
* 一

On Implementation of a
Self-Dual Embedding Method

for Convex Programming

By

CHENG T A K WAI，JOHNNY

AUGUST, 2003

Supervised By
P R O F . ZHANG SHUZHONG

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF M A S T E R OF PHILOSOPHY
DIVISION OF SYSTEMS ENGINEERING AND ENGINEERING M A N A G E M E N T

T H E CHINESE UNIVERSITY OF HONG K O N G

产 二 题 细 ^ ^

(R 3 0) i |
14- fc/

UNIVERSITY 一J乾 ij

摘要

在此篇论文中，我们研究张树中提出的一个求解非线性最优化问题的

方法。其方法将一般的凸最优化问题转换为锥最优化问题。之后，使用

自对偶齐次化嵌入技术(self-dual embedding technique)来解答此转换后的

问题。其方法最大的好处乃为其使用者不需要知道问题的可行状态，而

可直接求解。我们釆用Anderson和叶荫宇的方法，建立优点函数(merit

function)用来选定步距。我们设计一些测试问题来研究我们提出的算法。

考虑的测试问题包括了使用对数，指数与二次函数的约束条件。然后，我

们讨论问题的规模与算法求解时间的关系。我们特别研究算法对几何规划

问题的求解效果及其数值测试结果。最后结论是我们提出的算法在一般情

况下数值效果良好，表现稳定。乃为求解一般最优化问题的可行及有效的

计算方法。

[关键字]:凸规划凸锥自对偶齐次化嵌入技术P a t h - F o l l o w i n g 几何

规划

Abstract

In this thesis, we implement Zhang's method [43], which transforms a general

convex optimization problem with smooth convex constraints into a con-

vex conic optimization problem and then apply the technique of self-dual

embedding for solving the resulting conic problem optimization. A crucial

advantage of the approach is that no initial solution is required, and the

method is particularly suitable when the feasibility status of the problem is

unknown. In our implementation, we use a merit function approach pro-

posed by Andersen and Ye [1] to determine the step size along the search

direction. We investigate the efficiency of the proposed algorithm based on

its performance on some test problems, which include logarithmic functions,

exponential functions and quadratic functions in the constraints. We discuss

the relationship between the size of the problem and the solution time. Fur-

thermore, we consider in particular the geometric programming problems.

Numerical results of our algorithm on this class of optimization problems are

reported. We conclude that the method is stable, efficient and easy-to-use in

general.

Keywords: Convex Programs, Convex Cones, Self-Dual Embedding, Path-

Following, Geometric programs.

Acknowledgments

I am grateful to my supervisor: Prof. Zhang Shuzhong, for directing me to

the field of conic optimization during the last two years. His inspiring guid-

ance, valuable suggestions and continuous encouragement made it possible

for me to finish this thesis. Also, I would like to thanks to Prof. Li Duan

and Prof. Zhou Xunyu for their comments on my research.

Thanks to all technical and administration staffs in department of System

Engineering and Engineering Management, CUHK. Their helpfulness provide

me a congenial working environment.

Moreover, I would like to thanks to all of my school fellows, especially

Jin Hanqing, Xie Jiang, Chiu Chung-Hung, Ah Fan, Alvin, Rachel and Paul.

They always support me and make my school life enjoyable.

Apart from the above people, I would also like to give my great apprecia-

tion to my parents and sisters. They give me endless support so that I could

complete this thesis.

Again, thanks all of the above people. Without them, I never could

complete my thesis successfully.

Contents

1 Introduction 1

2 Background 7

2.1 Self-dual embedding 7

2.2 Conic optimization 8

2.3 Self-dual embedded conic optimization 9

2.4 Connection with convex programming 11

2.5 Chapter summary 15

3 Implementation of the algorithm 17

3.1 The new search direction 17

3.2 Select the step-length 23

3.3 The multi-constraint case 25

3.4 Chapter summary . 32

4 Numerical results on randomly generated problem 34

4.1 Single-constraint problems 35

4.2 Multi-constraint problems 36

4.3 Running time and the size of the problem 39

i

4.4 Chapter summary 42

5 Geometric optimization 45

5.1 Geometric programming 45

5.1.1 Monomials and posynomials 45

5.1.2 Geometric programming 46

5.1.3 Geometric program in convex form 47

5.2 Conic transformation 48

5.3 Computational results of geometric optimization problem . . . 50

5.4 Chapter summary 55

6 Conclusion 57

ii

List of Figures

4.1 Running time against the no. of the constraints {n = 100) . . 41

4.2 Running time against the no. of the constraints {n = 200) . . 43

iii

List of Tables

4.1 Numerical results for Problem 4.1 35

4.2 Numerical results for Problem 4.2 36

4.3 Numerical results for Problem 4.3 37

4.4 Numerical results for Problem 4.4 38

4.5 Numerical results of Problem 4.5 for mi = 10 39

4.6 Numerical results of Problem 4.5 for mi = 20 39

4.7 Numerical results of Problem 4.6 for n = 100 40

4.8 Numerical results of Problem 4.6 for n = 200 42

4.9 Numerical results of Problem 4.6 for m = 7 (mi = 21) 44

4.10 Values of algorithmic parameters 44

5.1 Numerical results of Problem 5.1-5.3 52

5.2 Computational results of the Problem 5.4 for mi = 10 54

5.3 Computational results of Problem 5.4 for mi = 20 54

5.4 Computational results of Problem 5.4 55

5.5 Computational results of Problem 5.5 55

5.6 Values of algorithmic parameters 56

iv

Chapter 1

Introduction

In 1979, Khacijan [21] showed that the ellipsoid algorithm applied to solve

the linear programming problem would run in polynomial time. This result

was not only important for the complexity status of linear programming, but

also many other combinatorial optimization problems, as shown by Grotschel

et al. [16 .

Unfortunately, an algorithm with polynomial computational complexity

does not necessarily lead to satisfactory computational efficiency in practice.

Such is the case with the ellipsoid method; the method remains mainly a

theoretical tool. The introduction of polynomial-time interior-point methods

is one of the most remarkable events in the development of mathematical

programming in the 1980s.

The first interior-point algorithm was introduced for linear programming

in a landmark paper of Karmarker (see [19]). The computational complexity

result contained in that paper, as well as the claim that performance of

the new method on real-world problems is significantly better than that of

the simplex method, made Karmarkar's work a sensation and subsequently

1

Chapter 1 Introduction

inspired very intensive and fruitful studies. Karmarkar's paper triggered a

tremendous amount of research on what is now commonly called the interior

point methods. Hundreds of researchers all over the world went into the

subject; over 2000 papers were written (see Kranich [24] for a bibliography).

Related to the Karmarkar algorithm, an important techniques is the so-

called logarithmic barrier method, introduced by Prisch [11] in 1955. Later,

Barnes [5] and Vanderbei et. al. [38] proposed the so-called affine scaling

algorithm as a simplified version of Karmarkar's method, which turned out

to be just a rediscovery of a method developed by Dikin [9] in 1967.

Reasons can be given why such type of methods were out of fashion since

early 1970s, but regained so much interest in the mathematical program-

ming society after Karmarkar's work. First, it is of theoretical significance.

Interior point techniques were originally developed to solve nonlinear pro-

gramming problems (NLP) with inequality constraints. For LP the simplex ...,

method performed reasonably well, and there was no incentive to investigate

the theoretical properties of the interior methods when applied to LP, as

theoretical complexity of the algorithm was not regarded to be an issue in

the 1960s.

In fact it was only around 1970 that complexity theory was developed,

mainly in the field of combinatorial optimization (see Karp [20] and Garey

and Johnson [12]), and for convex optimization by Judin and Nemirovskii

18]. It was shown by Klee and Minty [22] that certain variants of the sim-

plex method require, in the worst case, an exponential number of arithmetic

2

Chapter 1 Introduction

operations. Since then, the search for a polynomial method being efficient

in practice was a challenge, without considering the possibility that existing

methods, when sufficiently adjusted, could satisfy these requirements.

Shortly after the publication of Karmarkar's paper, Gill et. al. [13] showed

that Karmarkar's projective algorithm was closely related to the logarithmic

barrier method. Following this connection, theoretical work on interior point

methods soon led to the introduction of the analytic center by Sonnevend

36] and analysis of the central path in a primal-dual setting by Megiddo [28

which are the central themes in both theoretical work as well as in practical

implementations of interior point techniques.

In 1987, Roos and Vial [35] derived a very elegant and simple complexity

proof of the basic logarithmic barrier method, showing a new property of

an essentially old method. Renegar [33] derived the complexity of a method

u.cinfe analytic centers which can be traced back lo Huard [17]. Anstrei^her

4] analyzed SUMT [31], an old implementation of an interior point method

and showed it to be polynomial.

Immediately after Karmarkar's paper, the activity in the field of interior-

point methods focused mainly on linear programs. Later, it was discovered

that the nature of the method is in fact independent of the specific properties

of the LP problems; these methods can be extended to solve more general

convex programs. This led to the revival of Newton's method for convex

programming with a beautiful analysis of certain interior point methods for

convex programming by Nesterov and Nemirovsky [32]. These significant

3

Chapter 1 Introduction

results include the study of the so-called semi-definite programming (SDP)

and its applications, e.g., in control theory and combinatorial optimization

(see Boyd el. al. [7，39], Alizadeh [3])，and the development of efficient

practical algorithm for NLP problems (see Yamashita [42], Vial [40]).

Convex optimization relates to a class of nonlinear optimization problems

where the objective to be minimized, and the constraints are convex. Convex

optimization problems are attractive because a large class of these problems

can now be efficiently solved. However, the difficulty is often to recognize

the convexity; convexity is harder to recognize than say, linearity.

One important features of convexity is that it is possible to address hard,

non convex problems (such as “ combinatorial optimization" problems) us-

ing convex approximations that are more efficient than classical linear ones.

