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Abstract of thesis entitled: 

A Study of Frequent Pattern and Association Rule Mining - with Appli-

cations in Inventory Update and Marketing 

Submitted by WONG, Chi-Wing 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in June 2004 

In the literature of data mining, many different algorithms for mining 

association rule have been proposed. However, there is relatively little study 

on how association rules can aid in more specific targets. In this thesis two of 

the applications for the concepts of association rules - (1) Maximal-Profit Item 

Selection with Cross-Selling Effect (MPIS) problem and (2) Item Selection for 

Marketing with Cross-Selling Effect (ISM) problem - are investigated. 

MPIS: Problem MPIS is about selecting a subset of items which can give 

the maximal profit with the consideration of cross-selling. We prove that a 

simple version of this problem is NP-hard. We propose a new approach to 

the problem with the consideration of the loss rule - a variation of associ-

ation rule to model the cross-selling effect. We show that the problem can 

be transformed to a quadratic programming problem. In case quadratic pro-

gramming is not applicable, we also propose a heuristics approach and an 

evolutionary approach - genetic algorithm - to tackle this problem. Experi-

ments are conducted to show that the proposed methods are highly effective 

and efficient. 
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ISM: Problem ISM is to find a subset of items as marketing items in order 

to boost the sales of the store. We prove that a simple version of this problem 

is NP-hard. The cross-selling effect in this problem is modeled by the gain 

rule - another variation of association rule. We also propose two algorithms 

to deal with this problem. One is a quadratic programming method while the 

other one is a heuristics method. Experiments are also conducted to show 

that the algorithms are effective and efficient. 
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論文題目：頻繁樣式的硏究及規則分析採集的應用——庫存更新和市場推銷 

作者 ：黃智榮 

學校 ：香港中文大學 

學系 ：計算機科學及工程學系 

修讀學位：哲學碩士 

摘要 Z 

在數據採集的文學硏究中，有很多不同規則分析採集的算法已被建議。但是，當 

中只有很少特別爲規則分析應用的硏究。在這論文中’兩個配合跨售行銷影響 

的規則分析應用會被硏究——⑴最大利盈的項目選擇(MPIS)和⑵推銷的項目 

選擇(ISM)� 

最大利盈的項目選擇(MPIS)：問題MPIS是在盡多的項目中選取某些項目， 

而在考慮跨售行銷影響的情況下，得到最大的利盈。我們已證明這簡化的問題爲 

NP-hard�我們建議了一個新的方法去模擬跨售行銷的影響。這方法名爲損失規 

則分析，我們也證明了這問題可以轉化爲二次規劃法。當二次規劃法不能應用 

時，我們也提議了一種試探性方法。此外，我們也提議一種演化式演算法——遺 

傳程式方法——去解決這問題。我們所做的實驗能顯示了我們所建議的方法爲有 

效的。 

推銷的項目選擇(ISM)：問題ISM是在盡多的項目中選取某些項目爲推銷項 

目，從而增加商鋪的銷售額。我們證明了這簡化的問題爲NP-hard�在這問題的 

跨售行銷影響被一種名爲增進規則分析所模擬。我們也提議了兩種方法去解決這 

問題。方法一是二次規劃法，方法二是試探性方法。我們所做的實驗能夠顯示了 

這些方法爲有效的。 
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Chapter 1 

Introduction 

Industry players agree that data mining technology, as one of the strong pil-

lars in CRM (Customer Relationship Management), plays a vital role in busi-

ness expansion. By knowing their customer behavior based on past records, 

increased profits from cross-selling and other business strategies would be 

achieved. The behaviour in terms of sales transactions is considered signifi-

cant [16]. Data mining on such transactions is called market basket analysis. 

We consider the scenario of a supermarket or a large store. Typically there 

are a lot of different items offered, and the amount of transactions can be 

very large. For instance, Hedberg [24] reports that the American supermar-

ket chain Wal-Mart keeps about 20 million sales transactions per day. This 

vast amount of data requires sophisticated methods in the analysis. 

Decision making in the business sector is considered one of the critical 

tasks in data mining. There is a study in [32] on the utility of data mining 

for such problems, which proposes a framework based on optimization for the 

evaluation of data mining operations. The general decision making problem 
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CHAPTER 1. INTRODUCTION 2 

is considered as a maximization problem as follows: 

m 赞 : 队 ） （1.1) 
xeT> 

where V is the set of all possible decisions in the domain problem (e.g. inven-

tory control and marketing), C is the set of customers, yi is the data or history 

we have on customer z, and G{x,yi) is the utility (benefit) from a decision 

X and Hi. However, with a deeper investigation of such decision problems, 

we notice that we are in fact dealing with a maximization problem of the 

following form: 

m a x 0 ( x , r ) (1.2) xev 

where Y is the set of all yi, or the set of data and history collected about all 

customers. The above form is more appropriate when there are correlations 

among the behaviours of customers (e.g. cross-selling - the purchase of one 

item is related to the purchase of another item), or when there are interactions 

among the customers themselves (e.g. viral marketing, or marketing by word-

of-month among customers). Such effects can be uncovered only by extracting 

patterns in Y and we cannot determine QQ based on each single customer 

alone. 

The problem under investigation in this thesis is about such a problem: 

optimal product selection [18, 17, 49，52] (in SIGKDD 1999, 2000, 2002). 

The problem is that in a typical retail store, the types of products should 

be refreshed regularly in order that losing products are discarded and new 

products are introduced. As pointed out in [16], a major task of talented 

merchants is to pick the profit-generating items and discard the losing items. 

Thus, we are interested in finding a subset of the products to be discontinued 

so that the profit can be maximized. The formulation of the problem considers 
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the important factor of cross-selling which is the influence of some products 

on the sales of other products. The cross-selling factor is embedded into the 

calculation of the maximum profit gain from a decision. This factor can be 

obtained from an analysis of the history of transactions kept from previous 

sales which corresponds to the set Y in formulation (1.2). ^ 

Association rule mining [11] aims at understanding the relationships among 

items in transactions or market baskets. However, it is generally true that the 

association rules in themselves do not serve the end purpose of the business 

people. We believe that association rules can aid in more specific targets. Re-

cently, some researchers [18] suggest that association rules can be used in the 

item selection problem with the consideration of relationships among items. 

Here we follow this line of work in what we consider as investigations of the 

application of data mining in the decision-making process of an enterprise. 

We study two problems of the application of association rules - (1) Maximal-

Profit Item Selection with cross-selling considerations (MPIS) [52] problem 

and (2) Item Selection for Marketing with Cross-Selling Effect (ISM) problem 

51: 

1.1 MPIS 

MPIS [52] is the problem of finding a set of J items with the consideration 

of the cross-selling effect such that the total profit from the item selection 

is maximized, where J is an input parameter. We assume that a history of 

transaction records is given for uncovering customer behaviours. We show 

that a simple version of this problem is NP-hard. We model the cross-selling 
^The problem is related to inventory management which has been studied in management 

science; however, previous works are mostly on the problems of when to order, where to order 

from, how much to order and the proper logistics [46]. 
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factor with a special kind of association rule called loss rule. The rule is of 

the form I —)• od, where I is an item and d is a set of items, and od means the 

purchase of any items in d. This loss rule helps to estimate the loss in profit 

of item I if all items in d are missing after the selection. The rule corresponds 

to the cross-selling effect between I and d. 

To tackle this problem, we propose a quadratic programming method 

(QP), a heuristics method called MPIS_Alg and a genetic algorithm (GA) 

approach. Some preliminary results for QP and MPIS_Alg are shown in [52 . 

In QP, we express the total profit of the item selection in quadratic form and 

solve a quadratic optimization problem. Algorithm MPIS_Alg is a greedy 

approach which uses an estimate of the benefits of the items to prune items 

iteratively for maximal-profit. From the experiment, the profitabilities of 

these two proposed algorithms are greater than that of naive approach for all 

data sets. On average, the profitability of QP and MPIS_Alg is 1.33 times 

higher than the naive approach for the synthetic data set. Besides, when the 

number of items is large (as in the drugstore data set), the execution time 

of the best previous method, HAP [49], is 6.5 times slower than MPIS_Alg. 

These shows that the MPIS_Alg is highly effective and efficient. GA can 

be viewed as an optimization method which encodes a possible solution of a 

problem in a chromosome-like data structure. The GA approach creates a 

number of chromosomes in a population and finds a solution by rearranging 

the chromosomes in the population. From our experiments, GA also gives 

high profitabilities and the efficiency is comparable to MPIS_Alg. For some 

datasets in our experiments, GA out-performs MPIS_Alg in both profitabili-

ties and efficiency. 
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1.2 ISM 

ISM [51] is to find a subset of items as marketing items so that, after a 

marketing campaign on these selected marketing items is promoted, the whole 

sales of the store will be increased and the store will earn much money. 

In this thesis, the problem of item marketing is studied. Besides, we prove 

that a simple version of this problem is NP-hard. The cross-selling factor is 

modeled by the gain rule. The rule is of the form ot' —I, where / is a non-

marketing item and t' is a set of marketing items. This gain rule helps us to 

estimate the gain in profit of item I if all items in t, are chosen as marketing 

items. The rule corresponds to the cross-selling effect between I and t'. 

We also proposed two algorithms to solve this problem. One is a hill-

climbing approach while the other is a classical optimization approach. In our 

experiment, both approaches are quite effective and efficient. Our proposed 

approaches give a greater profit gain compared with direct marketing. 

1.3 MPIS and ISM 

At first glance, problem MPIS and problem ISM are quite similar. Both 

problems consider the significant factor - cross-selling factor. But, after taking 

a closer look, we can find that there are some differences between these two 

problems. 

Problem MPIS is typically helpful when the retail store wants to pick the 

profit generating items and discard the losing items. Problem MPIS is one 

which selects a set of J items with the consideration of the cross-selling effect 

so that the total profit of the item selection is maximized by minimizing the 

profit loss of some items due to the selection. Problem MPIS is defined based 

on the assumption that the profit of selected items may be affected if some 
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items are not included in the final selection. This assumption is modeled by 

a special kind of association rule called loss rule. This rule is interpreted as 

the loss in profit of the selected items if some other items are not selected. 

Problem ISM is useful when the store manager wants to decide which items 

should be marketed in order to boost the sales in the store. Problem ISM is 

one which finds a set of marketing items with the consideration of the cross-

selling effect in order that the total profit of the item selection is maximized by 

maximizing the profit gain of both marketing items and non-marketing items. 

Problem ISM is based on the assumption that the marketing items can be 

affecting the sales of the non-marketing items. Such kind of assumption is 

modeled by another kind of rule, called gain rule. This rule represents how 

the marketing items affect the sales of non-marketing items. In other words, 

this rule can help to estimate the profit gain of item selection. 

1.4 Thesis Organization 

In this thesis, we first describe problem MPIS and the proposed algorithms 

in Chapter 2. Then, we describe problem ISM and the proposed approaches 

in Chapter 3. Finally, we conclude our thesis in Chapter 4. 



Chapter 2 

MPIS 

2.1 Introduction 

Recent studies in the retailing market have shown a winning edge for customer-

oriented business, which is based on decision making from better knowledge 

about the customer behaviour. Furthermore, the behaviour in terms of sales 

transactions is considered significant [16]. This is also called market basket 

analysis. We consider the scenario of a supermarket or a large store, typically 

there are a lot of different items offered, and the amount of transactions can 

be very large. For example [24] quoted the example of American supermar-

ket chain Wal-Mart, which keeps about 20 million sales transactions per day. 

This growth of data requires sophisticated method in the analysis. 

At about the same time, association rule mining [11] has been proposed 

by computer scientists, which aims at understanding the relationships among 

items in transactions or market baskets. However, it is generally true that the 

association rules in themselves do not serve the end purpose of the business 

people. We believe that association rules can aid in more specific targets. 

Here we investigate the application of association rule mining on the problem 

7 
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of market basket analysis. As pointed out in [16], a major task of talented 

merchants is to pick the profit generating items and discard the losing items. 

It may be simple enough to sort items by their profits and do the selection. 

However, by doing that we would have ignored a very important aspect in 

market analysis, and that is the cross-selling effect. The cross-selling effect 

arises because there can be items that do not generate much profit by them-

selves but they are the catalysts for the sales of other profitable items. Re-

cently, some researchers [32] suggest that association rules can be used in the 

item selection problem with the consideration of relationships among items. 

Here we follow this line of work in what we consider as investigations of the 

application of data mining in the decision-making process of an enterprise. 

In this thesis, the problem of Maximal-Profit Item Selection with Cross-

Selling Considerations (MPIS) [52] is studied. With the consideration of the 

cross-selling effect, MPIS is the problem of finding a set of J items such 

that the total profit from the item selection is maximized, where J is an 

input parameter. This problem arises naturally since a store or a company 

typically changes the products they carry once in a while. The products that 

can generate the best profits should be retained and poor-profit items can be 

removed, then new items can be introduced into the stock. In this way the 

business can follow the market needs and generate the best possible results for 

both the business and the customers. In order to determine the profit value 

of an item, one can rely on expert knowledge. However, since this can be a 

highly complex issue especially for a large store with thousands of products 

for sale, we can try to apply data mining techniques, based on a history of 

customer purchase records. 

Hence the problem is how to determine a subset of a given set of items 

based on a history of transaction records, so that the subset should give the 
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best profits, with considerations of the cross-selling effects. We show that a 

simple version of this problem is NP-hard. We model the cross-selling factor 

with a variation of association rule called loss rule. The rule is of the form 

la od, where la is an item and (i is a set of items, and od means any items 

in d. This loss rule helps to estimates the loss in profit for item la if the items 

in d are missing after the selection. The rule corresponds to the cross-selling 

effect between la and d. 

To handle this problem, we propose a quadratic programming method 

(QP), a heuristics method called MPIS_Alg and a genetic algorithm (GA). In 

QP, we express the total profit of the item selection in quadratic form and 

solve a quadratic optimization problem. Algorithm MPIS_Alg is a greedy 

approach which uses an estimate of the benefits of the items to prune items 

iteratively for maximal-profit. GA can be viewed as an optimization method 

which encodes a possible solution of a problem on a chromosome-like data 

structure, creates a number of chromosomes in a population and finds a so-

lution by recombining the chromosomes in the population. 

From our experiment, the profitabilities of our three proposed algorithms 

are greater than that of a naive approach for all data sets. On average, the 

profitability of both QP, GA and MPIS_Alg is 1.33 times higher than the naive 

approach for the synthetic data set. In a real drugstore data set, the best 

previous method HAP [49] gives a profitability that is about 2.9 times smaller 

than MPIS_Alg. When the number of items is large (as in the drugstore data 

set), the execution time of HAP is 6.5 times slower than MPIS_Alg. These 

shows that the MPIS_Alg is highly effective and efficient. 

The rest of this chapter is organized as follows. Section 2.2 introduces 

the related work of our problem. Section 2.3 gives a formal definition of 

our problem. Section 2.4 presents the details of the cross selling effect by 
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association rule - loss rule. Section 2.5 and Section 2.6 gives our proposed 

algorithms - QP and MPIS_Alg. We will analyze our algorithm MPIS_Alg 

in Section 2.8. Section 2.9 presents our performance study. Section 2.10 

summarizes our study. 

2.2 Related Work 

Recently the problem of association rule mining has received much attention. 

We assume a database for basket data with a set of transactions. We are given 

a set I = { / i , /2, •••，In} of binary attributes called items where n is the total 

number of items. For example, I 二 {Carrot, Orange, Knife, Potato, Plate}. 

The database contains m transactions. For i = 1,2,m, transaction U is a 

binary vector with ti[k] 二 1 if item Ik is in transaction ti. An association rule 

has the form X 4 Ij, where X C I and Ij is one of the elements in 1. For 

instance, {Orange^ Potato} —> Carrot. 

There are two major elements associated with the association rule, support 

and confidence factor. Support for a rule X Ij is equal to the fraction of 

the number of transactions containing all items in X and item Ij, over the 

number of all transactions. The confidence factor for the rule X Ij is 

equal to the fraction of the transactions containing all items in set X that 

also contain item Ij. The problem of mining association rules is to find all 

rules which have the support and confidence greater than the corresponding 

user-defined threshold value called minimum support (minsup) and minimum 

confidence (minconf). Some of the earlier work include [40, 12, 39. 
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2.2.1 Item Selection Related Work 

There are some recent works on the maximal-profit item selection problem -

PROFSET and HAP. In the following subsections, these two methods will be 

described in some details since they are closely related to our work. 

PROFSET 

PROFSET ([18] and [17]) is an algorithm based on size-constrained program-

ming. PROFSET makes use of the disjoint maximal frequent itemset to 

represent the “ purchase interest" so as to find the selection of items by using 

0-1 programming with the constraint of a specified size. 

A frequent itemset is a set which contains items co-occurring frequently. 

A maximal frequent itemset is a frequent itemset which does not have a fre-

quent item superset. For example, if there are three items {/。，h, h } , and all 

frequent itemsets found are 丄 { 4 } , {h}, {h} and {lajb} {hjc}- Frequent 

itemsets { 4 } , { h } and { / � } are not maximal as they have frequent item su-

perset { laJb} and { h J c } - But, frequent itemsets { l a j b } and { h J c } are 

maximal as they have no frequent item superset. 

PROFSET formulates the problem as a binary linear programming. It is 

assumed that we are given a set of transactions of profit margin of each item 

in each transaction. Before describing such programming, we first describe 

some notations used in PROFSET. Let M{X) be the profit margin of the fre-

quent itemset X for all transactions and m(X) be the margin of the frequent 

itemset X for a transaction. The term M(X) is obtained by summing up a 

number of m(X) terms in some transactions containing frequent itemset X , 

where m(X) is the margin obtained by summing up all margins of each item 
i /a is the notation of the item with item number a 
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in frequent itemset X in a transaction. The algorithm of the calculation of 

M ( X ) is shown as follows. 

for every transaction tj do 

begin 

while {tj contains any frequent itemsets) do 

begin 

Draw X from the set containing all possible maximal 

frequent subsets in transaction tj using probability 

distribution Qtj 

M{X) — M{X) + m{X) where m{X) is the profit 

margin of X in tj 

tj i t j — X 

end 

end 

return all M{X) 
The probability distribution Gtj is defined with: 

(y. = supportjX) 
。 ' 州 _ E supportiY) 

y^tj 

where X and Y are the maximal frequent itemsets in transaction tj. 

Now, we are going to describe the binary programming in PROFSET. 

Let the set of categories {Ci , ...Cn} be the set of items and L be the set of 

frequent itemsets. For example, item cheese belongs to category food while 

item pencil belongs to category stationery. Let Px and Qi be binary decision 

variable used in the programming. 二 1 if a maximal frequent itemset X 

is involved in the contribution to the objective function. Otherwise, Px 二 0. 

Q- is set to be 1 if item li is included in the maximal frequent itemset X 

and Px = 1. Otherwise, Qi is set to be 0. Let CosU be the inventory and 
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handling cost of item li. The objective is to maximize all profits from cross-

selling effects between items: 

Maximize 
n 

E M � P x - E E cosw, 
xeL c=i ieCc 

Subject to 

n 
Z E Qz = J (2.1) 
c=i ieCc 

yx e eX :Q,>Px (2.2) 

VCc ： Y.Qi> ItemMincc (2.3) 
ieCc 

Constraint 2.1 is used to determine J items to be selected in the problem, 

where J is a user parameter. This value is dependent on the retail envi-

ronment (e.g. the number of eye-catchers and the number of facings in a 

promotion leaflet). Constraint 2.2 is used to specify all items in a selected 

maximal frequent itemset should also be selected. Constraint 2.3 restricts 

that the number of items in each category should be greater than or equal to 

a user-defined values (i.e. minimum number of items in each category). 

However, PROFSET has some weaknesses as pointed out in [49 . 

1. PROFSET is independent of the strength of the relationship between 

items (i.e. the level of confidence). 

2. The purchase intention is not just shown in the maximal frequent item-

sets because subsets of maximal frequent itemsets also show the purchase 

intention, which are not considered in PROFSET. 

3. PROFSET does not give the relative ranking of the selected items. 
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HAP 

HAP [49] is a solution of a similar problem. Before describing the details of 

HAP, we first give an overview of HAP. It applies the "hub-authority" profit 

ranking approach [43] to solve the maximal profit item-selection problem. 

Items are considered as vertices in a graph. A link li Ij represents the 

cross-selling effect from li to Ij. The strength of the link is given by the 

confidence of the association rule li Ij and the individual profit of item 1“ 

where the individual profit of item li represents the recorded profit of item 

li in all transactions . A node Ij is a good authority if there are many links 

of the form li Ij with a strong strength of the link. A good hub li is an 

item which leads to many other items Ij (with link li Ij) with a strong 

strength of the link. The hub weight and the authority weight of a vertice/item 

indicate the level of a good hub and a good authority, respectively. The 

greater the weight is, the better hub/authority the item is. Then the HITS 

algorithm [33] is applied and the items with the highest resulting authorities 

will be the chosen items. It is shown that the result converges to the principal 

eigenvectors of a matrix defined in terms of the links, confidence values, and 

profit values. 

Now, we are going to describe HAP in details. As we mentioned before, 

each item is associated with two values - hub weight and authority weight. 

HAP defines two n-dimensional vectors, h and a, to represent the hub weight 

and authority weight, respectively. Entry h{i) denotes the hub weight item 

/i while entry a{i) denotes the authority weight of item li. HAP models the 

update of each authority weight and hub weight as follows. 

a{i) 二 ^ prof {Ij) X conf{Ij — h) x h{j) 
ij^h 
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= FToJVi) X conf{Ii — Ij) X a{j) 

where prof{Ii) is the total profit of item Ij in all transactions. 

From the above modeling, we can derive the following formula: 

h = B . a 

a 二 BT • h 

where B is called a cross-selling matrix and the entry B{i,j) is shown as 
follows. 

f 
prof{Ii) X conf(Ji Ij) \ii ^ j and there is 

an association li Ij 

= < 0 if i j and there is 

no association U — Ij 

prof{Ii) i “ = j 
\ 

From the above two formula, we can also deduce the following: 

h = BB^h = (BBT)h (2.4) 

a = B^Ba = {B^ B)a (2.5) 

The hub weight and the authority weight can be updated with the following 

two methods. 

1. Iteration Approach 

2. Principal eigenvectors Approach 

1. Iterative Approach 

We can implement the update of the weights with k iterations. 

In the implementation of this approach, we first assign the authority 

weight and hub weight with an initial value (e.g. 1). It is noted that the 
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converged weights of these vectors is independent of the initial values 

of the vectors [35]. Then, the weights are updated k times with the 

formula (2.4) and (2.5). [49] and [33] pointed out that the weight vector 

a and v converges rapidly, usually after 20 iterations. 

2. Principal Eigenvectors Approach 

From the previous iterative approach, we can derive the following: 

For the first iteration, 

h = [BBT)h {From{2A)) 

a = (BTB)a (i^rom(2.5)) 

For the second iteration, 

h = {BB^){BB^)h {From{2A)) 

=(BBTfh 

a = {B^B){B^B)a (i^rom(2.5)) 

={B^Bfa 

For the k-ih iteration, 

h = {BB^fh 

a 二 {B^'Bfa 

As k approaches infinity, we can find the principal eigenvector of the 

matrix BB^ and B^B as the hub vector h and authority weight a. 

Example 1 (HAP Example) We illustrate HAP with the following exam-

ple. 

