
i

V
Connection-Switch Box Design and Optima.

MST-Based Graph Algorithi^. on FPGA
S e g m e n t a t i Q ^ ^ e s i g n

Zhou Lin •

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

⑥The Chinese University of Hong Kong

June, 2004

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

UNIVERSITY 涵

XgSJSLIBRARY SYSTEMvAg/

Abstract

Field-Programmable Gate Arrays (FPGAs) are a kind of Very Large Scale

Integration (VLSI) circuits. They have been widely used in digital systems

since their introduction in 1985. The property of instance manufacturing and

low-cost prototypes allows them to be applied in various technology fields such

as telecommunications, high-speed graphics and digital signal processing. In

FPGAs programmable switches are used to connect all the circuit elements.

Switches have high resistance and capacitance and require much chip area. Too

many switches incur the penalty of circuit speed and chip area. Therefore, how

“to balance the routing flexibility and the performance constraints becomes a

popular problem in current F P G A research.

Our first attempt is to propose the F P G A architecture applying Connection-

Switch Boxes (CS-Boxes). That idea is similar to the Xilinx Virtex F P G A ar-

chitecture. Our design is based on the symmetrical array F P G A architecture

and combines the Connection Box and Switch Box together. The connec-

tion algorithm is designed to build the switches inside the CS-Box. To verify

the efficiency of our design, we make the theoretical analysis and comparison

between the new F P G A architecture and the traditional symmetrical array

F P G A architecture. W e take the example of P = 5 and a = 1.0 (P is the

number of pins on each logic block and a is the connection ratio of logic pins)

and find Ncs ^ Nx when W ^ Z [Ncs and N^ are the switch number required

by CS-Box FPGAs and symmetrical array FPGAs; W is the channel width).

After that we conduct extensive experiments on M C N C benchmark circuits

i

and make comparison between the two architectures on channel widths, cir-

cuit delays and switch numbers. The results show that by applying the CS-Box

structure the number of the switches connecting two wire segments can be re-

duced by up to 11.81% with small increase penalty of the channel width and

the circuit delay by 0.38% and 2.34% on average respectively.

The channel segmentation design is another topic in F P G A architecture

design. Chang et al. developed the Graph Matching-Based Algorithm to con-

struct good segmentation designs. It tries to maximize the F P G A routability

under performance constraints such as circuit speed and chip area. During the

execution of the algorithm the outcome is affected by the pairing scheme, which

means that the solution may be not optimal. W e enhance it and present the

MST-Based Graph Algorithm. It works optimally for both row-based FPGAs

and symmetrical array FPGAs. The results are independent of the net merg-

ing order. W e conduct experiments on ten sets of routing instances. And the

results show a 4.31% reduction of net length from the Graph Matching-Based

• Algorithm to the MST-Based Graph Algorithm.

ii

摘要

現場可程式化門陣列（FPGA)是一種超大規模集成電路。自從1985年首次提

出以来，它已經在數字系統領域得到了廣泛的應用。快速加工與低成本試製的

特性使得它在遠距離通信、高速圖形學以及數字信號處理等諸多科技領域被採

用。在FPGA中，可程式化轉換器用來連接所有的電路元件。這些轉換器有著

較高的電阻與電容值，並且佔據大量芯片空間。使用過多的轉換器會對芯片的

速度和所需面積產生不良影響。因此，如何在佈綫靈活性與工作約束之間達到

平衡成爲了當今FPGA研究領域普遍討論的問題。

首先，我們提出了一種採用連接-轉換盒（CS-Box)的FPGA結構。這

一想法與Xilinx公司的Virtex FPGA結構相似。我們的設計以對稱陣列FPGA

為基本結構，將連接盒與轉換盒組合在一起。在連接-轉換盒内部，轉化器根據

我們提出的連接算法進行設置。爲評估這項設計的有效性，我們在新型的

FPGA與傳統的對稱陣列FPGA之間進行了理論上的分析與比较。以P = 5及

a=\.0為例，我們發現當ff 2 3時，存在A^„SA^,。隨之，我們在MCNC基

準問題測試電路上進行了試驗，從通道寬度、電路延遲以及轉換器數目等方面

對兩種結構進行比較。結果顯示，採用CS-Box結構後，用来連接兩段導錢的

轉換器數目最多可減少11.81%，同時伴隨著通道寬度與電路延遲的微弱增加，

分別為平均0.38%和2.34%。

iii

通道分段設計是FPGA結構設計的另一主題。Chang等研究者設計了基

於匹配理論的園算法，用來構建較好的分段設計。這種算法試圊在電路速度與

芯片面積等工作約束下，最大幅度增加FPGA的可佈錢性。算法的結果受到配

對機制的影響，使得結果達不到最優化。我們對算法進行加強，提出基於最小

生成樹的圖算法。在基於行的FPGA與對稱陣列的FPGA中，它都可以達最優

化。結果不依賴綱路結合順序。我們在十組佈錢實例上進行試驗。結果顯示，

從基於配圊算法到最小生成樹圖算法，網路長度減少可達4.31%。

iv

Acknowledgments

First and foremost, I would like to thank my supervisor David Yu Liang W u

for his technical instruction, mentality advice and financial support. He led

me into the F P G A architecture design field, an interesting research area and

gave me invaluable suggestions on all my work. He does not only care my

process but also gave me detailed advice on each step. So in the past two

years I learned from Professor W u how to dig deeply into my research interest

as well as what attitude a real researcher should have. Besides research work

Professor W u taught me how to be a strong character in real life. He helped

me out of the saddest experience in my life. After that I have the confidence to

face all difficulties in the future. During my study period in Hong Kong I was

given sufficient learning resources, for which I should also thank my supervisor

very much.

Also I would like to thank another two professors of our department, Yiu

Sang Moon and Fung Yu Young. Professor Moon is the marker of my term

papers. In each semester he reviewed my term paper and attended my presen-

tation. After my presentation he always gave me many valuable suggestions

both on technique and on communication skills. M y research area is near to

Professor Young's. I took a course of hers and attended her study group. She

helped me a lot in my academic work.

Here I should give my thanks to Cheung Chak Chung as well, who was

an MPhil student of Professor Wu. With his kindly help I overcame much

difficulty in research and life at the beginning of my study in Hong Kong. And

V

our discussion on research provided me clearer mind and helped me find a way

to the solution. M y thanks are given to the other students in our research

group. Our discussion and cooperation is a treasure for my future work.

I would like to thank the friends in my office. They are Cheuk Man Lee,

Tian Bai Ma, Tsz Yeung Wong, Ying Kin Hui and Yun Kai Liu. In daily work

they helped me solve many technical problems. With their support I got to

know many technique tools, which aided me to complete work more efficiently

and effectively.

At last I want to thank my family. Even though I am far away from home,

they gave me strong support in my work. M y parents taught me how to make

good balance between work and life. Their encouragement is the strongest

spirit support for me.

vi

Vita

Born in HeiLongJiang, China on August 9，1979.

Education

Bachelor of Engineering, Harbin Institue of Technology, July 2002

M.Phil., The Chinese University of Hong Kong, August 2004 (expected)

Publications
r

Catherine L. Zhou, Ray C.C. Cheung and Yu-Liang Wu, “ What if Merging

Connection and Switch Boxes - an Experimental Revisit on FPGA Architec-

tures'' in Proc. Communications, Circuits and Systems, 2004 IEEE Interna-

tional Conference on. Best Paper Award.

Catherine L. Zhou and Yu-Liang Wu, “ Optimal MST-Based Graph Algo-

rithm on FPGA Segmentation Design,, in Proc. Communications, Circuits

and Systems, 2004 IEEE International Conference on.

