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摘要 

在此篇论文中，我们研究张树中提出的一个求解非线性最优化问题的 

方法。其方法将一般的凸最优化问题转换为锥最优化问题。之后，使用 

自对偶齐次化嵌入技术(self-dual embedding technique)来解答此转换后的 

问题。其方法最大的好处乃为其使用者不需要知道问题的可行状态，而 

可直接求解。我们釆用Anderson和叶荫宇的方法，建立优点函数(merit 

function)用来选定步距。我们设计一些测试问题来研究我们提出的算法。 

考虑的测试问题包括了使用对数，指数与二次函数的约束条件。然后，我 

们讨论问题的规模与算法求解时间的关系。我们特别研究算法对几何规划 

问题的求解效果及其数值测试结果。最后结论是我们提出的算法在一般情 

况下数值效果良好，表现稳定。乃为求解一般最优化问题的可行及有效的 

计算方法。 

[关键字]:凸规划凸锥自对偶齐次化嵌入技术P a t h - F o l l o w i n g 几何 

规划 



Abstract 

In this thesis, we implement Zhang's method [43], which transforms a general 

convex optimization problem with smooth convex constraints into a con-

vex conic optimization problem and then apply the technique of self-dual 

embedding for solving the resulting conic problem optimization. A crucial 

advantage of the approach is that no initial solution is required, and the 

method is particularly suitable when the feasibility status of the problem is 

unknown. In our implementation, we use a merit function approach pro-

posed by Andersen and Ye [1] to determine the step size along the search 

direction. We investigate the efficiency of the proposed algorithm based on 

its performance on some test problems, which include logarithmic functions, 

exponential functions and quadratic functions in the constraints. We discuss 

the relationship between the size of the problem and the solution time. Fur-

thermore, we consider in particular the geometric programming problems. 

Numerical results of our algorithm on this class of optimization problems are 

reported. We conclude that the method is stable, efficient and easy-to-use in 

general. 

Keywords: Convex Programs, Convex Cones, Self-Dual Embedding, Path-

Following, Geometric programs. 
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Chapter 1 

Introduction 

In 1979, Khacijan [21] showed that the ellipsoid algorithm applied to solve 

the linear programming problem would run in polynomial time. This result 

was not only important for the complexity status of linear programming, but 

also many other combinatorial optimization problems, as shown by Grotschel 

et al. [16 . 

Unfortunately, an algorithm with polynomial computational complexity 

does not necessarily lead to satisfactory computational efficiency in practice. 

Such is the case with the ellipsoid method; the method remains mainly a 

theoretical tool. The introduction of polynomial-time interior-point methods 

is one of the most remarkable events in the development of mathematical 

programming in the 1980s. 

The first interior-point algorithm was introduced for linear programming 

in a landmark paper of Karmarker (see [19]). The computational complexity 

result contained in that paper, as well as the claim that performance of 

the new method on real-world problems is significantly better than that of 

the simplex method, made Karmarkar's work a sensation and subsequently 
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Chapter 1 Introduction 

inspired very intensive and fruitful studies. Karmarkar's paper triggered a 

tremendous amount of research on what is now commonly called the interior 

point methods. Hundreds of researchers all over the world went into the 

subject; over 2000 papers were written (see Kranich [24] for a bibliography). 

Related to the Karmarkar algorithm, an important techniques is the so-

called logarithmic barrier method, introduced by Prisch [11] in 1955. Later, 

Barnes [5] and Vanderbei et. al. [38] proposed the so-called affine scaling 

algorithm as a simplified version of Karmarkar's method, which turned out 

to be just a rediscovery of a method developed by Dikin [9] in 1967. 

Reasons can be given why such type of methods were out of fashion since 

early 1970s, but regained so much interest in the mathematical program-

ming society after Karmarkar's work. First, it is of theoretical significance. 

Interior point techniques were originally developed to solve nonlinear pro-

gramming problems (NLP) with inequality constraints. For LP the simplex ..., 

method performed reasonably well, and there was no incentive to investigate 

the theoretical properties of the interior methods when applied to LP, as 

theoretical complexity of the algorithm was not regarded to be an issue in 

the 1960s. 

In fact it was only around 1970 that complexity theory was developed, 

mainly in the field of combinatorial optimization (see Karp [20] and Garey 

and Johnson [12]), and for convex optimization by Judin and Nemirovskii 

18]. It was shown by Klee and Minty [22] that certain variants of the sim-

plex method require, in the worst case, an exponential number of arithmetic 

2 



Chapter 1 Introduction 

operations. Since then, the search for a polynomial method being efficient 

in practice was a challenge, without considering the possibility that existing 

methods, when sufficiently adjusted, could satisfy these requirements. 

Shortly after the publication of Karmarkar's paper, Gill et. al. [13] showed 

that Karmarkar's projective algorithm was closely related to the logarithmic 

barrier method. Following this connection, theoretical work on interior point 

methods soon led to the introduction of the analytic center by Sonnevend 

36] and analysis of the central path in a primal-dual setting by Megiddo [28 

which are the central themes in both theoretical work as well as in practical 

implementations of interior point techniques. 

In 1987, Roos and Vial [35] derived a very elegant and simple complexity 

proof of the basic logarithmic barrier method, showing a new property of 

an essentially old method. Renegar [33] derived the complexity of a method 

u.cinfe analytic centers which can be traced back lo Huard [17]. Anstrei^her 

4] analyzed SUMT [31], an old implementation of an interior point method 

and showed it to be polynomial. 

Immediately after Karmarkar's paper, the activity in the field of interior-

point methods focused mainly on linear programs. Later, it was discovered 

that the nature of the method is in fact independent of the specific properties 

of the LP problems; these methods can be extended to solve more general 

convex programs. This led to the revival of Newton's method for convex 

programming with a beautiful analysis of certain interior point methods for 

convex programming by Nesterov and Nemirovsky [32]. These significant 
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Chapter 1 Introduction 

results include the study of the so-called semi-definite programming (SDP) 

and its applications, e.g., in control theory and combinatorial optimization 

(see Boyd el. al. [7，39], Alizadeh [3])，and the development of efficient 

practical algorithm for NLP problems (see Yamashita [42], Vial [40]). 

Convex optimization relates to a class of nonlinear optimization problems 

where the objective to be minimized, and the constraints are convex. Convex 

optimization problems are attractive because a large class of these problems 

can now be efficiently solved. However, the difficulty is often to recognize 

the convexity; convexity is harder to recognize than say, linearity. 

One important features of convexity is that it is possible to address hard, 

non convex problems (such as “ combinatorial optimization" problems) us-

ing convex approximations that are more efficient than classical linear ones. 

Convex optimization is especially relevant when the data of the problem at 

hand is uncertain, and “robust" solutions are sought. 

In addition, convex optimization problems are known since 1960s. This 

kind problem has a nice property which is that the local optimal are the 

global optimal. Moreover, the convex analysis is well developed by 1970s 

(Rockafellar) such as separating, supporting hyperplanes, and sub-gradient 

calculus. In 1990s, powerful primal-dual interior-point methods extremely 

efficient, handle nonlinear large scale problems. 

Up till this day, it is generally believed that the primal-dual interior point 

methods, such as the one introduced by Kojima et al. [23], are among the 

most efficient methods for sieving linear programming problems. The general 

4 



Chapter 1 Introduction 

principle of primal-dual interior point method is based on sequentially solving 

a certain perturbed Karush-Kuhn-Tucker (KKT) system. In its original form, 

the primal-dual interior point method requires the availability of some initial 

primal-dual strongly feasible solutions. 

In 1994, Ye, Todd and Mizuno [30] introduced the so-called homogeneous 

self-dual embedding technique to solve linear programs. The main idea of 

this technique is to construct an artificial problem by embedding a primal-

dual problem pair. When this artificial problem is solved, the original primal 

and dual problems are automatically solved. There are several nice features 

of this method. The most important advantage is that no initial solution is 

required to start the algorithm: trivial initial solution is available for the ar-

tificially constructed self-dual embedded problem. It also solves the problem 

in polynomial time without using any 'Big-M' type constants. 

’ . . . . The idea of the interior-point method was further extended to solve gen-

eral convex optimization problems. The most important work is probably the 

so-call self-concordant barrier theory developed by Nesterov and Nemirovskii 

32]. Based on this theory, the interior-point methods can be applied to ef-

ficiently solve several important classes of convex optimization problems, 

where the self-concordant barrier functions are known. 