Convex optimization is especially relevant when the data of the problem at

hand is uncertain, and “robust" solutions are sought.

In addition, convex optimization problems are known since 1960s. This

kind problem has a nice property which is that the local optimal are the

global optimal. Moreover, the convex analysis is well developed by 1970s

(Rockafellar) such as separating, supporting hyperplanes, and sub-gradient

calculus. In 1990s, powerful primal-dual interior-point methods extremely

efficient, handle nonlinear large scale problems.

Up till this day, it is generally believed that the primal-dual interior point

methods, such as the one introduced by Kojima et al. [23], are among the

most efficient methods for sieving linear programming problems. The general

4

Chapter 1 Introduction

principle of primal-dual interior point method is based on sequentially solving

a certain perturbed Karush-Kuhn-Tucker (KKT) system. In its original form,

the primal-dual interior point method requires the availability of some initial

primal-dual strongly feasible solutions.

In 1994, Ye, Todd and Mizuno [30] introduced the so-called homogeneous

self-dual embedding technique to solve linear programs. The main idea of

this technique is to construct an artificial problem by embedding a primal-

dual problem pair. When this artificial problem is solved, the original primal

and dual problems are automatically solved. There are several nice features

of this method. The most important advantage is that no initial solution is

required to start the algorithm: trivial initial solution is available for the ar-

tificially constructed self-dual embedded problem. It also solves the problem

in polynomial time without using any 'Big-M' type constants.

’ The idea of the interior-point method was further extended to solve gen-

eral convex optimization problems. The most important work is probably the

so-call self-concordant barrier theory developed by Nesterov and Nemirovskii

32]. Based on this theory, the interior-point methods can be applied to ef-

ficiently solve several important classes of convex optimization problems,

where the self-concordant barrier functions are known.

The idea of self-dual embedding was also extended to solve more general

constrained convex optimization problems. Andersen and Ye [1,2]，developed

a special type of self-dual embedding model based on the simplified model of

Xu, Hung and Ye [41] for linear programming; Luo, Sturm and Zhang [27

5

Chapter 1 Introduction

proposed a self-dual embedding model for conic optimization.

The purpose of this thesis is to specialize an interior-point implementation

for a new self-dual embedding method, proposed by Zhang [43], for convex

programming problems. Moreover, we study the efficiency of the proposed

algorithm for solving numerous test problems.

The outline of this thesis is as follows. In Chapter 2, we propose a par-

ticular conic formulation for the inequality-constrained convex program, and

construct a self-dual embedding model for solving the resulting conic opti-

mization problem. Then we develop an interior-point algorithm to solve this

model in Chapter 3. We present some numerical results in Chapter 4 for

solving randomly generated test problems which involved logarithmic, expo-

nential and quadratic constraints. According to the numerical results, we

study the relationship between the running time and the size of the problem

i • iTi the same chapter. Next, we consider geometric optimization problems in

Chapter 5. We first state the general primal and dual form of the problem

and then transform the problem into the conic form. After that we solve ‘

the conic model by our algorithm. Computational results of some existing

test problems are presented in the same chapter. Finally, in the last chapter,

Chapter 6，we conclude the whole thesis.

6

Chapter 2

Background

In this chapter, we shall review the fundamentals of conic optimization and

the self-dual embedding technique. The focus will be placed on a recent

paper of Zhang, [43], entitled "A New Self-Dual Embedding Method for

Convex Programming".

2.1 Self-dual embedding

The primal and dual liner programming (LP) problems are as foliows. Let

be a m X n matrix, 6 be a m x 1 vector and c be a n x 1 vector. Then the

primal LP problem is

{LP) min c^x
s.t. Ax = b

x>0

and its dual problem is
{LD) max iFy

s.t. A^y s = c
s > 0.

Take any x^ > 0, > 0, and y^ e 况爪.Moreover, define

rp = b-Ax\ Vd = Tg = and 0 = > 1.

7

Chapter 2 Background

Following Mizuno, Todd and Ye [30], we can combine the primal and dual

linear problems together to form a self-dual embedded LP model:

min 139
s.t. Ax -br -\-rp9 = 0

-A'^y +CT +rd0 —s = 0
bTy - c ^ x +rgQ -K, = 0

-rjy -rjx -TgT = —13
x > 0 , r > 0, s > 0, > 0.

It is easy to find a feasible starting point for this problem. Indeed, one

can check that {x, y,s,T, K, 6) = {xQ,yo, sq, 1,1,1) is a suitable choice. This

program is self-dual, meaning that its dual is identical to itself. Moreover,

the optimal value is 0.

2.2 Conic optimization

III this section, we shall introduce conic optimization. We first state the

definition of a cone.

Definition 2.1 A set K, ̂ ^ is a cone if and only if the following holds

"^X e }C=> Xx e JC VA G 3R+.

We are now in a position to define a conic optimization problem. Let /C C

be a closed convex cone. The primal conic optimization problem is

(CT) min c^x
s.t. Ax = b

X e JC

where x G is the decision variable and the problem data are given by the

cone /C，an m X n matrix A, and two vectors b and c. The vectors b and c

belong to 况 a n d respectively.

8

Chapter 2 Background

Definition 2.2 The dual of a cone JC CW is defined by

JC* = {s I x^s > 0 Vx G /C}.

The dual of the primal conic problem (CP) is given as

(CD) max h^y
s.t. A^y + s = c

seJC*

where y e and s G are the decision variables.

2.3 Self-dual embedded conic optimization

We can now use the idea of self-dual embedding in linear programming to

construct the self-dual embedded conic optimization model. Take any x^ e

int /C, §0 G int /C*，and y^ € Moreover, define

Vp = b-Ax\ u = sO-c+力V，rg] 4 c V - a n d jS = > 1,

and consider the following embedded optimization model

min 130
s.t. Ax -br -\-rp6 = 0

-^'^y +CT +rd0 —s = 0
bTy -c^x -hTgO -K, = 0 ‘

-rjy -rjx -TgT = -p
xeJC, r > 0, s e K * , K > 0

where the decision variables are {y, x, r, 0, s,«).

The following result is well known; see its analog in [30] for the linear

programming case.

9

Chapter 2 Background

Proposition 2.1 Problem (2.1) has a maximally complementary optimal so-

lution, denoted by (y*, x*, T*, 9*, s*, K*}, such that 9* = 0 and {x*)'^s*-\-T*K* =

0. Moreover, if T* > 0，then x*/T* is an optimal solution for (CP), and

{y*/r*, S*/T*) is an optimal solution for (CD). If K* > 0 then either C^X* < 0

or JjTy* > 0; in the former case {CD) is infeasible, and in the latter case (CP)

is infeasible.

If r* and k* do not exhibit strict complementarity, namely r* = k,* = 0,

then in that case we can only conclude that {CP) and (CD) do not have

complementary optimal solutions. In fact, more information can still be

deduced, using the notion of, e.g., weak infeasibility, for more details see [27],

26] and [37 .

We now introduce a "-logarithmically homogeneous barrier function F(x)

for the cone /C, i.e.
.••。：.

F(tx) 二- - u\ogt

for all a: e int /C and ^ > 0. Suppose that F{x) is a "-logarithmically homoge-

neous barrier function for /C, then F*{s) is a "-logarithmically homogeneous

barrier function for /C*; see Nesterov and Nemirovski [32] for details. In addi-

tion, F*{s) is the conjugate of the convex function F[x). Hence, we can solve

(2.2) by the barrier approach with // > 0 as the barrier parameter, namely,

min /iF (a;) - / i l o g r +/iF* (s) -jilogK,
s.t. Ax -br -\-rp9 = 0

-ATy +CT ^TdO -s = 0
bTy - c ^ x -\-rg9 - K = 0
-rjy -rjx -VgT = -(3.

10

Chapter 2 Background

2.4 Connection with convex programming

We would like to use the above idea to formulate a convex program into a

conic optimization problem. First of all, let us state a general convex program

as follows:

(P) min c^x
s.t. Ax = b (2.3)

fi � < 0, i = 1, ...’m

where fi (x) is smooth and convex, i = 1,..., m. We consider the case m = 1

to explain the transformation. Let the decision variable be
‘ P ‘

x:= q e 况1 X 况1 X 况"，

_ X _

and the problem data are
‘ 0 -

c : = 0 e 况1 X 况1 X 况

' ‘ c

“ 1 -

b:= 0 e 况1 X 况1 X 况m
_ b _

and
_ 1 0 0了 _

0 1 e 况(m+2)x(n+2).

. 0 0 ^ .

Let

K: = C\{X\P>0, q-pf{x/p) > 0}

which is a closed cone. The following Lemma shows that /C is a closed cone.

Lemma 1 The function -q pf{x/p) is convex in 况 x 况i x 况

11

Chapter 2 Background

Proof. We only need to show that pf{x/p) is convex in 况 ? x By simple

calculation, it follows that

•2 (。仏 /”)） = 1 [(雄)〜 2 / (咖) (•) -i^/pf^'fi^/p)-
…八丨叫 p [-V'f{x/p){x/p) V'f(x/p) .

Let H = V^fix/p) and h = x/p. Then for any ^ = (f。，f̂) G 况“+工’

we have

= i [eoh^Hh - Hh+en^'

> 0.

Therefore, -q + pf{x/p) is convex in x 况丄 x 况 Q . E . D .

We have an equivalent conic formulation for (P) as given by
{KP) min c^x

s.t. Ax = b
X E K.

The convex barrier function for K, is

F{x) = - \ogp - log {q - pf (x/p))，

which is a 2-logarithmically homogeneous barrier function. We can easily
‘ P ‘

check: That for any 5 = q , it follows that
X _

F{tx) = -\og{tp)-\og[t{q-pf{xlp))]
=F(x)-2\ogt.

