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摘要 

隨著互補金屬氧化物半導體 (CMOS)技術進入納米尺度’集成電路 (Integrated Circuits)的時頻和模 

子大小也平穩地增加。今天，在許多超微米的電路設計中，很多長導線 ( g l o b a l wire)都要求多個 

時鐘週期去傳遞電子信號。因此’近來有不少硏究嘗試用觸發器 ( reg is ters )去管線輸送 (p ipe l ine ) 

長導線，以減少長導線延遲的影響。 

其中一個可行的方法是利用時序重置 ( r e t i m i n g )的技術。在不改變電路設計的功能下’時序重置 

能夠通過重置觸發器的位置以優化電路的表現 °可是’在傳統的時序重置中並沒有考慮導線延遲 

的影響，很多時序重置的演算方法都假設導線並沒有延遲電子信號的傳遞 0明顯地，這樣的假設 

並不能反映當前導線延遲已超過邏輯門延遲 ( g a t e delay)的現象。 

在這篇論文中，我們設計了二個考慮邏輯門和導線延遲的新時序重置方法 °第一個方法是由這 

份論文的作者提出’他把問題變換成一個混雜整數線性程式 (mixed- integer linear program)的一種 

特殊情況’而這特殊情況是可解決的 °因此’第一個方法可以得出考慮邏輯門和導線延遲的時 

序重置的最佳答案。而第二個方法則是第一個方法的改良版本’主要是在演算速度上的改善 °它 

可以在較短的時間內得出非常接近最佳答案的結果。這份論文的作者主要負責第二個方法的程式 

編寫。使用 I S C A S 8 9 基準電路’實驗結果顯示第二個方法得出來的結果平均只比最佳答案差 

0 . 1 3 % �在二零零三年的一個學術會議中’當我們把有關硏究成果發佈時，另外一份解決同樣問 

題的研究報告也同時發表。爲使這份論文更加全面’上述三種方法都包括在這論文的第四課中 ° 

雖然考慮邏輯門和導線延遲的時序重置問題已解決，但是在時序重置後觸發器的佈局亦十分重 

要。在這篇論文中’我們硏究如何佈置觸發器在長導線上’從而達到時序重置後得出來的目標 

時頻。相比以前一些作簡單計算以確定觸發器位置的硏究’我們提出的算法可以保存指定的時 

頻並使用最少量的觸發器。此外，我們證明的了這算法能夠爲少於五個終端的電路網找出最佳 

答案，而這類型的電路網結構平均佔了 9 0 %的電路網 °使用 I S C A S 8 9基準電路，實驗結果顯示 

我們的算法可以在一分鐘爲大部份電路網找出最佳分享觸發器的佈局，即是使用最少量的觸發 

器及保存目標時頻。 
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Abstract 

As the CMOS technology is scaled into the dimension of nanometer, the 

clock frequencies and die sizes of ICs increase steadily. Today, global wires 

that require multiple clock cycles to propagate electrical signal are prevalent 

in many deep sub-micron designs. Efforts have been made to pipeline the long 

wires by introducing registers along these global paths, trying to reduce the 

impact of wire delay dominance. 

The technique of retiming to relocate registers in a circuit without affecting 

the circuit functionality can be applied in this problem. However, in the tra-

ditional formulation of retiming, wire delay was safely ignored. Most retiming 

algorithms have assumed ideal conditions for the non-logical portions of the 

data path, which are not accurate to reflect the current situations where wire 

delay has no less importance than gate delay. 
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In this thesis, we study and implement two new retiming approaches which 

consider both gate and wire delay such that solutions can be found in poly-

nomial time. The first approach was proposed by the author of this thesis 

in which the problem was transformed into a special case of a mixed-integer 

linear program such that optimal solutions can be obtained. The second ap-

proach was an improvement of the first approach in terms of execution time 

and near-optimal solutions can be found. The author was involved in the im-

plementation of the second approach. Using the ISCAS89 benchmark circuits, 

experimental results showed that the second approach can give solutions that 

are only 0.13% larger than the optimal on average but in a much shorter run-

time as compared to the first approach. When these approaches were made 

public in an academic conference in 2003, another publication solving the same 

problem appeared at the same time. To make this thesis more comprehensive, 

all of the above three approaches will be included and discussed in chapter 4. 

Though the problem of retiming with gate and wire delay has been solved, 

the placement of registers after retiming is non-trivial. In this thesis, we will 

also study the problem of realizing a retiming solution on a global netlist by 

inserting registers in the placement to achieve the target clock period. In con-

trast to those previous works that performed simple calculations to determine 

the positions of the registers, our proposed algorithm can preserve the given 

clock period and utilize as few registers as possible in the realization. Our 

proposed algorithm is shown to be optimal for nets with 4 or fewer pins and 

this type of nets constitutes over 90% of the nets in a sequential circuit on 

average. Using the ISCAS89 benchmark circuits, experimental results showed 

that our algorithm can find the best sharing of registers for a net in most of the 

cases, i.e., using the minimum number of registers while preserving the target 

clock period, within one minute running on an Intel Pentium IV 1.5GHz PC. 
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Chapter 1 

Introduction 

1.1 Motivations 

As the CMOS technology continues to scale down, the clock frequencies and die 

sizes of integrated circuits increase steadily. Data showed that the frequencies 

of high-performance ICs have doubled every process generation while the die 

sizes increased by about 25% [11]. With such short cycles and long intercon-

nects, it is common for a global signal to take multiple clock periods to travel 

across a chip. To alleviate this problem, we need to insert registers to pipeline 

long global wire [3, 16]. Nevertheless, arbitrary insertion of registers on a wire 

is forbidden because the original functionality of the circuit will be changed. 

As a result, retiming, a sequential circuit optimization technique that relocates 

registers without affecting circuit functionality, can be applied [20, 22]. 

Retiming is such a powerful circuit optimization technique that it can be 

used to minimize the clock period, the usage of registers, or a combination 

of both objectives of a sequential circuit. Since retiming was first formulated 

a decade ago, much effort has been made to improve various aspects of the 

algorithm. However, in the traditional settings of retiming, only gate delay-

was considered and wire delay was ignored. As process technology gets down 

to deep sub-micron, wire delay becomes a major factor of path delay which 

cannot be overlooked in today's circuit designs. Therefore, there is a strong 
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Chapter 1 Introduction 2 

need to formulate and solve a new retiming problem such that both gate and 

wire delay are considered. 

