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Abstract

This thesis extends the investigation into the Belief Network (BN) framework
for natural language understanding (NLU) as proposed in [31]. A method
was derived for identifying the user's communicative goal(s) out of a finite set
of domain-specific goals. The problem was formulated as making N binary
decisions, each performed by a BN. We aim to improve the goal identifi-
cation performance and reduce the amount of computation in training and
testing. We explore an alternate formulation as making one N-sny decision
by a single BN. This formulation captures the interdependency among the
goals. In order to identify multiple goals in a single BN, we propose two goal
1dentification strategies: multiple selection strategy and max imum selection
strategy. We evaluate the goal identification performance by accuracy mea-
sure, macro- and micro-averaging. Experiments with the AXIS (Air Travel
Information Service) corpus showed that the one 7V-ary formulation improved
over the N binary formulation in terms of overall goal identification, out-of-
domain rejection and multiple goal identification. A considerable amount of
computation was reduced as we migrate from the N binary formulation to
the one 1V-ary formulation. We also test the language portability of the BN
framework on Cantonese Chinese. The test used the one 1V-ary formulation

with the maximum selection strategy and the results were encouraging.
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Chapter 1

Introduction

1.1 Overview

In this information era, computers have already permeated our lives. The de-
velopment of the Internet and mobile communication technologies is rapid.
People can interact with computers to access information and mail with
friends at anytime and anywhere. Many computer applications are also de-
veloped to assist office operations, business developments and scientific re-
search. In order to achieve an efficient user service, having an intelligent and
effective communication between human and computers becomes a key 1ssue.
Spoken language 1s one of the most natural and intuitive ways for human to
communicate with computers. Users do not need to learn any complicated
usage instructions. Furthermore, the use of spoken language allows users to
Interact with computers in an eye-busy or hand-busy environment.

Due to these advantages, the use of human-computer conversational sys-
tems has become more and more widespread in many applications. Figure

1.1 1s a typical architecture of spoken dialog systems (SDSs) [42]. The main
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components include a speech recognizer, a natural language understanding
(NLU) module, a text-to-speech synthesizer and a dialogue manager. A
network interface obtains the input data and passes the output data. An ap-
plication backend contains the task-specific information for the NLU module

and the dialog manager to use.

Network Interface, 1/0 and System Control

Speech
n o Text-to-Speech
Recognition

\ Natural . /
\ Dialogue /
Language

Unde~tandilng Manager

( Application 0
Backend

Figure 1.1: Architecture of spoken dialog systems, referenced from [42 .

An NLU module plays an important role in SDSs. It receives a user's ut-
terance from a speech recognizer and interprets the meaning. These systems
often need to handle information-seeking queries from the user regarding a
restricted domain. For example, an SDS may provide information about
weather [46], traffic conditions [14] or air travel [4] > 47]. Different users use
different expressions to convey the same meaning. NLU in a domain-specific
application requires identification of the user's communicative goal(s) out of
a set of finite possibilities. Traditional approaches of NLU require grammar,

which is created by domain experts, for parsing a user's utterance into seman-
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tic concepts. Rules are applied to map the concepts to the communicative
goal(s). However, grammatical coverage 1s a limitation. Manpower and time
are also concerns.

Stochastic approaches were proposed to solve the above problems be-
cause they can automatically learn the semantic relationships from a large
annotated training corpus. The use of Belief Networks (BNs) is a stochas-
tic approach that incorporates uncertainty through probability theory and
conditional dependence. Using BNs for NLU was first proposed in [31]. The
causal relationships between the semantic concepts and the communicative
goal of a user's sentence are captured in the network structure. We can iden-
tify the underlying goal of an 1nput sentence by probabilistic inference. BNs
can handle spontaneous speech and learn linguistic knowledge from training

data automatically.

1.2 Thesis Goals

This thesis extends the investigation in the BN framework for NLU as pro-
posed in [31]. A method was derived for identifying the user's communicative
goal(s) out of a finite set of domain-specific goals. The problem was formu-
lated as making N binary decisions, each performed by a BN. This formu-
lation allows for the identification of queries with multiple goals, as well as
queries with out-of-domain goals. However, the decisions are independent of
each other. We noticed that a large number of sentences wrongly identified
with multiple goals instead of a single goal. We aim to improve the goal
1dentification accuracy by introducing interdependency among the goals. We

will propose an alternative formulation that involves an one AM-ary decision
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using a single BN.

The NLU component in a human-computer conversational system should
interpret a user's input quickly and avoid to keep the user waiting. Since
we adopt a stochastic approach in our NLU framework, a large amount of
computation 1s required for training and testing each BN. In the N binary
formulation, one BN is built for each goal. We wish tominimize the amount
of computation by reducing the number of BNs from N to one.

Since the BN framework automatically learns the linguistic knowledge
from training data, it is portable to other languages. We aim to demonstrate
the language portability of the BN 1in the one N-sry formulation by using a

Cantonese Chinese corpus.

1.3 Thesis Outline

This thesis 1s organized as follows: Chapter 2 describes the background
knowledge of the natural language understanding technology, our task do-
main and the Belief Network framework in the N binary formulation. Chap-
ter 3 details the use of Belief Network for natural language understanding in
the one N-ary formulation. Chapter 4 introduces the evaluation metrics and
presents the comparative evaluation of the N binary and one N-wry formu-
lations. Chapter 5 demonstrates that the Belief Network framework in the
one 7/V-ary formulation is portable to Chinese. Conclusions and future work

are provided in Chapter 6.



Chapter 2

Background

This chapter presents the background knowledge relating to the natural lan-
guage understanding, the related work of the Belief Network framework and
our task domain. Natural language understanding 1S an important tech-
nology in human-computer conversational systems. The natural language
understanding component is responsible for interpreting the meaning of the
input text and returning a corresponding semantic representation. Various
applications and approaches have been developed for it and will be intro-
duced in Section 2.1. We will introduce the previous work on Belief Network
framework for natural language understanding in Section 2.2 and our task

domain, ATIS (Air Travel Information Service), in Section 2.3.

2.1 Natural Language Understanding

Natural Language Understanding (NLU) 1s a key technology in Spoken Di-
alog Systems (SDSs). It allows computers to communicate in a natural and

intuitive way with users. These systems save the users' time and effort in



CHAPTER 2. BACKGROUND

learning special usage instructions and thus reach the goal of universal us-
ability. SDSs are often needed to handle information-seeking queries from
the users regarding a restricted domain. An NLU component in a domain-
specific application identifies the user's communicative goal(s) out of a set of
finite possibilities characteristic of the domain. However, users can express
a communicative goal in a variety of ways. Ambiguity of words or sentence
structures, ellipsis, idioms and metaphor alsomake NLU difficult. Moreover,
disfluencies (e.g. hesitations, false starts, repeated words and repairs) are
common in spontaneous speech.

Different domain-specific SDSs are developed and relied on an NLU com-
ponent to provide the meaning representation of a given query. Prominent
examples include air travel information systems PEGASUS [47] and MERCURY
41], train information systems RAILTEL [4] and TABA [3], city guides MATCH
21] and VOYAGER [14], and automatic telephone switchboard and directory
information system PADIS [24]. The languages concerned include English and
multiple European languages. Some systems were developed for Chinese,
such as the foreign exchange inquiry system ¢ UFOREX [32]. There are also
commercial organizations, like Nuance [12] and SpeechWorks [18], which pro-
vide speech-activated solutions for different industries, such as banking and
travel planning.

Different approaches for NLU have been proposed. Each approach has its
own advantages and disadvantages which make 1t to be adoptable in different
conditions. Rule-based approach i1s a traditional NLU approach. The rules
are strict in characterizing the users' speech. Other approaches to NLU are

data-oriented, such as the phrase-spotting and stochastic approaches. Differ-
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ent approaches can be mixed tomodel a NLU problem, in order to take the
advantage of the relative strengths of each approach. In this thesis, we adopt
a stochastic approach for NLU because it provides a best guess of uncer-
tainty and offers the robustness. We choose a Belief Network model because
1t captures the causal relationship between the communicative goal(s) and
the concepts™ in a user's sentence. Furthermore, a BN model gives a con-
cise specification of joint probability distribution. The network is tractable

during reasoning. The detailswill be in the Section 2.2.

2.1.1 Rule-based Approaches

The major work of the rule-based approaches 1s hand-designing the grammar
rules, which define the semantic and syntactic structures allowable in the
task. Context-free grammars (CFGs) are widely used because the formalism
is powerful enough to describe most of the structures in natural language.
Each rule consists of a non-terminal on the left and a sequence of terminals
and/or non-terminals on the right. The development of effective grammar
rules usually requires linguistic experts to design the syntactic and semantic
patterns of the users' input in a domain. After that, a parser applies the
grammar rules to analyze the syntactic and semantic patterns of a user's
sentence. The NLU component of the MASK [26] system is an example of
the rule-based approach. During its development phase, the major work was
to define the concepts that are meaningful for the railway travel information
task and their appropriate keywords.

A critical factor in the rule-based approaches i1s grammar coverage. If a

1 A concept is the smallest unit of meaning that is relevant to a specific task [27].
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user says something that has not been defined in the grammar, the sentence
cannot be interpreted. Rule-based models are usually applied to domain-
specific applications. When we change the application's domain or extend
the application scenarios, rules often have to be revised or rewritten [27 .
Extensive amount of manpower is required to create, enhance and maintain

the grammar rules [38 .

2.1.2 Phrase-spotting Approaches

Phrase-spotting approaches are data-oriented. Some special syntactic or se-
mantic phrases are frequently observed in the training data. The key phrases
of interest have salient semantics. Similarity measures, like the Kullback-
Leibler distance [2] and Mutual Information [I1], are used for extracting
candidate phrases automatically from the training corpus. A parser (phrase
spotter) adopts a progressive search strategy to capture the key-phrases in a
sentence, which are then analyzed and associated with a semantic representa-
tion for further interpretation [5]. The call routing system AT&T “How May
I Help you?” [37] applied a phrase-spotting approach, in which grammar
fragments have semantic associations with different call-types. A telephone
dialog system for accessing e-mails [45] also applied the phrase-spotting tech-
nique.

Phrase-spotting approaches require a training set for capturing the spe-
cific phrases during the system development and do not have the capability
in handling unseen data. The phrase-spotting technique is useful for dealing
with 111-formed structures, such as hesitations, fillers, and out-of-vocabulary

words [23]. However, 1t 1shard to describe all possible keywords. Systems
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using a phrase-spotting approach only work well for small applications with

limited task complexities.

2.1.3 Stochastic Approaches

The problems of reusability and portability in grammar rules and the dif-
ficulty in pre-defining all possible keywords for phrase-spotting motivate
the 1nvestigating of the stochastic approaches. Stochastic approaches (also
known as statistical or probabilistic approaches) can automatically learn the
relationships between the semantic concepts and their corresponding words
of expression from a large annotated training corpus. It is data-oriented and
hence more portable across domains and languages. The linguistic knowl -
edge 1s captured in terms of statistical parameters, which are used tofindthe
most likely concept sequence of a given string during the testing phase. A
stochastic approach i1sflexibleand robust because it can handle spontaneous
speech. However, the performance of a model depends on the volume and
sparseness of corpus that we used in training. Manual annotation and data
collection are time-consuming and costly procedures. For example, the ATIS
corpus (for which the details will be introduced in Section 2.3) took over a
year in creation [25]. A domain-specific corpus is usually used to train the
parameters for a specific task domain. Human experts are required to pro-
vide subjective probabilities when there is an insufficient or sparse training
data [6]. Common stochastic models are probabilistic context-free grammars,

connectionist models and Hidden Markov Models.
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2.1.3.1 Probabilistic Context-Free Grammars (PCFGs)

Probabilistic context-free grammars (PCFGs) extend context-fre™ grammars
(CFGs) with probabilities. The assignment of a probability to each rule
1s based on the frequency of the rule applied to the training corpus. The
most suitable parse tree is selected by maximizing aposterior probabilities
of the trees. However, considerable amount of search time may be required.
Some algorithms, like the TV-best parsing algorithm, only explore the N most
promising parse trees instead of all possible hypotheses. Efficiency can be
highly increased but accuracy may be partially sacrificed. PCFGs solve the
problem of grammar ambiguity in CFGs. Example applications include the
restaurant guide, the Berkeley Restaurant Project (BerP) [22], and a boat
traffic information system, WAXHOLM [7]. TINA [40], a natural language

system developed in MIT, alsouses PCFGs for sentences parsing.

2.1.3.2 Connectionist Models

Connectionist models are artificial neural networks (ANN) which consist of
layers of interconnected processing units [16, 19]. These units operate in
parallel with weighted connections in order to store linguistic knowledge.
The weights are learned from training data. The BASURDE Spanish dialogue
system [8, 39] is an example of the use of multilayer perceptions (a type
of ANN) for natural language understanding. The system 1s applied to the
railway information inquiry task with a fixed-size lexicon as input units. Each
output unit corresponds to a dialogue act label which represents the intention
of a user utterance in a restricted domain. However, the complex architecture

in a connectionist model makes the representation and computation difficult.

10
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When the size of a neural network 1is huge, the training i1s too slow to be

tolerable [43]. Therefore, it 1s not a popular stochastic technique.

2.1.3.3 Hidden Markov Models (HMMs)

The Hidden Markov Model (HMM) 1s a popular stochastic model for se-
mantic decoding. Some research prototype systems are modelled with this
technique, such as AT&T-CHRONUS [34] and LIMSI-CNRS [33] for the ATIS
task in English and French respectively. An HMM consists of sets of states,
observations and acceptable transitions among states [28]. During training,
the statistic parameters are estimated from the words in an input query
(observations) and the corresponding semantic concepts (hidden states). In
a testing phase, the most likely word string W and concept string C are

decoded for a given acoustic string A according to:

P{W,C\A) - m"xP{W,C\A) (2.1)

2.2 Belief Network Framework — the N Bi-

nary Formulation

2.2.1 Introduction of Belief Network

A Belief Network”™ (BN) 1is a probability reasoning tool [10, 20]. BN 1is an
expressive graphical representation of causal relationships among the param-
eters ina domain. It combines the prior knowledge with the current observa-

tion. The notion of conditional independence in a BN simplifies knowledge

2 Also known as Bayesian network, probabilistic network, causal network, causal graph
or knowledge map.

11
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acquisition and computation in reasoning [l1]. A BN 1is a directed acyclic
graph (DAG), where the nodes are the random variables and the arrows are
the causal links (as shown inFigure 2.1). Every arrow points from cause (par-
ent) to effect (child). A child node can alsobe a parent node, such as node B
in Figure 2.1. Each variable represents an event with a finite set of mutually
exclusive states. There 1s a conditional probability table P{X\Yi, Y2,... ,Yn)
for each variable X with parents Yi,Y2,... ,Fn- The conditional probabil-
1ty table shows the conditional probabilities of X being in a particular state
given the states of its parents. In the case of a root node (without parents),
1ts conditional probability table only gives a prior probability P{X). For the
example inFigure 2.1, node E has a conditional probability table P{E\B, C),
while the table of node A is reduced to P( X).The BN structure, conditional
and prior probabilities should be specified at the development stage. After
that, when evidence / observation comes in, the BN performs belief updating

by changing the conditional probabilities of the nodes.

Figure 2.1: An simple example of Belief Network.

The use of Belief Networks in natural language understanding has been
studied in [31]. The problem was formulated as making N binary decisions.

The details will be introduced in the following subsections.

12
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2.2.2 The N Binary Formulation

A method was derived for identifying the user's communicative goals out of
a finite set of domain-specific goals (N) using Belief Networks [31]. It formu-
lated the goal identification problem in term of making N binary decisions,
each performed by a BN. The work was based on the ATIS domain, inwhich
11 goals were chosen as in-domain {N = 11). The detailswill be introduced
in Section 2.3.

The objective of this method is to classify queries as single goal, multiple
goals or out-of-domain (OOD) goal. The first step 1S to parse an input
query into a sequence of semantic concepts, which is the input to the BNs.
A BN applies Bayesian inference and outputs an aposterior probability for
the query to represent the likelihood of the corresponding goal. Then, each
BN makes a binary decision regarding the presence or absence of its goal
by comparing the aposterior probability against a tuned threshold. The
decisions are independent of each other. A query is rejected as 0OD if all

BNs vote negative.

2.2.3 Semantic Tagging

Semantic tagging is a process to parse an input query into a sequence of
semantic concepts using hand-designed grammar rules. The sequence of se-
mantic concepts form an input to the BNs for further goal inference. There
are 60 semantic concepts defined for the ATIS domain, based on the attribute
labels in the SQL expressions associated with the ATIS queries. The gram-
mar rules are listed in Appendix C. Example in Table 2.1 shows an ATIS

query with its parsed semantic tags and the annotated goal. Spontaneous

13
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Query: "what flights are available from denver to balti-
more first class on united airlines arriving may
seventh before noon”

Semantic tags: <WHAT> <FLIGHT> (CHUNK) <FROM>
CCITY -ORIGINY><TO> <CITY_DESTINATION>
<CLASS_NAME> <PREPOSITION >
<AIRLINE NAME> <T0> <MONTH> <DAY>
<PRE_TIME> <PERIOD>

Goal: flight.flight-id

Table 2.1: An ATIS query with its corresponding semantic tags and commu-

nicative goal.

speech effect, 111-formed and irrelevant expression are tagged into <CHUNK>

and finally 1gnored in goal inference.