Related to the duality of convex cones, the conjuate of the convex function

f (x) is defined as

f*(s) = sup{(-s)^x - f{x) I X e dom /}•

12

Chapter 2 Background

By the definition, we can see that for x G int {dom / } and s G int {dom / * }

the following three statements are equivalent

s = -• /⑷ （2.4)

a; = - V / * � (2.5)

-x^s = f{x) + r{s). (2.6)

Related to the definition of the conjugate function, we have the following

theorem.

Theorem 1 It holds that
r 1

u
}C* = c\ ls= V : V > 0, u-vf* {s/v) > 0 (2.7)

‘ s J ,
and

F* (5) = l o g - log {u - vf* (s/v)) (2.8)

which is a barrier function for JC*.

We include the proof for the equation (2.7) and omit the proof for (2.8).

For details, one is referred to Zhang [43 .
u 1 p

Proof. For any v with ？; > 0 and u-vf* [s/v) > 0, and x = q G K,
_ s � �

we have

pu-\- qv + x^s = pv[u/v + q/p + {x/pY[s/v)
> pv[ulv + q/p - f{x/p) - r{s/v)'
=v(q - pf{x/p)) + p{u - vf*{s/v))
> 0

13

Chapter 2 Background

Hence,
广 厂 1 u

< s = V : V > 0 , u - v f * (-] > 0 } CJC*.
\vJ ~

‘ �

u

On the other hand, take any s = v G int /C*. Obviously > 0. Since
_ s _

int K* is open, we conclude that v > 0. Let x = —Vf*[s/v). Consider

“ 1 •

f {x) e JC.
_ X _

A s f{x) + f*{s/v) = -x'^{s/v) a n d s o

“ 1 -

fix) = u - v r { s / v) .

- 宏 .

This shows that
r n \

u

/C* = c l <s= V : V > 0, u - vf*{s/v) > 0 > .

s
� L J • •

Therefore, we get the dual of conic problem:

{KD) max F y
s.t. A^y + s = c

BeJC

r n \
U

where /C* = c l � ^ = v : v > 0, u - v f*{s/v) > 0 > .

s
V u J y

14

Chapter 2 Background

We consider the following barrier approach for solving (KP) with /i > 0

as the barrier parameter.

min NF {x) —^logr +卵 +jj,F* (S) —jj^logK
s.t. Ax —br -\-fp6 = 0

-A^y +CT +fd6> -s = 0
Wy —c^x -\-fg9 -K, = 0
- f j y - f j x -fgT = -p.

Due to the self-duality we derive the following KKT optimality condition for

(KP), where the solution is denoted by (y, x, r, 9, s, k),

‘ Ax ifi) -It ifi) +7V9(/i) = 0
-A'^y ifx) +cr (//) -云("） = 0

^ 护V�^J) 一5了5 …） +fge (//) = 0 (2 9)

-rpV (/i) -Td^ M -fgT (/i) = -P ‘
T (") K(jll� = n

‘ s(iJ,) = - / I V F (X).

We use the chain rule to calculate VF{x) and then substitute the term. After

that we get the following KKT conditions
‘ Ax (/i) - M ") (/i) = 0 �

- 灼 (" ） +cr(/ i) +ue ifx) - 5 (/ i) = 0 �

h^y in) - c ^ x (/i) + � g 9 (jj) (//) = 0
M - 尸 - V (ju) = ,

(*) = fi �

(2)

2.5 Chapter summary

In this chapter, the main ideas in [43] were reviewed. According to the results

in this paper, we can turn a general convex optimization problem into the

15

Chapter 2 Background

conic form by adding 2 extra variables. Then we can follow the self-dual

embedding approach to solve it. In the next chapter, we will construct an

algorithm to implement this method.

16

Chapter 3

Implementation of the
algorithm

In this chapter, we shall construct an algorithm to implement the method

introduced in the previous chapter. We first consider the case where there is

only one inequality constraint. Then we shall focus on finding the Newton

type direction. The conditions for selecting the step length along the Newton

direction will be discussed as well. Finally, we extend our analysis to the

multi-constraint case.

3.1 The new search direction

In this section, we first discuss how to find the new search direction for the

single constraint case. As discussed in Chapter 2, we have the following KKT

17

Chapter 3 Implementation of the algorithm

system for the central solution:

‘ Ax (") —b丁 (“) +rp6> (/i) = 0

-A^yifi) +CT (/ i) -sifi) = 0 1

bTy (") - e x (") +rge (/i) = 0 P
-rpV (/i) -rjx ifi) -TgT in) = -13 ‘

(*) T(JJ)K(ji) = fi

(2)

Suppose that the current iterates is (p, x, u, v, s, y, 6, r, k). Then the

displacements {Ap, Ax, AU, Av, As, Ay, A9, Ar, Ak,) should satisfy

， ^Ax -6Ar +fpA0 = 0
-A^/^y +cAr 八 6> - A s = 0
FAj/ -c^Ax +fgAe -Ak = 0
—fpAy —fjAr —fgAr = 0

KAT -\-TAK = fJi — tlT
,{U + A^) [p + Ap) [{q + Aq) - { p + Ap) f = "g + Ag - 2 " “ A p) / (錄 ）

+ " • / (g ^ 广(MA工）

{v + A^) [{q + Aq) - (p + Ap) f)] =“

This is a system of nonlinear equations with 2ri + m + 7 variables and

2n + m + 7 equations. We shall linearize the system as suggested by the

Newton method for solving nonlinear equations. To this end, we rewrite the

form of the last three equation in the above system as follows

r /ic + •

I \p + Ap J j
18

Chapter 3 Implementation of the algorithm

= + �一 (P + 秘 / (^) + /^V/ (^) T + A .) (3.1)

「 /Â + AX\ 1 (v + AT;) (̂G + AG) - (P + AP) / J = “ (3.2)

(一 卜 - (p + A p) / (誌)] = - " • / (誌) • (3.3)

We are now concerned with the left hand side of (3.1). Using the Taylor

expansion to the first order, and dropping all the higher order terms,

(u + Au) (p + Ap) [(^ + Aq) - (p + Ap) f ((re + Ax)/{p + Ap))'

={up + uAp + pAu) {q + Aq) - {p + Ap) f (^x/p + Ax/p — xAp/p^^ .

We further drop the terms which are higher than or equal to second order,

the above quantity becomes approximately

upq + uqAp + qpAu + upAq — (up^ + upAp + p^Au + upAp^ f {x/p)

-up^Vf {x/pf (^Ax/p - a;Ap/p2)

. ' r 丨. rr» ， r -I

=upq + uq — 2upf {x/p) + uV f {x/p) a: Ap + qp — p^ {x/p) An

-\-upAq — upS/ f [x/pY Ax.
As for the right hand side of (3.1)，similarly we have

lj,[q + Aq- 2{p + Ap)f{{x + Ax)/{p + Ap))

+ V / ((x + Ax)/{p + Ap)f{x + Ax)

= H q + "Ag - 2/i(p + Ap) / {x/p) — {x/pY (Aa;/p - x/^p/p^)

+"•/ {x/pf {x + Ax) + “ (^Ax/p - xAp/p^) VV (x/p) {x + Ax)

=l^q- 2iipf {x/p) + "•/ {x/pf X + [-"•/ {x/pf + {ii/p)x^V^f {x/p)] Ax

-2/i/ (x/p) + 2/VpV/ [x/pf X + fi/p^x^V^f (x/p) x] Ap.

19

Chapter 3 Implementation of the algorithm

Finally we linearize the equation (3.1) and get

uq + 2{^- up) f (x/p) + (u + •/ {x/pf x +、！ilfycT妒f {x/p) x] Ap
L r rn 1
+ [qP - {x/p)] Au + {up - /J,) Aq+ (" - up) •/ {x/p) - {x/p) Ax

二 fiq — upq - 2^pf {x/p) + f (x/p)^ x + up^f {xjp).

Consider now the equation (3.2)

[v + At!) [(g + Ag) - (p + Ap) / {{x + Aa:)/(p + Ap))] = /x.

By Taylor expansion and dropping high order terms, this yields

jjL 兰 vq + vAq + qAv - {vp + vAp + pAv) f [x/p) + •/ {x/p)^ {j^x/p — (xAp)/p^)

=vq — vpf {x/p) + vAq + lq-pf {x/p)] Av + v/pVf (x/p)^ x — vf (x/p) Ap

-vVf (x/p)'^ Ax.

Therefore, we get the Newton equation

q — pf {x/p)] Av + v/pVf [x/pY x — vf {x/p) Ap + vAq — vVf {x/pY 八工

=// - "Ug + vpf (x/p).

Similarly, we can linearize the third equation (3.3) as follows

(5 + As) [(g + Aq) — (p + Ap) f {{x + Ax)/{p + Ap))] = -fiVf {{x + Ax)/p + Ap)，

leading to

sq + sAq + q^s - (ps + sAp + pAs) f {x/p) - psVf (x/p) {Ax/p - (xAp)/p^)
二 —fiVf {x/p) - tiVf (x/p)T (Aa;/p —

and this further leads to

q - pf {x/p)] As + -sf {x/p) + s/pWf {x/pf x - ^x/p^V^f [x/pY Ap + sAg

+ [sVf {x/pf + /i/pVV (x/p)^] Ax = {x/p) -sq + spf {x/p).