There are six items, namely h.h, h, h, h and Iq. There are 10 transac-

tions. Table 2.1 show an example of transactions in binary representation. 
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Table 2.1: An Example of Transactions (Binary Representation) 

TIP h h h h h h 

1 0 0 0 0 0 1 

2 0 0 0 1 0 0 

3 0 1 0 0 0 0 

4 0 0 0 1 1 0 

5 0 0 1 1 0 0 

6 1 1 0 0 0 0 

7 0 0 0 1 0 0 

8 0 1 0 0 1 0 

9 0 1 1 1 0 0 

10 1 1 0 0 0 0 

However, the example can be expressed in item representation (shown in the 

Table 2.2). The average profit pi of item li is shown in Table 2.3. Assume 

the number of items to he selected，J，is 3. 
The cross-selling matrix is: 

/ 20 40 0 0 0 0 � 

14 7 7 7 7 0 

0 20 20 40 0 0 
B = 

0 1 2 1 1 0 

0 19 0 19 19 0 

^ 0 0 0 0 0 2 ； 

Let us explain the entry 654. The formula is 654 二 prof (5) x conf (J5 h, 

where pro / (5) is the individual profit of item h (i.e. 19 x 2 = 3 8 � .T h e n , 

654 = 38 X I = 19. 

Authority vector a and hub vector h are initialized 亡0 (1 1 1 1 1 1)^. Then, 
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Table 2.2: An Example of Transactions (Item Representation) 

TID Items Bought (Ordered) Frequent Items 

l6 ^  

2 I4 h  

h h  

4 h j 5  

5 h ^ h h , h 

6 I1J2 ^  

7 h h  

8 h , h ^  

9 l 2 , h , h 

10 l u h h J i  

Table 2.3: Average Profit of each item 

1 Pi 

1 20 

2 7 

3 20 

4 1 

5 19 

6 2 
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S o S 編 
Figure 2.1: An example of spider traps that there is a loop (Ji —)• Ij and Ij 

leadings to all accumulated weights of items li and Ij and low weights (even zero 

weights) of other items lb and 1 � 

the following process iterates until these two vectors converge. 

h = Ba 

The following authority vector is obtained. 

(0.2200262093 \ 

0.7127000750 

0.2456995424 
a = 

0.5976062503 

0.1616959330 

V 0.0000000000 j 

If J ：= 3’ the items with the highest authority weights are selected. That 

is’ items h and h are selected. The total profit of the item selection? is 

$72.8. • 

However, HAP also has some weaknesses. 

1. Problems of dead ends or spider traps as illustrated in [48] can arise. 

For example, if there is an isolated subgraph with a cycle while other 

2The method of the calculation of the total profit of the item selection will be described in 

Section 2.4. 
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items are not connected, then the authority weight and hub weight of 

all items in the cycle are accumulated and are increased to extremely 

high values, giving an over-estimating ranking for these items. 

2. Some items may be given redundant or additional hub/authority weight 

in HAP. Let us consider the following example. 

k Ij h 

1 0 0 

1 1 1 

From the above transactions, several rules are generated. We just con-

sider these two rules Ij li and Ik U- The consequent items of these 

two rules are li. According to HAP, item li will gain in the calculation 

of the profit twice. One is from item Ij while the other is from item Ik. 

However, there is only one real transaction, actually, the profits induced 

by item Ij and item Ik should be counted once only. 

3. HAP may perform poorly in certain cases. For instance, for some fixed 

i, there are a lot of different values of x such that different rules 1 工 U 

occurs (see Figure 2.2). Suppose this situation occurs also at item Ij 

and item Ik. Thus, items Ij and 4 will probably obtain high values 

for their authority weights. If li, Ij and Ik are chosen, the profit of 

the selection may not be high. This is because these items may have 

no associations among themselves and may have low individual profits, 

giving a low total profit of the selection. 

4. In HAP, the authority weight of an item Ij is independent of the indi-

vidual profit of item Ij. It only depends on the individual profit of any 

other item li and the confidence of the association rule li — Ij. There 
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Figure 2.2: Items with High Authority 

is a phenomenon that some items with low/zero individual profit have 

high authority weights. Let us consider an example. In this example, 

there are three items and their individual profits are shown below. HAP 

generates the following authority weights. 

Item Authority Weight Individual Profit 

Ii 0.8 $0 

I j 0.5 $0 

Ik 0.3 $7 

Our question is: if we need to choose TWO items out of three items, 

which items should be selected? 

HAP chooses items Ii and Ij which have the highest authority weights. 

The estimated profit of item selection { / j , I j } is $0+$0=$0. However, if 

we naively choose items Ii and Ik (or Ij and Ik) which have the high-

est individual profits, the estimated profit of the item selection {Ii, Ik} 

should be equal to or smaller than $7 In general, not all profit of item 

If. is lost. Thus, the estimated profit of item selection is greater than 0, 

which gives a greater estimated profit than HAP. 

^Informally speaking, the total individual profit of items Ii and Ij is equal to $0+$7=$7. 

However, [49] points out that some individual profit of item Ii and h may be lost provided that 

item Ij is not selected. So, the estimated profit of the item selection is equal to or smaller than 

the total individual profit of the selected items. Reader can find the details in Section 2.4. 
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5. Heavy computation and massive storage is required by the cross-selling 

matrix when the number of items is large. 

6. It is not easy to determine a good min-support threshold, and slightly 

different choices of min-support can greatly affect the result. 

2.3 Problem Definition 

Maximal-profit item selection (MPIS) is a problem of selecting a subset from 

a given set of items so that the estimated profit of the resulting selection is 

maximal among all choices. Our definition of the problem is close to [49 . 

Given a data set with m transactions,力i，力2, 力m, and n items, / i , I2, In-

Let I 二 { / i , / 2 , •••,4}- The profit of item la in transaction U is given by 

prof {la, ti). 4 Let S' C / be a set of J selected items. In each transaction 

we define two symbols, t- and di, for the calculation of the total profit. 

二 tz n S, d, = u -

4This definition generalizes the case where profit of an item is fixed for all transactions. We note 

that the same item in different transactions can differ because the amount of the item purchased 

are different, or the item can be on discount for some transactions and the profit will be reduced. 

If the profit of an item is uniform over all transactions, we can set prof {la, ti) to be a constant 

over all i. 
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Symbol Description 

力1，力2，• • •，tm given transactions 

Ii, Lz,…，In given items 

prof[Iai ti) profit of item la in transaction U 

I = {Ji, 72, In} Itemset of all items 

J number of selected items 

S set of the selected items 

set of items selected in S in transaction U 
V 

di set of items not selected in S in transaction ti 

Suppose we select a subset S of items, it means that some items in / i , / 几 

will be eliminated. The transactions t i , m i g h t not occur in exactly the 

same way if some items have been removed beforehand, since customers may 

not make some purchase if they know they cannot get some of the items. 

Therefore, the profit prof {la, U) can be affected if some items are removed 

from the stock. This is caused by the cross-selling factor. The cross-selling 

factor is modeled by cs factor {D, la), where L) is a set of items, and 0 < 

csf actor{D, la) < 1. csfacto八D, la), is the fraction of the profit of la that 

will be lost in a transaction if the items in D are not available. Note that the 

cross-selling factor can be determined in different ways. One way is by the 

domain experts. We may also have a way to derive this factor from the given 

history of transactions. 

Definition 1 Total Profit of Item Selection: The total profit of an item 

selection S is given by 

P = — csf actor(Ck, la)) 

We are interested in selecting a set of J items so that the total profit is 

the maximal among all such sets. 
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MPIS: Given a set of transactions with profits assigned to each item in 

each transaction, and the cross-selling factors, csfactorQ，pick a set S of J 

items from all given items which gives a maximum profit. 

Example: Suppose a shop carries office equipments of monitors, key-

boards, and telephones, with profits of SlOOOK, $100K, $300K, respectively. 

Suppose now the shop decides to remove one of the 3 items from its stock, 

the question is which two should we choose to keep. If we simply exam-

ine the profits, we may choose to keep monitors and telephones, so that 

the total profit is $1300K. However, we know that there is strong cross-

selling effect between monitor and keyboard. We can get this information 

from a sales record such as the following table of transactions, where each 

row records a transaction, with the value of 1 meaning a purchase. If the 

shop stops carrying keyboard, the customers of monitor may choose to shop 

elsewhere to get both items. The profit from monitor may drop greatly, 

and we may be left with profit of $300K from telephones. If we choose 

to keep both monitors and keyboards, then the profit can be expected to 

be S h o o k which is higher. MPIS with the profit as defined in Definition 

1 will give us the desired solution. Suppose we choose monitor and tele-

phone. For a transaction ti, with the purchase of monitor and keyboard, 

di {keyboard}, cs factor [di, monitor) = cs factor {{keyboard}, monitor)— 

1, and prof {monitor, ti){l — csf actor {di, monitor)) — 0. This example illus-

trates the importance of the consideration of cross-selling factor in the profit 

estimation, and the usefulness of our definition for the determination of a 

selection. 
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Monitor Keyboard Telephone 
1 1 0 

1 1 0 

1 1 0 

0 0 1 

0 0 1 

0 0 1 

1 1 1 

This problem is at least as difficult as the following decision problem, 

which we call the decision problem for MPIS: 

MPIS Decision Problem: Given a set of items and a set of transactions 

with profits assigned to each item in each transaction, a minimum benefit B, 

and cross-selling factors, csf actor can we pick a set S of J items such that 

P>B1 

In our proof in the following, we consider the very simple version where 

csf actor[di, la) 二 1 for any non-empty set of di. That is, any missing item 

in the transaction will eliminate the profit of the other items. This may be a 

much simplified version of the problem, but it is still very difficult. 

2.3.1 NP-hardness 

Theorem 1 The maximal-profit item selection (MPIS) decision problem where 

csf actor {di, la) 二 1 for di • (j) and cs factor {di, / J 二 0 for (k = (j) is NP-hard. 

Proof: We shall transform the problem of CLIQUE to the MPIS problem. 

CLIQUE [22] is an NP-complete problem defined as followd: 

CLIQUE: Given a graph G = {V, E) and a positive integer K < \V\, is 

there a subset V C y such that \V'\ > K and every two vertices in V' are 

joined by an edge in E ? 



CHAPTER 2. MPIS 26 

The transformation from CLIQUE to MPIS problem is described as fol-

lows. 

1. J = K 

2. B = K{K-1) 

3. For each vertex v eV, construct an item. 

4. For each edge e e E, where e = (Vi,V2), create a transaction with 2 

items {vi ,v2}. 

5. Set prof {Ij, ti) 二 1, where U is a transaction created in the above, 

^ = 1, 2,..., I丑I, and Ij is an item in U. 

It is easy to see that this transformation can be constructed in polynomial 

time. 

Consider the case where K vertices form a complete graph in G. Let the 

set of corresponding items for the clique be C. That is, in the MPIS problem, 

each corresponding item should co-exist with the other K — 1 items in C in 

some transactions. Let this set of transactions be T � . It is easy to see that 

if the set of items in the clique are chosen in the set S then the profit will 

be B. Tc are the only transaction that contribute to the profit calculation. 

In a transaction not in T�, if an item li in C exists, it co-exists with another 

item which is not in C，since the csfactor is 1, the profit from item li in the 

transaction is 0. 

Conversely if 5 is a set in the MPIS problem with benefit above B, then 

there must exist a complete graph with at least K vertices the CLIQUE 

problem. 

Since CLIQUE is a NP-complete problem, the MPIS problem is NP-hard. 

• 



CHAPTER 2. MPIS 27 

Figure 2.3: An Example of a CLIQUE of size 3 

Let us illustrate the above proof with an example. If n 二 6 and J = 3, 

suppose there is a graph as shown in Figure 2.3 and prof{Ij,ti) 二 1. 

By the above theorem, we can construct the following transactions: 

No. la h h h h If 

ti 1 1 0 0 0 0 

力2 1 0 1 0 0 0 

ts 0 1 1 0 0 0 

t4 1 0 0 0 0 1 

t5 0 1 0 1 0 0 

te 0 0 0 1 1 0 

From the graph, we can find a CLIQUE of size 3 containing la, h and /�• 

Tc 二 {ti , t2, h}. It is easy to see that all profits of items in the transactions 

from the set T^ contribute to the total profit. The profit from the set Tc is 6. 

However, for transactions not in set Tc (i.e. t^, t̂  and 力6), all profits should not 

be counted. The reason is described as follows. If all transactions U contains 
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a selected item and an unselected item, di •小 and thus cs factor {di, / J 二 1, 

where la is a selected item. For example, as the selection set S = {/�, h, 

and 力4 contains a selected item la and un selected item If, — { la } and 

(̂ 4 = { / / } . So, (̂ 4 is non-empty. When csf actor{di, la) is equal to 1, the 

profit of the selected item la will be removed (See Definition 1). So, all 

transactions containing one selected item and one unselected item yield zero 

profit. In other words, any selection of other items will give a lower profit 

than 6. 

2.4 Cross Selling Effect by Association Rules 

In Section 2.3, we did not specify how to determine the cross-selling effect 

csfactor of some items for other items. In previous work [49], the concept 

of association rules is applied to this task. Here we also apply the ideas of 

association rules for the determination of cs factor. 

Let us estimate the possible profit from a given set of transaction. If all 

items are selected, the profit is the same as the given profit. Suppose we have 

made a selection 5 of J items from the set of items. Now some transactions 

may lose profits if some items are missing. Consider a transaction U in our 

transaction history, suppose some items, says la, are selected in S but some 

items are not selected (i.e. di). Then if we have a rule that purchasing la 

always "implies" at least one element in di then it would be impossible for 

transaction U to exist after the selection of S, since U contains la and no 

element in di after the selection. The profit generated by U from la should 

be removed from our estimated profit. 

We can model the above rule by an association rule. In fact, we can model 

the cross-selling factor in the total profit of item selection cs factor [d^, la) by 
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conf {la — odi), where odi is given by the following: 

Definition 2 Let di = {Yi, F2, ^g} where Yi refers to a single item for 

z = 1 , 2 , q , then odi = Yi V V F3 V .... V Yq. 

The rule la — odi is called a loss rule. The rule la — odi indicates that 

a customer who buys the item la must also buy at least one of the items in 

di. If none of the items in di are available then the customer also will not 

purchase la- Therefore, the higher the confidence of ” la — odi ' , the more 

likely the profit of la in U should not be counted. This is the reasoning behind 

the above definition. 

The total profit is to estimate the amount of profit we would get from the 

set of transaction 力 1,.�饥，if the set of items is reduced to the selected set S. 

From Definition 1, we have 

Definition 3 Total Profit of Item Selection (association rule based): 

The association rule based total profit of item selection S is given by 

m 

P 二 Z E prof (la, U){1 — con f {Ia Od,)) 
i=l /aGt-

For the special cases where all items in transaction ti are selected in the 

set 5, di is empty, U will not be affected and so the profit of transaction U 

would remain unchanged. If no item in transaction U is selected, then the 

customer could not have executed the transaction ti, then 力(is an empty set, 

and the profit of transaction ti becomes zero after we have made the selection. 

The loss rule la — odi is treated as an association rule. The confidence of 

this rule is defined in a similar manner as for the association rule: 

Definition 4 conf {la — odi) is computed as 

no. of transactions containing la and any element in di 
no. of transactions containing la 
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The numerator in Definition 4 is equal to g(Ja, di) defined as follows. This 

function will be used in quadratic programming for the approximation of the 

confidence conf [Ia — odi). 

Definition 5 Let D d I, D — {Yi, 1^2,…，Yq} and Ix 0 D, where Yi refers to 

a single item for i = 1,2,q. 

l<i<q l<i<j<g l<i<j<k<q 

— … + ( —1 广 … K g 

where \IxyiYj...\ is the number of transactions containing the items Ix, Yi, Yj, 

For instance, there are the following transactions: 

Transaction No. la h Ic 

1 1 0 0 

2 1 0 1 

3 1 1 0 

4 1 1 1 

5 0 0 1 

Suppose S = { la} . In transaction d^ = {lb, Ic}- Let z = 4. According 

to our definition, conf {la odi) = f and 1 — conf {la — odi) = In 

Definition 3, there is a term 1 — conf {la —> odi). We are interested to know 

that the ratio of \ is the chance that item la will still be purchased even if 

items lb and Ic are both absent. 
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In [49], the definition of csfactor is determined by conf{~di —^，I a) (shown 

as follows). 

Definition 6 Previous Definition of Confidence of Loss Rule: conf{-^di —> 

]Ia) is computed as 

no of trans, not containing la and not containing all items in di g) 
no of trans, not containing all items in di 

total no of trans. - no of trans, containing item la or all items in di ^^ 了) 

total no of trans. - no of trans, all items in di 

• 

Our new Definition 4 is more appropriate and meaningful than the previ-

ous Definition 6 used in [49]. In Definition 6，there is a negation term -^di, 

which is not easily understandable. There are some possible meanings of the 

term ]di . For instance, if di = { h . h , •••/g}, one of the meanings of is 

八 八 w h i l e the other meaning is V -'I2... V The term 

-i l l 八 A ]Iq means that all items should not exist simultaneously. This 

meaning is just the same interpretation as our definition but this notation is 

too complicated to present our idea and we choose the more straightforward 

approach (Definition 4). On the other hand, the term V -1/2... V ̂ Iq means 

at least one item should not exist. The idea comes from the negation of the 

set di, where set di can be interpreted as h /\ I2…八 Ig. Then, a negation 

of di will be equal to， / i V -1/2... V ]Iq. In this thesis, we adopt the former 

(i.e. -n/i 八 1 / 2 … 八 T h i s is because it is more reasonable to interpret all 

unselected items are missing at the same time and this should be represented 

by -1/1 八 八 H o w e v e r , the meaning of V V is adopted 

is not straightforward as the phrase contains the concept that at least one 

item is missing. So, in this thesis, the former with the more straightforward 

meaning is adapted. 

The computation time by using Definition 6 is much greater compared 
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with that by using our new Definition 4 if an FP-tree is used (which will be 

described in Section 2.6.3). 

2.5 Quadratic Programming Method 

Linear programming or non-linear programming has been applied for opti-

mization problems in many companies or businesses and has saved millions 

of dollars in their running [25]. The problem involves a number of decision 

variables, an objective function in terms of these variables to be maximized 

or minimized, and a set of constraints stated as inequalities in terms of the 

variables. In linear programming, the objective function is a linear function 

of the variables. In quadratic programming, the objective function must be 

quadratic. That means the terms in the objective function involve the square 

of a variable or the product of two variables. If s is the vector of all variables, 

a general form of such a function is P = f^s + ^s^Qs where / is a vector 

and Q is a symmetric matrix. If the variables take binary values of 0 and 1， 

the problem is called zero-one quadratic programming. 

In this section, we propose to tackle the problem of MPIS by means of 

zero-one quadratic programming. First we shall show how the problem can 

be translated to a quadratic programming problem. Let s = (si, 5 2 , S n ) be 

a binary vector representing which items are selected in the set S. 5̂  = 1 if 

item li is selected in the output. Otherwise, Si — 0. The total profit of item 

selection P can be written in the quadratic form f^s + ^s'^Qs where / is a 

vector of length n and Q is an n by n matrix in which the entries are derived 

from the transactions. The objective is to maximize / ^ s + ^s^Qs, subject to 
n n 
Y^ Si = J. The term Si = J means that there are J items to be selected. 
i—l i=l 

Before presenting the transformation of the problem to the quadratic form, 
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we are going to give the following lemmas which will be used in Theorem 2. 

Details of these lemmas can be found in [35 . 

Lemma 1 Let vi and x be vectors of the same dimension. If m is a positive 

integer, then 
m m 
EOfz) = 工 
i—\ i二 1 

• 

Lemma 2 Let Mi be an n by n matrix and x be a vector of length n. If m 

is a positive integer, then 

m m 

i=l i=l 
• 

The following lemma says that a matrix can be transformed to a symmetric 

matrix when the matrix M is in the form x^Mx. 

Lemma 3 Let M be an n by n matrix and x be a vector of length n. There 

exists an n by n symmetric matrix Q such that 

x^Mx = x^Qx 

where Q = {qij) and qij ——爪”.：爪” for all i, j. 

Now, we are going to describe some notations used in Theorem 2. 

With a little overloading of the term ti, we say that U =(力 

is a binary vector representing which items are in the transaction ti. Uj = 1 

if item Ij is in the transaction ti. Otherwise, Uj 二 0. Similarly, is a binary 

vector representing which items are selected in S in the transaction ti. di is a 

binary vector representing which items are not selected in S in the transaction 
十. 
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Then, we have the following. For i == 1, 2 , m and j = 1, 2 , n , 

tij 二 Uj X Sj 

and 

^ij ~ tij — tij. 

Let rii be the total number of transactions containing item li. Let n ĵ 

be the total number of transactions containing items li and Ij. Note that 

几ij — ^ji • 

Symbol Description 

s Binary vector representing which items are se-
lected in the set S  

ti Binary vector representing which items are in 
the transaction U  

t[ Binary vector representing which items are se-
lected in the set S in the transaction U  

di Binary vector representing which items are not 
selected in the set S in the transaction U  

Hi Total number of transactions containing item li 

riij Total number of transactions containing items 
Ij and Ij  

g � I D) the number of transactions containing the item   
It and at least one item in the set D  

n 

Y^ dik^jk 
Observation 1 The confidence conf{Ij —> odi) can be approximated by ^^^ . 

The above observation is based on the principle of inclusion-exclusion in 

set theory. We define conf{Ij odi) as 

no. of transactions containing Ij and at least one item in di 
no. of transactions containing item Ij 
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conf{Ij — odi) 

no. of transactions containing Ij and at least one item in di 
no. of transactions containing item Ij 

= gjij.D)  
no. of transactions containing item Ij 

where D is the set containing all elements in di 

= X ] I了jifcl X dik — ^ X dikdik' 
l<k<n l<k<k'<n 

+ ^ I X dikdik'dik"—... 
l<k<k'<k"<n 

+ ( —1 广+1|/灿•.人I XC?几d 
i2 ‘ ‘ - din X 

^ — ： (by Def. 5) 
no. of transactions containing item Ij 

( E X dik \ 
� . l<k<n 1 

� n o . of transactions containing item Ij ‘ ^ 
/ n \ 

E dikUjk 
= m i n ^ ,1 

几j 
\ / 

The reason why the above approximation is acceptable is that the number 

of transactions containing a set of items J is smaller than the number of 

transactions containing a subset of J. Hence \ljlkh \ is typically much smaller 

than etc. 

Theorem 2 The total profit of item selection can he approximated by the 

following quadratic form. 

P = f s + \sTHs 

where f is a vector of size n and H is an n by n matrix. 
m 1 u 

f = {fjlfj 二 J2^ijProf{Ij,U){l UkTijk) for J = 
i=i 几 j k二1 
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and 

H 二 神 = E 划 砂 他 灿 許 — 1 & 二 1, 2，…，n) 

i=i 几 j 

Proof: 

m 
P = E E pro 他身—con f {IJ 4 od,)) (by Def. 1) 

/ n \ 

m n dik几jk 

^ E I X . p 魂 ， 力 0 
i=i j=i 几 j 

\ 

m n J2 {Uk — 
ik 

i=i j二1 '^j , 
V / 
/ n \ 

m n 1 (力i/c ——tikSk^Tljk 
= E T a 鄉 Of⑷山、1-—  

i=l j = l �Lj � 

m n / 1 \ 
= ^ ^ t i j S j p r o f { I j , t i ) 1 ^{tikUjk — tikUjkSk) 

i二 1 j=i V 几 j k=i / 
m n / 1 ^ 1 ^ \ 

二 tijSjProf{Ij,ti) 1 Y^ UkUjk H"一 tik^jhSk 
j=l \ 几 j k=l 几 j /c=l ) 

m / n _ 1 u _ 
= t i j S j p r o f ( J j , u) 1 tikrijk 

\j=i L 几J_ k=i -
n \ ^ \ 

+ tijSjprof{Ij, U)— UkrijkSk 
j=l 几 j k=l J 

m / n r 1 ^ _ 
=Y.UjProf{Ij,U) I - — ^^krijk Sj 

i=i \j=i L 几J‘ k=i -
E ^ - ^ tijProf (Ij, ti�ti]^Tljk 
j=l k=l '13 / 

m / 1 \ 
\ 丄 y 
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where 

1 
Gd = g = {g^Qj = UjProf{Ij,ti){l Y^ UkUjk) 

几 J /c=l 
for j 二 

TT A ( 2tijprof{Ij,ti)Uknjk ^ • ； i � � Hi A = [ajk ajk =— —-———for = 
几j 

m -I 
P 二 + 

i=l 
m m -1 

i=l i=l 乙 

m 1 m 

= ( X ^ af )5 + Hi)^ (by Lemma 1 and Lemma 2) 

= f s + -s^Hs 
J 2 

where 
m m 1 几 

f = 二 {fj\fj = Y A 評 - — I ] Ukrijk) 
i=l i=l 几 j k=l 

for j = 1,2, 

H = = {hjk\hjk = E ^UjProf{Ij,U)Uknjk 
i=i i=i 几 j 

for j , k = 1, 2 , n ) 

• 

Corollary 1 P can be approximated by P 二 f^s + \s^Qs where Q is a 

symmetric n by n matrix. 

