
Improvement on Belief Network Framework 
for Natural Language Understanding 

莫靄欣 
MOK,〇i Yan 

A Thesis Submitted in Partial Fulfilment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Systems Engineering and Engineering Management 

© T h e Chinese University of Hong Kong 

August 2003 

The Chinese University of Hong Kong holds the copyright of this thesis. 
Any person (s) intending to use a part or whole of the materials in the thesis 
in a proposed publication must seek copyright release from the Dean of the 
Graduate School. 

\ 



fu/統系館書因 

P( 3 0 tB P ill  
1 



Abstract 

This thesis extends the investigation into the Belief Network (BN) framework 

for natural language understanding (NLU) as proposed in [31]. A method 

was derived for identifying the user's communicative goal(s) out of a finite set 

of domain-specific goals. The problem was formulated as making N binary 

decisions, each performed by a BN. W e aim to improve the goal identifi-

cation performance and reduce the amount of computation in training and 

testing. W e explore an alternate formulation as making one N-sny decision 

by a single BN. This formulation captures the interdependency among the 

goals. In order to identify multiple goals in a single BN, we propose two goal 

identification strategies: multiple selection strategy and maximum selection 

strategy. W e evaluate the goal identification performance by accuracy mea-

sure, macro- and micro-averaging. Experiments with the AXIS (Air Travel 

Information Service) corpus showed that the one 7V-ary formulation improved 

over the N binary formulation in terms of overall goal identification, out-of-

domain rejection and multiple goal identification. A considerable amount of 

computation was reduced as we migrate from the N binary formulation to 

the one iV-ary formulation. W e also test the language portability of the B N 

framework on Cantonese Chinese. The test used the one iV-ary formulation 

with the maximum selection strategy and the results were encouraging. 
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摘要 

本論文主要是伸延對信念網絡（Belief Network)架構在自然語言理解上 

的研究 [ 3 1 ]。此方法是爲了從有限特定領域的目標裡識別出用户的交 

流目標。這個問題是以多個二元（A^ binary)決策的信念網絡的公式來 

表示。我們的目的是改善目標識別的表現及減少在訓練和測試上的計 

算。我們探究另一種一個多元（one 7V-ary)決策的信念網絡的公式。這 

公式捕取不同目標之間的互相依賴。爲了從一個信念網絡中識別多種 

目標，我們提議了兩種識別目標的策略：多種選擇策略及最大選擇策 

略。我們以準確度量度、宏觀及微觀平均來評估目標識別的表現。在 

航空資訊（ATIS)領域語料床中得出的實驗結果證明一個多元的公式在 

全部的目標識別，在領域之外目標的拒絕及多種目標識別上都較多個 

二元公式有所改進。並且當我們從多個二元的公式轉移到一個多元公 

式時，可以減省可觀數量的計算。我們還測試信念網絡架構在廣東話 

式中文上的語言可移植性。在使用附有最大選擇策略的一個多元的公 

式的測試中可得出鼓勵性的結果。 
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Chapter 1 

Introduction 

1.1 Overview 

In this information era, computers have already permeated our lives. The de-

velopment of the Internet and mobile communication technologies is rapid. 

People can interact with computers to access information and mail with 

friends at anytime and anywhere. Many computer applications are also de-

veloped to assist office operations, business developments and scientific re-

search. In order to achieve an efficient user service, having an intelligent and 

effective communication between human and computers becomes a key issue. 

Spoken language is one of the most natural and intuitive ways for human to 

communicate with computers. Users do not need to learn any complicated 

usage instructions. Furthermore, the use of spoken language allows users to 

interact with computers in an eye-busy or hand-busy environment. 

Due to these advantages, the use of human-computer conversational sys-

tems has become more and more widespread in many applications. Figure 

1.1 is a typical architecture of spoken dialog systems (SDSs) [42]. The main 
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CHAPTER 1. INTRODUCTION  

components include a speech recognizer, a natural language understanding 

(NLU) module, a text-to-speech synthesizer and a dialogue manager. A 

network interface obtains the input data and passes the output data. An ap-

plication backend contains the task-specific information for the N L U module 

and the dialog manager to use. 

Network Interface, I/O and System Control 

Speech 
n . . Text- to-Speech 
Recognition 

\ Natural / 
\ , Dialogue / 

Language  

Unde^tandilng Manager 

( Application � 

Backend 

Figure 1.1: Architecture of spoken dialog systems, referenced from [42 . 

An N L U module plays an important role in SDSs. It receives a user's ut-

terance from a speech recognizer and interprets the meaning. These systems 

often need to handle information-seeking queries from the user regarding a 

restricted domain. For example, an SDS may provide information about 

weather [46], traffic conditions [14] or air travel [41，47]. Different users use 

different expressions to convey the same meaning. N L U in a domain-specific 

application requires identification of the user's communicative goal(s) out of 

a set of finite possibilities. Traditional approaches of N L U require grammar, 

which is created by domain experts, for parsing a user's utterance into seman-

2 



CHAPTER 1. INTRODUCTION  

tic concepts. Rules are applied to map the concepts to the communicative 

goal(s). However, grammatical coverage is a limitation. Manpower and time 

are also concerns. 

Stochastic approaches were proposed to solve the above problems be-

cause they can automatically learn the semantic relationships from a large 

annotated training corpus. The use of Belief Networks (BNs) is a stochas-

tic approach that incorporates uncertainty through probability theory and 

conditional dependence. Using BNs for N L U was first proposed in [31]. The 

causal relationships between the semantic concepts and the communicative 

goal of a user's sentence are captured in the network structure. W e can iden-

tify the underlying goal of an input sentence by probabilistic inference. BNs 

can handle spontaneous speech and learn linguistic knowledge from training 

data automatically. 

1.2 Thesis Goals 

This thesis extends the investigation in the B N framework for N L U as pro-

posed in [31]. A method was derived for identifying the user's communicative 

goal(s) out of a finite set of domain-specific goals. The problem was formu-

lated as making N binary decisions, each performed by a BN. This formu-

lation allows for the identification of queries with multiple goals, as well as 

queries with out-of-domain goals. However, the decisions are independent of 

each other. W e noticed that a large number of sentences wrongly identified 

with multiple goals instead of a single goal. W e aim to improve the goal 

identification accuracy by introducing interdependency among the goals. W e 

will propose an alternative formulation that involves an one A^-ary decision 

3 



CHAPTER 1. INTRODUCTION  

using a single BN. 

The N L U component in a human-computer conversational system should 

interpret a user's input quickly and avoid to keep the user waiting. Since 

we adopt a stochastic approach in our N L U framework, a large amount of 

computation is required for training and testing each BN. In the N binary 

formulation, one B N is built for each goal. W e wish to minimize the amount 

of computation by reducing the number of BNs from N to one. 、 

Since the B N framework automatically learns the linguistic knowledge 

from training data, it is portable to other languages. W e aim to demonstrate 

the language portability of the B N in the one N-sry formulation by using a 

Cantonese Chinese corpus. 

1.3 Thesis Outline 

This thesis is organized as follows: Chapter 2 describes the background 

knowledge of the natural language understanding technology, our task do-

main and the Belief Network framework in the N binary formulation. Chap-

ter 3 details the use of Belief Network for natural language understanding in 

the one N-ary formulation. Chapter 4 introduces the evaluation metrics and 

presents the comparative evaluation of the N binary and one N-wry formu-

lations. Chapter 5 demonstrates that the Belief Network framework in the 

one 7V-ary formulation is portable to Chinese. Conclusions and future work 

are provided in Chapter 6. 
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Chapter 2 

Background 

This chapter presents the background knowledge relating to the natural lan-

guage understanding, the related work of the Belief Network framework and 

our task domain. Natural language understanding is an important tech-

nology in human-computer conversational systems. The natural language 

understanding component is responsible for interpreting the meaning of the 

input text and returning a corresponding semantic representation. Various 

applications and approaches have been developed for it and will be intro-

duced in Section 2.1. W e will introduce the previous work on Belief Network 

framework for natural language understanding in Section 2.2 and our task 

domain, ATIS (Air Travel Information Service), in Section 2.3. 

2.1 Natural Language Understanding 

Natural Language Understanding (NLU) is a key technology in Spoken Di-

alog Systems (SDSs). It allows computers to communicate in a natural and 

intuitive way with users. These systems save the users' time and effort in 

5 



CHAPTER 2. BACKGROUND • 

learning special usage instructions and thus reach the goal of universal us-

ability. SDSs are often needed to handle information-seeking queries from 

the users regarding a restricted domain. An N L U component in a domain-

specific application identifies the user's communicative goal(s) out of a set of 

finite possibilities characteristic of the domain. However, users can express 

a communicative goal in a variety of ways. Ambiguity of words or sentence 

structures, ellipsis, idioms and metaphor also make N L U difficult. Moreover, 

disfluencies (e.g. hesitations, false starts, repeated words and repairs) are 

common in spontaneous speech. 

Different domain-specific SDSs are developed and relied on an N L U com-

ponent to provide the meaning representation of a given query. Prominent 

examples include air travel information systems PEGASUS [47] and MERCURY 

41], train information systems RA I LTEL [4] and TABA [3], city guides MATCH 

21] and VOYAGER [14], and automatic telephone switchboard and directory 

information system PADIS [24]. The languages concerned include English and 

multiple European languages. Some systems were developed for Chinese, 

such as the foreign exchange inquiry system c UFO REX [32]. There are also 

commercial organizations, like Nuance [12] and Speech Works [18], which pro-

vide speech-activated solutions for different industries, such as banking and 

travel planning. 

Different approaches for N L U have been proposed. Each approach has its 

own advantages and disadvantages which make it to be adoptable in different 

conditions. Rule-based approach is a traditional N L U approach. The rules 

are strict in characterizing the users' speech. Other approaches to N L U are 

data-oriented, such as the phrase-spotting and stochastic approaches. Differ-
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ent approaches can be mixed to model a N L U problem, in order to take the 

advantage of the relative strengths of each approach. In this thesis, we adopt 

a stochastic approach for N L U because it provides a best guess of uncer-

tainty and offers the robustness. W e choose a Belief Network model because 

it captures the causal relationship between the communicative goal(s) and 

the concepts^ in a user's sentence. Furthermore, a B N model gives a con-

cise specification of joint probability distribution. The network is tractable 

during reasoning. The details will be in the Section 2.2. 

2.1.1 Rule-based Approaches 

The major work of the rule-based approaches is hand-designing the grammar 

rules, which define the semantic and syntactic structures allowable in the 

task. Context-free grammars (CFGs) are widely used because the formalism 

is powerful enough to describe most of the structures in natural language. 

Each rule consists of a non-terminal on the left and a sequence of terminals 

and/or non-terminals on the right. The development of effective grammar 

rules usually requires linguistic experts to design the syntactic and semantic 

patterns of the users' input in a domain. After that, a parser applies the 

grammar rules to analyze the syntactic and semantic patterns of a user's 

sentence. The N L U component of the MASK [26] system is an example of 

the rule-based approach. During its development phase, the major work was 

to define the concepts that are meaningful for the railway travel information 

task and their appropriate keywords. 

A critical factor in the rule-based approaches is grammar coverage. If a 

1 A concept is the smallest unit of meaning that is relevant to a specific task [27]. 
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user says something that has not been defined in the grammar, the sentence 

cannot be interpreted. Rule-based models are usually applied to domain-

specific applications. When we change the application's domain or extend 

the application scenarios, rules often have to be revised or rewritten [27 . 

Extensive amount of manpower is required to create, enhance and maintain 

the grammar rules [38 . 

2.1.2 Phrase-spotting Approaches 

Phrase-spotting approaches are data-oriented. Some special syntactic or se-

mantic phrases are frequently observed in the training data. The key phrases 

of interest have salient semantics. Similarity measures, like the Kullback-

Leibler distance [2] and Mutual Information [11], are used for extracting 

candidate phrases automatically from the training corpus. A parser (phrase 

spotter) adopts a progressive search strategy to capture the key-phrases in a 

sentence, which are then analyzed and associated with a semantic representa-

tion for further interpretation [5]. The call routing system A T & T “How May 

I Help you?” [37] applied a phrase-spotting approach, in which grammar 

fragments have semantic associations with different call-types. A telephone 

dialog system for accessing e-mails [45] also applied the phrase-spotting tech-

nique. 

Phrase-spotting approaches require a training set for capturing the spe-

cific phrases during the system development and do not have the capability 

in handling unseen data. The phrase-spotting technique is useful for dealing 

with ill-formed structures, such as hesitations, fillers, and out-of-vocabulary 

words [23]. However, it is hard to describe all possible keywords. Systems 
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using a phrase-spotting approach only work well for small applications with 

limited task complexities. 

2.1.3 Stochastic Approaches 

The problems of reusability and portability in grammar rules and the dif-

ficulty in pre-defining all possible keywords for phrase-spotting motivate 

the investigating of the stochastic approaches. Stochastic approaches (also 

known as statistical or probabilistic approaches) can automatically learn the 

relationships between the semantic concepts and their corresponding words 

of expression from a large annotated training corpus. It is data-oriented and 

hence more portable across domains and languages. The linguistic knowl-

edge is captured in terms of statistical parameters, which are used to find the 

most likely concept sequence of a given string during the testing phase. A 

stochastic approach is flexible and robust because it can handle spontaneous 

speech. However, the performance of a model depends on the volume and 

sparseness of corpus that we used in training. Manual annotation and data 

collection are time-consuming and costly procedures. For example, the ATIS 

corpus (for which the details will be introduced in Section 2.3) took over a 

year in creation [25]. A domain-specific corpus is usually used to train the 

parameters for a specific task domain. Human experts are required to pro-

vide subjective probabilities when there is an insufficient or sparse training 

data [6]. Common stochastic models are probabilistic context-free grammars, 

connectionist models and Hidden Markov Models. 
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2.1.3.1 Probabilistic Context-Free Grammars (PCFGs) 

Probabilistic context-free grammars (PCFGs) extend context-frê  grammars 

(CFGs) with probabilities. The assignment of a probability to each rule 

is based on the frequency of the rule applied to the training corpus. The 

most suitable parse tree is selected by maximizing aposterior probabilities 

of the trees. However, considerable amount of search time may be required. 

Some algorithms, like the TV-best parsing algorithm, only explore the N most 

promising parse trees instead of all possible hypotheses. Efficiency can be 

highly increased but accuracy may be partially sacrificed. PCFGs solve the 

problem of grammar ambiguity in CFGs. Example applications include the 

restaurant guide, the Berkeley Restaurant Project (BeRP) [22], and a boat 

traffic information system, WAXHOLM [7]. TINA [40], a natural language 

system developed in MIT, also uses PCFGs for sentences parsing. 

2.1.3.2 Connectionist Models 

Connectionist models are artificial neural networks (ANN) which consist of 

layers of interconnected processing units [16, 19]. These units operate in 

parallel with weighted connections in order to store linguistic knowledge. 

The weights are learned from training data. The BASURDE Spanish dialogue 

system [8, 39] is an example of the use of multilayer perceptions (a type 

of A N N ) for natural language understanding. The system is applied to the 

railway information inquiry task with a fixed-size lexicon as input units. Each 

output unit corresponds to a dialogue act label which represents the intention 

of a user utterance in a restricted domain. However, the complex architecture 

in a connectionist model makes the representation and computation difficult. 

10 
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When the size of a neural network is huge, the training is too slow to be 

tolerable [43]. Therefore, it is not a popular stochastic technique. 

2.1.3.3 Hidden Markov Models (HMMs) 

The Hidden Markov Model (HMM) is a popular stochastic model for se-

mantic decoding. Some research prototype systems are modelled with this 

technique, such as AT&T-CHRONUS [34] and LIMSI-CNRS [33] for the ATIS 

task in English and French respectively. An H M M consists of sets of states, 

observations and acceptable transitions among states [28]. During training, 

the statistic parameters are estimated from the words in an input query 

(observations) and the corresponding semantic concepts (hidden states). In 

a testing phase, the most likely word string W and concept string C are 

decoded for a given acoustic string A according to: 

P{W,C\A) - m^xP{W,C\A) (2.1) 

2.2 Belief Network Framework — the N Bi-

nary Formulation 

2.2.1 Introduction of Belief Network 

A Belief Network^ (BN) is a probability reasoning tool [10, 20]. B N is an 

expressive graphical representation of causal relationships among the param-

eters in a domain. It combines the prior knowledge with the current observa-

tion. The notion of conditional independence in a B N simplifies knowledge 

2 Also known as Bayesian network, probabilistic network, causal network, causal graph 
or knowledge map. 
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acquisition and computation in reasoning [1]. A B N is a directed acyclic 

graph (DAG), where the nodes are the random variables and the arrows are 

the causal links (as shown in Figure 2.1). Every arrow points from cause (par-

ent) to effect (child). A child node can also be a parent node, such as node B 

in Figure 2.1. Each variable represents an event with a finite set of mutually 

exclusive states. There is a conditional probability table P{X\Yi, Y2,... ,Yn) 

for each variable X with parents Yi,Y2,... ,Fn- The conditional probabil-

ity table shows the conditional probabilities of X being in a particular state 

given the states of its parents. In the case of a root node (without parents), 

its conditional probability table only gives a prior probability P{X). For the 

example in Figure 2.1, node E has a conditional probability table P{E\B, C), 

while the table of node A is reduced to P(义).The B N structure, conditional 

and prior probabilities should be specified at the development stage. After 

that, when evidence / observation comes in, the B N performs belief updating 

by changing the conditional probabilities of the nodes. 

Figure 2.1: An simple example of Belief Network. 

The use of Belief Networks in natural language understanding has been 

studied in [31]. The problem was formulated as making N binary decisions. 

The details will be introduced in the following subsections. 
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2.2.2 The N Binary Formulation 

A method was derived for identifying the user's communicative goals out of 

a finite set of domain-specific goals (N) using Belief Networks [31]. It formu-

lated the goal identification problem in term of making N binary decisions, . 

each performed by a BN. The work was based on the ATIS domain, in which 

11 goals were chosen as in-domain {N = 11). The details will be introduced 

in Section 2.3. 

The objective of this method is to classify queries as single goal, multiple 

goals or out-of-domain (〇〇D) goal. The first step is to parse an input 

query into a sequence of semantic concepts, which is the input to the BNs. 

A B N applies Bayesian inference and outputs an aposterior probability for 

the query to represent the likelihood of the corresponding goal. Then, each 

B N makes a binary decision regarding the presence or absence of its goal 

by comparing the aposterior probability against a tuned threshold. The 

decisions are independent of each other. A query is rejected as 0〇D if all 

BNs vote negative. 