20

Chapter 3 Implementation of the algorithm

Now we wish to reformulate the equations in the matrix format. Let

Li = pq- // (x/p)

L2 = uq + 2(fj,- up) f (x/p) + (w + 2n/p) •/ {x/pf x + (x/p) x

Ls =�^l-up)Vf (x/pf -_:i:TV” (x/p)

La = v/p V / {x/pf x-vf {x/p)

L, = -sVf {x/pf + /i/pVV (x/p)

Le = -sf {x/p) + s/pVf {x/pf X - fi/p^V^f (x/p) x,

and we write the last three equations in terms of Li, i = 1 , 6 :

p^LiAu + {up - yLi) Ag + L2AP + L^Ax = Ml

LiAv + pvAq + vpVf {x/pf Aa: + L^/^p = M2

pLi As + p^sAg + LsAx + LeAp = M3,

where

Ml = luq- upq - 2/j,pf (x/p) + / iV / {x/pf x + up^f {x/p)

M2 = fi — vq + vpf {x/p)

Ms = (x/p) - + spf {x/p).

Observe that Mi, M2 G 况，which are dependent on {u,v, s) and {p,q,x).

Hence we can rewrite the above equations in the matrix form as follows

DiLiAs -i- D2AX = M,

with
/ 0 0 \

Di = 0 1 0

V 0 0 p y
21

Chapter 3 Implementation of the algorithm

f L2 up- fj, Ls \
rji

D2 = Z/4 vp vpVf {x/p)
\ Le p^s 丄5)

(Ml \
M = M2

\ Ms J

where Di and D2 are (n + 2) x {n + 2) matrix. Clearly _D�i exists since it is

a positive diagonal matrix. However, D2 is not guaranteed to be invertible.

For convenience we shall replace it by D2+£l with e > 0 a small perturbation

parameter in case D2 is not invertible.

Define
Qi = - (AD^'DiA^y' M

Q2 = - [aD^^D^A^Y^ ~

QS = - (AD^'DIA^Y' (R- + AD^'DIFD).

Then we have

... Ay = + Q2AT + QsAe.

Moreover, by putting

Ri = D^' (m + Dii^Qi)

R2 = D^' {DiA^Q2 - Dic)

R3 = D^' {DiA^QS - Difd)

we obtain

Ax = Ri-^ R2AT + R3A9.

Similarly, letting

= - f j Q , - rjR,

1 - f , + rJQ2 + f^R2

22

Chapter 3 Implementation of the algorithm

fg + r^Q2 + fjR2

we have

A t = iVi + N2Ae

and

. . = T V Q I - T¥Q2Ni + tcRI + TC^R2NI - idSfi
_ Tb^Q2N2 + - T卯2N2 - T^Rs + I^Ns + Tfg • ^ • ^

Observe that A6 can be directly computed since all terms on the right side

are known, and we can consequently computer other variables as follows:

A T = iVi + N2A9 ,

Ax = Ri-\- R2AT + R3M,

A^ = Qi + Q 如 + Q3A6',

A/c = FAg - c'^Ax + fgAe

and

As = -A^AY + cAt + fdA(9.

3.2 Select the step-length

After computing the search direction, the iterates may in principle be up-

dated. Next, we would like to discuss how to choose a proper step-size a.

First, we follow Andersen and Ye [1], and define the merit function.

：二 A功fe+ ||也||,

23

Chapter 3 Implementation of the algorithm

in which A G (0,1) is a parameter,

/ T^ \

u{q-pfix/p))
9 /P -2 / (x /P)+V^/ (X/P) (X /P)

= ,

v { q - p f (x/p))

\ - (Q - p f {x/p)) s � [• / {x/p)]-^ /

and

(Ax - I t f p O \

—Ay + cr + fdO — s

=

Wy — c^x + fg9 — AC

\ -rjy - fix -fgT-\r^ J

where "o" is the Hadamard product of the two vectors, and “ [• / (x/p)]~^ “

is the component-wise inverse of • / (x/p), i.e.

1 0 if v M x / p) = o.

We see that is used to measure the duality gap and 功2 is used to

measure the feasibility. This can be seen from Equation (*).

In each iteration, the step-size is selected such that all iterations satisfy

the following three conditions.

The first condition:

UN
丽 ，

24

Chapter 3 Implementation of the algorithm

where = ipi (y+，p+’ r+’ 0+’ s + ， f o r i = 1,2. This condi-

tion prevents the iterates from converging towards a complementarity solu-

tion faster than the feasibility improvement.

The second condition:

� � E

N + S

This condition prevents the iterates from converging towards the boundary

of the positive orthant prematurely.

The third condition:

< 0 + . (Ay; Ap; Aq; Ax; Ar; A(9; Aw; Av, As; Ak).

The last Armijo-like condition requires that the merit function to be reduced

in all iterations.

3.3 The multi-constraint case

Next we consider the general formulation of (P) where m > 1.

(P) min c^x
s.t. Ax = b (3.5) \

MOC) < 0, Z = L，."，M

where fi(x) is smooth and convex, i = 1 , m . Similarly we have its conic

representation, (KP), with
m

/c=n
2=1

where

/Q 二 d {5 I p � 0 , q — pfi{x/p) >0}C 7^+2’ i = 1 , m .

25

Chapter 3 Implementation of the algorithm

The natural 2m-logarithmically homogeneous barrier function for JC is
m

F{x) = - m l o g p - - pMx/p)).
i=l

The dual cone of JC is
’ � 1 \

m m

K* = cl(/CIe- • -^IC^) = cl < = ^ Vi ： Vi > 0,Ui -Vif*{si/Vi) >0,1 = l,...,m > .
bi Si

\ L J y

The central path for the embedded problem is characterized by :

‘ Ax ifj) -IT ill) -^rpO (/x) = 0
-A'^yifi) +cr ill) +rd9 (//) = 0
F y �- c o ; ifi) +rge ifi) = 0

—r讯fi) - r j x (/i) -TgT (/i) = - �

= M
Ui{f^)[q{ii) - p{fi)fi{x{ii)/p{fi))] = fi[q(fi)/p(ii) - 2fi(x{fj,)/p(fi))

+ • 『 / 办 � M/i))]

’ . [外 >) . • • 一 ； = -/iV/i(a;(/i)/p(/z)) for i = 1,..., m.

We linearize the last three equations and then we find out the new direction

of the system. Remember that in the one constraint case we have

DiAs + DiAx = M,

with
/ p2Li 0 0 \

Di = 0 Li 0
V 0 0 pLJ j
/ Z/2 up - li 1/3 \ rp

D2 = La vp vpVf {x/p)
\ Le p^s L5

26

Chapter 3 Implementation of the algorithm

/ Ml \
M = M2

\ Ms J

Similarly, in the m constraints case, we have

D\As + D^Ax = M\ for i = 1 ， m .

where

f 0 0 \
D\ = 0 L\ 0

V 0 0 pL\)
(L\ UiP — /I Lg �

Di = L\ Vip VipVfi {x/pf
\ "6 P^Si Li
(M i \

= Mi

V M i)

and

Li = pq - p^fi [x/p)

= UiQ + 2 (/i - Uip) fi [x/p] + (ui + 2/Vp) V/i {x/pf X + /i/p^^^vVz [x/p) x

Li = (/i - Uip) Vfi [x/pf - {x/p)

L\ = {vi/p)Vfi {x/pf X — Vifi {x/p)

4 = -SiVfi(x/pf + (^/p)V'fi(x/p)

Li = -Sifi {x/p) + SiVfi {x/pf x/p — Uil作”i {x/p) X

where

M； = — Uipq - 2iipfi (x/p) + /iV/i {x/pf X + UiP^fi (x/p)

27

Chapter 3 Implementation of the algorithm

M�=n-Viq + Vipfi {x/p)

Ml = -/xV/i {x/p) - SiQ + Sipfi (x/p)，

and hence

Asi = —L)‘A旬 for i = l,…,m•

Therefore,

m m

YA-Si = - D\b.x)
i=l i=l

Because EI^i As^ = As, so

As = -
2=1 Z=1

Let

M =
i=l
m

d2 = E(功)_1 坊.
i=l

We have a new matrix form equation

As + D2AX = M.

Following similar calculation as for the case m = 1, we obtain

Ar = N 1 + N 2 M , (3.6)

Ax = Ri + i?2 Ar + R^M, (3.7)

Aj/ = Qi + Q2AT + Q3A0, (3.8)

A/^ = F A y - c^AS + fgA(9 (3.9)

28

Chapter 3 Implementation of the algorithm

and

As = + CAT + fdA6>, (3.10)

where A0 is given by (3.4). Also

Asi = {D[)-\M' - DiAx), (3.11)

for i = 1 , m . After searching the direction, we need to choose a step length.

Similar as in Section 3.2，we first should define the merit function

in which A 6 (0,1) is a parameter, and

/ r/. \

uiiq-pfiix/p))
9 /P -2 /1 (x / p) + V ^ / i {x/p){x/p)

vi {q - pfi (x/p))

-{Q- Pfi (x/p)) Si o [V/i (x/p)R^
^1= ： ，

UmiQ-pfmjx/p))
q/p-2fm{x/p)+V'^fm{x/p){x/p)

Vm {q - pfm [x/p))

^ - { q - pfm {x/p)) Sm�[V/m (^/p)]"^

29

Chapter 3 Implementation of the algorithm

and

(AX-IT + FPO \

-Ay + cr + TdO - 否i

屯2 =

b'^y — c^x + fgO — K

V -'̂ PV — -FGT + P

where "o" is the Hadamard product of the two vectors. In addition, the step-

size is selected such that all iterates satisfy the following three conditions.

The first condition:

k 人 > 风 " ^ ， (3.12)
e - II对II 、)

where 屯 广 = q ^ , r+, (9+, ut, vf, ,..., , v+, , for i =

1,2. This condition prevents the iterates from conveigmg towards a comple-

mentarity solution faster than the feasibility measure.

The second condition:

• (3.13)

This condition prevents the iterates from converging towards the boundary

of the positive orthant prematurely.

The third condition:

< <l> (3.14)

+ •少T • (Ay; Ap; Ag; Ax; Ar; A6>; Awi; At;i； Asi；...; An^; Avm; As爪；Ak) •

30

Chapter 3 Implementation of the algorithm

The last Armijo-like condition requires that the merit function to be reduced

in all iterations.