The idea of self-dual embedding was also extended to solve more general 

constrained convex optimization problems. Andersen and Ye [1,2]，developed 

a special type of self-dual embedding model based on the simplified model of 

Xu, Hung and Ye [41] for linear programming; Luo, Sturm and Zhang [27 
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Chapter 1 Introduction 

proposed a self-dual embedding model for conic optimization. 

The purpose of this thesis is to specialize an interior-point implementation 

for a new self-dual embedding method, proposed by Zhang [43], for convex 

programming problems. Moreover, we study the efficiency of the proposed 

algorithm for solving numerous test problems. 

The outline of this thesis is as follows. In Chapter 2, we propose a par-

ticular conic formulation for the inequality-constrained convex program, and 

construct a self-dual embedding model for solving the resulting conic opti-

mization problem. Then we develop an interior-point algorithm to solve this 

model in Chapter 3. We present some numerical results in Chapter 4 for 

solving randomly generated test problems which involved logarithmic, expo-

nential and quadratic constraints. According to the numerical results, we 

study the relationship between the running time and the size of the problem 

i • iTi the same chapter. Next, we consider geometric optimization problems in 

Chapter 5. We first state the general primal and dual form of the problem 

and then transform the problem into the conic form. After that we solve ‘ 

the conic model by our algorithm. Computational results of some existing 

test problems are presented in the same chapter. Finally, in the last chapter, 

Chapter 6，we conclude the whole thesis. 

6 



Chapter 2 

Background 

In this chapter, we shall review the fundamentals of conic optimization and 

the self-dual embedding technique. The focus will be placed on a recent 

paper of Zhang, [43], entitled "A New Self-Dual Embedding Method for 

Convex Programming". 

2.1 Self-dual embedding 

The primal and dual liner programming (LP) problems are as foliows. Let 

be a m X n matrix, 6 be a m x 1 vector and c be a n x 1 vector. Then the 

primal LP problem is 

{LP) min c^x 
s.t. Ax = b 

x>0 

and its dual problem is 
{LD) max iFy 

s.t. A^y s = c 
s > 0. 

Take any x^ > 0, > 0, and y^ e 况爪.Moreover, define 

rp = b-Ax\ Vd = Tg = and 0 = > 1. 

7 



Chapter 2 Background 

Following Mizuno, Todd and Ye [30], we can combine the primal and dual 

linear problems together to form a self-dual embedded LP model: 

min 139 
s.t. Ax -br -\-rp9 = 0 

-A'^y +CT +rd0 —s = 0 
bTy - c ^ x +rgQ -K, = 0 

-rjy -rjx -TgT = —13 
x > 0 , r > 0, s > 0, > 0. 

It is easy to find a feasible starting point for this problem. Indeed, one 

can check that {x, y,s,T, K, 6) = {xQ,yo, sq, 1,1,1) is a suitable choice. This 

program is self-dual, meaning that its dual is identical to itself. Moreover, 

the optimal value is 0. 

2.2 Conic optimization 

III this section, we shall introduce conic optimization. We first state the 

definition of a cone. 

Definition 2.1 A set K, ̂  ^ is a cone if and only if the following holds 

"^X e }C=> Xx e JC VA G 3R+. 

We are now in a position to define a conic optimization problem. Let /C C 

be a closed convex cone. The primal conic optimization problem is 

(CT) min c^x 
s.t. Ax = b 

X e JC 

where x G is the decision variable and the problem data are given by the 

cone /C，an m X n matrix A, and two vectors b and c. The vectors b and c 

belong to 况 a n d respectively. 

8 



Chapter 2 Background 

Definition 2.2 The dual of a cone JC CW is defined by 

JC* = {s I x^s > 0 Vx G /C}. 

The dual of the primal conic problem (CP) is given as 

(CD) max h^y 
s.t. A^y + s = c 

seJC* 

where y e and s G are the decision variables. 

2.3 Self-dual embedded conic optimization 

We can now use the idea of self-dual embedding in linear programming to 

construct the self-dual embedded conic optimization model. Take any x^ e 

int /C, §0 G int /C*，and y^ € Moreover, define 

Vp = b-Ax\ u = sO-c+力V，rg ] 4 c V - a n d jS = > 1, 

and consider the following embedded optimization model 

min 130 
s.t. Ax -br -\-rp6 = 0 

-^'^y +CT +rd0 —s = 0 
bTy -c^x -hTgO -K, = 0 ‘ 

-rjy -rjx -TgT = -p 
xeJC, r > 0, s e K * , K > 0 

where the decision variables are {y, x, r, 0, s,«). 

The following result is well known; see its analog in [30] for the linear 

programming case. 

9 



Chapter 2 Background 

Proposition 2.1 Problem (2.1) has a maximally complementary optimal so-

lution, denoted by (y*, x*, T*, 9*, s*, K*}, such that 9* = 0 and {x*)'^s*-\-T*K* = 

0. Moreover, if T* > 0，then x*/T* is an optimal solution for (CP), and 

{y*/r*, S*/T*) is an optimal solution for (CD). If K* > 0 then either C^X* < 0 

or JjTy* > 0; in the former case {CD) is infeasible, and in the latter case (CP) 

is infeasible. 

If r* and k* do not exhibit strict complementarity, namely r* = k,* = 0, 

then in that case we can only conclude that {CP) and (CD) do not have 

complementary optimal solutions. In fact, more information can still be 

deduced, using the notion of, e.g., weak infeasibility, for more details see [27], 

26] and [37 . 

We now introduce a "-logarithmically homogeneous barrier function F(x) 

for the cone /C, i.e. 
.••。：. 

F(tx) 二- - u\ogt 

for all a: e int /C and ^ > 0. Suppose that F{x) is a "-logarithmically homoge-

neous barrier function for /C, then F*{s) is a "-logarithmically homogeneous 

barrier function for /C*; see Nesterov and Nemirovski [32] for details. In addi-

tion, F*{s) is the conjugate of the convex function F[x). Hence, we can solve 

(2.2) by the barrier approach with // > 0 as the barrier parameter, namely, 

min /iF (a;) - / i l o g r +/iF* (s) -jilogK, 
s.t. Ax -br -\-rp9 = 0 

-ATy +CT ^TdO -s = 0 
bTy - c ^ x -\-rg9 - K = 0 
-rjy -rjx -VgT = -(3. 

10 



Chapter 2 Background 

2.4 Connection with convex programming 

We would like to use the above idea to formulate a convex program into a 

conic optimization problem. First of all, let us state a general convex program 

as follows: 

(P) min c^x 
s.t. Ax = b (2.3) 

fi � < 0, i = 1, ...’m 

where fi (x) is smooth and convex, i = 1,..., m. We consider the case m = 1 

to explain the transformation. Let the decision variable be 
‘ P ‘ 

x:= q e 况1 X 况1 X 况"， 

_ X _ 

and the problem data are 
‘ 0 -

c : = 0 e 况1 X 况1 X 况 

' ‘ c 

“ 1 -

b:= 0 e 况1 X 况1 X 况m 
_ b _ 

and 
_ 1 0 0了 _ 

0 1 e 况(m+2)x(n+2). 

. 0 0 ^ . 

Let 

K: = C\{X\P>0, q-pf{x/p) > 0} 

which is a closed cone. The following Lemma shows that /C is a closed cone. 

Lemma 1 The function -q pf{x/p) is convex in 况 x 况i x 况 

11 



Chapter 2 Background 

Proof. We only need to show that pf{x/p) is convex in 况 ? x By simple 

calculation, it follows that 

•2 (。仏 /” )） = 1 [ (雄 )〜 2 / (咖 ) (•) -i^/pf^'fi^/p)-
…八丨叫 p [ -V'f{x/p){x/p) V'f(x/p) . 

Let H = V^fix/p) and h = x/p. Then for any ^ = (f。，f̂ ) G 况“+工’ 

we have 

= i [eoh^Hh - Hh+en^' 

> 0. 

Therefore, -q + pf{x/p) is convex in x 况丄 x 况 Q . E . D . 

We have an equivalent conic formulation for (P) as given by 
{KP) min c^x 

s.t. Ax = b 
X E K. 

The convex barrier function for K, is 

F{x) = - \ogp - log {q - pf (x/p))， 

which is a 2-logarithmically homogeneous barrier function. We can easily 
‘ P ‘ 

check: That for any 5 = q , it follows that 
X _ 

F{tx) = -\og{tp)-\og[t{q-pf{xlp))] 
=F(x)-2\ogt. 