2.2.3 Semantic Tagging 

Semantic tagging is a process to parse an input query into a sequence of 

semantic concepts using hand-designed grammar rules. The sequence of se-

mantic concepts form an input to the BNs for further goal inference. There 

are 60 semantic concepts defined for the ATIS domain, based on the attribute 

labels in the SQL expressions associated with the ATIS queries. The gram-

mar rules are listed in Appendix C. Example in Table 2.1 shows an ATIS 

query with its parsed semantic tags and the annotated goal. Spontaneous 
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Query: "what flights are available from denver to balti-
more first class on united airlines arriving may 
seventh before noon" 

S e m a n t i c t a g s : < W H A T > < F L I G H T > 〈 C H U N K 〉 < F R O M > 

C C I T Y一O R I G I N 〉 < T O > <C ITY _DEST INAT ION> 

<CLASS _NAME> <PREPOS I T ION> 

<A IRL INE _NAME> < T 0 > <MONTH> < D A Y > 

< P R E _ T I M E > < P E R I O D > 

Goal: flight.flight-id 

Table 2.1: An ATIS query with its corresponding semantic tags and commu-

nicative goal. 

speech effect, ill-formed and irrelevant expression are tagged into < C H U N K > 

and finally ignored in goal inference. 

2.2.4 Belief Networks Development 

((^CONCEPT^ 

C ^ O N C E I T ^ 

Figure 2.2: The naive Bayes，structure of a BN. The goal node outputs a 

binary state to indicate the presence or absence of the corresponding goal in 

a given query. 

A B N in naive Bayes' topology (as shown in Figure 2.2) is used for the 

communicative goal(s) identification. The arrows are drawn from cause to 

effect. This structure captures the causal relationships between the com-
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municative goal and the relevant semantic concepts in a query. The B N 

structure assumes that the concepts are independent of one another. Each 

concept has a binary state to indicate its presence or absence, based on the 

observation in a query. The goal node also has a binary state to show the 

presence or absence of the corresponding goal in a given query. 

A B N is developed for each communicative goal from the training data. 

Each B N has M semantic concepts that is the most indicative to the corre-

sponding goal. The dependency between a goal and a concept is measured 

by Information Gain (IG). For a given goal Gi {i = 1,2.. .N), we selected 

M concepts {Ci, C2... Cm} that have the highest IG in relation with Gi 

(Equation 2.2). 

哪 … ) = g i E m = e’G, =力 l 。 g 《 二 二 (2.2) 

Each variable in a B N has a conditional probability table, i.e. P(Gi) and 

P{Ck\Gi). At the development stage, the statistical values are obtained by 

tallying the counts from the training data. They will be used for the Bayesian 

inference. 

2.2.5 Goal Inference 

After the development of N BNs, we parse an input query into a sequence of 

concepts by semantic tagging. According to the occurrences of the concepts, 

each B N applies Bayesian inference (Equation 2.3) and outputs an aposterior 

probability P(Gi = 1|(5) which is a confidence level of the goal Gi present in 

C. 

The aposterior probability is then compared with a threshold (denoted 

as Of. for z = 1,2 ... A/") in order to make the binary decision. The thresholds 
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are tuned with the training data by optimizing the F-measure (Equation 

2.4) in goal identification. Precision (P) is the percentage of queries with 

correct inference out of all queries classified to have the goal Gi. Recall {R) 

is the percentage of queries correctly inferred with Gi out of all Gi queries. 

Equation 2.4 adopts ^ = 1 which treats precision and recall with equal 

importance. 

= ff) ntii PiC, = = 9)] 

F 二 (1 + 断 (2.4) 
PR + P 、乂 

The binary decisions across the N BNs are united to identify the commu-

nicative goal(s) of a query. If all BNs vote negative, the framework treats the 

input query as O O D . If only a single B N votes positive for its corresponding 

goal, the framework labels the input query with the goal. If multiple BNs 

vote positive for their corresponding goals, the query is labeled with multiple 

goals. 

2.2.6 Potential Problems 

This approach formulated the goal identification problem as making N bi-

nary decisions. The decisions are independent of one another. W e noticed a 

large number of sentences wrongly identified with multiple goals instead of a 

single goal. Furthermore, the computation in training and testing increases 

with the number of BNs. Hence, we have investigated the use of an alterna-
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tive formulation in terms of one iV-ary decision which will be introduced in 

Chapter 3. 

2.3 The ATIS Domain 

W e have chosen to work in the ATIS (Air Travel Information Service) domain 

17，36]. ATIS is a common research domain, for which corpora were collected 

under the sponsorship of the A R P A (Advanced Research Projects Agency) 

spoken language systems technology development program. The Multi-Site 

ATIS Data Collection Working ( M A D C O W ) group monitored the collection 

of data at five sites in the United States. The ATIS database is based on 

data obtained from the Official Airline Guide (OAG), which is organized un-

der a relational schema. It contains information about flights, fares, airlines, 

airports, ground transportation and numerous others for 46 cities and 52 

airports in the United States and Canada. 

Training 1993 Test 1994 Test 
# Transcribed Queries 1564 448 444 

Table 2.2: Distribution of the ATIS-3 Class A sentences. 

W e conducted our experiments on ATIS-3 Class A sentences, which are 

context-independent and hence can be understood unambiguously without 

dialog context. There are 1564, 448 (1993 test) and 444 (1994 test) tran-

scribed queries in the disjoint training and test sets respectively (see Table 

2.2). The corpora include a SQL expression for each query that can retrieve 

the reference answer from the O A G database. An example of a Class A query 
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with the corresponding simplified SQL and communicative goal is shown in 

Table 2.3. 

Query: 

“show me all flights from new york to milwaukee on northwest 
airlines departing at seven twenty a m" 

Simplified SQL: 
SELECT flighUd F R O M flight 

W H E R E airline_name = “northwest airlines” 
A N D origin = “new york” 
A N D destination = “milwaukee” 
A N D departure_time = “seven twenty am” 

Communicative Goal: 
flight.flightJd  

Table 2.3: An ATIS-3 Class A sentence with the corresponding SQL query 

and communicative goal. 

The main attribute labels of the SQL queries indicate the interested com-

municative goals. There are 32 communicative goals derived from the train-

ing set for the ATIS domain [31]. For example, the communicative goal of 

the SQL query in the Table 2.3 is flight.flightJd (flight identification). Among 

these 32 goals, 11 goals cover over 95% of the training set, 93% of the 1993 

test set, and 92% of the 1994 test set. Hence, we only focus on the investiga-

tion of this set of 11 goals. The remaining goals are treated as out-of-domain 

(OOD). The communicative goals in the ATIS domain are listed in Appendix 

A. The distribution of the communicative goals in the training and test sets 
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are shown in Appendix B. Furthermore, we found 36 training queries with 

more than one communicative goals. W e can classify the ATIS queries into 

three types: single goal, multiple goal and OOD. Examples are shown in 

Table 2.4. 

Single goal example 
Query: “flights on friday from newark to tampa" 
Goal: liTghtilight-id 

Multiple goal example 
Query: “give me the least expensive first class round trip ticket on u s 

air from Cleveland to miami” 
Goals: flight.flight」d，fare.fareJd 

Out-of-domain (OOD) example 
Query: “how many first class flights does united have leaving from all 

cities today” 

Goal : count-flight (OOD, countJIight is not selected as in-domain) 

Table 2.4: Examples of single goal, multiple goal and O O D queries in the 

ATIS domain. 

2.4 Chapter Summary 

In this chapter, we have covered the background information of this thesis. 

W e presented the common approaches on NLU. After that, we described the 

previous approach of using BNs on NLU. The problem was formulated as 

making N binary decisions. W e also introduced the ATIS domain, which 

19 



CHAPTER 2. BACKGROUND • 

is our research domain. In this thesis, we adopt the B N framework due to 

its flexibility and robustness. W e would like to improve the use of the B N 

framework for NLU. 

20 



Chapter 3 

Belief Network Framework — 

the One iV-ary Formulation 

In this chapter, we propose an alternative formulation for natural language 

understanding (NLU) using the Belief Network (BN) framework. W e for-

mulate the communicative goal identification problem as making one iV-aiy 

decision. This extends the previous work and resolves the potential problems 

of independent decisions and massive computation in the N binary formu-

lation. W e employ the same pre-defined B N topology. In the one iV-ary 

formulation, the goal node contains N states, one for each goal class. Each 

goal class represents an in-domain or out-of-domain (OOD) goal. This for-

mulation captures the interdependency among the communicative goals as 

^g P{G = g\C) = 1 for ̂  G {^1,^2 • • -Qn}- W e have two goal identifica-

tion strategies: (i) multiple aposterior strategy and (ii) maximum aposterior 

strategy. Both can identify single goal, multiple goals and O O D goals with 

a single B N only. 
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3.1 The One AT-ary Formulation 

W e identify the communicative goal(s) of a given query out of a finite set of 

domain-specific goals (N) by making an one A^-ary decision in a single BN. 

The B N is our stochastic tool for learning the causal relationships between 

the goal and the semantic concepts from the annotated training data. W e 

work on the ATIS domain which contains single goal, multiple goal and 

out-of-domain (OOD) queries. W e design two goal identification strategies, 

which extend the capability of identifying multiple goals in the single N-

ary decision approach. The numbers of states (N) in the goal variable are 

different in these strategies: 

(1) Multiple selection strategy concentrates on the 11 selected in-domain 

goals and add an extra goal for O O D queries、N — 12). The single B N 

makes a iV-ary decision regarding the occurrence of each goal by com-

paring the aposterior probabilities with a relative threshold. Multiple 

goals are classified when there are more than one aposterior probabili-

ties above the threshold. 

(2) Maximum selection strategy selects the goal with the highest aposterior 

probability in the BN. W e define a new class for each possible combi-

nation of the in-domain multiple goals. There are varied multiple goal 

combinations with mixed in-domain goal and O O D goal in the train-

ing and test sets. In order to prevent sparse data problems, we only 

extend new classes for the in-domain multiple goals. After examining 

the training data, we extend four classes of goals in total (see Table 

3.1). They also cover all in-domain multiple goal combinations in the 
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test sets. Together with the 11 selected goals and the O O D goal, the 

goal variable has 16 states {N = 16) under this strategy. Multiple goals 

are classified when a corresponding goal class achieves the maximum 

aposterior probability. 
I t 

The general steps in the N L U framework are similar to the N binary 

formulation. However, the calculation of each process in the one N-ary for-

mulation is different as the representation of the goal node is changed, from 

binary states to N states. To identify the appropriate goal(s) of a given 

query, we first apply semantic tagging to parse the query into a sequence 

of semantic concepts. These concepts form the input to our single B N and 

initiate the B N probabilistic inference. According to the aposterior probabil-

ities and our goal identification strategies, we assign the goal(s) to the input 

query. 

3.2 Belief Network Development 

W e adopt a pre-defined B N topology with a naive Bayes' structure (see Figure 

3.1), which is the same as we used in the N binary formulation. Each concept 

has a binary state (presence or absence) based on its occurrence in a query. 

The goal node has N states to represent the occurrence of the N goals, instead 

of the absence or presence of a particular goal in the N binary formulation. 

The single B N directly outputs the inferred goal(s) of a given query and 

captures the interdependency among the communicative goals. 

W e develop a single B N for all communicative goals using our training 

data. W e use Information Gain (IG) to measure the dependency between 
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each concept and the presence of all N goals (g e {91,92 •. -̂ /AT}). In com-

parison, the N binary formulation concerns the absence or presence of a goal 

{g = 0’ 1), see Equation 2.2. W e select M concepts {Gi，C2 •.. Cm} that have 

the highest IG (Equation 3.1) as an input to the BN. The number of input 

concepts (M) is selected by optimizing with the overall goal identification 

performance. 

I 吼 G � = y^ e 败 、 。 = 胸 户 仏 二 ) 
c=0,l ge{gi,92-9N} 

(3.1) 

(cmcE^^ 

Figure 3.1: The Belief Network structure is the same as the one in the 

N binary formulation (Figure 2.2) but the goal node directly outputs the 

inferred goal(s) of a given query. 

3.3 Goal Inference 

Given a sequence of semantic concepts, we perform Bayesian inference (Equa-

tion 3.2). A set of aposterior probabilities, = g\C) where g G {仍，仍...gj^}, 

are produced together from a single BN and show the likelihood of each goal 

Qi present in a given query C. In comparison, each B N in the N binary 
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formulation outputs an aposterior probability P{Gi = 1\C) which is a con-

fidence level of the goal Gi present in C. The 7V-ary decision regarding the 

existence of each goal is made by a goal identification strategy. W e have 

two goal identification strategies: multiple selection strategy and maximum 

selection strategy. 

. � = “) nr=i P�Ck = C,\G = g)] 

3.3.1 Multiple Selection Strategy 

Multiple selection strategy uses a relative threshold, 9 x maxP(G = g\C), to 

infer multiple outputs. The parameter 9 is between 0 and 1. The 6 is tuned 

based on the training data by optimizing with the multiple goal identification 

performance. W e evaluate the multiple goal identification performance based 

on F-measure, which considers recall and precision. W e adopt = 1 in F-

measure to combine recall and precision with equal importance. The input 

query is classified as the goal(s) g which has an aposterior probability above 

the relative threshold (Equation 3.3). 

9 = { 9 ^ {9u92 • . . 9 i 2 } \ P { G = g \ C ) > {9 x maxP(G = "|(?))} (3.3) 

Figure 3.2 is a schematics which shows how the relative threshold cap-

tures multiple goals. The relative threshold is defined as a certain percent-

age {0 e [0,1]) of the maximum aposterior probability (maxP(G = 

Hence, it is flexible and changes according to the confidence level of the most 

likely goal in the given query. The 6 controls the capability in identifying 
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multiple goals since it decides the coverage of the gray area in Figure 3.2. A 

B N votes positive for its goal if the output aposterior probability is higher 

than the threshold. There can be more than one goal. This strategy is ex-

plicit and it can identify unseen multiple goal combinations, which may exist 

in real situation. However, some queries will be wrongly identified with mul-

tiple goals due to this flexibility. In the example on Figure 3.2, the query 

contains gi and ĝ . Under this strategy, even each goal class represents a 

single goal or an O O D goal, multiple goals can be inferred as well. 

P(G=g\C) 

max P(G=g\C)- ^ 
； 

0Xmax P(G=g\C) 1 �Lti:! 二 J_ 

• • • 

L J _ _ ^ 1____ 
S] 82 83 8]2 

Figure 3.2: A schematics illustrates how the relative threshold {6 x 

m a x P ( G = g\C)) captures the multiple goals and g^). 

3.3.2 Maximum Selection Strategy 

Maximum selection strategy classifies a given query into the goal(s) g with 

the highest aposterior probability (Equation 3.4). Since we have multiple 

goal queries in the ATIS domain, we extend the goal classes by defining a 

new class for each possible combination of in-domain multiple goals . There 
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are varied multiple goal combinations with mixed in-domain goal and O O D 

goal in the training and test sets. W e do not define new goal classes for such 

queries to prevent sparse data problems. W e examined the training set and 

found that there are four combinations of goals. These four combinations also 

cover all the multiple goal cases in the test sets. Therefore, we extended four 

goal classes and hence N = 16. The combinations of goals are shown on Table 

3.1 with example queries. W e can identify multiple in-domain goals when g 

corresponds to an extended goal class. This strategy has extra knowledge / 

constraints to help multiple goal identification. However, it cannot identify 

unseen multiple goal combinations. 

々 = arg max = (3.4) 
9^{9i,92---9l6} 

3.4 Advantages of the One A^-ary Formula-

tion 

The one A^-ary formulation makes the goal identification decision in a single 

BN, where LgPifi = g\C) = 1 for g e {91,92 • • '9n}- It captures the 

interdependency among the communicative goals. Hence, the existence of one 

goal affects that of other goals. It prevents a single goal query to be wrongly 

identified with multiple goals, which is common in the N binary formulation. 

This feature should improve the goal identification performance. 

Since we adopt a stochastic approach in our N L U framework, we need to 

estimate the probabilities by tallying the counts from the training set. W e 

apply Bayesian inference on the probabilities during parameters selection. 
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Multiple Goal Class 1; 
Query: “i need to find a plane from boston to san francisco on friday,. 
Goals: aircraft.aircraft-code, flight.flightJd 

Multiple Goal Class 2: 
Query: “what's the airport at orlando” 
Goals: airport.airport_code, airport.airport_name 

Multiple Goal Class 3; 
Query: ^^explain the fare code q" 
Goals: class_of_service.class_description, fare_basis.fare_basis_code 

Multiple Goal Class 4; 
Query: “give me the least expensive first class round trip ticket on u s 

air from Cleveland to miami,. 
Goals: flight.flightJd, fare.fareJd 

Table 3.1: The four possible combinations of multiple goals and the corre-

sponding example queries in the ATIS domain. 
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These processes require certain amount of additive and multiplicative oper-

ations. The amount of computation is in relation to the number of BNs, 

goals and concepts involved. W e develop a single B N only in the one N-avy 

formulation. Hence the computation in the training stage can be highly re-

duced. These advantages will be proven in the next chapter with a number 

of experiments. 

3.5 Chapter Summary 

This chapter describes how to make one A^-ary decision in a single Belief 

Network, in order to identify the communicative goal(s) of an information-

seeking query. The naive B N structure captures the dependencies between 

the communicative goals and the semantic concepts. The semantic informa-

tion is stored as statistical parameters, which are used for Bayesian inference. 

W e propose two goal identification strategies: multiple selection strategy and 

maximum selection strategy. By using these goal identification strategies, the 

single B N can identify single goal, multiple goal as well as O O D queries. The 

one iV-ary formulation has the capability of capturing the interdependency 

among communicative goals and such relationships should enhance the goal 

identification performance. 

29 



Chapter 4 

Evaluation on the N Binary 

and the One iV-ary 

Formulations 

In the previous chapters, we have presented the use of Belief Network (BN) 

for natural language understanding (NLU) in the N binary and the one N-

ary formulations. In this chapter, we conduct experiments using the ATIS 

corpora and compare the N L U performance between the two formulations. 

W e have three goal identifiers in total: (i) a suite of BNs modeled under 

the N binary formulation, (ii) a single B N modeled under the one N-wry 

formulation with multiple selection strategy and (iii) a single B N modeled 

under the one iV-ary formulation with maximum selection strategy. W e in-

troduce three evaluation methods - accuracy measure, macro-averaging and 

micro-averaging 一 for measuring the goal identification performance. Each 

evaluation method analyzes the goal identification performance from a differ-
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ent angle. Our experiments compare the two formulations on the (i) overall 

goal identification performance, (ii) out-of-domain rejection, (iii) multiple 

goal identification and (iv) computation. 

4.1 Evaluation Metrics 

W e have three different evaluation metrics for measuring the goal identifica-

tion performance. The first one is the accuracy measure which is based on 

the number of errors in the inferred goals of each query. However, this mea-

sure overlooks the correctly identified goal(s). Macro- and micro-averaging 

are the evaluation techniques commonly used in text categorization [15, 44], 

which measure the category assignments in terms of recall and precision. 