We now arrive at a general algorithmic scheme as follows.

Algorithm

Step 0. Let

�y,P, Q,工，T, UI, VI, SI,…，UM, VM, S爪，K,)

- (i j ^ rP a^ R �炉 ？ / O 7,0 <?。 ,,0 „o OO ^̂ on

be the initial solution.

Step 1. If ^(y,p,q,x,T,0,Ui,vi,Si, ...,Um,Vm, Sm, k) > e, then go to step 2.

Otherwise stop.

{Remark If the value of the merit function is close to zero, then it follows

that the iterate is close to the optimal solution.)

Step 2. Let " = 0.8* ^i(y，p,A:c，7"，(9,wi.,”i,cSi，...,w^，？;„i,s^’/^)/(n + 3) . ,

Step 3. Solving the direction

(A y , A ^ Arc, A r , A6>, Awi , A v i , Asi ,…,Aw爪,Av爪，Asm, A k)

as given by (3.6)- (3.11)，for z = 1, ...,m.

Step 4. Find the maximum step length

a = argmax { a G [0,1]:

(p； q\x) + a (Ap; Ag; Ax) G JC

[ui] Vi] Si) + a (Alii； Avi； Asi) e /C*, for i = 1,…’ m}

31

Chapter 3 Implementation of the algorithm

Step 5.

(2/+，P+，一，T+，6>+, u^, v^, si,..., ？ ; s 二，K+)

+ OL (A?/, A p , A ^ Arr, A r , A6>, Awi , A?；!, A s i , A w 爪， A ? ; ^ , As爪,AK)

Step 6. If

or

MIN 屯

or
少+ > 屯 + •尘� • (Ay, Ap, Aq, Ax, Ar, A0，Aui, AvuAsi, ...，Aw爪,Avm, As爪,A/c)

a = 0.8 * a,

then go to step 5，otherwise go to step 7.

Step 7.

(v, P’ q,工,T, Um, Vm, S爪,K,)

=(2/+，P+，？+’ 一’ T+，6>+, ut, vt, 心 ？ •

Step 8. Update the value of $ {y,p,q,x,T,0,Ui,vi, Si, ...,Um,Vm, Sm, k,).

Then go to step 1.

3.4 Chapter summary '‘

In conclusion, we use Newton's method to solve the approximative KKT

system. Besides, we follow the approach of Andersen and Ye [1] to form a

merit function. Using this function, we select the step length and measure

32

Chapter 3 Implementation of the algorithm

the performance for each iteration. Finally, we propose an algorithm to solve

this problem.

33

Chapter 4

Numerical results on randomly
generated problem

In this chapter, we report the computational results for our algorithm. We

use the algorithm described in Chapter 3 to solve some test problems, through

which we wish to show the efficiency of our method. For each randomly

generated test problem, we use our algorithm to solve 10 problems for each

n and get the statistic results. In addition, we would like to find out how

the computational time grows with the size of the problem. The algorithm is

coded in Matlab and the tests are conducted on Ultra 5-333 computer with

333MHz CPU and 128MB RAM running Solaris 2.8. We have not used the

parallel capability of the computer in our test, that is, the program is run on

one CPU only. Moreover, all reported timing results are measured in CPU

minutes. Let us introduce the notation as follows:

n: number of variables

mi： number of inequality constraints

7712： number of equality constraints

it : mean number of iterations

34

Chapter 4 Numerical results on randomly generated problem

Gap : value of merit function

Gi : value of duality gap

G2 : value of feasibility

error: the absolute error of the optimal objective value.

4.1 Single-constraint problems

First we consider convex programming problem with one constraint.

Problem 4.1

min I'^x
s.t. Ax = b

x^x — n < 0

n 7712 it fji Gap CPU time error
" l o 2 4 0 . 6 "T-STE-OT Gl =1.20E-05 0 . 0 4 9 9 1 . 2 3 x 10"^

G2 =1.48E-12
l o o ^ ^ 3.98E-07 Gl =9.16E-06 0.2849^ 2.37 x 10—5

G2 =7.70E-10
^ 2 5 . 9 2.62E-07 Gl =4.34E-06 0 . 5 6 9 0 1 . 9 8 x 10"^

G2 =2.34E-09
I S ^ 42.1 5.20E-08 Gl =1.24E-5 2.1519 3.67 x 10"^

G2=4.24E-9

Table 4.1: Numerical results for Problem 4.1

We generate 10 random problem instances for each n and our algorithm

solve these instances correctly. The average results are given in Table 4.1.

Random problem instances are generated as follows. We generated matrix A

and vector b so that x = — Inxi satisfies Ax = b. i.e. x = —l„xi is a feasible

35

Chapter 4 Numerical results on randomly generated problem

solution.

Problem 4.2

min I'^x
s.t. Ax = b

-ZZi logxi + n<0

n 1712 it /i Gap CPU time error
~ l o ^ 17.4 1.06E-06 G1 =4.834e-006 0 . 0 1 4 7 4 . 2 3 x 10-4

G2 =2.555e-013
100 25 29.2 9.16E-08 G1 =8.950e-006 0.2500 5.21 x 10"^

G2 =4.637e-011
150 38 24.1 6.90E-08 Gl =9.658e-006 0.3422 6.71 x 10"^

G2 =1.410e-010
200 50 25.8 4.72E-08 Gl =8.758e-006 0.7150 7.21 x 10"^

G2 =2.278e-010

Table 4.2: Numerical results for Problem 4.2

The constraint of this problem involves the logarithmic function. The

numerical results are shown in Table 4.2.

4.2 Multi-constraint problems

Now we consider the multi-constraint problem.

Problem 4.3

min 1丁00
s.t. Ax = b

x̂x - n < 0
e工 - n e < 0

36

Chapter 4 Numerical results on randomly generated problem

n 1712 it jJi Gap CPU time error
~10 2~~40.3 8.98E-07 G1 =1.8706e-005 0.0798 3.13 x 10-5

G2 =1.5545e-014
100 25 30.7 6.61E-08 Gl =7.4737e-006 0.3700 2.22 x 10-5

G2 =4.9340e-013
~lbO^37.5 3.21E-08 Gl =5.1814e-006 1.2152 6.14 x 10"^

G2 =1.8140e-012
^ 4 1 . 4 3.91E-08 Gl =9.1017e-006 2.6612 1.78 x 10"^

G2 =1.9786e-012
600 150 42.9 9.50E-09 Gl =9.5900e-06 24.2459 5.19 x 10"^

G2 =1.5802e-ll

Table 4.3: Numerical results for Problem 4.3

For the two-constraint case, the constraints contain quadratic and expo-

nential function. We observe that the number of iterations is similar as the

single constraint case but the running time is longer. This is reasonable since

the direction finding problem is larger.

Problem 4.4

min I'^x
s.t Ax = b

x̂ x — n < 0
-T.U log:ri < 0
E?=i ê^ -ne<0

For the three-constraint case, we add logarithmic, exponential and quadratic

constraints into the problems. The numerical results are shown in Table 4.4.

The results show that the method is stable and quite fast under the combi-

37

Chapter 4 Numerical results on randomly generated problem

n 7712 it H Gap CPU time error
~To 2 2 6 . 1 3.19E-07 Gl =7.7397e-006 0.0599 2.85 x 10-5

G2 =3.2204e-014
" T S ^ 3 4 . 6 2.71E-08 Gl =9.7740e-006 1.0675 3.34 x 10-5

G2 =3.2915e-013
^ 2 6 . 3 4.72E-08 Gl =8.7584e-006 4.2184 9.29 x IQ-^

G2 =2.2782e-010
600 150 32.4 9.07E-09 Gl =2.1513e-05 30.7784 1.28 x 10"^

G2 =6.6534e-12

Table 4.4: Numerical results for Problem 4.4

nation of these three quite different kinds of constraints.

The above problems only have a few constraints. We now want to solve

problems with more inequality constraints. Thus, we generate a convex

quadratic programming in the following format.

Problem 4.5

min l^x
s.t. Ax = b

x^QiX + pjx + FJ < 0, for 2 = 1,…，MI,

where Qi hO^piE 况"and n G 况 Vi.

We fix mi = 10 and mi = 20 respectively for the experiments. The

numerical results are showed in Tables 4.5 & 4.6.

According to the experimental results, we see that the convex quadrat-

ically constrained optimization problems can be solved by our algorithm.

Also, the number of iterations is insensitive to the number of inequality to

the number of inequality constraints.

38

Chapter 4 Numerical results on randomly generated problem

n 7712 IT fi C P U TIME ERROR

~ 5 0 1 3 28.1 ~^357QE-08 —0.2544 1.34 x IQ-^
" T o o 2 5 22.6 T.2858E-Q7 0.5388 2.37 x 10_5

^ 26.7 3.4517E-08 1.4334 9.27 x IQ-^
^ 2 8 . 4 8 .9996E-09 2 . 7 7 ^ 2 . 4 4 X 10—5

^ 28.3 7.0660E-Q9 4.5445 3.37 x IQ-^
^~~28.7 5.3687E-09 7.3843 7.69 x 10—5

350 88 30.9 T 3 I I O E - O 8 11.6029 5.67 X IQ-^

400 100 26 . r 1.9246E-Q8 35.5398— 2.39 x IQ-^

Table 4.5: Numerical results of Problem 4.5 for mi = 10

N 7712 IT 11 C P U TIME ERROR

T o o 2 5 33.4 3.4761E-08 1.9741 3.72 x 10—5
^ 2 9 . 8 1 .8103E-08 3 . 1 4 ^ — 4.32 X IQ-^

200 50 34.3 9.2642E-Q^ 7.0024 — 8.11 x IQ-^
^ 2 7 . 5 5.929QE-08 —10.2357 1.34 x IQ-^

300 75 ^ o T " 8.2334E-09 59.3983 2.27 x 10_5

350 88 "27!^ 1.1174E-Q8 ~87.9260 ~ 7.35x10—5
400 100 28.2 5.1696E-Q9 155.3597 5 .26��KT^

Table 4.6: Numerical results of Problem 4.5 for mi = 20

4.3 Running time and the size of the problem

In the following, we study in a more structured way the relationship between

the running time and the size of the problem. In particular, we wish to find

the relationship between the running time and the number of the constraints

in the problem. We fix the number of variables to be 100 and the problem

has the following format.