vii

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Aims and Contribution 3

1.3 Thesis Overview 4

2 Field-Programmable Gate Array and Routing Algorithm in

VPR 6

2.1 Commercially Available FPGAs 6

2.2 F P G A Logic Block Architecture 7

2.2.1 Logic Block Functionality vs. F P G A Area-Efficiency . . 7

2.2.2 Logic Block Functionality vs. F P G A Delay-Performance 7

2.2.3 Lookup Table-Based FPGAs 8

2.3 F P G A Routing Architecture 8

2.4 Design Parameters of F P G A Routing Architecture 10

2.5 C A D for FPGAs 10

2.5.1 Synthesis and Logic Block Packing 11

2.5.2 Placement 11

2.5.3 Routing 12

2.5.4 Delay Modelling 13

2.5.5 Timing Analysis 13

2.6 F P G A Programming Technologies 13

viii

2.7 Routing Algorithm in V P R 14

2.7.1 Pathfinder Negotiated Congestion Algorithm 14

2.7.2 Routing Algorithm Used by V P R 16

3 Connection-Switch Box Design 17

3.1 Introduction 17

3.2 Connection-Switch Box Design Algorithm 19

3.2.1 Connection between Logic Pins and Tracks 20

3.2.2 Connection between Pad Pins and Tracks 25

3.3 Switch Number Comparisons 26

3.4 Experimental Results 29

3.5 Summary 32

4 Optimal MST-Based Graph Algorithm on FPGA Segmenta-

tion Design 37

4.1 Introduction 37

” 4.2 MST-Based Graph Algorithm on F P G A Channel Segmentation

Design 39

4.2.1 Net Merging Problem of Row-Based FPGAs 41

4.2.2 Extended Net Merging Problem of Symmetrical Array

F P G A s 44

4.3 Experimental Results 46

4.4 Summary 46

5 Conclusions 48

Bibliography 50

ix

List of Figures

1.1 Most Popular (4,3)-Switch Boxes at Present 3

2.1 Single Output 4-LUT Logic Block, with a D Flip-Flop 8

2.2 The Four Classes of F P G A Routing Architectures 9

2.3 F P G A C A D Flow 11

2.4 Details of Synthesis Procedure 12

2.5 Pathfinder Negotiated Congestion Algorithm 15

2.6 Difference between Pathfinder and VPR's Routing Algorithm . . 16

•• 3.1 Symmetrical Array F P G A Architecture 18

3.2 Xilinx Virtex Architecture 19

3.3 CS-Box F P G A Architecture 20

3.4 Vt^-PT-Graph H. Case I: W = P 22

3.5 ty-PT-Graph H. Case 2: W mod P = 0 &nd W ^ P 23

3.6 VP'-PT-Graph H. Case 3: mod P ^ O 24

3.7 Connection between Pad Pins and Tracks 26

3.8 Connection-Switch Box with W = 2 27

3.9 Comparison Diagram of Ncs and Nx when a = 1.0 and P = 5 . . 30

3.10 CS-Box Structure: Pad Pin Connection 31

3.11 CS-Box Structure: Logic Pin Connection 32

3.12 Routing Result of e64 by Using CS-Boxes, W = 7 33

4.1 Row-Based F P G A Architecture 38

V

4.2 Symmetrical Array F P G A Architecture 38

4.3 Row-Based F P G A Channel with Four Routing Instances 40

4.4 Weighted Undirected 4-Partite Graph Representation of Fig-

ure 4.3 41

4.5 Symmetrical Array F P G A with Three Routing Instances 44

4.6 Weighted Undirected 3-Partite Graph Representation of Fig-

ure 4.5 45

t*

xi

List of Tables

2.1 Commercially Available FPGAs' Routing Architecture Classifi-

cation 8

3.1 Channel Width Requirements 34

3.2 Circuit Delay Comparisons {e~'^ns) 35

3.3 Switch Number Requirements 36

4.1 Net Length Comparison 47

xii

Chapter 1

Introduction

1.1 Motivation

Field-Programmable Gate Array (FPGA) is a kind of Very Large Scale In-

tegration (VLSI) circuit. It has been used for over a decade because of its

wide applications in digital systems. With its reconfigurable nature users can

program it by themselves in minutes. And the property of risk-free large-scale

'integration allows it to be applied in various technology fields such as telecom-

munications, high-speed graphics and digital signal processing [1]. Also in

production F P G A provides instance manufacturing and very low-cost proto-

types [2], especially in small and medium volumes.

Although F P G A has many features making it popular in current indus-

try, its architecture nature incurs speed and area penalty during routing. In

an F P G A programmable switches are used to connect the routing resources

including logic pins, pad pins and wire segments in channels. Switches have

high resistance and capacitance and they require much chip area. So too many

switches lower the circuit speed and augment the chip area. On the other hand

increasing the switch number aids to provide high routing flexibility. There-

fore, how to balance the routing flexibility and the performance constraints

has become a problem in current F P G A research.

There are many ways to improve the F P G A routability, such as designing

1

Chapter 1 Introduction 2

better physical structures of the whole chip, optimizing logic block architec-

tures and enhancing routing algorithms. Today a lot of research works pay

much attention to the F P G A routing architecture design. According to the

architecture types, currently commercially available FPGAs can be classified

into four classes: symmetrical array, row-based, sea-of-gates, hierarchical PLD.

Figure 2.2 [2] shows their conceptual diagrams. Among them symmetrical

array FPGAs are most widely applied. Based on its physical architecture re-

searchers proposed new ideas in a variety of aspects. Some deal with the switch

box's inside structure. At present there exist four types of switch boxes: Dis-

joint, Universal [3] [4] [5], HUSB [6] [7] and Wilton [Ij. Figure 1.1 shows the

four (4,3)-switch boxes. The literature [8] compares their routabilities in term

of channel widths. Among them HUSB has been proven to be optimal in

theory. And the experimental results also show that it outperforms the other

kinds of switch boxes. Another way to improve the F P G A routability is to

find a good channel segmentation design. Different segmentation designs are

•’ investigated in the literature [9] [10] [11] [12] [13] [14]. And a variety of meth-

ods were used in the past work, e.g., experimental studies, stochastic models,

analytical analysis and graph-theoretic formulation. Lin et al. proposed the

Graph Matching-Based Algorithm for F P G A segmentation design and routing.

They use graph matching theory to formulate the Net Merging Problem and

then extend it for general channel segmentation designs. The experimental

results show that this algorithm is effective and efficient. Besides investigating

the switch box structure and the channal segmentation, the Xilinx Company

digs into a new research area, in which the Connection-Switch Box concept is

proposed.

All the above research works have addressed on how to improve F P G A

routability and how to reduce hardware resources. Those are the two main

goals in this research area today. Therefore, we put most of our effort in this

field.

Chapter 1 Introduction 3

(a) Disjoint-SB (b) USB

. # #
(c) HUSB (d) Wilton's SB

Figure 1.1: Most Popular (4,3)-Switch Boxes at Present

1.2 Aims and Contribution

Our research work concentrates on F P G A architecture design. And our aim

is to improve the F P G A routability from various aspects, e.g., decreasing the

channel width, reducing the switch number and deducting the routing delay.

Firstly we address on the Connection-Switch Box (CS-Box) design and

construct our own CS-Box structure. The aim of this work is to reduce the

hardware resources and simultaneously keep the routability non-degraded. The

Chapter 1 Introduction 4

conceptual diagram of a CS-Box F P G A is illustrated in Figure 3.3. The in-

creased flexibility inside the CS-Box improves the overall chip routability and

reduces the switch number of the entire chip. W e decide the connection algo-

rithm for the switch construction inside CS-Boxes. To make a good evaluation

of the new architecture, we conduct both theoretical analysis and experiments

on large M C N C benchmark circuits. The experimental results show that the

CS-Box F P G A outperforms the traditional symmetrical array F P G A to some

degree, e.g., fewer switches, smaller channel width and less circuit delay.

Secondly our work focuses on the channel segmentation design, which also

has high impact on the whole chip routability and hardware requirement.

Lin et al. addressed the Graph Matching-Based Algorithm, which is very

useful in general channel segmentation designs. The theoretical analysis and

experimental results tell that the algorithm is effective and efficient. After

studying the algorithm we find that it is not able to provide an optimal solu-

tion. So our work is done to enhance the Graph Matching-Based Algorithm.

.And the MST-Based Graph Algorithm is proposed. The discussion in theory

shows that our algorithm is optimal for both row-based FPGAs and symmet-

rical array FPGAs. And the experimental results observe a 4.31% reduction

of net length by our algorithm.

1.3 Thesis Overview

This thesis is mainly about the F P G A architecture design from different as-

pects. In each area we give the detailed methods, thorough theoretical discus-

sion and experimental verification. The remainder of this thesis is organized as

follows. Chapter 2 introduces the necessary background knowledge of FPGA,

C A D and VPR, the router used in our experiments. Chapter 3 addresses the

CS-Box structure design. In that chapter we show what the new F P G A ar-

chitecture looks like and how to determine the switches inside a CS-Box. Also

Chapter 1 Introduction 5

we analyze the switch number required by the new F P G A and the symmet-

rical array FPGA. At last the experimental results are given to support our

design and theoretical discussion. Chapter 4 is about our MST-Based Graph

Algorithm. Based on the Graph Matching-Based Algorithm we formulate the

Net Merging Problem in another way. And the theorems and corresponding

proof make sure that our algorithm works optimally. During analysis the time

complexity is also discussed. W e generate the experimental objects with our

own generation package and excute the algorithm on them. The experimental

results are encouraging. Chapter 5 concludes our work.

Chapter 2

Field-Programmable Gate Array

and Routing Algorithm in VPR

Field-Programmable Gate Array (FPGA) is a kind of Very Large Scale Inte-

gration (VLSI) circuits. It has been used for nearly twenty years because of

its instance manufacturing and very low-cost prototypes. [2] To improve FP-

GAs' speed and area-efficiency researchers have done much work about F P G A

architecture designs. In this chapter we will introduce the background knowl-

edge about FPGAs. And the symmetrical array F P G A routing architecture

will be described in details since our primary work concentrates on proposing

new F P G A routing architectures with higher efficiency. V P R is a widely used

router in current research on FPGAs. Before our applying it we analyze the

routing algorithm used by this tool.

2.1 Commercially Available FPGAs

At present commercially available F P G A families include Xilinx, Actel, Al-

tera, Plessey, Plus, Advanced Micro Devices (AMD), QuickLogic, Algotronix,

Concurrent Logic and Crosspoint Solutions. Among them the first three types

are used most widely.

6

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 7

2.2 FPGA Logic Block Architecture

Functionality is an important characterisctic of F P G A logic blocks. It refers

to the number of different boolean logic functions that the block can imple-

ment. [2] The functionality of the logic block affects the amount of required

routing resources in the FPGA. Since routing resources are connected by pro-

grammable switches, which take up significant chip area and have great resis-

tance and capacitance, the functionality of the logic block has great impact on

FPGAs' architecture and function.

2.2.1 Logic Block Functionality vs. FPGA Area-Efficiency

The logic block functionality is an important factor that affects F P G A area.

According to [2] the total chip area needed for an F P G A consists of the logic

block area plus the routing area. And 70% to 90% of the total chip area is

occupied by routing. As functionality increases, the number of blocks in the

.circuit becomes smaller. Since each block accomplishes more functions, logic

inside it is more. The total chip area will change due to the relationship of all

the factors.

2.2.2 Logic Block Functionality vs. FPGA Delay-Performance

Here we apply the delay model introduced in [2]. It can be expressed in Eq.

(2.1),

.DTOT = NLX {DLB + DR) (2.1)

where DTOT is the total delay when one logic block delay and one routing

delay are incurred in each block stage. NL is the number of logic blocks in the

critical path. DLB indicates the combinational delay of the logic block. DR

tells the delay between logic blocks when routing.

