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Abstract 

Field-Programmable Gate Arrays (FPGAs) are a kind of Very Large Scale 

Integration (VLSI) circuits. They have been widely used in digital systems 

since their introduction in 1985. The property of instance manufacturing and 

low-cost prototypes allows them to be applied in various technology fields such 

as telecommunications, high-speed graphics and digital signal processing. In 

FPGAs programmable switches are used to connect all the circuit elements. 

Switches have high resistance and capacitance and require much chip area. Too 

many switches incur the penalty of circuit speed and chip area. Therefore, how 

“to balance the routing flexibility and the performance constraints becomes a 

popular problem in current F P G A research. 

Our first attempt is to propose the F P G A architecture applying Connection-

Switch Boxes (CS-Boxes). That idea is similar to the Xilinx Virtex F P G A ar-

chitecture. Our design is based on the symmetrical array F P G A architecture 

and combines the Connection Box and Switch Box together. The connec-

tion algorithm is designed to build the switches inside the CS-Box. To verify 

the efficiency of our design, we make the theoretical analysis and comparison 

between the new F P G A architecture and the traditional symmetrical array 

F P G A architecture. W e take the example of P = 5 and a = 1.0 (P is the 

number of pins on each logic block and a is the connection ratio of logic pins) 

and find Ncs ^ Nx when W ^ Z [Ncs and N^ are the switch number required 

by CS-Box FPGAs and symmetrical array FPGAs; W is the channel width). 

After that we conduct extensive experiments on M C N C benchmark circuits 
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and make comparison between the two architectures on channel widths, cir-

cuit delays and switch numbers. The results show that by applying the CS-Box 

structure the number of the switches connecting two wire segments can be re-

duced by up to 11.81% with small increase penalty of the channel width and 

the circuit delay by 0.38% and 2.34% on average respectively. 

The channel segmentation design is another topic in F P G A architecture 

design. Chang et al. developed the Graph Matching-Based Algorithm to con-

struct good segmentation designs. It tries to maximize the F P G A routability 

under performance constraints such as circuit speed and chip area. During the 

execution of the algorithm the outcome is affected by the pairing scheme, which 

means that the solution may be not optimal. W e enhance it and present the 

MST-Based Graph Algorithm. It works optimally for both row-based FPGAs 

and symmetrical array FPGAs. The results are independent of the net merg-

ing order. W e conduct experiments on ten sets of routing instances. And the 

results show a 4.31% reduction of net length from the Graph Matching-Based 

• Algorithm to the MST-Based Graph Algorithm. 

ii 



摘要 

現場可程式化門陣列（FPGA)是一種超大規模集成電路。自從1985年首次提 

出以来，它已經在數字系統領域得到了廣泛的應用。快速加工與低成本試製的 

特性使得它在遠距離通信、高速圖形學以及數字信號處理等諸多科技領域被採 

用。在FPGA中，可程式化轉換器用來連接所有的電路元件。這些轉換器有著 

較高的電阻與電容值，並且佔據大量芯片空間。使用過多的轉換器會對芯片的 

速度和所需面積產生不良影響。因此，如何在佈綫靈活性與工作約束之間達到 

平衡成爲了當今FPGA研究領域普遍討論的問題。 

首先，我們提出了一種採用連接-轉換盒（CS-Box)的FPGA結構。這 

一想法與Xilinx公司的Virtex FPGA結構相似。我們的設計以對稱陣列FPGA 

為基本結構，將連接盒與轉換盒組合在一起。在連接-轉換盒内部，轉化器根據 

我們提出的連接算法進行設置。爲評估這項設計的有效性，我們在新型的 

FPGA與傳統的對稱陣列FPGA之間進行了理論上的分析與比较。以P = 5及 

a=\.0為例，我們發現當ff 2 3時，存在A^„SA^,。隨之，我們在MCNC基 

準問題測試電路上進行了試驗，從通道寬度、電路延遲以及轉換器數目等方面 

對兩種結構進行比較。結果顯示，採用CS-Box結構後，用来連接兩段導錢的 

轉換器數目最多可減少11.81%，同時伴隨著通道寬度與電路延遲的微弱增加， 

分別為平均0.38%和2.34%。 
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通道分段設計是FPGA結構設計的另一主題。Chang等研究者設計了基 

於匹配理論的園算法，用來構建較好的分段設計。這種算法試圊在電路速度與 

芯片面積等工作約束下，最大幅度增加FPGA的可佈錢性。算法的結果受到配 

對機制的影響，使得結果達不到最優化。我們對算法進行加強，提出基於最小 

生成樹的圖算法。在基於行的FPGA與對稱陣列的FPGA中，它都可以達最優 

化。結果不依賴綱路結合順序。我們在十組佈錢實例上進行試驗。結果顯示， 

從基於配圊算法到最小生成樹圖算法，網路長度減少可達4.31%。 
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Chapter 1 

Introduction 

1.1 Motivation 

Field-Programmable Gate Array (FPGA) is a kind of Very Large Scale In-

tegration (VLSI) circuit. It has been used for over a decade because of its 

wide applications in digital systems. With its reconfigurable nature users can 

program it by themselves in minutes. And the property of risk-free large-scale 

'integration allows it to be applied in various technology fields such as telecom-

munications, high-speed graphics and digital signal processing [1]. Also in 

production F P G A provides instance manufacturing and very low-cost proto-

types [2], especially in small and medium volumes. 

Although F P G A has many features making it popular in current indus-

try, its architecture nature incurs speed and area penalty during routing. In 

an F P G A programmable switches are used to connect the routing resources 

including logic pins, pad pins and wire segments in channels. Switches have 

high resistance and capacitance and they require much chip area. So too many 

switches lower the circuit speed and augment the chip area. On the other hand 

increasing the switch number aids to provide high routing flexibility. There-

fore, how to balance the routing flexibility and the performance constraints 

has become a problem in current F P G A research. 

There are many ways to improve the F P G A routability, such as designing 
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Chapter 1 Introduction 2 

better physical structures of the whole chip, optimizing logic block architec-

tures and enhancing routing algorithms. Today a lot of research works pay 

much attention to the F P G A routing architecture design. According to the 

architecture types, currently commercially available FPGAs can be classified 

into four classes: symmetrical array, row-based, sea-of-gates, hierarchical PLD. 

Figure 2.2 [2] shows their conceptual diagrams. Among them symmetrical 

array FPGAs are most widely applied. Based on its physical architecture re-

searchers proposed new ideas in a variety of aspects. Some deal with the switch 

box's inside structure. At present there exist four types of switch boxes: Dis-

joint, Universal [3] [4] [5], HUSB [6] [7] and Wilton [Ij. Figure 1.1 shows the 

four (4,3)-switch boxes. The literature [8] compares their routabilities in term 

of channel widths. Among them HUSB has been proven to be optimal in 

theory. And the experimental results also show that it outperforms the other 

kinds of switch boxes. Another way to improve the F P G A routability is to 

find a good channel segmentation design. Different segmentation designs are 

•’ investigated in the literature [9] [10] [11] [12] [13] [14]. And a variety of meth-

ods were used in the past work, e.g., experimental studies, stochastic models, 

analytical analysis and graph-theoretic formulation. Lin et al. proposed the 

Graph Matching-Based Algorithm for F P G A segmentation design and routing. 

They use graph matching theory to formulate the Net Merging Problem and 

then extend it for general channel segmentation designs. The experimental 

results show that this algorithm is effective and efficient. Besides investigating 

the switch box structure and the channal segmentation, the Xilinx Company 

digs into a new research area, in which the Connection-Switch Box concept is 

proposed. 