Macro-averaging is a per-goal average which assigns equal weight to every 

goal, regardless of its frequency. Micro-averaging is a per-query average 

which gives an equal weight to every query. The two averaging techniques 

bias the results differently. Macro-averaging is influenced by the rare goals 

while micro-averaging is influenced by the most frequent goals. The details 

will be presented in subsections 4.1.2 and 4.1.3. W e will use all these eval-

uation metrics in order to achieve a thorough understanding on each goal 

identifier's performance. 

31 



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE 
N-ARY FORMULATIONS  

4.1.1 Accuracy Measure 

The accuracy measure is an alignment measure in relation to the number of 

insertion (INS), deletion (DEL) and substitution (SUB) errors [29，35]. Each 

sentence in the training and test sets associates with its reference goal(s). To 

score the goal identification performance, we align the hypothesized goal(s) 

with the reference goal(s) and identify the errors. The definitions of the 

errors and the example queries are shown in Table 4.1. The goal identification 

accuracy is computed in Equation 4.1. To obtain the accuracy, we tally the 

errors and the reference goals in the training or test sets. The accuracy is 

negative if the number of errors is larger than the number of reference goals. 

,1 # INS + # D E L + # S U B 、 INNO/ , … 
accuracy = (1 - ) x 100% (4.1) 

e f er ence -g oal s 

4.1.2 Macro-Averaging 

Macro-averaging evaluates the N L U goal identification performance as a cat-

egorization problem, which classifies a query with respect to a finite set of 

goals, g e {g]_,g2 …QnY Each goal g is associated with a 2 x 2 contingency 

table as shown in Table 4.2 to denote the number of queries in each situation. 

Since our experiments are based on the ATIS domain, we have 12 per-goal 

contingency tables in total (N = 12), to represent the 11 in-domain goals 

and the O O D goal. 
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Deletion error (DEL)  
Definition: There is a missing reference goal. 

Query: “show me the cheapest first class round trip from new 
york to miami” 

Reference goals: fare.fareJd, flight.flightJd 

Inferred goal: fare.fareJd (flight.flightJd is missing) 

Insertion error (INS) 
Definition: There is an additional inferred goal. 

Query: “give me the fares for round trip flights from Cleveland 

to miami next Wednesday,, 

Reference goal: fare.fareJd 

Inferred goals: fare.fareJd, flight.flightJd (additional) 

Substitution error (SUB) 
Definition: There is an incorrect inferred goal. 

Query: "？ need the fares on flights from Washington to toronto 

on a Saturday,, 

Reference goal: fare.fareJd 

Inferred goal: flight.flightJd (incorrect) 

Table 4.1: The definitions and examples of deletion, insertion and substitu-

tion errors. 
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Reference = Yes Reference = No 
Inferred = Yes ag bg 
Inferred 二 No Cg dg 

Table 4.2: A contingency table of a goal g, for g G {91,92 •. -Qn}-

where 

• CLg is the number of queries correctly inferred as goal g\ 

• hg is the number of queries incorrectly inferred as goal g\ 

� Cg is the number of queries incorrectly rejected from goal g\ 

• dg is the number of queries correctly rejected from goal g. 

Macro-averaging computes recall (Equation 4.2) and precision (Equation 

4.3) for every goal based on the corresponding per-goal contingency table. 

Then, we average the performance scores over the number of goals (Equation 

4.4, 4.5). F-measure with p = 1 is used to combine the macro-recall and 

macro-precision into a single measure. The F-value is our final score for the 

performance. Since every goal has the same weight in the F-value regardless 

of its frequency, macro-averaging tends to over-emphasize the performance 

on the rare goals. 

r � = ( 4 . 2 ) 
a夕+ C5 

P(g) = (4.3) 
dg + bg 
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recallMacro = E 州 歸 ⑷ (4.4) 

precisiouMacro = �卩 �9 n �M (4.5) 

4.1.3 Micro-Averaging 

Micro-averaging calculates only one value of recall and precision to evaluate 

the overall goal classification. A global contingency table is built by adding 

the corresponding cells in the per-goal contingency tables. The micro-recall 

(Equation 4.6) and micro-precision (Equation 4.7) are then computed over 

all decisions. Likewise, we adopt 卢 = 1 in the F-measure to integrate recall 

and precision, and obtain a F-value. Since every individual query has an 

equal weight on the F-value, micro-averaging tends to over-emphasize the 

performance on the most frequent goals. 

vecallM^cro 二 ̂ ^ — — (4.6) 

precisiouMicro = ^ 〜 (4.7) 

4.2 Experiments 

Our experiments are conducted with the ATIS-3 Class A sentences in the 

training set, test set 1993 and test set 1994. W e compare the goal identifi-

cation performance among three goal identifiers: (i) a suite of BNs modeled 
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under the N binary formulation, (ii) a single B N modeled under the one N-

ary formulation with multiple selection strategy and (iii) a single B N modeled 

under the one N-axy formulation with maximum selection strategy. Given a 

query mixed with in-domain and out-of-domain (OOD) goals, the single B N 

modeled under the one N-ary formulation with multiple selection strategy 

can identify both of them. However, the other two goal identifiers can only 

identify the in-domain goal. Therefore, we divide the multiple goal queries 

into two types: 

• multiple in-domain goal, 

• in-domain goal mixed with O O D 

Including the case where only a single goal exists and the case of O O D 

goal, we have four types of query in all. The numbers of goals for each 

query type in test set 1993 and 1994 are shown in Table 4.3 and Table 

4.4 respectively. The numbers on the fourth row are different because only 

the one N-siy formulation with multiple selection strategy can identify the 

in-domain and O O D goals together. In order to achieve a fair comparison 

among different goal identifiers, we do not use this type of queries in our 

experiments. W e compare the goal identifiers in terms of (i) overall goal 

identification performance, (ii) out-of-domain rejection, (iii) multiple goal 

identification and (iv) computation. Before the goal identification process, 

we set the parameters for the Belief Network dimensions and the thresholds, 

which are described in subsections 4.2.1 and 4.2.2 respectively. 
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Formulation N binary One N-ary One N-ary 
(strategy) (multiple) (maximum) 
Single goal 395 395 395 
( # queries: 395) 
Multiple in-domain goal 16 16 16 
( # queries: 8) 
In-domain goal + OOD 10 20 10 
( # queries: 10) 
OOD 35 35 35 

( # queries: 35) 

Table 4.3: The number of goals for the four types of query in the test set 

1993. The numbers on the fourth row are different because only the one 

iV-ary formulation with multiple selection strategy can identify in-domain 

and O O D goals together. 

Formulation N binary One N-ary One N-ary 
(strategy) (multiple) (maximum) 
Single goal 399 399 399 
( # queries: 399) 
Multiple in-domain goal 12 12 12 
( # queries: 6) 
In-domain goal + OOD 2 4 2 
( # queries: 2) 
OOD 37 37 37 

( # queries: 37) 

Table 4.4: The number of goals for the four types of query in the test set 

1994- The numbers on the fourth row are different because only the one 

iV-ary formulation with multiple selection strategy can identify in-domain 

and O O D goals together. 
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4.2.1 Network Dimensions 

Our experiments determined the numbers of concept nodes (M) in the BNs 

based on the training data. W e set a value of M for each goal identifier. W e 

varied the number of input concepts from 10 to the full set of 60 concepts. 

W e chose the value for M which gave the best goal identification performance 

or obtained less than 0.001 marginal improvement. W e used micro-averaging 

to evaluate the goal identification performance, instead of the other two 

evaluation metrics, because of its simplicity in calculation. 

For the N binary formulation, each B N has M concept nodes that map to 

the concepts with the highest values of Information Gain relating to the BN's 

goal. W e tuned a single value of M for all BNs to keep the formulation simple. 

Figure 4.1 shows that an appropriate value to use for M is 50. For the one N-

ary formulation, we defined two goal identification strategies and applied each 

of them to build a single BN. The results show that the F-value is optimal 

at 60 concepts (see Figure 4.2) using multiple selection strategy. Figure 4.3 

shows the trend of the F-values becomes stable beyond 55 concepts using 

the maximum selection strategy, as the marginal improvement was less than 

0.001. The single B N with maximum selection strategy has five concepts 

fewer than that with multiple selection strategy. These five concepts do 

not appear in the training set or only have few occurrences in the most 

frequent goals. The goal inference concerns the existence of each goal class 

and the single B N with maximum selection strategy contains more goals 

classes. Therefore, these concepts are less important in the goal identification 

using maximum selection strategy. Hence we developed the single BNs with 

M = 60 and M = 55 corresponding to the strategies. There are more 
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concepts involved in an one TV-ary formulated B N because it integrates all the 

goals in a single BN. The selected concepts for each B N in both formulations 

are listed in Appendix D. 

0.92 

I 0.91 一 
I 0,90 ^ ^ s t ^ Z  

J _ 
•g 0.88 
I 
I 0.87 

0 , 8 6 ^ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

10 15 20 25 30 35 40 45 50 55 60 

No. of input concepts 

Figure 4.1: The F-values in the micro-averaging vary with the number of 

the input concepts in the N binary formulation. The graph suggests that we 

should use 50 concepts in each BN. 

4.2.2 Thresholds 

The N binary formulation and the one N-wry formulation with multiple se-

lection strategy require thresholds for the goal identification. W e selected 

the threshold values based on the training data. In the N binary formula-

tion, each B N makes a binary decision regarding the absence or presence of 

the corresponding goal in a given query by comparing the aposterior prob-

ability with its threshold (^/J. Therefore, we tuned 11 thresholds, one for 

each BN. The single B N makes one A^-ary decision with multiple selection 
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Figure 4.2: The F-values in the micro-averaging vary with different network 

dimensionalities in the one iV-ary formulation using multiple selection strat-

egy. The graph suggests that we should use M = 60 in the single BN. 
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Figure 4.3: The •F-values in the micro-averaging vary with different network 

dimensionalities in the one iV-ary formulation using maximum selection strat-

egy. The graph suggests that we should use M = 55 in the single BN. 
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strategy by comparing the aposterior probabilities with a relative threshold 

{9 X m a x P ( G = Therefore, we set the value of 9. 

W e applied 尸-measure to tune a threshold 9f. for each B N represent-

ing a goal Gi in the N binary formulation, as mentioned in Section 2.2. 

The resulting thresholds of each goal are shown on Table 4.5 with example 

queries. The thresholds vary considerably due to the sentences structure 

of the corresponding goal. Queries with communicative goals such as air-

line.airline.name and airport.airport_name are generally simple and short sen-

tences. The relevant concepts are limited and they have high conditional 

probabilities, P(JJk = IjG'i = 1), collected from the training set. As a result, 

the queries with these goals have high aposterior probabilities, P{Gi = 1|C), 

and hence we use high thresholds for classification. On the contrary, long 

and complex sentences involve a wide range of concepts in different expres-

sions. Therefore, the conditional probabilities are comparatively smaller and 

smaller aposterior probabilities are resulted. In this case, a smaller threshold 

should be used for the goal classification. 

For the one N-avy formulation, a relative threshold {9 x maxP(G = 

g\C)) is needed to capture multiple goals when using the multiple selection 

strategy. Hence, we have to select an appropriate value for the parameter 

6 using the training data. W e varied the 9 from 0 to 1 and chose the value 

which optimizes the performance in the multiple goal identification. W e 

evaluated the multiple goal identification performance based on F-measure 

(with p = 1), which combines recall and precision. The results are shown on 

Figure 4.4, which suggests that 0.3 is a suitable value. 

W e used the multiple goal identification performance for the parameter 
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Goal (Threshold): aircraft.aircraft_code (0.78) 
Example Query: “show me the aircraft that Canadian airlines uses,. 

Goal (Threshold): airline.airline_code (0.59) 
Example Query: “which airlines go from san francisco to Washington 

by way of indianapolis,. 
Goal (Threshold): airline.airline.name (0.99) 
Example Query: “what is h p" 
Goal (Threshold): airport.airport_code (0.97) 
Example Query: “what airport is at tampa" 
Goal (Threshold): airport.airport_name (0.99) 
Example Query: “what is y y z" 
G o a l ( Th r e sho ld ) : class—of—service.class—description (0.99) 

Example Query: “what does y mean” 

Goal (Threshold): fare.fareJd (0.40) — 
Example Query: “how much does a first class round trip ticket from 

Cleveland to miami on u s air cost” 
Goal (Threshold); fare_basis.fare_basis_code (0.99) 
Example Query; “what does fare code q oh mean” 

Goal (Threshold): flight.flightJd (0.26) 
Example Query: “show me the continental flights with meals which de-

part Seattle on Sunday for chicago,. 

Goal (Threshold): flight.flight-number (0.18) 
Example Query: “what are the flight numbers of the flights which go 

from san francisco to Washington via indianapolis” 

Goal (Threshold): ground_service.city_code (0.99) 
Example Query: “tell me about ground transportation at toronto” 

Table 4.5: A threshold is tuned for each B N representing a goal in the N 

binary formulation. An example query is listed with each goal to show the 

threshold value varies with the sentence structure. 
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selection, instead of the single goal identification performance, because there 

are few multiple goal queries (38 out of 1564 queries) in the training set. 

The F-values in the single goal identification tends to increase when the 9 

varies from 0 to 1 (i.e. the ability of capturing multiple goals decreases). 

It is because as the value of 9 increases, there are less single goal queries 

wrongly identified with multiple goals and hence increases the single goal 

identification performance. However, the B N loses the ability in capturing 

multiple goals. 
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6 

Figure 4.4: The F-values in multiple goal identification vary with the 9 in the 

one iV-ary formulation using multiple selection strategy. The graph suggests 

that 6 = 0.3 is a suitable value. 

4.2.3 Overall Goal Identification 

W e measured the overall goal identification performance with the accuracy 

measure, macro- and micro-averaging. The problem is devised as categoriz-

43 



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE 
N-ARY FORMULATIONS • 

ing a query into goal(s). W e compared the performance of the N binary 

formulation and the one 7V-aiy formulation with the multiple and maximum 

selection strategies using test set 1993 and test set 1994. In this part of work, 

we expanded our test sets by counting queries with multiple in-domain goals 

multiple times, which is the same as the number of the in-domain goals. For 

example, if a test query has two in-domain goals, we treat it as two single 

goal queries in the evaluations. The figures have been shown on Table 4.3 

and Table 4.4 already. W e do not evaluate the queries with mixed in-domain 

and O O D goals (row four), as we mentioned before. Therefore, we have 446 

and 448 queries in test set 1993 and test set 1994 respectively. 

Evaluation Metric 1: Accuracy Measure 

Formulation N binary One 7V-ary One iV-ary 
(strategy) (multiple) (maximum) 
Test set 1993 1994 1993 1994 1993 1994 

# D E L 3 “ 4 ^ 3 4 3 2 

# INS 43 27 4 1 2 6 8 6 

# SUB 37 47 ^ ^ 2 8 39 

Total # errors 83 78 67 61 39 47 

Goal identification 81.4% 82.6% 85.0% 86.4% 91.3% 89.5% 

accuracies (fj) ( f g ) (證）（鑑）（鑑） ( | § ) 

Table 4.6: Comparing the goal identification accuracies of the N binary 

formulation and the one iV-ary formulation with the multiple and maximum 

selection strategies. The comparison is based on the numbers of deletion 

(DEL), insertion (INS) and substitution (SUB) errors produced in test set 

1993 and 1994. 
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Figure 4.5: Comparing the numbers of deletion (DEL), insertion (INS) and 

substitution (SUB) errors among the goal identifiers in the N binary for-

mulation and the one iV-ary formulation with the multiple and maximum 

selection strategies using test set 1993. 
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Figure 4.6: Comparing the numbers of deletion (DEL), insertion (INS) and 

substitution (SUB) errors among the goal identifiers in the N binary for-

mulation and the one iV-ary formulation with the multiple and maximum 

selection strategies using test set 1994. 
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The results in Table 4.6 show that the one TV-ary formulation gave improve-

ments over the N binary formulation in terms of the overall goal identification 

accuracies. Figure 4.5 and 4.6 show the comparison of the numbers of dele-

tion, insertion and substitution errors among the goal identifiers using test 

set 1993 and 1994 respectively. The one 7V-ary formulation using the maxi-

m u m selection strategy had the highest goal identification accuracies, up to 

9.9% higher than the N binary formulation. It is mainly due to the reduction 

of insertion and substitution errors. The reasons are as follows: 

1. Reduction of insertion errors. 

The number of insertion errors is reduced up to 35 and 21 when we 

migrated from the N binary formulation to the one iV-ary formulation 

using test set 1993 and 1994 respectively. It is because the goal iden-

tifier in the N binary formulation wrongly identified many single goal 

queries with multiple in-domain goals. In the N binary formulation, a 

query can be labeled as one of the 11 goals and the decisions are inde-

pendent of one another. However, in the one A^-ary formulation, the 

goal probabilities = g\C) are dependent as J^gPifi = g\C) = 1 

for g e {g\,• • '9n}' The confidence level of each goal is compared 

among themselves for the most suitable classification (s). When the 

correct goal has a high aposterior probability, the other goals will have 

small probabilities in order to maintain the sum of all probabilities 

equal to one. Therefore, the interdependency among the goals pre-

vents multiple in-domain goals identified for a single goal query. 

In the one N-aiy formulation, the reduction of insertion errors us-

ing the multiple selection strategy is less than that using the maximum 
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selection strategy. It is because the relative threshold {9 x maxF(G = 

g\C)) in the multiple selection strategy is too low for some single goal 

queries and we have too few multiple goal queries in the training set (38 

out of 1564) for tuning the value of 9. The interdependency among the 

goals in a single B N tends to increase the aposterior probability of one 

goal and lower the aposterior probabilities of other goals. Therefore, 

when we tune a ̂  in the multiple selection strategy, the 9 has to be 

small (i.e. 6 x maxP(G = g\C) is low) in order to capture the multi-

ple goals. However, using a small relative threshold, some single goal 

queries were wrongly identified with multiple goals. In comparison, the 

single B N with maximum selection strategy does not need a threshold 

because it has extra constraints (extended goal classes) to help multiple 

goal identification. However, the extended goal classes can increase the 

chance of confusion among a greater number of goal classes. 

The effect of the interdependency among the goals is illustrated by 

an example in Table 4.7. The N binary formulation wrongly inferred 

the query with the goal flight.flightJd (Gg) because the sentence con-

tains certain semantic tags, like〈FLIGHT〉and < C I T Y _ N A M E > , which 

are indicative of that goal. Hence, the aposterior probability of the goal 

flight.flightJd was increased to 0.435. As the confidence levels of the 

goals airline.airline_code (G2) and flight.flightJd (Gg) are larger than the 

corresponding thresholds, both goals were inferred. Figure 4.7 shows 

the aposterior probabilities of each B N in the N binary formulation for 

the example in Table 4.7. 