Related to the duality of convex cones, the conjuate of the convex function 

f (x) is defined as 

f*(s) = sup{(-s)^x - f{x) I X e dom /}• 

12 



Chapter 2 Background 

By the definition, we can see that for x G int {dom / } and s G int {dom / * } 

the following three statements are equivalent 

s = -• /⑷ （2.4) 

a; = - V / * � (2.5) 

-x^s = f{x) + r{s). (2.6) 

Related to the definition of the conjugate function, we have the following 

theorem. 

Theorem 1 It holds that 
r 1 

u 
}C* = c\ ls= V : V > 0, u-vf* {s/v) > 0 (2.7) 

‘ s J , 
and 

F* (5) = l o g - log {u - vf* (s/v)) (2.8) 

which is a barrier function for JC*. 

We include the proof for the equation (2.7) and omit the proof for (2.8). 

For details, one is referred to Zhang [43 . 
u 1 p 

Proof. For any v with ？; > 0 and u-vf* [s/v) > 0, and x = q G K, 
_ s � � 

we have 

pu-\- qv + x^s = pv[u/v + q/p + {x/pY[s/v) 
> pv[ulv + q/p - f{x/p) - r{s/v)' 
=v(q - pf{x/p)) + p{u - vf*{s/v)) 
> 0 

13 



Chapter 2 Background 

Hence, 
广 厂 1 u 

< s = V : V > 0 , u - v f * ( - ] > 0 } CJC*. 
\vJ ~ 

‘ � 

u 

On the other hand, take any s = v G int /C*. Obviously > 0. Since 
_ s _ 

int K* is open, we conclude that v > 0. Let x = —Vf*[s/v). Consider 

“ 1 • 

f {x) e JC. 
_ X _ 

A s f{x) + f*{s/v) = -x'^{s/v) a n d s o 

“ 1 -

fix) = u - v r { s / v ) . 

- 宏 . 

This shows that 
r n \ 

u 

/C* = c l <s= V : V > 0, u - vf*{s/v) > 0 > . 

s 
� L J • • 

Therefore, we get the dual of conic problem: 

{KD) max F y 
s.t. A^y + s = c 

BeJC 

r n \ 
U 

where /C* = c l � ^ = v : v > 0, u - v f*{s/v) > 0 > . 

s 
V u J y 

14 



Chapter 2 Background 

We consider the following barrier approach for solving (KP) with /i > 0 

as the barrier parameter. 

min NF {x) —^logr +卵 +jj,F* (S) —jj^logK 
s.t. Ax —br -\-fp6 = 0 

-A^y +CT +fd6> -s = 0 
Wy —c^x -\-fg9 -K, = 0 
- f j y - f j x -fgT = -p. 

Due to the self-duality we derive the following KKT optimality condition for 

(KP), where the solution is denoted by (y, x, r, 9, s, k), 

‘ Ax ifi) -It ifi) +7V9(/i) = 0 
-A'^y ifx) +cr (//) -云("） = 0 

^ 护V�^J) 一5了5 …） +fge (//) = 0 (2 9) 

-rpV (/i) -Td^ M -fgT (/i) = -P ‘ 
T (") K(jll� = n 

‘ s(iJ,) = - / I V F (X). 

We use the chain rule to calculate VF{x) and then substitute the term. After 

that we get the following KKT conditions 
‘ Ax (/i) - M " ) (/i) = 0 � 

- 灼 ( " ） +cr( / i ) +ue ifx) - 5 ( / i ) = 0 � 

h^y in) - c ^ x (/i) + � g 9 (jj) (//) = 0 
M - 尸 - V (ju) = , 

(*) = fi � 

(2) 

2.5 Chapter summary 

In this chapter, the main ideas in [43] were reviewed. According to the results 

in this paper, we can turn a general convex optimization problem into the 

15 



Chapter 2 Background 

conic form by adding 2 extra variables. Then we can follow the self-dual 

embedding approach to solve it. In the next chapter, we will construct an 

algorithm to implement this method. 

16 



Chapter 3 

Implementation of the 
algorithm 

In this chapter, we shall construct an algorithm to implement the method 

introduced in the previous chapter. We first consider the case where there is 

only one inequality constraint. Then we shall focus on finding the Newton 

type direction. The conditions for selecting the step length along the Newton 

direction will be discussed as well. Finally, we extend our analysis to the 

multi-constraint case. 

3.1 The new search direction 

In this section, we first discuss how to find the new search direction for the 

single constraint case. As discussed in Chapter 2, we have the following KKT 

17 



Chapter 3 Implementation of the algorithm 

system for the central solution: 

‘ Ax (") —b丁 (“) +rp6> (/i) = 0 

-A^yifi) +CT ( / i ) -sifi) = 0 1 

bTy (") - e x (") +rge (/i) = 0 P 
-rpV (/i) -rjx ifi) -TgT in) = -13 ‘ 

(*) T(JJ)K(ji) = fi 

(2) 

Suppose that the current iterates is (p, x, u, v, s, y, 6, r, k). Then the 

displacements {Ap, Ax, AU, Av, As, Ay, A9, Ar, Ak,) should satisfy 

， ^Ax -6Ar +fpA0 = 0 
-A^/^y +cAr 八 6> - A s = 0 
FAj/ -c^Ax +fgAe -Ak = 0 
—fpAy —fjAr —fgAr = 0 

KAT -\-TAK = fJi — tlT 
,{U + A^) [p + Ap) [{q + Aq) - { p + Ap) f = "g + Ag - 2 " “ A p ) / ( 錄 ） 

+ " • / ( g ^ 广(MA工） 

{v + A^) [{q + Aq) - (p + Ap) f )] =“ 

This is a system of nonlinear equations with 2ri + m + 7 variables and 

2n + m + 7 equations. We shall linearize the system as suggested by the 

Newton method for solving nonlinear equations. To this end, we rewrite the 

form of the last three equation in the above system as follows 

r /ic + • 

I \p + Ap J j 
18 



Chapter 3 Implementation of the algorithm 

= + �一 (P + 秘 / ( ^ ) + /^V/ ( ^ ) T + A . ) (3.1) 

「 /Â  + AX\ 1 (v + AT;) (̂G + AG) - (P + AP) / J = “ (3.2) 

( 一 卜 - ( p + A p ) / ( 誌 ) ] = - " • / ( 誌 ) • (3.3) 

We are now concerned with the left hand side of (3.1). Using the Taylor 

expansion to the first order, and dropping all the higher order terms, 

(u + Au) (p + Ap) [(^ + Aq) - (p + Ap) f ((re + Ax)/{p + Ap))' 

={up + uAp + pAu) {q + Aq) - {p + Ap) f (^x/p + Ax/p — xAp/p^^ . 

We further drop the terms which are higher than or equal to second order, 

the above quantity becomes approximately 

upq + uqAp + qpAu + upAq — (up^ + upAp + p^Au + upAp^ f {x/p) 

-up^Vf {x/pf (^Ax/p - a;Ap/p2) 

. ' r 丨. rr» ， r -I 

=upq + uq — 2upf {x/p) + uV f {x/p) a: Ap + qp — p^ {x/p) An 

-\-upAq — upS/ f [x/pY Ax. 
As for the right hand side of (3.1)，similarly we have 

lj,[q + Aq- 2{p + Ap)f{{x + Ax)/{p + Ap)) 

+ V / ( ( x + Ax)/{p + Ap)f{x + Ax) 

= H q + "Ag - 2/i(p + Ap) / {x/p) — {x/pY (Aa;/p - x/^p/p^) 

+"•/ {x/pf {x + Ax) + “ (^Ax/p - xAp/p^) VV (x/p) {x + Ax) 

=l^q- 2iipf {x/p) + "•/ {x/pf X + [-"•/ {x/pf + {ii/p)x^V^f {x/p)] Ax 

-2/i/ (x/p) + 2/VpV/ [x/pf X + fi/p^x^V^f (x/p) x] Ap. 
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Finally we linearize the equation (3.1) and get 

uq + 2{^- up) f (x/p) + (u + •/ {x/pf x +、！ilfycT妒f {x/p) x] Ap 
L r rn 1 
+ [qP - {x/p)] Au + {up - /J,) Aq+ (" - up) •/ {x/p) - {x/p) Ax 

二 fiq — upq - 2^pf {x/p) + f (x/p)^ x + up^f {xjp). 

Consider now the equation (3.2) 

[v + At!) [(g + Ag) - (p + Ap) / {{x + Aa:)/(p + Ap))] = /x. 