All the above research works have addressed on how to improve F P G A 

routability and how to reduce hardware resources. Those are the two main 

goals in this research area today. Therefore, we put most of our effort in this 

field. 
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# # 
(a) Disjoint-SB (b) USB 

. # # 
(c) HUSB (d) Wilton's SB 

Figure 1.1: Most Popular (4,3)-Switch Boxes at Present 

1.2 Aims and Contribution 

Our research work concentrates on F P G A architecture design. And our aim 

is to improve the F P G A routability from various aspects, e.g., decreasing the 

channel width, reducing the switch number and deducting the routing delay. 

Firstly we address on the Connection-Switch Box (CS-Box) design and 

construct our own CS-Box structure. The aim of this work is to reduce the 

hardware resources and simultaneously keep the routability non-degraded. The 
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conceptual diagram of a CS-Box F P G A is illustrated in Figure 3.3. The in-

creased flexibility inside the CS-Box improves the overall chip routability and 

reduces the switch number of the entire chip. W e decide the connection algo-

rithm for the switch construction inside CS-Boxes. To make a good evaluation 

of the new architecture, we conduct both theoretical analysis and experiments 

on large M C N C benchmark circuits. The experimental results show that the 

CS-Box F P G A outperforms the traditional symmetrical array F P G A to some 

degree, e.g., fewer switches, smaller channel width and less circuit delay. 

Secondly our work focuses on the channel segmentation design, which also 

has high impact on the whole chip routability and hardware requirement. 

Lin et al. addressed the Graph Matching-Based Algorithm, which is very 

useful in general channel segmentation designs. The theoretical analysis and 

experimental results tell that the algorithm is effective and efficient. After 

studying the algorithm we find that it is not able to provide an optimal solu-

tion. So our work is done to enhance the Graph Matching-Based Algorithm. 

.And the MST-Based Graph Algorithm is proposed. The discussion in theory 

shows that our algorithm is optimal for both row-based FPGAs and symmet-

rical array FPGAs. And the experimental results observe a 4.31% reduction 

of net length by our algorithm. 

1.3 Thesis Overview 

This thesis is mainly about the F P G A architecture design from different as-

pects. In each area we give the detailed methods, thorough theoretical discus-

sion and experimental verification. The remainder of this thesis is organized as 

follows. Chapter 2 introduces the necessary background knowledge of FPGA, 

C A D and VPR, the router used in our experiments. Chapter 3 addresses the 

CS-Box structure design. In that chapter we show what the new F P G A ar-

chitecture looks like and how to determine the switches inside a CS-Box. Also 



Chapter 1 Introduction 5 

we analyze the switch number required by the new F P G A and the symmet-

rical array FPGA. At last the experimental results are given to support our 

design and theoretical discussion. Chapter 4 is about our MST-Based Graph 

Algorithm. Based on the Graph Matching-Based Algorithm we formulate the 

Net Merging Problem in another way. And the theorems and corresponding 

proof make sure that our algorithm works optimally. During analysis the time 

complexity is also discussed. W e generate the experimental objects with our 

own generation package and excute the algorithm on them. The experimental 

results are encouraging. Chapter 5 concludes our work. 



Chapter 2 

Field-Programmable Gate Array 

and Routing Algorithm in VPR 

Field-Programmable Gate Array (FPGA) is a kind of Very Large Scale Inte-

gration (VLSI) circuits. It has been used for nearly twenty years because of 

its instance manufacturing and very low-cost prototypes. [2] To improve FP-

GAs' speed and area-efficiency researchers have done much work about F P G A 

architecture designs. In this chapter we will introduce the background knowl-

edge about FPGAs. And the symmetrical array F P G A routing architecture 

will be described in details since our primary work concentrates on proposing 

new F P G A routing architectures with higher efficiency. V P R is a widely used 

router in current research on FPGAs. Before our applying it we analyze the 

routing algorithm used by this tool. 

2.1 Commercially Available FPGAs 

At present commercially available F P G A families include Xilinx, Actel, Al-

tera, Plessey, Plus, Advanced Micro Devices (AMD), QuickLogic, Algotronix, 

Concurrent Logic and Crosspoint Solutions. Among them the first three types 

are used most widely. 
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2.2 FPGA Logic Block Architecture 

Functionality is an important characterisctic of F P G A logic blocks. It refers 

to the number of different boolean logic functions that the block can imple-

ment. [2] The functionality of the logic block affects the amount of required 

routing resources in the FPGA. Since routing resources are connected by pro-

grammable switches, which take up significant chip area and have great resis-

tance and capacitance, the functionality of the logic block has great impact on 

FPGAs' architecture and function. 

2.2.1 Logic Block Functionality vs. FPGA Area-Efficiency 

The logic block functionality is an important factor that affects F P G A area. 

According to [2] the total chip area needed for an F P G A consists of the logic 

block area plus the routing area. And 70% to 90% of the total chip area is 

occupied by routing. As functionality increases, the number of blocks in the 

.circuit becomes smaller. Since each block accomplishes more functions, logic 

inside it is more. The total chip area will change due to the relationship of all 

the factors. 

2.2.2 Logic Block Functionality vs. FPGA Delay-Performance 

Here we apply the delay model introduced in [2]. It can be expressed in Eq. 

(2.1), 

.DTOT = NLX {DLB + DR) (2.1) 

where DTOT is the total delay when one logic block delay and one routing 

delay are incurred in each block stage. NL is the number of logic blocks in the 

critical path. DLB indicates the combinational delay of the logic block. DR 

tells the delay between logic blocks when routing. 
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Figure 2.1: Single Output 4-LUT Logic Block, with a D Flip-Flop 

Routing Architecture Company . 
Symmetrical Array Xilinx, QuickLogic 

Row-based Actel, Crosspoint 
Sea-of-gates Plessey, Algotronix, Concurrent 

Hierarchical-PLD Altera, Plus, A M D  

Table 2.1: Commercially Available FPGAs' Routing Architecture Classifica-
tion 

2.2.3 Lookup Table-Based FPGAs 

The logic block structure used in an F P G A strongly influences the circuit speed 

and chip area-efficiency. [15] Currently most FPGAs use logic blocks based on 

look-up tables (LUTs). A k-LVT is a LUT with k inputs, which requires 2知 

S R A M cells and a 2左-input multiplexer. And most commercial FPGAs are 

based on 4-LUTs. Figure 2.1 [2] shows a single output 4-LUT logic block. 

2.3 FPGA Routing Architecture 

The F P G A routing architecture specifies the relative width of the various 

wiring channels within the chip. [15] Commercial FPGAs can be classified 

into four groups based on the routing architectures, symmetrical array, row-

based, sea-of-gates and hierarchical PLD. Figure 2.2 [2] shows the four classes 
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Symmetrical Array Interconnect Row-based 

z … I  
Logic Block 

Interconnect J ^ * 
Overlayed on / Interconnect 

Logic Blocks PL。 | JT  

Block = = =丨※※： 

I I I I I I I I I I Hierarchical PLD 

Sea-of-Gales 

‘ Figure 2.2: The Four Classes of F P G A Routing Architectures 

of routing architectures. And Table 2.1 classifies the commercial FPGAs men-

tioned in Section 2.1 according to their architectures. Our research focuses on 

the symmetrical array F P G A architecture design. The routing architecture of 

that kind of FPGAs will be described in details in the following. W e use the 

terminology defined in [2], which is also adopted throughout the thesis. 