However, statistics in the one A^-ary formulation captures the 
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Query: "i would like to have the airline that flies between 
toronto, detroit and saint louis" 

Semantic tags: < D U M M Y > < C H U N K > < D U M M Y > < A I R L I N E > 

〈 C H U N K 〉 < F L I G H T > < P R E P > < C I T Y _ N A M E > 

< C I T Y _ N A M E _ 1 > 〈 C O N N E C T I V E 〉 

< C I T Y _ N A M E _ 2 > 

Reference goal: airline.airline.code 

N binary formulation 
Inferred goals: airline.airline.code {G2) ( / ) 

(P(G2 = 1|C) = 0.968 > 9f, = 0.59) 

flight.flightJd (Gg) (INS) 

{P{Gg = 1\C) = 0.435 > Of, = 0.26) 

One iV-ary formulation (multiple) 
Inferred goal: airline.airline.code (仍） (/) 

{P{G = g2\C) = 0.992) 
One iV-ary formulation (maximum) 

Inferred goal: airline.airline.code ⑷ ( / ) 

( P (G = = 0.992) 

Table 4.7: An example illustrating a single goal query wrongly identified as 

multiple in-domain goals in the N binary formulation. Hence, an insertion 

error (INS) was produced. The one 7V-ary formulation labeled the query 

with the correct goal using either multiple or maximum selection strategies. 
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fact that the goals airline.airline_code {P{G = (72|C) = 0.992) and 

flight.flightJd {P{G = gg\C) = 0.008) are seldom together, and the 

input concepts are more likely to appear in airline.airline_code. In Fig-

ure 4.8 and 4.9, the graphs show the aposterior probabilities in the one 

7V-ary formulation using the multiple and maximum selection strate-

gies respectively for the example queries in Table 4.7. The goals with 

probabilities lower than 10—3 are not shown on the graphs. In Fig-

ure 4.8, the goal airline.airline_code (仍）obtained the highest aposterior 

probability at 0.992 and the relative threshold became 0.298. The in-

terdependency of the goals prevents an insertion error in the one 7V-ary 

formulation using multiple selection strategy. In Figure 4.9，the goal 

airline.airline.code (没2) got the maximum aposterior probability. Ac-

cording to the maximum selection strategy, airline.airline-code was the 

only goal inferred for the example query and hence we obtained the 

correct result. 
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Figure 4.7: The graph shows the aposterior probabilities of each B N in the 

N binary formulation for the example in Table 4.7, except the goals with 

probabilities lower than 10"^. Goals airline.airline一code (G2) and flight.flightJd 

(Gg) voted positive as their probabilities is larger than the corresponding 

thresholds (labeled as P(j3i = 1|(5) > 〜 a t the top of the bars). 
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Figure 4.8: The graph shows the aposterior probabilities in the one 7V-ary 

formulation using the multiple selection strategy for the example in Table 

4.7. The goals with probabilities lower than 10一3 are not shown on the 

graph. The interdependencies among the goals and the relative threshold 

{0 X m a x P ( G = g\C) = 0.298) prevent an additional goal flight.flightJd {gg) 

being inferred. 
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Figure 4.9: The graph shows the aposterior probabilities in the one N-aiy 

formulation using the maximum selection strategy for the example in Ta-

ble 4.7, except the goals with probabilities lower than 10一3. The goal air-

line.airline.code (仍）has the maximum probability and we labeled it as the 

query's goal. 
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2. Reduction of substitution errors. 

The number of substitution errors was high in the N binary formula-

tion. W e can divide the substitution errors into three types: 

(I) an in-domain goal substitutes for the O O D goal, 

(II) the O O D goal substitutes for an in-domain goal, 

(III) an in-domain goal substitutes for another in-domain goal. 

Formulation N binary One N-ary One 7V-ary 
(strategy) (multiple) (maximum) 
Test set 1993 1994 1993 1 9 ^ 1993 1994 

# type I 27 10 15 10 19 
# type II 17 3 5 3 8 
# type III 10 3 10 11 13 12 

Total # SUB 37 47 31 28 39 

Table 4.8: Distribution of the three types of substitution (SUB) errors - (I) an 

in-domain goal substitutes for the O O D goal, (II) the O O D goal substitutes 

for an in-domain goal and (III) an in-domain goal substitutes for another in-

domain goal - in the N binary formulation and the one Â -ary formulation 

using multiple and maximum selection strategies in test set 1993 and 1994. 

Table 4.8 shows the distribution of the substitution errors in the N 

binary formulation and the one iV-ary formulation using the multiple 

and maximum selection strategies in test set 1993 and 1994. W e found 

that the N binary formulation generated more substitution errors re-

lated to the O O D goal (type I and II) than the one A/'-ary formulation 
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Figure 4.10: Comparing the numbers of substitution errors - (I) an in-domain 

goal substitutes for the O O D goal, (II) the O O D goal substitutes for an in-

domain goal and (III) an in-domain goal substitutes for another in-domain 

goal — among the goal identifiers in the N binary formulation and the one 

N-ary formulation with the multiple and maximum selection strategies using 

test set 1993. 
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Figure 4.11: Comparing the numbers of substitution errors - (I) an in-domain 

goal substitutes for the O O D goal, (II) the O O D goal substitutes for an in-

domain goal and (III) an in-domain goal substitutes for another in-domain 

goal — among the goal identifiers in the N binary formulation and the one 

iV-ary formulation with the multiple and maximum selection strategies using 

test set 1994. 
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did. Figure 4.10 and 4.11 compare the numbers of the three types of 

substitution errors among the goal identifiers using test set 1993 and 

1994 respectively. 

Recall that the N binary formulation rejects a query as O O D 
\ 

when all BNs vote negative against it. W e found that the suite of 

BNs fail to reject an O O D query if it contains some semantic tags 

that are indicative of an in-domain goal. The reason is similar to the 

N binary formulation wrongly identifying multiple in-domain goals for 

a single goal query. The query in Table 4.9 is an example of type 

I substitution error, which contains tags < F R O M > , < C I T Y _ N A M E > , 

<TO> and <ciTY_NAME�>i that are indicative of an in-domain goal 

flight.flightJd. The tags < M E A L > and < A I R L I N E _ N A M E > cannot be the 

negative evidence because they are not the selected input concepts in 

the B N corresponding to the goal flight.flightJd. The aposterior prob-

ability of the in-domain goal flight.flightJd was 0.33 and became larger 

than its corresponding threshold 0.26. The query was wrongly labeled 

with the in-domain goal and generated a substitution error using the N 

binary formulation. However, the one N-ary formulation trained a goal 

state to represent the O O D goal and built the interdependency among 

all goals. In the example, the O O D goal got the maximum aposterior 

probabilities at 0.71 in the one TV-ary formulation using both goal iden-

tification strategies. It was directly labeled as the query's goal by the 

maximum selection strategy. As there was no other goal with a prob-

ability larger than the relative threshold 0.21 in the multiple selection 

1 T h e second city name in a query is tagged as <CITY_NAME_1>. 
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Query: “what meals are served on american flight 
eight eleven from tampa to milwaukee” 

Semantic tags: < W H A T > < M E A L > 〈 C H U N K 〉 

< S E R V E > < P R E P > < A I R L I N E _ N A M E > 

< F L I G H T _ N U M B E R > < F R O M > 

< C I T Y _ N A M E > < T O > < C I T Y _ N A M E _ 1 > 

Reference goal: food .service, mea I _code ( O O D ) 

N binary formulation 
Inferred goal:flight.flightJd (Gg) (SUB) 

PjGd = 1\C) = 0.33 > Of, = 0.26 
One N-ary formulation (multiple) 

Inferred goal: OOD 0;i2)(/) 
P{G =仍2丨6) = 0.71 (maximum) 

(no other aposterior probability is larger than 

the relative threshold, 0.71 x 0.3 = 0.21) 

One iV-ary formulation (maximum) 
Inferred g o a l : O O D {qiq) ( / ) 

P{G = ̂ 161C) = 0.71 (maximum)  

Table 4.9: An O O D query wrongly labeled with an in-domain goal in the 

N binary formulation and generated a substitution (SUB) error. The one 

7V-ary formulation rejected it successfully with the multiple and maximum 

selection strategies. 
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Query: "and now show me ground transportation that 
i could get in boston late night" 

Semantic tags: � C O N N E C T I V E 〉 < D A Y _ N A M E > < D U M M Y > 

C T R A N S P O R T 〉 < C H U N K > < P R E P > 

< C I T Y _ N A M E > 〈 M O D I F I E R 〉 〈 P E R I O D 〉 

Reference goal: ground-service.city—code (Gn) 

N binary formulation 
Inferred goal: O O D (SUB) 

P(Gii 二 l|g): 0.83 < Of,, = 0.99 “ 

One N-ary formulation (multiple) 
Inferred goal: ground_service.city_code ( / ) 

P[G = 0.99 (maximum)  

One 7V-ary formulation (maximum) 
Inferred goal: ground_service.city_code ( / ) 

P{G = " 1 1 " 0 . 9 9 (maximum) 

Table 4.10: An example query wrongly labeled with an O O D goal 

in the N binary formulation due to the high threshold of the goal 

ground_service.city .code. It generated a substitution (SUB) error. The one 

N-ary formulation correctly identified the in-domain goal with the multiple 

and maximum selection strategies. 

strategy, the O O D goal was also correctly inferred. 

Type II substitution error occurs when a single goal query is 

wrongly identified as O O D . The N binary formulation fails to identify 

an in-domain goal when the corresponding threshold is too high. The 

one iV-ary formulation trained a goal state to represent the O O D goal. 

For the goal identification, one or none threshold is required when we 

use multiple and maximum selection strategy respectively. An example 
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in Table 4.10 shows that the threshold of the goal ground_service.city_code 

is too high for the query, and thus the N binary formulation failed in 

identifying the correct goal. The B N using the one iV-ary formulation 

with multiple selection strategy could identify the correct goal because 

the goal ground-service.city .code got a high aposterior probability at 

0.99 and it was impossible to have another goal inferred. The single 

B N using maximum selection strategy could also identify the correct 

goal because the goal ground_service.city_code got the maximum apos-

terior probability. 

Type III substitution error occurs when an in-domain goal substi-

tutes for another in-domain goal. W e found that the number of type III 

substitution errors is larger in the one iV-ary formulation using maxi-

m u m selection strategy. This is because the other two goal identifiers 

had more insertion errors which covered some substitution errors. Ta-

ble 4.11 is an example showing that the N binary formulation and the 

one 7V-ary formulation using the multiple selection strategy incorrectly 

inferred that a single goal query has multiple goals. As one of the 

multiple goals is the same as the reference goal, an insertion error was 

generated. However, the one iV-ary formulation using the maximum 

selection strategy inferred a wrong single goal and hence a type III 

substitution error was generated. 
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Query: "give me the fares for round trip flights from 
Cleveland to miami next Wednesday" 

Semantic tags: < C H U N K > < D U M M Y > < F A R E > < P R E P > 

< R O U N D _ T R I P > < F L I G H T > < F R O M > 

< C I T Y J S F A M E > < T O > < C I T Y _ N A M E _ 1 > 

< M O D I F I E R > < D A Y _ N A M E > 

Reference goal: fare.fareJd (Gy) 

N binary formulation 
Inferred goals: fare.fareJd (G7) ( / ) 

P[G7 = l\C) = 0.796 > Of, = 0.40 
flight.flightJd (Gg) (INS) 

= 1|C) = 0.999 > Of, = 0.26 

One iV-ary formulation (multiple) 
Inferred goals: fare.fareJd (夕7) ( / ) 

= gjlC) = 0.516 (maximum)  

flight.flightJd (gg) (INS) 

P{G = g^\C) = 0.484 > 0.3 x 0.516 = 0.15 
One N-ary formulation (maximum) 

Inferred goal:fl ight.fl ightJd (仍）(SUB) 
= g^lC) = 0.516 (maximum) 

Table 4.11: An example query shows that insertion errors can cover some sub-

stitution errors. The N binary formulation and the one TV-aiy formulation us-

ing the multiple selection strategy incorrectly inserted the goal flight.flightJd. 

The one A^-ary formulation using the maximum selection strategy got a single 

incorrect goal only and generated a substitution (SUB) error. 
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Evaluation Metric 2: Macro-Averaging 

Formulation N binary One N-a.cy One N-ary 
(strategy) (multiple) (maximum) 
Test set 1993 1994^ 1993 1994 1993 1994 

recallMacro 0 . 8 9 0 . 6 7 0 . 9 2 0 . 8 4 0 . 9C 0 . 7 5 

precisionMacro 0.77 0.55 0.77 0.65 0.88 0.63 

F-value 0.83 0.61 0.84 0.74 0.89 0.67 

Table 4.12: Comparing the overall goal identification performance of N bi-

nary formulation and the one N-ory formulation with the multiple and max-

imum selection strategies using macro-averaging. The results show that the 

one 7V-ary formulation improved over the N binary formulation. 

W e compared the performance of the N binary formulation and the one 

7V-ary formulation using the multiple and maximum selection strategies by 

macro-averaging. The recall and precision of each goal in the N binary 

formulation and the one A^-ary formulation using test set 1993 and 1994 are 

listed in Appendix E. The overall macro-averaging results are tabulated in 

Table 4.12 which shows that the one 7V-ary formulation improved over the N 

binary formulation. Figure 4.12 and 4.13 compare the recalls, precisions and 

F-values among the goal identifiers using test set 1993 and 1994 respectively 

in macro-averaging. The improvement is up to 6% in test set 1993 and 13% 

in test set 1994. 

The average of the goal classification performance is higher in the one 

7V-ary formulation, regardless of the goal's frequency. It is because the inter-

dependency among the goals is effective for selecting the most suitable goal(s) 

for a given query, as mentioned before. The large numbers of insertion and 
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Figure 4.12: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one 7V-ary formulation with 

the multiple and maximum selection strategies using test set 1993 in macro-

averaging. 
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Figure 4.13: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one N-ary formulation with 

the multiple and maximum selection strategies using test set 1994 in macro-

averaging. 
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substitution errors in the N binary formulation also lower the recall and 

precision in some goals. Therefore, the lower recall Macro and precision Macro 

were obtained in the N binary formulation. 

Evaluation Metric 3: Micro-Averaging 

Formulation N binary One N-aiy One N-ary 
(strategy) (multiple) (maximum) 
Test set 1993 1994 1993 1 9 9 ^ 1993 1994 

# reference goals (A) 446 448 446 448 446 448 

# inferred goals (B) 486 471 484 470 451 452 

# correctly inferred goals (C) 406 397 420 413 415 407 

recallMicTo (C/A) 0.91 0.89 0.94 0.92 0.93 0.91 

precisioriMicro (C/B) 0.84 0.84 0.87 0.88 0.92 0.90 

î -value 0.87 0.86 0.90 0.90 0.93 0.90 

Table 4.13: Comparing the overall goal identification performance of N bi-

nary formulation and the one iV-ary formulation with the multiple and max-

imum selection strategies using micro-averaging. The results show that the 

one iV-ary formulation improved over the N binary formulation. 

W e also compared the performance of the goal identifiers by micro-averaging. 

The results are tabulated in Table 4.13 which showed that the one A/'-ary 

formulation improved over the N binary formulation up to 6% in test set 

1993 and 4% in test set 1994. The results are consistent with the accuracy 

measure and macro-averaging. Figure 4.14 and 4.15 compare the recalls, 

precisions and F-values among the goal identifiers using test set 1993 and 

1994 respectively in micro-averaging. The improvement is also due to the 

reduction of insertion and substitution errors in one iV-ary formulation. That 
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Figure 4.14: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one iV-ary formulation with 

the multiple and maximum selection strategies using test set 1993 in micro-

averaging. 

increases the numbers of correctly inferred goals (row five) and decreases 

the numbers of inferred goals (row four). Therefore, the recall Micro and 

precision Micro were higher in the one 7V-ary formulation and directly led 

to the higher F-values. The one 7V-ary formulation with maximum selection 

strategy had better performance than the multiple selection strategy because 

the imperfect relative threshold increased the insertion errors. W e found 

that the F-values in micro-averaging were higher than those in the macro-

averaging possibly because we selected the network dimensions (M) using 

micro-averaging. Moreover, the goal flight.flight」cl have the largest numbers 

of queries in test set 1993 (301 out of 448) and test set 1994 (342 out of 444). 

The recalls and precisions of this goal were higher than 0.96 in both test sets. 

The good performance of this high frequency goal led to the higher F-values 
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Figure 4.15: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one N-ary formulation with 

the multiple and maximum selection strategies using test set 1994 in micro-

averaging. 

in micro-averaging. 

4.2.4 Out-Of-Domain Rejection 

W e compared the formulations in terms of appropriate O O D rejection using 

the test sets. The results were analyzed in recall, precision and F-measure 

with p = 1. (see Table 4.14). Figure 4.16 and 4.17 compare the recalls, pre-

cisions and F-values among the goal identifiers using test set 1993 and 1994 

respectively in O O D rejection. W e can see that the one N-aiy formulation 

improved over the N binary formulation up to 13% for test set 1993 and 34% 

for test set 1994. It is due to the reduction of substitution errors related to 

the O O D goal, as we mentioned in the previous subsection 4.2.3. 

65 



CHAPTER 4. EVALUATION ON THE N BINARY AND THE ONE 
N-ARY FORMULATIONS • 

Formulation N binary One 7V-ary One N-ary 
(strategy) (multiple) (maximum)  
Test set 1993 1993 1994 1993 1994 

# O O D queries (A) 35 37 35 37 35 37 

.# inferred O O D queries (B) 40 27 34 31 30 26 

# correctly inferred 24 10 25 22 25 18 

O O D queries (C) 

recall (C/A) 0.69 0.27~ 0.71 0.59 0.71 0.49 

precision (C/B) 0.60 0.37~ 0.74 0.71~ 0.83 0.69 

F-value 0.64 0.31 0.72 0.65 0.77 0.57 

Table 4.14: Comparing the O O D rejection of the N binary formulation and 

the one 7V-ary formulation with the multiple and maximum aposterior strate-

gies. The results suggest that one N-ary formulation improved over the N 

binary formulation. 
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Figure 4.16: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one N-a.ry formulation with 

the multiple and maximum selection strategies using test set 1993 in O O D 

rejection. 
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Figure 4.17: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one iV-ary formulation with 

the multiple and maximum selection strategies using test set 1994 in O O D 

rejection. 

4.2.5 Multiple Goal Identification 

W e also analyzed the performance in multiple goal identification based on 

recall, precision and F-measure (with 13 = 1). The results are tabulated in 

Table 4.15. Figure 4.18 and 4.19 compare the recalls, precisions and F-values 

among the goal identifiers using test set 1993 and 1994 respectively in mul-

tiple goal identification. The results suggest that the one iV-ary formulation 

using maximum selection strategy has the best multiple goal classification 

performance, which outperforms the N binary formulation up to 30% for 

test set 1993 and 39% for test set 1994. It is because the interdependency 

among the goals is effective in reducing insertion errors in the one N-oiy 

formulation, as mentioned subsection 4.2.3. However, the 6 in the relative 

threshold (9 x m a x P ( G = 9\C)) of the multiple selection strategy was tuned 
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too low for some single goal queries. This increases the number of inferred 

multiple goal queries (row five) in the one iV-ary formulation using multiple 

selection strategy. 