By Taylor expansion and dropping high order terms, this yields 

jjL 兰 vq + vAq + qAv - {vp + vAp + pAv) f [x/p) + •/ {x/p)^ {j^x/p — (xAp)/p^) 

=vq — vpf {x/p) + vAq + lq-pf {x/p)] Av + v/pVf (x/p)^ x — vf (x/p) Ap 

-vVf (x/p)'^ Ax. 

Therefore, we get the Newton equation 

q — pf {x/p)] Av + v/pVf [x/pY x — vf {x/p) Ap + vAq — vVf {x/pY 八工 

=// - "Ug + vpf (x/p). 

Similarly, we can linearize the third equation (3.3) as follows 

(5 + As) [(g + Aq) — (p + Ap) f {{x + Ax)/{p + Ap))] = -fiVf {{x + Ax)/p + Ap)， 

leading to 

sq + sAq + q^s - (ps + sAp + pAs) f {x/p) - psVf (x/p) {Ax/p - (xAp)/p^) 
二 —fiVf {x/p) - tiVf (x/p)T (Aa;/p — 

and this further leads to 

q - pf {x/p)] As + -sf {x/p) + s/pWf {x/pf x - ^x/p^V^f [x/pY Ap + sAg 

+ [sVf {x/pf + /i/pVV (x/p)^] Ax = {x/p) -sq + spf {x/p). 
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Now we wish to reformulate the equations in the matrix format. Let 

Li = pq- // (x/p) 

L2 = uq + 2(fj,- up) f (x/p) + (w + 2n/p) •/ {x/pf x + (x/p) x 

Ls =�^l-up)Vf (x/pf -_:i:TV” (x/p) 

La = v/p V / {x/pf x-vf {x/p) 

L, = -sVf {x/pf + /i/pVV (x/p) 

Le = -sf {x/p) + s/pVf {x/pf X - fi/p^V^f (x/p) x, 

and we write the last three equations in terms of Li, i = 1 , 6 : 

p^LiAu + {up - yLi) Ag + L2AP + L^Ax = Ml 

LiAv + pvAq + vpVf {x/pf Aa: + L^/^p = M2 

pLi As + p^sAg + LsAx + LeAp = M3, 

where 

Ml = luq- upq - 2/j,pf (x/p) + / iV / {x/pf x + up^f {x/p) 

M2 = fi — vq + vpf {x/p) 

Ms = (x/p) - + spf {x/p). 

Observe that Mi, M2 G 况，which are dependent on {u,v, s) and {p,q,x). 

Hence we can rewrite the above equations in the matrix form as follows 

DiLiAs -i- D2AX = M, 

with 
/ 0 0 \ 

Di = 0 1 0 

V 0 0 p y 
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f L2 up- fj, Ls \ 
rji 

D2 = Z/4 vp vpVf {x/p) 
\ Le p^s 丄5 ) 

(Ml \ 
M = M2 

\ Ms J 

where Di and D2 are (n + 2) x {n + 2) matrix. Clearly _D�i exists since it is 

a positive diagonal matrix. However, D2 is not guaranteed to be invertible. 

For convenience we shall replace it by D2+£l with e > 0 a small perturbation 

parameter in case D2 is not invertible. 

Define 
Qi = - (AD^'DiA^y' M 

Q2 = - [aD^^D^A^Y^ ~ 

QS = - (AD^'DIA^Y' (R- + AD^'DIFD). 

Then we have 

... Ay = + Q2AT + QsAe. 

Moreover, by putting 

Ri = D^' (m + Dii^Qi) 

R2 = D^' {DiA^Q2 - Dic) 

R3 = D^' {DiA^QS - Difd) 

we obtain 

Ax = Ri-^ R2AT + R3A9. 

Similarly, letting 

= - f j Q , - rjR, 

1 - f , + rJQ2 + f^R2 
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fg + r^Q2 + fjR2 

we have 

A t = iVi + N2Ae 

and 

. . = T V Q I - T¥Q2Ni + tcRI + TC^R2NI - idSfi 
_ Tb^Q2N2 + - T卯2N2 - T^Rs + I^Ns + Tfg • ^ • ^ 

Observe that A6 can be directly computed since all terms on the right side 

are known, and we can consequently computer other variables as follows: 

A T = iVi + N2A9 , 

Ax = Ri-\- R2AT + R3M, 

A^ = Qi + Q 如 + Q3A6', 

A/c = FAg - c'^Ax + fgAe 

and 

As = -A^AY + cAt + fdA(9. 

3.2 Select the step-length 

After computing the search direction, the iterates may in principle be up-

dated. Next, we would like to discuss how to choose a proper step-size a. 

First, we follow Andersen and Ye [1], and define the merit function. 

：二 A功fe+ ||也||, 
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in which A G (0,1) is a parameter, 

/ T^ \ 

u{q-pfix/p))  
9 /P -2 / (x /P )+V^/ (X/P) (X /P) 

= , 

v { q - p f (x/p)) 

\ - ( Q - p f {x/p)) s � [ • / {x/p)]-^ / 

and 

( Ax - I t f p O \ 

—Ay + cr + fdO — s 

= 

Wy — c^x + fg9 — AC 

\ -rjy - fix -fgT-\r^ J 

where "o" is the Hadamard product of the two vectors, and “ [ • / (x/p)]~^ “ 

is the component-wise inverse of • / (x/p), i.e. 

1 0 if v M x / p ) = o. 

We see that is used to measure the duality gap and 功2 is used to 

measure the feasibility. This can be seen from Equation (*). 

In each iteration, the step-size is selected such that all iterations satisfy 

the following three conditions. 

The first condition: 

UN 
丽 ， 
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where = ipi (y+，p+’ r+’ 0+’ s + ， f o r i = 1,2. This condi-

tion prevents the iterates from converging towards a complementarity solu-

tion faster than the feasibility improvement. 

The second condition: 

� � E 

N + S 

This condition prevents the iterates from converging towards the boundary 

of the positive orthant prematurely. 

The third condition: 

< 0 + . (Ay; Ap; Aq; Ax; Ar; A(9; Aw; Av, As; Ak). 

The last Armijo-like condition requires that the merit function to be reduced 

in all iterations. 

3.3 The multi-constraint case 

Next we consider the general formulation of (P) where m > 1. 

(P) min c^x 
s.t. Ax = b (3.5) \ 

MOC) < 0, Z = L，."，M 

where fi(x) is smooth and convex, i = 1 , m . Similarly we have its conic 

representation, (KP), with 
m 

/c=n 
2=1 

where 

/Q 二 d {5 I p � 0 , q — pfi{x/p) >0}C 7^+2’ i = 1 , m . 
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The natural 2m-logarithmically homogeneous barrier function for JC is 
m 

F{x) = - m l o g p - - pMx/p)). 
i=l 

The dual cone of JC is 
’ � 1 \ 

m m 

K* = cl(/CIe- • -^IC^) = cl < = ^ Vi ： Vi > 0,Ui -Vif*{si/Vi) >0,1 = l,...,m > . 
bi Si 

\ L J y 

The central path for the embedded problem is characterized by : 

‘ Ax ifj) -IT ill) -^rpO (/x) = 0 
-A'^yifi) +cr ill) +rd9 (//) = 0 
F y �- c o ; ifi) +rge ifi) = 0 

—r讯fi) - r j x (/i) -TgT (/i) = - � 

= M 
Ui{f^)[q{ii) - p{fi)fi{x{ii)/p{fi))] = fi[q(fi)/p(ii) - 2fi(x{fj,)/p(fi)) 

+ • 『 / 办 � M/i)) ] 

’ . [ 外 > ) . • • 一 ； = -/iV/i(a;(/i)/p(/z)) for i = 1,..., m. 

We linearize the last three equations and then we find out the new direction 

of the system. Remember that in the one constraint case we have 

DiAs + DiAx = M, 

with 
/ p2Li 0 0 \ 

Di = 0 Li 0 
V 0 0 pLJ j 
/ Z/2 up - li 1/3 \ rp 

D2 = La vp vpVf {x/p) 
\ Le p^s L5 
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/ Ml \ 
M = M2 

\ Ms J 

Similarly, in the m constraints case, we have 

D\As + D^Ax = M\ for i = 1 ， m . 

where 

f 0 0 \ 
D\ = 0 L\ 0 

V 0 0 pL\ ) 
(L\ UiP — /I Lg � 

Di = L\ Vip VipVfi {x/pf 
\ "6 P^Si Li 
( M i \ 

= Mi 

V M i ) 

and 

Li = pq - p^fi [x/p) 

= UiQ + 2 (/i - Uip) fi [x/p] + (ui + 2/Vp) V/i {x/pf X + /i/p^^^vVz [x/p) x 

Li = (/i - Uip) Vfi [x/pf - {x/p) 

L\ = {vi/p)Vfi {x/pf X — Vifi {x/p) 

4 = -SiVfi(x/pf + (^/p)V'fi(x/p) 

Li = -Sifi {x/p) + SiVfi {x/pf x/p — Uil作”i {x/p) X 

where 

M； = — Uipq - 2iipfi (x/p) + /iV/i {x/pf X + UiP^fi (x/p) 
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M�=n-Viq + Vipfi {x/p) 

Ml = -/xV/i {x/p) - SiQ + Sipfi (x/p)， 

and hence 

Asi = —L)‘A旬 for i = l,…,m• 

Therefore, 

m m 

YA-Si = - D\b.x) 
i=l i=l 

Because EI^i As^ = As, so 

As = -
2=1 Z=1 

Let 

M = 
i=l 
m 

d2 = E(功)_1 坊. 
i=l 

We have a new matrix form equation 

As + D2AX = M. 