Proof: 

P = f s + lsTHs 
J 2 

二 产 s + -s^Qs (by Lemma 3) 
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where 

Q = (Qzj) and q 幻 = ��f o r all iJ = 1,2， 

• 
Since the value of Si is either 0 or 1, from the above corollary, we have 

transformed the problem of MPIS to that of 0-1 quadratic programming with 

an equality constraint of Si = J. It is shown in [29] that such a problem 

is polynomially reducible to an unconstrained binary quadratic programming 

problem. An unconstrained binary quadratic programming problem can be 

transformed to a binary linear programming problem (zero-one linear pro-

gramming) [14]. Zero-one linear programming and quadratic programming 

are known to be NP-complete [44]. [36] shows that any unconstrained binary 

quadratic programming problem can be converted to a positive definite uncon-

strained binary quadratic programming problem. It is known that non-convex 

quadratic programming is NP-hard [27]. However, there exist programming 

tools which can typically return good results within a reasonable time for 

moderate problem sizes. 

Example 2 (QP Example) Let us use the transactions in Table 2.1 to il-

lustrate the use of quadratic programming (QP) in our problem. Remem-

ber that, in quadratic programming, we are using vector representation to 

denote U 二 (tn U2 Us U^ Us UQ)'^. For instance,力1 = (0 0 0 0 0 1)^. 

til — ti2 二 ti3 二 力 14 = 力 15 = 0 and tiQ = 1. 

The average profit of each item is shown in Table 2.3. 

From the transactions, we can find the number of occurrences of each item, 

m, and the number of co-occurrences of items li and Ij, riij. 

The number of occurrences of each item, n“ is shown in the following 

table. 
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1 rii 

1 2 

2 5 

3 2 

4 5 
5 2 

6 1 

The non-zero count of co-occurrences of items li and Ij, riij is shown in 

Table 24. 

Vector f is: 

f 0 \ 

21 

0 
/ 二 

4 

19 

V 2 I 
Let us use f^ for illustration. In the formula 

10 1 6 
h = prof{h,ti){l Ukn^k) 

力i5 = 1 when transaction U contains item I^. Otherwise, U^ 二 0. We need to 

consider transaction 力4 and ts-

1 6 
/ 5 = 力 4 5 prof{l5,U){l Yl 

/c二 1 
1 6 

+ 力 8 5 prof{h,ts){l Yl tskn^k) 

= 1 9 X (1 - ^ X 77,45) + 19 X (1 - - X 7125) 
1 1 

= 1 9 X (1 - - X 1) + 19 X (1 - - X 1) 
Zj Z 

二 1 9 
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The computed matrix H is shown as follows. 

< 0 80 0 0 0 0 � 

11.2 0 2.8 2.8 2.8 0 

0 20 0 80 0 0 

0 0.4 1.6 0 0.4 0 

0 19 0 19 0 0 

V 0 0 0 0 0 0 y 

In the above matrix, we use for illustration. The formula is h^^ = 

E 2�5Pro:ni5,m_. p^g can observe that the term 2ti5Prof(hA)ti4n54 職u be 
ns ns 

1=1 

non-zero if ti^ and are both 1. This case occurs in transaction 力4. So, 
u _ 2prof{l5M)n54 — 2 x 1 9 x 1 — -I Q 

- — ^ ^ — — - 丄 y. 
Actually, the matrix Q (shown as follows) is similar to matrix H but has 

a symmetric property. The entry 4̂5 = " ‘ s f " ” = � . ‘广 = 9 . 7 

/ 0 45.6 0 0 0 0 � 

45.6 0 11.4 1.6 10.9 0 

0 11.4 0 40.8 0 0 

0 1.6 40.8 0 9.7 0 

0 10.9 0 9.7 0 0 
、 0 0 0 0 0 0 J 

By using a constrained optimization tool, the maximization problem with 
n 

the objective P 二 f^s + ^s'^Qs subject to Y. Si = J can be solved. The 
i—l 

solution vector s is found as follows. The objective function f^s + \s^Qs is 

maximized to 96.5 as f^s = 40 and s^Qs = 113. 
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f l \ 

1 

0 
5 = 

0 

1 voy 
Then, by using the exact evaluation of the objective of the total profit of 

item selection, the total profit is $102.1. 

• 

2.6 Algorithm MPIS_Alg 

Since quadratic programming is a difficult problem, and existing algorithms 

may not scale up to large data sizes, we propose also a heuristical algorithm 

called Maximal-Profit Item Selection (MPIS_Alg). This is an iterative algo-

rithm. In each iteration, we estimate a selected item set with respect to each 

item based on its "neighborhood" in terms of cross-selling effects, and hence 

try to estimate a profit for each item that would include the cross-selling ef-

fect. With the estimated profit we can give a ranking for the items so that 

some pruning can be achieved in each iteration. The possible items for se-

lections will become more and more refined with the iterations and when the 

possible set reaches the selection size, we return it as the result. 

There are some factors that make this algorithm desirable: (1) We utilize 

the exact formula of the profitability in the iterations. This will steer the re-

sult better toward the goal of maximal profits compared to other approaches 

that do not directly use the formula. (2) With the "neighborhood" considera-
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tion, the item pruning at each iteration usually affect only a minor portion of 

the set of items and hence introduce only a small amount of computation for 

an iteration. Compared to the HAP approach where the entire cross-selling 

matrix is involved in each iteration, our approach can be much more efficient 

when the number of items is large. 

Before describing the algorithm, we define a few terms that we use. 

Definition 7 (Individual Count) If a transaction contains Ik only, the 

transaction is an individual transaction for Ik. The individual count 

Ck, of an item is the total number of individual transactions for Ik. 

The individual count reflects the frequency of an item appearing without 

association with other items. 

In our algorithm we shall make use of the average profits of items over the 

transactions. 

Definition 8 Average profit and Individual profit: Let Zk he the set of 

transactions that contain Ik, the average profit is given by 

—T^uez, prof {Ik, U) 
Pk — ^ . 

乙k 

Individual profit of an item Ik is equal to Ck x Pk- • 

We are going to introduce another definition. 

Definition 9 We define P{A) to be the estimated profit assuming that the 

items in set A are selected: 

m 
P{A) = E Z proKL,哪—conf {la — od^) 

i二1 la&'i 
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The formula P{A) is equal to that used in Definition 3. If A 二 S, where S 

is the output selection set, P{A) is equal to the final output estimated profit. 

The following table gives a summary of the symbols to be used. 

Symbol Description 

Ci individual count of item Ii 

Pi average profits of item li 

hi Benefit of item li 

Si The set containing the items associated with 
item Ij to be selected  

ei,j Estimated value of item Ij from item /̂； e^j ——  
Pj X Cj + (pj X supportj^j.J  

F Set of frequent itemsets 

Z A set of the items to be selected in Phase 1 

P{A) Estimated profit of item selection assuming that  
the selection set, — A  

2.6.1 Overall Framework 

In the algorithm MPIS_Alg, there are two phases - (1) Preparation Phase and 

(2) Main Phase. In the Preparation Phase, the frequency and the individual 

count of each item and the size 2 itemsets are returned. In the Main Phase, 

the benefit of each item is evaluated. Initially the result set contains all items, 

a number of iterative steps of removing items with minimum estimated benefit 

proceeds until J items remains. 

In the Main Phase, we shall try to rank the items with consideration of 

cross-selling. 

In order to estimate the significance of an item in terms of profits, the 

cross-selling factor should be considered, which depends on a selection set S. 

Since S does not exist initially, we shall estimate a chosen item set for each 

item. For each item 1“ we find J — 1 "best" items in its "neighborhood" 
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(denoted by set Si). Set Si is called the estimation set for li. 

In order to determine set Si, we calculate the the following values for all j : 

Cij = pj X Cj + (pj -\-pi) X support{Ii, Ij). Cij is called the estimated value of 

item Ij with respect to item li. The first part pj x Cj is due to the benefit of the 

individual profit given by item Ij as this count is not related to other items. 

The reason is that if an item is highly profitable by itself, then it should have 

a high chance to be selected. The second part {pj + pi) x support {li, Ij) is a 

profit value given by the items li and Ij. If the two items co-occur frequently 

and have a high individual profit, this value will be higher. To determine Si, 

we select the items Ij corresponding to the top e��va lues . 

After the estimation set Si is determined for item / “ We can estimate 

the resulting profit assuming that items in Si U li are selected. The profit is 

called the item benefit of denoted by bi. The item benefit bi is defined 

as: k = P{SiU{I^}) . 
m 

bi 二 YY^ prof {la, tj) {I — con f {la odj)) 

assuming the output selection set S = SiU {li}, and dj is the set of items in 

tj that are not selected in S. 

The item benefit of an item li models the significance of li in terms of 

profits, with the consideration of the cross-selling effect. Suppose the output 

set S = Si U {li}. That is, the output set contains item li and all items in 

Si which are estimated to have the greatest contributions to the profits when 

these items co-occur with item li. 

After we obtain the item benefits, items can be ranked by their item 

benefits. Then one item I工 with the lowest item benefits is pruned. We shall 

prune items one at a time until J items are left. After we remove item Ix, we 

need to check the selection Si for each item li in X. If Si contains item /工，it 
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should be updated because item Ix has been removed. Thus, is removed 

from such Si, and we have to select the item which has not yet been 

selected yet, with the greatest estimate value ei,k. h will be included into Si. 

As Si is changed, the benefit bi also has to be updated. 

After updating bi,s, the items are ranked again by bi's. Another item is 

pruned and this process of benefit updating and item pruning is repeated 

until only J items remain unpruned. 

Next we describe both phases in pseudocode. 

Preparation Phase 

1. Item Occurrence Counting - count the number of occurrences of 

each item, ni, n 2 , W e can simply keep a variable rii to store the 

number of occurrence of each item for z — 1, 2 , n in the data set. 

2. Individual Count Derivation - obtain the individual count for each 

item, ci, C2, c几 

The individual count of each item can be derived if the database is 

scanned. For each transaction U, check whether the transaction ti con-

tains only one item, Ik. If yes, increment the individual count Ck. 

3. Size 2 Itemset Generation - generate all size 2 itemsets, with their 

counts. 

Main Phase 

In the Main Phase, we shall try to rank the items with consideration of 

cross-selling. For each item, we find J — 1 "best" items in its neighborhood 

(denoted by set Si) and assume that these J — 1 "best" items are selected, 

then we can estimate the resulting profit assuming that only these items are 

selected. Items can therefore be ranked and selected accordingly. 
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1. Estimation Set Creation - In order to estimate the profit gener-

ated from an item, the cross-selling factor should be considered, which 

depends on a chosen set S. Since S does not exist initially, we shall es-

timate a chosen item set for each item. For item Ii the estimated set of 

chosen items is given by Si. Si contains J—1 items in the neighbourhood 

o f / i . 

In this step, the sets, Si, , S n are computed. For each item Ii we 

do the following: Calculate the estimated value of item Ij from item 

h, 

Cij = Pj X Cj + {Pj + pO X support (Ii, Ij), 

where support {Ii, Ij) is the support of the itemset {Ii, Ij}. Among these 

associated Ij items, choose J—1 items with the highest estimated values. 

Put these items into the set Si. 

2. Item Benefit Calculation — determine the estimated benefit hi of 

each item Ii, bi — P{Si U 

3. Item Selection and Item Benefit Update 

Let X be the set of items that has not been pruned. 

(a) prune an item 1工 with a smallest benefit ĥ  value among the items 

in X 

(b) for each remaining item Ii in X, 

If Ix is in Si, 

i. remove I工 in the set Si. Choose the item Ik which has not been 

selected yet with the greatest value of ei,k. Insert Ik into the 

set Si. 

ii. Calculate b, — P{Si U {I^}) 
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4. Iteration - Repeat Step 3 until J items remain. 

2.6.2 Enhancement Step 

We can add a pruning step in between Step 1 and Step 2 in the above to 

enhance the performance. We call this the Item Pruning step and it prunes 

items with apparently small benefit. The basic idea is to compute both a 

lowest value and an upper value for the profit of each item. These values are 

generated by varying the estimated selection set for an item. 

1. For each item li, calculate Li and Hi, where 

U = P{{h]) and 

H, = P{S, U { / , } ) — P{S,) 

2. Find the J-th largest value (Z / ) among all Lj 

3. For each /《，remove item li if Hi < 1 / 

Li is an estimate of the lowest possible profit contributed by If, we assume 

that the selected set contains only li. In this case, the cross-selling effect may 

greatly reduce the profit generated from li. Hi is the opposite of Lf, we 

assume that as many as possible of the items related to li are selected in 

Si. Hi is equal to the profit gain from adding item li to set Si. Hence the 

cross-selling effect will diminish the profit to a much lesser extent. 

Essentially Hi is the total profit difference caused by the addition of the 

item li to the selection set of Si, subtracting the profit of li when only li is 

selected. For all items in Si, this difference is always an increase greater than 

or equal to zero. For li, the initial profit is zero in P[Si\ since it is not in 

Si. After li is included in Si, the profit from li should be greater than or 

equal to the profit that li generates when it is the only item selected, because 
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of less cross-selling profit loss factors. Hence Hi and Li satisfy the following 

property: 

Lemma 4 Hi > Li. 

Item li is pruned if Hi is smaller than the profits of the first J items 

which have the highest values of Lj. The rationale is that li has little chance 

of contributing more profit than other items. 

When this pruning step is inserted, Step 2 in the Main Phase above will 

not need to compute the estimated benefit for all items, only the items that 

remain (are not pruned) will be considered when computing the estimated 

benefits. However, the set Si would be updated if it initially contains items 

that are pruned. 

Our experiments show that this step is very effective. In the IBM synthetic 

data set, there are 1000 items. If the number of items to be selected, J, is 

500, there are only 881 remaining items after the pruning step. Note that if 

J is large, this enhancement step can be skipped. 

2.6.3 Implementation Details 

Here we describe how some of the steps are implemented. Some sophisti-

cated mechanisms such as the FP-tree techniques are employed to make the 

computation efficient even with a vast amount of items and transactions. 

Preparation Phase 

The individual count of each item can be derived if the database is scanned. 

For each transaction % check whether the transaction ti contains only one 

item, Ik- If yes, increment the individual count Ck. This counting can take 

place together with the counting of ni,..., n^. 
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The size 2 itemsets are kept in a hash table with a hash function on the 

sum of the item ids of the two items in each set. The count of each itemset 

is kept in the table. This facilitates the computation of e^j when the support 

of such itemsets are need. 

Item Benefit Calculation 

The item benefit bi is defined as: bi — P{Si U {li}). 

That is, 
m 

bi 二 a prof {la, tj) {I — con f {Ia odj)) 

assuming the output selection set S = SiVJ {/^}. 

The benefit of an item li is to model the amount of benefit an item li can 

give, with the consideration of the cross-selling effect. Suppose the output 

set S = Si U {li}. That is, the output set contains item li and all items in 

Si which are estimated to have the greatest contributions to the profits when 

these items co-occur with item /<� 

In MPIS_Alg, most of the computation time is contributed from the cal-

culation of the function P{A) in "Item Benefit Calculation Step" and "En-

hancement Step". 

In our implementation, we utilize two efficient data structures called an 

FP-tree (see Figure 2.4) and a variation of an FP-tree called an FP-MPIS-tree 

(see Figure 2.5). (NOTE: The FP-tree described here assumes a minsupport 

of 0 . ) Typically an FP-tree is a compressed form of the database and thus 

we can access an FP-tree efficiently. In MPIS—Alg, we only need to construct 

the FP-tree once in Preparation Phase for the access of compressed form of 

the database in the later steps. In the IBM synthetic data set, on average, 

an FP-tree is constructed in only 1.5 seconds. 
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Head / Item of Node-link X \ 

I3 y^ 
T . . .•••' . . . . 

T • • ,争• 

Figure 2.4: An example of an FP-tree 

An FP-MPIS-tree has the similar compressed property as an FP-tree. This 

tree will be discussed later in this section. This tree may be constructed for 

the calculation of P(A). For the IBM synthetic data set that we use (which 

contains 10,000 transactions), this tree can be constructed in 0.02 seconds on 

average. It requires less computation time compared with an FP-tree as this 

tree involves fewer transactions (which will be described later in this section). 

After the calculation of P{A), this tree will be removed. 

Before describing how to compute P(A), we are going to describe the 

following first. Whenever we need to evaluate P(A), we first read all transac-

tions from an FP-tree and build an FP-MPIS-tree from the transactions just 

read. 

1. How to read all transactions from an FP-tree 

2. How to calculate some of the profit of the item selection in a variation 

of an FP-tree called an FP-MPIS-tree 

1. Reading Transactions from an FP-tree 

In this section, we are going to describe how we can read all transactions 

in an FP-tree T. Starting from a leaf node nodei of T, we can read 
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Head // \ Item of Node-link / \ [̂u 

I5 & ....... 
I.  

Figure 2.5: An example of an FP-MPIS-tree 

(The set of selected items is A = {/s, Is, Iq} and 

the set of unselected items is I —A = { / i , /之，/‘}, 

where I - {h.h, •••Je}) 

transaction t containing all items associated with nodes M, where M is 

the set of all nodes visited when we traverse from node nodei to the root 

in T. Suppose the node count (or occurrence) stored at nodes is counti. 

Such transaction occurs counti times in database. Let us illustrate it 

with a transaction in Figure 2.4. Consider the leftmost node containing 

Ii in the figure. We first visit the leaf node of the tree, says the leftmost 

node containing /丄.We can obtain a transaction { / i , I2} with count 2. 

We traverse the node from that node containing Ii to the root. As we 

visit two nodes with items Ii and I2, we know that there is a transaction 

{ / i , 72}- Besides, as the count stored in the node is 2, the nodes in the 

path traversed should co-exist two times. In short, a transaction { / i , I2} 

occurs two times. 

After reading transaction t, we will decrement the node counts of all 

nodes from the node nodei to the root by counti. If the node counts 

of any nodes are decremented to zero, this means that the nodes are 

logically removed. In our implementation, we do not need to remove the 
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nodes physically. We just need to check the node count to determine 

whether the node is removed logically. ^ For instance, in Figure 2.4, 

after fetching the transaction {/i,/�}，we decrement all counts of the 

nodes in the path traversed. The count of the node Ii is decremented 

by 2 and becomes 0. This node becomes logically removed. Besides, the 

count of the parent node is decremented by 2 and becomes 3. 

We can read all other transactions t' from the resulting FP-tree by 

traversing all nodes with non-zero node count in post-order ordering. 

The reason for the post-order traversal is to make sure that (logical) 

leaf nodes are processed before internal nodes. Now, we know how to 

read all transactions from an FP-tree. 

2 . Calculating Profit in an FP-MPIS-tree 

We are going to describe an FP-MPIS-tree, a variation of an FP-tree. 

This tree may be constructed for the calculation of P{A). 

As stated in [23], the FP-tree construction requires an ordering of items 

according to the frequency of items. That means more frequent items 

are inserted into the FP-tree near to the root. In the FP-MPIS-tree, we 

need to divide the items into two sets, I — A and A. The items in set 

I — A are inserted into the FP-MPIS-tree near to the root, compared 

with items in set A. Similar to the FP-tree, the ordering of items in 

each set in an FP-MPIS-tree is based on the frequency of items. 

Until now, we have not mentioned when this FP-MPIS-tree is con-
5 As we have such implementations for the avoidance of the removal of nodes, each node will 

contain an additional variable to store the node count duplicately, which is equal to the original 

node count of the node. This extra variable is used for the further access of an FP-tree such that 

the FP-tree can be re-used. 
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structed during the computation of F(A). But, we can say that the 

FP-MPIS-tree is constructed for all transactions containing both se-

lected items (i.e. items in set A) and unselected items (i.e. items in set 

I — A)^ which will be described later in this section. At this moment, we 

assume that the FP-MPIS-tree contains only all such transactions. With 

this assumption, we can get the information conf {la —> odj) efficiently 

from such tree. 

In the FP-MPIS-tree, we traverse all nodes corresponding to selected 

items (i.e. items in set A). At each node N with node count countn, 

we can deduce that there are countn transactions containing all items 

associated with nodes M, where M is the set of the nodes visited by 

traversing from node N to the root. With our assumption, M should 

contain some selected items i! and some unselected items d. 

Let P be a variable storing the accumulated increment in the following 

calculation. For each such node N corresponding to the selected item la 

with node count countn, we can increment P by x (1 — ) x countn, 

where Pa is the average profit of item la and n^ is the frequency of item 

la. The reasons of such increment is explained as follows. 

The increment corresponds to the profit of item la in countn transactions 

T. For each transaction of T, we can calculate pa x (1 — conf {la od)) 

by Pa X (1 — "(二°，")) (See Definition 4 and 5). As there are countn such 

transactions T, multiplying this term by countn gives the increase. 

We can do the above increment for all nodes associated with selected 

items by using post-order traversal, Such traversal ordering makes our 

algorithm efficient. As the transactions obtained by traversing from 

any node N' in the subtree under node N is associated with the same 
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unselected set d, we do not need to find the set d again for all nodes N'. 

After processing all increments, P is the profit of all selected items in 

all transactions containing both selected items and unselected items. 

We have not yet described how to compute the number of transactions 

containing item la and any items in set d, g{Ia, d). Now we are going to 

describe how we compute this value in the FP-MPIS-tree. 

To compute g(Ja,d), we first look up the horizontal linked list (dotted 

links in Figure 2.5) of each item la in the FP-MPIS-tree. For each node 

Q in the linked list, call the function parseFPTree((3, d). 

Function parseFPTree(A^, d) computes the number of transactions con-

taining item la and at least one item in d in the path from root of the 

FP-MPIS-tree to N. Starting from the node TV, we traverse the tree 

upwards towards the root of the FP-MPIS-tree until we find a node M 

containing one element in set d or we hit the root node. If M exists, 

the count stored in node N is returned. This count is the number of 

transactions containing item la and at least one item in set d. 

It is noted that the call of function parseFPTree(A^, d) is quite efficient 

as we do not need to traverse downwards from node N. This is because 

all nodes below node N are selected items. 

After describing how to compute g(Ja, d), we can compute the profit of 

item la in transaction t. 

Now, we know how to read all transactions from an FP-tree and how to 

calculate P in an FP-MPIS-tree. We are going to describe how to compute 

P{A) by using the above two methods just described. 

We divide the transactions into 3 groups. The first group is those contain-
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ing only selected items. The second group is those containing only unselected 

items. The third group is those containing both selected items and unselected 
• 〜 八 

items. Let P be a variable storing the final output of P{A). 

Every time we read transaction t in the FP-tree which occurs countn times, 

we may increment P according to the group that the transaction t belongs 

to. If t belongs to the first group, P is incremented by (J^iaetPo) x countn 
as all items are selected in the transaction. If t belongs to the second group , 

we do not need to update P as no items are selected in this transaction. If t 

belongs to the third group, we will insert t with node count countn into the 

FP-MPIS-tree. 

After reading all transactions from an FP-tree, we have updated P and 

the FP-MPIS-tree. P is now equal to the total profit of selected items in all 

transaction containing only selected items. An FP-MPIS-tree is constructed 

from all transactions containing some selected items and some unselected 

items. As we mentioned before, we can calculated P from the FP-MPIS-tree. 

Thus, we can compute P{A) by adding P and P together. 