Formulation N binary One N-ary One N-ary 
(strategy) (multiple) (maximum) 
Test set 1993 199T 1993 1994 1993 1994 

# M G queries (A) 8 6 8 6 8 6 

# inferred M G queries (B) 48 29 46 28 13 10 

# correctly inferred 5 2 5 2 5 4 

M G queries (C) 

recall (C/A) 0.63 0.33 0.63 0.33 0.63 0.67 

precision (C/B) 0.10 0.07 0.11 0.07 0.38 0.40 

F-value 0.18 0.11 0.19 0.12 0.48 0.50 

Table 4.15: Experimental results comparing the multiple goal (MG) iden-

tification of the N binary formulation and the one Â -ary formulation with 

multiple and maximum aposterior strategies. 

4.2.6 Computation 

Since we adopted a stochastic approach for our NLU framework, computa-

tional costs are inevitable. When we train BNs, we estimate the probabilities 

by tallying the counts from the training data. When the BNs infer query's 

goal(s), they perform Bayesian inference. The one iV-ary formulation requires 

a single B N while the N binary formulation requires 11 BNs. W e compare 

the two formulations in terms of the number of additive and multiplicative 
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Figure 4.18: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one 7V-aiy formulation with 

the multiple and maximum selection strategies using test set 1993 in multiple 

goal identification. 
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Figure 4.19: Comparing the recalls, precisions and F-values among the goal 

identifiers in the N binary formulation and the one N-ary formulation with 

the multiple and maximum selection strategies using test set 1994 in multiple 

goal identification. 
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operations^. W e found that the amount of computation is highly reduced 

during training and testing as we migrate from the N binary formulation to 

the one iV-ary formulation. The results are tabulated on Table 4.16. 

Formulation One N-ary (multiple) One N-ary (maximum) 
Stage training testing training testing 

Operations reduced 94% 70% 93% 47% 

Table 4.16: The amount of computation is reduced during training and test-

ing as we migrate from the N binary formulation to the one N-ary formula-

tion. 

4.3 Chapter Summary 

This chapter describes our evaluation on the N binary and the one N-dJj 

formulations. W e introduced three evaluation metrics - accuracy measure, 

macro- and micro-averaging. W e used all of them to evaluate the goal identi-

fication performance in order to have a thorough understanding on each goal 

identifier's performance. The experiments are based on the ATIS corpora. 

W e developed 11 BNs using the N binary formulation and two single BNs 

for the one iV-ary formulation with respect to the multiple and maximum se-

lection strategies. Both formulations, accompanied with their strategies, can 

handle single goal, multiple goal and O O D queries. The experimental results 

showed that the one A/'-ary formulation improved over the N binary formula-

tion in (i) overall goal identification performance, (ii) out-of-domain rejection 

2 The two formulations were implemented with different platforms. The N binary 
formulation was implemented with Hugin software while the one N-ary formulation was 
implemented with C program only. Therefore, we cannot directly compare the computa-
tion in term of operation time. 
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and (iii) multiple goal identification. This is mainly due to the interdepen-

dency among the goals in the one iV-ary formulation as Y^g P{G = g\C) = 1 

for g G {g\^g2 • • -Qn}- This feature reduces the number of insertion and 

substitution errors. The amount of computation is reduced over 90% in the 

training and up to 70% in the testing stage when we migrate from the N 

binary formulation to the one 7V-ary formulation. Our experiments also sug-

gested that the one 7V-ary formulation have a better N L U performance in 

general when using the maximum selection strategy. 
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Portability to Chinese 

W e have conducted experiments to compare the natural language under-

standing performance of the Belief Network framework in making N binary 

decisions and one N-ary decision, using the English ATIS corpora. W e found 

that the one N-aiy formulation using the maximum selection strategy has 

the best goal identification performance. In this chapter, we attempt to apply 

this formulation to Cantonese Chinese. The experiments are still based on 

the ATIS domain in order to demonstrate the language portability. W e eval-

uate the performance in terms of (i) overall goal identification performance, 

(ii) out-of-domain rejection and (iii) multiple goal identification. 

5.1 The Chinese ATIS Domain 

W e investigate the language portability of using Belief Network (BN) in nat-

ural language understanding (NLU). W e have manually translated the Class 

A sentences of the ATIS-3 corpora, query by query from English to Chinese. 

The Chinese translation is expressed in spoken Cantonese style. Table 5.1 
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shows three examples of the translated Chinese queries. 

Single goal example 
Original query: “flights on friday from newark to tampa” 
Translated query: “星期五由紐華克去坦帕既班機” 

Goal: flight.flightJd 

Multiple goal example 
Original query: “give me the least expensive first class round trip 

ticket on u s air from Cleveland to miami” 
Translated query: “我想要美國航空由克里夫蘭去邁阿密最平既頭 

等來回機位” 

Goals: flight.flightJd, fare.fareJd 

Out-of-domain (OOD) example 
Query: “how many first class flights does united have leav-

ing from all cities today” 
Translated query: “今日有幾多班聯合航空既頭等航機起飛”  

Goal: count-flight (OOD, count—flight is not selected as in-
domain) 

Table 5.1: Single goal, multiple goal and O O D examples of translated Can-

tonese Chinese sentences from the ATIS-3 Class A training corpus. 

5.1.1 Word Tokenization and Parsing 

The Chinese language has no explicit delimiter for word boundaries. Hence, 

the translated queries on Table 5.1 are in form of consecutive Chinese char-

acters. W e tokenize each Chinese query into words by a forward maximum-

matching algorithm using a Cantonese lexicon, C U L E X [13]. W e extended 

the lexicon with the city names and airport names that we found in the 
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ATIS-3 training set. After that, the words are parsed into semantic concepts 

using hand-designed grammar rules (listed on Appendix C). The sequence 

of semantic concepts form the input to our BN. Table 5.2 is an example to 

show the processes of word tokenization and parsing. 

W e have 64 semantic concepts for the Chinese ATIS. In comparison, En-

glish ATIS has 60 semantic concepts. There are some semantic concepts 

defined for both English and Chinese ATIS, such as < C I T Y . ^ N A M E > and 

<AIRLINE-NAME〉，in order to obtain the semantic information in common. 

However, some tags are designed for English or Chinese ATIS only. For 

example in Table 5.2, < F L I G H T _ T Y P E > (row five) is an unique tag for the 

Chinese query to capture “早機” (the flights in the morning) while English 

query u s e s � F L I G H T � a n d � P E R I O D � i n separate positions (row two). 

5.2 Experiments 

Our experiments are based on the Chinese ATIS-3 Class A sentences in the 

training set, test set 1993 and test set 1994. W e prepared the corpora by word 

tokenization and parsing as mentioned earlier. The B N adopts the one N-

ary formulation using the maximum selection strategy and applies Bayesian 

inference as it does in English. One A^-ary decision is made by choosing 

the goal g, g € {91,92 • • - Pie}, with the maximum aposterior probability, 

P{G = 9\C). W e first decide the parameter for the network dimension. 

After that, we use the trained B N for the goal identification. W e compare 

the N L U performance with the same formulated B N in English in terms of 

(i) overall goal identification performance, (ii) out-of-domain rejection and 

(iii) multiple goal identification. 
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Original query: “give me the meal flights departing early Saturday 
morning from chicago to Seattle nonstop,. 

Semantic concepts: � C H U N K 〉 < D U M M Y > < M E A L > < F L I G H T > 

(English) < F R O M > 〈 M O D I F I E R 〉 < D A Y _ N A M E > 

< P E R I O D > < F R O M > < C I T Y _ N A M E > < T O > 

< C I T Y _ N A M E _ 1 > < S T O P S > 

Translated query: “我要星期六芝加哥直飛西雅圖有飛機餐既早 

^ 

Word tokenization: 我 /要 /星期六 /芝加哥 /直飛 /西雅圖 / 

有/飛機餐/既/早機 

Semantic concepts: � Q U E R Y 〉 < D A Y 一 N A M E 〉 < C I T Y _ N A M E > 

(Chinese) � S T O P S 〉 < C I T Y _ N A M E 」 〉 〈 C H U N K 〉 

< M E A L > < C H U N K > < F L I G H T _ T Y P E > 

Goal: flight.flightJd 

Table 5.2: An example illustrating the processes of word tokenization and 

parsing. 
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5.2.1 Network Dimension 

To determine the number of input concepts (M) which has the highest In-

formation Gain with the single BN, we varied M from 10 to the full set of 

64. W e evaluated the goal identification performance for each value of M by 

micro-averaging. The experiments were conducted with the training data. 

W e selected the value for M which gives the optimal F-value or has less than 

0.001 marginal improvement. The results are plotted on Figure 5.1 which 

suggests the most suitable value for M is 55. The network dimension is the 

same as we selected for the single B N in the English ATIS domain using 

the same goal identification strategy (maximum selection strategy). The se-

lected concepts for the single B N in the Chinese ATIS domain are listed in 

Appendix D. 

0.90 -n 

• a 議 广 • ， • • 、 广 — 

2 / 
I 0.56 j / - 

I 0.S4 ——/ 
^ / 
•S 0.82 
I 乂 
I O.BO  

I 
Ph 

0.75 ——‘——‘——‘——‘——‘——‘——‘——‘——‘——‘—— 

10 IS 20 25 30 3S 如 45 SO 55 60 6A 

No. of input concepts 

Figure 5.1: The F-values in the micro-averaging vary with the number of 

the input concepts in the one 7V-ary formulation. The results suggest that 

we should use 55 concepts in the single B N for the Chinese ATIS domain. 
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5.2.2 Overall Goal Identification 

W e evaluated the overall goal identification performance of the Chinese ATIS 

queries by the accuracy measure, macro- and micro-averaging. W e compared 

the results between the English and Chinese using test sets 1993 and 1994. 

Evaluation Metric 1: Accuracy Measure 

Language Chinese English 
Test set 1993 1994 1993 1994 

# DEL 3 3 3 2 

^ I N S 8 6 8 6 

# SUB 41 28 39 

Total # errors 43 50 39 47 

Goal identification 90.4% 88.8% 91.3% 89.5% 
• /403n /398\ /407\ 广 401、 

accuracies (硕） （诬） liis) 

Table 5.3: Comparing the goal identification accuracies in Chinese and En-

glish using the one iV-ary formulation with maximum selection strategies. 

The comparison is based on the number of deletion (DEL), insertion (INS) 

and substitution (SUB) errors produced in test sets 1993 and 1994. 

The overall goal identification accuracies of the Chinese and English ATIS 

queries are tabulated in Table 5.3. Figure 5.2 and 5.3 show the comparison 

of the numbers of deletion, insertion and substitution errors between Chinese 

and English using test sets 1993 and 1994 respectively. W e found that the 

accuracies in Chinese degraded by less than 1%. This is mainly due to 

the increase of the substitution errors. The degradations came from the 

Chinese expressions containing more semantic concepts which can lead to an 
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35 — 1 

I 30 r t -
g 25 H — 

i ii = l | 

m Chinese D E L INS SUB 

• English Eiror types 

Figure 5.2: Comparing the numbers of deletion (DEL), insertion (INS) and 

substitution (SUB) errors between Chinese and English using the one 7V-ary 

formulation with maximum selection strategies using test set 1993. 
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它 25 , 
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K 10 ^ M 

0 w r ^ W ^ M I- ̂ -'Bi 
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Figure 5.3: Comparing the numbers of deletion (DEL), insertion (INS) and 

substitution (SUB) errors between Chinese and English using the one iV-ary 

formulation with maximum selection strategies using test set 1994. 
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incorrect goal inferred. Table 5.4 is an example which illustrates this effect. 

The Chinese query has an extra concept〈FLIGHT〉which is indicative to the 

goal flight.flightJd As a result, the BN inferred the Chinese query to the goal 

flight.flightJd instead of airline.airline.code. However, if the English query is 

changed to “which airlines have flights from baltimore to san francisco”，we 

will have an extra concept〈FLIGHT〉and the BN will infer to the wrong 

goal flight.flightJd. 

Original query: “list which airlines fly from baltimore to san 
francisco" 

Semantic concepts: � W H I C H 〉 < A I R L I N E > < F R O M > 

(English) < C I T Y _ N A M E > < T 0 > < C I T Y _ N A M E _ 1 > 

Reference goal: airline.airline.code 
Translated query: “邊間航空公司有航機由巴的摩爾飛去 

三蕃市” 

Semantic concepts: < Q U E R Y > < A I R L I N E > < C H U N K > 

(Chinese) 〈 F L I G H T 〉 〈 F R O M 〉 c c i T Y 一 N A M E 〉 < T 0 > 

< C I T Y _ N A M E _ 1 > 

Inferred goal: flight.flightJd (SUB) 

Table 5.4: An example shows that the Chinese translation contains an extra 

concept <FLIGHT�which led to an incorrect goal inferred. A substitution 

error in the Chinese, which lowered the goal identification accuracies in the 

Chinese ATIS. 

Evaluation Metric 2: Macro-Averaging 

W e compared the goal identification performance of the single B N in Chi-

nese and English by macro-averaging. The results are shown on Table 5.5. 

The recall and precision of each goal using test sets 1993 and 1994 are listed 
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Language Chinese English 
Test set 1993 1994 1993 1 9 9 ^ 

recall Macro 0.90 0.76 0.90 0.75 

precision Macro 0.76 0.65 0.88 0.63 

F-value 0.83 0.70 0.89 0.69 

Table 5.5: Comparison of the overall goal identification performance in Chi-

nese and English using macro-averaging. 

in Appendix E. Figure 5.4 and 5.5 compare the recalls, precisions and F-

values between Chinese and English using test sets 1993 and 1994 respec-

tively. Macro-averaging tends to over-emphasize the performance on the 

rare goals. The results show the F-value in macro-averaging of test set 1993 

is lower in Chinese because the rare goals, such as airline.airline—code and 

airport.airport—name, had lower precisions. However, the rare goals in test 

set 1994 had equal performance in Chinese and English and some high fre-

quent goals had better performances in Chinese. Therefore, the F-values in 

macro-averaging of test set 1994 are a little bit higher in Chinese. 

Evaluation Metric 3: Micro-Averaging 

W e also evaluated the overall goal identification in test set 1993 and test 

set 1994 by micro-averaging. The results are tabulated in Table 5.6, which 

shows that the performance in Chinese is degraded by less than 1%. Figure 

5.6 and 5.7 compare the recalls, precisions and F-values between Chinese 

and English using test sets 1993 and 1994 respectively. It is consistent with 

the results in the accuracy measure, even we measured in a query-based 

averaging algorithm. It is because the performances of the high frequent 
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• Chinese Recall Precision F-value 

• English 

Figure 5.4: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one iV-ary formulation with maximum selection 

strategies using test set 1993 in macro-averaging. 

0.80 - ~ ~ — 
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• Chinese Recall Precision F-value 
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Figure 5.5: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one N-ary formulation with maximum selection 

strategies using using test set 1994 in macro-averaging. 
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Language Chinese English 
Test set 1993 1 9 9 ^ 1993 1 9 9 ^ 

# reference goals (A) 446 448 446 448 

# inferred goals (B) 451 451 451 452 

# correctly inferred goals (C) 411 404 415 407 

recall Micro (C/A) 0.922 0.902 0.930 0.908 

precisioriMicTo (C/B) 0.911 0.896 0.920 0.900 

F-value 0.916 0.899 0.925 0.904 

Table 5.6: Comparison of the overall goal identification performance in Chi-

nese and English using micro-averaging. 

0.940 「 

0.930 

隱 • I n i i l l i 
0.900 ——^——I—— 1 1 ^^m  
m Chinese Recall Precision F-value 
• English 

Figure 5.6: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one Â -ary formulation with maximum selection 

strategies using test set 1993 in micro-averaging. 
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Figure 5.7: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one N-ary formulation with maximum selection 

strategies using using test set 1994 in micro-averaging. 

goal, flight.flightJd, were nearly the same in the English and Chinese test 

sets. 

5.2.3 Out-Of-Domain Rejection 

W e have 35 and 37 O O D queries in the test sets 1993 and 1994 respectively. 

W e analyzed the rejection performance in terms of recall, precision and F-

measure with p = 1. Results on Table 5.7 show that the O O D rejection in 

Chinese is degraded in test set 1993 but it is better than in English in test set 

1994. Figure 5.8 and 5.9 compare the recalls, precisions and F-values between 

Chinese and English using test sets 1993 and 1994 respectively. W e found 

that the difference in performance is due to the different hand-defined English 

and Chinese grammar rules, which are used for semantic tagging. There are 

some words in the English grammars that do not have corresponding coun-
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Language Chinese English 
Test set 1993 1 9 9 ^ 1993 19M 

# O O D queries (A) 35 37 35 

’ # inferred O O D queries (B) 24 32 30 26 

# correctly inferred O O D queries (C) 22 26 25 18 

recall (C/A) 0.63 0.70 0.71 —0.49 

precision (C/B) 0.92 0.81 0.83 0.69 

F-value 0.75 0.75 0.77 0.57 

Table 5.7: Comparing the O O D rejection in Chinese and English based on 

recall, precision and F-measure {/3 = 1). 

1.00 
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Figure 5.8: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one Â -ary formulation with maximum selection 

strategies using test set 1993 in O O D rejection. 
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Figure 5.9: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one N-ary formulation with maximum selection 

strategies using using test set 1994 in O O D rejection. 

terparts in the Chinese grammars. As a result, missing some semantic tags in 

the Chinese queries that helps to infer O O D goal. An example on Table 5.8 

illustrates this effect. The missing semantic concept〈TRANSPORT〉, which 

is indicative of an in-domain goal ground_service.city_code, helps identify the 

O O D goal in the Chinese query. However, we found that the O O D goals 

in test sets 1993 and 1994 are not the same. There are seven queries with 

grouncl_service.ground-fare (OOD) goal in test set 1994 but no query with this 

goal in test set 1993. Therefore, the difference in grammar rules does not 

benefit test set 1993. 
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Original query: “what are the fares for ground transportation in 
denver,. 

Reference goal: ground_service.ground—fare (OOD) 

Semantic concepts: < W H A T > < C H U N K > < D U M M Y > < F A R E > 

(English) < P R E P > 〈 T R A N S P O R T〉 < P R E P > 

< C I T Y _ N A M E > 

Inferred goal: ground_service.city_code (SUB) 

Translated query: “係丹佛既地面交通車費要幾多” 

Semantic concepts: � C H U N K 〉 < C I T Y _ N A M E > < C H U N K > < H O W > 

(Chinese) 
Inferred goal: OOD ( / ) 

Table 5.8: An example illustrates that a Chinese expression is parsed by 

insufficient grammar rules. Missing semantic concepts is resulted but it helps 

to identify O O D goal. 