Besides the problem of retiming with gate and wire delay, the placement 

of registers after retiming is another new challenge. Since a net is represented 

as a set of separated edges in a retiming graph model which does not bear any 

information about the topology of the routes or the positions of the registers, 

it is unknown whether the clock period obtained from retiming can be realized 

in the design. 

Being able to insert registers into a placement solution in order to realize 

a retiming solution and preserve the corresponding clock period is important, 

or it will make the retiming optimization meaningless. Meanwhile, minimiz-

ing the number of registers used is also essential as the size of a register is 

usually several times larger than that of a simple gate, regardless of the pro-

cess technology being used. Even though there are a few previous works that 

touch briefly on the problem of post-retiming register placement, most of them 

suffer from the problem of over-simplification when wire delay dominates. A 

sophisticated method to tackle this problem is of utmost need. 

1.2 Progress on the Problem 

There are several previous works addressing the interconnect issues in retiming. 

In the papers [33, 18), the authors tried to incorporate wire delay into the 

retiming process but assumed that the wire delay between adjacent registers 

on the same wire was negligible. Another approach to integrate retiming into 

detailed placement was proposed in [35] where heuristics were used to estimate 

wire delay after initial placement and routing, retiming was then applied to 

optimize the circuit performance. In the paper [34], Tabbara et al. applied 

retiming in the DSM domain and wire delay was considered. However, all these 

works are constrained by overly simplified assumptions for practical uses. 
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When it comes to the placement of registers after retiming, there are a few 

works that address the problem directly. For those works that have touched 

on the topic of post-retiming register placement, they usually suffer from the 

problem of over-simplification when wire delay dominates. For example, in the 

paper [35]，the authors assume that the position of a register is located at the 

geometric center of the connected gates. This assumption is natural, but the 

clock period resulted from retiming will be easily violated. A similar problem 

occurs in [26] in which the authors determine the position of a register such 

that the sum of the lengths of the nets connected to that register is minimized. 

1.3 Our Contributions 

To address the problem of retiming with gate and wire delay, we have studied 

two approaches to tackle the problem [2]. The first approach solves the problem 

optimally while the second one gives solutions very close to the optimal (0.13% 

more than the optimal on average) but in a much shorter runtime. To the best 

of our knowledge, this is a pioneer work in solving this problem. 

Inspired by the MILP approach discussed in [22], we have proposed an 

approach that solves the problem optimally in polynomial time. In the MILP 

framework of [22], the authors do not take wire delay into account and model 

the problem of retiming as solving a set of four general constraints with both 

integer and real variables at the same time. Since the set of constraints is a 

special case of the MILP problem, they can be solved in polynomial time [21 . 

However, the original MILP framework is not adequate to capture the timing 

requirements with wire delay. To handle both gate and wire delay simulta-

neously, we have introduced some new variables and modified one of the four 

general constraints such that wire delay is incorporated into the formulation. 

Most importantly, our proposed modifications remain to be a special case of 

the MILP problem, thus it is still solvable in polynomial time. 
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The near-optimal approach is an improvement over the optimal approach 

in terms of execution runtime as it involves fewer number of variables and 

constraints. In fact, this approach can give optimal solutions if we consider wire 

delay alone. Experimental results showed that this approach gives very good 

solutions using only a fraction of the time required in the optimal approach. My 

main contributions to this near-optimal approach are in the implementation 

of the algorithm and in conducting the relevant experiments. 

Apart from the problem of retiming with gate and wire delay, the problem 

of post-retiming register insertion in placement worth no less attention. In 

this thesis, we have proposed an algorithm to realize a retiming solution in 

a placement such that the target clock period is preserved with a controlled 

error, using as few registers as possible [36]. In contrast to those previous 

works, we do not have the problem of clock violation under our linear wire 

delay model. In addition, our algorithm can give optimal solutions for nets 

with 4 or fewer pins and this type of nets makes up about 90% of the nets in a 

sequential circuit on average. Experimental results showed that our algorithm 

can find the best solution for each net in most of the cases, making the retiming 

optimization process more applicable in today's deep sub-micron design for 

achieving a higher performance. 

1.4 Thesis Organization 

This thesis is organized as follows. We will give an introduction in chapter 1. 

There will be an overview on retiming in chapter 2. Literature review on 

retiming and physical design will be discussed in chapter 3. In chapter 4， 

the problem of retiming with gate and wire delay will be discussed, our two 

proposed approaches and Lin's approach [23] will be described in detail. In 

chapter 5’ our algorithm for post-retiming register placement will be presented. 

Finally, a conclusion will follow in chapter 6. 



Chapter 2 

Background on Retiming 

2.1 Introduction 

Retiming is a technique for optimizing sequential circuits by repositioning the 

registers in the circuit while maintaining its original functionality. This tech-

nique was first formulated by Leiserson and Saxe in [20], and a completed 

version of their work [22] appeared in 1991 in which they proposed several algo-

rithms in solving the min-period, min-area and constrained min-area problems 

under the framework of retiming. 

An example of a correlator in [22] is described in fig. 2.1. The correlator 

consists of two functional elements, adders (+) and comparators (# ) . The 

black strips on the wires between two functional elements are registers. 

^ ‘ A V \ 

z 

Figure 2.1: "Correlator of 24 units of propagation delay. 
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Chapter 2 Background on Retiming 6 

Assuming that all registers are clocked by a single clock signal. Suppose 

the propagation delay of the adder and the comparator are of 7 and 3 units 

respectively, the longest combinational path in the correlator in fig. 2.1 has 24 

units of delay as shown by the dotted line. 

A design that gives better performance of the correlator is shown in fig. 2.2. 

This design is obtained by moving a register of the original circuit in fig. 2.1 

from point A to B. To show that both correlators are functionally equivalent, 

let us consider the subcircuit inside the dashed box. This subcircuit communi-

cates with the rest of the circuit through connection A and B only. Since the 

register at A is removed, all input signals to this box of circuit arrive one clock 

tick earlier, thus this subcircuit performs the same sequence of computations 

as the subcircuit in the previous correlator with one clock tick earlier. 