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 8

I rS rv i
I > i Output

~ r ~ Vr n
Inputs i L o o k - u p _ J D i

_ _ T a b l e Flip-Flop |

Clock 1 Vcc — ^ S

Enable j J

Figure 2.1: Single Output 4-LUT Logic Block, with a D Flip-Flop

Routing Architecture Company .
Symmetrical Array Xilinx, QuickLogic

Row-based Actel, Crosspoint
Sea-of-gates Plessey, Algotronix, Concurrent

Hierarchical-PLD Altera, Plus, A M D

Table 2.1: Commercially Available FPGAs' Routing Architecture Classifica-
tion

2.2.3 Lookup Table-Based FPGAs

The logic block structure used in an F P G A strongly influences the circuit speed

and chip area-efficiency. [15] Currently most FPGAs use logic blocks based on

look-up tables (LUTs). A k-LVT is a LUT with k inputs, which requires 2知

S R A M cells and a 2左-input multiplexer. And most commercial FPGAs are

based on 4-LUTs. Figure 2.1 [2] shows a single output 4-LUT logic block.

2.3 FPGA Routing Architecture

The F P G A routing architecture specifies the relative width of the various

wiring channels within the chip. [15] Commercial FPGAs can be classified

into four groups based on the routing architectures, symmetrical array, row-

based, sea-of-gates and hierarchical PLD. Figure 2.2 [2] shows the four classes

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 9

Symmetrical Array Interconnect Row-based

z … I
Logic Block

Interconnect J ^ *
Overlayed on / Interconnect

Logic Blocks PL。 | JT

Block = = =丨※※：

I I I I I I I I I I Hierarchical PLD

Sea-of-Gales

‘ Figure 2.2: The Four Classes of F P G A Routing Architectures

of routing architectures. And Table 2.1 classifies the commercial FPGAs men-

tioned in Section 2.1 according to their architectures. Our research focuses on

the symmetrical array F P G A architecture design. The routing architecture of

that kind of FPGAs will be described in details in the following. W e use the

terminology defined in [2], which is also adopted throughout the thesis.

A symmetrical array F P G A consists of a two-dimensional array of logic

blocks (Figure 3.1). The logic blocks are surrounded by routing channels con-

taining a number of tracks. A track is a straight section of wire that spans

the entire width or length of a routing channel. It can be composed of wire

segments of various lengths. The region between two logic blocks is called a

connection box, in which programmable switches connect a pin to some or all

of the wire segments in the channel. A switch box refers to the area where

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 10

a horizontal channel and a vertical channel intersect. Programmable switches

exist in the switch box and allow some of the wire segments incident to the box

to be connected to others. By programming switches to be ON, users can con-

nect short wire segments to form longer connections. Currently there are four

kinds of switch boxes widely applied in FPGAs, Disjoint, Universal Switch Box

(USB) [3] [4] [5], Hyper-Universal Switch Box (HUSB) [6] [7] and Wilton.[I .

2.4 Design Parameters of FPGA Routing Ar-

chitecture

Throughout the thesis we apply the notations defined in [16] as some of the

design parameters if there is no special declaration.

W : The channel width. Equals to the number of tracks per channel.

Fs： The flexibility of the switch box. Equals to the total number of possible

connections offered to each incoming wire.

Fc： The flexibility of the connection box. Equals to the number of channel

wires to which each logical pin can connect.

2.5 CAD for FPGAs

According to [15] Computer-Aided Design (CAD) programs are used to im-

plement a circuit in a modern FPGA. F P G A users describe a circuit at a

higher level of abstraction. Then C A D programs convert the description into

a programming file, in which each programmable switch and configuration bit

has been set to the appropriate state. The converting process can be broken

down into three steps, synthesis and logic block packing, placement, Routing.

Figure 2.3 [15] helps to describe the whole procedure traceable.

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 11

^Circuit description (VHDL, schematic,..

} r

Synthesize to logic blocks

1 r

Place logic blocks in FPGA

\ ‘

Route connections between logic blocks

1 r

^ P G A programming fil^

Figure 2.3: F P G A C A D Flow

2.5.1 Synthesis and Logic Block Packing

. T h e synthesis process translates the circuit description provided by users into

a netlist of basic gates. And then the netlist of basic gates is converted into

a netlist of F P G A logic blocks. The goal of this procedure is to minimize the

number of logic blocks and/or maximize the circuit speed. [15] The synthe-

sis and logic block packing stage can be divided into three phases, which is

illustrated in Figure 2.4 [15 .

2.5.2 Placement

Placement algorithms determine which logic block within an F P G A should

implement each of the logic blocks required by the circuit. [15] The placers

in use today can be categorized by min-cut {partitioning-based), analytic and

simulated annealing based placers. [15] The placement aim is to place connected

logic block close together to minimize the required wiring, or to balance the

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 12

“ (Netlist of basic gates^

1 r

Technology-independent logic optimization

Technology map to look-up tables (LUTs)

] r
Pack LUTs into logic blocks

^etlist of logic bloc》

Figure 2.4: Details of Synthesis Procedure

wiring density across an FPGA, or to maximize circuit speed. [15

2.5.3 Routing

Routing is performed after the placement of all the logic blocks have been

decided in a circuit. It determines which programmable switches should be

turned on to complete all connections between the logic pins required by the

circuit. Logic pins and wire segments are called routing resources. Researchers

usually use a directed graph to represent an FPGA, which is also the repre-

sentation method applied in our work. In the graph all routing resources are

represented by vertices. And an edge tells which two routing resources are

connected. Generally there are two kinds of routers at present. One finds a

path for a net in one step including which routing resources are used. The

other works in two steps. Firstly, the router determines which logic block pins

and channel segments are used. And secondly, the specific wire segments in

each channel segments are decided to be occupied. A channel segment is the

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 13

length of routing channel that spans one logic block. [15

2.5.4 Delay Modelling

Delay model is a speed measure during F P G A routing. It is used to com-

pute the speed of a circuit and the delay of different net topologies during

routing [15]. Today the most widely used delay estimate is Elmore delay.

Okamoto et al. [17] introduced the Elmore delay of a source-sink path, which

is shown in Eq. (2.2).

Ri.C(subtreei)+T\i (2.2)
i € Source—sinkpath

where i denotes a wire, a buffer or a pass transistor. So Ri is the equivalent

resistance of such an element {R^ire, Rtaf, Rpass). C{subtreei) is the total

capacitance of the dc-connected subtree rooted at the element i, where dc-

connected means directly connected by wires. Td�i is the intrinsic buffer delay

if z is a buffer, and 0 otherwise.

2.5.5 Timing Analysis

After the placement and routing of a circuit the timing analysis is necessary to

determine the speed of the circuit. Also timing analysis is used to estimate the

slack of each source-sink connection during the whole C A D flow. That helps

to route some connections via fast paths to avoid slowing down the circuit. [15

2.6 FPGA Programming Technologies

The connection between two routing resources is realized by setting the switch

ON. Programming technologies are used to implement switches in FPGAs.

Currently the main technologies include Static R A M (SRAM), fuse, Anti-

fuse, Erasable Programmable Read-Only Memory (EPROM) and Electrically

Erasable Programmable Read-Only Memory (EEPROM).

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 14

2.7 Routing Algorithm in VPR

V P R is a tool and the name means versatile packing, placement and rout-

ing for symmetrical array FPGAs. In our CS-Box structure design V P R is

used to conduct the experiments on M C N C benchmark circuits. Here we in-

vestigate the routing algorithm in VPR. VPR's routing algorithm is based

on the Pathfinder negotiated congestion algorithm [18] [19] and overcomes

Pathfinder's shortcoming of much CPU time when processing high-fanout nets.

2.7.1 Pathfinder Negotiated Congestion Algorithm

Pathfinder routes each net in the netlist by the shortest path it can find regard-

less of any routing resource's overuse initially. Then it rips up and re-routes

each net by the lowest cost path. The cost of using a routing resource can be

expressed by Eq. (2.3).

. (c„ + hn) X pn (2.3)

where is the basic cost of using the resource n, is the history cost of using

the resource, and is the number of signals sharing the resource at present.

After initially routing all nets, iterations are turned on until there are no

shared routing resources. In each iteration every net is ripped up and re-routed

by the lowest cost path. By increasing the costs of the routing resources grad-

ually, the nets with alternative routes are forced to avoid overusing resources.

And those resources are left only to the nets that need them most afterwards.

When re-routing each net, we keep a tree RT to store the partial net that

has been routed. RT is initialized as the source of the processed net and is

used as the expansion wavefront when connecting the unconnected sinks to the

partial net. And after routing the whole net the history costs of the resources

on the net are updated.

The Dijkstra's algorithm is applied in Pathfinder to find the lowest cost

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 15

Send patlifiiu丨cr(nctlist，FPGA aixrliitccture)
1 wliik tlicrc arc shared routing rcsoiuxrcs
2 for net Ni
3 BT 一 soTircc iiotlc- of jYj
4 wliik tlicarc arc sinks of N‘ ^vliicli arc not connoctcd to tlic soimx

6 Pj to RT
7 c3ul-\vliilc
8 ujxlatc cost of nodes basiotl on coivg«stion liistoxv
9" ondfor ‘
H> rip U3> nets if they lia.vc sliaixxl icsoui'ocs
11 auhvliilc

fmdpatJi(RT)
liĉ i

for cadi node m RT
enqueue ii onto Q mtli key 0

cndfox ‘
wliik a new sink has not been foimd

dequeue nock, m, with lowest key Ikmi Q
if m was not; prcrioiisly tlcqucucd

for cach ndglibor n of •？n
enqueue n on Q witli ccel of n plus kcv of m

aulfor ‘
caiclwhilc
backtrjwK from tlic found sink till a node of RT is readied

antl return this patli
end

Figure 2.5: Pathfinder Negotiated Congestion Algorithm

path from the expansion wavefront - the partial net that has been routed -

to one sink of the net. Initially all nodes in RT are put into a queue with a

key 0. Then the node with the lowest key in the queue is deleted and all its

neighbors' keys are updated by plusing its key. The deleting action will stop

when an unconnected sink of the net is found. The path connecting the new

sink to the partial net is obtained by back tracing from the sink to a node in

the expansion wavefront - RT.