5.2.4 Multiple Goal Identification 

W e have 8 and 6 multiple goal queries in test sets 1993 and 1994 respectively. 

W e compared the multiple goal identification in Chinese and English based 

on recall, precision and F-measure with = 1. The results are shown on 

Table 5.9. Figure 5.10 and 5.11 compare the recalls, precisions and F-values 

between Chinese and English using test sets 1993 and 1994 respectively. 

W e found that the multiple goal identification performances in Chinese and 

English are the same in test set 1993. However, the B N failed in identifying 

one multiple goal Chinese query in test set 1994. Therefore, the multiple goal 

identification performance in Chinese is lower in test set 1994. The reason 

of this failure came from the Chinese query with extra concepts, which is 

similar to the example on Table 5.4. 
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Language Chinese English  
Test set 1993 1994 1993 1 9 ^ 

# M G queries (A) 8 6 8 6 

# inferred M G queries (B) 13 ~ 9 ~ 13 10 

# correctly inferred M G queries (C) 5 3 5 4 

recall (C/A) 0.63 0.50 0.63 0.67 

precision (C/B) 0.38 0.33 0.38 0.40 

F-value 0.47 0.40 0.47 0.50 

Table 5.9: Comparing the multiple goal (MG) identification in Chinese and 

English based on recall, precision and F-measure = 1). 
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• Chinese Recall Precision F-value 

• English 

Figure 5.10: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one N-ary formulation with maximum selection 

strategies using test set 1993 in multiple goal identification. 
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Figure 5.11: Comparing the recalls, precisions and F-values between Chi-

nese and English using the one N-ary formulation with maximum selection 

strategies using using test set 1994 in multiple goal identification. 

5.3 Chapter Summary 
In this chapter, we presented our attempt in applying the Belief Network 

framework for natural language understanding in Chinese. W e manually 

translated the ATIS-3 Class A sentences from English to Cantonese Chi-

nese. Since the Chinese language has no delimiter for word boundaries, we 

pre-processed the ATIS corpora by word tokenization. Then, we performed 

semantic tagging and Bayesian inference as we did in English. The results 

show that the overall goal identification performance in Chinese suffers less 

than 1% degradation in both test sets under the accuracy measure. The 

degradation is due to more concepts in the Chinese queries. W e found that 

the Belief Network framework is portable and usable in the English and Chi-

nese languages. 
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Chapter 6 

Conclusions 

6.1 Summary 

In this thesis, we have extended the use of a pre-existing Belief Network 

(BN) framework [31] for natural language understanding (NLU). A method 

was derived for identifying the user's communicative goal(s) out of a finite 

set of domain-specific goals for an information-seeking query. The problem 

was formulated as making N binary decisions, each performed by a BN. W e 

have presented how to make an one N-ary decision in a single BN. The 

B N structure captures the dependencies between the communicative goals 

and the semantic concepts. Semantic information is stored as statistical 

parameters, which are used for Bayesian inference. W e have proposed two 

goal identification strategies for the one N-ary formulation: multiple selection 

strategy and maximum selection strategy. Both are capable in identifying 

single goal, multiple goals as well as out-of-domain (OOD) goal in the single 

BN. 

W e have three goal identifiers in total: (i) a suite of BNs modeled under 
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the N binary formulation, (ii) a single B N modeled under the one N-ary 

formulation with multiple selection strategy and (iii) a single B N modeled 

under the one iV-ary formulation with maximum selection strategy. W e have 

proposed three evaluation metrics 一 the accuracy measure, macro-averaging 

and micro-averaging. W e used all of them to evaluate the overall goal iden-

tification in order to have a thorough understanding on each goal identifier's 

performance. The experiments are based on the ATIS (Air Travel Informa-

tion Service) corpora. The experimental results showed that the one A^-ary 

formulation improved over the N binary formulation in (i) overall goal identi-

fication performance, (ii) O O D rejection and (iii) multiple goal identification. 

This is mainly due to the interdependency among the goals in the one A^-ary 

formulation as ^gP{G = g\C) = 1 for g e {91,92 ‘ • - PAT}- This feature 

reduces the number of insertion and substitution errors. Furthermore, the 

amount of computation is reduced over 90% in the training and up to 70% 

in the testing phases when we migrate from the N binary formulation to 

the one iV-ary formulation. Our experiments also suggested that the one 

N-ary formulation have a better N L U performance in general when using 

the maximum selection strategy. 

W e have presented our attempt in applying the B N framework for un-

derstanding Cantonese Chinese. W e manually translated the ATIS-3 Class 

A sentences from English to Chinese. Since the Chinese language has no 

explicit delimiter for word boundaries, we pre-processed the ATIS corpora 

by word tokenization. Then, we performed semantic tagging and Bayesian 

inference as we did in English.The results show that the overall goal identi-

fication accuracies in Chinese suffer less than 1% degradation due to more 
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concepts in the Chinese queries. 

6.2 Contributions 

In this work, the following contributions are made to the field of natural 

language understanding: 

1. W e have demonstrated an alternative formulation — the one iV-ary for-

mulation —for a B N framework in natural language understanding. The 

one iV-ary formulation captures the interdependency among the com-

municative goals as P{G = g\C) = 1 for ̂  G {gi,g2 • • -Qn}- It gave 

improvement over the N binary formulation in terms of the overall goal 

identification, out-of-domain rejection and multiple goal identification. 

2. The one A^-ary formulation uses a single BN while the N binary for-

mulation needs N BNs, one for each goal. The amount of computation 

in training and Bayesian inference has been reduced in a single BN. 

3. W e have introduced different evaluation metrics for measuring the over-

all goal identification performance. The accuracy measure is an align-

ment measure in relation to the number of errors. Macro- and micro-

averaging evaluate the N L U performance as a categorization problem, 

which classifies a query with respect to a finite set of goals. All evalu-

ation metrics are useful to provide a thorough understanding of a goal 

identifier's performance. 

4. The B N framework automatically learns the linguistic knowledge from 

training data. W e have shown the B N framework in the one N-ary 
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formulation is portable across languages. W e migrated from English to 

Cantonese Chinese. 

6.3 Future Work 

Possible extensions of this work include: 

1. Developing a learnt B N in the one N-ary formulation. In this thesis, 

we adopted a naive Bayes' configuration in a single BN. The concepts 

are assumed to be independent of one another. The learnt B N topology 

have been applied on the N binary formulation by building interdepen-

dencies among the concepts [30]. The results showed improvement in 

the goal identification accuracies. W e may also build linkages between 

the concepts in the single BN. The enhanced topology should further 

improve the goal identification performance. 

2. Extending the comparison in the C U H K Restaurants domain [9]. W e 

showed improvement of B N framework in the one 7V-ary formulation 

using the ATIS corpora. W e may leverage the comparison of the two 

B N formulations from the ATIS domain to the the C U H K Restaurants 

domain, which contains single goal utterance only. In order to make 

a fair comparison, we should modify the goal identification strategy in 

the N binary and the one iV-ary formulations to infer a single output. 

3. Integrating communicative intention and goal in a single Bayesian in-

ference. Communicative intention is the user's act of will in a given 

utterance, such as requesting suggestion and saying thanks. Commu-

nicative goal is the domain specific of a user's request. For example, 
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ordering food and billing in a restaurants domain. To understand a 

sentence, the identification of the communicative intention is as impor-

tant as the domain-specific goal. Using different BNs for identifying 

the communicative intention and goal separately requires high compu-

tational cost and redundant procedures. W e may develop a single B N 

to identify sentence's intention and goal together. 
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Appendix A 

The Communicative Goals 

aircraft.aircraft_code * count-flight  
aircraft.aircraft_descriptio days.day-name  
aircraft.basic-type fare.fareJd * 
airline.airline.code * fare-basis.fare-basis-code * 
airline.airline—name * 一 flight.airline-code  
airport-airport一code * flight.arrivaLtime  
airport.airportJocation flight.departure-time  
airport.airport-name * flight.flightJd * 
airport.minimum_connect_time flight.flight-number * 
airport _service.miles_distant flight.time—elapsed  
airport-Service.minutes-distant food-service.meaLcode  

city.city.code food jservice. meal .description 
~class-of-service.booking-class — ground-service.city-code * 
dass_of_ser\/ice.class-description * ground-service.ground-fare 

count_airline ground-service.transport-type 

count-fare restriction. restriction _code 

Table A.l: The 32 communicative goals in the ATIS do-
main. The goal with an asterisk (*) are selected for the 
identification. The remaining goals are treated as out-of-
domain (OOD). 
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Appendix B 

Distribution of the 

Communicative Goals 
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Goal Frequency Frequency Frequency 
(Training) (Test 1993) (Test 1994) 

aircraft.aircraft-code 13 6 1 

airline.airline.code 42 6 11 

airline.airline_name 25 18 6 

airport.airport-Code 10 16 2 

airport.airport_name 25 2 2 

class_of .service.class-description 15 6 3 

fare.fareJd 81 26 25 

fare_basis.fare_basis_code 26 11 5 

flight.flightJd 1239 302 343 

flight.flight-number 10 9 0 

ground_service.city_code 47 19 15 

OOD 12 35 37 一 

Table B.l: The distribution of the 11 selected goals and out-of-domain 

(OOD) goal in the training set, test set 1993 and test set 1994. 
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Appendix C 

The Hand-Designed Grammar 

Rules 

< A I R C R A F T > 

aircraft, plane, aircrafts, planes, airplane, airplanes, aeroplane, 
aeroplanes 
< A I R C R A F T - C O D E 〉 

d ten, seventy three s, seven fifty seven, m eighty, seven thirty 
three, m eight zero, seventy two s, d nine s, d c tens, d c ten, 
〈 M A N U F A C T U R E 〉 + < D I G I T > , < A I R C R A F T > + < D I G I T >  

< A I R L I N E > 

airline, airlines 
< A I R L I N E _ N A M E > 

american, american airline, american airlines, american flights, 
air Canada, alaska airlines, alaska airline, continental, continental air-
line, continental airlines, Canadian airline, Canadian airlines, Canadian 
airlines international, delta, delta airline, delta airlines, tower air, 
america west, northwest, northwest airline, nationair, t w, united, 
southwest, southwest air, southwest airlines, midwest express, united 
airline, united airlines, trans world airlines, trans world airline, a a, a 
c, a s, c o, c p, d 1, f f, h p, n w, n X, t w a, u a, u s, u s air, w n, y x, 
k w 
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< A I R P O R T > 

airport, airports  
〈 A I R P O R T _ N A M E > 

boston airport, love field, dulles, houston intercontinental, kennedy, 
kennedy airport, John f kennedy, John f kennedy airport, midway, los 
angeles international, los angeles international airport, los angeles 
airport, la guardia, la guardia airport, orlando airport, orlando 
international, general mitchell, general mitchell international, general 
mitchell international aiport, ontario airport, ontario international, 
o'hare, saint Petersburg airport, san francisco international, san 
francisco international airport, san francisco airport, salt lake airport, 
salt lake city airport, toronto international, toronto international 
airport, lester pearson airport, newark airport, b n a, b o s, b u r, d a 
1, d f w, e w r, h o u, i a d,i a h, j f k, 1 a X, m c 0 , m a, m k e, 0 r d, p 
i e, s f o, s 1 c, c V g, t p a, 1 g a, b w i, d t w, y y z  
〈 B A C K 〉 

returns, return, returning  
< C I T Y > 

cities, city  
< C I T Y _ N A M E > 

Westchester, westchester county, atlanta, baltimore, boston, bur-
bank, charlotte, chicago, Cincinnati, Cleveland, columbus, dallas, 
denver, detroit, fort worth, houston, indianapolis, kansas city, vegas, 
las vegas, long beach, los angeles, memphis, miami, milwaukee, 

inneapolis, montreal, nashville, new york, new york's, new york city, 

newark, Oakland, ontario, orlando, philadelphia, phoenix, Pittsburgh, 
salt lake, salt lake city, san diego, san francisco, san jose, Seattle, st. 
louis, saint louis, st. paul, saint paul, st. Petersburg, saint Petersburg, 
tacoma, tampa, toronto, Washington, 1 a, philly, Canada 
〈 C L A S S 〉 

classes, class  
< C L A S S _ N A M E > 

business, business class, first class, coach, economy  
< C O D E > ‘ 

code, codes  
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< C O D E _ N A M E > 

s, s slash, a p, a p slash, h, f, y, y n, q, q oh, b, q o, s a, a p 
fifty eight, b h, a p slash fifty seven 
C C O M P A R I S O N 〉 

less than, more than, equal, equal to, same, same as  
〈 C O N N E C T I O N S 〉 

connection, connections, combination, combinations, connecting, 
connecting flights, direct flights, connecting flight  
〈 C O N N E C T I V E 〉 

slash, and, or, either, but, also  
< C O S T > 

< D I G I T > + < M O N E Y - U N I T >  

<DAY> 
second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, 
eleventh, twelfth, thirteenth, fourteenth, fifteenth, sixteenth, seven-
teenth, eighteenth, nineteenth, twentieth, twenty first, twenty second, 
twenty third, twenty fourth, twenty fifth, twenty sixth, twenty seventh, 
twenty eighth, twenty ninth, thirtieth, thirty first  
< D A Y _ N A M E > 

day, days, week, weeks, weekday, weekend, week days, week day, 
weekdays, monday, tuesday, Wednesday, thursday, friday, Saturday, 
Sunday, during the week, today, yesterday, tomorrow, tonight, 
monday's, tuesday's, Wednesday's, thursday's, friday's, Saturday's, 
sunday's, now, mondays, tuesdays, Wednesdays, thursdays, fridays, 
Saturdays, sundays  
< D I G I T > 

oh, zero, one, two, three, four, five, six, seven, eight, nine, ten, 
eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, 
nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, 
hundred, thousand, hundreds, thousands, single, double, ones, twos, 
threes, fours, fives, sevens, eights, nines, tens, twentys, thirtys, fortys, 
fiftys, sixtys, seventys, eightys, ninetys  
< D U M M Y > 

may i, need to, want to, like to, would like to, i would like, i 
would like to, show me, ineed, i want, i need to, i want to, trying to, 
try to, the, a, an, please  
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< F A R E > 

fare, costs, cost, price, fares, airfare, airfares, prices, air fare, air 
fares, flight fare, flight fares, flight price  
< F I R S T > 

first 

〈 F L I G H T 〉 

flight, flights, fly, flies, flying  
< F L I G H T _ D A Y S > 

everyday, daily 
< F L I G H T _ N U M > 

flight number, flight numbers 
〈 F L I G H T - N U M B E R 〉 

< F L I G H T > + < D I G I T > , < A I R L I N E _ N A M E > + < D I G I T >  

< F R O M > 

from, departing from, depart from, leave from, leaving, start 
from, starting from, flying from, fly from, flies from, takeoff from, 
goes from, go from, take off, takes off, taking off, travel from, departs, 
depart, departure, departing, leave, leaves, leaving from, takeoff, 
takeoffs, come from, coming from, comes from 
< H O W > 

how much, how many, how far, how long, how about 
< K I N D > 

kind, type, types, kinds, sort  
〈 M A N U F A C T U R E R 〉 

boeing, mcdonell donglas  
< M E A L > 

meal, meals  
< M E A L _ D E S C R I P T I O N > 

dinner, lunch, snack, supper, breakfast, snacks 
< M E A N > 

mean, stand for, meaning, stands for 
〈 M O D I F I E R 〉 

late, early, earliest, earlier, mid, latest, last, later, next, red 
eye 
< M O N E Y _ U N I T > 

dollar, dollars 
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< M O N T H > 

January, february, march, april, may, June, July, august, Septem-
ber, october, november, december 
< O N E _ W A Y > 

one way  
< P E R I O D > 

morning, afternoon, evening, day, night, midday, mid-day, breakfast 
time, lunch time, dinner time, lunchtime, dinnertime, noontime, noon, 
mornings, nights, midnight, mid-night  
< P R E _ T I M E > 

before, after, at, around, about, by  
< P R E P > 

on, in, between, with, of, for, up, out, under, off  
〈 R E S T R I C T I O N 〉 

restriction, restrictions  
< R O U N D _ T R I P > 

round trip, round trip flight, round trip ticket, round trips, and 
back  
< S E R V E 〉 

serve, served, serves, service, serving  
< S T A T E 一 C O D E 〉 

d C  
< S T A T E _ N A M E > 

arizona, California, Colorado, florida, Indiana, michigan, minnesota, 
missouri, nevada, new jersey, new york, north Carolina, ohio, quebec, 
tennessee, texas, utah, Washington  
< S T O P S > 

nonstops, nonstop, one stop, at least one stop  
〈 S U P E R L A T I V E 〉 

cheapest, closest, expensive, highest, lowest, shortest, smallest, 
minimum, maximum, most, least  
< T I M E > 

time, times  
< T I M E _ U N I T > 

a m, p m, o，clock, o'clock, o clock, hour, hours  
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< T I M E _ V A U L E > 

〈 D I G I T 〉 + < T I M E - U N I T > , < P R E - T I M E > + < D I G I T >  

< T O > 

be there, into, to, arrive to, arriving to, arrives to, arrived to, 
landing in, land in, fly to, destination, back to, go to, arrive, arrives, 
arriving, arrived, landed, land, lands, landing, landings, arrival, reach, 
reaches, reaching  

C T R A N S P O R T 〉 

transport, transportation, ground transportation, ground trans-
port  

〈 T R A N S P O R T - T Y P E 〉 

rental car, rent a car, need a car, taxi, limousine, train  

< V I A > 

via, by way, stop, stopover, stopovers, stopping, stoping in, stops in, 
stopover in, stop over in, stopping over in, layover in, laying over in, 
make a stop, goes through, go through  

< W H A T > 

what're, what's, what  

< W H E R E > 

where, anywhere  

< W H I C H > 

which  

< Y E A R > 

nineteen ninety three  

Table C.l: The hand-designed grammar rules in the En-

glish ATIS domain. 
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〈 A B B R E V I A T I O N 〉 

縮寫，簡寫 

〈 A I R C R A F T 〉 

飛機 

< A I R C R A F T _ C O D E > 

d-ten, seventy_three_s, seven_fifty_seven, m_eighty, seven—thirty—three, 

m.eight-Zero, seventy_two_s, d_nine_s, d_c_tens, d_c_ten, d_c_ten 

< A I R L I N E > 

航空，航空公司 

〈 A I R L I N E 一 N A M E 〉 

a_a, a_c, a_s, c_o, c_p, dJ, f_f, h_p, n_w, n_K, t_w, t_w_a, tower_air, u_a, 
u_s, u_s_air, w_n, n_w—airline, yjx,川角州，川角州航空，中西航空， 
内陸，内陸航空，加拿大航空，加拿大國際航空，加拿大楓葉航空， 

加航，西北，西北航空，西南，西南航空，阿拉斯加航空，西方航空， 

美國西方航空，美國航空，國民，國民航空，楓葉航空，環球航 

空 ， 聯 寺 ， 聯 寺 航 空 ， < A I R L I N E - N A M E 〉 + 公 司 ， < A N I L I N E _ N A M E > 