On the other hand, the register is moved to position B, which is the output 

of the dashed box, and thus the output is delayed by one clock tick. Prom the 

perspective of the remainder of the circuit, this subcircuit behaves the same 

as in the previous correlator. The longest combinational delay of this retimed 

correlator is 17 units as shown by the dashed line. 

In fact, the correlator can be further optimized to an optimal clock period 

of 13 units of delay as shown in fig. 2.3. As we can see, by simply moving the 

registers in a circuit, the circuit performance could be greatly improved. 

\ I I 

^ I 
( H ^ I I I 

Z I I 

Figure 2.2: Correlator of 17 units of propagation delay. 
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( H ^ I \ 

z 

Figure 2.3: Correlator of 13 units of propagation delay. 

2.2 Preliminaries 

To apply the technique of retiming, we need to represent a sequential circuit 

as a graph-theoretical model and define some notations and definitions. 

In the subsequent discussion of retiming, we assume that a sequential cir-

cuit can be viewed as a network of functional elements and globally clocked 

registers. A register is a storage element which has a single input and a single 

output; and all registers are clocked by the same periodic waveform. At each 

clock tick, the data at the input of a register is sampled and stored at the 

output. Besides, we assume that there is no race condition, i.e., the changes 

in the output of one register do not interfere with the input of another at the 

same clock tick. This is made possible by the use of a typical D-type flip-flop. 

A sequential circuit is modeled as a finite, vertex-weighted, edge-weighted, 

directed multigraph G 二< V"，E�dy, w{u, v ) � ’ where V is the set of vertices in 

G, representing the functional elements, E is the set of edges in G, representing 

the interconnections, dy is a numerical weight associated with every vertex v, 

representing the propagation delay of that functional element, and v) is 

a weight associated with the edge e^v, representing the number of registers 

on that wire. Taking the correlator in fig. 2.2 as an example, its multigraph 

representation G is shown in fig. 2.4. 
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( J ^ ‘ 0 0 0 \ o 

Figure 2.4: Retiming graph of the correlator in fig. 2.2• 

Given a multigraph G�a path p G can be viewed as a sequence of 

vertices and edges. If a path p starts at a vertex u and ends at a vertex v, 

we denote it as u A- v. A simple path contains no cycle, and therefore the 

number of vertices exceeds the number of edges by exactly one. For any path 

p = yQ ^ y^ ̂  ... Vk, the path weight of p, w(p), is defined as the sum of 

the weights of the edges on the path: 

Similarly, for any simple path p = vq ^ vi ^ • • • ^ v^, the path delay of 

p is defined as the sum of the delays of the vertices on the path: 

dip) = E t o ^vi-

In order to make the graph G have a well-defined physical meaning as 

a sequential circuit, nonnegativity constraints are placed on the propagation 

delays dy and the register counts w{e) as follows: 

1. The propagation delay DY is nonnegative for each vertex v EV. 

2. The register count w(e) is a nonnegative integer for each edge e e E. 

In order to avoid race condition, the following restriction is applied such 

that there is no directed cycle with zero weight: 



Chapter 2 Background on Retiming 9 

3. In any directed cycle of G, there is at least one edge with positive register 

count. 

If a circuit satisfies the above three constraints, it is a legal synchronous 

circuit. For any synchronous circuit G, the clock period is defined as the 

propagation delay of the longest combinational path. Using the definitions of 

path delay and path weight, the clock period of a circuit G can be defined as 

follows: 

2.3 Retiming Problem 

Given the retiming graph of a sequential circuit, retiming can be viewed as 

a vertex-to-integer mapping, r : V ~ )• Z where Z is the set of integers such 

that a new retimed graph Gr =< V, E,d们 Wr[u,v) > is obtained by moving 

the registers in G as follows: 

二 + K") — ―以)， Ve^^, G E (2.1) 

and all Wr{u,v) found must be non-negative (it is known as a legal retiming). 

In general, retiming is performed to minimize the minimum clock period or 

the total register count. 



Chapter 3 

Literature Review on Retiming 

3.1 Introduction 

In order to meet the performance requirements of today's complex designs, es-

pecially in the current deep sub-micron (DSM) technology era, the possibility 

of putting various circuit optimization techniques into practical uses are being 

explored by researchers. Retiming, a well-known sequential circuit optimiza-

tion technique, is of no exception. In this chapter, the first retiming paper and 

four major aspects of retiming are reviewed. 

First of all, the original retiming paper authored by Leiserson and Saxe [22] 

will be presented. Secondly, various improvements to the original retiming 

algorithms are discussed which improve the usefulness of retiming on larger 

circuits. Next, the applications of retiming on different physical design stages 

will be described, showing the feasibility of integrating retiming early in the 

physical design cycle. Besides, retiming with different wire delay models are 

discussed. Since wire delay dominates gate delay in today's DSM design, 

retiming with wire delay is of utmost importance. This leads to our study of 

retiming with gate and wire delay which will be discussed in chapter 4. Finally, 

retiming with register placement will be discussed, illustrating how registers 

are handled in placement after retiming. Again, this leads to our work on 

post-retiming register placement which will be presented in chapter 5. 

10 
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3.2 The First Retiming Paper 

3.2.1 "Retiming Synchronous Circuitry" 

The technique of retiming was first formulated by Leiserson and Saxe in [20， 

22] more than a decade ago. In this paper [22], they gave a comprehensive 

analysis on retiming and proposed several approaches to solve the problem 

efficiently. Besides, various possible applications of retiming were discussed. 

In this section, we will focus on their algorithm OPTl for retiming that forms 

the basic framework of many improvements appeared later in the literature. 

Specifically, the authors formulated the clock-period-minimization problem 

as: Given a circuit graph G =< V, E,dv,w(u,v) >, find a legal retiming r of 

G such that the clock period of the retimed circuit Gr is as small as 

possible. The design of their first algorithm OPTl depends on the fact that 

the following linear-programming problem can be solved efficiently using the 

Bellman-Ford algorithm [8]. 

PROBLEM LP. Let S be a set of m linear inequalities of the form: Xj — xi < aij 

on the unknowns Xi, X2, ...，Xn, where the a^ are given real constants. De-

termine feasible values for the unknowns xi, or determine that no such values 

exist. 