Following similar calculation as for the case m = 1, we obtain 

Ar = N 1 + N 2 M , (3.6) 

Ax = Ri + i?2 Ar + R^M, (3.7) 

Aj/ = Qi + Q2AT + Q3A0, (3.8) 

A/^ = F A y - c^AS + fgA(9 (3.9) 
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and 

As = + CAT + fdA6>, (3.10) 

where A0 is given by (3.4). Also 

Asi = {D[)-\M' - DiAx), (3.11) 

for i = 1 , m . After searching the direction, we need to choose a step length. 

Similar as in Section 3.2，we first should define the merit function 

in which A 6 (0,1) is a parameter, and 

/ r/. \ 

uiiq-pfiix/p))  
9 /P -2 /1 ( x / p ) + V ^ / i {x/p){x/p) 

vi {q - pfi (x/p)) 

-{Q- Pfi (x/p)) Si o [V/i (x/p)R^ 
^1= ： ， 

UmiQ-pfmjx/p))  
q/p-2fm{x/p)+V'^fm{x/p){x/p) 

Vm {q - pfm [x/p)) 

^ - { q - pfm {x/p)) Sm�[V/m (^/p)]"^ 
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and 

( AX-IT + FPO \ 

-Ay + cr + TdO - 否i 

屯2 = 

b'^y — c^x + fgO — K 

V -'̂ PV — -FGT + P 

where "o" is the Hadamard product of the two vectors. In addition, the step-

size is selected such that all iterates satisfy the following three conditions. 

The first condition: 

k 人 > 风 " ^ ， (3.12) 
e - II对II 、 ) 

where 屯 广 = q ^ , r+, (9+, ut, vf, ,..., , v+, , for i = 

1,2. This condition prevents the iterates from conveigmg towards a comple-

mentarity solution faster than the feasibility measure. 

The second condition: 

• (3.13) 

This condition prevents the iterates from converging towards the boundary 

of the positive orthant prematurely. 

The third condition: 

< <l> (3.14) 

+ •少T • (Ay; Ap; Ag; Ax; Ar; A6>; Awi; At;i； Asi；...; An^; Avm; As爪；Ak) • 
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The last Armijo-like condition requires that the merit function to be reduced 

in all iterations. 

We now arrive at a general algorithmic scheme as follows. 

Algorithm 

Step 0. Let 

�y,P, Q,工，T, UI, VI, SI,…，UM, VM, S爪，K,) 

- ( i j ^ rP a^ R �炉 ？ / O 7,0 <?。 ,,0 „o OO ^̂ on 

be the initial solution. 

Step 1. If ^(y,p,q,x,T,0,Ui,vi,Si, ...,Um,Vm, Sm, k) > e, then go to step 2. 

Otherwise stop. 

{Remark If the value of the merit function is close to zero, then it follows 

that the iterate is close to the optimal solution.) 

Step 2. Let " = 0.8* ^i(y，p,A:c，7"，(9,wi.,”i,cSi，...,w^，？;„i,s^’/^)/(n + 3 ) . , 

Step 3. Solving the direction 

( A y , A ^ Arc, A r , A6>, Awi , A v i , Asi ,…,Aw爪,Av爪，Asm, A k ) 

as given by (3.6)- (3.11)，for z = 1, ...,m. 

Step 4. Find the maximum step length 

a = argmax { a G [0,1]: 

(p； q\x) + a (Ap; Ag; Ax) G JC 

[ui] Vi] Si) + a (Alii； Avi； Asi) e /C*, for i = 1,…’ m} 
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Step 5. 

(2/+，P+，一，T+，6>+, u^, v^, si,..., ？ ; s 二，K+) 

+ OL (A?/, A p , A ^ Arr, A r , A6>, Awi , A?；!, A s i , A w 爪， A ? ; ^ , As爪,AK) 

Step 6. If 

or 

MIN 屯 

or 
少+ > 屯 + •尘� • (Ay, Ap, Aq, Ax, Ar, A0，Aui, AvuAsi, ...，Aw爪,Avm, As爪,A/c) 

a = 0.8 * a, 

then go to step 5，otherwise go to step 7. 

Step 7. 

(v, P’ q,工,T, Um, Vm, S爪,K,) 

=(2/+，P+，？+’ 一’ T+，6>+, ut, vt, 心 ？ • 

Step 8. Update the value of $ {y,p,q,x,T,0,Ui,vi, Si, ...,Um,Vm, Sm, k,). 

Then go to step 1. 

3.4 Chapter summary '‘ 

In conclusion, we use Newton's method to solve the approximative KKT 

system. Besides, we follow the approach of Andersen and Ye [1] to form a 

merit function. Using this function, we select the step length and measure 
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the performance for each iteration. Finally, we propose an algorithm to solve 

this problem. 
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Chapter 4 

Numerical results on randomly 
generated problem 

In this chapter, we report the computational results for our algorithm. We 

use the algorithm described in Chapter 3 to solve some test problems, through 

which we wish to show the efficiency of our method. For each randomly 

generated test problem, we use our algorithm to solve 10 problems for each 

n and get the statistic results. In addition, we would like to find out how 

the computational time grows with the size of the problem. The algorithm is 

coded in Matlab and the tests are conducted on Ultra 5-333 computer with 

333MHz CPU and 128MB RAM running Solaris 2.8. We have not used the 

parallel capability of the computer in our test, that is, the program is run on 

one CPU only. Moreover, all reported timing results are measured in CPU 

minutes. Let us introduce the notation as follows: 

n: number of variables 

mi： number of inequality constraints 

7712： number of equality constraints 

it : mean number of iterations 
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Gap : value of merit function 

Gi : value of duality gap 

G2 : value of feasibility 

error: the absolute error of the optimal objective value. 

4.1 Single-constraint problems 

First we consider convex programming problem with one constraint. 

Problem 4.1 

min I'^x 
s.t. Ax = b 

x^x — n < 0 

n 7712 it fji Gap CPU time error 
" l o 2 4 0 . 6 "T-STE-OT Gl =1.20E-05 0 . 0 4 9 9 1 . 2 3 x 10"^ 

G2 =1.48E-12  
l o o ^ ^ 3.98E-07 Gl =9.16E-06 0.2849^ 2.37 x 10—5 

G2 =7.70E-10  
^ 2 5 . 9 2.62E-07 Gl =4.34E-06 0 . 5 6 9 0 1 . 9 8 x 10"^ 

G2 =2.34E-09  
I S ^ 42.1 5.20E-08 Gl =1.24E-5 2.1519 3.67 x 10"^ 

G2=4.24E-9  

Table 4.1: Numerical results for Problem 4.1 

We generate 10 random problem instances for each n and our algorithm 

solve these instances correctly. The average results are given in Table 4.1. 

Random problem instances are generated as follows. We generated matrix A 

and vector b so that x = — Inxi satisfies Ax = b. i.e. x = —l„xi is a feasible 
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solution. 

Problem 4.2 

min I'^x 
s.t. Ax = b 

-ZZi logxi + n<0 

n 1712 it /i Gap CPU time error 
~ l o ^ 17.4 1.06E-06 G1 =4.834e-006 0 . 0 1 4 7 4 . 2 3 x 10-4 

G2 =2.555e-013  
100 25 29.2 9.16E-08 G1 =8.950e-006 0.2500 5.21 x 10"^ 

G2 =4.637e-011  
150 38 24.1 6.90E-08 Gl =9.658e-006 0.3422 6.71 x 10"^ 

G2 =1.410e-010 
200 50 25.8 4.72E-08 Gl =8.758e-006 0.7150 7.21 x 10"^ 

G2 =2.278e-010  

Table 4.2: Numerical results for Problem 4.2 

The constraint of this problem involves the logarithmic function. The 

numerical results are shown in Table 4.2. 