The Pathfinder negotiated congestion algorithm is illustrated in Figure 2.5 [20 .

Chapter 2 Field-Programmable Gate Array and Routing Algorithm in VPR 16

Unconnected t̂xpiiiision Expansion Re-cxpanJ aroimd Expansion
s,ink vviive front wave from new wire waNcfront

伯 — U p H f / ,1 � � -] � r
1 。 ! 4 ； 丨 丨 h I

'I — • � M j T L I

^ Sinkieachcd <c) VPR method: mamuun
, , (b) Tfutlitional mctliocJ: wavcfiont and oxpaiui

(11) hxpansion readies a sink restart Wiivcfront around new wire

Figure 2.6: Difference between Pathfinder and VPR's Routing Algorithm

2.7.2 Routing Algorithm Used by VPR

Pathfinder's using much C P U time is its main drawback. When a new sink

is found, all the nodes in RT are regarded as source nodes. Since Pathfinder

.empties the expansion wavefront after finding a new sink, for high-fanout nets

it will take the router a large amount of time to expand from the partial

routed net to the next sink. V P R modified Pathfinder's expansion wavefront

and obtained a routing algorithm occupying less C P U time.

Instead of emptying the wavefront after finding a new sink, V P R does

not only keep the current expansion wavefront but also adds the new path

connecting the newly found sink to the wavefront with cost 0. Since the added

part is fairly small, it will take little time to add this part to the partial net.

Then when looking for the next sink, the maze router will expand around

the added path first instead of starting from the scratch, which allows that the

next sink can be found more quickly. The modification made on the Pathfinder

algorithm can be illustrated in Figure 2.6 [21 .

Chapter 3

Connection-Switch Box Design

3.1 Introduction

F P G A has been used for over a decade with its wide applications in digital sys-

tems. The conceptual diagram of the symmetrical array F P G A is illustrated

in Figure 3.1 [2]. A symmetrical array F P G A consists of a two-dimensional

array of logic blocks. The logic pins are connected by segments of wire. Two

• types of programmable switches exist in this F P G A architecture. The first

type exist in the connection box (C-Box) and connect pins to wire segments

or vice versa. The second type build connections between two different seg-

ments of wire. And they are in the switch box (S-Box). The architecture of

an F P G A has high impact on its routability. Based on the symmetrical ar-

ray F P G A architecture, many research works have addressed on the optimal

switch box designs. Currently the most widely used switch box structures are

Disjoint, Universal Switch Box (USB) [3] [4] [5], Hyper- Universal Switch Box

(HUSB) [6] [7] and Wilton [1]. Their routabilities have been evaluated in [8 .

Another advanced technology about F P G A architecture design is the Virtex

architecture proposed by the Xilinx Company. The Xilinx Virtex Architec-

ture has been applied in practice since their introduction. Figure 3.2 is the

diagram showing that the Virtex architecture uses the Connection-Switch Box

structure.

17

Chapter 3 Connection-Switch Box Design 18

L]r L L

Logic Block Pin y — ^ ^ Connection Box

11Z：：] I I IZIIII I I
-pf s \sr] s -jef

Logic Block \

r H I I 1 ~ H I I r ~ H \ Horizontal Channel
\ L 二 L L

Track _

_ _ F = : _ _ r ^ _ _ F = q _ _ r ^ _ _ p 二^
|c s \e] s je-f-

Vertical Channel | I I I I | V
~ — S w i t c h Box

Figure 3.1: Symmetrical Array F P G A Architecture

Based on the existing technologies of F P G A architecture design, we design

our own Connection-Switch Box (CS-Box) to reduce the hardware resources.

The increased flexiblity inside the CS-Box improves the overall chip routability

and reduces the switch number of the entire circuit. The new F P G A concep-

tual diagram is shown in Figure 3.3. It is based on the symmetrical array

F P G A architecture. The difference is that the separate C-Box and S-Box

structures are combined to form the CS-Box structure in the new FPGA. The

switch building algorithm we designed tries to use as few switches as possible

to accomplish routing. After theoretical analysis we conduct experiments on

large M C N C benchmark circuits. The experimental results are encouraging.

They show a 11.81% reduction of switch numbers from CS-Box FPGAs to

symmetrical array FPGAs together with small penalty of channel widths and

circuit delays. As Fd, the connectivity of logic pins, in CS-Box FPGAs in-

creases, the switch number reduction is a little degraded. While the penalty

in channel widths and circuit delays is eliminated.

This chapter is organized as follows. Section 3.2 introduces the connec-

tion algorithm. Section 3.3 analyzes the number of the switches connecting

logic pins and wire segments. To achieve a fair evaluation on the proposed

Chapter 3 Connection-Switch Box Design 19

I B i J ^
_ ‘ fin ~ • •
• •BSfliI ^ m S H • •

IB^^i'i 等 “ : • — • • •
• SHsHmI HB̂ âi MRBSRHH B H H • •

I � …d p 1 1

SLICE SLICE
12 i o-'̂s. WKKc r
I 明‘： fONNIXT ^ ^

I CLB

Figure 3.2: Xilinx Virtex Architecture

architecture, we compare it with the symmetrical array F P G A architecture

on different objectives. Section 3.4 shows the experimental results with the

comparison of channel widths, circuit delays and switch numbers. Section 3.5

draws our conclusions on this work.

3.2 Connection-Switch Box Design Algorithm

W e designed two algorithms to do the connection between pins and tracks in

the F P G A with CS-Boxes. One is for logic pins and the other for pad pins.

、 S o m e necessary notations are defined as follows,

W : The channel width.

Chapter 3 Connection-Switch Box Design 20

L L L L

CS CS CS

L L L L

CS CS CS

I I ~ ^ I 0 — ^ I L l

Figure 3.3: CS-Box F P G A Architecture

P : The logic (pad) pin number on each logic block (pad).

Fci : The logic pin connectivity that denotes how many tracks in one channel

a logic pin is connected to.

Fcp : The pad pin connectivity that denotes how many tracks in one channel

’ a pad pin is connected to.

According to Figure 3.3 the CS-Box contains the two kinds of switches. And

each pin connects to the tracks on the sides except the one it belongs to. The

following two subsections introduce the two algorithms in details.

3.2.1 Connection between Logic Pins and Tracks

In this algorithm we regard each CS-Box as a 4-partite graph. The track(s) and

the non-global logic pin(s) on one side compose of a disjoint vertex set of the

graph. Here we call them track vertices (T-track) and pin vertices (P-vertex).

Then the problem of building switches in the CS-Box can be formulated as

settling the edges between P-vertices and T-vertices in the 4-partite graph.

According to the above notations, P is the total number of P-vertices in

the 4-partite graph. W is the number of T-vertices in each disjoint set of the

Chapter 3 Connection-Switch Box Design 21

graph. All the P-vertices in the graph are labeled from 1 to P. And the T-

vertices in each disjoint set are labeled from 1 to W. W e use Vpi to denote the

ith P-vertex and Vuj to denote the jth T-vertex of the zth disjoint vertex set.

W e name such a 4-partite graph as PT-graph. Then the switch design problem

can be formulated as follows,

Problem Formulation

Let G be a PT-graph. Si and Sj (1 ̂ i, j ̂ 4 and i + j) are disjoint vertex

sets of G. Vpm is a P-vertex in the graph, where Vpm G Si and 1 ̂ m ^ P. A

solution to this problem is that each Vpm G Si should be connected to some T-

vertices in Sj. The goal is that the number of the edges is as small as possible

and the number of the connected T-vertices is as large as possible.

Definition 3.1 A W-PT-graph is a PT-graph that has W T-vertices in each

disjoint vertex set.

‘ W e note that in the four disjoint vertex sets of a PT-graph, the numbers of

T-vertices are the same and the numbers of P-vertices are different. Thus we

construct i to i matching from the P-vertices to the T-vertices. That is, in

the PT-graph the edges are built by connecting the zth P-vertex to the zth

T-vertex of each set. Let H = {V, E} be a VF-PT-graph. By that method

each incoming wire segment has connection with pins. And also the number of

switches is not too large — in symmetrical array FPGAs the switches between

pins and segments are too many if the pin connectivity is set to be 1.0. And

in the following we will describe the detailed algorithm on building edges.

Algorithm Description

Case 1 W = P

This is the simplest case considered by the algorithm. The zth P-vertex

Chapter 3 Connection-Switch Box Design 22

vtl’4

"Vti’i Vti2 Vti3 (Vtiw) Vp4

(vt3,w) \ 〇 vt4’3

v..

t̂3,2 V vt4’l

vt3，l 0 \ / ^ ^ Vp3

• 6 〇 • P_vertex

Vp2 Vt2’l Vt2，2 Vt2，3 V(24 〇 T-vertex

(vt2’w)

Figure 3.4: 1^-PT-Graph H. Case 1: W = P

is connected to the zth T-vertices which are not on the same side with

• the P-vertex. So the edge set of H is

E = {{vpj,vu,j)Kj W(P)} (3.1)

Figure 3.4 illustrates the 4-PT-graph H in which the edges have been

decided.