+ 航 空 ， < A N I L I N E _ N A M E 〉 + 航 空 公 司 

< A I R P O R T > 

機場 

< A I R P O R T _ N A M E > 

b_n_a, b_o_s, b_u_r, b _ w � ’ c_v_g, d_a_l, d_f_w, d_t_w，e_w_r, h_o_u, i_a_d, 
i_a_h, jJ_k, Lajx, Lg_a, loveJield, m_c_o, m」_a’ m_k_e, o_r_d, p」丄, 
s丄0，s丄c, t_p.a, y _ y _ z ,三潘市國際，三蕃市國際機逖尼加拉瓜 

機場，甘迴迪機場，休斯頓國際機場，休斯頓機場，多倫多國 

際機場，安大略國際機場，安大略機場，米契爾國際機場，杜 

勒斯，杜勒斯機場，波士頓機場，洛杉機國際機場，洛杉機機 

場，紐華克機場，奥蘭多國際機場，奥蘭多機場，聖彼得堡機場， 

達拉斯瓦司堡，雷斯特皮爾生機場，麼湖城機場，皮爾生機場， 

< A I R P O R T - N A M E > + 機 場 ， 〈 A I R P O R T — N A M E 〉 + 國際機場 

< A L L > 

有’全部 

< A N D > 

同，同理 

< A N Y > 

任何  

〈 B E T W E E N 〉 

之間，來往，往來，至 
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< B O O K > ~ 

訂 

〈 C A P A C I T Y 〉 

載客量 

C C I T Y 〉 “ 

城市 

< C I T Y _ N A M E > 

亞特蘭大，巴的摩爾，波士頓，波班克，加拿大，夏洛特，芝加 

哥，辛辛那提，克里夫蘭，哥倫布，達拉斯，丹佛，底特律，瓦司堡，休 

斯頓，印第安納波里，堪薩斯城，拉斯維加斯，長提，洛杉機，尼加拉 

瓜,孟变斯，邁阿密，密耳瓦基，明尼亞波利斯，蒙特利爾，納什維爾， 

紐約，紐約市，紐華克，奥克蘭，安大略，奥蘭多，費城，費尼克斯，匹 

兹堡，豫湖，蔑湖城，聖地牙哥，三潘市，聖約瑟，西雅圖，聖路易斯， 

聖保羅，聖彼得堡，他科馬，坦帕，多儉多，華盛頓，西赤斯特，西赤 

斯特城 

< C L A S S _ N A M E > ‘ 

商 務 ， 頭 等 ， 經 濟 ， < C L A S S _ N A M E > + 客位，< C L A S S _ N A M E > + 

機位 

< C O D E > “ 

编號，號碼 

< C O D E _ N A M E > 

S, s_slash, a_p, a_p_slash，h, f, y, y_n, q, q_oh, b, q_o, s_a, a_p-fifty.eight, 
b-h  
< C O M P A R I S O N > 

平過，少過，多過，等於，低過 

〈 C O N N E C T I O N S 〉 

接驳機，接驳服務，直航機，直航 
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〈 D A Y 〉 

一日，二日，三日，四日，五日，六日，七日，八日，九日， 

十日，十一日，十二日，十三日，十四日，十五日，十六曰， 

十 七 曰 ， 十 八 日 ， 十 九 曰 ， 二 十 日 ， 廿 日 ， 二 十 一 曰 ， 廿 一 

日，二十二日，廿二日，二十三日，廿三日，二十四日，廿四 

日，二十五日，廿五日，二十六日，廿六日，二十七日，廿七 

日，二十八日，廿八日，二十九日，廿九日，三十日，舟日， 

三十一曰，计一日，一號，二號，三號，四號，五號，六號，七 

號，八號，九號，十號，十一號，十二號，十三號，十四號，十 

五號，十六號，十七號，十八號，十九號，二十號，廿號，二 

十一號，廿一號，二十二號，廿二號，二十三號，廿三號，二 

十四號，廿四號，二十五號，廿五號，二十六號，廿六號，二 

十七號，廿七號，二十八號，廿八號，二十九號，廿九號，三 

十號，升號，三十一號，升一號  

< D A Y _ N A M E > 

星期一，星期二，星期三，星期四，星期五，星期六，星期日，禮 

拜一，禮拜二，禮拜三，禮拜四，禮拜五，禮拜六，禮拜日，聽曰， 

聽晚，今曰，今晚，平曰，而家，第二日，黎緊+ < D I G I T > + 曰  

< D I G I T > 

零，一，二，兩，三，四’五，六，七’八，九，十’廿，舟，<D IG I T> 

+ < D I G I T >  

〈 D I S T A N C E 〉 

距離 

〈 D O W N T O W N 〉 

市區，市中心’ downtown  
< D U M M Y > 

alright, hi, okay,請，請你，其實，唔該 

< F A R E > ~ ~ 

收費，價錢，票價 

< F L I G H T > 

航機，航班，班機，機，客機  

〈 F L I G H T — D A Y S 〉 

每日 

< F L I G H T _ N U M > 

航機编號，班機編號，航機號碼，航班编號  

< F L I G H T _ T Y P E > 

早班機，早機，夜機 
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< F R O M > ~ 

由，起飛，飛出，離開，出發，起程，開出 

< H O W > 

幾 多 ， 幾 多 班 ， 幾 多 錢 ， 幾 多 班 ， 幾 耐 ， 幾 遠 ， 幾 錢 ， 幾 多 
號，幾號，有+ < H O W > 

〈 M A N U F A C T U R E R 〉 

波音，mcdonell donglas 
< M E A L > 

飛機餐，菜單，腊食 

< M E A L _ D E S C R I P T I O N > 

晚餐，早餐，晚飯，午餐，零食，小食 

< M E A N > 

係也野，點解 

< M O N E Y > 

蚊 

< M O N T H > 

一 月 ， 二 月 ， 三 月 ， 四 月 ， 五 月 ， 六 月 ， 七 月 ， 八 月 ， 九 月 ， 十 月 ， 

十 一 月 ， 十 二 月 

< O N E _ W A Y > 

單程 

< O R > 

或，或者 

< P E R I O D > 

上午，午前，午後，早，早上，晏畫，晚，晚上，晨早，傍晚，朝， 

朝 早 ， 正 午 ’ 朝 頭 早 ， 午 夜 ， < M E A L _ D E S C R I P T I O N 〉 + 時 間 ， 

< M E A L 一 D E S C R I P T I O N 〉 + 時 候 

< P E R I O D _ U N I T > 

上畫，下畫，夜晚，中午 

< P R E > 

前，之前，之後，後，左右，大約，大概，下個，下  

< Q U A N T > 

架，班，張，一架，一班，一張，一個，一班機 
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< Q U E R Y > 

話俾我， .話我，列出，我想，我想要，我要，我需要，講俾 

我，講我，"tL野，也野係，邊，有邊，邊班，有邊班，邊個，邊 

間，邊架，有邊個，有邊間，有邊架，代表也，榲，<DUMMY> + 
� Q U E R Y〉，< Q U E R Y > + 聽，<QUERY> + 梯 下 ， � Q U E R Y �+ 知道， 

< Q U E R Y > + 知，<QUERY> + 搭’ ； 

� R E S T R I C T � 

限制 

< R E T U R N > 

返回，返黎，回程  

< R O U N D _ T R I P > 

來回 — 

� S C H E D U L E � 

時間表  

< S E R V E > 

服務，提供，提供服務  

<STATE_CODE> 

d-C, d-C 省 

<STATE_NAME> 

亞利桑那，亞利桑那州，加利福尼亞州，加州，科羅拉多，科羅 

拉多州，佛羅里達，佛羅里達州，印第安納，印第安納州，密西根，密 

西根州，明尼蘇達，明尼蘇達州，米蘇里，米蘇里州，内華達，内華達 

州，新澤西，新澤西州，紐約州，北卡羅來納，北卡羅來納州，俄亥俄， 

俄亥俄州，魁北克，田納西，田納西州，得克薩斯，得克薩斯州，猶他’ 

猶他州，華盛頓州， < S T A T E _ N A M E �+ 州 

< S T O P S > 

不停站，直飛，中途站 — 

� S U P E R L A T I V E � 

最少，最近，最高，最早，最遲，最後，最平，最貴，最便宜， 

最短，最短程，最小型，最大型，第一 — 

< T I C K E T > 

機票 

< T I M E _ U N I T > 

點，點鐘，點半，分  

< T I M E S > 

時間 
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< T O > “ 

去，飛去，飛往，住，飛，飛到，到，到達，降落，再去，去到，再 
+ < T O >  

〈 T R A N S P O R T 〉 

地面交通 

〈 T R A N S P O R T - T Y P E 〉 

車，火車，的士 

< V A L U E _ U N I T > 

百；千,萬；億 

< V I A > 

停，中途，中途停，停留，經，途經，<VIA〉+ < V I A >  

Table C.2: The hand-designed grammar rules in the Chi-
nese ATIS domain. 
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Appendix D 

The Selected Concepts for each 

Belief Network 

Goal: aircraft.aircraft—code  

〈 A I R C R A F T 〉 〈 A I R L I N E 〉 < A I R L I N E - N A M E > 

< A I R P O R T > 〈 A I R P O R T — N A M E 〉 < B A C K >  

< C I T Y > < C I T Y - N A M E > < C I T Y _ N A M E 」 〉  

< C I T Y _ N A M E _ 2 > < C I T Y - N A M E - 3 > < C L A S S - N A M E >  

< C O D E > < C O D E _ N A M E > < C O M P A R I S O N >  

〈 C O N N E C T I V E 〉 〈 D A Y 〉 < D A Y - N A M E >  

< D I G I T > < F A R E > 〈 F L I G H T 〉  

< F L I G H T 一 D A Y S 〉 < F L I G H T - N U M > 〈 F L I G H T — N U M B E R > 

< F R O M > < H O W > — < K I N D >  

< M E A L > < M E A L - D E S C R I P T I O N > < M E A N >  

< M O D I F I E R > < M O N T H > < O N E 一 W A Y 〉  

< P E R I O D > < P R E P > — < P R E - T I M E >  

< R O U N D - T R I P > < S E R V E > < S T A T E _ C O D E >  

< S T A T E _ N A M E > < S T O P S > — 〈 S U P E R L A T I V E 〉  

< T I M E > < T I M E - V A L U E > < T 0 >  

< T R A N S P O R T > < T R A N S P O R T - T Y P E > < V I A 〉  

- < W H A T > < W H I C H 〉 I 
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Goal: airline.airline.code 
< A I R C R A F T 〉 < A I R L I N E > < A I R L I N E _ N A M E 〉 

< A I R P O R T > < A I R P O R T _ N A M E > < B A C K > 

< C I T Y > < C I T Y _ N A M E > < C I T Y _ N A M E 一 1 〉 

< C I T Y - N A M E - 2 > < C I T Y - N A M E - 3 > < C L A S S _ N A M E 〉  

< C O D E > < C O D E - N A M E > 〈 C O M P A R I S O N 〉  

〈 C O N N E C T I O N S 〉 〈 C O N N E C T I V E 〉 < C O S T > 

< D A Y > < D A Y _ N A M E > 〈 D I G I T 〉 

< F A R E > 〈 F L I G H T 〉 〈 F L I G H T 一 D A Y S 〉  

< F L I G H T - N U M > < F L I G H T _ N U M B E R > < F R O M >  

< H O W > < K I N D > < M E A L >  

< M E A N > 〈 M O D I F I E R 〉 < M O N T H > 

< O N E - W A Y > < P E R I O D > < P R E _ T I M E > 

< R O U N D _ T R I P > < S E R V E > < S T A T E _ C O D E > 

< S T A T E - N A M E > < S T O P S > 〈 S U P E R L A T I V E 〉  

< T I M E > < T I M E _ V A L U E > < T O >  

〈 T R A N S P O R T 〉 〈 T R A N S P O R T _ T Y P E > < V I A >  

< W H E R E > < W H I C H >  

Goal: airline.airline_name 
〈 A I R C R A F T 〉 < A I R L I N E > < A I R L I N E _ N A M E > — 

< A I R P O R T > < A I R P O R T - N A M E > 〈 B A C K 〉  

< C I T Y > 〈 C I T Y 一 N A M E 〉 < C I T Y _ N A M E _ 1 > 

< C I T Y - N A M E - 2 > C C I T Y 一 N A M E — 3 〉 < C L A S S - N A M E >  

〈 C O D E 〉 < C O D E _ N A M E > C C O M P A R I S O N 〉  

〈 C O N N E C T I V E 〉 < C O S T > < D A Y >  

< D A Y - N A M E > < D I G I T > < F A R E >  

< F L I G H T > < F L I G H T _ D A Y S > < F L I G H T _ N U M 〉  

< F L I G H T _ N U M B E R > 〈 F R O M 〉 < H O W >  

< M E A L > < M E A L _ D E S C R I P T I O N > < M E A N >  

〈 M O D I F I E R 〉 〈 M O N T H 〉 < O N E — W A Y 〉  

< P E R I O D > < P R E P > < P R E - T I M E >  

< R O U N D - T R I P > < S E R V E > < S T A T E - C O D E >  

< S T A T E _ N A M E > 〈 S T O P S 〉 〈 S U P E R L A T I V E 〉  

< T I M E > < T I M E - V A L U E > < T 0 >  

C T R A N S P O R T 〉 < T R A N S P O R T _ T Y P E > < V I A >  

< W H A T > 〈 W H I C H 〉  
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Goal: airport.airport_code 
〈 A I R C R A F T 〉 〈 A I R L I N E 〉 < A I R L I N E - N A M E > 

< A I R P O R T > 〈 A I R P O R T 一 N A M E 〉 〈 B A C K 〉  

C C I T Y 〉 C C I T Y 一 N A M E 〉 < C I T Y _ N A M E _ 1 > 

< C I T Y _ N A M E _ 2 > < C I T Y _ N A M E _ 3 > 〈 C L A S S 一 N A M E 〉  

〈 C O D E 〉 〈 C O D E — N A M E 〉 〈 C O M P A R I S O N 〉 ： 

〈 C O N N E C T I V E 〉 〈 D A Y 〉 < D A Y — N A M E 〉  

< D I G I T > < F A R E > 〈 F L I G H T 〉  

< F L I G H T _ D A Y S > < F L I G H T - N U M > < F L I G H T - N U M B E R > 

< F R O M > < H O W > < M E A L >  

< M E A L 一 D E S C R I P T I O N 〉 〈 M E A N 〉 〈 M O D I F I E R 〉  

< M O N T H > < O N E - W A Y > 〈 P E R I O D 〉  

< P R E P > < P R E - T I M E > < R O U N D - T R I P >  

〈 S E R V E 〉 < S T A T E - C O D E > < S T A T E _ N A M E >  

< S T O P S > 〈 S U P E R L A T I V E 〉 < T I M E >  

〈 T I M E 一 V A L U E > < T O > 〈 T R A N S P O R T 〉  

< T R A N S P O R T - T Y P E > < V I A > < W H A T >  

< W H E R E > < W H I C H > “ 

Goal; airport.airport-name  
〈 A I R C R A F T 〉 〈 A I R L I N E 〉 < A I R L I N E - N A M E > 

< A I R P O R T > 〈 A I R P O R T - N A M E 〉 〈 B A C K 〉  

< C I T Y > < C I T Y - N A M E > < C I T Y - N A M E _ 1 >  

< C I T Y _ N A M E _ 2 > < C I T Y _ N A M E - 3 > < C L A S S - N A M E >  

〈 C O D E 〉 < C O D E - N A M E > 〈 C O M P A R I S O N 〉  

〈 C O N N E C T I V E 〉 < C O S T > < D A Y >  

< D A Y - N A M E > — 〈 D I G I T 〉 < F A R E >  

< F L I G H T > < F L I G H T - D A Y S > < F L I G H T — N U M >  

< F L I G H T - N U M B E R > < F R O M > < H O W >  

< M E A L > < M E A L - D E S C R I P T I O N > 〈 M E A N 〉  

〈 M O D I F I E R 〉 〈 M O N T H 〉 < O N E _ W A Y >  

< P E R I O D > < P R E P > < P R E - T I M E >  

< R O U N D _ T R I P > < S E R V E > — < S T A T E - C O D E >  

< S T A T E _ N A M E > < S T Q P S > — 〈 S U P E R L A T I V E 〉  

< T I M E > 〈 T I M E 一 V A L U E 〉 < T 0 >  

C T R A N S P O R T 〉 < T R A N S P O R T _ T Y P E 〉 < V I A >  

< W H A T > < W H I C H > 
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Goal: class_of_service.class_description 
〈 A I R C R A F T 〉 〈 A I R L I N E 〉 < A I R L I N E - N A M E > 

< A I R P O R T > 〈 A I R P O R T - N A M E 〉 〈 B A C K 〉  

< C I T Y > < C I T Y _ N A M E > < C I T Y _ N A M E 一 1 〉 

< C I T Y _ N A M E _ 2 > < C I T Y - N A M E - 3 > < C L A S S _ N A M E 〉  

< C O D E > < C O D E _ N A M E > C C O M P A R I S O N 〉 

〈 C O N N E C T I V E 〉 < C O S T > < D A Y >  

< D A Y 一 N A M E 〉 < D I G I T > < F A R E >  

〈 F L I G H T 〉 < F L I G H T - D A Y S > < F L I G H T - N U M >  

〈 F L I G H T - N U M B E R 〉 < F R O M > < H O W >  

< M E A L > < M E A L - D E S C R I P T I O N > 〈 M E A N 〉  

〈 M O D I F I E R 〉 < M O N T H > < O N E - W A Y > 

< P E R I O D > < P R E P > < P R E - T I M E >  

< R O U N D _ T R I P > 〈 S E R V E 〉 < S T A T E - C O D E >  

< S T A T E - N A M E 〉 〈 S T O P S 〉 — 〈 S U P E R L A T I V E 〉  

< T I M E > < T I M E - V A L U E > < T 0 >  

〈 T R A N S P O R T 〉 C T R A N S P O R T - T Y P E 〉 < V I A 〉  

< W H A T > < W H I C H > 

Goal: fare.fareJd  

< A I R C R A F T > < A I R C R A F T - C O D E > < A I R L I N E > 

< A I R P O R T > < A I R P O R T 一 N A M E 〉 < B A C K >  

< C I T Y > < C I T Y - N A M E > < C I T Y _ N A M E _ 1 >  

< C I T Y _ N A M E _ 2 > < C I T Y _ N A M E 一 3 〉 < C L A S S - N A M E >  

〈 C O D E 〉 < C O D E - N A M E > C C O M P A R I S O N 〉  

〈 C O N N E C T I V E 〉 〈 C O S T 〉 < D A Y 〉  

< D A Y - N A M E > — < D I G I T 〉 — < F A R E >  

< F L I G H T > < F L I G H T - D A Y S > < F L I G H T - N U M >  

〈 F L I G H T 一 N U M B E R 〉 < F R O M > < H O W >  

< K I N D > < M E A L > < M E A L _ D E S C R I P T I O N > 

< M E A N > 〈 M O D I F I E R 〉 < O N E - W A Y >  

< P E R I O D > < P R E P > < P R E - T I M E >  

〈 R E S T R I C T I O N 〉 < R O U N D - T R I P > 〈 S E R V E 〉  

< S T A T E J S F A M E > 〈 S U P E R L A T I V E 〉 〈 T I M E 〉  

〈 T I M E 一 V A L U E 〉 — < T O > 〈 T R A N S P O R T 〉  

< T R A N S P O R T - T Y P E > < V I A > 〈 W H E R E 〉  

< W H I C H > " < Y E A R > 
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Goal: fare_basis.fare_basis_code 
〈 A I R C R A F T 〉 〈 A I R L I N E 〉 | < A I R L I N E _ N A M E > 