A symmetrical array F P G A consists of a two-dimensional array of logic 

blocks (Figure 3.1). The logic blocks are surrounded by routing channels con-

taining a number of tracks. A track is a straight section of wire that spans 

the entire width or length of a routing channel. It can be composed of wire 

segments of various lengths. The region between two logic blocks is called a 

connection box, in which programmable switches connect a pin to some or all 

of the wire segments in the channel. A switch box refers to the area where 
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a horizontal channel and a vertical channel intersect. Programmable switches 

exist in the switch box and allow some of the wire segments incident to the box 

to be connected to others. By programming switches to be ON, users can con-

nect short wire segments to form longer connections. Currently there are four 

kinds of switch boxes widely applied in FPGAs, Disjoint, Universal Switch Box 

(USB) [3] [4] [5], Hyper-Universal Switch Box (HUSB) [6] [7] and Wilton.[I . 

2.4 Design Parameters of FPGA Routing Ar-

chitecture 

Throughout the thesis we apply the notations defined in [16] as some of the 

design parameters if there is no special declaration. 

W : The channel width. Equals to the number of tracks per channel. 

Fs： The flexibility of the switch box. Equals to the total number of possible 

connections offered to each incoming wire. 

Fc： The flexibility of the connection box. Equals to the number of channel 

wires to which each logical pin can connect. 

2.5 CAD for FPGAs 

According to [15] Computer-Aided Design (CAD) programs are used to im-

plement a circuit in a modern FPGA. F P G A users describe a circuit at a 

higher level of abstraction. Then C A D programs convert the description into 

a programming file, in which each programmable switch and configuration bit 

has been set to the appropriate state. The converting process can be broken 

down into three steps, synthesis and logic block packing, placement, Routing. 

Figure 2.3 [15] helps to describe the whole procedure traceable. 
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^Circuit description (VHDL, schematic,.. 

} r 

Synthesize to logic blocks 

1 r 

Place logic blocks in FPGA 

\ ‘ 

Route connections between logic blocks 

1 r 

^ P G A programming fil^ 

Figure 2.3: F P G A C A D Flow 

2.5.1 Synthesis and Logic Block Packing 

. T h e synthesis process translates the circuit description provided by users into 

a netlist of basic gates. And then the netlist of basic gates is converted into 

a netlist of F P G A logic blocks. The goal of this procedure is to minimize the 

number of logic blocks and/or maximize the circuit speed. [15] The synthe-

sis and logic block packing stage can be divided into three phases, which is 

illustrated in Figure 2.4 [15 . 

2.5.2 Placement 

Placement algorithms determine which logic block within an F P G A should 

implement each of the logic blocks required by the circuit. [15] The placers 

in use today can be categorized by min-cut {partitioning-based), analytic and 

simulated annealing based placers. [15] The placement aim is to place connected 

logic block close together to minimize the required wiring, or to balance the 
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“ (Netlist of basic gates^ 

1 r 

Technology-independent logic optimization 

Technology map to look-up tables (LUTs) 

] r 
Pack LUTs into logic blocks 

^etlist of logic bloc》 

Figure 2.4: Details of Synthesis Procedure 

wiring density across an FPGA, or to maximize circuit speed. [15 

2.5.3 Routing 

Routing is performed after the placement of all the logic blocks have been 

decided in a circuit. It determines which programmable switches should be 

turned on to complete all connections between the logic pins required by the 

circuit. Logic pins and wire segments are called routing resources. Researchers 

usually use a directed graph to represent an FPGA, which is also the repre-

sentation method applied in our work. In the graph all routing resources are 

represented by vertices. And an edge tells which two routing resources are 

connected. Generally there are two kinds of routers at present. One finds a 

path for a net in one step including which routing resources are used. The 

other works in two steps. Firstly, the router determines which logic block pins 

and channel segments are used. And secondly, the specific wire segments in 

each channel segments are decided to be occupied. A channel segment is the 
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length of routing channel that spans one logic block. [15 

2.5.4 Delay Modelling 

Delay model is a speed measure during F P G A routing. It is used to com-

pute the speed of a circuit and the delay of different net topologies during 

routing [15]. Today the most widely used delay estimate is Elmore delay. 

Okamoto et al. [17] introduced the Elmore delay of a source-sink path, which 

is shown in Eq. (2.2). 

Ri.C(subtreei)+T\i (2.2) 
i € Source—sinkpath 

where i denotes a wire, a buffer or a pass transistor. So Ri is the equivalent 

resistance of such an element {R^ire, Rtaf, Rpass). C{subtreei) is the total 

capacitance of the dc-connected subtree rooted at the element i, where dc-

connected means directly connected by wires. Td�i is the intrinsic buffer delay 

if z is a buffer, and 0 otherwise. 

2.5.5 Timing Analysis 

After the placement and routing of a circuit the timing analysis is necessary to 

determine the speed of the circuit. Also timing analysis is used to estimate the 

slack of each source-sink connection during the whole C A D flow. That helps 

to route some connections via fast paths to avoid slowing down the circuit. [15 

2.6 FPGA Programming Technologies 

The connection between two routing resources is realized by setting the switch 

ON. Programming technologies are used to implement switches in FPGAs. 

Currently the main technologies include Static R A M (SRAM), fuse, Anti-

fuse, Erasable Programmable Read-Only Memory (EPROM) and Electrically 

Erasable Programmable Read-Only Memory (EEPROM). 
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2.7 Routing Algorithm in VPR 

V P R is a tool and the name means versatile packing, placement and rout-

ing for symmetrical array FPGAs. In our CS-Box structure design V P R is 

used to conduct the experiments on M C N C benchmark circuits. Here we in-

vestigate the routing algorithm in VPR. VPR's routing algorithm is based 

on the Pathfinder negotiated congestion algorithm [18] [19] and overcomes 

Pathfinder's shortcoming of much CPU time when processing high-fanout nets. 

2.7.1 Pathfinder Negotiated Congestion Algorithm 

Pathfinder routes each net in the netlist by the shortest path it can find regard-

less of any routing resource's overuse initially. Then it rips up and re-routes 

each net by the lowest cost path. The cost of using a routing resource can be 

expressed by Eq. (2.3). 

. (c„ + hn) X pn (2.3) 

where is the basic cost of using the resource n, is the history cost of using 

the resource, and is the number of signals sharing the resource at present. 

After initially routing all nets, iterations are turned on until there are no 

shared routing resources. In each iteration every net is ripped up and re-routed 

by the lowest cost path. By increasing the costs of the routing resources grad-

ually, the nets with alternative routes are forced to avoid overusing resources. 

And those resources are left only to the nets that need them most afterwards. 

When re-routing each net, we keep a tree RT to store the partial net that 

has been routed. RT is initialized as the source of the processed net and is 

used as the expansion wavefront when connecting the unconnected sinks to the 

partial net. And after routing the whole net the history costs of the resources 

on the net are updated. 

The Dijkstra's algorithm is applied in Pathfinder to find the lowest cost 
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Figure 2.5: Pathfinder Negotiated Congestion Algorithm 

path from the expansion wavefront - the partial net that has been routed -

to one sink of the net. Initially all nodes in RT are put into a queue with a 

key 0. Then the node with the lowest key in the queue is deleted and all its 

neighbors' keys are updated by plusing its key. The deleting action will stop 

when an unconnected sink of the net is found. The path connecting the new 

sink to the partial net is obtained by back tracing from the sink to a node in 

the expansion wavefront - RT. 