4.2 Multi-constraint problems 

Now we consider the multi-constraint problem. 

Problem 4.3 

min 1丁00 
s.t. Ax = b 

x̂x - n < 0 
e工 - n e < 0 
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n 1712 it jJi Gap CPU time error 
~10 2~~40.3 8.98E-07 G1 =1.8706e-005 0.0798 3.13 x 10-5 

G2 =1.5545e-014 
100 25 30.7 6.61E-08 Gl =7.4737e-006 0.3700 2.22 x 10-5 

G2 =4.9340e-013 
~lbO^37.5 3.21E-08 Gl =5.1814e-006 1.2152 6.14 x 10"^ 

G2 =1.8140e-012  
^ 4 1 . 4 3.91E-08 Gl =9.1017e-006 2.6612 1.78 x 10"^ 

G2 =1.9786e-012  
600 150 42.9 9.50E-09 Gl =9.5900e-06 24.2459 5.19 x 10"^ 

G2 =1.5802e-ll  

Table 4.3: Numerical results for Problem 4.3 

For the two-constraint case, the constraints contain quadratic and expo-

nential function. We observe that the number of iterations is similar as the 

single constraint case but the running time is longer. This is reasonable since 

the direction finding problem is larger. 

Problem 4.4 

min I'^x 
s.t Ax = b 

x̂ x — n < 0 
-T.U log:ri < 0 
E?=i ê^ -ne<0 

For the three-constraint case, we add logarithmic, exponential and quadratic 

constraints into the problems. The numerical results are shown in Table 4.4. 

The results show that the method is stable and quite fast under the combi-
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n 7712 it H Gap CPU time error 
~To 2 2 6 . 1 3.19E-07 Gl =7.7397e-006 0.0599 2.85 x 10-5 

G2 =3.2204e-014 
" T S ^ 3 4 . 6 2.71E-08 Gl =9.7740e-006 1.0675 3.34 x 10-5 

G2 =3.2915e-013  
^ 2 6 . 3 4.72E-08 Gl =8.7584e-006 4.2184 9.29 x IQ-^ 

G2 =2.2782e-010 
600 150 32.4 9.07E-09 Gl =2.1513e-05 30.7784 1.28 x 10"^ 

G2 =6.6534e-12  

Table 4.4: Numerical results for Problem 4.4 

nation of these three quite different kinds of constraints. 

The above problems only have a few constraints. We now want to solve 

problems with more inequality constraints. Thus, we generate a convex 

quadratic programming in the following format. 

Problem 4.5 

min l^x 
s.t. Ax = b 

x^QiX + pjx + FJ < 0, for 2 = 1,…，MI, 

where Qi hO^piE 况"and n G 况 Vi. 

We fix mi = 10 and mi = 20 respectively for the experiments. The 

numerical results are showed in Tables 4.5 & 4.6. 

According to the experimental results, we see that the convex quadrat-

ically constrained optimization problems can be solved by our algorithm. 

Also, the number of iterations is insensitive to the number of inequality to 

the number of inequality constraints. 
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n 7712 IT fi C P U TIME ERROR 

~ 5 0 1 3 28.1 ~^357QE-08 —0.2544 1.34 x IQ-^ 
" T o o 2 5 22.6 T.2858E-Q7 0.5388 2.37 x 10_5 

^ 26.7 3.4517E-08 1.4334 9.27 x IQ-^ 
^ 2 8 . 4 8 .9996E-09 2 . 7 7 ^ 2 . 4 4 X 10—5 

^ 28.3 7.0660E-Q9 4.5445 3.37 x IQ-^ 
^~~28.7 5.3687E-09 7.3843 7.69 x 10—5 

350 88 30.9 T 3 I I O E - O 8 11.6029 5.67 X IQ-^ 

400 100 26 . r 1.9246E-Q8 35.5398— 2.39 x IQ-^ 

Table 4.5: Numerical results of Problem 4.5 for mi = 10 

N 7712 IT 11 C P U TIME ERROR 

T o o 2 5 33.4 3.4761E-08 1.9741 3.72 x 10—5 
^ 2 9 . 8 1 .8103E-08 3 . 1 4 ^ — 4.32 X IQ-^ 

200 50 34.3 9.2642E-Q^ 7.0024 — 8.11 x IQ-^ 
^ 2 7 . 5 5.929QE-08 —10.2357 1.34 x IQ-^ 

300 75 ^ o T " 8.2334E-09 59.3983 2.27 x 10_5 

350 88 "27!^ 1.1174E-Q8 ~87.9260 ~ 7.35x10—5 
400 100 28.2 5.1696E-Q9 155.3597 5 .26��KT^ 

Table 4.6: Numerical results of Problem 4.5 for mi = 20 

4.3 Running time and the size of the problem 

In the following, we study in a more structured way the relationship between 

the running time and the size of the problem. In particular, we wish to find 

the relationship between the running time and the number of the constraints 

in the problem. We fix the number of variables to be 100 and the problem 

has the following format. 
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Problem 4.6 
• 1T 

mm 1�X 
s.t. Ax = b 

flk = X^QkX + plx + Tifc < 0 , 

f2k = - EILi dik logrci < 0 
fsk = E?=i hke工i -ne<0 for k = l, 2 , ...，m. 

where dik = Ei=i hk = n and Qit h 0 Mk. 

Here, the number of the constraints is given by m\ — 3m. We change 

the value of m from 2 to 15 and solve the problem for each m, we get the 

following results. 

mi CPU time it mi CPU time it 
6 0.9999 30.2 4.2565^ 36.8 
9 1.1524 26.7 7.1943^ 44.6 
12 1.6147~ 28.9 ^ 7 . 4 6 1 8 4 0 . 9 
15 2.5015 29.3 9.3294^ 30.2 
18 3.1902 30.1 39 11.4079 41.3 
21 3.5103 34.7 42 11 .973^ 38.2 
24 4.0299 42.5 45 12.0513— 40.4 

Table 4.7: Numerical results of Problem 4.6 for n = 100 

We plot the running time against the number of the constraints. The 

solid line is based on the linear regression. It is showed in Figure 4.1. 

One observes a linear growth pattern for the CPU time in terms of the 

number of constraints. Moreover the number of iteration is similar for differ-

ent m. Next, we increase the number of variable to 200. Similar results are 

observed. The results are shown in Table 4.8 and Figure 4.2. 

Then, we set out to check how the number of iterations is related to the 

number of the decision variables. Therefore we fix the number of constraints 
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141 1 1 1 1 1 1 1  

12 - * * 

10 - ^ ^ 

S 8- ^ ^ 

I. 

O 6 - ^ ^ 来 -

* 来 

gl I I I I 1 I 1  
5 10 15 20 25 30 35 40 45 

number of constraints (3*m) 
Figure 4.1: Running time against the no. of the constraints (n = 100) 

to be 21, i.e. m = 7 and do some experiments for varying number of variables. 

Table 4.9 shows the experimental results. We can see that the number of 

iterations is insensitive to the number of variables. 

Now we are in the position to talk about the value of algorithmic param-

eter. All problems are solved by using the value of parameters as shown in 

Table 4.10 

First of all, we are concerned with three parameters ft, ft and 历 in 

conditions (3.12) - (3.14). Based on our experiments, we find that the second 

condition (3.13) is most difficult to satisfy, so ft is always less than or equal 

to the other two parameters. The values for ft and ft are always set to be 

41 



Chapter 4 Numerical results on randomly generated problem 

rui CPU time it 
~ 9 ~ 8.3696~ 33.2 

12 13.1694 33.4 
15 13.5609~~32.1 
18 16.0863 32.3 
21 16.5527 31.7 
24 2 2 . 4 6 8 9 3 7 . 1 
27 30.4125 29.3 
30 39.3208 38.5 

Table 4.8: Numerical results of Problem 4.6 for n = 200 

the same. We set the value of e to be 1 x 10"^ for solving all test problems. 

We now discuss the value of A. This value is very important in our algo-

rithm. We need to adjust it to a suitable level for each problem type. Then, 

for each problem type, we use the same algorithmic parameters to do the 

experiments for different n. We conclude that the best values of algorithmic 

parameters are independent on the size of problem but are dependent on the , , . : �； 

structure of the problem. Thus, we may need to adjust the values of the 

algorithmic parameters for each new problem type. 