Item Benefit Update 

After we remove item Ix, we need to check the selection Si for each item li 

in X. If Si contains item Ix, it should be updated because item I工 has been 

removed. Thus, Ix is removed from such Si, and we have to select the item 

/fc, which has not yet been selected yet, with the greatest estimate value ei,k-

Ik will be included into Si. As Si is changed, the benefits hi also have to be 

updated. 

The update is computed as follows. Let S[ be the selection containing the 

items in both the selection before item is removed and the selection after 

item Ix is removed. Thus, S[ U {I^} is the selection before we remove item 
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Table 2.4: Count of co-occurrence of items li and Ij, riij 

1 j nij{= Uji) 

1 2 2 

2 3 1 
2 4 1 
2 5 1 
3 4 2 
4 5 1 

Ix while SI U {Ik} is the selection after we remove item 1工 and add item Ik 

in the selection Si. We just need to do the item benefit update by scanning 

only those transactions T containing item I工 or item Ik. Let P'{A,T) be 

the profit of the item selection in transactions T. Thus, the item benefit is 

updated as follows. 

+ P'{S[ u { 4 } , T) — P'{S[ u {4}，T) 

The computation of P'{A, T) can be done in a similar manner as P{A) but 

P'[A, T) considers only transactions T, instead of all transactions. As there 

are fewer transactions in 丁 compared with the whole database, the update 

can be done very efficiently. 

Example 3 (MPIS—Alg Example) We are going to illustrate algorithm 

MPIS-Alg by using the transactions and profits in Table 2.1 and Table 2.3. 

The non-zero count of co-occurrence of items li and Ij, riij is shown in 

Table 2.4- Other values not shown in the table are zero. 

The individual count of each item is shown as follows. If the min-support 

is 0, the individual count, Ci can be regarded as the number of transactions 
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containing only item li. For instance, C4 二 2 a<s there are two transactions 

(t2 and tj) containing only item I4. 

1 Ci 

1 0 

2 1 

3 0 

4 2 

5 0 

1 1 

The estimated value and the estimation set of each item are shown as 

follows. Let us take ei,2 for illustration. 

ei，2 = P2 X C2 + {Pl +P2) X support 

= P 2 X C2 + {P1+P2) X ni2 

= 7 X 1 + (20 + 7) X 2 

= 6 1 

i\j 1 2 3 4 5 6 Si 

1 0 61 0 2 0 2 I2J4 

2 54 7 27 10 26 2 h.h 

3 0 34 0 U 0 2 h.h 

4 0 15 42 2 20 2 I3J5 

5 0 33 0 22 0 2 h.h 

6 0 7 0 2 0 2 h.h 

The values of Li and Hi are shown in the following table. We use L5 and H^ 

to illustrate how to calculate the following table. There are only transactions 

力4 and ts containing item I5. Calculating L5 involves the assumption of the 

set S 二 { / s } . In transaction 力4, d^ contains I5. conf [I^ 0^4) = The 
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term prof{I^,U){l - conf��0^4)) = 19 x (1 - = 9.5. In transaction 

h, similarly, the term pro/(is,力8)(1 — conf{h — ods)) = 19 x (1 —全)=9.5. 

Thus, L5 = 9.5 + 9.5 二 19. Consider H^. The output set S = {/之，/‘，了已} 

is assumed. In transaction 力4 and tg^ d^ and dg do not contain items. The 

terms conf [I^ — 0^4) and conf {I5 —> odg) are equal to 0. So, the terms 

prof{h,U){l — conf{h — od^)) = prof{h,h)(l - conf{h o^^s)) = 19. 

Thus,丑5 = 19 + 19 = 38. 

i Li Hi 

1 0 40 

2 26.60 32.2 

3 0 40 

4 4 IS 
5 19 38 

6 2 2 

The J-th (i.e. 3rd) largest values is 4- The item IQ should be pruned in 

the pruning step as HQ < 4. So, there are five remaining items, Ii, I2, h, I4： 

and is. ^45 all estimation sets Si do not contain item IQ, there is no need to 

update the estimation sets. So, this time, hi = Hi. The result can be found in 

Table 2.5. 

Item I4 is removed as 64 二 4.8 is the smallest hi value. Then, there are 

four remaining items /i, I2, h and is. As Si, Ss and S^ contain item I4, item 

has to be replaced with the item which has not been selected with the greatest 

estimate value. Consider Si, the item (not including item Ii itself) which has 

not been selected with the greatest estimate value (i.e. ei,3 = 61,5 = Q) is I3 or 

/g. We arbitrarily choose item Is to replace item I4. After the estimate set 

Si is updated, the item benefit hi is updated. The result is shown as follows. 
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Table 2.5: Benefit of items calculated after pruning in Algorithm MPIS-Alg 

i Si hi 

1 h, l4 40 

2 / i , /3 32.2 
3 40 

4 h , h 4.8 
5 I2,l4 38 

6 1 / / 

i Si bi 

1 hJs 40 
2 Ii,l3 32.2 

3 h,h 0 

4 / / 
5 h.h 28.5 

6\ / / 

Item /s is removed as b^ = 0 is the smallest value. There are three remain-

ing items /i, /2, and I^. Algorithm MPIS_Alg stops here and items h, and 

/g are chosen in the output set. Item benefit bi and 62 have to be computed 

again as item is in estimation sets Si and S2. 

i Si bi 

1 h,h 40 
2 h.h S3.6 

3 / / 

4 / / 
5 I1J2 28.5 

6 1 / / 

The final total profit of item selection is equal to $40 + $33.6 + $28.5 二 
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$102.1. 

• 

2.7 Genetic Algorithm 

Genetic algorithms (GA) are a family of evolution-inspired computational 

models. The algorithms encode a possible solution of a problem on a chromosome-

like data structure. The algorithms first keep track of a number of chromo-

somes in a population. By utilizing the reformation operators to these chro-

mosome in the population, the algorithm can create different populations in 

order to preserve critical information in the previous population. 

In genetic algorithm (GA), we need to represent the solution of MPIS (i.e. 

which items should be selected). MPIS is a subset selection problem. In our 

problem, there are n items in the transactions. We need to select a set S of 

items of size J out of n items such that the total profit P of such an item 

selection is maximized. 

Our genetic algorithm (GA) is an approach of a steady-state GA described 

in [ 4 5 ] �I t also uses a strategy of the weaker-parent replacement described 

in [38] and [19]. In [38] and [19], this strategy is shown as a good choice of 

replacement as one could estimate that a parent would be one of the genes in 

the population which is closest to the child. The outline of our GA is shown 

in Figure 2.6. In our experiment, we use the number of generations as the 

stopping criteria described in Figure 2.6. 

We represent the solution as a gene in a binary representation. Each gene 

is represented by an n-dimensional binary vector, v. Each entry Vi is either 

0 or 1 to represent the choice of selection of item Ii for i = 1, 2 , n . If 

item Ii is selected, Vi will be equal to 1. Otherwise, Vi is equal to 0. In this 
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n 
representation, there is a restriction on the number of I's such that Vi = J. 

i=l 

This means that the total number of selected items is equal to J. For example, 

if n = 5 and J = 2, and the selection set S contains Ii and is, then the vector 

V is equal to (10100). 
Procedure GA 
Input: N\ population size 

M: number of children generated for for each crossover 
begin 

generate population Pop of size N 
calculate the fitness value of each gene in the population 
find and store the best of the gene according to the fitness value 
repeat 

duplicate the population Pop and assign it to Poppre 
for each gene in the population Poppre 

set this gene as the first parent 
find the second parent in a roulette wheel approach in the population Poppre 
create M children with crossover of the first parent and the second parent 
for each child created 

mutate the child with probability Pmutate 

evaluate the fitness value of the child 
if the child has a greater fitness value than the weaker parent 
(with smaller fitness value) 

update the population Pop by replacing the weaker parent with the child 
(NOTE:Each successive child in the inner loop is compared with the 
updated weaker parent.) 

if the child has a greater fitness value than the best 
replace the best stored with the child 

Otherwise, the child is discarded, 
until a stopping criteria is reached 

end 

Figure 2.6: Simple Steady-State Genetic Algorithm 

Population Generation: The initial population contains N genes, each gen-

erated with a random selection of J items. In binary representation, we just select 

J positions randomly in the genes and set those positions to 1 and other positions 

to 0. For example, if n = 4 and J = 2, and we select h and I3 randomly, the gene 
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becomes 1010. 

Fitness Function: Our fitness function is the same as Definition 3. That is, 

given a set S of selected items of size J, the total profit of item selection P is: 
m 

P = Y.Y1 prof{Ia^U)(l - con f {la 4 Od,)) 
^=1 laet'. 

We can adopt the computation method of P in Algorithm MPIS_Alg (See Section 

2.6.3). 

Selection for the Second Parent: In the algorithm, we need to select two 

parents for crossover. The first parent is selected deterministically but the second 

parent is chosen from the population in a roulette wheel approach. Each gene in 

the population will be evaluated with the fitness function. We can rank all genes 

in the population according to this fitness value. The gene with the smallest fitness 

value is assigned rank 1. The gene with the second smallest fitness value is assigned 

rank 2. The gene with the largest fitness value is assigned with the largest rank. 

After assigning the rank to each gene, we can calculate the selection probability of 

a gene G according to the ranks as follows: 

T*CLTl/k ( selection probability(G) = — r—-r 
O/Tl�工 J 

2.7.1 Crossover 

During crossover, a child will be generated from two parents in the following steps: 

1. The child contains the intersection of the two parent genes, C. That is, the 

child will contain all items that both parents contain. Let k be the number 

of such items. 

2. Usually, the number of selected items generated in Step 1, k, is smaller than 

the desired number of selected items, J. We need to generate the remaining 

J — k items chosen from the items in set D, where D is the set containing the 
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items in parent 1 but not in parent 2 and the items in parent 2 but not in 

parent 1. The method of the selection of J — k items from set D is described 

as follows. 

We have a matrix L. Each entry Lij in the matrix contains the profit loss of 

item li if item Ij is not selected. We model this entry by 

no. of transactions containing li and Ij 
^ no. of transactions containing li 

where prof it [Ij) is the total profit for all transactions. 

For each item Ij E D, we will calculate 

Lj Yl Li,] 
hec 

Rank all items Ij G D according to Lj, with the smallest value ranked 1, the 

second smallest ranked 2, ... and the greatest ranked the highest. 

Then, we select the remaining items Ij from D in a, roulette wheel approach 

with the following selection probability: 

selection probability(Jj) 一 rank{Ij) 
l^ikED ranK[ik) 

This means that those item Ij which leads to a larger profit loss if item Ij is 

absent will have a higher probability to be selected. This is because if we do 

not select item Ij, then there will be a greater profit loss to other items in 

set C. 

Let us give an example for crossover. For instance, suppose n = 6 and J 二 3, 

and the first parent is 11100 and the second parent is 10011. In Step 1, set C = {Ii} 

as both parents contain item h. Set D = {l2,Is,h,h}- We need to choose two 

items from D to complete the generation of a child according to a loss matrix L. 

Assume the loss matrix L is: 
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( ^ 1 , 1 Li,2 In,3 In，4 Li,5 \ f 0.0 2.5 6.5 5.2 7 . 2 � 

L2,I L2,2 45.2 0.0 5.9 7.5 9.5 

L = ^3,1 ^3,2 î 3，3 1̂ 3,4 = 5.2 5.2 0.0 2.2 7.8 

_L4，1 1̂ 4,2 L4,4 0.0 0.0 0.0 0.0 9.1 

V 1̂ 5,1 L5,2 L5,3 L^a 1̂ 5,5 ； \ 丄.。2.3 4.5 9.2 0.0 

We can calculate all Lj for Ij G D. L2 二 2.5, L3 — 6.5，丄4 = 5.2, L^ 二 7.2. We 

can rank all Ij according to the Lj values. Item I2, h, h and I5 are ranked with 

1, 3, 2 and 4 and are given with probability 0.1，0.3, 0.2 and 0.4 respectively. In 

Step 2, assume I2 and I4 are chosen randomly in this roulette wheel approach to 

become the remaining items in the gene of the child. The gene of the child will 

become 11010. 

2.7.2 Mutation 

During mutation, we randomly choose a selected item Is and an unselected item 

in the gene. It is noted that, in a gene, a selected item is represented by 1 and 

an unselected item is represented by 0. Then, we set item to be selected and 

set item Is to be unselected. That means, in the gene representation, we change 

the bit at the position of lu from 0 to 1 and the bit at the position of Is from 1 

to 0. For example, if the gene is 1010, and Ii and I2 are selected as Ig and lu 

respectively, then the mutated gene is 0110. 

2.8 Performance Analysis 

Let us analyze the running time (RT) of MPIS_Alg. Recall that MPIS_Alg has two 

phases - Preparation Phase and Main Phase. We divide them into sub-sections to 

analyze the running time. Besides, the following table shows the description of the 

symbols used in our analysis. 
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Symbol Description 

n number of items 

m number of transactions 

J number of items to be selected 

riTs maximum number of items in the transaction 

riM maximum number of occurrence of an item 

rinode maximum number of nodes representing an item in the FP-tree 

rii the number of transactions containing item Ii 

riij the number of transactions containing item Ii and item Ij 

riR the number of remaining items after the Enhancement Step 

Ufp the total number of nodes in the FP-tree 

2.8.1 Preparation Phase 

In this phase, we need to count the number of occurrences of each item ni, n2, ••., n^ 

and the individual counts of each item ci, C 2 , C n and to generate all size 2 item-

sets. In this Phase, we just need to construct an FP-tree from the transactions. 

By setting the minsupport as 0 and the maximum itemset size as 2, we can find rii 

and size 2 itemsets. 

There are two steps in this phase 

1. Construction of the FP-tree 

2. Mining of itemsets 

1. Step of Construction of the FP-tree 

In this step, we need to do the following: 

(a) Scan the database and find ni, n 2 , n ^ and ci, C2 ,Cn 

(b) Sort ni,n2, ...rin 

(c) Scan the database again and insert each transaction into the FP-tree 
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We first need to scan the database to obtain the number of occurrences of each 

item, which takes 0(mnTs) as there are m transaction and each transaction 

contains at most tits items. (It is noted that the maximum transaction size 

is riTs, but as the transaction size is usually much smaller than tits, the 

insertion cost of each transaction requires much smaller cost than tits') We 

give the ordering of the items based on the frequency of the items by sorting 

ni, 712, '̂ n, which takes 0{nlog n). Then, we need to scan the database 

again and insert the items for each transaction into the FP-tree. As the tree 

depth is 0(nTs), the insertion cost for each transaction is 0{nTs)- As there 

are m transactions, the running time of inserting the items in transactions 

is 0{mnTs)- Thus, the overall RT for the step of the construction of the 

FP-tree is 0(mnTS + nlog n + mriTs) — 0{nlog n + mriTs)-

2. Step of Mining of Itemsets 

Before analyzing the RT of this step, we need to give the pseudo-code of 

procedure FP-growth used in this step in Figure 2.7. 

We start to call FP-growth(Tree,null), as follows. This call needs + 

nrinode几TS) time. The RT of the above steps are shown as follows. 

(a) Line (1) requires O^uts) time 

(b) Lines (2)-(3) require 0{nTs) time 

(c) Line (4)-(8) requires 0{nnnodenTs) time 

In this procedure, we just need to consider two cases: 

(a) Case 1: a contains two single items 

(b) Case 2: a is a single item 

(c) Case 3: a is an empty set 
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Procedure FP-growth(Tree, a) 
{ 

(1) if Tree contains a single path P 
(2) then for each combination (denoted as /3) 

of the nodes in the path P do 
(3) generate pattern /S U a with support = 

minimum support of nodes in (3; 
(4) else for each ai in the header of Tree do{ 
(5) generate pattern jS = aiU a with 

support = ai. support] 
(6) construct /3,s conditional pattern based and 

then /3's conditional FP-tree Tree… 
(7) if Tree^ ^ 0 
(8) then call FP-growth(Tree/3,/3) } 
} 

Figure 2.7: Pseudo-code for FP-growth 

We just need to consider the above cases as our objective is to find 2-itemsets. 

Case 3 is just equal to the call of FP-growth(Tree, null). 

(a) Case 1 

Let us consider the case where a contains two single items 

In line (1), as the tree depth is 0(jits\ the check of a single path P in 

the tree is 0{nTs)- (NOTE: In the FP-tree, usually, the length of the 

path is smaller than rvps.) As our objective is to generate 2-itemsets and 

a contains two single items, lines (2)-(3) can be skipped and lines (2)-(3) 

require 0(1) time. Lines (4)-(8) are skipped as = a^Ua contains three 

single items, which is not our desired output. So, these lines requires 

0(1) time. 

Thus, the overall RT in this case is 0(nTS + 1 + 1) 二 0{nTs)-

(b) Case 2 

Let us consider the case where a is a single item. 
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In line (1), similar as before, the check is 0{nTs)- As our objective is 

to generate 2-itemsets and there are only 0{nTs) combinations of the 

2-itemsets containing a and 々 ，lines (2)-(3) need 0{nTs) time. 

In line (4), as there are n items, there are 0(n) possible headers of 

Tree. For each header, we will do the code in lines (5)-(8). Line (5) 

needs 0{nnode) time because we need to parse the horizontal link of ai 

so as to count the ai.support. (NOTE: In the FP-tree, the number of 

nodes for a frequent item is much smaller than rinode as the FP-tree has 

the compressed property of the database for much frequent item.) 

In line (6), the construction of /3's conditional pattern base and then /9's 

conditional FP-tree Treep requires 0{nnode'^Ts) time. In this operation, 

we need to parse the horizontal link of ai to visit each node. Then, for 

each node visited, we need to parse vertical links. As there are O(rinode) 

nodes and the tree depth is 0{nTs), the RT for line (6) is 0{nnoden^Ts)-

In lines (7)-(8), suppose Treep 0 (i.e. the worst case for these lines). 

We need to call FP-growth(Tree^, , where contains two items. This 

is the case mentioned before (i.e. Case 1). The RT for this case is 

• (tits、. 

The code for lines (4)-(8) requires 0{n x (unode + 'n̂ nodenrs + n r s ) ) = 

0(n X rinodenTs) 二 0(jinnodenTS�. 

Therefore, the overall RT in this case is 0{nTS + '^ts + nnnodenrs) 二 

Oinnnode^Ts)-

(c) Case 3 

Now, we consider the case where a is an empty set. 

In line (1), the check is similar as before and the time complexity is 

equal to 0{nTs)-

For lines (2)-(3), for this case, we just need to find 2-itemsets. As the 
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single path P has the length 0{nTs)i there are = 

combinations. (NOTE: As we discussed before, the length of the path 

is usually smaller than tits, the number of combinations is also smaller 

than C ， 、 A s line (3) takes 0(1) time, the RT for lines (2)-(3) is 

0{nls)-

In line (4), similarly, there are 0{n) possible headers of Tree. 

In a similar way, line (5) and line (6) require 0(rinode) time and 0(jinode~^TS�, 

respectively. 

Suppose we encounter the worst-case in lines (7)-(8). As contains one 

item, we need to call FP-growth(Tree^, recursively. This is just equal 

to Case 2. The RT for this case is 0{nnnode'^Ts)-

The code for lines (4)-(8) is 0[n x (jinode + rinodenrs + ririnodenTs))= 

0{in?nnodenTs)-

Thus, the overall RT is = O{n^s+几]几node几TsY 

As a result, the RT of the step of the construction of the FP-tree and the 

step of mining of itemsets are 0(nlog n + mriTs) and 0{ri^g + n^rinode'^Ts) 

respectively. 

In short, the RT of these two steps is: 

(a) Construction of the FP-tree (which requires 0{nlog n + mriTs) time) 

(b) Mining of itemsets (which requires + n^nnodenrs) time) 

Thus, the overall RT for the preparation phase is 0{nlog n + mriTs + ri^s + 

Ti?rinode'^Ts)- Typically, tits < < rn and thus n^g = 0{mnTs), the overall 

RT is 0(nlog n + mriTs + ^^^node^rs")-

2.8.2 Main Phase 

In this phase, we have the following steps: 
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1. Estimation Set Creation 

2. Item Pruning 

3. Item Benefit Calculation 

4. Item Selection and Item Benefit Update & Iteration 

1. Estimation Set Creation 

There are the following sub-steps: 

(a) Calculation of Estimated Value 

(b) Selection of J - 1 items with the Highest Estimated Value for set Si 

(a) Calculation of Estimated Value 

For each item, n estimated values have to be calculated. For each 

estimated value e � j = pj x Cj + {pj + Pi) x support{Ii, Ij), the cal-

culation needs 0(1) time as we have variables to store pi,pj,Cj and 

support(Ii^ Ij){i.e.nij). As there are n items, the RT is 0{rP). 

(b) Selection of J - 1 items with the Highest Estimated Value for 

set Si 

In this sub-step, there are two procedures for each item. For each item, 

there are n estimated values. For each item, we will do the following: 

i. sorting the first J estimated values 

ii. comparing the remaining n — J estimated values with the J sorted 

values 

i. For each item / “ initially, J estimated values from item Ii are sorted. 

These sorted J values are put in a sorted list L. This procedure 

takes 0{Jlog J) time on average by using quick sort. Let ê ’工 be 

the smallest estimated value in the sorted list L. 
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The RT of quick sort on an array containing n elements is dependent 

a lot on where the split it is. For the sake of the simplicity of 

analysis, assume the split is at the midpoint along the array. Let 

T(n) be the time of quick sort on an array containing n elements. 

It is easy to see that we can get a recursive formula T(n) = n 4-

2T(n/2). By solving this formula, we can get T(n) = nlog n + n if 

T(l) 二 1. 

In this step, if we need to sort J items, there are (nlog n + n) 

operations in quick sort, 

ii. Then, ei,y, where y 二 J + 1, is read and compared with Cî x- If it 

is larger than ei,工,then discard Ci^x in the list L and insert ei,y into 

the sorted list L. During the insertion into the sorted list, we need 

to find a correct position to be inserted such that all elements in 

the list L are still sorted. This step requires log J time on average. 

The process continues for all remaining n — J — 1 estimated values 

(i.e. y = J + 2, J + 3, ...,n). As there are n — J remaining estimated 

values and each insertion takes log J time, the second procedure 

takes (n — J)log J operations, which takes 0((n — J)log J). 

Thus, the two procedures needs Jlog J + (n — J)log J = nlog J opera-

tions, which takes 0{nlog J) time. 

As there are n items, the overall RT of this sub-step is 0(nHog J). 

The overall RT in this step is + n?log J) = 0{n?log J + nJ). 

2. Enhancement Stepiltem Pruning 

If we apply the enhancement step, a smaller number of remaining items ur 

are processed in the remaining iteration steps, which makes MPIS—Alg more 

efficient. There are two sub-steps: 
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(a) Calculation of Li and Hi 

(b) Item pruning 

Before the above two sub-steps are to be analyzed, the RT of the calculation 

of benefit is first discussed. 

(a) Calculation of Benefit 

The benefit of each item, bx is defined as follows: 
m 

= prof{Ia,ti){l - conf {la •(kT) 

if the output selection set S = SxU {Ix} 

In this step, we need to calculate P(A), where A = SxU {/工}. 

In Section 2.6.3, we can see how we use two efficient data structures 

called an FP-tree and an FP-MPIS-tree in order to compute P{A). 

In item benefit calculation, as we discussed in Section 2.6.3, we need to 

i. read transactions from the FP-tree, which takes 0{nfpnTs) time. 

ii. calculate some of the profit of the item selection in the FP-MPIS-

tree, which takes OiufpTinode) time. 

i. Reading transactions from the FP-tree 

Now, we will analyze the running time of reading transactions in the 

FP-tree. For each node with non-zero node count in the FP-tree, 

we need to traverse from that node upwards in order to generate a 

transaction. For each such node, the RT of the upwards traversal is 

0{nTs) as the depth of the tree is 0{pTS�- The worst-case in the 

Step of reading transactions from the FP-tree is that all nodes has 

the non-zero node count when we traverse the node. That means 

we need to traverse all nodes to generate a transaction. So, as 

the number of nodes in the FP-tree is n/p, the RT of reading all 

transactions in the FP-tree is 0{nfpnTs)-
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ii. Calculating Profit in the FP-MPIS-tree 

We are going to analyze the running time of calculating profit in the 

FP-MPIS-tree. For each node we visited which is associated with 

a selected item, we need to do an increment by Pa x (1 — 〃(二:，句)x 

countn. As there are variables storing pa, ria and countn, the RT of 

the access of these variables is 0(1). We are interested to analyze 

the RT of the computation of gija, d). 

