependent subband feature weights in utterance-level SID cannot 
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perform as good as it did in text-dependent SID. It may be due to the data mismatch 

between training feature weights and evaluating the system. We suggest that the above 

two approaches cannot complement each other. Therefore, using both approaches 

together cannot give further improvement. 

In this chapter, applying text-dependent weights in score combination has been 

studied using multi-digit utterances. Actually, we can extend the use of this approach 

to other text-dependent applications (i.e. not only multi-digit utterances). 

In our study, text-dependent weights are adjusted intuitively. In future, more 

study can be done on how to adjust the weights so as to better reflect the reliability for 

different words in discriminating speakers. We believe it can further improve the 

recognition performance. 
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Chapter 7 

Conclusions and Suggested Future Work 

7.1. Conclusions 

Voice is one of the most natural and the least obtrusive biometric measures for the 

identification of a person. It is an attractive field of research nowadays. In real 

applications, many factors can degrade the recognition performance. This includes 

speaker-generated variability and variability induced by recording channels and 

conditions. In this thesis, we focus on the speaker-dependent information in different 

frequency subbands. 

When speaker recognition is performed in machine, the bandwidth of speech 

signal is limited. For example, the telephone bandwidth is 0 - 4 kHz. Speaker 

recognition using telephone speech essentially assumes that useful speaker-dependent 

information can be found mostly at the frequency below 4 kHz. However, many 

studies showed that frequency band above 4 KHz does contain important features of a 

speaker's voice. In this thesis, we have studied the contributions of features from NB 

(0 - 4kHz) and HB (4 - 8kHz) in speaker recognition. Instead of lumping NB and HB 

features directly for speaker recognition, suggestions can be made on how to fuse 

features from these two bands based on their importance. We believe that such 

understanding can provide a possible means to improve recognition performance. 

In this thesis, we focus on studying spectral envelope features extracted from NB 

and HB for text-dependent speaker identification (SID). The experimental results 

92 



Chapter 7 Conclusions and Suggested Future Work 

confirm that HB contains useful speaker-dependent features. More precisely, it has 

been observed that these features come from some fricatives or other phonemes that 

have more energy concentrated in HB. Therefore, the contributions of NB and HB 

features in discriminating speakers are different for different speech sounds. 

Two approaches of fusing features from NB and HB have been studied. They are 

model level fusion and feature level fusion. To maximize the benefit of model level 

fusion, data streams should be statistically independent. But it is found that there is 

correlation between features extracted from NB and HB and this correlation is also 

useful in speaker recognition. Therefore, it is not suitable to perform model level 

fusion. Feature fusion with text-dependent subband feature weights has been 

investigated. It can improve the identification accuracy by 0.09% on average. The 

improvement is small and it is suggested that adjusting feature weights a and P cannot 

affect the contribution of NB and HB features in speaker recognition. We believe that 

fusing features from NB and HB based on their importance in SID provides a possible 

means to improve recognition performance. Therefore, it is required to investigate 

other methods of fusing features from these two bands in future. 

We extend our study on subband spectral envelope features to utterance-level 

SID. The result of text-dependent SID shows that some words are more reliable in 

discriminating speakers. For example, digit '3' and '4' give higher SID rates than the 

others. Based on this result, we can assign text-dependent weights used in linear 

combination of likelihood scores from individual digit so that those words with higher 

reliability contribute more in SID. The experimental results show that this method can 

achieve 0.06 % and 0.01 % improvement with MFCC and spectral envelope features 

respectively. 

By summarizing the above results, some suggestions for speaker recognition are 

given as follows: 
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1. Fusing features from NB and HB with subband feature weights based on their 

importance is preferred. It is also suitable to apply this approach in other 

text-dependent applications (i.e. not only digit-dependent). 

2. By studying text-dependent SID result, those words that are more reliable to 

discriminate speakers can be found. Based on their reliability in discriminating 

speakers, text-dependent weights used in score combination for utterance-level 

SID can be determined. 

Although NB features still play the main role in determining speaker's identity, 

features from HB also give its contribution. With a better understanding on the 

contribution of features from these two bands, we can fuse them together in an 

appropriate way so as to maximize the benefits from these two bands. Similarly, if the 

word reliability in discriminating speakers can be known, we can design weighting to 

put more emphasis on those words in performing speaker recognition. 

72. Suggested Future Work 

1. Study fine details features in different frequency bands 

In this thesis, we focus on the vocal tract characteristics. As we have discussed 

before, vocal source characteristics also contain speaker-dependent information. 

The fine details in the speech spectrum carry features of vocal source. By 

examining the speech spectrum carefully, we observe that the fine details show 

less harmonic in HB. So we suggest studying fine details features in different 

frequency bands in future. It is possible to apply the contribution of fine details 

features and spectral envelope features in NB and HB for speaker recognition. We 

believe it can further improve the performance of a speaker recognition system. 
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2. Study contribution of features in different frequency bands on phoneme basis 

From the results of text-dependent SID experiment, it shows that the contribution 

of NB and HB features is text-dependent due to different phonetic composition. 

Therefore, it is suggested to study the contribution of features from these two 

bands on phoneme basis. It can enable us to have a clearer picture on how to use 

NB and HB features thoroughly. 

95 



Appendix 

Appendix 

Appendix 1 Speech Content for Data Collection 

Use in Session 1 and 2 Use in Session 3 and 4 Use in Session 5 and 6 

0 0 “ 0 

5 5 5 
7 7 7 
9 9 9 
2 2 2 
3 3 3 
6 6 6 

8 8 8 
1 1 1 
4 4 4 

17 39 04 
68 80 32 
93 21 91 
79 57 67 
26 46 85 
3230 4104 8691 0473 0315 6842 
0784 0331 7051 4260 3579 1096 
2136 0587 1527 6938 8367 9524 
9734 2954 2493 1857 4731 8270 
7739 2608 丨3048 6952 11902 5846 
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Use in Session 7 and 8 Use in Session 9 and 10 Use in Session 11 and 12 
0 0 

5 5 5 
7 7 7 
9 9 9 
2 2 2 
3 3 3 
6 6 6 

8 8 8 
1 1 1 
4 4 4 
01 24 09 
74 51 18 
59 06 34 
36 37 56 
82 89 27 
4209 3618 3450 9428 8623 2570 
8903 2567 7935 4261 7891 6745 
4513 9408 8910 5637 0192 5384 
2671 3095 2908 7136 3906 1947 
5782 7461 |8024 1675 12834 0517 
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