The algorithm OPTl is based on an alternative characterization of the clock 

period in terms of two quantities that are defined as: v) =• min{w{p): 

u v} and D{u,v) = max{d{p) : u v and w{p) = W{u,v)}. The 

quantity W{u,v) is the minimum number of registers on any path from u to 

V. We call a path u v such that w(p) = W{u,v) a critical path from u 

to V. The quantities D{u^v) is the maximum propagation delay on a critical 

path from u to v. Both quantities are undefined if there is no path from u to 

V. 

After defining the quantities v) and f ) , the authors observed 
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that a feasible clock period c has a relationship with the quantities as stated 

below: 

Lemma 4 [22] Let G = < > be a synchronous circuit, and 

let c be any positive real number. The followings are equivalent: 

4.1. < c. 

4.2. For all vertices u and v in V, if D(u, v) > c, W{u, v) > 1. 

To calculate W and D, the authors pointed out that it is similar to solving 

an all-pair shortest-path problem on G. Common techniques such as Floyd-

Warshall and Johnson's algorithm [8] can be used. The reason that W and 

D are so important because they behave nicely under retiming as shown by 

Lemma 5 below: 

Lemma 5 [22] Let G = < 丑，ciy，tytit，t>) > be a synchronous circuit, and 

let W and D be defined on G. Let r be a legal retiming of G, and let Wr and 

Dr be defined analogously on G ” Then 

5.1. A path p is a critical path in Gr if and only if it is a critical path in G. 

5.2. Wr{u, v) = W(u, v) + r(v) - r(u) for all connected vertices u, v in V. 

5.3. Dr(u,v) = D(u, v) for all connected vertices u, v in V. 

It is easy to see that condition 5.1 holds as retiming changes the weights of 

all paths from u to f by the same amount, and then 5.2 follows immediately. 

Condition 5.3 holds as retiming does not change the propagation delays and as 

a consequence of condition 5.2. This lemma leads to an important fact that if 

r is a legal retiming on G, the minimum clock period is equal to D(u, v) 

for some u, v e V. That is, the set of D{u,v) where u^v e V includes all the 

possible clock periods of a legal retiming on the circuit G and binary search 

can then be applied on those finite number of values to find the optimal clock. 
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Finally, the authors used the following theorem to characterize the condi-

tions under which a retiming process produces a circuit whose clock period is 

no greater than a given constant. 

Theorem 7 [22] Let G =< V, E^ dy, w{u, v) > be a synchronous circuit, let 

c be an arbitrary positive real number, and let r be a function from V to the 

integers, r is a legal retiming of G such that ^{Gr) < c if and only if 

7.1. r(u) — r{v) < w�u,v) for every edge u A- v of G. 

7.2. r{u) —r(v) < W(u, v) — l for all vertices u,v such that D(u, v) > c. 

According to Theorem 7, the authors proposed the following algorithm, 

OPTl, to solve the clock-period-minimization problem. Notice that the con-

straints 7.1 and 7.2 on unknowns 八v) and r{u) are linear inequalities involving 

only differences of unknowns, and thus the Bellman-Ford algorithm can be used 

to test the feasibility of a clock period c. 

Algorithm OPTl . Given a synchronous circuit G =< V, E,dy,w(u,v) >， 

this algorithm determines a retiming r such that is as small as possible. 

1. Calculate W and D. 

2. Sort the elements in D. 

3. Binary search among D for the minimum achievable clock period. To 

test the feasibility of a clock c, use the Bellman-Ford algorithm on the 

conditions in Theorem 7. 

4. For the minimum achievable clock period found in step 3, use the values 

of the r(v) found by the Bellman-Ford algorithm as the optimal retiming 

solution. 

Algorithm OPTl is the first known algorithm to solve the problem of re-

timing optimally in polynomial time. The authors of [22] have also proposed 

and studied other efficient approaches to tackle the problem. 
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3.3 Important Extensions of the Basic Retim-

ing Algorithm 

3.3.1 “A Fresh Look at Retiming via Clock Skew Opti-

mization" 

In this paper [12], clock skew minimization techniques were used in finding a 

retiming solution so as to perform logic optimization. 

While clock skew minimization is a continuous optimization of combina-

tional logic, retiming is a discrete optimization with the same effect. Due to 

the differences in wire delays on the clock distribution network, clock signals 

arrive at the registers at different times. As a result, clock skews exist be-

tween different registers. However, clock skews can be viewed as a resource to 

improve the performance of a circuit as illustrated in fig. 3.1. 

FF CCi FF FF 
^ ^ O — 

A B C 
“ i k i L 

Figure 3.1: The advantage of nonzero clock skew. 

Suppose each inverter has unit delay. The circuit block CCi and CC2 

would have delays of 3.0 and 1.0 units respectively. However, if a skew of +1.0 

unit is applied to the clock line to register B (FF B), the circuit can run with 

a clock period of 2 units. 

In the above example, if we apply the technique of retiming, we can move 

FF B left to cross one inverter. In this way, the circuit can also run with a 

clock period of 2 units after retiming. This simple example shows how clock 
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skew minimization and retiming have correlations with each other in terms of 

delay optimization. 

In fact, it was proved that the effect of applying a positive clock skew on 

a register is equivalent to moving it from the outputs of a gate to the inputs. 

Similarly, the effect of a negative clock skew on a register is equivalent to 

moving it from the inputs of a gate to the outputs. 

In this paper, an algorithm called ASTRA was proposed to solve the prob-

lem of finding a retiming solution using a clock skew minimization technique, 

and it guaranteed that the clock period found would be no worse than the 

optimal by more than one gate delay. The two-phase ASTRA algorithm is 

outlined below. 

Phase A: 

The optimal value of the skew at each register is solved, with the objective of 

minimizing the clock period, or to satisfy a given feasible clock period. The 

Bellman-Ford algorithm is performed on a constraint graph to solve this prob-

lem. 

Phase B: 

The skew solution is translated to a retiming solution by relocating the flip-flops 

across the logic gates in an attempt to set the values of all skews to zero. Any 

skew that cannot be set to zero exactly, is forced to zero. This would cause the 

clock period to increase from the optimal. 