In the FP-MPIS-tree implementation, it is easy to verify that we 

need to horizontally access 0{nnode) nodes for item la in the FP-

MPIS-tree. (NOTE: As we described before, the number of nodes 

is usually smaller than rinode due to the compressed property of the 

FP-MPIS-tree.) Then, for each node for item la, we may need to 

vertically access other nodes upwards and downwards. This path 

length is 0(jits). SO, the function g{Ia, d) can be computed in 

0{nnodenTs) time. 

Thus, the RT for the term prof{Ia,U){l — is 0{nnodenTs)-

However, in the FP-MPIS-tree, for the worst-case, we need to tra-

verse all nodes. As there are 0{nfp) nodes in the FP-MPIS-tree, 

the RT of the calculation of some profit in the FP-MPIS-tree is 

0[nfpnnode'^Ts)- As the maximum transaction size is small and con-

stant, the RT of the calculation of profit in this tree is O^UfpUnode)-

Finally, we need to compute P{A). In this step, we need to read transac-

tions from the FP-tree, which takes 0{nfpnTs) time. For each transac-

tion, we need to check which group the transaction belongs to. The RT of 

this sub-step is 0{nTs)- For the transactions containing selected items, 

we need to update the benefit, which takes 0(1) time. For the transac-

tions containing unselected items, we do not need to update the benefit, 
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which also takes 0(1) time. For the transactions containing both se-

lected items and unselected items, we need to insert the transactions into 

the FP-MPIS-tree. Each insertion needs 0{nTs) time. Thus, for reading 

a transaction in the FP-tree, we requires 0(rvrs + 1 + 1 + — 0[nTs) 

time. As there are 0{nfpnTs) transactions read from the FP-tree, the 

RT of the computation of P{A) (without the computation of the profit 

in the FP-MPIS-tree) is 

Now, by including the RT of the calculation of profit in the FP-MPIS-

tree, the RT of calculation of P(A) is (n/^n^g-\-nfpfinode'^Ts) • Again, as 

the maximum transaction size is small and can be considered a constant, 

the RT of the calculation of benefit is OiufpTinode). 

(b) Calculation of Li and Hi 

For each item Li and Hi are calculated with the same formula of the 

benefit but with different output selection sets. The RT for the calcu-

lation of a pair of Li and Ri is OiufpTinode + 几/p几node) — 0(nfpnnode), 

The overall RT is OijirifpTinode) as there are n items. 

(c) Item Pruning 

After Li and Hi are calculated, we need to find the J-th largest value of 

Lj for pruning. The implementation is just similar to the step Sorting 

Estimated Value. As there are n items and we are interested in the item, 

Ij with J-th highest value of Lj for pruning, the RT is 0{nlog J). Then, 

each Hi is scanned to check whether Hi < Lj for pruning the item li. 

There are n items and the RT is (n). So, the RT for this pruning is 

0{nlog J + n) = 0{nlog J). 

The overall RT for this step is OijirifpTinode + ^g J)-

3. Item Benefit Calculation 
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In this step, the benefits of the remaining items have to be updated. Let the 

number of remaining items be tlr. AS discussed in the previous step, the RT 

of the item benefit calculation is 0{njpnnode'^R)- As ur = 0(n), the RT is 

OiufpUnoden). 

4. Item Selection and Item Benefit Update 8z Iteration 

There are a number of iterations for item selection and item benefit update. 

For each iteration, the item with the smallest benefit is removed and the 

benefits of other related items are updated. 

For the first iteration, finding the item 1工 with the smallest benefit among 

riR remaining items requires the scanning of ur numbers. After the selection 

of the item I工 with the smallest benefit, in the worst-case where the sets Si 

of Ur — 1 remaining items all contain item Ĵ；, ur — 1 benefits have to be 

updated as the sets Si are updated. 

For the second iteration, similarly, finding the item with the smallest benefit 

requires the scanning of n丑一1 numbers. For the worst-case, after ur - 2 

benefits have to be updated. 

For the A;-th iteration, scanning ur - {k - 1) numbers is required, ur- k 

number of benefits have to be updated for the worst-case. 

For the last iteration, J + 1 items are left and J + 1 scannings are required. 

Let A:-th iteration be the last iteration by equating the remaining items: 

J -f 1 二 riR — (k - V). That means k = ur - J, which is the number of 

iterations. 

Thus, 

total number of scannings 
= + — + — + 
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= + J + —J) 

二 + - J) -^riR- J) 

二 liril-J^^riR-J) 

=0{nl -

Similarly, the total number of items to be updated with benefit is 0{n\ — J'^). 

It is noted that each update of benefit takes Oiufprinode) time. Thus, the 

worst-case RT for the update of all benefits is O(njpfinode几 r̂ —几fp几nodeJ])-

Thus, the overall RT in this iterative step is — + nfpnnode^\ — 

rifpUnodeJ'^) = OiufpTlnodenji — n fpUnodeJ'^) • As Ur 二 0(n)，the RT is 

O ij^ f p几node几 _ 几 fp几node J ) • 

In summary, the RT of each step is shown as follows: 

1. Estimation Set Creation (which takes 0(jiHog J 4- nJ) time) 

2. Item Pruning (which takes 0{nnfpnnode + nlog J) time) 

3. Item Benefit Calculation (which takes OijifpTinoden) time) 

4. Item Selection and Item Benefit Update & Iteration (which takes 0(nfpfinode几^― 

rifpUnodeJ'^) time) 

The overall RT of Main Phase is 0(JjiHog J + nJ) + {nufpTinode + i^log J) + 

nfpTinoden^i^'fpi^noden'^-nfpnnodeJ'^)) = 0{nHog J+nJ+n2 几 fp几node 一几 fp几node J ) • 

As J = 0(n), the RT is 0{in?log n + n^rifpTinode) (NOTE: The coefficient/constant 

term of the term rifpUnodeJ^ (about 0.5) is smaller than that of the term n r̂ifpUnode 

(about 1).) 

We summarize the RTs of the two phases as follows: 

1. Preparation Phase (which takes 0{nlog n + mriTS + n'^'^node'i^Ts) time) 
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2. Main Phase (which takes 0{'n?log J + nJ + n r̂ifpUnode —几fp̂ n̂odeĴ ) time) 

The overall RT of MPIS_Alg is 0{{nlog n + mriTs + n^nnode'^Ts) + (nHog J + 

nJ + n2nfpTinode — nfpTinodeJiy) = 0{nlog n + mriTS + rinoderiTs + ri?Iog J + + 

n^nfpTinode ~ ^fp'^node J'^)- As uts IS Constant and small, the RT is 0{nlog n + m + 

nHog J + n J + in?njpUnode -fp'rinodeJ'^)- As J = 0(n), the RT is 0{m + m?log n + 

n^rifpUnode)- (NOTE: The coefficient/constant term of the term rifpUnodeJ'̂  (about 

0.5) is smaller than that of the term n'̂ fifpUnode (about 1).) 

2.9 Experimental Result 

2.9.1 Tools for Quadratic Programming 

We have searched on the web to find suitable tools to solve the quadratic pro-

gramming. We have examined LINDO [4], T0MLAB[8], GAMS[3], BAR0N[1], 

0PTRIS[7], WSAT[9], Frontline System Solver[2], M0SEK[5] and 0PBDP[6]. We 

choose Frontline System Solver (Premium Solver - Premium Solver Platform) as 

a tool of solving quadratic programming because it perform the best out of these 

solvers. 

We have sent an email to each Solver Company to ask whether the product can 

solve the non-convex binary quadratic programming. The companies for LINDO, 

WSAT and MOSEK replied that the product cannot support such a problem. 

TOMLAB replied that its product can handle such kind of problem but this product 

has not been released yet. Frontline System Solver and BARON (based on the 

platform GAMS) replied that their product can solve such kind of problem. But, 

others have not replied yet. 

So, in order to make our decision between Frontline System Solver and BARON, 

we have done some experiments to compare the output of the programming from 

two solvers. We used the maximization quadratic problem to find the optimal 
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solution where J — n/2. 

Optimal Value Found Execution Time/min 

n Frontline BARON Frontline BARON 

50 8691.25915 7439.46665 4 16 

100 57801.93125 50638.133 10 16 

200 421746.8683 364420 42 12 

From the experiment we conducted, we observed that Frontline Solver gives a 

greater value of the maximization problem than BARON. Besides, Frontline Solver 

gives a faster execution time to solve the problem for most cases. So, we choose 

Frontline System Solver as a tool to solve our quadratic program. 

Mat Lab 6.1 can support quadratic programming with continuous variables. 

Besides, [15] developed a mat lab function for solving mixed integer quadratic pro-

grams with convex property. But, our quadratic problem is a concave type. After 

conducting the above experiments, we decided to use Frontline Solver. 

2.9.2 Partition Matrix Technique 

We use the techniques of partitioned matrices when using the software Frontline 

Systems Solver (Premimum Solve Platform) [2] which is built on the Microsoft Ex-

cel. As excel has a limitation of at most 256 columns, we need to partition the 

matrixes in order to calculate the desired quadratic objective function. 

For instance, if the number of items is 1000, the matrix Q used in our quadratic 

programming method is of the order 1000 by 1000. We partition the matrix into 

16 submatrices. That is, 

(Qii QI2 Qi3 QU� 

^ Q21 Q22 Q23 O24 
Q = 

Qsi Q32 Q33 Q 3 4 

\ Q41 Q42 Q43 Q44 y 
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where Qij is a 250 by 250 matrix for = 1, 2, 3 and 4. Then, we organize this 

matrix in sequence. That is, we define a matrix in the Microsoft Excel as 

fQn\ 

Qi2 

Qi3 

Qu 

Q21 

Q22 

Q23 

A=込4 

Qsi 
Q32 
Q33 

Q34 

Q41 

Q42 
Q43 

\ Q44 y 

Thus, we can put the above matrix A in only a sheet in Microsoft Excel be-

cause there is no limitation of the number of rows in Microsoft Excel. Then, the 

multiplication between partitioned matrices/vectors is based on Theorem 3. 

The following describes the partitioned matrices. The reader can find more 

details in [35 . 

Definition 10 Partitioned Matrices: Any matrix can be decomposed into a 

number of submatrices. For example, 
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^ 1 - 2 4 1 3 � 

2 1 1 1 1 
A = 

3 3 2 - 1 2 

� 4 6 2 2 4 ^ 

^ 1 - 2 4 1 3 � 

2 1 1 1 1 

3 3 2 - 1 2 

� 4 6 2 2 4 ^ 

= f ^11 义 12 ̂  
\ A21 A22 

where 
/ 1 - 2 4 \ 

All = 

V2 1 1 

( 1 3\ 
Ai2 二 

V1 1 y 
/ 3 3 2 \ 

A21 = 
V4 6 2 J 

f - 1 2] 
A22 = 

V 2 4 J 

As we know that the matrix can be partitioned, the matrix multiplication is 

given in the following theorem[35 . 

Theorem 3 (Block Multiplication) If A 二 

(An Ai2 \ 
where yln, A12, A21 and A22 are matrices of order ni x mi,ni x \ A21 A22 / 

( b A 
m2,n2 X mi and n2 x m) respectively, and B = where Bi and B2 are 

V / 
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. [AiiBi + ^12^2 \ 
matrices of order mi x 1 and m2 x 1 respectively, then AB = 

\ A21B2 + A21B2 / 

2.9.3 Data Sets 

In this thesis, several synthetic data sets and a real data set are to be tested in our 

experiments. 

Synthetic Data Set 

In our experiment, we use IBM synthetic data generator [10] to generate the data 

set with the following parameters (same as the parameters of [49]): 1,000 items, 

10,000 transactions, 10 items per transaction on average, and 4 items per frequent 

itemset on average. We generated the profits of items with a lognormal distribution. 

The price distribution can be approximated by a lognormal distribution, as pointed 

out in [28]. That is the logarithm of the profit follows the same distribution as the 

data set in [49]. We use the same settings as [49]. That is, 10% of items have the 

low profit range between $0.1 and $1, 80% of items have the medium profit range 

between $1 and $5, and 10% of items have the high profit range between $5 and 

$10. 

We also generate two data sets to illustrate some weaknesses of HAP, as de-

scribed in Section 2.2. They are called HAP worst-case data set 1 and HAP worst-

case data set 2. For HAP worst-case data set 1，we generate a loop as in Figure 2.1. 

If there are 10,000 transactions and 1000 items, we generate the first 20 transactions 

containing only two items, says h and h . A loop containing item h and h can be 

generated. Then, only one item from the remaining items (i.e. Aooo) is 

generated in each of the remaining transactions (̂ 21, l̂oooo)- This means that 

each remaining transaction contains only one item other than the items involved 

in the loop. The profit distribution is generated similarly as IBM synthetic data 

set. 
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I f i 
Figure 2.8: Illustration: Hap Worst-Case dataset 1 

We now illustrate how to generate HAP worst-case data set 2. The idea is 

illustrated in Figure 2.8. Items are divided into two layers: upper layer and lower 

layer. Items at each layer do not have any cross-selling effect with each other. We 

form pairs of items, one from each layer. For example, {Ia, Ib } , { / c , ^d} are such 

pairs. In each pair, such as {Ia,Ib}i transactions with Ia very likely also contain 

Ib, but transactions with Ib do not have a high chance to contain I a- The rule 

Ib has very high confidence, but Ib — Ia has low confidence. 

We divide the transactions evenly for each item pair. Suppose there are 10,000 

transactions and 1,000 items, hence 500 disjoint item pairs. A set of 20 transactions 

are related to each such item pair {Ia, Ib}-, The first half (10 transactions) contains 

both item Ia and Ib. The second half (also 10 transactions) contains only item Ib 

but not item I a- Similarly for each of the remaining 499 item pairs, 20 transactions 

are assigned and divided into the first half and the second half. Let us call the union 

of the transactions in the 499 first halves as the first-half group. We randomly insert 

item Ib into 80 transactions in the first-half group. With this insertion, we create 

some weak link from the items in the top layer to the items in the bottom layer. 

In Figure 2.8, we observe that the authorities of the items at the lower layer are 

accumulated. Thus, HAP will choose most of the items at the lower layer. There 

is little/no correlation among them, making the total profit of the selection small. 
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If we assign high profit values to the items at the upper layer (e.g. Ia ) for all 

transactions but low profit values to the items (e.g. Ib) at the lower layer, HAP 

would return poor results. The reason why we assign the total profit to the item 

at the upper layer is that we observe that, in each association rule Ia Ib, the 

authority of an item Ib only depends only two factors, the total profit of item Ia 

and the confidence factor of the association rule Ia Ib, but is independent of the 

total profit of the item itself (i.e. Ib), which is one of the disadvantages of HAP. In 

this data set, the items at the upper layer are assigned with the high profit range 

between $5 and $10 while the items at the lower layer are assigned with the low 

profit range between $0.1 and $1. The worst-case data sets are used to illustrate 

the weaknesses of HAP, as described in Section 2.2. 

Real Data Set 

The real data set is obtained from a large drug store in Canada over a period of 

3 month [49]. In this data set, there are 26,128 items and 193,995 transactions. 

On average, each transaction contains 2.86 items. About 40% of the transactions 

contain a single item, 22% contain 2 items, 13% contain 3 items, the percentages 

for increasing sizes decrease smoothly, and there are about 3% of transactions with 

more than 10 items. The greatest transaction size is 88 items. In this data set, the 

profit distribution of items is shown in the following table. 

Profit Range Proportion of Items 

$0-$0.1 2.03% 

$0.1-$1 25.05% 

$l-$5 54.59% 

$5-$10 10.43% 

$10-$100 7.75% 

$100-$400 0.15% 
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2.9.4 Empirical Study for G A 

In this section, we will describe what experiments related to GA have been con-

ducted. All experiments were done with the IBM synthetic data set described in 

Section 2.9.3. The following experiments have been conducted: 

1. GA Parameter Experiment (Section 2.9.4) 

The experiment has been conducted to study two important parameters used 

in GA - Population Size and No. of Generations. In this experiment, we also 

study several additional factors to be described in this section - mutation 

effect, child effect and strategy effect. 

2. MPIS Experiment (Section 2.9.4) 

The experiment has been conducted to study MPIS problem with the varia-

tion of the number of items selected. 

GA Parameter Experiment 

In this subsection, we are going to study the effect of the GA parameter on the 

profitability and execution time of our GAs. We choose J = 500 (i.e. no. of items 

selected) for these GA parameter studies 6. 

We carried out GA experiment 20 times 飞,each with different random starts. 

We will call the number of times the experiments are carried out as the number of 

runs (which is a common term used in GA) later. Based on 20 experiments, we got 

6We choose J = 500 because this is the half item selection, which corresponds to the largest 

solution space C j , where n = 1000 and J = 500. We would like to find the effectiveness of our 

GA in a large solution space. If GA can yield a good result in a large solution space, it is expected 

that GA can give a good result in a smaller solution space. Besides, in MPIS experiment (which is 

a study of the effect of the variation of selection on the profitability), we found that the difference 

in profitability between our all proposed algorithms is the greatest when the selection is half. 
7Usually, in the literature of genetic algorithm, the number of times (or runs) is set to be 10 

or above. One of the examples can be found in [41]. 
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two major measurements - average profitability, and the average execution time. 

We have conducted the experiments with the variation of the following factors: 

variation of population Size and variation of number of Generations Different ex-

periments are conducted with mutation and without mutation. Besides, we will 

study the effect of the number of children generated during crossover. 

In our experiments, we describe our GAs in the following table:  
Notation Description 

BIN-Cl with mutation each crossover generates only one child, 
with TTintatinn  

BIN-Cl without mutation each crossover generates only one child 
with out Tnntation  

BIN-C2 with mutation each crossover generates two children, 
with mntation  

BIN-C2 without mutation each crossover generates two children, 
withont mntation  

BIN stands for GA in binary representation. 

For BIN, in addition to the factor whether the mutation takes place, we are 

going to investigate the number of children generated in each crossover. In Section 

2.7.1, the crossover operator in GAs only generates one child. BIN-Cl is the GAs 

generates only one child. BIN-C2 is the GAs generates two children. In BIN-C2, 

for each generation of children, we apply the crossover operator in Subsection 2.7.1 

twice, in order to generate two children. 

In this section, we are going to study the profitability and execution time of 

GAs described in the table on two factors - (1) the variation of population size and 

(2) the number of generations. Besides, for each factor, we are going to investigate 

the following: 
• Mutation Effect: the effect of mutation for each kind of GAs 

• No. of Children Effect: the effect of number of children generated during 

crossover 

1. Variation of Population Size 
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In this part, we are going to investigate the effect of profitability and ex-

ecution time on the variation of population size. In this experiment, the 

parameter is set as follows. We conducted our experiment 20 times. The 

number of runs is 20. The number of generations is 20. In BIN , we set 

Pmutate 二 0.5 (i.e. the probability of mutation). 8 

(a) Mutation Effect 

From the graph in Figure 2.9, GAs with mutation usually gives a greater 

average profitability than GAs without mutation. This shows the ability 

to increase the diversity in the population by mutation, which can give 

a better result. 

In Figure 2.10, the execution time of GAs with mutation and without 

mutation are nearly the same as the mutation operations does not re-

quire much computation time. 

(b) No. of Children Effect 

Profitability: In BIN, we found that, during a crossover, generating 

two children is better than generating only one child as the average 

profitability of BIN-C2 is greater than that of BIN-Cl. This is because 

BIN-C2 (i.e. generation of two children) can give a higher probability of 

the generation of the "better" child compared with BIN-Cl (i.e. gener-

ation of one child). Although the average profitabilities of BIN-C3 and 

BIN-C4 is greater than that of BIN-C2, the difference between them is 

small. 

Execution Time: In Figure 2.10, the execution time of BIN-C2 is 

8We have conducted the experiment on the variation of Pmutate from 0 to 1. We found that 

the setting pmutate = 0.5 gives the greatest average profitabilities. The reasons is described as 

follows. If Pmutate = 0 (i.e. HO mutatioii), the gene cannot be jumped out of a local optimal. If 

Pmutate = 1 (i.e. the gene always mutates), the goodness of the gene generated from the parent 

may be deteriorated. 
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approximately twice that of BIN-Cl. It is obvious that we need to 

evaluate one more child by fitness function for each crossover in BIN-

C2. Similar arguments can be made in BIN-C3 and BIN-C4. 

(c) Population Size Effect 

In Figure 2.9, we observe that nearly all average profitabilities of all GAs 

(BIN-Cl, BIN-C2, BIN-C3 and BIN-C4) increase with population size 

from 50 to 1000. Then, the profitabilities level off after population size 

of 1000. 

From Figure 2.10, the execution time of all GAs increase with population 

size. It is because we need to calculate more candidates in the population 

when the population size increase. 

2. Variation of Number of Generations 

In this part, how the factor of number of generations affects the profitability 

of execution time is studied. In this experiment, the parameter is set as 

follows. The number of runs is 20. The population size is 100. In BIN, we 

set Pmutate = 0-5 (i.e. the probability of mutation). 

We are going to analyze the following effects: 

(a) Mutation Effect, Number of Children Effect and Strategy Ef-

fect 

The effect of mutation, no. of children and strategy in this experiment 

with the variation of the number of generations is just similar to that 

in the experiment with the variation of population size, described in 

the above part. That is, it is preferable to use mutation for diversity. 

During crossover, BIN-C2 (i.e. generation of two children during each 

crossover) gives a greater profitability than BIN-Cl (i.e. generation of 
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one child during each crossover). In this experiment, we found that the 

difference between BIN-C3/BIN-C4 and BIN-C2 is quite small. We will 

adopt the crossover which generates two children in MPIS experiment, 

because not only the execution time of BIN-C2 is twice faster than that 

of BIN-C4 but also the difference in profitabilities between these GAs is 

small. 

(b) Effect of the Number of Generations 

Profitability: In Figure 2.11, the profitabilities of nearly all GAs (BIN-

Cl, BIN-Cl, BIN-C3 and BIN-C4) increase with no. of generations from 

5 to 60. The lines for the profitabilities of those GAs after 60 generations 

are still increasing but the increase is not quite sharp. So, as we observed, 

in the later experiment - MPIS experiment, we choose 60 as the number 

of generations for one of the experiment sets. Execution Time: The 

execution time of all GAs increases with the number of generations (as 

shown in Figure 2.12). It is trivial as GAs require more computations 

of the fitness function of each children when the number of generations 

increases. 

MPIS Experiment 

In this subsection, we are going to study our problem MPIS. We will study how 

the factor of number of items selected, J, affects the profitabilities and execution 

time. As we observed from the above experiments, we would choose BIN-C2 with 

mutation in the following experiments as BIN-C2 gives good results in a reasonable 

time among all GAs. We have tried to conduct two kinds of experiments with two 

different settings, Setting 1 and Setting 2. 

1. Setting 1: The number of runs is 20. The number of generations is 60. The 

population size is 100. 
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The reason we choose the parameter setting for the number of generation is 

our results shown in the last section (Section 2.9.4) - GA Parameter Experi-

ment. We choose the setting which GA gives the nearly the best profitability 

and not too large execution time. In GA Parameter Experiment (with the 

study of the factor of no. of generations)，we observed that, if we use this 

setting, 52% average profitability is obtained. 

2. Setting 2: The number of runs is 20. The number of generations is 20. The 

population size is 25. 

Although this experiment set with this setting may not give a greater prof-

itability than the experiment set with setting 1, this experiment set can give 

fast execution time and reasonable large profitability. In GA Parameter Ex-

periment (with the study of the factor of population size) , we observed that 

this setting can yield about 51% profitability. Compared with Setting 1, we 

have similar profitability but the execution time is 12 times faster. 