< A I R P O R T > < A I R P Q R T - N A M E > 〈 B A C K 〉  

< C I T Y > < C I T Y _ N A M E > < C I T Y _ N A M E _ 1 > 

< C I T Y _ N A M E _ 2 > < C I T Y - N A M E - 3 > < C L A S S - N A M E >  

< C O D E > < C O D E _ N A M E > 〈 C O M P A R I S O N 〉 

< C O S T > < D A Y > < D A Y - N A M E >  

< D I G I T > < F A R E > 〈 F L I G H T 〉  

< F L I G H T _ D A Y S > < F L I G H T - N U M > < F L I G H T - N U M B E R > 

〈 F R O M 〉 < H O W > < K I N D >  

< M E A L > < M E A L - D E S C R I P T I O N > 〈 M E A N 〉  

〈 M O D I F I E R 〉 < M O N T H > < O N E - W A Y 〉  

〈 P E R I O D 〉 < P R E P > < P R E - T I M E >  

< R O U N D _ T R I P > 〈 S E R V E 〉 < S T A T E _ C O D E >  

< S T A T E - N A M E > < S T O P S > 〈 S U P E R L A T I V E 〉  

< T I M E > < T I M E - V A L U E > < T Q >  

C T R A N S P O R T 〉 < T R A N S P O R T _ T Y P E > < V I A >  

< W H A T > < W H I C H > “ 

“ Goal: flight.flightJd 

〈 A I R C R A F T 〉 〈 A I R L I N E 〉 < A I R P O R T > 

< A I R P O R T J S F A M E > < B A C K > < C I T Y >  

< C I T Y _ N A M E > < C I T Y _ N A M E - 1 > < C I T Y - N A M E - 2 >  

< C I T Y _ N A M E _ 3 > 〈 C L A S S 〉 — < C L A S S - N A M E >  

< C O D E > 〈 C O D E 一 N A M E 〉 〈 C O M P A R I S O N 〉  

〈 C O N N E C T I V E 〉 < C O S T > < D A Y >  

< D A Y _ N A M E > — < F A R E > < F L I G H T >  

< F L I G H T - D A Y S 〉 < F L I G H T - N U M > < F L I G H T _ N U M B E R > 

< F R O M > < H O W > 〈 K I N D 〉  

< M A N U F A C T U R E R > < M E A L - D E S C R I P T I O N > < M E A N >  

〈 M O D I F I E R 〉 < M O N T H > — < P E R I O D >  

< P R E P > < P R E - T I M E > 〈 R E S T R I C T I O N 〉  

< R O U N D _ T R I P > < S E R V E 〉 < S T A T E - N A M E >  

< S T O P S > 〈 S U P E R L A T I V E 〉 < T I M E >  

< T I M E _ V A L U E > < T 0 > C T R A N S P O R T 〉  

C T R A N S P O R T - T Y P E 〉 < V I A > 〈 W H A T 〉  

< W H E R E > < Y E A R > 
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Goal: flight.flight-number  
〈 A I R C R A F T 〉 < A T R L I N E > < A I R L I N E - N A M E > . 

< A I R P O R T > < A I R P O R T - N A M E > < B A C K >  

< C I T Y > < C I T Y - N A M E > C C I T Y — N A M E 」 〉  

< C I T Y - N A M E - 2 > < C I T Y - N A M E - 3 > < C L A S S - N A M E >  

‘ < C O D E > < C O D E 一 N A M E 〉 〈 C O M P A R I S O N 〉 

〈 C O N N E C T I V E 〉 < C O S T > < D A Y >  

< D A Y - N A M E > < D I G I T > < F A R E >  

< F L I G H T > < F L I G H T 一 D A Y S 〉 < F L I G H T - N U M >  

< F L I G H T _ N U M B E R > < F R O M > < H O W >  

< K I N D > < M E A L > < M E A L _ D E S C R I P T I O N > 

< M E A N > 〈 M O D I F I E R 〉 < M O N T H >  

< O N E _ W A Y > 〈 P E R I O D 〉 < P R E P >  

< P R E _ T I M E > < R O U N D - T R I P > 〈 S E R V E 〉  

< S T A T E 一 C O D E 〉 < S T A T E - N A M E > 〈 S T O P S 〉  

〈 S U P E R L A T I V E 〉 < T I M E > 〈 T I M E 一 V A L U E 〉  

< T 0 > 〈 T R A N S P O R T 〉 — 〈 T R A N S P O R T — T Y P E 〉 

< V I A > 〈 W H I C H 〉 “ 
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Goal: ground-Service.city . code 
. � A I R C R A F T � � A IR L I N E � <AIRLINE-NAME> ~ ~ 

< A I R P O R T > < B A C K > < C I T Y >  
<CITY_NAME> � C I T Y - N A M E � � <CITY-NAME-2>  

< C I T Y - N A M E_3> <CLASS-NAME> < C 0 D E >  
<CODE_NAME> � C O M P A R I S O N� � C O N N E C T I V E�  

< C O S T > � D A Y� < D A Y - N A M E �  

< D I G I T > < F A R E > � F L I G H T�  

<FLIGHT_DAYS> <FLIGHT-NUM> �FLIGHT—NUMBER� 

< F R O M > < H O W > � K I N D�  

< M E A L > <MEAL-DESCRIPTION> < M E A N >  
� M O D I F I E R � < M O N T H > <ONE-WAY>  
< P E R I O D > < P R E P > <PRE-TIME>  
<ROUND_TRIP> � S E R V E� < S T A T E _ C O D E �  

<STATE-NAME> < S T O P S > � S U P E R L A T I V E�  

< T I M E > � T I M E 一 V A L U E � < T 0 >  
� T R A N S P O R T � <TRANSPORT_TYPE> < V I A �  

< W H A T > <WHICH> 

Table D.l: Each Belief Network in the N binary formu-
lation has 50 selected concepts with the highest values of 
Information Gain relating to the its goal in the English 
ATIS domain. 
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� A I R C R A F T� <AIRCRAFT-CODE> � A I R L I N E� “ 
<AIRLINE_NAME> � A I R P O R T� � A I R P O R T _ N A M E � 

� B A C K � < C I T Y > <CITY-NAME>  
<CITY_NAME_1> <CITY-NAME-2> <CITY—NAME 一 3 〉 

< C I T Y _ N A M E_4> <CITY-NAME-5> 〈 C L A S S �  

<CLASS_NAME> < C O D E > � C O D E 一 N A M E �  

<COMPARISON> � C O N N E C T I O N S�“ � C O N N E C T I V E�  

< C O S T > < D A Y > <DAY-NAME>  
� D I G I T � — < F A R E > — � F L I G H T�  

< F L I G H T - D A Y S � <FLIGHT-NUM> “ <FLIGHT_NUMBER> 
� F R O M � < H O W > � K I N D�  

� M A N U F A C T U R E �— < M E A L > — <MEAL-DESCRIPTION> 
< M E A N > � M O D I F I E R� � M O N T H�  

< O N E - W A Y � <PERIOD> < P R E P >  
< P R E - T I M E > — � R E S T R I C T I O N �— <ROUND-TRIP>  
� S E R V E � <STATE-CODE> — <STATE-NAME>  
< S T O P S > � S U P E R L A T I V E � � T I M E�  

<TIME 一 V A L U E � < T 0 > _ � T R A N S P O R T � 

< T R A N S P O R T - T Y P E 3 ~ < V I A > � W H A T�  

� W H E R E � � W H I C H � < Y E A R >  

Table D.2: The 60 selected concepts of the single Belief 
Network in the one N-ary formulation using the multiple 
aposterior strategy in the English ATIS domain. 
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� A I R C R A F T� <AIRCRAFT-CODE> <AIRLINE> 
<AIRLINE-NAME> � A I R P O R T� < AIRPORT-NAME> 
< B A C K > < C I T Y > <CITY-NAME>  
< C I T Y _ N A M E - 1 > ~ <CITY-NAME-2> <CITY-NAME-3> 

� C L A S S � � C L A S S 一 N A M E � � C O D E�  

<CODE_NAME> <COMPARISON> � C O N N E C T I O N S � 

� C O N N E C T I V E � < C O S T > < D A Y �  

< D A Y - N A M E > < D I G I T > <FARE>  
< F L I G H T > <FLIGHT-NUM> <FLIGHT-NUMBER> 
< F R O M > < H O W > � K I N D�  

< M E A L > <MEAL-DESCRIPTION> < M E A N >  
� M O D I F I E R� " < M Q N T H > — < ONE-WAY > 
� P E R I O D � <PRE-TIME> < P R E P >  
� R E S T R I C T I O N � ~ <ROUND-TRIP> < S E R V E �  

� S T A T E 一 C O D E � <STATE_NAME> � S T O P S�  

� S U P E R L A T I V E �” < T I M E > � T I M E 一 V A L U E �  

< T O > � T R A N S P O R T � <TRANSPORT_TYPE> 

< V I A > < W H A T > <WHERE> 

� W H I C H �  

Table D.3: The 55 selected concepts of the single Belief 
Network in the one A/'-ary formulation using the maxi-
m u m aposterior strategy in the English ATIS domain. 
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� A B B R E V I A T I O N� <AIRCRAFT-CODE> <AIRLINE> 
< A I R L I N E _ N A M E > ^ <AIRPORT> — <AIRPORT_NAME> 

< A L L > < A N D > � B E T W E E N�  

< B O O K > <CAPACITY> — < C I T Y >  
<CITY_NAME> C C I T Y - N A M E �� <CITY-NAME-2> 

； � C I T Y - N A M E 一 3 > <CLASS-NAME> < C O D E > ._ 
<CODE_NAME> � C O M P A R I S O N� � C O N N E C T I O N S � 

� D A Y � < D A Y - N A M E � — < D I G I T �  

< F A R E > � F L I G H T � — <FLIGHT-NUM> 
� F L I G H T 一 N U M B E R � <FLIGHT-TYPE> � F R O M�  

< H O W > <MEAL 一 DESCRIPTION� � M E A N�  

< M O N T H > < ONE-WAY > < 0 R �  

< P E R I O D > � P E R I O D 一 U N I T � < P R E >  
< Q U A N T > < R E T U R N > — <ROUND-TRIP> 
� S E R V E � <STATE 一 C O D E � <STATE_NAME> 
< S T O P S > � S U P E R L A T I V E � — <TICKET>  
<TIME-VALUE> “ � T I M E S� < T 0 >  

C T R A N S P O R T � <TRANSPORT-TYPE> <VALUE_UNIT> 

< V I A >  

Table D.4: The 55 selected concepts of the single Belief 
Network (BN) in the one iV-ary formulation using the 
maximum aposterior strategy. The B N is modeled for 
the Chinese ATIS queries. 
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Appendix E 

The Recalls and Precisions of 

the Goal Identifiers in 

Macro-Averaging 
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Frequency Frequency 
Goal Goal index (Test set (Test set 

1993) 1994) 
aircraft.aircraft-code 1 0 0 

airline.airline.code 2 4 11 

airline.airline.name 3 18 6 

airport.airport_code 4 2 

airport.airport_name 5 2 2 

class_of_service.class_description 6 5 3 

fare.fareJd 7 ^ 25 

fare_basis.fare_basis_code 8 I I 5 

flight.flightJd 9 m 342 

flight.flight-number 10 9 0 

ground_service.city_code 11 ^  

"POP 一 12 I 35 I 37 

Table E.l: Each goal with its corresponding index and the frequencies in 

the test sets. The queries mixed with in-domain and O O D goals are ex-

tracted before the evaluations. Therefore, the goal aircraft.aircraft_code has 

zero frequencies in the test sets. 
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# queries # inferred # correctly Recall Precision 
Goal index (A) queries inferred (C/A) (C/B) 

(B) queries (C) 
1 0 9 0 ^ 0 

2 4 ^ 4 1.00 0I9 

3 18 n 11 0.61 1.00 
4 16 19 15 0.94 0.79 

5 2 2 2 1.00 1.00 

6 5 12 5 1.00 0.42 

7 ^ ^ 21 0.81 0.84 

8 U 12 11 1.00 0.92 

9 m 310 290 0.96 0.94 

10 9 9 9 1.00 1.00 

n 19 16 14 0.74 0.88 

12 ^ 40 24 0.69 0.60 

Table E.2: The recalls and precisions of each goal in the N binary formulation 

using test set 1993 in English ATIS. 
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# queries # inferred # correctly Recall Precision 
Goal index (A) queries inferred (C/A) (C/B) 

(B) queries (C) 
_ - 7 0 N/A 0 

2 n 15 11 1.00 0.73 

3 6 6 6 0.61 1.00 

4 2 3 1 0.50 0.33 

5 2 0 _ 0 0 N / A ~ ~ 

6 3 7 2 0.67 0.29 

7 ^ S 22 0.88 ^ 

8 5 7 3 0.60 0.43 

9 ^ 353 330 0.96 0.93 

^ 0 0 0 N/A N/A 

n 15 18 12 0.80 0.67 

12 37 - 27 I 10 0.27 0.37 

Table E.3: The recalls and precisions of each goal in the N binary formulation 

using test set 1994 in English ATIS. 
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# queries # inferred # correctly Recall Precision 
Goal index (A) queries inferred (C/A) (C/B) 

(B) queries (C) 
1 0 9 “ 0 N/A 0 

2 4 4 4 1.00 1.00 

3 18 19 “ 18 1.00 0.95 

4 16 9 9 0.56 1.00 

5 2 5 _ 2 1.00 0.40 

6 5 13 5 1.00 0.38 

7 W 31 _ 22 0.85 0.71 

8 n 13 11 1.00 0.85 

9 m 304 - 296 0.98 0.97 

10 9 10 “ 9 1.00 0.90 

n 19 ^ 19 1.00 0.58 

12 ^ M ^ 0.71 ^ ~   

Table E.4: The recalls and precisions of each goal in the one N-ary formula-

tion using multiple selection strategy in English ATIS test set 1993. 

129 



# queries # inferred # correctly Recall Precision 

Goal index (A) queries inferred (C/A) (C/B) 
(B) queries (C)  

1 0 — 5 - 0 N / A “ 0 

2 n n n 1.00 1.00 

3 6 7 6 l.QQ 0.86 

4 2 5 2 — 1.00 0.40 

5 2 2 1 0.50 0.50 

g 3 8 2 0.67 0.25 

7 ^ ^ 22 — 0.88 0.71 

g 5 9 4 0.80 0.44 

9 ^ m 328 “ 0.96 0.96 

^ 0 — 0 — 0 N / A N / A — 

n ^ 15 1.00 0.71 

U ^ U 22 0.59 0.71 

Table E.5: The recalls and precisions of each goal in the one 7V-ary formula-

tion using multiple selection strategy in English ATIS test set 1994. 
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# queries # inferred # correctly Recall Precision 

Goal index (A) queries inferred (C/A) (C/B) 
(B) queries (C)  

1 0 Z I I I I I I 0 N / A - 0 
2 4 4 4 1.00 1.00 

3 18 18 1.00 1.00 

4 8 8 “ 0.50 1.00 

5 2 2 2 1.00 1.00 

g 5 13 - 5 1.00 0.38 

7 ^ ^ 20 一 0.77 1.00 

8 u 13 11 一 1.00 0.85 

9 m 299 295 0.98 0.99  

^ 9 9 9 - 1.00 1.00 

^ 18 — 0.95 0.58 

12 ^ 30 I 25 I 0.71 0.83 

Table E.6: The recalls and precisions of each goal in the one iV-ary formula-

tion using maximum selection strategy in English ATIS test set 1993. 
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# queries # inferred # correctly Recall Precision 

Goal index (A) queries inferred (C/A) (C/B) 
(B) queries (C)  

J 2 N/A - 0 

2 n n 11 1-00 1-00 

3 e 7 6 1.00 0.86 

4 2 2 1 0.50 0.50 

5 2 — 1 0 0 — 0 

g 3 9 3 1.00 0.33 

7 ^ 26 21 - 0.84 0.81 

g 5 9 4 “ 0.80 0.44 

9 m 339 329 0.96 0.97 

10 0 — 0 — 0 ~ N / A N/A 

n 15 ^ 14 ~ 0.93 0.70 

12 ^ ^ 18 0.49 0.69 

Table E.7: The recalls and precisions of each goal in the one N-ary formula-

tion using maximum selection strategy in English ATIS test set 1994. 
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# queries # inferred # correctly Recall Precision 

Goal index (A) queries inferred (C/A) (C/B) 
(B) queries (C)  

J 5 0 0 N / A N / A -

2 4 8 4 1.00 0.50 

3 ^ 18 - 1.00 0.78 

4 ^ 10 10 0.63 1.00 

5 2 4 2 1.00 0.50 

g 5 13 5 1.00 0.38 

7 ^ ^ ^ 0.81 0.88 

8 n 13 11 - 1.00 0.85 

9 m m 292 一 0.97 0.99 

9 9 9 1.00 1.00 

n 19 ^ 17 0.89 0.61 

^ ^ ^ 0.63 0.92 

Table E.8: The recalls and precisions of each goal in the one AT-ary formula-

tion using maximum selection strategy in Chinese ATIS test set 1993. 
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# queries # W ^ d # correctly Recall Precision 
Goal index (A) queries inferred (C/A) (C/B) 

(B) queries (C)  
J 5 1 0 N/A 0 -

2 n ^ 6 0.55 0.30 

3 6 ^ 1.00 0.75 

2 1 1 0.50 1.00 

5 2 Q — ~ ~ Q ~ ~ N/A 

3 9 3 1.00 0.33 

7 ^ ^ ^ 0.92 0.92 

5 9 5 1.00 0.56 

9 ^ 3 3 0 O i 0-97 

5 0 — 0 N/A N/A 

17 15 - 1.00 0.88 

^ ^ 26 0.70 0.81 

Table E.9: The recalls and precisions of each goal in the one iV-ary formula-

tion using maximum selection strategy in Chinese ATIS test set 1994. 
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