39

Chapter 4 Numerical results on randomly generated problem

Problem 4.6
• 1T

mm 1�X
s.t. Ax = b

flk = X^QkX + plx + Tifc < 0 ,

f2k = - EILi dik logrci < 0
fsk = E?=i hke工i -ne<0 for k = l, 2 , ...，m.

where dik = Ei=i hk = n and Qit h 0 Mk.

Here, the number of the constraints is given by m\ — 3m. We change

the value of m from 2 to 15 and solve the problem for each m, we get the

following results.

mi CPU time it mi CPU time it
6 0.9999 30.2 4.2565^ 36.8
9 1.1524 26.7 7.1943^ 44.6
12 1.6147~ 28.9 ^ 7 . 4 6 1 8 4 0 . 9
15 2.5015 29.3 9.3294^ 30.2
18 3.1902 30.1 39 11.4079 41.3
21 3.5103 34.7 42 11 .973^ 38.2
24 4.0299 42.5 45 12.0513— 40.4

Table 4.7: Numerical results of Problem 4.6 for n = 100

We plot the running time against the number of the constraints. The

solid line is based on the linear regression. It is showed in Figure 4.1.

One observes a linear growth pattern for the CPU time in terms of the

number of constraints. Moreover the number of iteration is similar for differ-

ent m. Next, we increase the number of variable to 200. Similar results are

observed. The results are shown in Table 4.8 and Figure 4.2.

Then, we set out to check how the number of iterations is related to the

number of the decision variables. Therefore we fix the number of constraints

40

Chapter 4 Numerical results on randomly generated problem

141 1 1 1 1 1 1 1

12 - * *

10 - ^ ^

S 8- ^ ^

I.

O 6 - ^ ^ 来 -

* 来

gl I I I I 1 I 1
5 10 15 20 25 30 35 40 45

number of constraints (3*m)
Figure 4.1: Running time against the no. of the constraints (n = 100)

to be 21, i.e. m = 7 and do some experiments for varying number of variables.

Table 4.9 shows the experimental results. We can see that the number of

iterations is insensitive to the number of variables.

Now we are in the position to talk about the value of algorithmic param-

eter. All problems are solved by using the value of parameters as shown in

Table 4.10

First of all, we are concerned with three parameters ft, ft and 历 in

conditions (3.12) - (3.14). Based on our experiments, we find that the second

condition (3.13) is most difficult to satisfy, so ft is always less than or equal

to the other two parameters. The values for ft and ft are always set to be

41

Chapter 4 Numerical results on randomly generated problem

rui CPU time it
~ 9 ~ 8.3696~ 33.2

12 13.1694 33.4
15 13.5609~~32.1
18 16.0863 32.3
21 16.5527 31.7
24 2 2 . 4 6 8 9 3 7 . 1
27 30.4125 29.3
30 39.3208 38.5

Table 4.8: Numerical results of Problem 4.6 for n = 200

the same. We set the value of e to be 1 x 10"^ for solving all test problems.

We now discuss the value of A. This value is very important in our algo-

rithm. We need to adjust it to a suitable level for each problem type. Then,

for each problem type, we use the same algorithmic parameters to do the

experiments for different n. We conclude that the best values of algorithmic

parameters are independent on the size of problem but are dependent on the , , . : �；

structure of the problem. Thus, we may need to adjust the values of the

algorithmic parameters for each new problem type.

4.4 Chapter summary

In this chapter, we applied our algorithm to solve on a number of randomly

generated problem instances. The numerical results show the stability and

accuracy of the method. In addition, the relationship between the number

of constraints and the computational time is plotted. According to the ex-

perimental results, we observe a linear growth pattern. Also, the number of

42

Chapter 4 Numerical results on randomly generated problem

401 1 1 1 1 1

35 - -

3 0 - *

^ ^ -

I *
O 20 - ^ ^ -

来 *
15 - ^ ^ -

^ ^ * 来

10 - Z -
*

51 I 1 I 1
5 10 15 20 25 30

number of constraints (3*m)

Figure 4.2: Running time against the no. of the constraints (n = 200)

iteratioiTC is rather insensitive to the size of the problem. Besides, the best. ：. - •

values for algorithmic parameters are not very much dependent on the size

of problem, but are indeed dependent on the structure of problem.

43

Chapter 4 Numerical results on randomly generated problem

n 7712 it
50 13 34.5
100 25 30.8
150 38 30.6
200 36.2

^ 2 9 . 9
300 75 28.5
350 88 35.5
400 100 30.3
450 113 29.8
500 125 28.2

Table 4.9: Numerical results of Problem 4.6 for m = 7 (mi = 21)

！; ••

I e I I I & I A
Problem 4.1 1 x 1 x IQ-^ 1 x IQ-^ 1 x 10-4 0.8 �1
Problem 4.2 1 x 1 0 " ^ 1 x 1 0 - 6 1 x 1 x IQ-^ 0.8 �1
Problem 4.3 1 x 10"^ 1 x 1 0 " ® 1 x IQ-^ 1 x 10"^ 0.8 �1
Problem 4.4 1 x 1 0 " ^ 1 x 1 0 " ^ 1 x 10-8 1 x 10-8 0.8 � 1
Problem 4.5 1 x 1 x lO—io 1 x IQ-^" 1 x IQ-^" 0.7
Problem 4.6 T x IQ-^ 1 x lO—io 1 x 1 x 10_io 0.8

Table 4.10: Values of algorithmic parameters.

44

Chapter 5

Geometric optimization

In this chapter, we consider geometric optimization problem and apply our

method to solve this type of problems.

5.1 Geometric programming
5.1.1 Monomials and posynomials

A function 没：况"4 况 with dom g =况!defined as

where c > 0 and ai G 况，is called a monomial function, or simply, a mono-

mial. The exponents ai of a monomial can be any real numbers. A sum of

monomials, i.e. a function of the form

gW) = i c i i r t r . . � ,
i=\

where cj > 0, is called a posynomial function (with N terms), or simply,

a posynomial. If a posynomial is multiplied by a monomial, the result is a

posynomial. A posynomial can be divided by a nonzeros monomial, resulting

also in a posynomial.

45

Chapter 5 Geometric optimization

5.1.2 Geometric programming

The primal geometric programming problem is as follows.

Primal problem:

min go{t)
s-t-仍⑴ S l’...，没p � $ 1 ，

h > > 0
where

gk{t~) = E c 們 r …

for k 二 0,1, ...,p, and

J[k] = {rrifc, ruk + + 2 , n ^ }

for /c = 0,1, and

mo = 1, mi = no + 1, m2 = rii + 1，..., rUp = Up-i + 1，n.p — n.

The exponents aij can be any real number, but the coefticients Q are assumed

to be positive, i.e., the function 仇⑴ are posynomials. The posynomial to

be minimized, namely "o⑴，is termed the primal function, and the variables

ti,亡2, •••, tm are called primal variables.

The dual program corresponding to primal program is the following:

Dual problem:

max ；̂(̂) = [n (宇 “ 炉 “ 、
.1=1 \ � ” �k = i

where

入kW = E氏，

46

Chapter 5 Geometric optimization
\

for k = l，2，."’p. The factors Q are assumed to be positive and the vector

6 = ((̂ 1,...入）is subject to the following linear constraints: for i = 1, ...n，

and j = 1，2,…，m

SiGJ[0] = I5

and
n

^iA = 0.
2 = 1

5.1.3 Geometric program in convex form

In general, geometric program is not a convex optimization problem in its

original form, but it can be transformed into a convex problem by the change

of variables: Xi = logU so U = z = 1 , n . If g is the monomial function

of t, i.e.,

then
9{t)=�(e工 i,...，e工n)

= • • • (e^ 广"
— ^a^x—b
—C ，

where b 二 — logc. The change of variables Xi = logU, i = 1,..., n, turns a

monomial function into the exponential of an affine function. Similarly, g is

a posynomial, i.e,

k=l

then after the variable change, we have

" ⑷ = 【一，

k=l

47

Chapter 5 Geometric optimization

where ak = (aik,. • •, cink) and bk = log Ck, namely, after the change of vari-

ables, a posynomial becomes a sum of exponentials of affine functions. The

geometric program can be expressed in terms of the new variable x as

min 知*

s.t. E f l i e《工-b认 S 1，S 二 1,.., m. (5.1)

5.2 Conic transformation

The system (5.1) is readily seen to be equivalent to

min e吻

s.t. ê 'ok̂ -̂ ok < ê o

where we introduce a new variable XQ to express the posynomial objective.

Noticing that minimizing e卯 amount to minimizing rco, we can rewrite this

last problem as

{GF) min c^x
s.t. EiSi 工-工0-知fc - 1 < 0

Z^di - 1 < 0, j = 0,l,.",m.

By adding N variables into the problem, with N = E^o namely, by

introducing

：= -ajx + bi

for i = I,..., Nj, j = 0 ， 1 , m and N_i = 0. Problem (GP) is equivalently

transformed into the following problem

(iVGP) min c^x
s.t. Ax = b

E^di e-工 � - 1 <0 , J =0,1,…m.