2.2.4 Belief Networks Development

( ("CONCEPT*
CAONCEITA

Figure 2.2: The naive Bayes ° structure of a BN. The goal node outputs a

binary state to indicate the presence or absence of the corresponding goal in

a given query.

A BN in naive Bayes' topology (as shown in Figure 2.2) is used for the
communicative goal(s) identification. The arrows are drawn from cause to

effect. This structure captures the causal relationships between the com-

14
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municative goal and the relevant semantic concepts in a query. The BN
structure assumes that the concepts are independent of one another. Each
concept has a binary state to indicate its presence or absence, based on the
observation in a query. The goal node also has a binary state to show the
presence or absence of the corresponding goal in a given query.

A BN is developed for each communicative goal from the training data.
Each BN has M semantic concepts that is the most indicative to the corre-
sponding goal. The dependency between a goal and a concept is measured
by Information Gain (IG). For a given goal Gi {i = 1,2.. .N), we selected
M concepts {Ci, C2...Cm} that have the highest IG in relation with Gi
(Equation 2.2).

W - ) =g i Em =¢G=H1 - g (= = Q2

Each variable in a BN has a conditional probability table, 1.e. P(G1) and
P{Ck\G1). At the development stage, the statistical values are obtained by
tallying the counts from the training data. They will be used for the Bayesian

inference.

2.2.5 Goal Inference

After the development of N BNs, we parse an input query into a sequence of
concepts by semantic tagging. According to the occurrences of the concepts,
each BN applies Bayesian inference (Equation 2.3) and outputs an aposterior
probability P(Gi = 11(5) which is a confidence level of the goal Gi present in
C.

The aposterior probability is then compared with a threshold (denoted

as Of. forz= 1,2 ... &) inorder to make the binary decision. The thresholds

15
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are tuned with the training data by optimizing the F-measure (Equation
2.4) 1n goal 1dentification. Precision (P) is the percentage of queries with
correct inference out of all queries classified to have the goal Gi. Recall {R)

1s the percentage of queries correctly inferred with Gi out of all Gi queries.

Equation 2.4 adopts » = 1 which treats precision and recall with equal
1mportance.
=ff)ntii PiC, = = 9)]
F =0+ I (2.4)
PR + P ~

The binary decisions across the N BNs are united to identify the commu-
nicative goal(s) of a query. If all BNs vote negative, the framework treats the
input query as OOD. If only a single BN votes positive for its corresponding
goal, the framework labels the input query with the goal. If multiple BNs
vote positive for their corresponding goals, the query is labeled with multiple

goals.

2.2.6 Potential Problems

This approach formulated the goal identification problem as making N bi-
nary decisions. The decisions are independent of one another. We noticed a
large number of sentences wrongly identified with multiple goals instead of a
single goal. Furthermore, the computation in training and testing increases

with the number of BNs. Hence, we have investigated the use of an alterna-

16
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tive formulation in terms of one 1V-ary decision which will be introduced in

Chapter 3.

2.3 The ATIS Domain

We have chosen towork in the ATIS (Air Travel Information Service) domain
17> 36]. ATIS 1s a common research domain, for which corpora were collected
under the sponsorship of the ARPA (Advanced Research Projects Agency)
spoken language systems technology development program. The Multi-Site
ATIS Data Collection Working (MADCOW) group monitored the collection
of data atfivesites in the United States. The ATIS database is based on
data obtained from the Official Airline Guide (OAG), which is organized un-
der a relational schema. It contains information aboutflights, fares, airlines,
airports, ground transportation and numerous others for 46 cities and 52

airports 1n the United States and Canada.

Training 1993 Test 1994 Test
# Transcribed Queries 1564 448 444

Table 2.2: Distribution of the ATIS-3 Class A sentences.

We conducted our experiments on ATIS-3 Class A sentences, which are
context-independent and hence can be understood unambiguously without
dialog context. There are 1564, 448 (1993 test) and 444 (1994 test) tran-
scribed queries in the disjoint training and test sets respectively (see Table
2.2). The corpora include a SQL expression for each query that can retrieve

the reference answer from the OAG database. An example of a Class A query

17
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with the corresponding simplified SQL and communicative goal i1s shown in

Table 2.3.

Query:
““show me all flights from new york to milwaukee on northwest
airlines departing at seven twenty a m"

Simplified SQL.:

SELECT flighUd FROM flight

WHERE airline name = “northwest airlines”
AND origin= “new york”

AND destination = “milwaukee”

AND departure_time = “‘seven twenty am”

Communicative Goal:
flight.flight)d
Table 2.3: An ATIS-3 Class A sentence with the corresponding SQL query

and communicative goal.

The main attribute labels of the SQL queries indicate the interested com-
municative goals. There are 32 communicative goals derived from the train-
ing set for the ATIS domain [31]. For example, the communicative goal of
the SQL query in the Table 2.3 is flightflightdd (flight identification). Among
these 32 goals, 11 goals cover over 95% of the training set, 93% of the 1993
test set, and 92% of the 1994 test set. Hence, we only focus on the investiga-
tion of this set of 11 goals. The remaining goals are treated as out-of-domain
(O0OD) . The communicative goals in the ATIS domain are listed in Appendix

A. The distribution of the communicative goals in the training and test sets

18
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are shown 1n Appendix B. Furthermore, we found 36 training queries with
more than one communicative goals. We can classify the ATIS queries into
three types: single goal, multiple goal and OOD. Examples are shown in

Table 2.4.

Single goal example
Query: “flights on friday from newark to tampa"
Goal: IliTghtilight-id

Multiple goal example
Query: “give me the least expensive first class round trip ticket on u s
air from Cleveland to miami”
Goals: flight.flight,d - fare.fareJd

Out-of-domain (OOD) example
Query: “how many first class flights does united have leaving from all
cities today”

Goal: count-flight (OOD, countJlight is not selected as in-domain)
Table 2.4: Examples of single goal, multiple goal and OOD queries in the
ATIS domain.

2.4 Chapter Summary

In this chapter, we have covered the background information of this thesis.
We presented the common approaches on NLU. After that, we described the
previous approach of using BNs on NLU. The problem was formulated as

making N binary decisions. We also introduced the ATIS domain, which
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1sour research domain. In this thesis, we adopt the BN framework due to
itsflexibilityand robustness. We would like to improve the use of the BN

framework for NLU.

20
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Belief Network Framework —

the One 1V-ary Formulation

In this chapter, we propose an alternative formulation for natural language
understanding (NLU) using the Belief Network (BN) framework. We for-
mulate the communicative goal identification problem as making one iV-aiy
decision. This extends the previous work and resolves the potential problems
of independent decisions and massive computation in the N binary formu-
lation. We employ the same pre-defined BN topology. In the one 1V-ary
formulation, the goal node contains N states, one for each goal class. Each
goal class represents an in-domain or out-of-domain (OOD) goal. This for-
mulation captures the interdependency among the communicative goals as
g P{G =9\C) = 1for”G ("1, « + -Qnj-We have two goal identifica-
tion strategies: (i) multiple aposterior strategy and (il) maximum aposterior
strategy. Both can identify single goal, multiple goals and OOD goals with

a single BN only.
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3.1 The One AT-ary Formulation

We identify the communicative goal(s) of a given query out of a finite set of
domain-specific goals (N) by making an one A*-ary decision in a single BN.
The BN 1sour stochastic tool for learning the causal relationships between
the goal and the semantic concepts from the annotated training data. We
work on the ATIS domain which contains single goal, multiple goal and
out-of-domain (OOD) queries. We design two goal identification strategies,
which extend the capability of identifying multiple goals in the single N-
ary decision approach. The numbers of states (N) in the goal variable are

different in these strategies:

(1) Multiple selection strategy concentrates on the 11 selected in-domain
goals and add an extra goal forOOD queries *N — 12). The single BN
makes a 1V-ary decision regarding the occurrence of each goal by com-
paring the aposterior probabilities with a relative threshold. Multiple
goals are classified when there are more than one aposterior probabili-

ties above the threshold.

(2) Maximum selection strategy selects the goal with the highest aposterior
probability in the BN. We define a new class for each possible combi -
nation of the in-domain multiple goals. There are varied multiple goal
combinations with mixed in-domain goal and OOD goal in the train-
ing and test sets. In order to prevent sparse data problems, we only
extend new classes for the in-domain multiple goals. After examining
the training data, we extend four classes of goals in total (see Table

3.1). They also cover all in-domain multiple goal combinations in the

22



CHAPTER 3. BELIEF NETWORK FRAMEWORK - THE ONE N-ARY
FORMULATION

test sets. Together with the 11 selected goals and the OOD goal, the
goal variable has 16 states {N = 16) under this strategy. Multiple goals
are classified when a corresponding goal class achieves the max imum

aposterior probability.

The general steps in the NLU framework are similar to the N binary
formulation. However, the calculation of each process in the one N-ary for-
mulation is different as the representation of the goal node is changed, from
binary states to N states. To identify the appropriate goal(s) of a given
query, we first apply semantic tagging to parse the query into a sequence
of semantic concepts. These concepts form the input to our single BN and
initiate the BN probabilistic inference. According to the aposterior probabil-
ities and our goal identification strategies, we assign the goal(s) to the input

query.

3.2 Belief Network Development

We adopt a pre-defined BN topology with a naive Bayes' structure (see Figure
3.1), which is the same aswe used in the N binary formulation. Each concept
has a binary state (presence or absence) based on 1ts occurrence 1n a query.
The goal node has N states to represent the occurrence of the N goals, instead
of the absence or presence of a particular goal in the N binary formulation.
The single BN directly outputs the inferred goal(s) of a given query and
captures the interdependency among the communicative goals.

We develop a single BN for all communicative goals using our training

data. We use Information Gain (IG) to measure the dependency between
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each concept and the presence of all N goals (g e {91,92 -. A/AT)). In com-
parison, the N binary formulation concerns the absence or presence of a goal
{g= 0" 1), seeEquation 2.2. We select M concepts {Gi  C2 «.. Cm} that have
the highest IG (Equation 3.1) as an input to the BN. The number of input
concepts (M) is selected by optimizing with the overall goal identification

performance.

I GO =y e W ~ - = fg B/ A = )
0,1 ge{gi,92-9N}

(3.1)

(cmcEM

Figure 3.1: The Belief Network structure is the same as the one in the
N binary formulation (Figure 2.2) but the goal node directly outputs the

inferred goal(s) of a given query.

3.3 Goal Inference

Given a sequence of semantic concepts, we perform Bayesian inference (Equa-
tion 3.2). A set of aposterior probabilities, = o\C) where g G {5 15...9j"},
are produced together from a single BN and show the likelihood of each goal

Q1 present in a given query C. In comparison, each BN in the N binary
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formulation outputs an aposterior probability P{Gi= 1\C) which is a con-
fidence level of the goal Gi present in C. The 7V-ary decision regarding the
existence of each goal ismade by a goal identification strategy. We have
two goal 1dentification strategies: multiple selection strategy and maximum

selection strategy.

= “) nr=i Pl Ck= C\G =0)]
3.3.1 Multiple Selection Strategy

Multiple selection strategy uses a relative threshold, 9 x maxP (G = g\C), to
infer multiple outputs. The parameter 9 is between O and 1. The 6 is tuned
based on the trainingdata by optimizing with the multiple goal identification
performance. We evaluate the multiple goal identification performance based
on F-measure, which considers recall and precision. We adopt = 1 in F-
measure to combine recall and precision with equal importance. The input
query 1s classified as the goal(s) g which has an aposterior probability above

the relative threshold (Equation 3.3).

o = (9~ uz -.siz21\p{c = grc) > o x MaxP(G = "[(?7))} (3.3)

Figure 3.2 1s a schematics which shows how the relative threshold cap-
tures multiple goals. The relative threshold 1s defined as a certain percent-
age {0 e [0,1]) of the maximum aposterior probability (maxP(G =
Hence, it isflexibleand changes according to the confidence level of the most

likely goal in the given query. The 6 controls the capability in identifying
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multiple goals since 1t decides the coverage of the gray area in Figure 3.2. A
BN votes positive for its goal if the output aposterior probability is higher
than the threshold. There can be more than one goal. This strategy is ex-
plicit and 1t can identify unseen multiple goal combinations, which may exist
in real situation. However, some queries will be wrongly identified with mul -
tiple goals due to thisflexibility.In the example on Figure 3.2, the query
contains gi and g*. Under this strategy, even each goal class represents a

single goal or an OOD goal, multiple goals can be inferred as well.

P(G=g\C)
max P(G=0g\C)- A
0Xmax P(G=g\C) 1 Lt J

L ~ 1

s] 82 83 812

Figure 3.2: A schematics illustrates how the relative threshold {6 x

maxP (G = g\C)) captures the multiple goals and g").

3.3.2 Maximum Selection Strategy

Maximum selection strategy classifies a given query into the goal(s) g with
the highest aposterior probability (Equation 3.4). Since we have multiple
goal queries in the ATIS domain, we extend the goal classes by defining a

new class for each possible combination of in-domain multiple goals . There
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are varied multiple goal combinations with mixed in-domain goal and OOD
goal in the training and test sets. We do not define new goal classes for such
queries to prevent sparse data problems. We examined the training set and
found that there are four combinations of goals. These four combinations also
cover all the multiple goal cases in the test sets. Therefore, we extended four
goal classes and hence N = 16. The combinations of goals are shown on Table
3.1 with example queries. We can identify multiple in-domain goals when @
corresponds to an extended goal class. This strategy has extra knowledge /
constraints to help multiple goal identification. However, it cannot identify

unseen multiple goal combinations.

7= a = (3.4)

r max
97{01,92---916)

3.4 Advantages of the One A™ary Formula-
tion

The one A*-ary formulation makes the goal identification decision in a single

BN, where LgPifi = g\C) = 1for g e {9192« '9n}- It captures the
interdependency among the communicative goals. Hence, the existence of one

goal affects that of other goals. It prevents a single goal query to be wrongly
1dentified with multiple goals, which is common in the N binary formulation.
This feature should improve the goal identification performance.

Since we adopt a stochastic approach inour NLU framework, we need to
estimate the probabilities by tallying the counts from the training set. We

apply Bayesian inference on the probabilities during parameters selection.
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Query:

Goals:

Query:

Goals:

Query:

Goals:

Query:

Goals:

Multiple Goal Class 1;
“i need to find a plane from boston to san francisco on friday,.
aircraft.aircraft-code, flight.flightJd
Multiple Goal Class 2:
“what's the airport atorlando”
airport.airport_code, airport.airport_name
Multiple Goal Class 3;
Mexplain the fare code "

class_of _service.class_description, fare_basis.fare_basis_code

Multiple Goal Class 4;
“give me the least expensive first class round trip ticket on u s
air from Cleveland to miami,.
flight.flightJd, fare.fareJd

Table 3.1: The four possible combinations of multiple goals and the corre-

sponding example queries in the ATIS domain.
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These processes require certain amount of additive and multiplicative oper-
ations. The amount of computation 1is in relation to the number of BNs,
goals and concepts involved. We develop a single BN only in the one N-avy
formulation. Hence the computation in the training stage can be highly re-
duced. These advantages will be proven in the next chapter with a number

of experiments.

3.5 Chapter Summary

This chapter describes how to make one AM-ary decision in a single Belief
Network, in order to identify the communicative goal(s) of an information-
seeking query. The naive BN structure captures the dependencies between
the communicative goals and the semantic concepts. The semantic informa-
tion 1s stored as statistical parameters, which are used for Bayesian inference.
We propose two goal 1dentification strategies: multiple selection strategy and
maximum selection strategy. By using these goal identification strategies, the
single BN can identify single goal, multiple goal aswell asOOD queries. The
one 1V-ary formulation has the capability of capturing the interdependency
among communicative goals and such relationships should enhance the goal

identification performance.

29



Chapter 4

Evaluation on the N Binary
and the One IV-ary

Formulations

In the previous chapters, we have presented the use of Belief Network (BN)
for natural language understanding (NLU) in the N binary and the one N-
ary formulations. In this chapter, we conduct experiments using the ATIS
corpora and compare the NLU performance between the two formulations.
We have three goal identifiers in total: (1) a suite of BNs modeled under
the N binary formulation, (i1) a single BN modeled under the one N-wry
formulation with multiple selection strategy and (iii) a single BN modeled
under the one iV-ary formulation with maximum selection strategy. We in-
troduce three evaluation methods - accuracy measure, macro-averaging and
micro-averaging — for measuring the goal identification performance. Each

evaluation method analyzes the goal identification performance from a differ-
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ent angle. Our experiments compare the two formulations on the (1) overall
goal 1dentification performance, (i1) out-of-domain rejection, (ii1) multiple

goal 1dentification and (1v) computation.