Case 2 mod 尸 = 0 and ly # P

Here Case 1 is used as the unit case to work out the solution. Each

disjoint vertex set of H can be divided into 爭 subsets. And all the

subsets can be denoted by

Vk = {vti,p\\p - k\modP = (3 . 2)

The edges are set between the vertices in V^ and the kth. P-vertex. So

Chapter 3 Connection-Switch Box Design 23

vtl’l Vtl’3、1’4 vti’5 vti,6 ^aj ̂ tl.S V

Vp2 vt2,i Vt2’2 、2’3 ^̂ 2A 1̂2,5 ̂12,6 ̂12,7 ̂t2,8

Figure 3.5: l^-PT-Graph H. Case 2: W mod P = 0&ndW ^P

the edge set of H is
t

E = { (% , vti,k)\vpj i S i ； = P;

1 ̂ i ̂ 4} (3.3)
Figure 3.5 illustrates the graph H in which the edges are built.

Case 3 W mod P^O
Let W' be an integer whose value is calculated by Eq. (3.4).

w' = W-{W mod P) (3.4)

In this case we divide the T-vertices into two groups. The first group

can be denoted by the following set (Eq. (3.5))，

{vti,j\l ^ z ̂ 4 and 1 ̂ i ^ (3.5)

And the other T-vertices compose of the second group. Now it is clear

that the first group corresponds to Case 2. The edges related to them

Chapter 3 Connection-Switch Box Design 24

Vtl’l ni,2 ni,3 Vti’4 Vti’5 Vp4

Vp2 Vt2，i Vt2’2 Vt2’3 Vt2，4 Vt2’5

Figure 3.6: W^-PT-Graph H. Case 3: mod P^O

can be determined in the way introduced in Case 2. That is,

E' = {(vpj,vti,k)\vpj i Si, \k-j\ modP = 0-l^k^W']l^j ^P-,

1 ̂ i ̂ 4} (3.6)

For the T-vertices in the second group, we can still build the edge set E"

in the way similar to which has been introduced in Case 2 after modifying

the labels of the first P - W -{-W T-vertices in each disjoint set. That

is, for each vuj where I ^ j ^ P -W W, relabel it as Vuj+w- Thus,
E" = + ^ - i) mod P = 0-,Vpj ^ Si-

l ^ k ^ P - W + W ' - l ^ j ^ P - l ^ i ^ i } (3.7)

Till now we can get the complete edge set 五 of // by

• E = E'U E" (3.8)

Figure 3.6 illustrates the graph H with the edges settled.

Chapter 3 Connection-Switch Box Design 25

W e have introduced the algorithm on the connection between logic pins

and tracks. According to the above design, the connectivity of each logic pin

can be calculated by Eq. (3.9).

W
= (3.9)

where ,

[0 ， i i W mod P = 0
P = { (3.10)

I 1，otherwise

3.2.2 Connection between Pad Pins and Tracks

W e proposed a separate algorithm for the connection between pad pins and

tracks because of the structural difference between pads and logic blocks. Fig-

ure 3.7 shows the conceptual diagram of the connection between pad pins and

tracks. Let Vp be the pad vertex (P-vertex) denoting a pad pin. Let v̂ i {vyi) be

the track vertex (T-vertex) denoting a track in the x-channel (y-channel). The

‘ switches to be determined are represented by the edges connecting P-vertices

and T-vertices.

According to the definitions at the beginning of Section 3.2, Fcp is the

connectivity of each pad vertex. In previous work we tried to use the F P G A

router V P R [15] [21] to route the benchmark circuits on symmetrical array

FPGAs. A fact is that some of the circuits are not able to be routed if Fcp

equals to some number smaller than W, while all of them are able to be routed

when Fcp equals to W. Therefore, in our design Fcp equals to W. The algorithm

separates all the edges adjacent to one P-vertex into two groups. The edges

in the first group are adjacent to the T-vertices in the x-channel; and this

group is indicated by E^. The other edges are adjacent to the T-vertices in

the y-channel; and the group containing them is indicated by Ey. According

Chapter 3 Connection-Switch Box Design 26

Pad „ L ！ CHANY! L

1 , J —

V ^ CHANX I ！ CHANX

\ I 丨 1

L ICHANY； L Pad

(a)Pad on The Topmost Row (b)Pad on The Bottommost Row

I CHANY； L L r— Pad

CHANX I I CHANX

P a d � L L I CHANY；

(c)Pad on The Leftmost Column (d)Pad on The Rightmost Column

Figure 3.7: Connection between Pad Pins and Tracks

to our algorithm, E^ and Ey can be represented by the following two sets,

f {(vp,vxi)li m o d 2 = 0; 1 ̂ i ̂ W}, if m o d 2 = 0
Ex = \ (3.11)

{{vp, Vxi)\i mod 2 = 1; 1 ̂ z ̂ W), otherwise

n mod 2 = 1; 1 < i < W}, if mod 2 二 0
i (3.12)

Vyi)\i mod 2 = 0; 1 < i < W}, otherwise
V

3.3 Switch Number Comparisons

In this section we discuss the number of the switches connecting logic pins

with tracks in the new F P G A architecture. Figure 3.8 shows the CS-Box with

W = 2. The switches connecting two tracks are not shown in Figure 3.8

Chapter 3 Connection-Switch Box Design 27

L 1 L

0 4

^ ^ ^ Logic Pin

. e J T
Switch Connecting Logic Pins and Tracks I

Figure 3.8: Connection-Switch Box with VF — 2

for simplicity. The following variables are defined. W and P have the same

definition as in Section 3.2.

• Ncs : It is defined for each CS-Box and equals to the number of the switches

connecting logic pins and tracks.

Nx ： It is defined for each logic block in symmetrical array FPGAs and

equals to the number of the switches connecting logic pins and tracks.

a : The connection of the switches connecting logic pin in the symmetrical

array FPGA. It indicates how much percent of tracks the logic pin is

connected to in one channel.

According to the algorithm introduced in Section 3.2,

W

‘ = (3.13)

where jS satisfies Eq. (3.10). In the symmetrical array FPGA,

TVo： = a X ly X P (3.14)

Chapter 3 Connection-Switch Box Design 28

Let A; be a non-negative integer. And W is denoted in terms of k by Ineq.
(3.15). -

kP <W ^{k + l)P (3.15)

And also

L - p J + / 5 = A; + l (3.16)

Ncs and Nx can be indicated in Eq. (3.17) and Ineq. (3.18).

Ncs = (k + 1) X 3 X P (3.17)

〈仏 = + (3.18)

During the following discussion we are going to find the condition of Ncs ^

N^ by Eq. (3.17) and Ineq. (3.18).

1. First, the necessary condition for Ncs ̂ N: is
»

(/c + 1) X 3 X P 作 + 1) X a X (3.19)

Prom Eq. (3.19) we can get

(3.20)

2. Second, the sufficient condition for Ncs ̂ Â x is

(A; + l) x 3 x P ^ a x A : x p 2 (3.21)

From Eq. (3.21), we can get

3

- k 》 — — - - (3.22)
a X P - 3 \)

and

(3.23)

Chapter 3 Connection-Switch Box Design 29

3. Third, we consider that both Ncs ̂ N: and N^ < Ncs occur.

a X k X < Ncs《（k + V) X a X (3.24)

(1) If a = there is

TV,, = (A： + 1) X P X 3 (3.25)

/ c x P x 3 < A ^ x ^ (^ + l) x P x 3 (3.26)

W e can see that Ncs = ^x when Â x = + 1) x P x 3. But in most

cases, Ncs > Nx.

(2) If a > there is

k < ——- (3.27)
a X P - 3 ^ ‘

Take the example of P = 5 and a = 1.0. Figure 3.9 illustrates the

comparisn of Ncs and Nx. It is clear that Ncs > Nx occurs only if

W <?,. As P increases, NcS becomes smaller.

Prom the above analysis, the F P G A architecture with CS-Boxes uses fewer

switches to connect logic pins and tracks than the symmetrical array FPGA.

The next section will verify this analysis with extensive experiments.

3.4 Experimental Results

After the theoretical .analysis and comparison, we observe the loss and gain

of the routability, performance and size on the two types of FPGAs on the

platform of a 1500 M H z Intel Pentium 4 PC with 512M R A M . The currently

best known router V P R [15] [21] is used to test the routability and efficiency of

the CS-Box structure. The iteration number for routing is 100. And the rout-

ing algorithm is the Breadth-First Search Algorithm. The Wilton switch box

Chapter 3 Connection-Switch Box Design 30

N N

I . / .
45 十---© N„

/ 丨 丨 .
- 0 — Q — © - - 0 - - 0 _

^ J n n
: : 广 ： ： ： ： ： ： ： ： ‘
. _ / ： w

0 ^ /2 3 4 5 6 7 8 9 10 11
1 •

5
*

” Figure 3.9: Comparison Diagram of Ncs and N^ when a = 1.0 and = 5

is applied to make the connection between tracks, i.e., S-Box in symmetrical

array FPGAs. W e try different values of Fd to route the benchmark circuits.

F'^i is defined as basic value and computed by Eq. (3.28).

, W
= (3.28)

where, (3 satisfies Eq. (3.10). Then Eq. (3.29) is used to obtain the different

Fci values, where, a: = 0,1,2,....

Fci = F^i + x X 3 (3.29)

Table 3.1 shows the channel width requirements of different benchmark

circuits. The circuit delay information is presented in Table 3.2. In Table 3.3

we show the number of the switches required to connect logic pins and tracks

Chapter 3 Connection-Switch Box Design 31

oul:o_40_

L2_ ou!:o.48_

Routing succeeded with a channel width factor of 7.

Figure 3.10: CS-Box Structure: Pad Pin Connection

in each benchmark circuit. Prom the tables, applying CS-Boxes can reduce

switch numbers with small penalty of circuit delays and channel widths when

Fci = F'̂i is used in the new FPGA. As Fd of the CS-Box F P G A increases,

the reduction of switch numbers becomes less while the penalty on circuit

delays and channel widths is eliminated. Figure 3.10 and 3.11 show the switch

connections on the proposed design. The entire routing of the e64 benchmark

circuit is shown in Figure 3.12.