48

Chapter 5 Geometric optimization

We can now represent the geometric programming in the conic form (PCGP)

since the constraint are clearly smooth convex. For completeness, we would

like to formulate the dual of (PCGP). For our approach, we need to find the

conjugate of fj{x) with fj{x) = 么 g — � _ i, which is defined by

Nj
f*{s) = sup{-rr^s + 1}.

By putting g{x) = -x'^s — e"^' + 1, let us compute the conjugate of

g{x). For any s � 0 ,

V(7(X) = - 5 + ；

and so the first order optimality condition Vg{x) = 0 leads to

suPâ ^Kz) = logsi Si-hi
= E t l S i [l og5 , - l] + l

for Si > 0 and z = 1, ...n. Thus the conjugate of function g{x) is ‘

n

g*{s) [log Si — 1] + 1
i=l

defined on 况!J_+. Therefore, the primal and dual geometric problems in the

conic form are
(PCGP) min c^x

s.t. Ax = b
xeJC

and
(DCGP) max b^y

s.t. A^y + 5 = c
seK*

49

Chapter 5 Geometric optimization

where
m \P'

)C = c\ q I P > 0，q-p f j { x/p) > 0}
j=0

and its dual is

m 卜 " I

/C* = c l ^ { S j = Vj I Vj > 0 , Uj 一 Vjf;isj/Vj) > 0 } .

5.3 Computational results of geometric opti-
mization problem

We shall now apply our approach to solve the geometric programming prob-

lems as reported in Dow's paper [10] and then present our numerical results.

In addition, we generated some additional geometric programming problems

and then solve them by our method.

Problem 5.1

min 0.5̂ 1̂ 2 ̂ —力i — 5̂ 2 ^
s.t. 0.01(^2^3^ + 0.0005^1^3 < 1.

We can transform the above problem to the following problem (see Murray

10] for the details)

min 亡4

s.t. 0.01(秘p + 亡1) + 0.0005M3 < 1
(0 . 2 4 2 3 力 ? . 5 1 7 2 力 2 — 0 . 9 9 5 7 + 4 4 . 8 2 6 1 力 「 0 . 4 8 2 8 力 } 0 0 4 3) 力 4 — 0 . 5 1 2 9 < ^

and then we use our method to solve it. By putting U = e^' for i = 1 ， 4 ,

we have
min e工4
g t g X 2 - X 3 + l n 0 . 0 1 + g X i + l n O . O l + g x i + x a + l n 0 . 0 0 0 5 < 丄

g 0 . 5 1 7 2 x i - 0 . 9 9 5 7 X 2 - 0 . 5 1 2 9 x 4 + l n 0 . 2 4 2 3 g - 0 . 4 8 2 8 a ; i + 0 . 0 0 4 3 x 2 - 0 . 5 1 2 9 x 4 + l n 4 4 . 8 2 6 1 < |

50

Chapter 5 Geometric optimization

This problem is equivalent to the following problem,

min 3；4
s.t. X 2 - + x^ = -In0.01

xi + xq = - In 0.01
X7 = -In0.0005

0.5172rci - 0.99570；2 一 0.5129x4 = -In0.2423

-0.4828a;i + 0.0043:c2 — 0.51290；4 = - I n 44.8261
已一0；5 + ^-Xe + g-X7 < 1

e"̂® + < 1
and hence we can apply our algorithm to solve it. Similarly, our algorithm

can be used to solve the following problems as introduced in Rijckaert and

Martens [34 .
Problem 5.2

min tit2 —艺�1 力fi
s.t. +力2 < 1.

We transform this to
min ts
s.t. 0 . 2 5片 5 + ^^ < 1

hhts 1 + 力 1 上亡 2 1 亡3 1 S 1
Put ti = e '̂ for i = 1, 3, then we have

min e工3
s.t. + e们 < 1

gXl+X2-X3 + g—X1-X2—X3 <

It is equivalent to

min Xs
s.t. O.Sa：! + X4 = — In 0.25

X2 + X5 = 0
Xi + X2 — X̂ Xq = 0
-Xi - X2 - Xs Xj = 0
e-工4 + < 1
e - X 6 g - X 7 < I

51

Chapter 5 Geometric optimization

Problem 5.3

min t\ + tl- 4力 1 - U) + 6.475
s.t. 0.25力？ -\ - t l< l

- t i + 2t2 > 1.

We transform this to

min ts
s.t. 0.2bt1 + < 1

0.5魄 1 + 0.5̂ 2̂ < 1

(0 . 2 1 6 2 汁 7 2 9 3 力 广 . 2 0 3 0 + 0 . 2 1 6 2 力 「 。 . ‘ 了 。 " ; " — + 1 . 4 0 0 2 力 「 0 . 2 7 0 7 力 2 - 0 . 2 _) 力 3 - 0 . 5 2 6 2 < ^

Similarly, let U = e^' for i = 1 , 3 , and we get

min xs
s.t. 2xi + X4 = - In 0.25

2x2 + = 0
xi — X2 + xe = - In 0.5
-X2 + X7 = —In 0.5
1.7293x1 - 0.203x2 — 0.5262x3 + rrs = - In 0.2162
-0.2707a;i - 1.797x2 — 0.5262a;3 + xg = -In0.2162
- 0 . 2 7 0 7 : r i � — 0.5262̂ ；3 + a;io = - In 1.4002

+ < 1
e一工6 + e—工7 < 1

工8 + g-X9 + < 1.

The numerical results are shown in the Table 5.1. We can see that our

method can be used to stably solve the geometric programming problems.

iteration error
Problem 5.1 22 1.66 x 10"^
Problem 5.2 11 4.66 x 10-5
Problem 5.3 36 7.44 x 10-4

Table 5.1: Numerical results of Problem 5.1-5.3

52

Chapter 5 Geometric optimization

According to the Section 5.2, we know that solving (GP) is equivalent to

solving the following problem,

�NGP�min c^x
s.t. Ax = b

i:l^ie"�+�-i+<-lSO，j = l,…,m.

Hence we generate some additional problems in this format and to test our

algorithm. Consider the following problem:

Problem 5.4

min I'^x
s.t. Ax = b

T S t " ' - { n - mi)e < 0, i = 1， m i .

The numerical result for this problem are shown in Table 5.2-5.4.

Moreover, we consider the following problem:

Problem 5.5

min I'^x
； . . • s.t. Ax = b

e-工j + e - 工 - 2e < 0, j = 1,..., n — 1.

This geometric program has n — 1 inequality-constraints. The computational

results for this problem are shown in Table 5.5.

Now we discuss the value of the algorithmic parameters for solving ge-

ometric programming. In the above experiments, we use the same value of

e for solving all problems. The detail can be found in the Table 5.6. We

can see that "i，s are set to be constant for all problems. But the value of

A is different for Problem 5.5. The difference is due to the structure of this

problem. Clearly, Problem 5.5 has n—1 inequality-constraints, where n is

53

Chapter 5 Geometric optimization

number of variables CPU time iteration
^ 0.5985 43
100 0.7901 ^
^ 2.0649 E
' m 3.6052 ^
^ 6.2759 ^
300 9.5093 m

Table 5.2: Computational results of the Problem 5.4 for mi = 10

number of variables CPU time iteration
^ 1.3598 — 4 7
100 ^2.6656 ^
150 ^7.7078 41
m 12.0421 ^
250 24.4377 42
300 45.7886 38
350 108.5256 37
400 278.3176 ^

Table 5.3: Computational results of Problem 5.4 for rrii — 20

the number of the decision variables. Therefore, the difficulty for solving

this type of problem is higher than that of the other problems discussed in

this chapter. We found that if the number of constraints is dependent on

the number of decision variables, then we need to decrease the value of A.

However, the value of A cannot be set too low. In particular, if A < 0.3，

then our algorithm does not seem to converge to the optimal solution. Thus,

adjusting the proper A value is quite important for our algorithm.

54

Chapter 5 Geometric optimization

number of variables CPU time mi iteration
20 0.1484 2 21
40 0.2910 4 ^
60 ~0.5913 6 “ ^
80 1.2311 8 “ ^
100 ~~5.5088 10 43
120 ^5.9460 12 E
140 18.1382 " U " 32

Table 5.4: Computational results of Problem 5.4

number of variables CPU time iteration
20 0.2641 30
40 ^ 1 . 2 8 4 5 3 2
60 ^ 6 . 8 6 0 4 ^ 38
80 32.6032 45
100 49.818 39
120 123.9953 37
140 274.8943 33

.‘： Table 5.5: Computational results of Problem 5.5

5.4 Chapter summary

In this chapter, we state the general primal and dual geometric programs and

then transform them into the convex form. After that we use our approach to

further transfer the problem into the conic form. Finally, we solve numerous

test problems in this format. We conclude that our algorithm is efficient in

solving geometric programming probelms.

55

Chapter 5 Geometric optimization

I 6 I I "2 I I A

Problem 5.1 1 x IQ-^ 1 x IQ-^o 1 x l O] � i x 0.8 � 0 . 9
Problem 5.2 1 x IQ-^ 1 x l O - i �！ x lO-io 1 x lO-io 0.8 � 0 . 9
Problem 5.3 1 x 10"^ 1 x 10-1° 1 x 1 0 - 1 x lO-io 0.8 �0 . 9
Problem 5.4 1 x 10"^ 1 x l O - i �1 x 1 x 0.8 � 0 . 9
Problem 5.5 1 x 10—5 1 x lO—io"" 1 x lO—io 1 x lO—io 0.7

Table 5.6: Values of algorithmic parameters.

56

Chapter 6

Conclusion

In this thesis we study the new self-dual embedding method for convex pro-

gramming which is proposed by Zhang [43]. Based on this paper, we can

turn the general convex optimization problem into the conic form by adding

2 extra variables. Then we apply the self-dual embedding technique to solve

the resulting problem. Certainly, an obvious advantage of the new approach

is that it does not require an initial feasible solution of the convex program

to start with, which is a generic virtue of the self-dual embedding method.