4.1 Evaluation Metrics

We have three different evaluation metrics for measuring the goal identifica-
tion performance. Thefirstone is the accuracy measure which is based on
the number of errors in the inferred goals of each query. However, this mea-
sure overlooks the correctly identified goal(s). Macro- and micro-averaging
are the evaluation techniques commonly used in text categorization [15, 44],
which measure the category assignments in terms of recall and precision.
Macro-averaging 1s a per-goal average which assigns equal weight to every
goal, regardless of 1ts frequency. Micro-averaging 1s a per-query average
which gives an equal weight to every query. The two averaging techniques
bias the results differently. Macro-averaging is influenced by the rare goals
while micro-averaging 18 influenced by the most frequent goals. The details
will be presented in subsections 4.1.2 and 4.1.3. We will use all these eval-
uation metrics in order to achieve a thorough understanding on each goal

1dentifier's performance.
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4.1.1 Accuracy Measure

The accuracy measure is an alignment measure in relation to the number of
insertion (INS), deletion (DEL) and substitution (SUB) errors [29 > 35]. Each
sentence in the training and test sets associates with its reference goal(s). To
score the goal identification performance, we align the hypothesized goal(s)
with the reference goal(s) and identify the errors. The definitions of the
errors and the example queries are shown inTable 4.1. The goal identification
accuracy 1s computed in Equation 4.1. To obtain the accuracy, we tally the
errors and the reference goals in the training or test sets. The accuracy is

negative if the number of errors is larger than the number of reference goals.

.1 #INS + #DEL + #SUB. INNO/ -
accuracy = (1 - ) x 100% (4.1)
ef erence-goals

4.1.2 Macro-Averaging

Macro-averaging evaluates the NLU goal identification performance as a cat-
egorization problem, which classifies a query with respect to a finite set of
goals, g e {9]_,02 ...OnY Each goal g is associated with a 2 x 2 contingency
table as shown inTable 4.2 to denote the number of queries in each situation.
Since our experiments are based on the ATIS domain, we have 12 per-goal
contingency tables in total (N = 12), to represent the 11 in-domain goals

and the OOD goal.
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Definition:
Query:

Reference goals:

Inferred goal:

Definition:
Query:

Reference goal:

Inferred goals:

Definition:
Query:

Reference goal:

Inferred goal:

Deletion error (DEL)
There 1s a missing reference goal.
““show me the cheapest first class round trip from new
york to miami”
fare.fareld, flight.flightJd

fare.fareJd (flight.flightJd is missing)

Insertion error (INS)
There 1s an additional inferred goal.
“give me the fares for round trip flights from Cleveland
to miami next Wednesday,,
fare.fareJd

fare.fareld, flight.flightld (additional)

Substitution error (SUB)

There 1s an incorrect inferred goal.

"? need the fares on flights from Washington to toronto
on a Saturday,,

fare.fareJd

flight.flightJd (incorrect)

Table 4.1: The definitions and examples of deletion, insertion and substitu-

tion errors.
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Reference = Yes Reference = No
Inferred = Yes ag by
Inferred — No Q ag

Table 4.2: A contingency table of a goal g, forg G {91,92 . -Qn}-

where

« (g is the number of queries correctly inferred as goal g\
« hg is the number of queries incorrectly inferred as goal g\
Cg 18 the number of queries incorrectly rejected from goal g\

« dg 1s the number of queries correctly rejected from goal g.

Macro-averaging computes recall (Equation 4.2) and precision (Equation
4.3) for every goal based on the corresponding per-goal contingency table.
Then, we average the performance scores over the number of goals (Equation
4.4, 4.5). F-measure with p = 11is used to combine the macro-recall and
macro-precision into a single measure. The F-value i1s our final score for the
performance. Since every goal has the same weight in the F-value regardless
of 1ts frequency, macro-averaging tends to over-emphasize the performance

on the rare goals.

[] =
av+ (S

P(g) = 4.3
dg + bg (4.3)
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recallMacro= E JN| EF (4) (4.4)

precisiouMacro = [1/7 9 n M 4.5)

4.1.3 Micro-Averaging

Micro-averaging calculates only one value of recall and precision to evaluate
the overall goal classification. A global contingency table is built by adding

the corresponding cells in the per-goal contingency tables. The micro-recall

(Equation 4.6) and micro-precision (Equation 4.7) are then computed over
all decisions. Likewise, we adopt 7 =1 in the F-measure to integrate recall
and precision, and obtain a F-value. Since every individual query has an

equal weight on the F-value, micro-averaging tends to over-emphasize the

performance on the most frequent goals.

vecallM~cro — A A — — (4.6)

precisiouMicro = A ~ 4.7)

4.2 Experiments

Our experiments are conducted with the ATIS-3 Class A sentences in the
training set, test set 1993 and test set 1994. We compare the goal identifi-

cation performance among three goal identifiers: (1) a suite of BNs modeled
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under the N binary formulation, (ii) a single BN modeled under the one N-
ary formulation with multiple selection strategy and (iii) a single BN modeled
under the one N-axy formulation with maximum selection strategy. Given a
query mixed with in-domain and out-of-domain (OOD) goals, the single BN
modeled under the one N-ary formulation with multiple selection strategy
can 1dentify both of them. However, the other two goal identifiers can only
1dent1fy the in-domain goal. Therefore, we divide the multiple goal queries

1nto two types:

« multiple in-domain goal,

in-domain goal mixed with OOD

Including the case where only a single goal exists and the case of OOD
goal, we have four types of query in all. The numbers of goals for each
query type in test set 1993 and 1994 are shown in Table 4.3 and Table
4.4 respectively. The numbers on the fourth row are different because only
the one N-siy formulation with multiple selection strategy can identify the
in-domain and OOD goals together. In order to achieve a fair comparison
among different goal 1identifiers, we do not use this type of queries in our
experiments. We compare the goal identifiers in terms of (1) overall goal
1dentification performance, (i1) out-of-domain rejection, (1i1) multiple goal
identification and (iv) computation. Before the goal identification process,
we set the parameters for the Belief Network dimensions and the thresholds,

which are described in subsections 4.2.1 and 4.2.2 respectively.
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Formulation

(strategy)

Single goal

(# queries: 395)
Multiple in-domain goal
(# queries: 8)
In-domain goal + OOD
(# queries: 10)

OOD

(# queries: 35)

ON THE N BINARY AND THE ONE

N binary One N-ary One N-ary
(multiple)  (maximum)
395 395 395
16 16 16
10 20 10
35 35 35

Table 4.3: The number of goals for the four types of query in the test set

1993, The numbers on the fourth row are different because only the one

1V-ary formulation with multiple selection strategy can identify in-domain

and 00D goals together.

Formulation

(strategy)

Single goal

(# queries: 399)
Multiple in-domain goal
(# queries: 6)
In-domain goal + OOD
(# queries: 2)

o]e]p)

(# queries: 37)

N binary One N-ary One N-ary
(multiple)  (maximum)
399 399 399
12 12 12
2 4 2
37 37 37

Table 4.4: The number of goals for the four types of query in the test set

1994- The numbers on the fourth row are different because only the one

1V-ary formulation with multiple selection strategy can identify in-domain

and O0OD goals together.
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4.2.1 Network Dimensions

Our experiments determined the numbers of concept nodes (M) in the BNs
based on the training data. We set a value of M for each goal identifier. We
varied the number of input concepts from 10 to the full set of 60 concepts.
We chose the value for M which gave the best goal 1dentification performance
or obtained less than 0.001 marginal improvement. We used micro-averaging
to evaluate the goal identification performance, instead of the other two
evaluation metrics, because of its simplicity in calculation.

For the N binary formulation, each BN has M concept nodes that map to
the concepts with the highest values of Information Gain relating to the BN's
goal. We tuned a single value of M for all BNs tokeep the formulation simple.
Figure 4.1 shows that an appropriate value touse for M is 50. For the one N-
ary formulation, we defined two goal identification strategies and applied each
of them to build a single BN. The results show that the F-value 1s optimal
at 60 concepts (see Figure 4.2) using multiple selection strategy. Figure 4.3
shows the trend of the F-values becomes stable beyond 55 concepts using
the max 1mum selection strategy, as the marginal improvement was less than
0.001. The single BN with maximum selection strategy has five concepts
fewer than that with multiple selection strategy. These five concepts do
not appear in the training set or only have few occurrences in the most
frequent goals. The goal inference concerns the existence of each goal class
and the single BN with maximum selection strategy contains more goals
classes. Therefore, these concepts are less important in the goal identification
using maximum selection strategy. Hence we developed the single BNs with

M = 60 and M = 55 corresponding to the strategies. There are more
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concepts 1nvolved in an one TV-ary formulated BN because it integrates all the
goals in a single BN. The selected concepts for each BN 1nboth formulations

are listed in Appendix D.

0.92

| o —

1 0,90 n Nst N Z

g 0.88

| 0.87

10 15 20 25 30 35 40 45 50 55 60

No. of input concepts

Figure 4.1: The F-values in the micro-averaging vary with the number of
the input concepts in the N binary formulation. The graph suggests that we

should use 50 concepts in each BN.

4.2.2 Thresholds

The N binary formulation and the one N-wry formulation with multiple se-
lection strategy require thresholds for the goal identification. We selected
the threshold values based on the training data. In the N binary formula-
tion, each BN makes a binary decision regarding the absence or presence of
the corresponding goal 1n a given query by comparing the aposterior prob-
ability with its threshold (*/J. Therefore, we tuned 11 thresholds, one for

each BN. The single BN makes one A*-ary decision with multiple selection
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0.92

100 15 20 25 30 35 40 45 50 55 60
No. of input concepts

Figure 4.2: The F-values in the micro-averaging vary with different network
dimensionalities in the one iV-ary formulation using multiple selection strat-

egy. The graph suggests that we should use M = 60 in the single BN.

093
| 091
% 0.89 N
S N N N
| 0.87
A /
.a 0.85
| Z
1 0.83

ez 1 1 1 1 1+ 1 1 1

10 15 20 25 30 35 40 45 50 55 60
No. of input concepts

Figure 4.3: The -«F-values in the micro-averaging vary with different network
dimensionalities in the one iV-ary formulation using maximum selection strat-

egy. The graph suggests that we should use M = 55 in the single BN.

40



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE
N-ARY FORMULATIONS -

strategy by comparing the aposterior probabilities with a relative threshold
{9XmaxP (G = Therefore, we set the value of 9.

We applied J7-measure to tune a threshold 9f. for each BN represent-
ing a goal Gi in the N binary formulation, as mentioned in Section 2.2.
The resulting thresholds of each goal are shown on Table 4.5 with example
queries. The thresholds vary considerably due to the sentences structure
of the corresponding goal. Queries with communicative goals such as air-
line.airline.name and airportairport name are generally simple and short sen-
tences. The relevant concepts are limited and they have high conditional
probabilities, P(JJk = [;G'1t = 1), collected from the training set. As a result,
the queries with these goals have high aposterior probabilities, P{G1i = 11C),
and hence we use high thresholds for classification. On the contrary, long
and complex sentences involve a wide range of concepts in different expres-
sions. Therefore, the conditional probabilities are comparatively smaller and
smaller aposterior probabilities are resulted. In this case, a smaller threshold
should be used for the goal classification.

For the one N-avy formulation, a relative threshold {9x maxP(G =
21C)) 1sneeded to capture multiple goals when using the multiple selection
strategy. Hence, we have to select an appropriate value for the parameter
6 using the training data. We varied the 9 from 0 to 1 and chose the value
which optimizes the performance in the multiple goal identification. We
evaluated the multiple goal identification performance based on F-measure
(with p = 1), which combines recall and precision. The results are shown on

Figure 4.4, which suggests that 0.3 is a suitable value.

We used the multiple goal identification performance for the parameter
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Goal (Threshold):
Example Query:
Goal (Threshold):
Example Query:

Goal (Threshold):
Example Query:
Goal (Threshold):
Example Query:
Goal (Threshold):
Example Query:
Goal (Threshold):
Example Query:
Goal (Threshold):
Example Query:

Goal (Threshold);
Example Query;
Goal (Threshold):
Example Query:

Goal (Threshold):
Example Query:

Goal (Threshold):
Example Query:

aircraftaircraft_code (0.78)

“show me the aircraft that Canadian airlines  uses,.
airline.airline_code (0.59)

“which airlines go from sanfrancisco to  Washington
by way of indianapolis,.

airline.airline.name (0.99)

“whatis h p"

airport.airport_code (0.97)

“what airport is at tampa"

airport.airport_name (0.99)

“whatisyyz"

class—of—service.class—description (0.99)

“what does y mean”

fare.fareJd (0.40) —
“how much does a first class round trip ticket from
Cleveland to miami on u s air cost”
fare_basis.fare_basis_code (0.99)

“what does fare code q oh mean”

flight.flightJd (0.26)

“show me the continental flights with meals which de-

part Seattle on Sunday for chicago,.
flight.flight-number (0.18)

“what are the flight numbers of the flights which go
from san francisco to Washington via indianapolis”
ground_service.city code (0.99)

“tell me about ground transportation at toronto™

Table 4.5: A threshold i1s tuned for each BN representing a goal in the N

binary formulation. An example query is listed with each goal to show the

threshold value varies with the sentence structure.
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selection, instead of the single goal identification performance, because there
are few multiple goal queries (38 out of 1564 queries) in the training set.
The F-values in the single goal identification tends to increase when the 9
varies from O to 1 (i.e. the ability of capturing multiple goals decreases).
It is because as the value of 9 increases, there are less single goal queries
wrongly identified with multiple goals and hence increases the single goal
identification performance. However, the BN loses the ability in capturing

multiple goals.

Figure 4.4: The F-values inmultiple goal identification vary with the 9 in the
one 1V-ary formulation using multiple selection strategy. The graph suggests

that 6 = 0.3 is a suitable value.

4.2.3 Overall Goal Identification

We measured the overall goal identification performance with the accuracy

measure, macro- and micro-averaging. The problem 1s devised as categoriz-
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ing a query into goal(s). We compared the performance of the N binary
formulation and the one 7V-aiy formulation with the multiple and maximum
selection strategies using test set 1993 and test set 1994. In this part of work,
we expanded our test sets by counting queries with multiple in-domain goals
multiple times, which 1s the same as the number of the in-domain goals. For
example, 1f a test query has two in-domain goals, we treat it as two single
goal queries in the evaluations. Thefigureshave been shown on Table 4.3
and Table 4.4 already. We do not evaluate the queries with mixed in-domain
and O0OD goals (row four), as we mentioned before. Therefore, we have 446

and 448 queries in test set 1993 and test set 1994 respectively.

Evaluation Metric 1: Accuracy Measure

Formulation N binary One 7V-ary One iV-ary
(strategy) (multiple) (maximum)
Test set 1993 1994 1993 1994 1993 1994

# DEL 3 “4 N3 4 3 2
# INS 43 27 4126 8 6
# SUB 37 47 A A 39
Total # errors 83 78 67 61 39 47
Goal identification &1.4% 82.6% 85.0% 86.4% 91.3% 89.5%
accuracies (fj) (fg)y(s&) (#E) (#) (1§)

Table 4.6: Comparing the goal identification accuracies of the N binary
formulation and the one iV-ary formulation with the multiple and max imum
selection strategies. The comparison 1s based on the numbers of deletion
(DEL), insertion (INS) and substitution (SUB) errors produced in test set
1993 and 1994.
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DEL INS SuB
Error types
* Nbinary *«One N-aiy (multiple) * One H-aty (maximum)

Figure 4.5: Comparing the numbers of deletion (DEL), insertion (INS) and
substitution (SUB) errors among the goal identifiers in the N binary for-
mulation and the one 1V-ary formulation with the multiple and maximum

selection strategies using test set 1993.
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Error types
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Figure 4.6: Comparing the numbers of deletion (DEL), insertion (INS) and
substitution (SUB) errors among the goal identifiers in the N binary for-

mulation and the one 1V-ary formulation with the multiple and maximum

selection strategies using test set 1994.
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The results in Table 4.6 show that the one TV-ary formulation gave improve-
ments over the N binary formulation in terms of the overall goal identification
accuracies. Figure 4.5 and 4.6 show the comparison of the numbers of dele-
tion, insertion and substitution errors among the goal identifiers using test
set 1993 and 1994 respectively. The one 7V-ary formulation using the maxi-
mum selection strategy had the highest goal identification accuracies, up to
9.9% higher than the N binary formulation. It is mainly due to the reduction

of insertion and substitution errors. The reasons are as follows:

1. Reduction of insertion errors.

The number of insertion errors is reduced up to 35 and 21 when we
migrated from the N binary formulation to the one 1V-ary formulation
using test set 1993 and 1994 respectively. It 1s because the goal iden-
tifier in the N binary formulation wrongly identified many single goal
queries with multiple in-domain goals. In the N binary formulation, a
query can be labeled as one of the 11 goals and the decisions are inde-
pendent of one another. However, in the one A*-ary formulation, the
goal probabilities = ¢g\C) are dependent as J*gPifi = g\C) = 1
forge {g\,+ <+ '9n} The confidence level of each goal is compared
among themselves for the most suitable classification (s). When the
correct goal has a high aposterior probability, the other goalswill have
small probabilities in order to maintain the sum of all probabilities
equal to one. Therefore, the interdependency among the goals pre-

vents multiple in-domain goals identified for a single goal query.