Experimental results showed that ASTRA could retime all ISCAS89 cir-

cuits in a few minutes. This paper used a novel approach to solve the problem 

of retiming via clock skew minimization technique which was optimally solved 

and well-studied. 
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3.3.2 "An Improved Algorithm for Minimum-Area Re-

timing" 

In this paper [24], the authors further combined their ASTRA algorithm 

with the original retiming algorithm [22] to obtain an improved algorithm 

for minimum-area retiming, called Minret. 

The original minimum-area retiming algorithm was in fact a linear pro-

gramming problem subjected to two conditions: non-negative weight for all 

edges (non-negative number of registers) and the existence of at least one reg-

ister on every combinational cycle. The authors observed that there were a lot 

of redundancy in the latter constraints, and thus proposed the idea of restricted 

mobility of register to reduce the number of constraints in the linear program. 

As a result, the experimental runtime improved significantly as compared to 

the ASTRA algorithm. 

Using the same example shown in [24], the idea of restricted mobility of 

register is illustrated in fig. 3.2 and fig. 3.3. Assuming unit gate delays, the 

minimum clock period is 4.0 for both circuits. While the circuit in fig. 3.2 

requires 4 registers, the circuit in fig. 3.3 requires 5 registers. As we can see, 

registers cannot be placed at just any location in the circuit in order to achieve 

the minimum clock period. Instead of an unrestricted movement of registers, 

there is only a restricted range of locations into which each register may be 

placed, i.e., the mobility of a register. 

t I ‘ iŝ  
、 、 丄 _ _ 

Figure 3.2: Minimum clock period configuration with 4 registers. 
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Figure 3.3: Minimum clock period configuration with 5 registers. 

As shown in the example, the retiming label, for each gate has a 

restricted value given the restricted mobility of each register. The clock skew 

minimization technique can be used to find the range of restricted locations 

for each register using the Bellman-Ford algorithm, and these information can 

then be used in the original Leiserson-Saxe minimum-area retiming algorithm 

to reduce the number of constraints in the linear programming approach. 

Experimental results showed that Minret outperformed either ASTRA or 

the original algorithm proposed by Leiserson-Saxe in reducing the number of 

registers and runtime. 

3.3.3 "Efficient Implementation of Retiming" 

In this paper [32], an efficient implementation of retiming was proposed such 

that the runtime was lOOX faster than a straight-forward implementation of 

the original algorithm by Leiserson-Saxe for some of the largest circuits, e.g., 

S 3 8 5 8 4 in ISCAS89 suite. 

In solving the problem of minimum clock period retiming, Leiserson-Saxe 

gave three algorithms to tackle the problem in [22]. In the most efficient 

algorithm, a relaxation algorithm (the Bellman-Ford algorithm) was employed. 

To determine if a clock c is a feasible clock to yield a valid retiming solution, 

the Bellman-Ford algorithm will iterate - 1 times to prove the feasibility 
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of c. If there is a negative cycle in the graph after all the - 1 iterations, the 

shortest path to any vertex on that cycle from the source will be undefined, 

and it means that no solution exists. 

The authors showed that if there was any hope of speeding up the relaxation 

algorithm, focus must be put on detecting if a clock period was infeasible before 

completing the requisite \V\-1 iterations. Therefore, they proposed a heuristic 

to abort the iteration at any point if a negative cycle was detected. 

The predecessor heuristic was to maintain a predecessor vertex pointer, 

denoted by pred{), for each vertex. All predQ pointers are set to empty before 

the Bellman-Ford algorithm starts. Every time the distance to a vertex u is 

decreased (relaxed), the fanin node that caused the change is saved as pred(). 

As a result, each vertex v is associated with a predecessor graph at every instant 

of the iteration that is defined by traversing the predQ pointers. Starting at v 

and ending when either the predecessor pointer is empty or a cycle is found, 

we check whether a cycle is found. If a cycle is found, it means that the clock 

is infeasible. 

The proposed heuristic is elegant and easy to understand. Also, it was the 

first paper to report the retiming results for large circuits of over 10,000 logic 

gates. 
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3.4 Retiming in Physical Design Stages 

3.4.1 "Physical Planning with Retiming" 

In this paper [6], a unified approach to partitioning, fioorplanning, and re-

timing for performance optimization was proposed. This approach allows the 

partitioner to exploit the underlying geometric delay model given by the floor-

planner. Besides, simultaneous consideration of partitioning and retiming leads 

to an effective reduction in global interconnect delay. 

Given a sequential circuit, let C denote the cells consisting of gates and reg-

isters, and N denotes the net list. The authors formulated a new partitioning 

problem for their unified approach, named Geometric Embedding based Per-

formance Driven K-way Partitioning (GEPDP). To solve this problem means 

to assign the cells in K blocks while the locations of the blocks are determined 

under prescribed area constraints {Li, Ui), where Li and Ui denote the lower 

and upper bound of the size of a block Bi respectively. The primary objective 

is to minimize delay, and the secondary objective is to minimize cutsize and 

wirelength. Retiming is used as a timing analysis engine to guide the parti-

tioning process. In their geometric delay model, the delay of a path includes 

both gate and wire delay. Wire delay is defined to be linearly proportional to 

the Manhattan distance between two connected cells. 

Using the above problem formulation, the authors proposed an algorithm 

called GEO to solve it. There are two main phases in GEO: construction phase 

and FF placement phase. In the construction phase, multi-level partitioning 

with fioorplanning is performed, and in the FF placement phase, retiming 

algorithm is used to perform a coarse FF placement followed by a fine-grained 

placement on wire. 

Experimental results showed that their GEO algorithm performed better 

than the traditional physical design flow in general, showing a benefit of uni-

fying different physical designing steps in today's complex systems. 
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3.4.2 "Simultaneous Circuit Partitioning/Clustering with 

Retiming for Performance Optimization 

In this paper [5], the authors proposed a method to incorporate retiming into 

the problem of partitioning and clustering so as to improve circuit performance. 

The clustering problem is to decompose a given circuit into a number of 

clusters such that their sizes are bounded by a given number. In order to 

optimize the performance, the authors redefined the problem of clustering 

as: Given a sequential circuit, construct a clustered circuit with the minimum 

clock period under retiming with possible node replication. The area of each 

cluster is hounded by a given number A. This formulation allows retiming to be 

integrated into circuit clustering. To see how retiming relates to partitioning, 

consider fig. 3.4 below. 

solution A solution B 
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Figure 3.4: Relationship between partitioning and retiming. 