For both settings, the other parameters are set as follows. In BIN, we set 

Pmutate 二 0.5 (i.e. the probability of mutation). 

From this experiment, we conclude that we prefer choosing Setting 2 as the 

parameter setup. This is because the experiment set with Setting 2 can give a 

reasonably great profitability with fast execution time. For instance, if / 二 900, 

then GA with Setting 1 requires about 1 day but GA with Setting 2 requires within 

1 hour. On average, GA with Setting 2 runs 24 times faster than that with Setting 

1. Besides, on average, the difference in profitabilities between GAs with Setting 1 

and Setting 2 is at most 0.4%. 

In the following experiments, we will choose GA in binary representation with 

Setting 2 to conduct our experiments. 
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2.9.5 Experimental Results 

We have done the experiment of the data set described above. We use a Pentium 

IV 1.5 GHz PC to conduct our experiment. We use Frontline System Solver to 

solve QP method. All algorithms other than QP are implemented in C/C++. The 

profitability is in terms of the percentage of the total profit in the data set. We 

compare our methods with HAP and the naive approach. The naive approach 

simply calculates the profits generated by each item for all transactions and select 

the J items with the greatest profits. Several synthetic data sets and a real data 

set are to be tested in our experiments. 

Example 4 (Naive Example) We use the same scenario in Table 2.1 and Table 

2.3 to illustrate the naive approach. The individual profit of each item is shown as 

follows. 

1 Individual Profit of Item Ii 

1 40 

2 35 

3 40 

4 5 
5 38 

6 1 
If J 二 3, the items with the greatest individual profits are selected. That means 

items h.h and h are selected. The benefits 61,63 and 65 are $0，$0 and $19 

respectively. The total profit of item selection is $19. 

• 

Synthetic Data 

In our experiments with synthetic data, the min-support used is 0.1%. The min-

support is used in the step individual count derivation in algorithm MPIS_Alg. 
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First of all, we have done an experiment on the IBM synthetic data with the 

variation of number of items selected when the profit follows log-normal distribution 

28] and the total number of items is equal to 1000. The profitability and execution 

time of algorithm QP, MPIS Alg, HAP and naive are shown in Figure 2.13 and 

Figure 2.14. The graph of number of remaining items after pruning Step is shown 

in Figure 2.17. Without the pruning step in Algorithm MPIS_Alg, the profitability 

and execution time are shown in Figure 2.15 and Figure 2.16. 

Secondly, we conducted an experiment for the HAP worst-case data set 1，where 

n = 1000. The profitability and the execution time against the number of items 

selected are shown in Figure 2.18 and Figure 2.19. For the HAP worst-case data 

set 2, similar graphs are shown in Figure 2.20 and Figure 2.21. The number of 

remaining items against J after the pruning step in MPIS_Alg can be found in 

Figure 2.22 

We are going to analyze and describe the execution time and profitability of 

the algorithms. 

1. Execution Time 

In the experiment of all data sets, QP approach gives fluctuation of execution 

time with the number of items. The execution time MPIS_Alg increases to 

a maximum value when the percentage of the number of items selected is 

approximately equal to 50% and decreases after that. Besides, QP approach 

gives the greatest execution time. Naive approach remains constant at the 

fastest execution time. HAP approach also remains unchanged at the second 

fastest execution time. 

(a) MPIS_Alg 

From the graph of the execution time against the selection, the execu-

tion time of MPIS_Alg increases from 0% selection to half of the selection 
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Graph of No. of Remaining Items after Pruning against no. of 
items selected 
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Figure 2.17: Graph of No. of Remaining Items 

after Pruning Step where n — 1000 and the 

profit follows log-normal distribution 

and then decreases afterwards. Actually, the execution time depends on 

two factors. The first factor is related to the complexity of each itera-

tion. If there are more items to be selected, the benefit calculation is 

more complex and updates to the benefit are more likely. The increase 

is related to the first factor. The second factor is related to the number 

of iterations in the algorithm. When J, the number of items selected, 

increases, the number of items to be removed in the iteration step de-

creases. Thus, the number of iterations decreases if J is large compared 

with n. The first factor is dominant when the selection is below 50% 

but the second factor becomes dominant when the slection is larger than 

50%. 

(b) Quadratic Programming 

The quadratic programming approach(QP) used in the Solver uses a 

variant of the Simplex method to determine feasible region and then 
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Graph of No. of Remaining Items after Pruning against no. of 
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after Pruning Step where n = 1000 for the data 

set which HAP performs worst 

uses the methods described in [26] to find the solution based on the 

property of the quadratic property. 

Simplex method is a systematic approach to find the optimal solution 

at the corner/extreme point of the solution set [20]. It first starts with 

a basic feasible solution. Then, it does an iterative step to improve 

the objective function by moving other basic feasible solutions. The 

approach used in the Solver only uses the step of finding the feasible 

region (or feasible sets) of Simplex method. 

'26] is the algorithm called A Finite Algorithm to Maximize Certain 

Pseudoconcave Functions on Polytopes. This algorithm is to find the op-

timum of certain nonlinear functions (quadratic functions in our case). 

It selectively decomposes the feasible sets into simplices of varying di-

mensions. Then, by using linear programming technique and a gradient 

criterion, a sequence of these simplices are selected based on calculus. 
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From this sequence, the interior maxima can be found. 

Thus, as the approach used in the Solver uses an iterative step based 

on the current state to determine the next step. The execution time 

is quite fluctuating as the execution time is mainly dependent on the 

problem (or which state the algorithm is). 

(c) G A 

The execution time of GAs usually increases with the number of items 

selected. This is because the computation time of the fitness function 

used in GAs increases with the number of items selected. 

(d) H A P 

HAP is an iterative approach to find the authority weight of each item. 

The formula for the update of the authority weight is in the form a 二 

Mcl, where a is a vector of dimension n representing the authority weight 

of n items and M is an n x n matrix used in HAP to update the authority 

weight. 

In our experiment, we observed that the authority weights converges 

rapidly. Besides, [31] also stated that the convergence is quite rapid 

(usually about 20 iterations). 

(e) Naive 

The naive approach performs the fastest. It simply calculates the profits 

generated of each item for all transactions and select the J items with 

the greatest profits. 

It is observed the execution time of this approach remains unchanged 

because the change is insignificant as the execution time is quite small. 

(f) Comparison 

Moreover, QP performs the greatest execution time compared with other 

algorithms. This is because this approach does not use any heuristics for 
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this problem but other algorithms use some heuristics of the problem 

that will cause the execution time shorter. Naive gives the shortest 

execution time as there are only simple fast operations. HAP gives the 

second shortest execution time for this small synthetic data set. (But, 

it gives the greatest execution time for a large data set (shown in the 

real data set).) As mentioned before, the number of iterations involved 

are quite small. MPIS_Alg is ranked with the second greatest execution 

time, which uses the heuristics approach and greedy approach to solve 

this problem. GA is faster than MPIS_Alg as, with Setting 2, it does 

not involve a great number of chromosomes required for computation. 

Thus, it runs faster than MPIS_Alg. 

2. Profitability 

For profitability, we observe that, for all data sets, the naive approach gives 

the lowest profitability among all algorithms. This is because the naive ap-

proach does not consider any cross-selling effect which is involved in the 

calculation of the profitability. 

In the experiment with the variation of the number of items selected, it is 

quite trivial that the profitabilities of all algorithms increase when the number 

of items selected increases. 

For the HAP worst-case data set 1, the profitabilities of MPIS_Alg, QP, GA 

and Naive are the greatest. But, HAP performs the worst compared with all 

algorithms. However, for the HAP worst-case data set 1, MPIS_Alg gives the 

greatest profitability among all algorithms. In addition to naive approach, 

HAP approach gives the second worst profitability. 
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Real Data Set 

In this drug store data set, we have conducted a similar experiment with synthetic 

data set. ^ 

With the consideration of all items, the profitability and the execution time 

with the variation of number of items selected are shown in Figure 2.23, Figure 

2.24 and Figure 2.25. 

We can see that HAP really gives the lowest profitability. However, MPIS_Alg 

and GA give a greater profitability than naive approach because naive approach 

does not consider any cross-selling effect. 

In the drug store data set, HAP gives the worst profitability. The reason is 

described as follows. 

In the dataset, there are some items with zero-profit and high authority weight 

(described in Section 2.2), yielding a low estimated total profit of the item selection. 

Suppose item li has zero profit, it is likely a good buy and hence can lead to high 

support. If there are sufficient number of purchases of other item, says item Ij, 

with item li and if item li usually occur in the transactions containing item Ij, 

the confidence of the rule Ij li is quite high. The above situations occur quite 

naturally when the frequency of li is quite high. This creates a high authority 

weight for item li. Items like li would lead to smaller profitability for HAP. 

MPIS_Alg and GA give a greater profitability than naive approach in real data 

set. For instance, if J = 20, 902, the difference in profitabilities between these two 

approaches is 2%. In the real data set, the total profit is equal to $1,006,970. The 

difference in 2% profitability corresponds to $20,139.4, which is a significant value. 
9 Quadratic programming usually does not work well for the problems of reasonable size (which 

especially occur in the real life data). For instance, quadratic programming cannot solve the 

problem with reasonable time. The current Quadratic Programming (QP) Solver [2] can only 

solve not more than 2000 variables. In the real data set, there are 26,128 variables (i.e. items). 

This solver cannot solve such large problem. 
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If J=8709, the difference in profitabilities between the two approaches is about 8%, 

which corresponds to $80,557.6. 

On average, the execution time of HAP is 6.5 times slower than MPIS_Alg 

when the problem size is large. HAP requires 6 days to find the item selection 

while MPIS_Alg requires about 1 day to find the solution. Since item selection is 

typically performed once in a while, only when a store should update the types of 

products it carries, the execution time is acceptable. Though the naive method is 

much faster, the profit gain consideration from MPIS-Alg would make it the choice 

for an application. 

The profitabilities/execution time of MPIS_Alg and GA are quite similar. 

It is noted that, if the total number of items is 1000, the execution time of 

HAP is smaller than that of MPIS_Alg. However, when the problem size is large 

and the total number of items is 26,128, the execution time of HAP is much slower 

than MPIS_Alg. This means that the execution time of HAP increases significantly 

with the problem size increases compared with MPIS_Alg. In HAP, there is a cross-

selling matrix B^ to be updated. The matrix is of the order n x n. Let a be the 

n X 1 vector representing the authority weight of each item. In HAP, there is a 

process to update Ma iteratively, where M — B^B. We can see that there is 

matrix multiplication of matrix M with vector a. It is noted how much memory 

used for the matrix M used. If double data type (8 bytes) is used for storage of 

each entry, then the matrix requires the memory size of about 5.08GB. If float data 

type (4 bytes) is used, about 2.5GB memory size is used. This large matrix cannot 

fit into the physical memory, causing more disk access for virtual memory. As this 

matrix is sparse, a hash data structure can also be used. Only non-zero entries are 

stored in the hash data structure. In the real data set, less than 5MB memory size 

are needed if a hash structure is used. 

On the other hand, algorithm MPIS_Alg contain a pruning step which remove 
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the items that has little chance in the final selection. After this pruning step, only 

a few remaining items are there. So, the execution time of MPIS_Alg is much fewer. 

For instance, if the number of items to be selected J is 500, then there are only 

538 remaining items after the step. 

We have also tried other sets of experiments where not all the items are con-

sidered but only those above a minimum support threshold of 0.05% or 0.1% are 

considered. However, the resulting profitabilities are much lower than those shown 

in Figure 2.23. For instance, if J = 500 and min-support = 0.05%, the profitability 

of naive and MPIS_Alg is about 1.3%. This is explained by the existence of items 

that generate high profits but which are not purchased frequently enough to be 

counted given the support thresholds. 

2.9.6 Scalability 

We have also studied the scalability of all algorithms (Naive, MPIS_Alg, QP, HAP 

and GA) we studied. We conducted two kinds of such experiment. The first one is 

to study the variation of execution time against the number of items n. The other 

one is to study how the number of transactions m affects the execution time. 

Similar to the synthetic data set we used, we generated a number of data sets 

by using IBM synthetic data generator [10] with the following parameters: 10 items 

per transaction on average, and 4 items per frequent itemset on average. The profit 

distribution is approximated by a lognormal distribution [28]. 10% of items have 

the low profit range between $0.1 and $ 1， 8 0 % of items have the medium profit 

range between $1 and $5, and 10% of items have the high profit range between $5 

and $10. For the experiment of execution time with the variation of the number 

of items, the number of transactions is set to be 10,000 while the number of items 

is varied. Similarly, for the experiment of execution time against the number of 

transactions, the number of items is set to be 1,000 while the number of transactions 
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is varied. For each kind of experiment, we conducted the experiments 5 times with 

different data sets generated from IBM synthetic data set with different random 

seeds. The results are shown in Figure 2.26 where the execution time is the average 

of different random sets. 

We observed that the execution time of most algorithms increases with the 

number of transactions and the number of items. It is quite trivial because most 

algorithms run longer with a larger data size. However, we will describe one special 

line for each graph as it does not follow a general trend of other algorithms. For 

the graph of execution time against the number of items n, we observed that the 

line of GA decrease exponentially with n. As we remember, we generated the data 

sets with the IBM synthetic data generator. The setting of the number of items per 

transaction (i.e. 10 items per transaction) is the same for different data sets with 

different total number of items n. So, with a smaller value of n, there is a higher 

chance that each item co-occurs with other items. In other words, the number of 

items which co-occurs with an item is greater. This will leads to a greater number 

of branches of each node in FP-tree and FP-MPIS-tree. As our implementation of 

computation of the confidence in the objective function is heavily dependent on FP-

tree and FP-MPIS-tree, it is required to traverse more branches for the computation 

of the objective function, which makes algorithm GA slower. Compared with other 

algorithms, GA requires to have a huge amount of computations of the objective 

functions. So, the execution time of GA decreases with n. 

There is another algorithm which does not follow the general trend. For the 

graph of execution time against the number of transactions m, the line of QP 

remains nearly the same. We should note that the fundamental execution time of 

QP is based on the dimensionality of the quadratic objective function. No matter 

how the number of transactions changes, QP runs for nearly the same execution 

time. 
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2.10 Conclusion 

One of the applications of the concepts of association rule - the maximal-profit item 

selection problem with cross-selling effect (MPIS) is discussed in this thesis. We 

propose a modelling by the loss rule, which is used in the formulation of the total 

profit of the item selection. We propose both a quadratic programming approach 

and a heuristical approach to solve the MPIS problem. We show by experiments 

that these methods are efficient and highly effective. 

We believe that much future works can be done. The heuristical method can 

be enhanced with known methodologies such as hill climbing. Expert knowledge 

can be included in the methods, and the definition of the problem can be changed 

in different ways to reflect different user environments. We also plan to analyze the 

performance of our algorithm in term of running time in order to compare with 

our empirical results. 

We may study a variation of the problem with the space constraints. As some 

managers of a store may need to decide to select a subset of items in order to save 

spaces in the store, the space constraint can be added into our problem. In the new 

problem, the size of each item and the space of the store are some of the inputs. 

Then, the problem is to find a set of items and the number of storage units such 

that the profit of item selection is maximized and the space at the store is fully 

utilized. 

Moreover, item selection can be involved with an additional constraint of cat-

egories. That means each item belongs to a specific category. For example, item 

cheese belongs to category food while item pencil belongs to category stationery. 

The problem can be formulated as an original item selection such that the number 

of selected items in each category should be greater than or equal to a user-defined 

number. 



Chapter 3 

ISM 
3.1 Introduction 

Recently, there have been some researchers [21, 42, 30] who proposed the appli-

cation of selection problem for marketing. Their problem is to find a subset of 

customers which is valuable to be marketed in order that those customers to be 

marketed can persuade their friends to purchase the items in the store (Such phe-

nomenon is called "word-of-mouth" effect). Such marketing can boost the sales 

of the store. However, those proposed approaches are dealing with the customer 

selection. Item selection for marketing is still an important problem in a typical 

store. Manager in a store may want to choose a subset of items in the store for mar-

keting in order to boost the sales of other items which are not being marketed with 

the cross-selling effect that customers may purchase more non-marketing items if 

they purchase marketing items. However, the models of previous work [21, 42, 30 

cannot deal with our item selection problem, which will be discussed in this thesis. 

The problem Item Selection for Marketing (ISM) with cross-selling effect is 

addressed in this thesis. ISM is to find a subset of items as marketing items so 

that, after a marketing campaign on these selected marketing items is promoted, 

the whole sales of the store will be increased and the store will earn much money. 

107 
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In this chapter, the problem of item marketing is studied. Besides, we prove 

that a simple version of this problem is NP-hard. We also proposed two algorithms 

to solve this problem. One is a hill-climbing approach while the other is a classical 

optimization approach. In our experiment, both approaches are quite effective and 

efficient. 

The remaining in this chapter is organized as follows. Section 3.2 introduces the 

related work of our problem. Section 3.3 gives a formal definition of our problem. 

Section 3.4 presents the details of the cross selling effect by association rule - gain 

rule. Section 3.5 and Section 3.6 gives our proposed algorithms - QP and Hill 

Climbing. Section 3.7 presents our performance study. Section 3.8 summarizes our 

study. 

3.2 Related Work 

In our modeling, we adopt the association rules to model the marketing of items. 

Besides, we also utilize the network effect concerned in the papers addressed in the 

field of network model. 

3.2.1 Network Model 

In the traditional research of social networks, [13] proposed a diffusion model for 

the “ word-of-mouth" effect. [37] summaries the trend of the social networks in the 

literature. Besides, there are some recent related works ([21], [42] and [30]) on the 

selection problem on viral marketing. 

Social Network Model 

In the literature of social networks, there are some related works (e.g. [13] and 

37]). The researchers in the literature investigated the diffusion processes for 

"word-of-mouth" effect in the success of the new products. 
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Besides, in the social network model described in [50], the selection of a subset 

of nodes in the network is based on the degree centrality and distance centrality. 

There are some weaknesses. 

1. The approach based on degree centrality and distance centrality cannot han-

dle well the case that most of the highly central nodes (i.e. highest-degree 

nodes) are in a cluster so that an selection of those nodes in the cluster is 

unnecessary. 

Domingos's and Richardson's Model 

21] and [42] introduced to employ network effects (or network influence) in the 

application of marketing. The determination of marketing strategy with the use of 

network effects is called viral marketing. 

Domingos's and Richardson proposes two models ([21] and [42]). 

In the first model, [21] proposed a probabilistic model to select a subset of 

customers in order to maximize the total profit with the the considerations of 

the "word-of-mouth" effects. [21] claimed that this problem was intractable and 

proposed three approximate procedures to tackle this problem. The approximate 

procedures are single pass, greedy search and hill-climbing search. In [21]，s experi-

ments, among three approximate procedures, hill-climbing search gives the greatest 

profit. 

The second model proposed by [42] was just similar to [21]. However, [21 

modeled this network effect with a non-linear function but [42] adopted a simple 

linear model to approximate this effect. As a linear approximation is used in [42], 

an optimal solution of customer selection could be obtained. 

However, there is a weakness. The probability function that a customer pur-

chases a product in terms of the marketing action in the network should be differ-

ent iable. 
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Kempe's, Kleinberg's and Tardos's Model 

Kempe's, Kleinberg's and Tardos's Model [30] was an operational model from math-

ematical sociology and interaction particle systems. They described two models -

Linear Threshold Model and Independent Cascade Model They also developed a 

general framework based on submodular functions in order to employ the a perfor-

mance guarantee of such functions proved by some previous work. Their proposed 

approach has a proved guarantee with some properties of the functions. In their ex-

periment, the approach outperformed the traditional approaches in social network 

(e.g. degree centrality and distance centrality). 

But, the model has some weaknesses. 

1. As their model depends heavily on submodular functions and the property 

of the function. It reduces the flexibility of solving some kinds of problems. 

As stated in [30], it is too not trivial to provide a guarantee in a general 

threshold and cascade models as those models are so broad that some models 

cannot utilize the submodular functions. 

2. Let hy{x) be the probability that the node v will become active if the mar-

keting strategy x is used. In [30], the function hy{x) should be twice differ-

ent iable, non-decreasing and concave so that their proposed approach have 

the proved guarantee. However, [30] did not show that it was easy to de-

fine some functions with such properties. Besides, we also believe that it 

is a difficult task to define a continuous non-decreasing function with twice-

different iable and concave property. Thus, their proposed general marketing 

strategies cannot solve the daily life problem with proved guarantee easily. 

Common Weakness 

In such kinds of network model, there are the following common weaknesses. 
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1. There is no knowledge of the function used in their models. That means the 

function may be independent of the customer behavior and the function is 

constructed to estimate the customer behavior. That is, the models make up 

some functions which may not be a correct model for the real world. 

2. The functions used in their models are so simple that it cannot be applicable 

in the real world. For instance, some of the models are modeled by adding the 

weightings of all neighbors of a node. Such models cannot estimate accurately 

the influence of the neighbors. The influence value should be equal to a value 

smaller than the sum of the weightings of all neighbors, because there exist 

some neighbors which contribute the same effect on a node, which makes the 

total net effect on the node with a smaller value. 

3. Their models lack sufficient data to support. Their customer selection model 

require the information between customers. However, it is difficult to obtain 

such kinds of information in the data set. [42]uses the estimate of equal in-

fluence weighting of neighbors, which loses the real world's unequal influence 

weightings between people. Besides, some researchers [30] propose to utilize a 

collection of the research papers to obtain the information between customers. 

However, as pointed out in [30], there are still some researchers who have not 

published papers together but are still good friends (or neigbhors) with each 

other, which introduces a high weighting of network influence. Moreover, 

such data sets only obtain the information of customers in research domain. 

Real-world enterprizes need the customer behavior not only from researchers 

but also the normal residents in the world. 



CHAPTER 2. MPIS 112 

3.3 Problem Definition 

Item Selection for Marketing (ISM) is a problem to select a set of items for mar-

keting, called marketing item, so as to maximize the total profit of marketing items 

and non-marketing items among all choices. Given a data set with m transactions, 

力1’ 力2,…’力m, and n items, h.h, •••Jn- Let I = The profit of item 

la in transaction ti before marketing is given by prof {la,U). Let 6' C / be a set 

of selected items. In each transaction ti, we define two symbols, t[ and di, for the 

calculation of the total profit. 

t[ — unS, di = ti — 

Symbol Description 

力1,力2，• ••，力m given transactions 

Ii, L2,…，In given items 
prof {Ia^ ti) original profit of item la in transaction U 

I = {/1，/2,…，In} Itemset of all items 
S set of the selected items 
t[ set of items selected in S in transaction U 

di set of items not selected in S in transaction ti 

Before going to define the profit generated after marketing, we are going to give 

the original profit before marketing for all transactions. 

Definition 11 (Profit Before Marketing) The original profit Profit^ before 

marketing for all transactions is defined as: 
m 

Profito = Frof(Ja,ti� 
i—l la&i 

Now, we are going to describe the phenomenon after marketing. Suppose we 

select a subset S of marketing items. Marketing actions can be taken for all items 
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in the set S (e.g. discount for the items). Let us consider a transaction U containing 

the marketing items la and non-marketing items lb. If we market item la with cost 

cost[Ia,ti)d (e.g. discount of each item), the profit of item la after marketing in 

transaction ti will become prof {la, U) — cost {la, U). After the marketing actions 

are taken, more marketing items, says la, will be purchased. The increase ratio of 

item la is defined by a{{Ia})丄.If a{{Ia}) = 1, then there is no increase of the 

sales of items la. If ^({7^}) = 2, then the sales of la is double compared with the 

sales before marketing. 