4.4 Chapter summary 

In this chapter, we applied our algorithm to solve on a number of randomly 

generated problem instances. The numerical results show the stability and 

accuracy of the method. In addition, the relationship between the number 

of constraints and the computational time is plotted. According to the ex-

perimental results, we observe a linear growth pattern. Also, the number of 
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401 1 1 1 1 1 

35 - -

3 0 - * 

^ ^ -

I * 
O 20 - ^ ^ -

来 * 
15 - ^ ^ -

^ ^ * 来 

10 - Z -
* 

51 I 1 I 1  
5 10 15 20 25 30 

number of constraints (3*m) 

Figure 4.2: Running time against the no. of the constraints (n = 200) 

iteratioiTC is rather insensitive to the size of the problem. Besides, the best. ：. - • 

values for algorithmic parameters are not very much dependent on the size 

of problem, but are indeed dependent on the structure of problem. 
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n 7712 it 
50 13 34.5 
100 25 30.8 
150 38 30.6 
200 36.2 

^ 2 9 . 9 
300 75 28.5 
350 88 35.5 
400 100 30.3 
450 113 29.8 
500 125 28.2 

Table 4.9: Numerical results of Problem 4.6 for m = 7 (mi = 21) 

！; •• 

I e I I I & I A 
Problem 4.1 1 x 1 x IQ-^ 1 x IQ-^ 1 x 10-4 0.8 �1 
Problem 4.2 1 x 1 0 " ^ 1 x 1 0 - 6 1 x 1 x IQ-^ 0.8 �1 
Problem 4.3 1 x 10"^ 1 x 1 0 " ® 1 x IQ-^ 1 x 10"^ 0.8 �1 
Problem 4.4 1 x 1 0 " ^ 1 x 1 0 " ^ 1 x 10-8 1 x 10-8 0.8 � 1 
Problem 4.5 1 x 1 x lO—io 1 x IQ-^" 1 x IQ-^" 0.7 
Problem 4.6 T x IQ-^ 1 x lO—io 1 x 1 x 10_io 0.8 

Table 4.10: Values of algorithmic parameters. 
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Chapter 5 

Geometric optimization 

In this chapter, we consider geometric optimization problem and apply our 

method to solve this type of problems. 

5.1 Geometric programming 
5.1.1 Monomials and posynomials 

A function 没：况"4 况 with dom g =况!defined as 

where c > 0 and ai G 况，is called a monomial function, or simply, a mono-

mial. The exponents ai of a monomial can be any real numbers. A sum of 

monomials, i.e. a function of the form 

gW) = i c i i r t r . . � , 
i=\ 

where cj > 0, is called a posynomial function (with N terms), or simply, 

a posynomial. If a posynomial is multiplied by a monomial, the result is a 

posynomial. A posynomial can be divided by a nonzeros monomial, resulting 

also in a posynomial. 
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5.1.2 Geometric programming 

The primal geometric programming problem is as follows. 

Primal problem: 

min go{t) 
s-t-仍⑴ S l’...，没p � $ 1 ， 

h > > 0 
where 

gk{t~) = E c 們 r … 

for k 二 0,1, ...,p, and 

J[k] = {rrifc, ruk + + 2 , n ^ } 

for /c = 0,1, and 

mo = 1, mi = no + 1, m2 = rii + 1，..., rUp = Up-i + 1，n.p — n. 

The exponents aij can be any real number, but the coefticients Q are assumed 

to be positive, i.e., the function 仇⑴ are posynomials. The posynomial to 

be minimized, namely "o⑴，is termed the primal function, and the variables 

ti,亡2, •••, tm are called primal variables. 

The dual program corresponding to primal program is the following: 

Dual problem: 

max ；̂(̂) = [ n ( 宇 “ 炉 “ 、 
.1=1 \ � ” �k = i 

where 

入kW = E氏， 
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\ 

for k = l，2，."’p. The factors Q are assumed to be positive and the vector 

6 = ((̂ 1,...入）is subject to the following linear constraints: for i = 1, ...n， 

and j = 1，2,…，m 

SiGJ[0] = I5 

and 
n 

^iA = 0. 
2 = 1 

5.1.3 Geometric program in convex form 

In general, geometric program is not a convex optimization problem in its 

original form, but it can be transformed into a convex problem by the change 

of variables: Xi = logU so U = z = 1 , n . If g is the monomial function 

of t, i.e., 

then 
9{t)=�(e工 i,...，e工n) 

= • • • (e^ 广" 
— ^a^x—b 
—C ， 

where b 二 — logc. The change of variables Xi = logU, i = 1,..., n, turns a 

monomial function into the exponential of an affine function. Similarly, g is 

a posynomial, i.e, 

k=l 

then after the variable change, we have 

" ⑷ = 【一， 

k=l 
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where ak = (aik,. • •, cink) and bk = log Ck, namely, after the change of vari-

ables, a posynomial becomes a sum of exponentials of affine functions. The 

geometric program can be expressed in terms of the new variable x as 

min 知* 

s.t. E f l i e《工-b认 S 1，S 二 1,.., m. (5.1) 

5.2 Conic transformation 

The system (5.1) is readily seen to be equivalent to 

min e吻 

s.t. ê 'ok̂ -̂ ok < ê o 

where we introduce a new variable XQ to express the posynomial objective. 

Noticing that minimizing e卯 amount to minimizing rco, we can rewrite this 

last problem as 

{GF) min c^x 
s.t. EiSi 工-工0-知fc - 1 < 0 

Z^di - 1 < 0, j = 0,l,.",m. 

By adding N variables into the problem, with N = E^o namely, by 

introducing 

：= -ajx + bi 

for i = I,..., Nj, j = 0 ， 1 , m and N_i = 0. Problem (GP) is equivalently 

transformed into the following problem 

(iVGP) min c^x 
s.t. Ax = b 

E^di e-工 � - 1 <0 , J =0,1,…m. 
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We can now represent the geometric programming in the conic form (PCGP) 

since the constraint are clearly smooth convex. For completeness, we would 

like to formulate the dual of (PCGP). For our approach, we need to find the 

conjugate of fj{x) with fj{x) = 么 g — � _ i, which is defined by 

Nj 
f*{s) = sup{-rr^s + 1}. 

By putting g{x) = -x'^s — e"^' + 1, let us compute the conjugate of 

g{x). For any s � 0 , 

V(7(X) = - 5 + ； 

and so the first order optimality condition Vg{x) = 0 leads to 

suPâ ^Kz) = logsi Si-hi 
= E t l S i [ l og5 , - l ] + l 

for Si > 0 and z = 1, ...n. Thus the conjugate of function g{x) is ‘ 

n 

g*{s) [log Si — 1] + 1 
i=l 

defined on 况!J_+. Therefore, the primal and dual geometric problems in the 

conic form are 
(PCGP) min c^x 

s.t. Ax = b 
xeJC 

and 
(DCGP) max b^y 

s.t. A^y + 5 = c 
seK* 
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where 
m \P' 

)C = c\ q I P > 0，q-p f j { x/p) > 0} 
j=0 

and its dual is 

m 卜 " I 

/C* = c l ^ { S j = Vj I Vj > 0 , Uj 一 Vjf;isj/Vj) > 0 } . 

5.3 Computational results of geometric opti-
mization problem 

We shall now apply our approach to solve the geometric programming prob-

lems as reported in Dow's paper [10] and then present our numerical results. 

In addition, we generated some additional geometric programming problems 

and then solve them by our method. 

Problem 5.1 

min 0.5̂ 1̂ 2 ̂  —力i — 5̂ 2 ^ 
s.t. 0.01(^2^3^ + 0.0005^1^3 < 1. 

We can transform the above problem to the following problem (see Murray 

10] for the details) 

min 亡4 

s.t. 0.01(秘p + 亡1) + 0.0005M3 < 1 
( 0 . 2 4 2 3 力 ? . 5 1 7 2 力 2 — 0 . 9 9 5 7 + 4 4 . 8 2 6 1 力 「 0 . 4 8 2 8 力 } 0 0 4 3 ) 力 4 — 0 . 5 1 2 9 < ^ 

and then we use our method to solve it. By putting U = e^' for i = 1 ， 4 , 

we have 
min e工4 
g t g X 2 - X 3 + l n 0 . 0 1 + g X i + l n O . O l + g x i + x a + l n 0 . 0 0 0 5 < 丄 

g 0 . 5 1 7 2 x i - 0 . 9 9 5 7 X 2 - 0 . 5 1 2 9 x 4 + l n 0 . 2 4 2 3 g - 0 . 4 8 2 8 a ; i + 0 . 0 0 4 3 x 2 - 0 . 5 1 2 9 x 4 + l n 4 4 . 8 2 6 1 < | 
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This problem is equivalent to the following problem, 

min 3；4 
s.t. X 2 - + x^ = -In0.01 

xi + xq = - In 0.01 
X7 = -In0.0005 

0.5172rci - 0.99570；2 一 0.5129x4 = -In0.2423 

-0.4828a;i + 0.0043:c2 — 0.51290；4 = - I n 44.8261 
已一0；5 + ^-Xe + g-X7 < 1 

e"̂® + < 1 
and hence we can apply our algorithm to solve it. Similarly, our algorithm 

can be used to solve the following problems as introduced in Rijckaert and 

Martens [34 . 
Problem 5.2 

min tit2 —艺�1 力fi 
s.t. +力2 < 1. 