In the two partitioning solutions shown in fig. 3.4 (both cutsizes are 1)， 
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retiming applied to solution A (left) does not provide any optimization of clock 

period. On the contrary, retiming on solution B (right) reduces the delay from 

4 to 3, assuming unit gate delay and that inter-block delay is 2 units. 

Given a sequential circuit C and a target clock period elk, a label, lc{y), 

is computed for each node v in C that denotes the maximum path delay from 

primary inputs to v in C. It is shown that if the labels of the primary outputs 

in C are larger than the target clock period elk, a clustered circuit of C that 

has clock period elk or less is impossible. Otherwise, C can be clustered and 

then retimed to achieve a clock period of less than elk + D, where D is the 

interconnect delay between a pair of clusters. 

Based on the node labels computed, a clustered circuit can be formed with 

clock period elk + D guaranteed. To solve the problem, there are three main 

steps in their algorithm as shown below: 

1. Binary search to obtain the minimum clock period clkmin with label 

computation. Note that the labels of all primary outputs must be smaller 

than clkmin, 

2. Form a clustered circuit based on the node labels corresponding to the 

minimum clock period, 

3. Retiming to achieve the best clock period. 

Experimental results showed that the proposed algorithm improved the 

clock period of the clustered circuit compared to most traditional partitioners 

in which cutsize minimization was the only primary goal. Besides, various 

optimization techniques on the label computation step were discussed, making 

their algorithm's runtime much shorter than most of the previous algorithms. 
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3.4.3 "Performance Driven Multi-level and Multiway 

Partitioning with Retiming 

The authors of [5] extended their work further in this paper [7] • In this work, 

the authors considered the significant difference between local and global wire 

delay induced by partitioning. They proposed an algorithm called HPM that 

considers cutsize, delay minimization and retiming simultaneously. 

As wire delay is becoming more and more important, there are two major 

kinds of performance-driven partitioning methods in common use: bottom-up 

clustering and top-down partitioning. In the bottom-up clustering, logic gates 

are grouped into clusters such that the area of each cluster is bounded and the 

delay of the circuit is minimized. However, the bottom-up clustering approach 

suffers from two main limitations: it has worse cutsize compared to traditional 

partitioners and it is difficult to control area balance between blocks. 

In top-down partitioning, the circuit is divided into a pre-determined num-

ber of partitions. The size of each partition is maintained within a user spec-

ified range. Again, the primary goal is to minimize the delay of the circuit 

in which retiming and logic replication techniques are considered. However, 

these algorithms have long runtimes and there is no guarantee of optimality. 

The proposed HPM algorithm consists of two phases: clustering phase and 

refinement phase. In the clustering phase, an initial cluster structure with con-

sideration of subsequent retiming is built, and then a cutsize-driven clustering 

algorithm is used to add more levels to the hierarchy. In the refinement phase, 

a partitioning algorithm that considers both cutsize and delay simultaneously 

is used to decompose the clusters at each level. 

Experimental results showed that not only did HPM minimize the clock 

period of a circuit greatly compared to traditional partitioners, it also gave 

comparable cutsize results which were unachievable in most bottom-up clus-

tering algorithms. 
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3.5 Retiming with More Sophisticated Timing 

Models 

3.5.1 “Retiming with Non-zero Clock Skew, Variable 

Register, and Interconnect Delay” 

In this paper [33], a retiming algorithm is proposed that considers variable 

register, wire delay, and non-zero clock skew. These delay components are 

integrated into retiming by assigning a set of values, called Register Electri-

cal Characteristics (REC), to each edge in the retiming graph model of the 

sequential circuit. Their proposed timing model is more realistic than the one 

proposed in the original retiming algorithm that considers gate delay alone [22]. 

Since electrical information is captured by the REC of each edge, a path 

between logic elements is defined as a traversal from a weighted edge to an-

other weighted edge rather than a traversal from a weighted vertex to another 

weighted vertex. An edge, being interpreted as a connection between logic 

elements, contains zero, one, or more registers. The REC of an edge in the 

graph has the form: Tcd : Tsetup / Tc -q \ Tinti / 7>nf2’ where Tcd is the 

clock delay from the global clock source to each register, Tsetup is the required 

time for the data at the input of a register to latch, TC-Q is the required time 

for the data to appear at the output of the register upon arrival of the clock 

signal, Tjnti and Tint2 are the wire delays along that edge if the edge has one 

or more registers. 

After the calculation of the RECs for each edge, the authors defined a ma-

trix, called Sequential Adjacency Matrix (SAM), to capture the delay between 

each pair of edge-to-edge path in the retiming graph model. This matrix is 

similar to the one in [22] that captures the path delay between vertex-to-vertex 

connections. Next, a set of timing constraints is derived from SAM that con-

siders clock skew, wire delay and valid retiming labels. If the set of constraints 
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is satisfiable, a valid retiming solution can be obtained. 

An iterative, branch-and-bound method using ranges of vertex labels rather 

than constant vertex labels are proposed to solve for the edge weights (i.e., 

the number of registers on each edge). Experimental results showed that the 

proposed algorithm could perform a more accurate and generalized retiming 

than existing algorithms that did not employ a more sophisticated delay model. 

3.5.2 "Placement Driven Retiming with a Coupled Edge 

Timing Model" 

In this paper [25] ’ a retiming algorithm using a highly accurate timing model is 

proposed. The timing model considers the effect of retiming on the capacitive 

loads of a single wire as well as the fanout tree of a node. Since registers 

retimed into a fanout net may change the topology of the net significantly, 

the arrival times at the neighboring branches would also be affected. Here, we 

focus on their proposed timing model of a net such that all the above effects 

are taken into accounts. 

To handle the changes in the capacitive loads of a net, the author classi-

fied the nets into two categories: single sink net and multiple-sink net, and 

proposed a timing model for each type of nets. For a single sink net, edge 

e = three delay values are assigned as shown in fig. 3.5. 