In the one N-aly formulation, the reduction of insertion errors us-

ing the multiple selection strategy is less than that using the maximum
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selection strategy. It is because the relative threshold {9 x maxF(G =
g\C)) in the multiple selection strategy is too low for some single goal
queries and we have too few multiple goal queries in the training set (38
out of 1564) for tuning the value of 9. The interdependency among the
goals 1n a single BN tends to increase the aposterior probability of one
goal and lower the aposterior probabilities of other goals. Therefore,
when we tune a » in the multiple selection strategy, the 9 has to be
small (i.e. 6x maxP(G = g\C) is low) in order to capture the multi-
ple goals. However, using a small relative threshold, some single goal
queries were wrongly identified with multiple goals. In comparison, the
single BN with maximum selection strategy does not need a threshold
because 1t has extra constraints (extended goal classes) tohelpmultiple
goal 1dentification. However, the extended goal classes can increase the

chance of confusion among a greater number of goal classes.

The effect of the interdependency among the goals is illustrated by
an example in Table 4.7. The N binary formulation wrongly inferred
the query with the goal flight.flightld (Gg) because the sentence con-
tains certain semantic tags, like ( FLIGHT) and <CITY_NAME>, which
are indicative of that goal. Hence, the aposterior probability of the goal
flight.flight]Jd was increased to 0.435. As the confidence levels of the
goals airline.airline_code (G2) and flight.flightid (Gg) are larger than the
corresponding thresholds, both goals were inferred. Figure 4.7 shows
the aposterior probabilities of each BN in the N binary formulation for

the example in Table 4.7.

However, statistics in the one AM-ary formulation captures the
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Query: "i would like to have the airline that flies between
toronto, detroit and saint louis"

Semantic tags: <puMMY> <CHUNK> <DUMMY> <AIRLINES>
({CHUNK)<FLIGHT> <PREP> <CITY_NAME>
<CITY_NAME_1> (CONNECTIVE)>
<CITY_NAME_2>

Reference goal: airline.airline.code

N binary formulation

Inferred goals: airline.airline.code {G2) (/)

(P(G2 = 1|C) = 0.968 > 9f, = 0.59)
flight.flight)d (Gg) (INS)
{P{Gg = 1\C) = 0.435 > Of, = 0.26)

One iV-ary formulation (multiple)
Inferred goal: airline.airline.code ({3) (/)

{P{G =92\1C) = 0.992)
One iV-ary formulation (maximum)
Inferred goal: airline.airline.code (4) (/)
(P(G = = 0.992)
Table 4.7: An example 1llustrating a single goal query wrongly identified as
multiple in-domain goals in the N binary formulation. Hence, an insertion

error (INS) was produced. The one 7V-ary formulation labeled the query

with the correct goal using either multiple or max imum selection strategies.
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fact that the goals aifdineaidine_.code {P{G = (72IC) = 0.992) and
flightflightdd {P{G = gg\C) = 0.008) are seldom together, and the
input concepts are more likely to appear in airline.ailine code. In Fig-
ure 4.8 and 4.9, the graphs show the aposterior probabilities in the one
V-ary formulation using the multiple and maximum selection strate-
gies respectively for the example queries in Table 4.7. The goals with
probabilities lower than 10—3 are not shown on the graphs. In Fig-
ure 4.8, the goal aifline.airline_code ({/}) obtained the highest aposterior
probability at 0.992 and the relative threshold became 0.298. The in-
terdependency of the goals prevents an insertion error in the one 7V-ary
formulation using multiple selection strategy. In Figure 4.9 the goal
airline.airline.code (/%) got the maximum aposterior probability. Ac-
cording to the maximum selection strategy, ailineairline-code was the
only goal inferred for the example query and hence we obtained the

correct result.
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0.968 > 0.59

6f]>
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1’ 06 0.435>0.%6
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Figure 4.7: The graph shows the aposterior probabilities of each BN in the
N binary formulation for the example in Table 4.7, except the goals with
probabilities lower than 10"A. Goals aiineairline—code (G2) and flight.flightJd

(Gg) voted positive as their probabilities is larger than the corresponding

thresholds (labeled as P(j31= 11(5) > ~at the top of the bars).
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Figure 4.8: The graph shows the aposterior probabilities in the one 7V-ary
formulation using the multiple selection strategy for the example in Table
4.7. The goals with probabilities lower than 10—3 are not shown on the
graph. The interdependencies among the goals and the relative threshold
{0XmaxP(G = g\C) = 0.298) prevent an additional goal flight.flight]d {9Q)

being inferred.
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Figure 4.9: The graph shows the aposterior probabilities in the one N-aiy
formulation using the maximum selection strategy for the example in Ta-
ble 4.7, except the goals with probabilities lower than 10—3. The goal air-
line.airline.code (4/5) has the max imum probability and we labeled it as the

query's goal.
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2. Reduction of substitution errors.
The number of substitution errors was high in the N binary formula-

tion. We can divide the substitution errors into three types:

(I) an 1n-domain goal substitutes for the OOD goal,
(II) the OOD goal substitutes for an in-domain goal,

(III) an 1in-domain goal substitutes for another in-domain goal.

Formulation N binary One N-ary One 7V-ary

(strategy) (multiple)  (maximum)

Test set 1993 1994 1993 19~/ 1993 1994
# type | 27 10 15 10 19
# type Il 17 3 5 3 8
# type Il 10 3 10 11 13 12
Total # SUB 37 47 31 28 39

Table 4.8: Distribution of the three types of substitution (SUB) errors - (I) an
in-domain goal substitutes for the OOD goal, (II) the OOD goal substitutes
for an in-domain goal and (III) an 1n-domain goal substitutes for another in-
domain goal - in the N binary formulation and the one AM-ary formulation

using multiple and max1mum selection strategies in test set 1993 and 1994.

Table 4.8 shows the distribution of the substitution errors in the N
binary formulation and the one 1V-ary formulation using the multiple
and maximum selection strategies in test set 1993 and 1994. We found
that the N binary formulation generated more substitution errors re-

lated to the OOD goal (type I and II) than the one A/'-ary formulation
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type | type Il type 11l
Substitution error types

* N binaiy ¢ One N-ary (multiple) e One N-ary (maximum)

Figure 4.10: Comparing the numbers of substitution errors - (I) an in-domain
goal substitutes for the OOD goal, (II) the OOD goal substitutes for an in-
domain goal and (III) an in-domain goal substitutes for another in-domain
goal — among the goal identifiers in the N binary formulation and the one

N-ary formulation with the multiple and maximum selection strategies using

test set 1993.
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Figure 4.11: Comparing the numbers of substitution errors - (I) an in-domain
goal substitutes for the 00D goal, (II) the OOD goal substitutes for an in-
domain goal and (III) an in-domain goal substitutes for another in-domain
goal — among the goal identifiers in the N binary formulation and the one

1V-ary formulation with the multiple and max imum selection strategies using

test set 1994.
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did. Figure 4.10 and 4.11 compare the numbers of the three types of
substitution errors among the goal identifiers using test set 1993 and

1994 respectively.

Recall that the N binary formulation rejects a query as OOD

when all BNs vote negative against it. We found that the suite of
BNs fail to reject an OOD query if it contains some semantic tags
that are indicative of an in-domain goal. The reason i1s similar to the
N binary formulation wrongly identifying multiple in-domain goals for
a single goal query. The query in Table 4.9 is an example of type
I substitution error, which contains tags <FROM>, <CITY_NAME>,
<TO> and <ciTY_NAMEI >that are indicative of an in-domain goal
flight.flightJd. The tags <MEAL> and <AIRLINE_NAME> cannot be the
negative evidence because they are not the selected input concepts in
the BN corresponding to the goal flightflightdd. The aposterior prob-
ability of the in-domain goal flightflightydd was 0.33 and became larger
than its corresponding threshold 0.26. The query was wrongly labeled
with the in-domain goal and generated a substitution error using the N
binary formulation. However, the one N-ary formulation trained a goal
state to represent the OOD goal and built the interdependency among
all goals. In the example, the OOD goal got the max1mum aposterior
probabilities at 0.71 in the one TV-ary formulation using both goal iden-
tification strategies. It was directly labeled as the query's goal by the
maximum selection strategy. As there was no other goal with a prob-
ability larger than the relative threshold 0.21 in the multiple selection

1 The second city name in a query is tagged as <CITY_NAME_1>.
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Query: “what meals are served on american flight
eight eleven from tampa to milwaukee™

Semantic tags: <wHAT> <MEAL> CCHUNK)>
<SERVE> <PREP> <AIRLINE_NAME>
<FLIGHT_NUMBER> <FROM >

<CITY_NAME> <TO> <CITY_NAME_1 >
Reference goal: food.service, meal_code (00D)
N binary formulation
Inferred goal:flight.flightdd (Gg) (SUB)
PjGd = 1\C) = 0.33> Of, = 0.26
One N-ary formulation (multiple)
Inferred goal: OOD 0;i2)(/)
P{G ={/52 [ 6) = 0.71 (maximum)
(no other aposterior probability 1s larger than
the relative threshold, 0.71 x 0.3= 0.21)
One iV-ary formulation (maximum)

Inferred goal:OOD {qiq) (/)
P{G = 7161C) = 0.71 (maximum)

Table 4.9: An OOD query wrongly labeled with an in-domain goal in the
N binary formulation and generated a substitution (SUB) error. The one

V-ary formulation rejected it successfully with the multiple and max imum

selection strategies.
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Query: "and now show me ground transportation that
i could get in boston late night"

Semantic tagS: ~ CONNECTIVE><DAY_NAME> <DUMMY>
CTRANSPORT) <CHUNK > <PREP>

<CITY_NAME>{MODIFIER)PERIOD)
Reference goal: ground-service.city—code (Gn)
N binary formulation
Inferred goal: 00D (SUB)
P(Gi1 = 1lg): 0.83< Of,, = 0.9 -
One N-ary formulation (multiple)

Inferred goal: ground_service.city_code (/)
P[G = 0.99 (max1imum)

One 7V-ary formulation (maximum)
Inferred goal: ground_service.city_code (/)

P[G="11"0.99 (maximum)
Table 4.10: An example query wrongly labeled with an OOD goal
in the N binary formulation due to the high threshold of the goal
ground servicecity.code. [t generated a substitution (SUB) error. The one
N-ary formulation correctly identified the in-domain goal with the multiple

and max imum selection strategies.

strategy, the OOD goal was also correctly inferred.

Type II substitution error occurs when a single goal query is
wrongly identified as OOD. The N binary formulation fails to identify
an in-domain goal when the corresponding threshold i1s too high. The
one 1V-ary formulation trained a goal state to represent the OOD goal.
For the goal identification, one or none threshold is required when we

use multiple and max 1mum selection strategy respectively. An example
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inTable 4.10 shows that the threshold of the goal ground_service.city code
1s too high for the query, and thus the N binary formulation failed in
1dent1fying the correct goal. The BN using the one 1V-ary formulation
with multiple selection strategy could identify the correct goal because
the goal ground-servicecity.code got a high aposterior probability at
0.99 and i1t was 1impossible to have another goal inferred. The single
BN using maximum selection strategy could also identify the correct
goal because the goal ground servicecity code got the maximum apos-

terior probability.

Type III substitution error occurs when an in-domain goal substi-
tutes for another in-domain goal. We found that the number of type III
substitution errors is larger in the one 1V-ary formulation using maxi-
mum selection strategy. This is because the other two goal identifiers
had more insertion errors which covered some substitution errors. Ta-
ble 4.11 1s an example showing that the N binary formulation and the
one 7V-ary formulation using the multiple selection strategy incorrectly
inferred that a single goal query has multiple goals. As one of the
multiple goals is the same as the reference goal, an insertion error was
generated. However, the one 1V-ary formulation using the maximum
selection strategy inferred a wrong single goal and hence a type III

substitution error was generated.
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Query: "give me the fares for round trip flights from
Cleveland to miami next Wednesday"

Semantic tags: <CHUNK> <DUMMY>  <FARE> <PREP>
<ROUND_TRIP> <FLIGHT> <FROM >
<CITYJSFAME> <TO> <CITY_NAME_1>

<MODIFIER > <DAY_NAME>
Reference goal: fare.fareJd (Gy)
N binary formulation
Inferred goals: fare.fareJd (G7) (/)
P[G7 = NC) =0.796 > Of,= 0.40
flight.flightld (Gg) (INS)
= 11C) = 0.99 > 0Of, = 0.26
One iV-ary formulation (multiple)
Inferred goals: fare.faredd (¥7)( /)
= gj1C) = 0.516 (maximum)
flight.flightJd (gg) (INS)
P{G =9gMNC) = 0.434 > 0.3x 0.516= 0.15
One N-ary formulation (maximum)
Inferred goal:flight.flightJd ({/5) (SUB)
= gMC) = 0.516 (maximum)

Table 4.11: An example query shows that insertion errors can cover some sub-
stitution errors. The N binary formulation and the one TV-aiy formulation us-

ing the multiple selection strategy incorrectly inserted the goal flight.flightid.
The one A*-ary formulation using the max imum selection strategy got a single

incorrect goal only and generated a substitution (SUB) error.

60



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE
N-ARY FORMULATIONS -

Evaluation Metric 2: Macro-Averaging

Formulation N binary One N-a.cy One N-ary
(strategy) (multiple)  (maximum)
Test set 1993 1994~ 1993 1994 1993 1994

recallMacro 0.89 0.67 0.92 0.84 0.9C 0.75
precisionMacro 0.77 0.55 0.77 0.65 0.88 0.63
F-value 0.83 0.6l 0.84 0.74 0.89 0.67

Table 4.12: Comparing the overall goal identification performance of N bi-
nary formulation and the one N-ory formulation with the multiple and max-
imum selection strategies using macro-averaging. The results show that the

one 7V-ary formulation improved over the N binary formulation.

We compared the performance of the N binary formulation and the one
N-ary formulation using the multiple and maximum selection strategies by
macro-averaging. The recall and precision of each goal in the N binary
formulation and the one AM-ary formulation using test set 1993 and 1994 are
listed in Appendix E. The overall macro-averaging results are tabulated in
Table 4.12 which shows that the one 7V-ary formulation improved over the N
binary formulation. Figure 4.12 and 4.13 compare the recalls, precisions and
F-values among the goal identifiers using test set 1993 and 1994 respectively
in macro-averaging. The improvement 1S up to 6% 1in test set 1993 and 13%
in test set 1994.

The average of the goal classification performance is higher in the one
N-ary formulation, regardless of the goal's frequency. It is because the inter-
dependency among the goals 1s effective for selecting the most suitable goal(s)

for a given query, as mentioned before. The large numbers of insertion and
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Figure 4.12: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one 7V-ary formulation with

the multiple and maxi1mum selection strategies using test set 1993 in macro-

averaging.
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Figure 4.13: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one N-ary formulation with

the multiple and max imum selection strategies using test set 1994 in macro-

averaging.
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substitution errors in the N binary formulation also lower the recall and
precision in some goals. Therefore, the lower recallMacro and precisionMacro

were obtained in the N binary formulation.

Evaluation Metric 3: Micro-Averaging

Formulation N binary One N-aiy  One N-ary
(strategy) (multiple)  (maximum)

Test set 1993 1994 1993 199" 1993 1994

# reference goals (A) 446 448 446 448 446 448
# inferred goals (B) 486 471 484 470 451 452
# correctly inferred goals (C) 406 397 420 413 415 407
recal IMicTo (C/A) 0.91 0.8 094 092 093 0.9]
precisioriMicro (C/B) 0.84 0.8 0.87 0.8 0.92 0.9
1"-value 0.87 0.86 0.9 0.9 093 0.9

Table 4.13: Comparing the overall goal identification performance of N bi-
nary formulation and the one 1V-ary formulation with the multiple and max-
1mum selection strategies using micro-averaging. The results show that the

one 1V-ary formulation improved over the N binary formulation.

We alsocompared the performance of the goal identifiers by micro-averaging.
The results are tabulated in Table 4.13 which showed that the one A/'-ary
formulation improved over the N binary formulation up to 6% 1in test set
1993 and 4% 1n test set 1994. The results are consistent with the accuracy
measure and macro-averaging. Figure 4.14 and 4.15 compare the recalls,
precisions and F-values among the goal identifiers using test set 1993 and
1994 respectively in micro-averaging. The improvement is also due to the

reduction of insertion and substitution errors in one 1V-ary formulation. That
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Figure 4.14: Comparing the recalls, precisions and F-values among the goal
1dentifiers in the N binary formulation and the one 1V-ary formulation with
the multiple and maximum selection strategies using test set 1993 in micro-

averaging.

increases the numbers of correctly inferred goals (rowfive)and decreases
the numbers of inferred goals (row four). Therefore, the recallMicro and
precision Micro were higher in the one 7V-ary formulation and directly led
to the higher F-values. The one 7V-ary formulation with max imum selection
strategy had better performance than the multiple selection strategy because
the imperfect relative threshold increased the insertion errors. We found
that the F-values in micro-averaging were higher than those in the macro-
averaging possibly because we selected the network dimensions (M) using
micro-averaging. Moreover, the goal flightflight,d have the largest numbers
of queries in test set 1993 (301 out of 448) and test set 1994 (342 out of 444).
The recalls and precisions of this goal were higher than 0.96 in both test sets.