On the other hand, without the consideration of cross-selling effect due to mar-

keting, the profit of non-marketing items lb is still prof {It, U). With the consider-

ation of cross-selling effects, some of the non-marketing items It will be purchased 

more if there is an increase of sales of marketing items la. The cross-selling fac-

tor is modelled by cs factor {T, where T is a set of marketing items la, and 

0 < cs factor {T^ I^) < 1. That is, more customers may come to buy item It if some 

other items in T are being marketed, cs factor {T, Ifj) is the fraction of profit of 

item lb that will be boosted in a transaction if the items in set T is being mar-

keted. The increase of the sale of item lb is modelled by (a(T) - l)cs factor (T, lb), 

where a{T) ^ is the increase ratio of the purchase of items in T. If a{T) — 1, then 

there is no increase of sales of marketing items in set T. So, there is no increase of 

sales of non-marketing item lb. The term (a(T) — l)cs factor {T, It) becomes zero. 

Similarly, if a{T) = 2, the sales of items in set T is doubled. Thus, the increase of 

sales is modelled by cs factor {T, lb). 

Definition 12 (Profit After Marketing) The profit after marketing Profit! is 

1 alpha (Ji) generalizes the case when the a(Ii) is fixed for all items h. We note that different 

items may have their different increase ratio of the sales (i.e. a{Ii)). However, it is difficult to 

predict this parameter a{Ii) for each item h . For simplicity, we set all a{Ii) to be the same (e.g. 

ao) in this thesis, which is the same as [21, 42]. 
2If a{Ii) = ao for all i, then it is easy to see that a{T) — a � f o r any T (a subset of I) • 
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defined as follows. 

m 
Profih = E Cy{{Ia}){prof{Ia^U) - COSt(Ia,U)) 

[laetr 

+ 5^(1 + — l)csfactor{t'^,h))prof{h,U) 
hedi _ 

The objective of marketing is to increase the profit gain compared with the 

profit before marketing. The profit gain is defined as follows. 

Definition 13 (Profit Gain) Profit gain is : 

Profit Gain — Profiti - Profito 

From the above definition, we can derive the profit gain as follows. 

Profit Gain 二 Profiti — Profito 
m 

= E E Oi{{Ia}){prof{Ia,ti) - COSt{Ia,ti)) 
^=1 Uaet'. 

+ E (1 + 幢—l)csfactor{tlh))prof{h,U) 
h^di _ 
m 

prof [Ia, U) (By Definition 11 and 12) 
i=l lâ U 

m 
= E E C^{{Ia}){prof{Ia,U) - COSt{Ia,U)) 

+ ；^ (1 + — l ) cs factor i i ih��prof [ IbA) 
hedi _ 

_ • 
m  

prof {Ia, ti) + Y^ prof{h,ti) 
i=l llaEt'. hedi _ 

m 

二 E E [(^(Ua}) - l)prof[Ia.U) - a{{Ia})cOSt[IaM 
i 
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+ Y^ — l)csfactorit'“h)prof(hA) (3.1) 
h^di _ 

ISM: Given a set of transactions with profits assigned to each item in each 

transaction and the cross-selling factors, csf actor{), pick a set S from all given 

items which gives a maximum profit gain. 

This problem is at least as difficult as the following decision problem, which we 

call the decision problem for ISM. 

ISM Decision Problem: Given a set of items and a set of transactions with 

profits assigned to each item in each transaction, a minimum profit gain G, and 

cross-selling factors, csfactor{), can we pick a set S such that Profit Gain > G1 

Note that the cross-selling factor can be determined in different ways, one way 

is by the domain experts. We may also have a way to derive this factor from the 

given history of transactions. In our proof in the following, we consider the very 

simple version where cs factor la) = 1 for any non-empty set of t[. That is, any 

selected items in the transaction will increase the profit of the other items. This 

may be a much simplified version of the problem, but it is still very difficult. 

Theorem 4 (NP-hardness) The item selection for marketing (ISM) decision 

problem where csf actor la) = 1 for di ^ (f) and cs factor la) = 0 for 二 小 

is NP-hard. 

Proof: 

We shall transform the problem of MAX CUT to the ISM problem. MAX CUT 

22] is an NP-complete problem defined as follows: 

M A X CUT: 

Given a graph - {V,E) with weight w(e) = 1 for each e e E and positive integer 

K, is there a partition of V into disjoint sets Vi and V2 such that the sum of the 

weights of the edges from E that have one endpoint in Vi and one endpoint in V2 

is at least K1 
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The transformation from MAXCUT to ISM problem is described as follows. 

1. G = K 

2. a{{Ia}) = 2 

3. a � 二 2 

4. For each vertex v ^V, construct an item. 

5. For each edge e £ E, where e : (i»i，t>2), create a transaction with 2 items 

{VI,V2}. 

6. Set prof{Ij,ti) = 1 and cost (la, ti) = 0.5, where U is a transaction created in 

the above, i — 1,2, •••，and Ij is an item in ti. 

m 
Profit Gain = 二 ^ ((2 - 1) x 1 - 2 x 0.5) 

i= l \_Iaet'. 

+ ^ (2 - 1) X csf a c t o r X 1 
hedi _ 

(By (3.1)) 
m 

二 XI 0 + L csfactor{t'i.h) 
i=l L h^di _ 
m 

= E [ csfactor{t[,h) 
i=l h^di 

It is easy to see that this transformation can be constructed in polynomial time. 

It is also easy to verify that when the problem is solved in the transformed ISM, the 

original MAX CUT problem is also solved. Since MAX CUT is an NP-complete 

problem, ISM problem is NP-hard. 

Consider the case where the cut size of the bipartition of the graph G is K. Let 

the set of corresponding edges for the cut be C. That is, in the ISM problem, each 
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corresponding transaction should contain a pair of items of different partitions. It 

is easy to see that if the set of items in the one of the partition are chosen in the 

set S then the profit gain will be greater than G. That is, the vertices in the one 

of the partition in MAXCUT is the solution of the marketing items in ISM. Tc are 

the only transaction that contribute to the profit gain. In a transaction not in T^ 

if an item Ii in C exists, it co-exists with another item which is also in C, since the 

csfactor is 0，the profit gain from item Ii in the transaction is 0. 

Let us illustrate the above proof with an example. If there is a MAX CUT with 

3-edge cut shown in Figure 3.1, there will be transactions of the following form for 

laJbJc and Id： rTv-Lrr^ vvxq^Xjy rry^fT) 
Figure 3.1: A solution of MAXCUT problem 

Transaction No. la h Ic Id 

1 1 0 1 0 
2 1 0 0 1 
3 0 1 1 0 

3.4 Association Based Cross-Selling Effect 

csfactor{t[,Ij) is modelled by conf{ot[ Ij). The reason is described as follows. 

A transaction can be viewed as a customer behavior. In transaction U, there are 
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the cross-selling effect between any marketing items la in t- and non-marketing 

items in set di. Let us consider some cases. If all items in ti are being marketed, 

then there are non-marketing items, the profit gain is the difference between profit 

of marketing items before marketing and that after marketing. If all items in ti 

are not marketed, as there are no marketing items, in transaction ti, there is no 

cross-selling effect for marketing items in transaction ti. Thus, the profit gain due 

to marketing becomes zero. Now, we are going to consider the case of transaction 

containing both marketing items and non-marketing items. Suppose the customer 

purchases any marketing items in set t-, always purchases non-marketing items 

Ib. This phenomenon is modelled by a gain rule ot- -> Ib. The definition of the 

confidence of this rule is the same as the usual definition of association rules. That 

is, 
no. of transactions containing any items in set t[ and item Ib 

no. of transactions containing any items in set 

The greater the value is, the greater the cross-selling effect is. 

3.5 Quadratic Programming 

Linear programming or non-linear programming has been applied for optimization 

problems in many companies or businesses and has saved millions of dollars in their 

running [25]. The problem involves a number of decision variables, an objective 

function in terms of these variables to be maximized or minimized, and a set of con-

straints stated as inequalities in terms of the variables. In linear programming, the 

objective function is a linear function of the variables. In quadratic programming, 

the objective function must be quadratic. That means the terms in the objective 

function involve the square of a variable or the product of two variables. If 5 is the 

vector of all variables, a general form of such a function is P = f^s + ^s'^Qs where 

/ is a vector and Q is a symmetric matrix. If the variables take binary values of 0 

and 1，the problem is called zero-one quadratic programming. 
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In this section, we propose to tackle the problem of ISM by means of zero-one 

quadratic programming. We shall show that the problem can be approximated 

by a quadratic programming problem. Let s : (<si<s2…Syi)̂  be a binary vector 

representing which items are selected to be marketed in the set S. 5̂  = 1 if item 

Ii is selected in the output. Otherwise, Si = 0. The total profit of item selection 

P can be approximated by the quadratic form f^s + ^s^Qs where / is a vector of 

length n and Q is an n by n matrix in which the entries are derived from the given 

transactions. The objective is to maximize f^s + 

We are first describing the approach of approximating the profit gain P in 

quadratic form in Section 3.5.1. Then, based on this quadratic form, we will outline 

and describe our algorithm in Section 3.5.2. 

3.5.1 Quadratic Form 

In this section, we are going to describe how to approximate the total profit gain 

P. We have some assumptions. For simplicity, we assume a{{Ii}) 二 a � f o r i = 

1,2, ...,n. If a{{Ii}) are all equal to for i 二 1,2,…,n’ and I' is a subset of set 

I = { / i , / 2 , . . . / n } , then a{I') = a � . 

Now, we are going to describe how we approximate confidence conf {ot[ Ij) 

in Theorem 5. Before describing it, we would like to state Lemma 5. 

Lemma 5 Suppose c(s) = b̂ s+̂ TMŝ  where s,a and b are n-dimension vectors, 

and M is an n by n matrix. c(s) is approximated and linearized by c(so) + 

— So)； where s q is a fixed n-dimension vector and 
n 

, (b^s + sTMs)at - aTs(6t + 2 E Sjintj) 
dc{s) — 一 — dc[s) j=i 

二 e 二、et et = I = (bTs + STMS)2 

入T 
for t = 1,2, ...,n 
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Proof: 

By Taylor's Series [47], function c(s) can be written as: 

/ � / � dc(s) T 1 T c^^c(s) T 
c(s) = c(so)+ ( s - s o ) + - ( s - s o ) ' — ^ (S — So) + … 

以 S s=so ^ 以 S s=so 

, � dcis) T 
~ c(so) + (s - So) 

你 S = S o 

c(s) is approximated by taking the first two terms in Taylor's Series. 

By differentiating c(s) with respect to s, ^ ^ = e can be obtained by 
n 

/ (bTs + sTMs)at - aTs(6t + 2 J] Sjmtj) 
dc{s) — — ( — dc{s) ^  

二 e = l̂ et et 二 ^ = (bTs + sTMs)2 

for t = 1, 2 , n 

U 

Theorem 5 The confidence conf{ot[ — Ij) can be approximated by c^j + cJ '^(s-

so), where c^ is a constant, and c}^ and sq is an n-dimension vector. Let c(s)— 
T 

bTs%TMs^ —ere 
rp 

a = {ak\cik = rikjtik for k = 1,2, ...,n) 

b = {bk\bk = riktik for k = 1,2, ...,n) 

M -— (jnki\mki - -rikitiktii for k,l = 1, 2 , n ) 

c ^ . and c- ^ have the following values and s q is a fixed vector. 
IJ 

4 = c(so) 
1 T — dc(s) T 
IJ (is s=so 
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Proof: 

conf(ot[ Ij) 
— n o . of transactions containing Ij and at least one item in set 

no. of transactions containing at least one item in set t[ 
n 

� ^  
� n n 

E - E 4 E L i riklt'u 
k=l k=l 

(by the principle of inclusion-exclusion and approximation) 
n 

'^kjtik^k 
^  

— n n n 
S '^kUkSk — Z) kkSk Z) ^klUlSl 
k=l k=l 1=1 

n 

— ^  

— n n 
^ktikSk ~ S -5/0 I ] rikltiktilSi 

k=l k=l 1=1 
T a s 

二 bTs + sTMS 

where 

�T 
a — = nfcjtifc for/c 二 1,2,…，几) 

,T 
b = = nfctifc for A: 二 1,2,…，几) 

M 二 (jnki\mki 二 -nkitiktii for k,l = 1,2, ...,n) 

Let c(s) = bTs%TMs-
By Lemma 5 and choosing a fiexed vector 5o, 

(\ , � dc{s) T 
c s) « c(so + — ^ S - So) as s=so 

=4+cfjT(s — So) 

where 

4 = c(so) 
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1 T — dc(s) T 
IJ ds s=so 

• 
From the above proof, we can observe that there are two types of approxima-

tions in the calculation of the confidence. The first approximation is to remove the 

terms of order greater than 1 in the Taylor series used in the function c(s). How-

ever, if the chosen initial point S q is near to the optimal point, the error due to the 

approximation is small. In our experiment, we choose the approach of direct mar-

keting for the initialization of sq. The second approximation is the approximated 

evaluation of the confidence by using the principle of inclusion-exclusion. As the 

objective function includes the evaluation of confidence with these two approxima-

tions, the objective profit gain approximated in the quadratic programming may 

be less accurate. 

Now, we are going to describe how the profit gain P can be approximated in 

the quadratic form in Theorem 6. 

Theorem 6 Let c}�= cj) 二 The profit gain P can be approximated by the 

following form. 

P = L + f'^s + “ T H S 

where 

m m n 

i=l i二1j=l 
m 

f = E a i 
i=i 

二 (/jl/j = f l (tij [{ao — l)prof{Ij, ti) - aocost(I 

n 
- l)prof{Ik,ti) 

k=l 
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X 
-tij�aQ - - c ?| T s �地 f o r j 二 l,2,._.,n 

m m 
H = X^Hi = {hjk\hjk = -2'^tij{ao — l)prof{Ij,ti)(f)k for j, k = l,2,...,n) 

i=l i=l 

Proof: 

From (3.1), the profit gain is: 

m 
Profit Gain = — — a{{Ia})cOSt{Ia,U)] 

+ ^ {a{t[) — l ) c o n / K 4 I,)prof{h,U) 
hedi _ 

m n 
二 a t'ij [(ao - l)prof{Ij,ti) — aQCOst{Ij,ti) 

n 
+ Yldij{aQ - l)conf(ot', Ij)prof{Ij,U) 

j=i _ 
m n 

= [ [ U j S j [(ceo — l)prof(Ij,ti} — aQCOst(Jj, U) 

n 
+ — l)conf{otl 4 Ij)prof{Ij,U) 

j=i _ 
m n 

二 ^ ^ tij [(ao - l)prof{Ij,ti) - aocost{Ij,ti)] Sj 
i二 1 j 二1 

n 

+ E f e ' - t 的 - 1 W(•力;—Ij)prof { I j . U) (3.2) 
j=i -

We now consider the term — UjSj){ao — l)conf{ot[ Ij)prof{Ij,U). 
n 

Y^Mj 一 力 - l)conf{ot'^ 4 Ij)prof{Ij,U) 
j二1 

n 
二 (ao - 1) (力ij — UjSj)conf(ot[ — Ij)prof(Ij,U) 
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n 

~ (ao - 1) — UjSj)(cl + cjj T(s — so))prof(Ij,U) (By Theorem 5) 

n 

= ( a o - 1 )公 t i j - tijSj){4j + cjj Ts - c?j ^So)prof{Ij, ti) 
3=1 

n 
= { a o — 1) — t 狗 滅 : j - 4 Tso) + 4 ^s)prof(Ij, U) 

3 = 1 
n 

= - 1) — 4 Tso) + tzjclj Ts — — 4 Tso) 
J=1 

/ n n 

= ( a o - 1) - ^ij + prof [I j , t i ) -

n n \ 

^ UjsMj - 4 Tso) X prof {IJ, ti) - UjSjcl^ Ts X profilj, U) 
j=i j=i ) 

/ n n 
= ( a o - 1) Z t w r o / ( / ” t z ) ( 4 - — c F s o ) + E % p r o / ( / ” f z ) 4 T s — 

=1 
n n \ 

j=i 何 ) 
/ n n n 

二 （ao — 1) E — 4 Tso) + E ^ojV” “） E 小kSk — 
\j=l k=l 

n n n \ 

j=l J=1 &=1 / 
where Cjj = 0 = ((/)/c) 

/ n n n 

=(ao - 1) 5>zjPro/(J” 力…4 — 4 Tso)+ 力”‘;̂ ro/(J” — 
乂j二 1 fc=i j二 1 

n n n \ 

Y. ttjProfilj, to ( 4 — cfj - 工 Ujprof{Ij,U)(l)kSk 
j=i j=i k=i J 
n 

二 E �如 0 — 1 W ( / ” - 4 Tso) + 

n n 
— ̂ )prof{Ij,U)(t)k)sk — 

/c = l j = l 
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n 
E 力”(ao - — c i TSO)5̂ -— 
J=i 

n n 
^^j^^tji^o - l)prof{Ij,ti)(l)kSk 
j=i k^i 

n 
= 力 — — cfj Tso) + 

j=i 
n n 

- ^)prof{Ik,ti)(j)j)sj — 
j=l k=l 

n 

j=i 
n n 

[SjJ^ti如-l)prof{Ij,ti)^kSk 
j=l k=l 

n 
二 5Zt”(ao - l)prof{Ij,U){4j — Cij Tso) + 

j=i 
n / n \ 

E E 力认 (购— �/ U / c , t z ) — — l ) p r o / ( / „ t , ) ( 4 - 4 T s o地. s ] 
j=l \/c=l ) 

n n 
一 l)prof{Ij,ti)(j)kSk 

From (3.2), 

Profit Gain 
m n 

= [ ( « o — l)prof(Ij,ti) — aocost(IJ,t^)] s] 
i二 1 

n 
+ -tzjSj)(ao - l)conf{ot- — Ij)prof (Ij,U) 

j=i -
m n 

二 ^ ^ Uj [(ao - l)prof{Ij, ti) - aQCOst{Ij,ti)\ 

— l)prof{Ij,U){c% — 4 Ts�) + 
j=i � 

n / n \ 
^ [Y^Ukiao — l)prof{h,U) - Uj(ao — - 4 1 s] 
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n n 

—^Sj — l)prof(Ij,ti)(f)kSk 
j=l k=l -

m n 

= - l)prof{Ij,U){cl - C?j '^so) + 
i=l j=l 

n 
XUj [(^0 - l)prof{Ij,ti) — aocost{Ij,ti)] Sj 
J 二1 

n / n \ 
+ E 力认 ( � � - u) - Uj{ao — l)prof{Ij,U){cl — cfj '^sq)^,- s] 

J 二1 ) 

n n 
—"^SjY^tijiao - l)prof{Ij,U)(l)kSk+ 

3=1 k=l _ 
m n 

i=l j=l 
n ( 

XI [Uj [(ao — l)prof{Ij,U) — aQCOst{Ij,ti)] + 

n \ 
J2Uk{ao - l)prof{Ik,U) — tij{ao - l )pro / ( / „ — cjj ^so)(f>jjsj + 
/c=l 

n n 
- - l)prof{Ij,U)(l)kSk 

j=l k—l _ 
m 

= ^ Li ^ a^s + s^HiS 
i=l 

where 

n 

U - - l)prof{Ij,U){c% - cfj ^so) 
j=i 

ai = g 

二 ：识I办 二 tij [(«0 — l)prof{Ij,U) - aocost{Ij,U)] 
n 

+ - l)prof{Ik,U) 
k=l 

—ti如Q — — cjj Tso地.for j = 1,2,…,n) 

Hi = A 
二 {cLjkWjk 二 -2tij(ao - l)prof{Ij,U)(l)k for j,k 二 l,2,..,n) 
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m 1 
Profit Gain 二 ^ ( L , + a^s + -s'^His) 

i=i ^ 
m m m -i 

i=l i=l i=l 
m m 1 m 

i=l i=l i=l 
(by Lemma 1 and Lemma 2) 

二 L + fTs + ^s'^Hs 

where 

m m n 
L = 二 E E , 咖 0 - l W ( i " ” t O ( 4 - c J j T s o ) 

i二 1 z=l j=l 
m 

f = 
i=l 
I 饥 f 

二 fj\fj = E r^J [(«o — l)prof{Ij,U) — aocost{Ij,U)] + 
V \ 
n 

力认Ô o - l)prof{Ik,U) 
k=l 

X 
—Uj{ao - l)prof{Ij,ti){cl - c}^ j for j 二 1,2,…，n乂 

m rn 
H = [ H i 二 = - 2二力咖 - l ) p r o / ( 7 ^‘，咖 forji.,A; 二 1,2,…,n) 

• 
It is noted that the above quadratic form is non-standard as there is a constant 

L in the above form and the matrix H is not symmetric. By the following corollary, 

the above non-standard quadratic form is transformed to the standard quadratic 

from. 

Corollary 2 Profit Gain P can be approximated hy P = f ^ s ' + 臺s'TQs' where Q 

is a symmetric n + 1 by n + 1 matrix, and s' and f ' are (n + 1)-dimension vectors. 
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Proof: 

P = L + fTs+“THs 

二 f'Ts, + is'TQs' (by Lemma 3) 
2 

where 
F 

for alH,i = l,2,...,n 

Q 二 (仍J) and qij = 0 for z = n + 1 and j 二 1, 2, n + 1 

0 for j — n + 1 and i = 1, 2 , n + 1 
� 

^ fj for j = 1,2, ...,n 
f' = and / j = 

L for j = n + 1 
x ( 

Sj for j = 1, 2,..., n 
s' — (s�)T and s'j = 

1 for j = n + 1 
\ 

• 
It is noted that the above quadratic form is dependent on the initial data point 

of n dimension binary vector, says so. In other words, the above quadratic form 

requires an input argument - SQ. After the above quadratic form takes so as its 

argument, the objective quadratic equation is formed. We can solve this objective 

quadratic equation with a standard solver. 

3.5.2 Algorithm 

Our quadratic programming approach is an iterative algorithm. At the first iter-

ation, a random data point 5o of n dimension binary vector is generated. Then, 

the value of this data point is put into the quadratic equation described above. 

The objective quadratic equation just formed is solved with a standard quadratic 



CHAPTER 2. MPIS 129 

solver. We can find a solution 5i which can maximize the objective quadratic 

function. For next iteration, we take the solution just found 5i as the initial data 

point of the quadratic form. We repeat the process until some stopping criteria 

are reached. Stopping criteria can be the number of loops and the convergence 

(e.g. the difference between the previous objective values and the current objective 

values). 

The following shows the outline of our algorithm. 

Algorithm 

1. Randomly start at initial point s )̂�) 

2. Use quadratic programming approach with objective function 

P 二 f'Ts' + “ 'TQs ' 
Zi 

to find a solution 

3. Repeat the above step with the initial point s^Q^ until some stopping criteria 

are reached. 

3.5.3 Example 

We are going to illustrate our QP in the following example. 

The following table shows 3 transactions and 3 items. Set a = 2. 

h h h 

ti 1 1 0 

t2 1 1 0 
h 1 0 1 

The number of occurrence ni of a single item U is shown in the following table: 

i rii 

1 3 
2 2 

3 1 
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The number of co-occurrence Uij of two items, item Ii and item Ij. The values 

are shown in the following table. 

i/j I 1 2 3 

1 0 2 1 
2 2 0 0 

3 1 0 0 
Now, we are going to calculate vectors a and b and matrix M for each i and j， 

where z, j 二 1,2, 3. 
For i = 1 and j — 1, 

/ 0 \ / 3 \ / 0 2 0 \ 
a = 2 b = 2 M = — 2 0 0 

V 0 / V 0 / V 0 0 0 / 
For i = 1 and j = 2， 

/ 2 \ / 3 \ / 0 2 0 \ 
a = 0 b 二 2 M = - 2 0 0 

V 0 y V 0 / [ o 0 0 I 
For i 二 1 and j - 3, 

/ 1 \ / 3 \ / 0 2 0 \ 

a 二 0 b 二 2 M = - 2 0 0 

V 0 y V 0 / \ 0 0 0 I 
For i 二 2 and j — 1, 

/ 0 \ / 3 \ / 0 2 0 \ 
a = 2 b 二 2 M = - 2 0 0 

V 0 ) V 0 / \ 0 0 0 / 
For i 二 2 and j — 2, 

/ 2 \ / 3 \ / 0 2 0 \ 
a 二 0 b = 2 M = - 2 0 0 

V 0 ； V 0 / V 0 0 0 / 
For i 二 2 and j = 3, 

/ 1 \ / 3 \ / 0 2 0 \ 
a 二 0 b = 2 M = - 2 0 0 

V 0 y V 0 / [ o 0 0 J 
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For i = 3 and j = 1, 

/ 0 \ / 3 \ / 0 0 1 \ 

a = 0 b = 0 M = — 0 0 0 

V1 y V1/ u 0 0 / 
For i = 3 and j = 2, 

/ 2 \ / 3 \ / 0 0 1 \ 
a = 0 b = 0 M = - 0 0 0 

V 0 / V 1 / \1 0 0 I 
For i = 3 and j 二 3, 

/ 1 \ / 3 \ / 0 0 1 \ 

a 二 0 b = 0 M == - 0 0 0 

V 0 y V 1 / \1 0 0 J 
Suppose the initial vector s is set to be (101)^. We are going to calculate 

c(s) 二 bTs%TMs for each i and j , where = 1, 2, 3. 