The Pathfinder negotiated congestion algorithm is illustrated in Figure 2.5 [20 . 
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2.7.2 Routing Algorithm Used by VPR 

Pathfinder's using much C P U time is its main drawback. When a new sink 

is found, all the nodes in RT are regarded as source nodes. Since Pathfinder 

.empties the expansion wavefront after finding a new sink, for high-fanout nets 

it will take the router a large amount of time to expand from the partial 

routed net to the next sink. V P R modified Pathfinder's expansion wavefront 

and obtained a routing algorithm occupying less C P U time. 

Instead of emptying the wavefront after finding a new sink, V P R does 

not only keep the current expansion wavefront but also adds the new path 

connecting the newly found sink to the wavefront with cost 0. Since the added 

part is fairly small, it will take little time to add this part to the partial net. 

Then when looking for the next sink, the maze router will expand around 

the added path first instead of starting from the scratch, which allows that the 

next sink can be found more quickly. The modification made on the Pathfinder 

algorithm can be illustrated in Figure 2.6 [21 . 



Chapter 3 

Connection-Switch Box Design 

3.1 Introduction 

F P G A has been used for over a decade with its wide applications in digital sys-

tems. The conceptual diagram of the symmetrical array F P G A is illustrated 

in Figure 3.1 [2]. A symmetrical array F P G A consists of a two-dimensional 

array of logic blocks. The logic pins are connected by segments of wire. Two 

• types of programmable switches exist in this F P G A architecture. The first 

type exist in the connection box (C-Box) and connect pins to wire segments 

or vice versa. The second type build connections between two different seg-

ments of wire. And they are in the switch box (S-Box). The architecture of 

an F P G A has high impact on its routability. Based on the symmetrical ar-

ray F P G A architecture, many research works have addressed on the optimal 

switch box designs. Currently the most widely used switch box structures are 

Disjoint, Universal Switch Box (USB) [3] [4] [5], Hyper- Universal Switch Box 

(HUSB) [6] [7] and Wilton [1]. Their routabilities have been evaluated in [8 . 

Another advanced technology about F P G A architecture design is the Virtex 

architecture proposed by the Xilinx Company. The Xilinx Virtex Architec-

ture has been applied in practice since their introduction. Figure 3.2 is the 

diagram showing that the Virtex architecture uses the Connection-Switch Box 

structure. 

17 
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Figure 3.1: Symmetrical Array F P G A Architecture 

Based on the existing technologies of F P G A architecture design, we design 

our own Connection-Switch Box (CS-Box) to reduce the hardware resources. 

The increased flexiblity inside the CS-Box improves the overall chip routability 

and reduces the switch number of the entire circuit. The new F P G A concep-

tual diagram is shown in Figure 3.3. It is based on the symmetrical array 

F P G A architecture. The difference is that the separate C-Box and S-Box 

structures are combined to form the CS-Box structure in the new FPGA. The 

switch building algorithm we designed tries to use as few switches as possible 

to accomplish routing. After theoretical analysis we conduct experiments on 

large M C N C benchmark circuits. The experimental results are encouraging. 

They show a 11.81% reduction of switch numbers from CS-Box FPGAs to 

symmetrical array FPGAs together with small penalty of channel widths and 

circuit delays. As Fd, the connectivity of logic pins, in CS-Box FPGAs in-

creases, the switch number reduction is a little degraded. While the penalty 

in channel widths and circuit delays is eliminated. 

This chapter is organized as follows. Section 3.2 introduces the connec-

tion algorithm. Section 3.3 analyzes the number of the switches connecting 

logic pins and wire segments. To achieve a fair evaluation on the proposed 
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Figure 3.2: Xilinx Virtex Architecture 

architecture, we compare it with the symmetrical array F P G A architecture 

on different objectives. Section 3.4 shows the experimental results with the 

comparison of channel widths, circuit delays and switch numbers. Section 3.5 

draws our conclusions on this work. 

3.2 Connection-Switch Box Design Algorithm 

W e designed two algorithms to do the connection between pins and tracks in 

the F P G A with CS-Boxes. One is for logic pins and the other for pad pins. 

、 S o m e necessary notations are defined as follows, 

W : The channel width. 
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Figure 3.3: CS-Box F P G A Architecture 

P : The logic (pad) pin number on each logic block (pad). 

Fci : The logic pin connectivity that denotes how many tracks in one channel 

a logic pin is connected to. 

Fcp : The pad pin connectivity that denotes how many tracks in one channel 

’ a pad pin is connected to. 

According to Figure 3.3 the CS-Box contains the two kinds of switches. And 

each pin connects to the tracks on the sides except the one it belongs to. The 

following two subsections introduce the two algorithms in details. 

3.2.1 Connection between Logic Pins and Tracks 

In this algorithm we regard each CS-Box as a 4-partite graph. The track(s) and 

the non-global logic pin(s) on one side compose of a disjoint vertex set of the 

graph. Here we call them track vertices (T-track) and pin vertices (P-vertex). 

Then the problem of building switches in the CS-Box can be formulated as 

settling the edges between P-vertices and T-vertices in the 4-partite graph. 

According to the above notations, P is the total number of P-vertices in 

the 4-partite graph. W is the number of T-vertices in each disjoint set of the 
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graph. All the P-vertices in the graph are labeled from 1 to P. And the T-

vertices in each disjoint set are labeled from 1 to W. W e use Vpi to denote the 

ith P-vertex and Vuj to denote the jth T-vertex of the zth disjoint vertex set. 

W e name such a 4-partite graph as PT-graph. Then the switch design problem 

can be formulated as follows, 

Problem Formulation 

Let G be a PT-graph. Si and Sj (1 ̂  i, j ̂  4 and i + j) are disjoint vertex 

sets of G. Vpm is a P-vertex in the graph, where Vpm G Si and 1 ̂  m ^ P. A 

solution to this problem is that each Vpm G Si should be connected to some T-

vertices in Sj. The goal is that the number of the edges is as small as possible 

and the number of the connected T-vertices is as large as possible. 

Definition 3.1 A W-PT-graph is a PT-graph that has W T-vertices in each 

disjoint vertex set. 

‘ W e note that in the four disjoint vertex sets of a PT-graph, the numbers of 

T-vertices are the same and the numbers of P-vertices are different. Thus we 

construct i to i matching from the P-vertices to the T-vertices. That is, in 

the PT-graph the edges are built by connecting the zth P-vertex to the zth 

T-vertex of each set. Let H = {V, E} be a VF-PT-graph. By that method 

each incoming wire segment has connection with pins. And also the number of 

switches is not too large — in symmetrical array FPGAs the switches between 

pins and segments are too many if the pin connectivity is set to be 1.0. And 

in the following we will describe the detailed algorithm on building edges. 

Algorithm Description 

Case 1 W = P 

This is the simplest case considered by the algorithm. The zth P-vertex 
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Figure 3.4: 1^-PT-Graph H. Case 1: W = P 

is connected to the zth T-vertices which are not on the same side with 

• the P-vertex. So the edge set of H is 

E = {{vpj,vu,j)Kj W(P)} (3.1) 

Figure 3.4 illustrates the 4-PT-graph H in which the edges have been 

decided. 