W e have conducted experiments on the proposed CS-Box F P G A and the

traditional symmetrical array FPGA. Prom Table 3.3 the channel width has an

average reduction of 6.99% when Fd = F』,+ 1. At the same time the circuit

delay and the switch number are reduced by 2.10% and 4.91% on average.

From these experimental results we observe that the F P G A routability has

been improved by applying the CS-Box structure.

Chapter 3 Connection-Switch Box Design 32

i i
！

1 i
I |J

[65] T I 丨 [947]

i i -
Routing succeeded with a channel width factor of 7.

Figure 3.11: CS-Box Structure: Logic Pin Connection

3.5 Summary

W e develop a new F P G A architecture, in which the disjoint C-Box and S-

Box structures are combined to the CS-Box structure. There are two types of

‘ switches in the CS-Box: one of the switch boxes introduced at the beginning of

Chapter 3 is used to make connection between tracks, and the second type are

the switches between pins and tracks. W e introduce the connection algorithm

to build the second type of switches. In the theoretical analysis of the switch

number, we take the example of P = 5 and a = 1.0 and find Ncs ̂ Â x when

W ^ 3. The experimental results show a 11.81% reduction on average in the

number of switches inside the C-Box from the symmetrical array F P G A to the

CS-Box FPGA, accompanied by small penalty of channel widths and circuit

delays when Fd = F̂ i in CS-Box FPGAs. The larger F^ in the new FPGA,

the smaller the reduction of switch numbers. But the penalty of the channel

widths and circuit delays is eliminated.

Chapter 3 Connection-Switch Box Design 33

J3 m j i m aim m m m m m m m m m m

Routing succeeded with a channel width factor of 7.

Figure 3.12: Routing Result of e64 by Using CS-Boxes, W = 7

Chapter 3 Connection-Switch Box Design 34

F P G A Architecture Symmetric-Array with CS-Box Structure

Fci I I F'^i + 1
Circuit Name - -

^ 10 10 10 10 9
apex2 11 11 11 11 11
apex4 13 12 13 13 13

b9 4 4 4 4 3
bigkey 6 6 6 6 6
dalu 6 6 6 6 6
des 8 7 7 6 5

diffeq 7 8 8 8 7

dsip 7 7 7 7 6

e64 7 7 8 7 7
elliptic 10 11 10 11 10
exlOlO 10 10 10 10 10

ex5p 13 13 13 13 13

misexS 10 10 10 11 10
my 一 adder 4 4 4 4 3

sl423 5 5 6 6 4

s298 8 8 8 8 7

S384 1 7 8 8 7 7 7

s38584.1 7 7 7 7 7

seq 11 11 11 11 11
tseng 7 7 7 6 6

unreg 4 4 4 5 3

Total "TT^ 176 ~ [f r 177 164 一

* +0.57%
Comparison * +0.57% -6.82%

* 0 -7.34%
Average

Comparison Result +0.38% -6.99%
“*" indicates the result in the column is used to make comparison

Table 3.1: Channel Width Requirements

Chapter 3 Connection-Switch Box Design 35

F P G A Architecture Symmetric-Array with CS-Box Structure

- Fci W 0.91^ 0.8W 一 F � ,I F^i +r~
Circuit Name - -

^ 1.85386 1.56852 1.90095 1.66109 1.66125~
apexS 1.607 1.63341 1.3474 1.73219 1.76429
apex4 1.42238 1.43766 1.5797 1.31174 1.26781

b9 0.36672 0.341982 0.365442 0.293081 0.446448
bigkey 1.62792 1.98333 2.40621 1.48558 1.49052
dalu 1.33564 1.22028 1.18171 1.43429 1.10201
des 1.69223 2.04452 1.54254 2.39677 2.09814

diffeq 1.39117 0.977372 1.11989 1.14553 1.07257
dsip 1.20737 1.56772 1.52951 1.78454 1.72232
e64 0.493154 0.43602 0.424841 0.416376 0.431577

elliptic 2.86504 1.96451 2.64456 2.01054 2.52907
exlOlO 3.8845 3.35407 3.66273 3.84098 3.12935
ex5p 1.37349 1.22278 1.26679 1.34682 1.32818

misexS 1.71805 1.44106 1.53773 1.68674 1.96567
my-adder 0.534498 0.530612 0.547252 0.596041 0.449367

. SI423 0.73654 0.675588 0.651449 0.664029 0.592272
s298 2.70654 2.2548 2.34736 2.68695 2.29187

S38417 1.72278 1.83241 1.79846 2.36803 1.84059
S38584.1 1.72601 2.7448 2.61386 1.98874 2.59543

seq 1.48821 1.82375 1.90447 1.78949 1.54419
tseng 1.5054 1.25099 1.17455 1.18151 1.05066

unreg 1.99059 0.187206 0.1983 1.81475 1.52287
Total "^".457561 "^^9339 33.745704 34.002532 32.525871"

* +1.63% " "
Comparison * +4.64% +0.09%

* +0.76% -3.61%
Average

Comparison Result • +2.34% -2.10%
"*" indicates the result in the column is used to make comparison

Table 3.2: Circuit Delay Comparisons (e~^ns)

Chapter 3 Connection-Switch Box Design 36

F P G A Architecture Symmetric-Array with CS-Box Structure

Fci ~ W 0.81^ 一 + 1

Circuit Name - -
^ S M O 6 4 ^

apex2 106480 968000 87120 87120 87120
apex4 84240 71280 66096 58320 58320

h9 2420 2420 1936 1815 3630
bigkey 87480 75816 72900 87480 87480
dalu 34680 30056 28900 34680 34680
des 158760 123039 119070 119070 • 119070

diffeq 53235 54756 47151 45630 68445
dsip 102060 90396 87480 87480 131220
e64 10115 8959 8959 8670 8670

elliptic 186050 186050 148840 167445 167445
exlOlO 231200 208080 184960 138720 138720
ex5p 70785 65340 55539 49005 49005

misexS 72200 64980 57760 64980 64980
my-adder 980 980 784 735 1470

‘ sl423 5625 5625 5625 6750 6750
s298 77440 69696 60016 58080 87120

S38417 262440 236196 196830 196830 196830
S38584.1 229635 203391 196830 196830 196830

seq 97020 88220 79380 79380 79380
tseng 38115 33759 32670 32670 32670
unreg 980 980 784 735 1470

Total 1 9 9 1 ^ 1788799" 1603630 1570425 —1"693305
Comparison * -21.16% -14.99%^

with * * -12.21% -5.34%

* -2.07% +5.59%
Average

Comparison Result" -11.81% -4.91%
” *” indicates the result in the column is used to make comparison

Table 3.3: Switch Number Requirements

Chapter 4

Optimal MST-Based Graph

Algorithm on FPGA

Segmentation Design

4.1 Introduction

‘ Figure 4.1 and 4.2 show two types of F P G A architectures that are most widely-

used today, the row-based F P G A and the symmetrical array FPGA. In FPGAs

signals are transmitted between logic blocks through wire segments, between

which switches exist. Users can have two short segments connected by pro-

gramming the switch between them to be ON. A switch set to be O N can keep

or change the direction in which a signal propagates. Also switches can help

choose relatively short path(s) from the source to the sink(s). But the problem

is that switches have high resistance and capacitance. Using a large amount

of such components "may incur great delay penalty [10] [22] [23]. To get a

good balance between the routability and the switch number researchers have

attempted to design various segmentation architectures for FPGAs in [9] [10]

11] [12] [13] [14] [24] [25]. Among those literatures Chang et al. [24] [25] pro-

posed the Graph Matching-Based Algorithm for F P G A segmentation design

and routing. The algorithm considers the similarity of input routing instances

37

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 38

- Segment

Logic Block Z \ Switch

Figure 4.1: Row-Based F P G A Architecture

Switch Block Segment

^ H ^ H Logic Block

• Figure 4.2: Symmetrical Array F P G A Architecture

and formulates the Net Matching Problem to construct the segmentation archi-

tecture. It can provide segmentation outperforming those used in commercially

available FPGAs [25]. But the algorithm considers two routing instances each

time and merges all instances in a tree-like bottom-up manner. Therefore,

the result is dependant on the paring scheme. And the experiments show an

average variation of 5% by using two paring scheme [10 .

W e improve the Graph Matching-Based Algorithm and propose the Mini-

m u m Spanning Tree (MST)-Based Graph Algorithm. The MST-Based Graph

Algorithm considers all input instances at once. The merging result is indepen-

dent of the paring scheme. It is proved to be optimal for row-based FPGAs in

、 O(m^n^), where m is the number of routing instances and each routing instance

contains at most n nets. Then it is extended for symmetrical array FPGAs

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 39

and also proven to be optimal with the time complexity of + m^p^q^),

where p is the maximum net number of all routing instances and q denotes the

maximum subnet number of all nets. After theorectical analysis we perform

the algorithm on a variety of objects to verify our design. The experimental re-

sults show a 4.31% reduction of net length from the Matching-based algorithm

to the MST-based algorithm.

The remainder of this chapter is organized as following. Section 4.2 in-

troduces the MST-Based Graph Algorithm. In that section the algorithm is

proved to be optimal for both row-based FPGAs and symmetrical array FP-

GAs. And the time complexity is also given. To support our theoretical design

and analysis we execute the MST-based algorithm on ten sets of routing in-

stances. And the results are shown in Section 4.3. Section 4.4 concludes our

work.