� ti to 

Figure 3.5: Single sink net timing model. 

tyj denotes the delay for a signal traveling from u to v when there is no 

register (i.e., Wr{u,v) = 0), U denotes the delay for a signal traveling from u 

to the input of a register on e when there is at least one register on e (i.e., 
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Wr{u,v) > 0). Similarly, t。denotes the delay for a signal traveling from the 

output of a register on e to v. 

For a multiple-sink net, the author suggested two models: complex model 

and simple model. The former is more accurate but suffers from the problem 

of great complexity when the fanout net is large, the latter is less accurate but 

useful for modeling larger nets. In the complex model, it distinguishes for each 

branch 6 in a fanout tree B whether Wr{h) = 0 or Wr{b) > 0. Therefore, there 

are 2" different cases for a fanout tree with n branches. Since the presence of 

a register on a branch may affect the loads of the other branches, the delay 

values {t-u,, U and to) of each branch will behave differently in each of the 2" 

configurations. To accurately record the effects of each case, a table with 

entries is associated with each branch during retiming. Obviously, it has the 

problem of exponential table growth. 

When it comes to the simple model, the author assumed that the delay 

values of a particular branch bi e B are the same for all configurations con-

taining the same number of branches bj with registers, i.e., given the same 

number of registers on other branches, the capacitive loads of bi does not de-

pend on which particular branches have registers. By doing this simplification, 

the size of a table will only grow linearly at the expense of less accurate delay 

model. However, this inadequacy diminishes as the number of branches in a 

net increases. 

To achieve the best performance, the author suggested the use of the com-

plex model for nets with four or fewer sinks and the simple model for the rest of 

the nets. Since nets with four or fewer sinks constitute over 90% of the nets in 

a sequential circuit on average, the complex models are often used which offer 

precise delay estimations for most of the nets. Experimental results showed 

that their retiming algorithm, using their proposed timing models, gave higher 

accuracy and tighter integration of placement and retiming as compared to 

previous works. 
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3.6 Post-Retiming Register Placement 

3.6.1 "Layout Driven Retiming Using the Coupled Edge 

Timing Model,, 

In this paper [26], the authors proposed a new approach for making retiming 

more practical. There are two main parts in their approach: a new coupled 

edge timing model and a new retiming algorithm. Here, we focus on their 

suggested post-retiming register placement method. 

First of all, maximum sharing of registers among the fanout edges of a node 

is assumed, i.e., the minimum number of registers is utilized for every net. The 

author argued that since a register was several times larger than a simple gate, 

it was preferable to use fewer registers in the actual layout. Next, for each new 

register, a position is determined such that the sum of the lengths of the nets 

connected to this register is minimized. An example is shown in fig. 3.6. 
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Figure 3.6: An example of single register placement. 

In most of the cases, the feasible location for a register is a rectangular area, 

but not a particular point. After yielding a rectangular region for placing a 
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register, the algorithm looks for the most suitable cell gap inside this area and 

places the register there. 

If the gap does not have enough free space, neighboring cells are pushed 

aside until enough room is made available to fit in the new register; however, no 

cell overlapping will occur. For those areas that are empty after the removal of 

a register, no work will be done to reclaim the area as the simulated annealing 

placer will reuse the spaces at the subsequent iterations. 

3.6.2 "Integrating Logic Retiming and Register Place-

ment" 

In this paper [35], the author proposed a post-layout retiming technique that 

consists of heuristics for wire delay estimation, retiming incorporating wire de-

lay, and post-retiming placement. Again, we focus on its post-retiming place-

ment scheme here. 

Since it is hard to alter the positions of registers and gates simultaneously, 

the authors assumed that all gates would remain at their original locations 

during register placement. Having made this assumption, they naturally pre-

dicted the location for an added register as the closest slot to the geometric 

center of its connecting gates. However, this simple assignment lacks the flexi-

bility of finding other feasible locations of a register. They studied the layouts 

of many circuits and found that most registers were not necessarily placed at 

the estimated locations. Only the register that started or ended a path with 

delay close to the cycle time should be placed near to the estimated location. 

To identify the range of area that a register can be placed, the authors 

proposed a controlled variable, called slack, for each fan-in and fan-out node 

of a register. It is an upper bound of the interconnect delay between the node 

and the register, and is defined as below. 

(cycle time — path delay ) / 2 + ( estimated interconnect delay ) (3.1) 
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where ( estimated interconnect delay ) denotes the estimated interconnect 

delay from a register to its fan-in and fan-out nodes, ( cycle time — path delay ) 

is the total slack of the path, cycle time is the clock period of the circuit and 

path delay is the total delay of the path. This value is divided by two because 

there are two parts in the path, the starting and the ending parts. Under this 

definition, the slack of a node on the critical path connected to the starting 

or the ending register is exactly equal to the estimated interconnect delay. 

This makes the starting or the ending register very likely to be placed at the 

estimated location. 

According to the slacks, the placement range for each register can be cal-

culated. Since all gate locations are fixed and registers are removed, there are 

many slots left in the layout for the registers generated after retiming. If the 

number of registers increases significantly after retiming, more slots will be 

added to both ends of a row to accommodate all the registers. 



Chapter 4 

Retiming with Gate and Wire 

Delay [2 

4.1 Introduction 

Retiming is a well-known optimization technique that can be used to minimize 

the clock period, the usage of registers, or a combination of both objectives 

of a sequential circuit. By relocating the registers under several restrictions, 

retiming can improve the circuit performance without changing the original 

functionalities. 

Since retiming was first formulated a decade ago, much effort has been 

made to improve the efficiency of the algorithm [32] or to apply the technique 

in various areas like physical planning [6], circuit partitioning [28], power re-

duction [31], and testability [13] and so on. However, retiming has still shown 

little practical uses in industry. This is especially true in the physical design 

stages in which a lot of long global wires exist between blocks. Ignoring wire 

delay in retiming will yield solutions that are unreliable to be used. 

In this chapter, we study the problem of retiming with gate and wire de-

lay. Two approaches are proposed to solve the problem optimally and near-

optimally, assuming that the delay of a wire grows directly proportional to 

29 
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its length. In section 4.3，the optimal approach will be presented. This ap-

proach solves the problem optimally by transforming it into a special case of a 

mixed-integer linear programming problem that can be solved in polynomial 

time. In section 4.4, the near-optimal approach will be described. The second 

approach is an improvement of the first one in terms of execution time and 

gives near-optimal solutions as shown by the experimental results. 