The good performance of this high frequency goal led to the higher F-values
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Figure 4.15: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one N-ary formulation with
the multiple and maximum selection strategies using test set 1994 inmicro-

averaging.

1n micro-averaging.

4.2.4 Out-Of-Domain Rejection

We compared the formulations in terms of appropriate OOD rejection using
the test sets. The results were analyzed in recall, precision and F-measure
with p = 7. (see Table 4.14). Figure 4.16 and 4.17 compare the recalls, pre-
cisions and F-values among the goal identifiers using test set 1993 and 1994
respectively in 00D rejection. We can see that the one N-aiy formulation
improved over the N binary formulation up to 13% for test set 1993 and 34%
for test set 1994. It isdue to the reduction of substitution errors related to

the OOD goal, as we mentioned in the previous subsection 4.2.3.
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Formulation N binary One 7V-ary One N-ary
(strategy) (multiple)  (maximum)
Test set 1993 1993 1994 1993 1994
# 00D queries (A) 35 37 35 37 35 37
.# inferred OOD queries (B) 40 27 34 31 30 26
# correctly inferred 24 10 25 22 25 18
00D queries (C)
recall (C/A) 0.6 0.27~ 0.71 0.59 0.71 0.49
precision (C/B) 0.60 0.37~ 0.74 0.71~ 0.83 0.69
F-value 0.64 0.31 072 0.65 0.77 0.57

Table 4.14: Comparing the OOD rejection of the N binary formulation and
the one 7V-ary formulation with the multiple and max imum aposterior strate-

gies. The results suggest that one N-ary formulation improved over the N

binary formulation.
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Figure 4.16: Comparing the recalls, precisions and F-values among the goal
1dentifiers in the N binary formulation and the one N-a.ry formulation with

the multiple and maximum selection strategies using test set 1993 in OOD

rejection.

66



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE
N-ARY FORMULATIONS -

0.80
0.70 -
—_—)a
0t
00 ~~"H _HA1 _L ANNH O

———— j—

Recall Fltecisiioin. 7 F-vake T T
IPN . -« Oe (qmlt) - Qa  {fmngn't I
Figure 4.17: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one iV-ary formulation with
the multiple and maximum selection strategies using test set 1994 in 00D

rejection.

4.2.5 Multiple Goal Identification

We also analyzed the performance in multiple goal identification based on
recall, precision and F-measure (with 13= 1). The results are tabulated in
Table 4.15. Figure 4.18 and 4.19 compare the recalls, precisions and F-values
among the goal identifiers using test set 1993 and 1994 respectively in mul -
tiple goal identification. The results suggest that the one 1V-ary formulation
using maximum selection strategy has the best multiple goal classification
performance, which outperforms the N binary formulation up to 30% for
test set 1993 and 39% for test set 1994. It is because the interdependency
among the goals is effective in reducing insertion errors in the one N-oiy
formulation, as mentioned subsection 4.2.3. However, the 6 in the relative

threshold (9 x maxP (G = 91C)) of the multiple selection strategy was tuned
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too low for some single goal queries. This increases the number of inferred
multiple goal queries (row five) in the one 1V-ary formulation using multiple

selection strategy.

Formulation N binary One N-ary  One N-ary
(strategy) (multiple)  (maximum)
Test set 1993 199T 1993 1994 1993 1994
# MG queries (A) 8 6 8 6 8 6
# 1inferred MG queries (B) 48 29 46 28 13 10
# correctly inferred 5 2 5 2 5 4
MG queries (C)
recall (C/A) 0.63 0.33 0.63 0.33 0.63 0.67
precision (C/B) 0.10 0.07 0.11 0.07 0.38  0.40
F-value 0.18 0.11 0.19 0.12 0.48 0.50

Table 4.15: Experimental results comparing the multiple goal (MG) 1iden-
tification of the N binary formulation and the one A*-ary formulation with

multiple and maximum aposterior strategies.

4.2.6 Computation

Since we adopted a stochastic approach for our NLU framework, computa-
tional costs are inevitable. When we train BNs, we estimate the probabilities
by tallying the counts from the training data. When the BNs infer query's
goal(s), they perform Bayesian inference. The one 1V-ary formulation requires
a single BN while the N binary formulation requires 11 BNs. We compare

the two formulations in terms of the number of additive and multiplicative
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Figure 4.18: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one 7V-aiy formulation with
the multiple and max imum selection strategies using test set 1993 in multiple

goal identification.
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Figure 4.19: Comparing the recalls, precisions and F-values among the goal
identifiers in the N binary formulation and the one N-ary formulation with
the multiple and max imum selection strategies using test set 1994 in multiple

goal identification.
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operations”. We found that the amount of computation i1s highly reduced
during training and testing as we migrate from the N binary formulation to

the one 1V-ary formulation. The results are tabulated on Table 4.16.

Formulation One N-ary (multiple) One N-ary (maximum)
Stage training testing training testing
Operations reduced 94% 70% 93% 47%

Table 4.16: The amount of computation is reduced during training and test-
ing as we migrate from the N binary formulation to the one N-ary formula-

tion.

4.3 Chapter Summary

This chapter describes our evaluation on the N binary and the one N-dJj
formulations. We introduced three evaluation metrics - accuracy measure,
macro- and micro-averaging. We used all of them to evaluate the goal identi-
fication performance in order to have a thorough understanding on each goal
identifier's performance. The experiments are based on the ATIS corpora.
We developed 11 BNs using the N binary formulation and two single BNs
for the one 1V-ary formulation with respect to the multiple and max imum se-
lection strategies. Both formulations, accompanied with their strategies, can
handle single goal, multiple goal and OOD queries. The experimental results
showed that the one A/'-ary formulation improved over the N binary formula-

tion in (1) overall goal identification performance, (i1) out-of-domain rejection

2 The two formulations were implemented with different platforms. The N binary
formulation was implemented with Hugin software while the one N-ary formulation was
implemented with C program only. Therefore, we cannot directly compare the computa-
tion in term of operation time.
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and (ii1) multiple goal identification. This is mainly due to the interdepen-
dency among the goals in the one iV-ary formulation as YAg P{G =g\C) =1
forg G w2 *+ + -on-  This feature reduces the number of insertion and
substitution errors. The amount of computation is reduced over 90% in the
training and up to 70% in the testing stage when we migrate from the N
binary formulation to the one 7V-ary formulation. Our experiments also sug-
gested that the one 7V-ary formulation have a better NLU performance in

general when using the maxi1mum selection strategy.
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Portability to Chinese

We have conducted experiments to compare the natural language under-
standing performance of the Belief Network framework inmaking N binary
decisions and one N-ary decision, using the English ATIS corpora. We found
that the one N-aly formulation using the maximum selection strategy has
the best goal identification performance. In this chapter, we attempt to apply
this formulation to Cantonese Chinese. The experiments are still based on
the ATIS domain inorder todemonstrate the language portability. We eval-
uate the performance in terms of (1) overall goal identification performance,

(11) out-of-domain rejection and (ii1) multiple goal identification.

5.1 The Chinese ATIS Domain

We 1nvestigate the language portability of using Belief Network (BN) innat-
ural language understanding (NLU). We have manually translated the Class
A sentences of the ATIS-3 corpora, query by query from English to Chinese.

The Chinese translation is expressed in spoken Cantonese style. Table 5.1
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shows three examples of the translated Chinese queries.

Single goal example

Original query: “flights on friday from newark to tampa™
Translated query:  “&Hi7 A4 T2 HIH PR
Goal: flight.flightJd

Multiple goal example
Original query: “give me the least expensive first class round trip
ticket on u s air from Cleveland to miami”
Translated query:  “FRAHZESE BT 2= H oo B 5K ] 25 48 ) o i - R B

FAR A AL
Goals: flight.flightJd, fare.fareJd

Out-of-domain (OOD) example
Query: “how many first class flights does united have leav-
ing from all cities today™
Translated query: “5 HARZHBEEHTZE RIS HUELIR”
Goal: count-flight (00D, count—flight is not selected as in-

domain)

Table 5.1: Single goal, multiple goal and OOD examples of translated Can-

tonese Chinese sentences from the ATIS-3 Class A training corpus.

5.1.1 Word Tokenization and Parsing

The Chinese language has no explicit delimiter for word boundaries. Hence,
the translated queries on Table 5.1 are in form of consecutive Chinese char-
acters. We tokenize each Chinese query into words by a forward maximum-
matching algorithm using a Cantonese lexicon, CULEX [13]. We extended

the lexicon with the city names and airport names that we found in the
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ATIS-3 training set. After that, the words are parsed into semantic concepts
using hand-designed grammar rules (listed on Appendix C). The sequence
of semantic concepts form the input to our BN. Table 5.2 is an example to
show the processes of word tokenization and parsing.

We have 64 semantic concepts for the Chinese ATIS. In comparison, En-
glish ATIS has 60 semantic concepts. There are some semantic concepts
defined for both English and Chinese ATIS, such as <city.ANAME> and
<AIRLINE-NAME ) - in order to obtain the semantic information in common.
However, some tags are designed for English or Chinese ATIS only. For
example in Table 5.2, <FL1GHT_TYPE> (row five) is an unique tag for the
Chinese query to capture “Ff%" (the flights in the morning) while English
query usesJ FLIGHT O andJ PER I Odppariate positions (row two).

5.2 Experiments

Our experiments are based on the Chinese ATIS-3 Class A sentences in the
training set, test set 1993 and test set 1994. We prepared the corpora by word
tokenization and parsing as mentioned earlier. The BN adopts the one N-
ary formulation using the maximum selection strategy and applies Bayesian
inference as it does in English. One AM-ary decision is made by choosing
the goal g, g € {91,92 ¢« - Pie}, with the maximum aposterior probability,
P{G = 91C). We firstdecide the parameter for the network dimension.
After that, we use the trained BN for the goal identification. We compare
the NLU performance with the same formulated BN in English in terms of
(1) overall goal identification performance, (i1) out-of-domain rejection and

(111) multiple goal 1dentification.
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Original query: “give me the meal flights departing early Saturday
morning from chicago to Seattle nonstop,.

Semantic conceptS: © CHUNK)<DUMMY> <MEAL> <FLIGHT>

(English) <FROM > (MODIFIER) <DAY_NAME>
<PERIOD > <FROM > <CITY_NAME> <TO>

<CITY_NAME_1> <STOPS>

Translated query: “IREE R ZhnEF B ARG HE E A TR R B

~

Word tokenization: WIE RN Z o 'R PR E /

AR | B/ 1%
Semantic concepts: © QuEeRryY) <DAY-NAME> <CITY_NAME>
(Chinese) S STOPS) <CITY_NAME ) (CHUNK)

<MEAL> <CHUNK> <FLIGHT_TYPE>

Goal: flight.flightJd

Table 5.2: An example illustrating the processes of word tokenization and

parsing.
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5.2.1 Network Dimension

To determine the number of input concepts (M) which has the highest In-
formation Gain with the single BN, we varied M from 10 to the full set of
64. We evaluated the goal identification performance for each value of M by
micro-averaging. The experiments were conducted with the training data.
We selected the value for M which gives the optimal F-value or has less than
0.001 marginal improvement. The results are plotted on Figure 5.1 which
suggests the most suitable value for M is 55. The network dimension is the
same as we selected for the single BN in the English ATIS domain using
the same goal identification strategy (maximum selection strategy). The se-
lected concepts for the single BN in the Chinese ATIS domain are listed in

Appendix D.

0.56 jl-
054 —/

0.82

L= > == =

10 IS 20 25 30 3S #I 45 SO 55 60 6

No. of input concepts

Figure 5.1: The F-values in the micro-averaging vary with the number of
the input concepts in the one 7V-ary formulation. The results suggest that

we should use 55 concepts in the single BN for the Chinese ATIS domain.
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5.2.2 Overall Goal Identification

We evaluated the overall goal identification performance of the Chinese ATIS
queries by the accuracy measure, macro- and micro-averaging. We compared

the results between the English and Chinese using test sets 1993 and 1994.

Evaluation Metric 1: Accuracy Measure

Language Chinese English
Test set 1993 1994 1993 1994
# DEL 3 3 3 2
ANINS 8 6 8 6
# SUB 41 28 39
Total # errors 43 50 39 47

Goal identification 90.4% 88.8% 91.3% &89.5%
. /403n /398W J407TW 7~ 401.
accuracies (hiit) (8 liis)

Table 5.3: Comparing the goal identification accuracies in Chinese and En-
glish using the one 1V-ary formulation with maximum selection strategies.
The comparison is based on the number of deletion (DEL), insertion (INS)

and substitution (SUB) errors produced in test sets 1993 and 1994.

The overall goal identification accuracies of the Chinese and English ATIS
queries are tabulated in Table 5.3. Figure 5.2 and 5.3 show the comparison
of the numbers of deletion, insertion and substitution errors between Chinese
and English using test sets 1993 and 1994 respectively. We found that the
accuracies 1n Chinese degraded by less than 1%. This i1s mainly due to
the increase of the substitution errors. The degradations came from the

Chinese expressions containing more semantic concepts which can lead to an
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Figure 5.2: Comparing the numbers of deletion (DEL), insertion (INS) and

substitution (SUB) errors between Chinese and English using the one 7V-ary

formulation with max imum selection strategies using test set 1993.
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Figure 5.3: Comparing the numbers of deletion (DEL), insertion (INS) and

substitution (SUB) errors between Chinese and English using the one 1V-ary

formulation with maximum selection strategies using test set 1994.
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incorrect goal inferred. Table 5.4 is an example which illustrates this effect.
The Chinese query has an extra concept ( FUGHT ) which is indicative to the
goal flight.flightdd As a result, the BN inferred the Chinese query to the goal
flight.flightdd instead of airline.airline.code. However, if the English query is
changed to “which airlines have flights from baltimore to san francisco™ > we
will have an extra concept (FLIGHT) and the BN will infer to the wrong
goal flight.flightJd.

Original query: “list which airlines fly from baltimore to san
francisco"

Semantic concepts: - wHiIcH) <AIRLINE> <FROM >

(English) <CITY_NAME> <TO0> <CITY NAME_ 1>

Reference goal: airline.airline.code

Translated query: CEEMEAE AL DA ERRE
=&

Semantic concepts: <Quervs <AIRLINE> <CHUNK>

(Chinese) (FLIGHT) <FROM>cciTY—-NAME)><TO>

<CITY_NAME_1>

Inferred goal: flight.flightdd (SUB)
Table 5.4: An example shows that the Chinese translation contains an extra

concept <FLIGHT whicHed to an incorrect goal inferred. A substitution
error in the Chinese, which lowered the goal identification accuracies in the

Chinese ATIS.

Evaluation Metric 2: Macro-Averaging
We compared the goal i1dentification performance of the single BN in Chi-
nese and English by macro-averaging. The results are shown on Table 5.5.

The recall and precision of each goal using test sets 1993 and 1994 are listed
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Language Chinese English

Test set 1993 1994 1993 199~
recallmacro 0.0 0.76 0.9 0.75
precision Macro 0.76  0.65 0.8  0.63
F-value 0.83 0.70 0.89 0.69

Table 5.5: Comparison of the overall goal identification performance in Chi-

nese and English using macro-averaging.

in Appendix E. Figure 5.4 and 5.5 compare the recalls, precisions and F-
values between Chinese and English using test sets 1993 and 1994 respec-
tively. Macro-averaging tends to over-emphasize the performance on the
rare goals. The results show the F-value inmacro-averaging of test set 1993
is lower in Chinese because the rare goals, such as aidineaidine—code and
airportairport—name, had lower precisions. However, the rare goals in test
set 1994 had equal performance in Chinese and English and some high fre-
quent goals had better performances in Chinese. Therefore, the F-values in

macro-averaging of test set 1994 are a little bit higher in Chinese.

Evaluation Metric 3: Micro-Averaging

We also evaluated the overall goal identification in test set 1993 and test
set 1994 by micro-averaging. The results are tabulated in Table 5.6, which
shows that the performance in Chinese is degraded by less than 1%. Figure
5.6 and 5.7 compare the recalls, precisions and F-values between Chinese
and English using test sets 1993 and 1994 respectively. It 1S consistent with
the results in the accuracy measure, even we measured in a query-based

averaging algorithm. It 1s because the performances of the high frequent
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0.95
+ Chinese Recall Precision F-value
* English

Figure 5.4: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one iV-ary formulation with maximum selection

strategies using test set 1993 in macro-averaging.
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Figure 5.5: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one N-ary formulation with maximum selection

strategies using using test set 1994 in macro-averaging.
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Language Chinese English

Test set 1993 199~ 1993 199~
# reference goals (A) 446 448 446 448
# 1nferred goals (B) 451 451 451 452
# correctly inferred goals (C) 411 404 415 407
recall Micro (C/A) 0.922 0.902 0.930 0.908
precisioriMicTo (C/B) 0.911 0.896 0.920 0.900
F-value 0.916 0.89 0.925 0.904

Table 5.6: Comparison of the overall goal identification performance in Chi-

nese and English using micro-averaging.
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Figure 5.6: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one AM-ary formulation with maximum selection

strategies using test set 1993 in micro-averaging.
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Figure 5.7: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one N-ary formulation with maximum selection

strategies using using test set 1994 in micro-averaging.

goal, flight.flight]ld, were nearly the same in the English and Chinese test

sets.