4.2 MST-Based Graph Algorithm on FPGA

Channel Segmentation Design

In this section we will introduce the MST-Based Graph Algorithm on F P G A

channel segmentation design. The channel segmentation design problem is

to determine a channel segmentation architecture to achieve "best" routabil-

ity [10]. “ Best" routability means that the segmentation architecture can ac-

comodate as many routing instances as possible [10]. Chang et al. solved this

problem in the Matching-based algorithm [10] [24] [25]. They considered the

similarity of input routing instances and formulated the Net Matching Prob-

lem to construct the segmentation architecture. The net matching procedure

is effective and efficient. But it cannot get optimal results when there are more

. than two routing instances because of its dependance on the pairing scheme.

The MST-Based Graph Algorithm processes all routing instances at once. No

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 40

1 2 3 4 5 6 7 8 9 10

il i2

j l j2

j3

u l u2

w l w2

Figure 4.3: Row-Based F P G A Channel with Four Routing Instances

instance merging order affects the results.

In our F P G A channel segmentation design we use a weighted undirected

m-partite graph to formulate the Net Merging Problem, where m is the number

of routing instances. In the graph the algorithm finds a set of edges whose total

weight is maximized. These edges compose of a forest satisfying the following

condition,

No two vertices in a tree belong to the same disjoint vertex set.

Each edge tells that the two nets represented by the two vertices can be merged.

And the edge weight is the overlapping length of the two nets. Then all the

selected edges indicate which pairs of nets can be merged. The larger the total

weight of selected edges, the smaller the total length of nets after merging.

Firstly the MST-based algorithm is developed for row-based FPGAs. It runs

in O(m^n^), where m is the number of routing instances and each routing

instance contains at most n nets. Then the extended algorithm is developed

for symmetrical array FPGAs with the time complexity of

where p is the maximum net number of all routing instances and q denotes the

maximum subnet number of all nets. It has been proven that the MST-Based

Graph Algorithm can optimally solve the Net Merging Problem.

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 41

_

Figure 4.4: Weighted Undirected 4-Partite Graph Representation of Figure 4.3

4.2.1 Net Merging Problem of Row-Based FPGAs

In the MST-Based Graph Algorithm each net is regarded as a vertex. The nets

in the same routing instance compose of one disjoint vertex set. A weighted
»

edge exists between two vertices if the two nets represented by them overlap

each other and belong to different routing instances. The weight is the over-

lapping length. Figure 4.3 shows a row-based F P G A channel, in which there

are four routing instances {Ri, Rj, Ru, Rw}- And the routing instances have

different numbers of nets.

Ri = {^1,^2}

Rj = { i i , i 2 , i 3 }

. Ru = { t i l ,

Rw = {Wi,W2}

Figure 4.4 is the weighted undirected 4-partite graph to formulate the Net

Merging Problem of this example. After constructing the graph the Kruskal's

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 42

Algorithm [26] is applied to select a set of edges whose total weight is maxi-

mized. The selected edges compose of a forest observing the following condi-

tion,

No two vertices in a tree belong to the same disjoint vertex set

The selection procedure ensures that no two nets in the same routing instance

are merged. According to the algorithm the larger the total weight of selected

edges, the smaller the total length of nets after merging. That will be proved

in the remainder of this section.

Suppose that there are m routing instances and each routing instance con-

tains at most n nets. The number of the nets in the ith routing instance is

denoted by rii. W e let Ri and Nj indicate the zth routing instance and the jth

net respectively. In the graph we use ê to represent an edge telling that two

nets can be merged. len() is the function computing net length. W e have R as

the final routing instance after performing the MST-Based Graph Algorithm.

. Then the following theorems exist.

Theorem 4.1
m Tii k

len(R) = XI 艺 len(Ri, Nj) - ^ len{ei) (4.1)
i=l j=l i=l

where k means that there are k pairs of nets which can be merged.

Proof:
1. When k = I, the theorem is trivially true.

2. Suppose that the theorem is true when there are /c — 1 pairs of nets to

be merged. That is,

m rii k-1

len(R) = Nj) - ^ len ⑷ (4.2)
； i=l j=l 1=1

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 43

3. When there are k pairs of nets that can be merged, we consider the first

k — 1 edges firstly. The current reduced net length should be

fc-i
^ len{ei) (4.3)

i=l

After the kth edge is selected, a new pair of nets is merged and the net

length is reduced further by ek. So the total reduced net length is .

fc-l k
len(ek) + ^ len(ei) = ^ len(ei) (4.4)

Therefore,

m rii k

len{R) = ^ ^ kn[Ri, Nj) - ên(ei) (4.5)
i=\ j=l i=l •

Theorem 4.2 The Net Merging Problem of row-based F P G A s can be solved

in by the MST-Based Graph Algorithm.

.. Theorem 4.3 The MST-Based Graph Algorithm can optimally solve the Net

Merging Problem of row-based FPGAs.

Proof: Suppose that the MST-Based Graph Algorithm is not optimal. There

is at least one non-selected edge ei whose selection will provide a legal solution

and len(R) will become smaller.

1. Suppose that the section of ei will not cause that other selected edge(s)

has (have) to be deleted from the forest.

Since our algorithm processes edges in the non-increasing order of weights,

the weight of e\ should be equal to or less than the smallest weight of

the selected edges. Because the addition of ei will not make any other

selected edge deleted, according to our algorithm, choosing it will not

form circle(s) as well as no two nets in the same routing instance will be

merged. So when executing the algorithm, ei should be selected, which

conflicts with our hypothesis.

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 44

1 2 3 4 5

7~| i4

jl
2 i2 ii i3 Channel 1

j2 —
3 tz Channel 2 •
j 3 -—

kl
4 Channel 3

k2
5 Channel 4 Channel 5 Channel 6

Figure 4.5: Symmetrical Array F P G A with Three Routing Instances

2. Suppose one or more selected edges must be deleted from the forest after

the addition of ei.

Here the total weight of the deleted edge(s) should be less than that of

ei. That is, the weight of each deleted edge must be less than that of

ei. According to our algorithm the edges are processed in weights' non-

increasing order. Ci should be chosen before considering those edges,

which conflicts with our hypothesis.

Based on the above analysis, there will not be such edges as ei. And the

MST-Based Graph Algorithm is optimal.

•

4.2.2 Extended Net Merging Problem of Symmetrical

Array FPGAs
�

The Net Merging Problem of symmetrical array FPGAs is solved in a simi-

lar way to that of row-based FPGAs. And the formulation procedure is the

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 45

t !
Figure 4.6: Weighted Undirected 3-Partite Graph Representation of Figure 4.5

same as the one introduced in [25j. m still represents the number of routing

instances, p is the maximum number of nets among all routing instances, q de-

notes the maximum number of subnets among all nets. Without additional def-

initions, all the other notations follow the meanings declared in Section 4.2.1.

In the weighted undirected m-partite graph each vertex represents a net. An

edge indicates that two nets overlap each other in at least one channel. And

the weight is the total length of the overlapping part(s). After constructing

the graph the Kruskal's Algorithm [26] is applied to determine which pairs of

nets can be merged. Figure 4.5 shows a symmetrical array F P G A example

with three routing instances. And Figure 4.6 is its graph representation.

Theorem 4.4 The Net Merging Problem of symmetrical array F P G A s can

be solved in +

Theorem 4.5 The MST-Based Graph Algorithm can optimally solve the Net

Merging Problem of symmetrical array FPGAs.

Proof: Here we keep using a weighted m-partite graph to formulate the Net

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 46

Merging Problem. The algorithm solves the problem optimally only if the total

weight of selected edges is maximized. The selection scheme applied here is

able to find a set of edges satisfying the problem specifications with the total

weight maximized, which has been proved in Theorem 4.3. Therefore, the

algorithm is optimal to solve the Net Merging Problem of symmetrical array

FPGAs as well.

4.3 Experimental Results

To support our algorithm design we execute it on different objects on the

platform of a 1500 M H z Intel Pentium 4 PC with 512M R A M . W e randomly

generated ten sets of routing instances from the instance-generating package

of our own in C language. Each of the sets contains fifty routing instances

(m = 50). And each instance contains at most fifty nets (n = 50, p = 50).

All channel lengths are set to be one hundred. Table 1 shows the comparison

• results of the Matching-Based Graph Algorithm and the MST-Based Graph

Algorithm. W e can see that our algorithm gains a 4.31% reduction of net

length compared with the results of the Matching-Based Graph Algorithm.

4.4 Summary

W e propose the MST-Based Graph Algorithm on F P G A segmentation design.

Based on the Graph Matching-Based Algorithm, it is improved to optimally

solve the Net Merging Problem of row-based FPGAs in 0 (m V) and sym-

metrical array FPGAs in + m^p^q^). To verify our design we conduct

experiments on ten random sets of routing instances generated by our own

instance-generated package in C language. By comparing the results a 4.31%

net length reduction from the Matching-Based Graph Algorithm to the MST-

Based Graph Algorithm is observed. Our work is expected to contribute to

Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 47

- Net Length
..- Before Merging After Merging

Set Number - Matching MST
1 32243 2 m 1901
2 30457 2066 2056
3 31796 2086 1997
4 32134 2041 1958
5 28398 1934 1824
6 30819 1967 1863 •
7 27677 2018 1940
8 28476 2006 1895
9 30727 2126 2042

32968 1968 1907
Total Length 305767 20256 19383

"Comparison Result - 0.00% -4.31%

Table 4.1: Net Length Comparison

the future research on F P G A channel segmentation design.

Chapter 5

Conclusions

F P G A architecture design is a main topic for improving the F P G A function

today. There are a variety of methods to improve the F P G A working ability.

Since F P G A came into industry nearly twenty years ago, many research works

have addressed this area. After studying the literatures on this topic, we

develope our work in two different fields.