We specialize an interior-point algorithm and discuss in detail how this

algorithm can be constructed and implemented. First, we use Newton's

method to solve the approximative KKT system. Second, we follow the

approach of Andersen and Ye [1] to construct a merit function. This merit

function is used to select the step length and measure the performance in all

iterations. We apply the so-constructed algorithm to solve some randomly

generated test problems which involve logarithmic, exponential and quadratic

constraints.

In addition, we consider geometric programming problems. We state the

57

Chapter 6 Conclusion

general primal and dual geometric programs, and then transform them into

the convex form. Finally, we apply our method and further transform the

problem into the conic form. Numerical tests are carried out for this type of

problems.

All numerical results show the stability and accuracy of the method. Also,

we observe a linear growth pattern between the computational effort and the

number of constraints. The number of iterations is insensitive to the number

of decision variables. Besides, the best values for the algorithmic parameters

are not very much dependent on the size of problem, but can indeed be

dependent on the structure of problem.

Finally we conclude that this new self-dual embedding method is numer-

ically stable and efficient for solving general convex programming problems.

58

Bibliography

1] E.D. Andersen and Y. Ye, A Computional Study of the Homogeneous Al-
gorithm for Large-scale Convex Optmization, Computational Optimiza-
tion and Applications, 10, pp. 243-269, 1998.

2] E.D. Andersen and Y. Ye, On a Homogeneous Algorithm for Monotone
Complementary Problem, Mathematical Programming, 84, pp. 375-399,
1999.

.3] F. Alizadeh, Combinatorial Optimization with Interior Point Methods
and Semi-definite Matrices, PhD thesis, University of Minnesota, Min-
neapolis, USA, 1991.

4] K.M. Anstreicher, On Long Step Path Following and SUMT for Linear
and Quadratic Programming, SI AM Journal on Optimization, 6, pp.
33-46, 1996.

[5] E.R. Barnes, A Variation on Karmdrker's Algorithm for Solving Linear
Programming Problems, Mathematical Programming, 36, pp. 174-182,
1986.

6] C. Beightler and D. Phillips, Applied Geometric Programming, John
Wiley and Sons, New York, 1976.

7] S.E. Boyd, L.El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, SIAM Studies in Applied
Mathematics, 15, SIAM, Philadelphia, USA, 1994.

8] R.S. Dembo, Dual to Primal Conversion of Geometric Programming,
Journal of Optimization Theory and Applications, 26, 1978.

9] I.I. Dikin, Iterative Solution of Problems of Linear and Quadratica
Programming, Doklady Akademii Nauk SSSR, 174, pp. 747-748, 1967.
(Translated in: Soviet Mathematics Doklady, 8, pp. 674-675, 1967).

59

Chapter 6 Conclusion

10] M. Dow, A Fortran Code for Geometric Programming, Supercom-
puter Facility Australian National University Canberra Australia,
http://anusf.anii.edii.aii/ mld900/math/, August 25, 1999.

11] K.R. Frisch, The Logarithmic Potential Method for Convex Program-
ming, Unpublished Manuscript, Institute of Economics, University of
Oslo, Oslo, Noeway, 1955.

12] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, Pub-
lishers, San Fransisco, USA, 1979.

13] RE. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, and M.H. Wright,
On Projected Newton Barrier Methods for Linear Programming and an
Equivalence to Karmarlar's Projective Method, Mathematical Program-
ming, 36, pp. 183-209, 1986.

14] F. Glineur, Topics in Convex Optimization: Interior-point Methods,
Conic Duality and Approximations, Ph.D. thesis, Faculte Polytechnique
de Mons, Belgium, December, 2000.

15] F. Glineur, Proving Strong Duality for Geometric Optimization using a
Conic Formulation, Annals of Operations Research, 105, pp. 155-184,
July, 2001.

16] M. Grotschel, L.A. Lovdsz, and A. Schrijver. Geometric Algorithm and
combinational optimization. Springer Verlag, Berlin, 1988.

17] P. Hung, Resolution of Mathematical Programming with Nonlinear Con-
straints by the Method of Centers, In J. Abadie, editor, Nonlinear pro-
gramming, pp. 207-219, North Holland, Amsterdam, 1967.

18] D.B. Judin, and A.S. Nemiroskii, Problem Complexity and Method Effi-
ciency in Optimization, Wiley-Interscience, Chichester, USA, 1983.

19] N.K. Karmarker, A New Polynomial-time Algorithm for Linear Pro-
gramming, Combinatorica, 4，pp. 373-395，1984.

20] R.M. Karp, Reducibility among Combinatorial Probblem, In R.E. Miller
and J.W. Thatcher, editors, Complextity of computions, pp. 85-103,
Plenum Press, New York, 1972.

.21] L.G. Khacijan. A Polynomial Time Algorithm in Linear Programming,
Soviet Mathematics Doklady, 20, pp. 191-194, 1979.

60

http://anusf.anii.edii.aii/

Chapter 6 Conclusion

22] V. Klee, and G.J. Minty，//ot(； Good is the Simplex Algorithm?, In O.
Shisha, editor, Inequalities III. Academic Press, New York, 1972.

23] M. Kojima, S. Mizuno, and A. Yoshise, A Primal-Dual Interior Point
Algorithm for Linear Programming. In N. Megiddo, editor, Progress
in Mathematical Programming: Interior-Point Algorithm and Related
Methods, pp. 29-47. Springer Verlag, Berlin, 1989.

24] E. Kranich, Interior Point Methods for Mathematical Programming: A
Bibliogrphy, Discussionsbeitrag 171, FernUniversitatHagen, Hagen, Ger-
many, 1991.

25] M.L. Lenard and M. Minkoff，Randomly Generated Test Problems for
Positive Definite Quadratic Programmin, ACM Transactions on Math-
ematical Software, 10, pp. 86-96, 1984.

26] Z.-Q. Luo, J.F. Sturm, and S. Zhang, Duality Results for Conic Covex
Programming, Technical Report 9719/A, Econometric Institute, Eramus
University Rotterdam, The Netherlands, 1997.

27] Z.-Q. Luo, J.F. Sturm, and S. Zhang, Conic Convex Programming and
Self-dual Embedding, Optimization Methods and Software, 14, pp. 169-
218， 2000.

28] N. Megiddo, Pathways to the Optimal Set in Linear Programming, In N.
Megiddo, ？ditor, Progress in Mathematical Programming: Interior Point
and Related Methods, pp. 131-158, Spring Verlag, New York, 1989.

.29] S. Mizuno, M.J. Todd and Y. Ye, On Adaptive-Step Primal-Dual
Interior-Point Algorithm for Linear Programming, Mathematics of Op-
erations Research, 18，No 4, pp. 964-975, November, 1993.

30] S Mizuno, M.J. Todd and Y. Ye, An 0{y/nL)-Iteration Homogeneous
and Self-Dual Linear Programming Algorithm, Mathematics of Opera-
tions Research, 19, No 1, pp. 53-67, February, 1994.

31] W.C. Mylander, R.L. Holmes, and G.P. MeCormick, A guide to SUMT-
Version 4' the Computer Program Implementing the Sequential Uncon-
strainted Minimization Technique for Nonlinear Programming, Research
Paper RAC-P-63, Research Analysis Corporation, McLean, USA, 1971.

'32] Yu. Nesterov and A. Nemirovski, Interior Piont Ploynomial Methods
in Convex Programming, Studies in Applied Mathematics, 13, SIAM,
Philadelphia, 1994.

61

Chapter 6 Conclusion

33] J. Renegar, A Polynomial-Time Algorithm，Based on Newton's Method,
for Linear Programming, Mathematical Programming, 40, pp. 59-93,
1993.

34] M.J. Rijckaert and X.M. Martens, Comparison of Generalized Geometric
Programming, Journal of Optimization Theory and Apllications, 26, pp.
243-245, 1978.

35] C. Roos, and J.-Ph. Vial, A Polynomial method of Approximate Centers
for Linear Programming, Mathematical Programming, 54，pp. 295-305,
1992.

36] G. Sonnevend, An "Analytic Center" for Polyhedrons and New Classes
of Global Algorithm for Linear (smooth convex) Programming, In A.
Prekopa, J. Szelezsan and B. Strazicky, editors, System Modelling and
optimization: Proceedings of the 12th IFIP-Conference held in Budapest
Hungary, September 1985, 84 of Lecture Notes in Control and Informa-
tion Sciences, pp. 866-876, Spring Verlag, Berlin, Germany, 1986.

37] J.F. Sturm, Duality (Chapter 2), in High Performance Otimization, eds.
H. Frenk, T. Terlaky, K. Roos and S. Zhang, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2000.

38] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman, A Modification of
Karmarkar's Linear Programming Algorithm, Algorithmica, 1, pp. 395-
407，1986.

39] L. Vanderbei, and S.E. Boyd, Semidefinite Programming, SIAM Review,
38’ pp. 49-95, 1996.

40] J.-Ph Vial, Computational Experience with a Primal-Dual Interior-
Point Method for Smooth Convex Programming, Optimization Methods
and Software, 3, 285-316, 1994.

41] X. Xu, RF. Hung, and Y. Ye, A Simplified Homogeneous Self-dual
Llinear Programming algorithm and its implementation, Annals of Op-
erations Research, 62, pp. 151-171, 1996.

42] H. Yamashita, A Globally Convergent Primal-Dual Interior Point
Method for Constrainted Optimization, Mathematical System Institute,
Inc., Tokyo, Japan, 1992.

43] S. Zhang, A New Self-Dual Embedding Method for Convex Programming,
SEEM Report 2001- 09, the Chinese University of Hong Kong, 2001. To
appear in Joural of Global Optimization.

62

邏
I

hbEffiOhDQ

1圓1__
satJBJqn >tH门:）