5.2.3 Out-Of-Domain Rejection

We have 35 and 37 00D queries in the test sets 1993 and 1994 respectively.
We analyzed the rejection performance in terms of recall, precision and F-
measure with p = 1. Results on Table 5.7 show that the OOD rejection in
Chinese is degraded in test set 1993 but it is better than inEnglish in test set
1994. Figure 5.8 and 5.9 compare the recalls, precisions and F-values between
Chinese and English using test sets 1993 and 1994 respectively. We found
that the difference in performance 1s due to the different hand-defined English
and Chinese grammar rules, which are used for semantic tagging. There are

some words in the English grammars that do not have corresponding coun-
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Language Chinese English

Test set 1993 199~ 1993 19M
# 00D queries (A) 35 37 35
# 1inferred 00D queries (B) 24 32 30 26
# correctly inferred OOD queries (C) 22 26 25 18
recall (C/A) 0.63 0.70 0.71 —0.49
precision (C/B) 0.92 0.81 0.83 0.69
F-value 0.75 0.75 0.77 0.57

Table 5.7: Comparing the OOD rejection in Chinese and English based on

recall, precision and F-measure {/3 =1).
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Figure 5.8: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one AM-ary formulation with maximum selection

strategies using test set 1993 in 00D rejection.
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Figure 5.9: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one N-ary formulation with maximum selection

strategies using using test set 1994 in OOD rejection.

terparts in the Chinese grammars. As a result, missing some semantic tags in
the Chinese queries that helps to infer OOD goal. An example on Table 5.8
illustrates this effect. The missing semantic concept ( TRANSPORT) , which
is indicative of an in-domain goal ground servicecity code, helps identify the
00D goal in the Chinese query. However, we found that the OOD goals
in test sets 1993 and 1994 are not the same. There are seven queries with
ground_serviceground-fare (00D) goal in test set 1994 but no query with this
goal 1n test set 1993. Therefore, the difference in grammar rules does not

benefit test set 1993.
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Original query: “what are the fares for ground transportation in
denver,.
Reference goal: ground service.ground—fare (OOD)

Semantic concepts: <wHAT> <CHUNK> <DUMMY> <FARE>
(English) <PREP> ( TRANSPORT ) <PREP>

<CITY_NAME>

Inferred goal: ground_service.city_code (SUB)

Translated query: RESERGHT RN TN 5
Semantic concepts: I CHUNK)><CITY_NAME><CHUNK> <HOW>
(Chinese)

Inferred goal: 00D (/)

Table 5.8: An example 1illustrates that a Chinese expression 1s parsed by
insufficient grammar rules. Missing semantic concepts 1s resulted but it helps

to 1dentify OOD goal.

5.2.4 Multiple Goal Identification

We have & and 6 multiple goal queries in test sets 1993 and 1994 respectively.
We compared the multiple goal identification in Chinese and English based
on recall, precision and F-measure with = 1. The results are shown on
Table 5.9. Figure 5.10 and 5.11 compare the recalls, precisions and F-values
between Chinese and English using test sets 1993 and 1994 respectively.
We found that the multiple goal identification performances in Chinese and
English are the same in test set 1993. However, the BN failed in identifying
one multiple goal Chinese query in test set 1994. Therefore, the multiple goal
1dentification performance in Chinese is lower in test set 1994. The reason
of this failure came from the Chinese query with extra concepts, which is

similar to the example on Table 5.4.
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Language Chinese English
Test set 1993 1994 1993 19~
# MG queries (A) 8 6 8 6
# 1inferred MG queries (B) I3 ~9 ~ 13 10
# correctly inferred MG queries (C) 5 3 5 4
recall (C/A) 0.63 0.50 0.63 0.67
precision (C/B) 0.332 0.33  0.383°0.40
F-value 0.47 0.40 0.47 0.50

Table 5.9: Comparing the multiple goal (MG) identification in Chinese and

English based on recall, precision and F-measure = 1).
0.7
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Figure 5.10: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one N-ary formulation with maximum selection

strategies using test set 1993 immultiple goal identification.
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Figure 5.11: Comparing the recalls, precisions and F-values between Chi-
nese and English using the one N-ary formulation with maximum selection

strategies using using test set 1994 inmultiple goal identification.

5.3 Chapter Summary

In this chapter, we presented our attempt in applying the Belief Network
framework for natural language understanding in Chinese. We manually
translated the ATIS-3 Class A sentences from English to Cantonese Chi-
nese. Since the Chinese language has no delimiter for word boundaries, we
pre-processed the ATIS corpora by word tokenization. Then, we performed
semantic tagging and Bayesian inference as we did in English. The results
show that the overall goal identification performance in Chinese suffers less
than 1% degradation in both test sets under the accuracy measure. The
degradation isdue tomore concepts in the Chinese queries. We found that

the Belief Network framework is portable and usable in the English and Chi-

nese languages.
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Conclusions

6.1 Summary

In this thesis, we have extended the use of a pre-existing Belief Network
(BN) framework [31] for natural language understanding (NLU). A method
was derived for identifying the user's communicative goal(s) out of a finite
set of domain-specific goals for an information-seeking query. The problem
was formulated as making N binary decisions, each performed by a BN. We
have presented how to make an one N-ary decision in a single BN. The
BN structure captures the dependencies between the communicative goals
and the semantic concepts. Semantic information is stored as statistical
parameters, which are used for Bayesian inference. We have proposed two
goal identification strategies for the one N-ary formulation: multiple selection
strategy and maximum selection strategy. Both are capable in identifying
single goal, multiple goals as well as out-of-domain (OOD) goal in the single
BN.

We have three goal identifiers in total: (1) a suite of BNs modeled under
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the N binary formulation, (ii) a single BN modeled under the one N-ary
formulation with multiple selection strategy and (iii) a single BN modeled
under the one iV-ary formulation with maximum selection strategy. We have
proposed three evaluation metrics — the accuracy measure, macro-averaging
and micro-averaging. We used all of them to evaluate the overall goal iden-
tification in order to have a thorough understanding on each goal identifier's
performance. The experiments are based on the ATIS (Air Travel Informa-
tion Service) corpora. The experimental results showed that the one AM-ary
formulation improved over the N binary formulation in (i) overall goal identi-
fication performance, (1) OOD rejection and (i11) multiple goal identification.
This is mainly due to the interdependency among the goals in the one A*-ary
formulation as "gP{G = g\C) = 1for g e {91,92° - - PAT}- This feature
reduces the number of insertion and substitution errors. Furthermore, the
amount of computation i1s reduced over 90% in the training and up to 70%
in the testing phases when we migrate from the N binary formulation to
the one 1V-ary formulation. Our experiments also suggested that the one
N-ary formulation have a better NLU performance in general when using

the max1mum selection strategy.

We have presented our attempt in applying the BN framework for un-
derstanding Cantonese Chinese. We manually translated the ATIS-3 Class
A sentences from English to Chinese. Since the Chinese language has no
explicit delimiter for word boundaries, we pre-processed the ATIS corpora
by word tokenization. Then, we performed semantic tagging and Bayesian
inference as we did in English.The results show that the overall goal identi-

fication accuracies in Chinese suffer less than 1% degradation due to more
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concepts in the Chinese queries.

6.2 Contributions

In this work, the following contributions are made to the field of natural

language understanding:

1. We have demonstrated an alternative formulation — the one iV-ary for-
mulation —for a BN framework in natural language understanding. The
one iV-ary formulation captures the interdependency among the com-
municative goals as P{G =0\C) = | for G gz - * -on}- It gave
improvement over the N binary formulation in terms of the overall goal

1dentification, out-of-domain rejection and multiple goal identification.

2. The one AM-ary formulation uses a single BN while the N binary for-
mulation needs N BNs, one for each goal. The amount of computation

in training and Bayesian inference has been reduced in a single BN.

3. We have introduced different evaluation metrics for measuring the over-
all goal identification performance. The accuracy measure is an align-
ment measure in relation to the number of errors. Macro- and micro-
averaging evaluate the NLU performance as a categorization problem,
which classifies a query with respect to a finite set of goals. All evalu-
ation metrics are useful to provide a thorough understanding of a goal

identifier's performance.

4. The BN framework automatically learns the linguistic knowledge from

training data. We have shown the BN framework in the one N-ary
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formulation is portable across languages. We migrated from English to

Cantonese Chinese.

6.3 Future Work

Possible extensions of this work include:

1. Developing a learnt BN 1in the one N-ary formulation. In this thesis,
we adopted a naive Bayes' configuration in a single BN. The concepts
are assumed to be independent of one another. The learnt BN topology
have been applied on the N binary formulation by building interdepen-
dencies among the concepts [3]. The results showed improvement in
the goal identification accuracies. We may also build linkages between
the concepts in the single BN. The enhanced topology should further

improve the goal identification performance.

2. Extending the comparison in the CUHK Restaurants domain [9]. We
showed improvement of BN framework in the one 7V-ary formulation
using the ATIS corpora. We may leverage the comparison of the two
BN formulations from the ATIS domain to the the CUHK Restaurants
domain, which contains single goal utterance only. In order to make
a fair comparison, we should modify the goal identification strategy in

the N binary and the one 1V-ary formulations to infer a single output.

3. Integrating communicative intention and goal in a single Bayesian in-
ference. Communicative intention 1S the user's act of will in a given
utterance, such as requesting suggestion and saying thanks. Commu -

nicative goal 1s the domain specific of a user's request. For example,
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ordering food and billing in a restaurants domain. To understand a
sentence, the identification of the communicative intention is as impor -
tant as the domain-specific goal. Using different BNs for identifying
the communicative intention and goal separately requires high compu-
tational cost and redundant procedures. We may develop a single BN

to identify sentence's intention and goal together.
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Appendix A

The Communicative Goals

aircraft.aircraft_code * count-flight
aircraft.aircraft_descriptio days.day-name
aircraft.basic-type fare.fareld *
airline.airline.code * fare-basis.fare-basis-code *
airline.airline—name * — flight.airline-code
airport-airport—code * flight.arrivaLtime
airport.airportJocation flight.departure-time
airport.airport-name * flight.flightJd *
airport.minimum_connect_time flight.flight-number *
airport_service.miles_distant flight.time—elapsed
airport-Service.minutes-distant food-service.mealcode
city.city.code food jservice. meal .description
~class-of-service.booking-class — ground-service.city-code *
dass_of_ser¥¥/ice.class-description * ground-service.ground-fare
count_airline ground-service.transport-type
count-fare restriction. restriction _code

Table A.1: The 32 communicative goals in the ATIS do-
main. The goal with an asterisk (*) are selected for the
1dentification. The remaining goals are treated as out-of-
domain (OOD).
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Appendix B

Distribution of the

Communicative Goals
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Goal Frequency Frequency Frequency
(Training) (Test 1993) (Test 1994)

aircraft.aircraft-code 13 6 1
airline.airline.code 42 6 11
airline.airline_name 25 18
airport.airport-Code 10 16
airport.airport_name 25
class_of.service.class-description 15 6 3
fare.fareJd 81 26 25
fare_basis.fare basis_code 26 11 5
flight.flightJd 1239 302 343
flight.flight-number 10 9 0
ground_service.city_code 47 19 15
ooD 12 35 37

Table B.1: The distribution of the 11 selected goals and out-of-domain

(0O0D) goal 1n the training set, test set 1993 and test set 1994.
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Appendix C

The Hand-Designed Grammar

Rules

<AIRCRAFT>

aircraft, plane, aircrafts, planes, airplane, airplanes, aeroplane,
aeroplanes

< AIRCRAFT-CODE)

d ten, seventy three s, seven fifty seven, m eighty, seven thirty
three, m eight zero, seventy two s, d nine s, d ¢ tens, d c ten,
({MANUFACTURE))+ <DIGIT>, <AIRCRAFT> + <DIGIT>

<AIRLINE>

airline, airlines

<AIRLINE_NAME>

american, american airline, american airlines, american flights,
air Canada, alaska airlines, alaska airline, continental, continental air-
line, continental airlines, Canadian airline, Canadian airlines, Canadian
airlines international, delta, delta airline, delta airlines, tower air,
america west, northwest, northwest airline, nationair, t w, united,
southwest, southwest air, southwest airlines, midwest express, united
airline, united airlines, trans world airlines, trans world airline, a a, a
c,as,cocp,dLff,hp,nw,nX, twa ua us, usair, wn,y X,
k w

103



<AIRPORT>

airport, airports

CAIRPORT _NAME>

boston airport, love field, dulles, houston intercontinental, kennedy,
kennedy airport, John f kennedy, John f kennedy airport, midway, los
angeles international, los angeles international airport, los angeles
airport, la guardia, la guardia airport, orlando airport, orlando
international, general mitchell, general mitchell international, general
mitchell international aiport, ontario airport, ontario international,
o'hare, saint Petersburg airport, san francisco international, san
francisco international airport, san francisco airport, salt lake airport,
salt lake city airport, toronto international, toronto international
airport, lester pearson airport, newark airport, bna, bos, bur, da
Ldfw,ewr,hou iadjiah jfk,1ax mco mamkeord, p
ie,sfo,slc,cvg tpalgabwidtw vyyz

(BACK)>

returns, return, returning

<CITY >

cities, city

<CITY_NAME >

Westchester, westchester county, atlanta, baltimore, boston, bur-
bank, charlotte, chicago, Cincinnati, Cleveland, columbus, dallas,
denver, detroit, fort worth, houston, indianapolis, kansas city, vegas,
las vegas, long beach, los angeles, memphis, miami, milwaukee,
inneapolis, montreal, nashville, new york, new york's, new york city,
newark, Oakland, ontario, orlando, philadelphia, phoenix, Pittsburgh,
salt lake, salt lake city, san diego, san francisco, san jose, Seattle, st.
louis, saint louis, st. paul, saint paul, st. Petersburg, saint Petersburg,
tacoma, tampa, toronto, Washington, 1 a, philly, Canada

{CLASS)>

classes, class

<CLASS_NAME>
business, business class, first class, coach, economy

<CODE>
code, codes
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<CODE_NAME>

s, s slash, a p, a pslash, h, f,yy,yn g goh b go, sa ap
fifty eight, b h, a p slash fifty seven

CCOMPARISON)

less than, more than, equal, equal to, same, same as

CCONNECTIONS)
connection, connections, combination, combinations, connecting,
connecting flights, direct flights, connecting flight

C{CONNECTIVE)
slash, and, or, either, but, also

<COST>
<DIGIT> + <MONEY-UNIT>

<DAY>

second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth,
eleventh, twelfth, thirteenth, fourteenth, fifteenth, sixteenth, seven-
teenth, eighteenth, nineteenth, twentieth, twenty first, twenty second,
twenty third, twenty fourth, twenty fifth, twenty sixth, twenty seventh,
twenty eighth, twenty ninth, thirtieth, thirty first

<DAY_NAME>

day, days, week, weeks, weekday, weekend, week days, week day,
weekdays, monday, tuesday, Wednesday, thursday, friday, Saturday,
Sunday, during the week, today, yesterday, tomorrow, tonight,
monday's, tuesday's, Wednesday's, thursday's, friday's, Saturday’s,
sunday’s, now, mondays, tuesdays, Wednesdays, thursdays, fridays,
Saturdays, sundays

<DIGIT>

oh, zero, one, two, three, four, five, six, seven, eight, nine, ten,
eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen,
nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety,
hundred, thousand, hundreds, thousands, single, double, ones, twos,
threes, fours, fives, sevens, eights, nines, tens, twentys, thirtys, fortys,
fiftys, sixtys, seventys, eightys, ninetys

<DUMMY >

may i, need to, want to, like to, would like to, i would like, i
would like to, show me, ineed, i want, i need to, i want to, trying to,
try to, the, a, an, please
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<FARE>
fare, costs, cost, price, fares, airfare, airfares, prices, air fare, air
fares, flight fare, flight fares, flight price

<FIRST>

first

CFLIGHT )

flight, flights, fly, flies, flying

<FLIGHT_DAYS>

everyday, daily

<FLIGHT_NUM >

flight number, flight numbers

CFLIGHT-NUMBER)

<FLIGHT> + <DIGIT>, <AIRLINE_NAME> + <DIGIT>

<FROM>

from, departing from, depart from, leave from, leaving, start
from, starting from, flying from, fly from, flies from, takeoff from,
goes from, go from, take off, takes off, taking off, travel from, departs,
depart, departure, departing, leave, leaves, leaving from, takeoff,
takeoffs, come from, coming from, comes from