We would like to show the results in the following table. 

1 2 3— 

1 0 0.67 0.33 

2 0 0.67 0133 

3 0.5 1 0.5 

After calculating the function c(c), we are going to evaluate the derivative 

function ^ ^ for each i and j, where 1,2,3. 
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/ 0 \ / 0 \ 
Fori = 1 and j = 1,警：0.66 Fori = 1 and j 二 2 , 警 二 0.44 

V 0 y v 0 / 
/ 0 \ f 0 \ 

Fori = 1 and j•二 3 , 警 = 0 . 2 2 Fon 二 2 and j 二 1 , 警 = 0 . 6 7 

V 0 y v 0 / 
/ 0 \ f 0 \ 

For i = 2 and j 二 2 , 警 = 0 . 4 4 For z = 2 and J = 3,警二 0.22 

V 0 y V 0 / 
/ -0.25 \ f 0.5 \ 

For z = 3 and j = 1, ^ = 0 Fon 二 3 and j = 2 ， f 二 0 

V 0.75 / V 0-5 / 

/ 0.25 \ 

For z = 3 and j = 警= 0 

V 0.25 y 

We are now going to calculate the value of L. In the equation of L, we need to 

calculate the term 
Uj{ao - l)prof{Ij,ti){cl — cfj '̂ SQ) 

for each transaction U and each item 1” for i, j = 1, 2, 3. The following table shows 

the value of such term for different values of i and j. 

i/j 1 2 r 
1 0 3.3 0 
2 0 1.98 0 
3 0 0 0 

By summing up the above terms, the value of L is equal to 6.67. 

Then, f is to be evaluated. 

Let us consider the first entry fi in f. Similarly, for j = l,we calculate each 

sub-term 
tij [{ao - l)prof{Ij,U) - aocost{Ij,ti)] + 
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n 

力认―一l)prof{Ik,U) 一 Uj{ao - l)prof(Ij,ti){c^,^ — c}^ 
k=l 

for different transactions (i.e. different values of i, where j 二 1，2, 3). 

i Value of the Term 

1 5 

2 5 

3 1 

The sum of the above values (i.e. fi) is equal to 11. 

After the calculation of fj for other values (i.e. j = 2,3), / is equal to 

/ n . o o � 

1.04 

V 13.00 / 

H is finally computed. 

For the entry Hjk where j 二 1 and k = 1, similarly, we need to compute each 

term Uj(ao _ l)prof(Ij,ti)(/)k for different transactions U where i = 1,2，3. 

1 Value of the Term 

1 0 

2 0 

3 0.5 

After the calculation of Hjk for other values, H is equal to 

/ 0.50 -1.33 -1.00 \ 

-1.33 -8.89 0.00 
\ -1 .00 0.00 一0.50 

At this step, we can calculate vector f' and matrix Q. 

^ 11.00、 

1.04 
From L and f , f ' = 

13.00 
� 6 . 6 7 J 
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丨 0 . 5 0 - 1 . 3 3 - 1 . 0 0 0 . 0 0 、 

一 1.33 - 8 . 8 9 0 . 0 0 0 . 0 0 

From H, Q is equal to 
- 1 . 0 0 0 . 0 0 - 0 . 5 0 0 . 0 0 

^ 0.00 0.00 0.00 0.00》 

Then, we can solve the quadratic equation 

P = f'Ts' + ^s'TQS' 
Zi 

Then, by an optimization tool, we found that the solution (101)^ which gives the 

best value. We use this vector just obtained to be an initial point for the next 

iteration. We repeat the process until some stopping criteria is reached. 

3.6 Hill-Climbing Approach 

We are going to propose hill-climbing algorithm to deal with this problem. Let f{S) 

be the function of the profit gain of the selection S of marketing items. Initially, 

we assign S == { } . Then, we will calculate f(S U {la}) for each item Then, we 

choose the item h with the greatest value of f{S U {h}) and insert it into set S. 

The above process repeats for the remaining items whenever f{S U {h}) > f{S). 

3.6.1 Efficient Calculation of Formula of Profit Gain 

As the formula of the profit gain is computationally intensive, an efficient calcula-

tion of this formula is required. Hill Climbing chooses the item with the greatest 

profit gain for each iteration. Suppose S now contains k items at k-th iteration, for 

k = 1,2,..…At the iteration, we store the value of f{S) in a variable fs. At the 

(k + l)-th iteration, we can calculate / ( 5 U {/^}) from fs efficiently for all h^S 

and 6 二 1，2，.., n. Let T be the set of transactions containing item and at least 

one item in selection set S. We only calculate f{S U { 4 } ) as 

/ ( 5 U { / . } ) + 9{h) — h(S, T) + h\s U { / . } , T) 
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where 
m 

9{Ix) = - l)prof{h,U) - a({I,})cost{I,,U)] 
i=l 

h(S,r) = E E (a(力;）—I)csfacto7itllt):pro:nh,t0 
UeT hedi 

assuming all items in set S are selected for marketing. Function g[Ix) is the profit 

gain of marketing item I工 in all transactions. Function h{S, T) is the profit gain of 

non-marketing items for the selection S in all transactions in set T. 

We can view functions g{.) and h{.) in the another way. Given that all items 

in set S are chosen to be marketed, the profit gain of the marketing selection, in 

terms of g{.) and h{.) is: 

Profit Gain 二 二 g[Ia) + h{S, T) 
laes 

if T is the set of all transactions in the database. 

We are now back to the calculation method of f{S U For the first part, 

we need to add the profit gain of the newly added marketing item 4 after market-

ing(i.e. g{Ix)) to fs. For the remaining part, it is easy that we only deal with the 

transactions in set T to calculate the profit gain if we want to update the variable 

fs for the selection set S which is now added with item I^. We need to subtract 

the profit gain of non-marketing items for the selection S in all the transactions in 

set r (i.e. h{S, T)) and then add the profit gain of non-marketing items for the 

new selection S U {Ix} in all the transactions in set T (i.e. h{S U {Ix},T))-

As we know that the set T is typically small compared with the whole database, 

the calculation o f / ( 5 U {Ix}) is efficient. 

3.6.2 FP-tree Implementation 

The transactions in the database are examined for computation whenever the con-

fidence term conf{ot[ Ij) is calculated. So, we need to do this operation effec-

tively. If we actually scan the given database, which typically contains one record 
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for each transaction, the computation will be very costly. Here we make use of the 

FP-tree structure [23]. We construct an FP-tree T V T once for all transactions, 

setting the support threshold to zero, and recording the occurrence count of item-

sets at each tree node. With the zero threshold, J^VT retains all information in 

the given set of transactions. Then we can traverse T V T instead of scanning the 

original database. The advantage oi TVT is that it forms a single path for transac-

tions with repeated patterns. In many applications, there exist many transactions 

with the same pattern, especially when the number of transactions is large. These 

repeated patterns are processed only once with TVT. By traversing TVT once, 

we can count the number of transactions containing any items in set t- and item It 

and number of transactions containing any items in set t[. From our experiments 

this mechanism can greatly reduce the overall running time. 

3.7 Empirical Study 

We have used Pentium IV 2.2GHz PC to conduct our experiments. 

In our experiments, we are going to study the profit gain of marketing. Besides, 

we conducted another kinds of marketing, called direct marketing. 

In our problem we do not have a specific parameter of the number of marketing 

items. We choose such parameters in direct marketing by using the following 

method. After the hill-climbing of our algorithm, there are J resulting items (or 

marketing items). For direct marketing, we will choose J items with greatest 

values of Equation (3.1) in Section 3.3 if no cross-selling effect is considered (i.e. 

csfactor{t[Jb) = • for any set U and item h)-

There are experimental setup for Algorithm QP. In QP, we need to generate 

an initial data point. The initial data point is a binary vector of (n+1) dimension, 

where n is the number of items. If item Ij is selected, the j-th position of the vector 

is marked as 1. In our experiment, by using the approach of direct marketing, the 
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algorithm selects 5% of the items as the selected items. The reason why we choose 

the approach of direct marketing is to try to make the approximations used in QP 

better. This is because, in Taylor Series, we have truncate some term with high 

order. If the initial point is chosen as close as the optimal point, then the evaluated 

objective value will be more accurate. Besides, we conducted the experiment of 

QP with 5 iterations. In our experiment, we found that it is sufficient to run with 

5 iterations to get the great profit gain. The execution time of QP used in the 

following graph is the total execution time over 5 iterations. 

3.7.1 Data Set 

We have used two kinds of data sets - synthetic data set and real data set for our 

experimental results. 

For synthetic data set, we use the IBM synthetic data generator in [10] to 

generate the data set with the following parameters 500 items, 5,000 transactions, 

10 items per transaction on average, and 4 items per frequent itemset on average. 

The price distribution can be approximated by a lognormal distribution, as pointed 

out in [28]. We use the same settings as [52]. That is, 10% of items have the low 

profit range between $0.1 and $1, 80% of items have the medium profit range 

between $1 and $5’ and 10% of items have the high profit range between $5 and 

$10. This data set is called Synthetic Data Set 1. 

We also generates another synthetic data set {Synthetic Data Set 2) with the 

same setting. But, the number of items and the number of transactions are now set 

to be 1,000 and 10,000, respectively. This setting gives the same parameter setting 

as [52 . 

For real data set, we adopted the data set from BMS WebView-1, which contains 

clickstream and purchase data collected by a web company and is part of the KDD-

Cup 2000 data [34]. There are 59,602 transactions and 497 items. The average 
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transaction size is 2.5. The profit of each item is generated similarly as described 

above. 

3.7.2 Experimental Results 

For all data sets, we have studies two situations - discount items and free items. 

The situation of discount items is to make the selling price of marketing items half. 

The situation of free items is to make marketing item free of charge. 

For synthetic data set, the experimental results of profit gains and execution 

time against a for the situation of discount items are shown in Figure 3.14 and 

Figure 3.15. The ones for the situation of free items are shown in Figure 3.16 and 

Figure 3.17. 

For real data set, the experimental results of profit gains and execution time 

against a for the situation of discount items are shown in Figure 3.18 and Figure 

3.19. Those for the situation of free items are shown in Figure 3.20 and Figure 

3.21. 

Synthetic Data Set 1 

1. Discounted Marketing Items 

For the scenario of discounted marketing items in the synthetic data set, the 

graphs of the total profit gain against iterations for different a are shown 

in Figure 3.2. Figure 3.3 shows the graph of the execution time of different 

algorithms against a. 

From the experiment, we found that the curve of the profit gain of all algo-

rithms (QP, Hill Climbing and Direct Marketing) increases with a because 

more customers will purchase non-market ing items if a larger marketing ef-

fect is considered. In the graph, the profit gain of Algorithm Hill Climbing is 

larger than that of Algorithm QP. This is because Algorithm Hill Climbing 

utilizes the exact formula for convergence. However, algorithm QP approxi-
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mates the formula of the profit gain, which yields less profit gain. It is noted 

that the objective function of QP is approximated by two types of approxi-

mations. The first one is the removal of the terms with higher degree in the 

Taylor's series. This approximation can be minimized by choosing a suitable 

initial point. In our experiment, we adapt the approach of direct marketing 

so as to minimize the error. The second one is the approximation in using 

the principle of inclusion-exclusion. The reason for the smaller value of profit 

gain in QP is such approximations. Algorithm Direct Marketing gives the 

lowest profit gain as it does not consider any cross-selling effect. 

In the above experiment, we conducted the experiment of algorithm QP 5 

iterations and chose the best profit gain for the 5 iterations. The graph of 

the profit gain against iterations for different a values are shown in Figure 

3.6 {a = 1.5)，Figure 3.7(a = 2), Figure 3.8 {a == 2.5) and Figure 3.9(a = 3). 

In each graph for a particular value of a, the curve of the profit gain fluc-

tuates over different a values. This is because different quadratic equations 

are formed for different iterations as each iteration stats at a new point (or a 

binary vector). So, different quadratic equations may lead to different opti-

mizations. So, the curve fluctuates. However, in [47], it is a good way to use 

such a strategy for optimization. 

2. Free Marketing Items 

The results in the scenario of free marketing items are just similar as the 

scenario of discounted marketing items. 

The graph of the profit gain against a for different algorithms is shown in 

Figure 3.4. The graph of the execution time is shown in Figure 3.5. 

The graphs of the profit gain against iterations for different a are shown in 

Figure 3.10 (a = 1.5), Figure 3.11(a = 2), Figure 3.12 {a = 2.5) and Figure 
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3.13(a = 3). 

In the remaining parts of this thesis, we will use Algorithm "Hill Climbing" 

for comparison because Algorithm "Hill Climbing" algorithm performs the best 

compared with Algorithm QP. 

Synthetic Data Set 2 

1. Discounted Marketing Items 

For the scenario of discounted marketing items in the synthetic data set, in 

Figure 3.14，the profit gain for hill climbing is greater than that for direct 

marketing. This is because our algorithm of hill climbing considers the cross-

selling effect between items, but the direct marketing methodology does not. 

In Figure 3.15，the execution time of hill climbing is greater, compared with 

direct marketing. The trend of the curve of hill climbing increases with a. 

2. Free Marketing Items 

For the scenario of free marketing items in the synthetic data set, the differ-

ence in profit gains between hill climbing and direct marketing is much larger, 

compared with the scenario of discounted marketing items. It is noted that 

there is no profit gain for direct marketing. As we remembered, direct mar-

keting may choose the items, which may not cause a strong cross-selling effect 

to other profitable items. The items to be marketed are free. Thus, the profit 

gain for direct marketing becomes low. The execution time of the scenario of 

free marketing item in Figure 3.17 is similar to that in Figure 3.15. 

Real Data Set 

In the real data set, the trends of the curves for the scenario of free marketing items 

and discounted marketing items are just similar to that in the synthetic data set. 

It is noted that in the scenario of free marketing items, direct marketing may lead 

to negatived profit gain, which means that direct marketing may make profit lose. 
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So, it is better not to apply direct marketing. As the marketing items are free, 

direct marketing may choose those non-boosting items, which yields to not much 

profitable items. This leads to a negative profit gain. 

3.8 Conclusion 

In this thesis, we have formulated formally the problem Item Selection for Market-

ing (ISM) with cross-selling effect. Besides, we proved that the simple version of 

this problem is NP-hard. We also proposed two algorithms to deal with this prob-
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lem. We also conducted the experiments. The results show that our algorithms 

are effective and efficient. 



Chapter 4 

Conclusion 

In this thesis, two applications of the concepts of association rules are addressed. 

Each problem has its own purpose. The first one is MPIS (Maximal-Profit Item 

Selection with cross-selling considerations) while the second one is ISM (Item Se-

lection for Marketing with Cross-Selling Effect). MPIS is the problem of discarding 

losing items out of the stock. ISM is the problem of choosing marketing items for 

some marketing strategy in order to boost the sales of stock. For each of the two 

problems, we prove that a simple version of the problem is NP-hard. Besides, we 

propose two modelings of the cross-selling effect among items. We propose the loss 

rule in MPIS and the gain rule in ISM. For these two problems, we also propose 

some methods to tackle the problems. Quadratic programming (QP) approach and 

some heuristics approaches are proposed in MPIS and ISM. In MPIS, we addition-

ally propose an evolutionary approach to tackle the problem. We also conducted 

experiments to show the effectiveness and efficiency of our proposed algorithms. 

Retailers would like to apply more user-friendly tools in order to help their 

business. There is a company in Hong Kong called Lifewood installing MPIS_Alg 

algorithm into their products in order to test its feasibility. We hope that the power 

of the MPIS_Alg algorithm can be utilized and help a lot of enterprises in their 

147 
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business so as to meet customer requirements and earn more profit in the future. 

We hope that ISM can also be applied in the enterpises for the sake of aiding them 

in choosing marketing items. 



Bibliography 

.1] Baron, http://archimedes.scs.uiuc.edu/baron/baron.html. 

2] Frontline systems solver, http://www.solver.com/. 

.3] Gams, http://www.gams.com/. 

4] Lindo, http://www.lindo.com/. 

5] Mosek, http://www.mosek.com/. 

6] Opbdp, http://www.mpi-sb.mpg.de/units/ag2/software/opbdp/. 

7] Oprrisk fortqp, http://www.osp-craft.com/. 

8] Tomlab, http://tomlab.biz/. 

9] Wsat(oip), http://w\vw.ps.uni-sb.de/�walser/wsatpb/wsatpb.html. 

10] R. Agrawal. Ibm synthetic data generator, 

http: //www.almaden.ibm.com/cs/quest/syndata.htmL 

11] R. Agrawal, T. Imilienski, and Swami. Mining association rules between sets 

of items in large databases. In SIGMOD, 1993. 

12] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In 

VLDB, 1994. 

149 

http://archimedes.scs.uiuc.edu/baron/baron.html
http://www.solver.com/
http://www.gams.com/
http://www.lindo.com/
http://www.mosek.com/
http://www.mpi-sb.mpg.de/units/ag2/software/opbdp/
http://www.osp-craft.com/
http://tomlab.biz/
http://w/vw.ps.uni-sb.de/%e3%80%9cwalser/wsatpb/wsatpb.html
http://www.almaden.ibm.com/cs/quest/syndata.htmL


BIBLIOGRAPHY 150 

13] F. Bass. A new product growth model for consumer durables. In Management 

Science, 1969. 

14] J. Beasley. Heuristic algorithms for the unconstrained binary quadratic pro-

gramming problem. In Technical report, the Management School, Imperial 

College, London, Dec 1998. 

.15] A. Bemporad and D. Mignone. http://control.ee.etliz.di/~liybrid/miqp/. 

.16] T. Blischok. Every transaction tells a story. In Chain Store Age Executive 

with Shopping Center Age 71 (3), pages 50-57, 1995. 

17] T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets. A data min-

ing framework for optimal product selection in retail supermarket data: The 

generalized profset model. In SIGKDD, 2000. 

18] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using association rules for 

product assortment decisions: A case study. In SIGKDD, 1999. 

19] D. J. Cavicchio. Adaptive search using simulated evolution. In Ph. D. disser-

tation, Univ. Michigan, Ann Arbor, MI, 1970. 

"20] S. Chapra and R. P. Canale. Numerial methods for engineers. In McGraw Hill 

(Third Edition), 1998. 

21] P. Domingos and M. Richardson. Mining the network value of customers. In 

SIGKDD, 2001. 

"22] M. Garey and D. Johnson. Computers and intractability: A guide to the 

theory of np-completeness. In Freeman, 1979. 

23] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gen-

eration. In SIGMOD, 2000. 

http://control.ee.etliz.di/~liybrid/miqp/


BIBLIOGRAPHY 151 

24] S. Hedberg. The data gold rush. In BYTE, October, pages 83-99, 1995. 

25] Hiller and Lieberman. Introduction to operations research. In McGraw Hill, 

Seventh Edition, 2001. 

26] B. V. Hohenbalken. A finite algorithm to maximize certain pseudoconcave 

functions on polytopes. In Mathematical Programming 8, 1975. 

27] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to global optimiza-

tion. In Kluwer Academic Publishers, Second Edition, 2000. 

28] J. C. Hull Options, futures, and other derivatives. In Prentice Hall Interna-

tional, Inc. (3rd Edition), 1997. 

29] L. lasemidis, P. Pardalos, J. Sackellares, and D. Shiau. Quadratic binary 

programming and dynamical system approach to determine the predictabil-

ity of epileptic seizures. In Journal of Combinatorial Optimization, Kluwer 

Academic” pages 9-26, 2001. 

30] D. Kempe, J. Kleinberg, and E. Taxdos�Maximizing the spread of influence 

through a social network. In SIGKDD, 2003. 

31] J. Kleinberg. Authoritative sources in a hyperlink environment. In Proc. of 

the 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. 

32] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A microeconomic view of 

data mining. In Knowledge Discovery Journal, 1998. 

.33] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc. 

ACM-SIAM Symp. on Discrete Algorithms, 1998, Also in JACM 46:5, 1999. 

34] R. Kohavi, C. Brodley, L. M. B. Frasca, and Z. Zheng. Kdd-cup 2000 orga-

nizers' report: Peeling the onion. In SIGKDD Explorations 2000, 20010. 



BIBLIOGRAPHY 152 

'35] S. J. Leon. Linear algebra with applications. In Prentice Hall, Fifth Edition, 

1998. 

36] J. Luo, K. R. Pattipati, and P. Willett. A sub-optimal soft decision pda 

method for binary quadratic programming. In Proc. of the IEEE Systems, 

Man, and Cybernetics Conference, 2001. 

37] V. Mahajan, E. Muller, and F. Bass. New product diffusion models in market-

ing: A review and directions for research. In Journal of Marketing, 54:1(1990). 

.38] S. W. Mahfoud. Crowding and preselection revisited. In Parallel Problem 

Solving from Nature, 2, 1992. 

39] H. Mannila. Methods and problems in data mining. In Proc. of Int. Conf. on 

Database Theory, 1997. 

.40] H. Mannila, H. Toivonen, and A. 1. Verkamo. Efficient algorithms for discov-

ering association rules. In KDD, 1994. 

41] M. A. Potter, K. A. D. Jong, and J. J. Grefenstette. A coevolutionary approach 

to learning sequential decision rules. In Sixth International Conference on 

Genetic Algorithms, 1995. 

42] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral 

marketing. In SIGKDD, 2002. 

43] V. Safronov and M. Parashar. Optimizing web servers using page rank 

prefetching for clustered accesses. In World Wide Web: Internet and Weh 

Information Systems Volume 5, Number i, 2002. 

.44] S. Sahni. Computationally related problems. In SIAM J. Comput. 3, pages 

262-279, 1974. 



BIBLIOGRAPHY 153 

45] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings Thrid 

International Conference Genetic Algorithms, 1989. 

46] B. Taylor. Chapter 16: Inventory management. In Introduction to Manage-

ment Science, 7th Edition. Prentice Hall, 2001. 

47] D. E. Tronrud. Methods of minimization and their implications. In CCP4 

Dareshury Study Weekend, nos. DL/SCI/R35, ISSN OlU-5611. Warrington 

WA4 4AD, UK: Dareshury Laboratory, for Dareshury Laboratory, 1994. 

"48] J. Ullman. Lecture notes on searching the web, http://www-

db. st anford • edu/ �ullman / mining/mining .html. 

49] K. Wang and M. Su. Item selection by "hub-authority" profit ranking. In 

SIGKDD, 2002. 

50] S. Wasserman and K. Faust. Social network analysis. In Cambridge University 

Press, 1994. 

51] R.-W. Wong and A.-C. Fu. Ism: Item selection for marketing with cross-selling 

considerations. In PAKDD, 2004. 

52] R.-W. Wong, A.-C. Fu, and K.Wang. Mpis: Maximal-profit item selection 

with cross-selling considerations. In ICDM, 2003. 



+ ‘ I ‘ 

1 . 

丨丨 . 



ETShhThDD 

I w^mi 
saLJBjqLH >IHnD 