Case 2 mod 尸 = 0 and ly # P 

Here Case 1 is used as the unit case to work out the solution. Each 

disjoint vertex set of H can be divided into 爭 subsets. And all the 

subsets can be denoted by 

Vk = {vti,p\\p - k\modP = ( 3 . 2 ) 

The edges are set between the vertices in V^ and the kth. P-vertex. So 
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the edge set of H is 
t 

E = { ( % , vti,k)\vpj i S i ； = P; 

1 ̂  i ̂  4} (3.3) 
Figure 3.5 illustrates the graph H in which the edges are built. 

Case 3 W mod P^O 
Let W' be an integer whose value is calculated by Eq. (3.4). 

w' = W-{W mod P) (3.4) 

In this case we divide the T-vertices into two groups. The first group 

can be denoted by the following set (Eq. (3.5))， 

{vti,j\l ^ z ̂  4 and 1 ̂  i ^ (3.5) 

And the other T-vertices compose of the second group. Now it is clear 

that the first group corresponds to Case 2. The edges related to them 
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Figure 3.6: W^-PT-Graph H. Case 3: mod P^O 

can be determined in the way introduced in Case 2. That is, 

E' = {(vpj,vti,k)\vpj i Si, \k-j\ modP = 0-l^k^W']l^j ^P-, 

1 ̂  i ̂  4} (3.6) 

For the T-vertices in the second group, we can still build the edge set E" 

in the way similar to which has been introduced in Case 2 after modifying 

the labels of the first P - W -{-W T-vertices in each disjoint set. That 

is, for each vuj where I ^ j ^ P -W W, relabel it as Vuj+w- Thus, 
E" = + ^ - i) mod P = 0-,Vpj ^ Si-

l ^ k ^ P - W + W ' - l ^ j ^ P - l ^ i ^ i } (3.7) 

Till now we can get the complete edge set 五 of // by 

• E = E'U E" (3.8) 

Figure 3.6 illustrates the graph H with the edges settled. 



Chapter 3 Connection-Switch Box Design 25 

W e have introduced the algorithm on the connection between logic pins 

and tracks. According to the above design, the connectivity of each logic pin 

can be calculated by Eq. (3.9). 

W 
= (3.9) 

where , 

[ 0 ， i i W mod P = 0 
P = { (3.10) 

I 1，otherwise 

3.2.2 Connection between Pad Pins and Tracks 

W e proposed a separate algorithm for the connection between pad pins and 

tracks because of the structural difference between pads and logic blocks. Fig-

ure 3.7 shows the conceptual diagram of the connection between pad pins and 

tracks. Let Vp be the pad vertex (P-vertex) denoting a pad pin. Let v̂ i {vyi) be 

the track vertex (T-vertex) denoting a track in the x-channel (y-channel). The 

‘ switches to be determined are represented by the edges connecting P-vertices 

and T-vertices. 

According to the definitions at the beginning of Section 3.2, Fcp is the 

connectivity of each pad vertex. In previous work we tried to use the F P G A 

router V P R [15] [21] to route the benchmark circuits on symmetrical array 

FPGAs. A fact is that some of the circuits are not able to be routed if Fcp 

equals to some number smaller than W, while all of them are able to be routed 

when Fcp equals to W. Therefore, in our design Fcp equals to W. The algorithm 

separates all the edges adjacent to one P-vertex into two groups. The edges 

in the first group are adjacent to the T-vertices in the x-channel; and this 

group is indicated by E^. The other edges are adjacent to the T-vertices in 

the y-channel; and the group containing them is indicated by Ey. According 
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Figure 3.7: Connection between Pad Pins and Tracks 

to our algorithm, E^ and Ey can be represented by the following two sets, 

f {(vp,vxi)li m o d 2 = 0; 1 ̂  i ̂  W}, if m o d 2 = 0 
Ex = \ (3.11) 

{{vp, Vxi)\i mod 2 = 1; 1 ̂  z ̂  W), otherwise 

n mod 2 = 1; 1 < i < W}, if mod 2 二 0 
i (3.12) 

Vyi)\i mod 2 = 0; 1 < i < W}, otherwise 
V 

3.3 Switch Number Comparisons 

In this section we discuss the number of the switches connecting logic pins 

with tracks in the new F P G A architecture. Figure 3.8 shows the CS-Box with 

W = 2. The switches connecting two tracks are not shown in Figure 3.8 



Chapter 3 Connection-Switch Box Design 27 

L 1 L 

0 4 

^ ^ ^ Logic Pin 

. e J T 
Switch Connecting Logic Pins and Tracks I 

Figure 3.8: Connection-Switch Box with VF — 2 

for simplicity. The following variables are defined. W and P have the same 

definition as in Section 3.2. 

• Ncs : It is defined for each CS-Box and equals to the number of the switches 

connecting logic pins and tracks. 

Nx ： It is defined for each logic block in symmetrical array FPGAs and 

equals to the number of the switches connecting logic pins and tracks. 

a : The connection of the switches connecting logic pin in the symmetrical 

array FPGA. It indicates how much percent of tracks the logic pin is 

connected to in one channel. 

According to the algorithm introduced in Section 3.2, 

W 

‘ = (3.13) 

where jS satisfies Eq. (3.10). In the symmetrical array FPGA, 

TVo： = a X ly X P (3.14) 
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Let A; be a non-negative integer. And W is denoted in terms of k by Ineq. 
(3.15). -

kP <W ^{k + l)P (3.15) 

And also 

L - p J + / 5 = A; + l (3.16) 

Ncs and Nx can be indicated in Eq. (3.17) and Ineq. (3.18). 

Ncs = (k + 1) X 3 X P (3.17) 

〈仏 = + (3.18) 

During the following discussion we are going to find the condition of Ncs ^ 

N^ by Eq. (3.17) and Ineq. (3.18). 

1. First, the necessary condition for Ncs ̂  N: is 
» 

(/c + 1) X 3 X P 作 + 1) X a X (3.19) 

Prom Eq. (3.19) we can get 

(3.20) 

2. Second, the sufficient condition for Ncs ̂  Â x is 

(A; + l ) x 3 x P ^ a x A : x p 2 (3.21) 

From Eq. (3.21), we can get 

3 

- k 》 — — - - (3.22) 
a X P - 3 \ ) 

and 

(3.23) 
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3. Third, we consider that both Ncs ̂  N: and N^ < Ncs occur. 

a X k X < Ncs《（k + V) X a X (3.24) 

(1) If a = there is 

TV,, = (A： + 1) X P X 3 (3.25) 

/ c x P x 3 < A ^ x ^ ( ^ + l ) x P x 3 (3.26) 

W e can see that Ncs = ^x when Â x = + 1) x P x 3. But in most 

cases, Ncs > Nx. 

(2) If a > there is 

k < ——- (3.27) 
a X P - 3 ^ ‘ 

Take the example of P = 5 and a = 1.0. Figure 3.9 illustrates the 

comparisn of Ncs and Nx. It is clear that Ncs > Nx occurs only if 

W <?,. As P increases, NcS becomes smaller. 

Prom the above analysis, the F P G A architecture with CS-Boxes uses fewer 

switches to connect logic pins and tracks than the symmetrical array FPGA. 

The next section will verify this analysis with extensive experiments. 

3.4 Experimental Results 

After the theoretical .analysis and comparison, we observe the loss and gain 

of the routability, performance and size on the two types of FPGAs on the 

platform of a 1500 M H z Intel Pentium 4 PC with 512M R A M . The currently 

best known router V P R [15] [21] is used to test the routability and efficiency of 

the CS-Box structure. The iteration number for routing is 100. And the rout-

ing algorithm is the Breadth-First Search Algorithm. The Wilton switch box 
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” Figure 3.9: Comparison Diagram of Ncs and N^ when a = 1.0 and = 5 

is applied to make the connection between tracks, i.e., S-Box in symmetrical 

array FPGAs. W e try different values of Fd to route the benchmark circuits. 