We transform this to 
min ts 
s.t. 0 . 2 5片 5 + ^^ < 1 

hhts 1 + 力 1 上亡 2 1 亡3 1 S 1 
Put ti = e '̂ for i = 1, 3, then we have 

min e工3 
s.t. + e们 < 1 

gXl+X2-X3 + g—X1-X2—X3 < 

It is equivalent to 

min Xs 
s.t. O.Sa：! + X4 = — In 0.25 

X2 + X5 = 0 
Xi + X2 — X̂  Xq = 0 
-Xi - X2 - Xs Xj = 0 
e-工4 + < 1 
e - X 6 g - X 7 < I 
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Problem 5.3 

min t\ + tl- 4力 1 - U) + 6.475 
s.t. 0.25力？ -\ - t l< l 

- t i + 2t2 > 1. 

We transform this to 

min ts 
s.t. 0.2bt1 + < 1 

0.5魄 1 + 0.5̂ 2̂  < 1 

( 0 . 2 1 6 2 汁 7 2 9 3 力 广 . 2 0 3 0 + 0 . 2 1 6 2 力 「 。 . ‘ 了 。 " ; " — + 1 . 4 0 0 2 力 「 0 . 2 7 0 7 力 2 - 0 . 2 _ ) 力 3 - 0 . 5 2 6 2 < ^ 

Similarly, let U = e^' for i = 1 , 3 , and we get 

min xs 
s.t. 2xi + X4 = - In 0.25 

2x2 + = 0 
xi — X2 + xe = - In 0.5 
-X2 + X7 = —In 0.5 
1.7293x1 - 0.203x2 — 0.5262x3 + rrs = - In 0.2162 
-0.2707a;i - 1.797x2 — 0.5262a;3 + xg = -In0.2162 
- 0 . 2 7 0 7 : r i � — 0.5262̂ ；3 + a;io = - In 1.4002 

+ < 1 
e一工6 + e—工7 < 1 

工8 + g-X9 + < 1. 

The numerical results are shown in the Table 5.1. We can see that our 

method can be used to stably solve the geometric programming problems. 

iteration error 
Problem 5.1 22 1.66 x 10"^ 
Problem 5.2 11 4.66 x 10-5 
Problem 5.3 36 7.44 x 10-4 

Table 5.1: Numerical results of Problem 5.1-5.3 
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According to the Section 5.2, we know that solving (GP) is equivalent to 

solving the following problem, 

�NGP�min c^x 
s.t. Ax = b 

i:l^ie"�+�-i+<-lSO，j = l,…,m. 

Hence we generate some additional problems in this format and to test our 

algorithm. Consider the following problem: 

Problem 5.4 

min I'^x 
s.t. Ax = b 

T S t " ' - { n - mi)e < 0, i = 1， m i . 

The numerical result for this problem are shown in Table 5.2-5.4. 

Moreover, we consider the following problem: 

Problem 5.5 

min I'^x 
； . . • s.t. Ax = b 

e-工j + e - 工 - 2e < 0, j = 1,..., n — 1. 

This geometric program has n — 1 inequality-constraints. The computational 

results for this problem are shown in Table 5.5. 

Now we discuss the value of the algorithmic parameters for solving ge-

ometric programming. In the above experiments, we use the same value of 

e for solving all problems. The detail can be found in the Table 5.6. We 

can see that "i，s are set to be constant for all problems. But the value of 

A is different for Problem 5.5. The difference is due to the structure of this 

problem. Clearly, Problem 5.5 has n—1 inequality-constraints, where n is 
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number of variables CPU time iteration 
^ 0.5985 43 
100 0.7901 ^ 
^ 2.0649 E 
' m 3.6052 ^ 
^ 6.2759 ^ 
300 9.5093 m 

Table 5.2: Computational results of the Problem 5.4 for mi = 10 

number of variables CPU time iteration 
^ 1.3598 — 4 7 
100 ^2.6656 ^ 
150 ^7.7078 41 
m 12.0421 ^ 
250 24.4377 42 
300 45.7886 38 
350 108.5256 37 
400 278.3176 ^ 

Table 5.3: Computational results of Problem 5.4 for rrii — 20 

the number of the decision variables. Therefore, the difficulty for solving 

this type of problem is higher than that of the other problems discussed in 

this chapter. We found that if the number of constraints is dependent on 

the number of decision variables, then we need to decrease the value of A. 

However, the value of A cannot be set too low. In particular, if A < 0.3， 

then our algorithm does not seem to converge to the optimal solution. Thus, 

adjusting the proper A value is quite important for our algorithm. 
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number of variables CPU time mi iteration 
20 0.1484 2 21 
40 0.2910 4 ^ 
60 ~0.5913 6 “ ^ 
80 1.2311 8 “ ^ 
100 ~~5.5088 10 43 
120 ^5.9460 12 E 
140 18.1382 " U " 32 

Table 5.4: Computational results of Problem 5.4 

number of variables CPU time iteration 
20 0.2641 30 
40 ^ 1 . 2 8 4 5 3 2 
60 ^ 6 . 8 6 0 4 ^ 38 
80 32.6032 45 
100 49.818 39 
120 123.9953 37 
140 274.8943 33 

.‘： Table 5.5: Computational results of Problem 5.5 

5.4 Chapter summary 

In this chapter, we state the general primal and dual geometric programs and 

then transform them into the convex form. After that we use our approach to 

further transfer the problem into the conic form. Finally, we solve numerous 

test problems in this format. We conclude that our algorithm is efficient in 

solving geometric programming probelms. 
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I 6 I I "2 I I A 

Problem 5.1 1 x IQ-^ 1 x IQ-^o 1 x l O ] � i x 0.8 � 0 . 9 
Problem 5.2 1 x IQ-^ 1 x l O - i �！ x lO-io 1 x lO-io 0.8 � 0 . 9 
Problem 5.3 1 x 10"^ 1 x 10-1° 1 x 1 0 - 1 x lO-io 0.8 �0 . 9 
Problem 5.4 1 x 10"^ 1 x l O - i �1 x 1 x 0.8 � 0 . 9 
Problem 5.5 1 x 10—5 1 x lO—io"" 1 x lO—io 1 x lO—io 0.7 

Table 5.6: Values of algorithmic parameters. 
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Conclusion 

In this thesis we study the new self-dual embedding method for convex pro-

gramming which is proposed by Zhang [43]. Based on this paper, we can 

turn the general convex optimization problem into the conic form by adding 

2 extra variables. Then we apply the self-dual embedding technique to solve 

the resulting problem. Certainly, an obvious advantage of the new approach 

is that it does not require an initial feasible solution of the convex program 

to start with, which is a generic virtue of the self-dual embedding method. 

We specialize an interior-point algorithm and discuss in detail how this 

algorithm can be constructed and implemented. First, we use Newton's 

method to solve the approximative KKT system. Second, we follow the 

approach of Andersen and Ye [1] to construct a merit function. This merit 

function is used to select the step length and measure the performance in all 

iterations. We apply the so-constructed algorithm to solve some randomly 

generated test problems which involve logarithmic, exponential and quadratic 

constraints. 

In addition, we consider geometric programming problems. We state the 
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general primal and dual geometric programs, and then transform them into 

the convex form. Finally, we apply our method and further transform the 

problem into the conic form. Numerical tests are carried out for this type of 

problems. 

All numerical results show the stability and accuracy of the method. Also, 

we observe a linear growth pattern between the computational effort and the 

number of constraints. The number of iterations is insensitive to the number 

of decision variables. Besides, the best values for the algorithmic parameters 

are not very much dependent on the size of problem, but can indeed be 

dependent on the structure of problem. 

Finally we conclude that this new self-dual embedding method is numer-

ically stable and efficient for solving general convex programming problems. 
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