<HOW >

how much, how many, how far, how long, how about
<KIND >

kind, type, types, kinds, sort

{MANUFACTURER)>

boeing, mcdonell donglas

<MEAL >

meal, meals

<MEAL_DESCRIPTION >

dinner, lunch, snack, supper, breakfast, snacks
<MEAN >

mean, stand for, meaning, stands for

({MODIFIER)

late, early, earliest, earlier, mid, latest, last, later, next, red
eye

<MONEY_UNIT>

dollar, dollars
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<MONTH >

January, february, march, april, may, June, July, august, Septem-
ber, october, november, december

<ONE_WAY>

one way

<PERIOD>

morning, afternoon, evening, day, night, midday, mid-day, breakfast
time, lunch time, dinner time, lunchtime, dinnertime, noontime, noon,
mornings, nights, midnight, mid-night

<PRE_TIME >

before, after, at, around, about, by

<PREP>

on, in, between, with, of, for, up, out, under, off

CRESTRICTION)

restriction, restrictions

<ROUND_TRIP>

round trip, round trip flight, round trip ticket, round trips, and
back

<SERVE)

serve, served, serves, service, serving

< STATE-CODE)

dC

<STATE_NAME >

arizona, California, Colorado, florida, Indiana, michigan, minnesota,
missouri, nevada, new jersey, new york, north Carolina, ohio, quebec,
tennessee, texas, utah, Washington

<STOPS >

nonstops, nonstop, one stop, at least one stop

(SUPERLATIVE)

cheapest, closest, expensive, highest, lowest, shortest, smallest,
minimum, maximum, most, least

<TIME >

time, times

<TIME_UNIT>

a m, p m, o> clock, o'clock, o clock, hour, hours
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<TIME_VAULE>

(DIGIT)>+ <TIME-UNIT>, <PRE-TIME> + <DIGIT>

<TO>

be there, into, to, arrive to, arriving to, arrives to, arrived to,
landing 1n, land in, flyto, destination, back to, go to, arrive, arrives,
arriving, arrived, landed, land, lands, landing, landings, arrival, reach,
reaches, reaching

CTRANSPORT)

transport, transportation, ground transportation, ground trans-
port

C(TRANSPORT-TYPE)

rental car, rent a car, need a car, taxi, limousine, train

<VIA >

via, by way, stop, stopover, stopovers, stopping, stoping in, stops in,
stopover 1in, stop over in, stopping over in, layover in, laying over in,
make a stop, goes through, go through

<WHAT>

what're, what's, what

<WHERE >

where, anywhere

<WHICH >

which

<YEAR>

nineteen ninety three

Table C.1: The hand-designed grammar rules in the En-
glish ATIS domain.
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(ABBREVIATION)
4E%T 0 R
CAIRCRAFT)
et
<AIRCRAFT_CODE>
d-ten, seventy_three s, seven fifty seven, m eighty, seven—thirty—three,
m.eight-Zero, seventy_two_s, d nine s, d c_tens, d c_ten, d_c_ten
<AIRLINE>
Rize > M2 A E
CAIRLINE-NAME)
aa,ac,as,co,cp,dl, ff, hp,nw, nK, tw, twa, tower_ air, u_a,
ws, us air, w_n, nw—airline, yjx,JI[EMN > JIIFIIFTZE » FPEHTZE -
N > NBEMLZE > I RMZE > IEKREIFEHIZE > NS K EE AT ZE -
hofe - vEIE > PEAEMLZE - PR PEREMLZE o PIRLETOMTZE o PE T AZE
EREEGHMZE  FEMZE > BR BIRMZE  EEHZE - BRI
2% s BEFE OB FH X o <AIRLINE-NAME) + NH » <ANILINE_NAME>
+fi 2 > <ANILINE_NAME) + fii & 2
<AIRPORT>
5
<AIRPORT_NAME>
bna,bosburb wldé¢vg dal,dfwdtw'ewr,hou,iad,
iah, jJ k, Lajx, Lg a, loveJield, mc o, m; _a mke, ord, py_L,
s10-slc, tpa, y_y_z, = FmHEE =3 EKE#&XE MK
M HEMmES  KITEHEE®RS > KRITEES > 22 EH
RS » Z RISEERYS » £ RIEHE - RELBEHERE -
By o tHENET RS > LS 0 R BREERE o SRR
%o BEWKY B SEEKE > BESKYE > BERGERE
EAEREE > HWFEEAERS > RS > REAERY
<AIRPORT-NAME> + {45 > CAIRPORT—NAME) + [B[& &5
<ALL>

B 2f
<AND >
[m - [F]
<ANY>
(Ef]
(BETWEEN)

ZIE - R EEK £
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<BOOK > ~

gl

(CAPACITY)>

H]E R

CCITY)>

]

<CITY_NAME>

HRFEOR AR R EE o P o JIIER > HIRE 0 2
=0 SEEAE o SCERE > BT o AT o M o RRFE 0 RLEIEE 0 IR
SrE - EISRZEQR B o ST o FITAE IO - RAR - ISR - Jelinhir
I\, Z  EE  HHE A - Henlg A - SRR - AT 4ER
Ay > MU > HEEETT > PRSI > LOKES - BERES Bl Bferaly o [T
2508 BN o BT BEMN IR ER - =0ETH 0 BEEUER o PHE - EERR S HT
EEORGE - SR - MRS o HIE - ZAe o FERIE - PERITE 0 PEOR
SRy Ik

<CLASS_NAME>
B BHE > &% > <CLASS_NAME> + Efii > <CLASS_NAME> +

1% fir

<CODE>

E A A

<CODE_NAME>

S,s_slash, a_ p,a p_slash> h, f,y,y n, g, g_oh, b, g_o, s_a a_p-fifty.eight,
b-h

<COMPARISON >

o Vi im0 Y 0 RIS

(CONNECTIONS)

PR > BRI - BN - BN
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(DAY
—H > Z“H =ZH WMH >#ZH >x~xH>EH > AH>LH>
+Hd>+—H > +=ZH  F+=H > +WlH > +7HZH > FRNH>
+tH +AH+RAH ZFH HH Z+—H H—
H —+Z-H -#=-H ' Z+=ZH H=H > Z“+W0HH @
H—-+#nH #AaH > Z+XH HAH Z+tH &t
5H>=+AH > A= > Z+AH HALH =Z+H &FH>
=t—H-it—H =8 Z9t =5 ek Ak A9k L
Bt o NEECOJUBE . BERE P8R FITEE S F=9F 0 FEE S
ek oNER o TSR VSR AUER  ZeR o HER 0
+—gk o 5 T8 T — =5 =58 =
Frusk o HUSE o RS HESE - SRS HARS% S =
sk Bt A H A s s =
+5E 0 e =AF—5F 0 T

<DAY_NAME >

BEE— BEZ > BEHl= EHiW - B84 BHN EHH - ©
F— wRE 8BRS BRI BFEA - 8N SFE > B
B> SH> S FH> xR HH > BE+ <p1e11> + H
<DIGIT>

T —> Z oW =W #HoxNE AT+ Hf - <DIGIT>
+ <DIGIT>

(DISTANCE)

PE

(DOWNTOWN)

& > mH0y” downtown

<DUMMY >

alright, hi, okay,#% & #5x > H&E > g
<FARE> ~
W o i8> HE

<FLIGHT>

Rt > WUDE - DR > 1% > =k

(FLIGHT—DAYS)

HH

<FLIGHT_NUM >

itksmar - P Gm 9T - FUAESRES - FiDE 4 9%

<FLIGHT_TYPE>

PRI - R WK

igll:
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<FROM > ~
e o AR o AR - BB 3 BERE - B

<HOW >

%% REDL KB KRB KM KE o K KH
g, 28Dk, 54+ cHows

(MANUFACTURER)

7% > mcdonell donglas

<MEAL >

retE - EH - fEa

<MEAL_DESCRIPTION >

Mg - BB ek T8 Te e

<MEAN >

A B > BE R

<MONEY>

L4'g

<MONTH >

-7, =1, =1, mAg, =+ 1, XA, A, \NA, LA, +H,
+—H, +=AH

<ONE_WAY>

Bz

<OR>

ERE e

<PERIOD>
EFoFRI-FR R CRE-ZE Mo E BF o B B
BE o E4 sEEE - 7% > <MEAL_DESCRIPTION) + B4 »
<MEAL -DESCRIPTION ) + &K &

<PERIOD_UNIT>

bR TE W

<PRE>

Al > ZHl . Z1% 0 1% 0 foh o REY R NME - T
<QUANT>

ROtk —R —H o —5R > —flH - — I
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<QUERY>

SRR EEF VI AR AT W WEE > EMH

HooEER LY WHG B FE B FEN EHE > B

Mo B2 526 > AEH > A%  RFH M > <DUMMY> +
7 QUERY > <QUERY> + I, <QUERY> + f F > 0 QUER Y &l »
<QUERY> + %1 > <QUERY> + #&’ .

[ RESTRICTU[

gl

<RETURN>

el > RXE > [EFE

<ROUND_TRIP>

A (] _
[ SCHEDULELD

B 2=

<SERVE>

7% > et > IRELIRE

<STATE_CODE>

d-C, d-C &

<STATE_NAME>

oo AP ma FISEACN - ﬁn%U?E)EEEJH JON - BEEERL 2 - B4R
I - (bR B 2E > (hEg BN » ENSEZE4N - ENEE 2N - BPEIR » 2%
FERRIN - BAJESRZE - BHIESRZEIN » SRERE - SRER BN - NEEE > NEEE
I BOEPE o HUETEMN 0 &N o JEREEREY - JEREERGNIN o FZ K
RZ AN - BLIETE - FHEPE - EHARPEIN > 1S5 pERT - S repE AT o Rt
I o EEREGEI 0 <STATE_NAME # )

<STOPS>

AEuh - B - Rk —
0 SUPERLATIVED

Vo R RE KT ORE
A R RN RRA R —
<TICKET>

R
<TIME_UNIT>

WL, HEeg , BEM , 45

<TIMES>

Rt ]

l il
o
il
+
il
il
il
i
g
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<TO >

Lo RE - RE - F R REN B> Bz Fr > 5L BRI H

+ <TO>

CTRANSPORT)

H, T % i

CTRANSPORT-TYPE)

B K

<VALUE_UNIT>

H T8 E

<VIA>

P ik o R R M RE S <VIAY+ <vias

Table C.2: The hand-designed grammar rules in the Chi-
nese ATIS domain.
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Appendix D

The Selected Concepts for each

Belief Network

(AIRCRAFT)
<AIRPORT>
<CITY>
<CITY_NAME_2>
<CODE>
C(CONNECTIVE)
<DIGIT>
<FLIGHT -DAYS)
<FROM >
<MEAL >
<MODIFIER >
<PERIOD >
<ROUND-TRIP>
<STATE_NAME >
<TIME >
<TRANSPORT>

-<WHAT>

Goal:

(AIRLINE)>
(AIRPORT—NAME>
<CITY-NAME >
<CITY-NAME-3>
<CODE_NAME >
(DAY

<FARE>
<FLIGHT-NUM >

<HOW>

aircraft.aircraft—code

<MEAL-DESCRIPTION>

<MONTH >

<PREP>

<SERVE>

<STOPS>
<TIME-VALUE>
<TRANSPORT-TYPE>
<WHICH)
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<AIRLINE-NAME>
<BACK>
<CITY_NAME, >
<CLASS-NAME>
<COMPARISON >
<DAY-NAME >
CFLIGHT)
(FLIGHT—NUMBER >
<KIND >

<MEAN >

<ONE WAY)
<PRE-TIME >
<STATE_CODE>
UPERLATIVE)>
<TO>

<VIA)



< AIRCRAFT)>
<AIRPORT>
<CITY >
<CITY-NAME-2>
<CODE>
(CONNECTIONS)
<DAY >

<FARE>
<FLIGHT-NUM >
<HOW >
<MEAN >
<ONE-WAY>
<ROUND_TRIP>
<STATE-NAME >
<TIME >
(TRANSPORT)
<WHERE>

(AIRCRAFT)
<AIRPORT>
<CITY>
<CITY-NAME-2>
(CODE>
(CONNECTIVE)>
<DAY-NAME >
<FLIGHT>

<FLIGHT_NUMBER>

<MEAL>
{MODIFIER)
<PERIOD >
<ROUND-TRIP >
<STATE_NAME>
<TIME >
CTRANSPORT)

<WHAT>

Goal: airline.airline.code

<AIRLINE>
<AIRPORT_NAME>
<CITY_NAME>
<CITY-NAME-3>
<CODE-NAME >
(CONNECTIVE)>
<DAY_NAME>
CFLIGHT)
<FLIGHT_NUMBER>
<KIND >
(MODIFIER)
<PERIOD>
<SERVE>

<STOPS>
<TIME_VALUE>
(TRANSPORT_TYPE>
<WHICH >

Goal: airline.airline_name

<AIRLINE>
<AIRPORT-NAME>
(CITY-NAME)>
CCITY -NAME—3)
<CODE_NAME>
<COST>

<DIGIT>
<FLIGHT_DAYS>
(FROM)>
<MEAL_DESCRIPTION >
{(MONTH)

<PREP>

<SERVE>

(STOPS)
<TIME-VALUE>
<TRANSPORT_TYPE>

(WHICH)
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<AIRLINE_NAME)
<BACK>
<CITY_NAME—1)
<CLASS_NAME)
(COMPARISON>
<COST>
(DIGIT)>
CFLIGHT -DAYS)
<FROM >
<MEAL>
<MONTH >
<PRE_TIME>
<STATE_CODE>
(SUPERLATIVE)
<TO >

<VIA>

<AIRLINE_NAME>
{BACK)
<CITY_NAME_1 >
<CLASS-NAME >
CCOMPARISON)
<DAY>

<FARE>
<FLIGHT_NUM)
<HOW >
<MEAN >

< ONE—WAY)
<PRE-TIME>
<STATE-CODE>
(SUPERLATIVE)
<TO>

<VIA>



Goal: airport.airport_code

(AIRCRAFT) CAIRLINE) <AIRLINE-NAME>
<AIRPORT> (AIRPORT-NAME) (BACK)

CCITY) CCITY -NAME)> <CITY_NAME_1>
<CITY_NAME_2> <CITY_NAME_3> (CLASS—NAME)>
(CODE) (CODE—NAME) (COMPARISON)
(CONNECTIVE) (DAY) < DAY—NAME)
<DIGIT> <FARE> CFLIGHT)
<FLIGHT_DAYS> <FLIGHT-NUM > <FLIGHT-NUMBER>
<FROM> <HOW> <MEAL>

<MEAL DESCRIPTION) {(MEAN) {(MODIFIER)
<MONTH > <ONE-WAY> (PERIOD)>
<PREP> <PRE-TIME > <ROUND-TRIP>
(SERVE) <STATE-CODE> <STATE_NAME>
<STOPS> (SUPERLATIVE) <TIME >

(TIME -VALUE> <TO> (TRANSPORT)
<TRANSPORT-TYPE> <VIA> <WHAT>
<WHERE> <WHICH >

Goal; airport.airport-name

CAIRCRAFT) CAIRLINE) <AIRLINE-NAME>
<AIRPORT> (AIRPORT-NAME)> (BACK)>
<CITY> <CITY-NAME > <CITY-NAME_1>
<CITY_NAME_2> <CITY_NAME-3> <CLASS-NAME >
(CODE) <CODE-NAME> (COMPARISON)
C{CONNECTIVE) <COST> <DAY >
<DAY-NAME> —<KDIGIT) <FARE>
<FLIGHT> <FLIGHT-DAYS> <FLIGHT—NUM >
<FLIGHT-NUMBER > <FROM > <HOW>

<MEAL > <MEAL-DESCRIPTION > CMEAN)
(MODIFIER) (MONTH) <ONE_WAY>
<PERIOD> <PREP> <PRE-TIME >
<ROUND_TRIP> <SERVE> — <STATE-CODE>
<STATE_NAME > <STQPS> —(SUPERLATIVE)
<TIME > CTIME-VALUE) <TO>
CTRANSPORT) <TRANSPORT_TYPE) <VIA>
<WHAT> <WHICH >
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C(AIRCRAFT)
<AIRPORT>
<CITY >
<CITY_NAME_2>
<CODE>
(CONNECTIVE)>
<DAY -NAME)
CFLIGHT)

Goal:

(FLIGHT-NUMBER)

<MEAL>
(MODIFIER)
<PERIOD >
<ROUND_TRIP>
< STATE-NAME)
<TIME >
(TRANSPORT)
<WHAT>

<AIRCRAFT>
<AIRPORT>
<CITY >
<CITY_NAME_2>
(CODE)>
(CONNECTIVE)>
<DAY-NAME >

<FLIGHT>

C(FLIGHT -NUMBER)

<KIND >
<MEAN >
<PERIOD >
C(RESTRICTION)
<STATEJSFAME >

C(TIME -VALUE)

<TRANSPORT-TYPE>

<WHICH >

class_of _service.class_description

C(AIRLINE)
(AIRPORT-NAME)>
<CITY_NAME >
<CITY-NAME-3>
<CODE_NAME>
<COST>

<DIGIT>

A

FLIGHT-DAYS >
<FROM>

<MEAL-DESCRIPTION >

<MONTH>
<PREP>
(SERVE)
(STOPS)>
<TIME-VALUE>

CTRANSPORT-TYPE)