F'^i is defined as basic value and computed by Eq. (3.28). 

, W 
= (3.28) 

where, (3 satisfies Eq. (3.10). Then Eq. (3.29) is used to obtain the different 

Fci values, where, a: = 0,1,2,.... 

Fci = F^i + x X 3 (3.29) 

Table 3.1 shows the channel width requirements of different benchmark 

circuits. The circuit delay information is presented in Table 3.2. In Table 3.3 

we show the number of the switches required to connect logic pins and tracks 
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Figure 3.10: CS-Box Structure: Pad Pin Connection 

in each benchmark circuit. Prom the tables, applying CS-Boxes can reduce 

switch numbers with small penalty of circuit delays and channel widths when 

Fci = F'̂i is used in the new FPGA. As Fd of the CS-Box F P G A increases, 

the reduction of switch numbers becomes less while the penalty on circuit 

delays and channel widths is eliminated. Figure 3.10 and 3.11 show the switch 

connections on the proposed design. The entire routing of the e64 benchmark 

circuit is shown in Figure 3.12. 

W e have conducted experiments on the proposed CS-Box F P G A and the 

traditional symmetrical array FPGA. Prom Table 3.3 the channel width has an 

average reduction of 6.99% when Fd = F』,+ 1. At the same time the circuit 

delay and the switch number are reduced by 2.10% and 4.91% on average. 

From these experimental results we observe that the F P G A routability has 

been improved by applying the CS-Box structure. 
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Figure 3.11: CS-Box Structure: Logic Pin Connection 

3.5 Summary 

W e develop a new F P G A architecture, in which the disjoint C-Box and S-

Box structures are combined to the CS-Box structure. There are two types of 

‘ switches in the CS-Box: one of the switch boxes introduced at the beginning of 

Chapter 3 is used to make connection between tracks, and the second type are 

the switches between pins and tracks. W e introduce the connection algorithm 

to build the second type of switches. In the theoretical analysis of the switch 

number, we take the example of P = 5 and a = 1.0 and find Ncs ̂  Â x when 

W ^ 3. The experimental results show a 11.81% reduction on average in the 

number of switches inside the C-Box from the symmetrical array F P G A to the 

CS-Box FPGA, accompanied by small penalty of channel widths and circuit 

delays when Fd = F̂ i in CS-Box FPGAs. The larger F^ in the new FPGA, 

the smaller the reduction of switch numbers. But the penalty of the channel 

widths and circuit delays is eliminated. 
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F P G A Architecture Symmetric-Array with CS-Box Structure 

Fci I I F'^i + 1 
Circuit Name - -

^ 10 10 10 10 9 
apex2 11 11 11 11 11 
apex4 13 12 13 13 13 

b9 4 4 4 4 3 
bigkey 6 6 6 6 6 
dalu 6 6 6 6 6 
des 8 7 7 6 5 

diffeq 7 8 8 8 7 

dsip 7 7 7 7 6 

e64 7 7 8 7 7 
elliptic 10 11 10 11 10 
exlOlO 10 10 10 10 10 

ex5p 13 13 13 13 13 

misexS 10 10 10 11 10 
my 一 adder 4 4 4 4 3 

sl423 5 5 6 6 4 

s298 8 8 8 8 7 

S384 1 7 8 8 7 7 7 

s38584.1 7 7 7 7 7 

seq 11 11 11 11 11 
tseng 7 7 7 6 6 

unreg 4 4 4 5 3 

Total "TT^ 176 ~ [ f r 177 164 一 

* +0.57% 
Comparison * +0.57% -6.82% 

* 0 -7.34% 
Average 

Comparison Result +0.38% -6.99% 
“*" indicates the result in the column is used to make comparison 

Table 3.1: Channel Width Requirements 
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F P G A Architecture Symmetric-Array with CS-Box Structure 

- Fci W 0.91^ 0.8W 一 F � ,I F^i +r~ 
Circuit Name - -

^ 1.85386 1.56852 1.90095 1.66109 1.66125~ 
apexS 1.607 1.63341 1.3474 1.73219 1.76429 
apex4 1.42238 1.43766 1.5797 1.31174 1.26781 

b9 0.36672 0.341982 0.365442 0.293081 0.446448 
bigkey 1.62792 1.98333 2.40621 1.48558 1.49052 
dalu 1.33564 1.22028 1.18171 1.43429 1.10201 
des 1.69223 2.04452 1.54254 2.39677 2.09814 

diffeq 1.39117 0.977372 1.11989 1.14553 1.07257 
dsip 1.20737 1.56772 1.52951 1.78454 1.72232 
e64 0.493154 0.43602 0.424841 0.416376 0.431577 

elliptic 2.86504 1.96451 2.64456 2.01054 2.52907 
exlOlO 3.8845 3.35407 3.66273 3.84098 3.12935 
ex5p 1.37349 1.22278 1.26679 1.34682 1.32818 

misexS 1.71805 1.44106 1.53773 1.68674 1.96567 
my-adder 0.534498 0.530612 0.547252 0.596041 0.449367 

. SI423 0.73654 0.675588 0.651449 0.664029 0.592272 
s298 2.70654 2.2548 2.34736 2.68695 2.29187 

S38417 1.72278 1.83241 1.79846 2.36803 1.84059 
S38584.1 1.72601 2.7448 2.61386 1.98874 2.59543 

seq 1.48821 1.82375 1.90447 1.78949 1.54419 
tseng 1.5054 1.25099 1.17455 1.18151 1.05066 

unreg 1.99059 0.187206 0.1983 1.81475 1.52287 
Total "^".457561 "^^9339 33.745704 34.002532 32.525871" 

* +1.63% " " 
Comparison * +4.64% +0.09% 

* +0.76% -3.61% 
Average 

Comparison Result • +2.34% -2.10% 
"*" indicates the result in the column is used to make comparison 

Table 3.2: Circuit Delay Comparisons (e~^ns) 
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F P G A Architecture Symmetric-Array with CS-Box Structure 

Fci ~ W 0.81^ 一 + 1 

Circuit Name - -
^ S M O 6 4 ^ 

apex2 106480 968000 87120 87120 87120 
apex4 84240 71280 66096 58320 58320 

h9 2420 2420 1936 1815 3630 
bigkey 87480 75816 72900 87480 87480 
dalu 34680 30056 28900 34680 34680 
des 158760 123039 119070 119070 • 119070 

diffeq 53235 54756 47151 45630 68445 
dsip 102060 90396 87480 87480 131220 
e64 10115 8959 8959 8670 8670 

elliptic 186050 186050 148840 167445 167445 
exlOlO 231200 208080 184960 138720 138720 
ex5p 70785 65340 55539 49005 49005 

misexS 72200 64980 57760 64980 64980 
my-adder 980 980 784 735 1470 

‘ sl423 5625 5625 5625 6750 6750 
s298 77440 69696 60016 58080 87120 

S38417 262440 236196 196830 196830 196830 
S38584.1 229635 203391 196830 196830 196830 

seq 97020 88220 79380 79380 79380 
tseng 38115 33759 32670 32670 32670 
unreg 980 980 784 735 1470 