Based on the Xilinx Virtex Architecture, we develope a CS-Box F P G A

- architecture, in which the connection box and switch box are combined to the

CS-Box structure. Inside the CS-Box we introduce the connection algorithm to

build the switches. Since our main aim is to reduce the hardware requirement,

we discuss the switch numbers required by the new F P G A and the symmetrical

array FPGA. In the theoretical analysis we take the example of P = 5 and

a = 1.0 and find Ncs ̂ Â x when W ^ Z. The experimental results show a

11.81% reduction on average in the number of switches connecting two wire

segments, accompanied by the small penalty of channel widths and circuit

delays when Fd = F么 in CS-Box FPGAs. The larger F^ in the new FPGA,

the smaller the reduction of switch numbers. But the penalty of channel widths

and circuit delays is eliminated.

The channel segmentation design is another topic in F P G A architecture

design. W e studied a lot of research works. The authors proposed a variety of

methods to solve the segmentation construction problem. Lin et a/.'s Graph

48

Chapter 5 Conclusions 49

Matching-Based Algorithm addressed a new direction in this area. After inves-

tigating the related works we find that their algorithm cannot provide optimal

solutions. Therefore, we design the MST-Based Graph Algorithm. Basically

we enhance the formulation method of the Net Merging Problem. In theory

it is proved to be optimal for both row-based FPGAs and symmetrical array

FPGAs. The time complexities are O(m^n^) and -{-m̂ p̂ q̂). To verify

our design we conduct experiments on ten random sets of routing instances.

By comparing the results a 4.31% reduction in net length by our algorithm is

observed.

Our research work deals with different topics in F P G A architecture design.

And they are expected to be improved further. W e hope that our work can

contribute to the future research on the F P G A study field.

Bibliography

1] S. Wilton, Architecture and Algorithms for Field-Programmable Gate Ar-

rays with Embedded Memory, PhD dissertation, University of Toronto,

1997.

2] S. D. Brown, R. J. Francis, and Z. G. Vranesic, Field-Programmable Gate

Arrays, Kluwer Academic Publishers, Boston, 1992.

3] Y.-W. Chang, D. Wong, and C. Wong, Universal Switch Modules for

F P G A Design, A C M Transactions on Design Automation of Electronic

• Systems 1, 80 (1996).

4] H. Fan, J. Liu, and Y.-L. Wu, Combinatorial Routing Analysis and Design

of Universal Switch Blocks, in Proc. Conference on Asia South Pacific

Design Automation, pages 641-644, Yokohama, Japan, 2001, IEEE.

5] M. Shyu, G.-M. Wu, Y.-D. Chang, and Y.-W. Chang, Generic Universal

Switch Blocks, IEEE Transactions on Computers 49，348 (2000).

6] H. Fan, J. Liu, and Y.-L. Wu, General Models and a Reduction Design

Technique for F P G A Switch Box Designs, IEEE Transactions on Com-

puters 52，21 (2003).

7] H. Fan, J. Liu, and W.-L. Wu, On Optimum Switch Box Designs for

“ 2-D FPGAs, in Proc. IEEE/ACM Design Automation Conference, pages

203-208, Las Vegas, Nevada, 2001.

50

[8] H. Fan, J. Liu, and Y.-L. Wu, On Optimal Hyper Universal and Rear-

rangeable Switch Box Designs, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 22, 1637 (2004).

9] V. Betz and J. Rose, F P G A Routing Architecture: Segmentation and

Buffering to Optimize Speed and Density, in ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 59-68, Monterey,

CA, 1999.

10] Y.-W. Chang, J.-M. Lin, and M. Wong, Matching-Based Algorithm for

F P G A Channel Segmentation Design, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 20，784 (2001).

[11] W.-K. Mak and D. Wong, Channel Segmentation Design for Symmetric

FPGAs, in IEEE International Conference on Computer Design: VLSI

in Computers and Processors, pages 496-501, Austin, TX, 1997.

[12] M. Pedram, B. S. Nobandegani, and B. T. Preas, Design and Analysis of

Segmented Routing Channels for Row-Based FPGAs, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 13, 1470

(1994).

13] K. Roy and M. Mehendale, Optimization of Channel Segmentation for

Channelled Architecture FPGAs, in IEEE Custom Integrated Circuits

Conference, pages 4.4.1-4.4.4, Boston, 1992.

14] K. Zhu and D. Wong, On Channel Segmentation Design for Row-Based

FPGAs, in IEEE/ACM International Conference on Computer-Aided

Design, pages 26-29，California, US, 1992.

15] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs, Kluwer Academic Publishers, Boston, 1999.

51

16] J. Rose and S. Brown, Flexibility of Interconnection Structures for Field-

Programmable Gate Arrays, IEEE Journal of Solid-State Circuits 26, 277

(1991).

17] T. Okamoto and J. Cong, Buffered Steiner Tree Construction with Wire

Sizing for Interconnect Layout Optimization, in IEEE/A CM International

Conference on Computer-Aided Design, pages 44—49，San Jose, CA, USA,

1997.

18] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, Placement and Rout-

ing Tools for the Triptych FPGA, IEEE Transactions on VLSI Systems

3, 473 (1995).

19] V. Betz and J. Rose, Directional Bias and Non-Uniformity in F P G A

Global Routing Architectures, in International Conference on Computer

Aided Design, pages 652-659, San Jose, California, US, 1996.

• 20] P. Chan and M. Schlag, Acceleration of an F P G A Router, in IEEE

Symposium on FPGA-Based Custom Computing Machines, pages 175-

181, Napa Valley, CA, 1997.

21] V. Betz and J. Rose, VPR: A New Packing, Placement and Routing

Tool for F P G A Research, in Proc. 7th International Workshop on Field-

Programmable Logic and Applications, pages 213—222，London, UK, 1997.

[22] B. Fallah and J. Rose, Timing-Driven Routing Segment Assignment in

FPGAs, in Canadian Conference on VLSI, pages 124-130, Halifax, NS,

Canada, 1992.

[23] M. Khellah, S. Brown, and Z. Vranesic, Modelling Routing Delays in

SRAM-based FPGAs, in Canadian Conference on VLSI, pages 13-18,

Banff, Alberta, Canada, 1993.

52

[24] Y.-W. Chang, J.-M. Lin, and D. Wong, Graph Matching-Based Algo-

rithms for F P G A Segmentation Design, in IEEE/ACM International

Conference on Computer-Aided Design, pages 34-39, San Jose, California,

1998.

25] J.-M. Lin, S.-R. Pan, and Y.-W. Chang, Graph Matching-Based Algo-

rithms for Array-Based F P G A Segmentation Design and Routing, in

Design Automation Conference, Asia and South Pacific, pages 851—854，

Kitakyushu, Japan, 2003.

[26] T. H. Gormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-

rithms, MIT Press, Cambridge, Mass., 1990.

ft

53

f
 /
 -

 •

.

、

,

•

.

.

.

•

•

.
 •

c

.

“

 、：•

•

.

•

 .

 .

 .

 .

 •

b

..

.

,

•

 -
；
.

,

.

.

-
-
.

.

：

.

：

\

 、...

.

：

.

 ~、

.

.

 ..：

 •

 V
 V

 .

r

‘
 ：.

.

•

•

•

；

r,

-

-

•

‘

•

?

-

•

,

.

一

•
 .

 《

 ̂

 -
H
-

•

：

^

「

*

.

.

广

.

-
‘

 ：.二

-

v

.
厂

.

:

/

r

..
 .

.

.

.

 .

 .

.
 .

 ...，，，.‘•

 ！.

 “
 •

 .

 .

S
.

 -
 -
 .•

 7

 \

》......，

 ,
.
.

 .

.

.

•

•

 ,

J

.

-
 ..、..‘，.

y

:

一

多

ss..-.

二.：.：...、.-,..」：：.
 ’
、

<

•

 •

 .

 •

 •’

 .

 ••

 r
 片

 ..•

...fs

.”-...-w

.

 -

A
 V,

•
 •

 .

...

 ••

Ĵ
.

 .V

.

 ...>

-

.

.

；

 .

 3

 〜.

n

.

 :

 :

 .

.

X

.
-
-
.
.
.
.
.
•
•
、
.
-
:
,
-
.
.
.
.
.
.
,
.
.
〈
：
，
.

-

•

•

"
•
广
y

:
.
.
.

:

.

...

 ..

 ..
.

.

.
-
;
(
v
.
.
:

.

.
。
、
，

-

.".l;.l.,,，-、..

•

•

 .
.

»

t
-
 4

 ...

 ••

 .1

I

•

 •

 •

 •

 ̂

»

:
•

^

,
-

,

 ...

 乂
：
V
 d

.

.

.

.
 .

.
V
 .

.
•

 ..
.
.

 j
r
.

.
:
:
.
.
.

、
:
.
,
’
：
*
.

.

.

/
 ..
.
.

 .
,
.
.
 •

.

.
-
.
t
.
.
，
.
丄
’
“
一

.

-

.

-

-

.

-

.

.

.

-

!

•

-

‘

.

.

，

•

.

、

•

%

•
 .
.
1
.
.
,

,

•

.

*

-

:

 二
,

t.

‘

：

•

.

•
-

 -

*

-
 -

 .

。

.
>

f

,

.r

-
.
:
/
-

 ,

 .

 •

 .

黨
,
二
•

.

.

-

 ：.

〜：_.;、>

:

•

.

 .
,

I

. • -

. ... ,

•…： .

-.• • . •

• ‘ ‘

‘ • . • . ,

• - -、 - . r ‘
• … .、.： ： • •

. • • • • ； • .

. . ；’•
. • . ,、 J t . •

• J.

广‘ _

• • . . • ,

V

•

• - . .
•

• , . ‘
t

气. 、

- ^ . � . , •

•V “ - . ， • . • V

‘ f - . _ . ‘ — — • • _ / .
. . . . • • , . - • • , •

•

, . • 、 ’ .，
.

CUHK L i b r a r i e s

‘ “ — I •‘

• . • . . • - -
• . . . ‘