<WHICH >

Goal:
<AIRCRAFT-CODE>
<AIRPORT -NAME)>
<CITY-NAME >
<CITY_NAME -3)
<CODE-NAME>
{(COST)>
<DIGIT)
<FLIGHT-DAYS>
<FROM>
<MEAL>
(MODIFIER)
<PREP>
<ROUND-TRIP>
(SUPERLATIVE)
<TO >
<VIA>

"<YEAR>
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fare.fareJd

<AIRLINE-NAME >
{(BACK)
<CITY_NAME -1)
<CLASS_NAME)>
CCOMPARISON)
<DAY >

<FARE>
<FLIGHT-NUM >
<HOW>
(MEAN)>

< ONE-WAY >
<PRE-TIME >

<STATE-CODE>

—(SUPERLATIVE)

<TO>
<VIA)

<AIRLINE>
<BACK >
<CITY_NAME_1>
<CLASS-NAME>
CCOMPARISON)
<DAY)>

<FARE>
<FLIGHT-NUM >
<HOW >

<MEAL_DESCRIPTION >

<ONE-WAY>
<PRE-TIME >
(SERVE)
(TIME)
(TRANSPORT)>

(WHERE)



u

Goal:

(AIRCRAFT)
<AIRPORT>
<CITY >
<CITY_NAME_2>
<CODE>
<COST>
<DIGIT>
<FLIGHT_DAYS>
(FROM)>
<MEAL>
(MODIFIER)
(PERIOD)
<ROUND_TRIP>
<STATE-NAME >
<TIME >
CTRANSPORT)
<WHAT>

C(AIRCRAFT)
<AIRPORTJSFAME >
<CITY_NAME >
<CITY_NAME_3>
<CODE>
(CONNECTIVE)>
<DAY_NAME> —
< FLIGHT-DAYS)>
<FROM >
<MANUFACTURER>
(MODIFIER)
<PREP>
<ROUND_TRIP>
<STOPS>
<TIME_VALUE>

(AIRLINE)
<AIRPQRT-NAME>
<CITY_NAME>
<CITY-NAME-3>
<CODE_NAME>
<DAY>

<FARE>
<FLIGHT-NUM >
<HOW>
<MEAL-DESCRIPTION >
<MONTH >

<PREP>

(SERVE)

<STOPS >
<TIME-VALUE>
<TRANSPORT_TYPE>

<WHICH >

Goal: flight.flightJd
(AIRLINE)>

<BACK>
<CITY_NAME-1>
(CLASS) —
(CODE-NAME)>
<COST>

<FARE>
<FLIGHT-NUM >
<HOW >
<MEAL-DESCRIPTION >
<MONTH > —
<PRE-TIME >
<SERVE)
(SUPERLATIVE)
<TO>

CTRANSPORT-TYPE)<VIA>

<WHERE>

<YEAR>
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fare_basis.fare_basis_code

<AIRLINE_NAME>
{(BACK)>
<CITY_NAME_1>
<CLASS-NAME >
(COMPARISON)
<DAY-NAME >
CFLIGHT)
<FLIGHT-NUMBER >
<KIND >

(MEAN)>
<ONE-WAY)
<PRE-TIME >
<STATE_CODE>
(SUPERLATIVE)
<TQ>

<VIA>

<AIRPORT>
<CITY>
<CITY-NAME-2>
<CLASS-NAME >
(COMPARISON)
<DAY>
<FLIGHT>
<FLIGHT_NUMBER>
(KIND)
<MEAN >
<PERIOD>
(RESTRICTION)
<STATE-NAME >
<TIME >
CTRANSPORT)
(WHAT)



(AIRCRAFT)
<AIRPORT>
<CITY >
<CITY-NAME-2>
<CODE>
(CONNECTIVE)
<DAY-NAME >

<FLIGHT>

<FLIGHT_NUMBER>

<KIND >
<MEAN >
<ONE_WAY>
<PRE_TIME >
<STATE-CODE)>
(SUPERLATIVE)>
<TO >

<VIA >

Goal: flightflight-number

<ATRLINE>
<AIRPORT-NAME >
<CITY-NAME >
<CITY-NAME-3>
<CODE—-NAME)
<COST>
<DIGIT>
<FLIGHT -DAYS)
<FROM >
<MEAL>
(MODIFIER)
(PERIOD)>
<ROUND-TRIP>
<STATE-NAME >
<TIME >
(TRANSPORT)>

(WHICH)
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<AIRLINE-NAME >
<BACK>
CCITY—NAME, )
<CLASS-NAME>
(COMPARISON)
<DAY>

<FARE>
<FLIGHT-NUM >

<HOW >

<MEAL_DESCRIPTION>

<MONTH >
<PREP>

(SERVE)>
(STOPS)>

{TIME-VALUE)

—<(TRANSPORT—TYPE)



Goal:

0 AIRCRAFTO
<AIRPORT>
<CITY_NAME>
<CITY-NAME_3>
<CODE_NAME>
<COST>
<DIGIT>
<FLIGHT_DAYS>
<FROM>
<MEAL>

1 MODIFIER
<PERIOD>
<ROUND_TRIP>
<STATE-NAME>
<TIME>

[0 TRANSPORTJ
<WHAT>

0OARLINED
<BACK>
OCITY-NAME[D O
<CLASS-NAME>

[0 COMPARISON
O0ODAY

<FARE>
<FLIGHT-NUM>
<HOW>
<MEAL-DESCRIPTION>
<MONTH>

<PREP>

0SERVE

<STOPS>
OTIMEVALUETD
<TRANSPORT_TYPE>
<WHICH>

ground-Service.city .code

<AIRLINE-NAME> ~
<CITY>
<CITY-NAME-2>
<CODE>

[0 CONNECTIVE
<DAY-NAMETO
OFLIGHT
OFLIGHT—NUMBERD
0 KIND

<MEAN>

<ONE-WAY>
<PRE-TIME>
<STATE_CODED

O SUPERLATIVE
<TO>

<VIAD

Table D.1: Each Belief Network in the N binary formu-
lation has 50 selected concepts with the highest values of
Information Gain relating to the its goal in the English

ATIS domain.
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O AIRCRAFT

<AIRCRAFT-CODE> [ AIRLINE “

<AIRLINE_NAME> 0 AIRPORM 0AIRPORTNAMETD
00 BACKI <CITY> <CITY-NAME>
<CITY_NAME_1> <CITY-NAME-2> <CITY—NAME-1} )
<CITY_NAME_4> <CITY-NAME-5> (CLASS[]
<CLASS_NAME> <CODE> [l CODENAME ]
<COMPARISON> [0 CONNECTIONSII CONNECTIVE
<COST> <DAY> <DAY-NAME>
ODIGITO — <FARE> — U FLIGHT
<FLIGHT-DAYSO <FLIGHT-NUM> “ <FLIGHT_NUMBER>
0OFROMIO <HOW> 0O KIND
0MANUFACTURE+L <MEAL> — <MEAL-DESCRIPTION>
<MEAN> 0 MODIFIER OMONTH
<ONE-WAY[ <PERIOD> <PREP>
<PRE-TIME> — O RESTRICTION+] <ROUND-TRIP>

0 SERVED <STATE-CODE> — <STATE-NAME>
<STOPS> [JSUPERLATIVED OTIME
<TIME-VALUEZO <TO> _OTRANSPORTUD
<TRANSPORT-TYPE3~ <VIA> OWHAT
OWHERED OCWHICHD <YEAR>

Table D.2: The 60 selected concepts of the single Belief
Network in the one N-ary formulation using the multiple
aposterior strategy in the English ATIS domain.
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0AIRCRAFT <AIRCRAFT-CODE>
<AIRLINE-NAME> 0OAIRPORMT

<BACK> <CITY>
<CITY_NAME-1> ~ <CITY-NAME-2>
OCLASSDO O CLASSNAMETD
<CODE_NAME> <COMPARISON>
OLCONNECTIVED <COST>
<DAY-NAME> <DIGIT>

<FLIGHT> <FLIGHT-NUM>
<FROM> <HOW>

<MEAL> <MEAL-DESCRIPTION>
L MODIFIER "<MQNTH> —
UPERIODD <PRE-TIME>

0ORESTRICTIONO<ROUND-TRIP>
O0STATECODEN <STATE_NAME>
[0 SUPERLATIVEUO<TIME>

<TO> O TRANSPORTDO
<VIA> <WHAT>
OWHICHO

<AIRLINE>

< AIRPORT-NAME>
<CITY-NAME>
<CITY-NAME-3>

[l CODE

[ CONNECTIONSI]
<DAY 1

<FARE>
<FLIGHT-NUMBER>
[0 KIND

<MEAN>

< ONE-WAY >
<PREP>

<SERVED

[0 STOPS
OTIMEVALUETD
<TRANSPORT_TYPE>
<WHERE>

Table D.3: The 55 selected concepts of the single Belief
Network in the one A/'-ary formulation using the maxi-
mum aposterior strategy in the English ATIS domain.
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1 ABBREVIATION
<AIRLINE_NAME>~
<ALL>

<BOOK>
<CITY_NAME>

1 CITY-NAME} >
<CODE_NAME>

T DAY

<FARE>

T FLIGHTNUMBER!
<HOW>
<MONTH>
<PERIOD>
<QUANT>

1 SERVE!
<STOPS>
<TIME-VALUE>
CTRANSPORT®
<VIA>

<AIRCRAFT-CODE>
<AIRPORT>
<AND>
<CAPACITY>
CCITY-NAME I
<CLASS-NAME>

L COMPARISON

< DAY-NAMELU
OFLIGHTUDO
<FLIGHT-TYPE>

<MEAL-DESCRIPTIONO

< ONE-WAY >
UPERIOBUNITLDO
<RETURN>
<STATE-CODE[N

U SUPERLATIVELD

“OTIMES
<TRANSPORT-TYPE>

<AIRLINE>
<AIRPORT_NAME>
OBETWEEN
<CITY>
<CITY-NAME-2>
<CODE> -
[0 CONNECTIONSO
<DIGITO
<FLIGHT-NUM>

0 FROM

O0MEAN

<0R O

<PRE>
<ROUND-TRIP>
<STATE_NAME>
<TICKET>

<TO0>
<VALUE_UNIT>

Table D.4: The 55 selected concepts of the single Belief
Network (BN) in the one 1V-ary formulation using the
maximum aposterior strategy. The BN 1smodeled for
the Chinese ATIS queries.
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Appendix E

The Recalls and Precisions of
the Goal ldentifiers In

Macro-Averaging
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Frequency Frequency

Goal Goal index (Test set (Test set
1993) 1994)
aircraft.aircraft-code 1 0 0
airline.airline.code 2 4 11
airline.airline.name 3 18
airport.airport_code 4
airport.airport_name 5 2
class_of_service.class_description 6 5 3
fare.fareJd 7 A 25
fare basis.fare basis_code 8 I1 5
flight.flight)d 9 m 342
flight.flight-number 10 9 0
ground_service.city_code 11 A
"POP - 12 I 35 I 37

Table E.1: Each goal with its corresponding index and the frequencies in
the test sets. The queries mixed with in-domain and OOD goals are ex-
tracted before the evaluations. Therefore, the goal aircraftaircraft.code has

zero frequencies in the test sets.
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# queries # inferred # correctly Recall Precision

Goal index (A) queries inferred (C/IA) (C/B)
(B) queries (C)

1 0 9 0 A 0
2 A 4 1.00 019
3 18 n 11 0.61 1.00
4 16 19 15 0.9 0.79
5 2 2 2 1.00 1.00
6 5 12 5 1.00 0.42
7 A A 21 0.81 0.84
8 U 12 11 1.00 0.92
9 m 310 290 0.9 0.94
10 9 9 9 1.00 1.00
n 19 16 14 0.74 0.88
12 A 40 24 0.69 0.60

Table E.2: The recalls and precisions of each goal in the N binary formulation

using test set 1993 1n English ATIS.
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# queries # inferred # correctly Recall Precision

Goal index (A) queries inferred (CIA) (C/B)
(B) gueries (C)

_ 7 0 N/A 0
2 n 15 11 1.00 0.73
3 6 6 6 0.61 1.00
4 2 3 1 0.50 0.33
5 2 0 _ 0 0 N/A~~
6 3 7 2 0.67 0.29
7 A S 22 0.88 A
8 5 7 3 0.60 0.43
9 A 353 330 0.9 0.93
A 0 0 0 N/A N/A
n 15 18 12 0.80 0.67
12 37 - 27 I 10 0.27 0.37

Table E.3: The recalls and precisions of each goal in the N binary formulation

using test set 1994 in English ATIS.
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# queries # inferred # correctly Recall Precision

Goal index (A) queries inferred (CIA) (C/B)
(B) gueries (C)

1 0 9 - 0 N/A 0
2 4 4 4 1.00 1.00
3 18 19 “ 18 1.00 0.95
4 16 9 0.56 1.00
5 2 5 _ 2 1.00 0.40
6 5 13 5 1.00 0.38
7 W 31 _ 22 0.85 0.71
8 n 13 11 1.00 0.85
9 m 304 - 296 0.98 0.97
10 9 10 “ 9 1.00 0.90
n 19 A 19 1.00 0.58
12 A M A 0.71 N~

Table E.4: The recalls and precisions of each goal in the one N-ary formula-

tion using multiple selection strategy in English ATIS test set 1993.
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# queries # inferred # correctly Recall Precision

Goal index (A) queries inferred (CIA) (C/B)
(B) gueries (C)
1 0 — 5 - 0 N/A * 0
2 n n n 1.00 1.00
3 6 7 6 1.Q0 0.86
4 2 5 2 — 1.00 0.40
5 2 2 1 0.50 0.50
g 3 8 2 0.67 0.25
7 A A 22 — 0.88 0.71
g 5 9 4 0.80 0.44
9 A m 328 “0.96 0.96
A 0 — 0 — 0 N/A N/A —
A 15 1.00 0.71
U A U 22 0.59 0.71

Table E.5: The recalls and precisions of each goal in the one 7V-ary formula-

tion using multiple selection strategy in English ATIS test set 1994.
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# queries # inferred # correctly Recall Precision

Goal index (A) gueries inferred (C/A) (C/B)
(B) gueries (C)
1 0 4 B I I I 0 N/A - 0
2 4 4 4 1.00 1.00
3 18 18 1.00 1.00
4 8 8 “ 0.50 1.00
5 2 2 2 1.00 1.00
g 5 13 - 5 1.00 0.38
7 A A 20 0.77 1.00
8 u 13 11 - 1.00 0.85
9 m 299 295 0.98 0.99
A 9 9 9 - 1.00 1.00
A 18 — 0.95 0.58
12 A 30 | 25 I 0.71 0.83

Table E.6: The recalls and precisions of each goal in the one 1V-ary formula-

tion using maximum selection strategy in English ATIS test set 1993.
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# queries # inferred # correctly Recall

Goal index (A) gueries
(B)
J 2
2 n n
3 e 7
4 2 2
5 2 — 1
g 3 9
7 A 26
g 5 9
9 m 339
10 0O — 0
n 15 A
12 A A

inferred (C/A)

queries (C)
N/A
11 1-00
6 1.00
1 0.50
0 0
3 1.00
21 - 0.84
4 “0.80
329 0.9
— 0 ~N/A
14 ~ 0.93
18 0.49

Precision
(C/B)

0
1-00
0.86
0.50

— 0

0.33
0.81
0.44
0.97
N/A
0.70
0.69

Table E.7: The recalls and precisions of each goal in the one N-ary formula-

tion using maximum selection strategy in English ATIS test set 1994.
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# queries # inferred # correctly Recall

Goal index (A) queries
(B)
J 5 0
2 4 8
3 A
4 A 10
5 2 4
g 5 13
7 A A
8 n 13
9 m m
9 9
n 19 A
A A

inferred (C/A)

gueries (C)
0 N/A
4 1.00
18 - 1.00
10 0.63
2 1.00
5 1.00
A 0.81
11 - 1.00
292 0.97
9 1.00
17 0.89
A 0.63

Precision
(C/B)

N/A
0.50
0.78
1.00
0.50
0.38
0.88
0.85
0.99
1.00
0.61
0.92

Table E.&: The recalls and precisions of each goal in the one AT-ary formula-

tion using maximum selection strategy in Chinese ATIS test set 1993.
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# queries # W ~d # correctly Recall Precision

Goal index (A) queries inferred (CIA) (C/B)
(B) gueries (C)
J 5 1 0 N/A 0
2 n A 6 0.55 0.30
3 6 A 1.00 0.75
2 1 1 0.50 1.00
5 2 Q — ~ ~ Q ~ ~ N/A
3 9 3 1.00 0.33
7 A A A 0.92 0.92
5 9 5 1.00 0.56
9 A3 300 0 i 0-97
5 0 0 N/A N/A
17 15 - 1.00 0.88
A A 26 0.70 0.81

Table E.Q: The recalls and precisions of each goal in the one 1V-ary formula-

tion using maximum selection strategy in Chinese ATIS test set 1994.
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