Total 1 9 9 1 ^ 1788799" 1603630 1570425 —1"693305 
Comparison * -21.16% -14.99%^ 

with * * -12.21% -5.34% 

* -2.07% +5.59% 
Average 

Comparison Result" -11.81% -4.91% 
” *” indicates the result in the column is used to make comparison 

Table 3.3: Switch Number Requirements 



Chapter 4 

Optimal MST-Based Graph 

Algorithm on FPGA 

Segmentation Design 

4.1 Introduction 

‘ Figure 4.1 and 4.2 show two types of F P G A architectures that are most widely-

used today, the row-based F P G A and the symmetrical array FPGA. In FPGAs 

signals are transmitted between logic blocks through wire segments, between 

which switches exist. Users can have two short segments connected by pro-

gramming the switch between them to be ON. A switch set to be O N can keep 

or change the direction in which a signal propagates. Also switches can help 

choose relatively short path(s) from the source to the sink(s). But the problem 

is that switches have high resistance and capacitance. Using a large amount 

of such components "may incur great delay penalty [10] [22] [23]. To get a 

good balance between the routability and the switch number researchers have 

attempted to design various segmentation architectures for FPGAs in [9] [10] 

11] [12] [13] [14] [24] [25]. Among those literatures Chang et al. [24] [25] pro-

posed the Graph Matching-Based Algorithm for F P G A segmentation design 

and routing. The algorithm considers the similarity of input routing instances 

37 
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- Segment 

Logic Block Z \ Switch 

Figure 4.1: Row-Based F P G A Architecture 

Switch Block Segment 

^ H ^ H Logic Block 

• Figure 4.2: Symmetrical Array F P G A Architecture 

and formulates the Net Matching Problem to construct the segmentation archi-

tecture. It can provide segmentation outperforming those used in commercially 

available FPGAs [25]. But the algorithm considers two routing instances each 

time and merges all instances in a tree-like bottom-up manner. Therefore, 

the result is dependant on the paring scheme. And the experiments show an 

average variation of 5% by using two paring scheme [10 . 

W e improve the Graph Matching-Based Algorithm and propose the Mini-

m u m Spanning Tree (MST)-Based Graph Algorithm. The MST-Based Graph 

Algorithm considers all input instances at once. The merging result is indepen-

dent of the paring scheme. It is proved to be optimal for row-based FPGAs in 

、 O(m^n^), where m is the number of routing instances and each routing instance 

contains at most n nets. Then it is extended for symmetrical array FPGAs 
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and also proven to be optimal with the time complexity of + m^p^q^), 

where p is the maximum net number of all routing instances and q denotes the 

maximum subnet number of all nets. After theorectical analysis we perform 

the algorithm on a variety of objects to verify our design. The experimental re-

sults show a 4.31% reduction of net length from the Matching-based algorithm 

to the MST-based algorithm. 

The remainder of this chapter is organized as following. Section 4.2 in-

troduces the MST-Based Graph Algorithm. In that section the algorithm is 

proved to be optimal for both row-based FPGAs and symmetrical array FP-

GAs. And the time complexity is also given. To support our theoretical design 

and analysis we execute the MST-based algorithm on ten sets of routing in-

stances. And the results are shown in Section 4.3. Section 4.4 concludes our 

work. 

4.2 MST-Based Graph Algorithm on FPGA 

Channel Segmentation Design 

In this section we will introduce the MST-Based Graph Algorithm on F P G A 

channel segmentation design. The channel segmentation design problem is 

to determine a channel segmentation architecture to achieve "best" routabil-

ity [10]. “ Best" routability means that the segmentation architecture can ac-

comodate as many routing instances as possible [10]. Chang et al. solved this 

problem in the Matching-based algorithm [10] [24] [25]. They considered the 

similarity of input routing instances and formulated the Net Matching Prob-

lem to construct the segmentation architecture. The net matching procedure 

is effective and efficient. But it cannot get optimal results when there are more 

. than two routing instances because of its dependance on the pairing scheme. 

The MST-Based Graph Algorithm processes all routing instances at once. No 
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Figure 4.3: Row-Based F P G A Channel with Four Routing Instances 

instance merging order affects the results. 

In our F P G A channel segmentation design we use a weighted undirected 

m-partite graph to formulate the Net Merging Problem, where m is the number 

of routing instances. In the graph the algorithm finds a set of edges whose total 

weight is maximized. These edges compose of a forest satisfying the following 

condition, 

No two vertices in a tree belong to the same disjoint vertex set. 

Each edge tells that the two nets represented by the two vertices can be merged. 

And the edge weight is the overlapping length of the two nets. Then all the 

selected edges indicate which pairs of nets can be merged. The larger the total 

weight of selected edges, the smaller the total length of nets after merging. 

Firstly the MST-based algorithm is developed for row-based FPGAs. It runs 

in O(m^n^), where m is the number of routing instances and each routing 

instance contains at most n nets. Then the extended algorithm is developed 

for symmetrical array FPGAs with the time complexity of 

where p is the maximum net number of all routing instances and q denotes the 

maximum subnet number of all nets. It has been proven that the MST-Based 

Graph Algorithm can optimally solve the Net Merging Problem. 
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_ 

Figure 4.4: Weighted Undirected 4-Partite Graph Representation of Figure 4.3 

4.2.1 Net Merging Problem of Row-Based FPGAs 

In the MST-Based Graph Algorithm each net is regarded as a vertex. The nets 

in the same routing instance compose of one disjoint vertex set. A weighted 
» 

edge exists between two vertices if the two nets represented by them overlap 

each other and belong to different routing instances. The weight is the over-

lapping length. Figure 4.3 shows a row-based F P G A channel, in which there 

are four routing instances {Ri, Rj, Ru, Rw}- And the routing instances have 

different numbers of nets. 

Ri = {^1,^2} 

Rj = { i i , i 2 , i 3 } 

. Ru = { t i l , 

Rw = {Wi,W2} 

Figure 4.4 is the weighted undirected 4-partite graph to formulate the Net 

Merging Problem of this example. After constructing the graph the Kruskal's 
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Algorithm [26] is applied to select a set of edges whose total weight is maxi-

mized. The selected edges compose of a forest observing the following condi-

tion, 

No two vertices in a tree belong to the same disjoint vertex set 

The selection procedure ensures that no two nets in the same routing instance 

are merged. According to the algorithm the larger the total weight of selected 

edges, the smaller the total length of nets after merging. That will be proved 

in the remainder of this section. 

Suppose that there are m routing instances and each routing instance con-

tains at most n nets. The number of the nets in the ith routing instance is 

denoted by rii. W e let Ri and Nj indicate the zth routing instance and the jth 

net respectively. In the graph we use ê  to represent an edge telling that two 

nets can be merged. len() is the function computing net length. W e have R as 

the final routing instance after performing the MST-Based Graph Algorithm. 

. Then the following theorems exist. 

Theorem 4.1 
m Tii k 

len(R) = XI 艺 len(Ri, Nj) - ^ len{ei) (4.1) 
i=l j=l i=l 

where k means that there are k pairs of nets which can be merged. 

Proof: 
1. When k = I, the theorem is trivially true. 

2. Suppose that the theorem is true when there are /c — 1 pairs of nets to 

be merged. That is, 

m rii k-1 

len(R) = Nj) - ^ len ⑷ (4.2) 
； i=l j=l 1=1 
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3. When there are k pairs of nets that can be merged, we consider the first 

k — 1 edges firstly. The current reduced net length should be 

fc-i 
^ len{ei) (4.3) 

i=l 

After the kth edge is selected, a new pair of nets is merged and the net 

length is reduced further by ek. So the total reduced net length is . 

fc-l k 
len(ek) + ^ len(ei) = ^ len(ei) (4.4) 

Therefore, 

m rii k 

len{R) = ^ ^ kn[Ri, Nj) - ên(ei) (4.5) 
i=\ j=l i=l • 

Theorem 4.2 The Net Merging Problem of row-based F P G A s can be solved 

in by the MST-Based Graph Algorithm. 

.. Theorem 4.3 The MST-Based Graph Algorithm can optimally solve the Net 

Merging Problem of row-based FPGAs. 

Proof: Suppose that the MST-Based Graph Algorithm is not optimal. There 

is at least one non-selected edge ei whose selection will provide a legal solution 

and len(R) will become smaller. 

1. Suppose that the section of ei will not cause that other selected edge(s) 

has (have) to be deleted from the forest. 

Since our algorithm processes edges in the non-increasing order of weights, 

the weight of e\ should be equal to or less than the smallest weight of 

the selected edges. Because the addition of ei will not make any other 

selected edge deleted, according to our algorithm, choosing it will not 

form circle(s) as well as no two nets in the same routing instance will be 

merged. So when executing the algorithm, ei should be selected, which 

conflicts with our hypothesis. 
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Figure 4.5: Symmetrical Array F P G A with Three Routing Instances 

2. Suppose one or more selected edges must be deleted from the forest after 

the addition of ei. 

Here the total weight of the deleted edge(s) should be less than that of 

ei. That is, the weight of each deleted edge must be less than that of 

ei. According to our algorithm the edges are processed in weights' non-

increasing order. Ci should be chosen before considering those edges, 

which conflicts with our hypothesis. 

Based on the above analysis, there will not be such edges as ei. And the 

MST-Based Graph Algorithm is optimal. 

• 

4.2.2 Extended Net Merging Problem of Symmetrical 

Array FPGAs 
� 

The Net Merging Problem of symmetrical array FPGAs is solved in a simi-

lar way to that of row-based FPGAs. And the formulation procedure is the 
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t ! 
Figure 4.6: Weighted Undirected 3-Partite Graph Representation of Figure 4.5 

same as the one introduced in [25j. m still represents the number of routing 

instances, p is the maximum number of nets among all routing instances, q de-

notes the maximum number of subnets among all nets. Without additional def-

initions, all the other notations follow the meanings declared in Section 4.2.1. 

In the weighted undirected m-partite graph each vertex represents a net. An 

edge indicates that two nets overlap each other in at least one channel. And 

the weight is the total length of the overlapping part(s). After constructing 

the graph the Kruskal's Algorithm [26] is applied to determine which pairs of 

nets can be merged. Figure 4.5 shows a symmetrical array F P G A example 

with three routing instances. And Figure 4.6 is its graph representation. 

Theorem 4.4 The Net Merging Problem of symmetrical array F P G A s can 

be solved in + 

Theorem 4.5 The MST-Based Graph Algorithm can optimally solve the Net 

Merging Problem of symmetrical array FPGAs. 

Proof: Here we keep using a weighted m-partite graph to formulate the Net 
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Merging Problem. The algorithm solves the problem optimally only if the total 

weight of selected edges is maximized. The selection scheme applied here is 

able to find a set of edges satisfying the problem specifications with the total 

weight maximized, which has been proved in Theorem 4.3. Therefore, the 

algorithm is optimal to solve the Net Merging Problem of symmetrical array 

FPGAs as well. 

4.3 Experimental Results 

To support our algorithm design we execute it on different objects on the 

platform of a 1500 M H z Intel Pentium 4 PC with 512M R A M . W e randomly 

generated ten sets of routing instances from the instance-generating package 

of our own in C language. Each of the sets contains fifty routing instances 

(m = 50). And each instance contains at most fifty nets (n = 50, p = 50). 

All channel lengths are set to be one hundred. Table 1 shows the comparison 

• results of the Matching-Based Graph Algorithm and the MST-Based Graph 

Algorithm. W e can see that our algorithm gains a 4.31% reduction of net 

length compared with the results of the Matching-Based Graph Algorithm. 

4.4 Summary 

W e propose the MST-Based Graph Algorithm on F P G A segmentation design. 

Based on the Graph Matching-Based Algorithm, it is improved to optimally 

solve the Net Merging Problem of row-based FPGAs in 0 ( m V ) and sym-

metrical array FPGAs in + m^p^q^). To verify our design we conduct 

experiments on ten random sets of routing instances generated by our own 

instance-generated package in C language. By comparing the results a 4.31% 

net length reduction from the Matching-Based Graph Algorithm to the MST-

Based Graph Algorithm is observed. Our work is expected to contribute to 



Chapter 4 Optimal MST-Based Graph Algorithm on FPGA Segmentation Design 47 

- Net Length 
..- Before Merging After Merging 

Set Number - Matching MST 
1 32243 2 m 1901 
2 30457 2066 2056 
3 31796 2086 1997 
4 32134 2041 1958 
5 28398 1934 1824 
6 30819 1967 1863 • 
7 27677 2018 1940 
8 28476 2006 1895 
9 30727 2126 2042 

32968 1968 1907 
Total Length 305767 20256 19383 

"Comparison Result - 0.00% -4.31% 

Table 4.1: Net Length Comparison 

the future research on F P G A channel segmentation design. 



Chapter 5 

Conclusions 

F P G A architecture design is a main topic for improving the F P G A function 

today. There are a variety of methods to improve the F P G A working ability. 

Since F P G A came into industry nearly twenty years ago, many research works 

have addressed this area. After studying the literatures on this topic, we 

develope our work in two different fields. 

Based on the Xilinx Virtex Architecture, we develope a CS-Box F P G A 

- architecture, in which the connection box and switch box are combined to the 

CS-Box structure. Inside the CS-Box we introduce the connection algorithm to 

build the switches. Since our main aim is to reduce the hardware requirement, 

we discuss the switch numbers required by the new F P G A and the symmetrical 

array FPGA. In the theoretical analysis we take the example of P = 5 and 

a = 1.0 and find Ncs ̂  Â x when W ^ Z. The experimental results show a 

11.81% reduction on average in the number of switches connecting two wire 

segments, accompanied by the small penalty of channel widths and circuit 

delays when Fd = F么 in CS-Box FPGAs. The larger F^ in the new FPGA, 

the smaller the reduction of switch numbers. But the penalty of channel widths 

and circuit delays is eliminated. 

The channel segmentation design is another topic in F P G A architecture 

design. W e studied a lot of research works. The authors proposed a variety of 

methods to solve the segmentation construction problem. Lin et a/.'s Graph 

48 
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Matching-Based Algorithm addressed a new direction in this area. After inves-

tigating the related works we find that their algorithm cannot provide optimal 

solutions. Therefore, we design the MST-Based Graph Algorithm. Basically 

we enhance the formulation method of the Net Merging Problem. In theory 

it is proved to be optimal for both row-based FPGAs and symmetrical array 

FPGAs. The time complexities are O(m^n^) and -{-m̂ p̂ q̂ ). To verify 

our design we conduct experiments on ten random sets of routing instances. 

By comparing the results a 4.31% reduction in net length by our algorithm is 

observed. 

Our research work deals with different topics in F P G A architecture design. 

And they are expected to be improved further. W e hope that our work can 

contribute to the future research on the F P G A study field. 
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