When our works was published in ICC AD 2003, another optimal approach 

solving the same problem was proposed by Lin et al at the same conference. 

In section 4.5, their approach will also be discussed. 

4.2 Problem Formulation 

A sequential circuit can be modeled by a directed graph G{V,E), where each 

vertex v e V represents a combinational gate, and each directed edge Cuv ^ 

E denotes a connection from the output of gate u to the input of gate v. 

Each vertex t; has a gate delay of dy and each edge ê v has a wire delay of 

duv if no register lies along the edge. Notice that wire delay is assumed to 

be proportional to the length of the wire. This assumption is valid because 

buffers can be inserted optimally to make the delay of a wire exhibit a linear 

behavior [27]. Besides, w{u,v) denotes the number of registers on edge e训 

before retiming is applied. 

A retiming solution can be viewed as an vertex-to-integer labeling, r : 

V > Z where Z is the set of integers, such that the equation: WR{U,V)= 

w{u,v)-\-r{v) -r{u) > 0 holds for every edge in G, where Wr(u,v) denotes the 

number of registers on edge Cuv after retiming is performed. The retiming label 

r{v) for a vertex v represents the number of registers moved from its outputs 

to its inputs. 

Unlike the traditional formulation where wire delay is ignored, a retiming 

solution should also specify the exact positions of the registers on each edge. 
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As wire delay dominates in DSM designs, the exact position of each register 

will affect the clock period. Therefore, the problem of retiming with gate and 

wire delay can be formulated as below: 

PROBLEM STATEMENT. Given a sequential circuit G{V, E), we want to 

find a retiming solution, i.e., a retiming label r{v) at each vertex v, and the 

exact positions of the Wr{u,v) registers on each edge euv such that the clock 

period of the circuit is minimized. 

4.3 Optimal Approach [2 

This approach is an extension of the MILP approach in the paper [22] and can 

solve the problem optimally, i.e., relocating the registers to give the minimum 

possible clock period. We observed that even if both gate and wire delay are 

considered, the problem can still be formulated as a MILP problem and a 

polynomial time algorithm that solves the problem exists [21]. 

This section is organized as follows: First, the mathematical programming 

framework for retiming discussed in [22] is presented. Next, we will show how 

we extend the method to handle both gate and wire delay, thus giving a modi-

fied approach to solve the problem optimally. At the end, the implementation 

outline will be discussed. 

4.3.1 Original Mathematical Framework for Retiming 

In section 6 of [22], A Mathematical-Programming Framework for Retiming, 

the authors presented an algorithm for clock-period minimization based on a 

special case of mixed-integer linear programming (MILP). As usual, wire delay 

was ignored. 

The authors perform the clock period feasibility check based on the follow-

ing special case of MILP problem that can be solved in polynomial time [21]. 
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PROBLEM S P E C I A L - M I L P . Let S be a set of m linear inequalities of the 

form Xi — Xj < ttij on the unknowns Xi, .. • , Xn, where the aij are given 

real constants. Let k be given. Determine feasible values for the unknowns 

Xi subject to the constraint that Xi is integer for i = 1,2,... , k and real for 

i = k 1, k + 2,... , n, or determine that no such values exist 

Together with the condition of a legal retiming that the number of registers 

on every edge after retiming must remain non-negative, the authors charac-

terized the feasible clock period checking by an MILP according to Lemma 9 

in [22 . 

LEMMA 9. Let G =<V,E,d,w > be a synchronous circuit, and let T be a 

positive real number. Then there exists a retiming r of G such that < T 

if and only if there exists an assignment of a real value s{v) and an integer 

value r{v) to each vertex v eV such that the following conditions are satisfied. 

9.1 —s{v) < —d{v) for every vertex i* G V, 

9.2 s{v) < T for every vertex v ^V, 

9.3 r{u) — r{v) < w(u,v) for every edge e e E, 

9.4 s{u)-s{v) < -d{v) for every edge e E E such that r(u)-r{v) = w{u,v). 

The function s(7；) for every vertex in G can be viewed as the longest combi-

national delay path from a register to the outgoing pin of gate v. This physical 

reasoning of s(?;) explains why condition 9.1 and 9.2 are necessary. Condition 

9.1 means that the minimum combinational delay at those outgoing pins of 

gate V must at least equal the gate delay of v itself, it is because the closest 

possible position that you can place a register toward a gate is at the incoming 

pins of it but it never got retimed "inside" the gate. Condition 9.2 means that 

the maximum combinational delay at those outgoing pins of a gate v must be 
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less than or equal to T; otherwise, T is infeasible. Condition 9.3 guarantees a 

legal retiming as Wr{u, v) = w{u, v) + r{v) — r(u) > 0 always holds. 

Finally, condition 9.4 considers the case when there is no register got re-

timed on an edge Cuv If there is no register on an edge Cuv, obviously, the 

maximum combinational delay at vertex v, s(v), is no less than the maximum 

combinational delay at vertex u, s(u), plus the gate delay of v itself. Otherwise, 

if there are registers on the edge, this constraint is not needed. 

By using the substitution s(v) = T{R(v) - r ( f ) ) , the authors was able to 

eliminate the defining clause in condition 9.4 and gave the following system 

of difference inequalities in Theorem 10 which were in the form of the special 

case of MILP that can be solved in polynomial time. 

10.1 r{v) - R{v) < -d{v)/T for every vertex v eV, 

10.2 R{v) — r{v) < 1 for every vertex v eV, 

10.3 r{u) — r{v) < w{u,v) for every edge e e E, 

10.4 R{u) - R{v) < w(u, v) - d{v)/T for every edge eeE. 

Any solution to the conditions above yields a solution to the conditions in 

Lemma 9; equivalently, a feasible retiming solution such that the clock period 

T is satisfied. 

4.3.2 A Modified Optimal Approach 

In the previous section, a mathematical-programming framework for retiming 

was briefly discussed. In this section, we will show how the framework can be 

extended to handle both wire and gate delay to obtain the optimal clock by 

retiming. 

In the modified optimal approach, we still have condition 9.1, 9.2 and 9.3 

since they must also be satisfied even when wire delay is considered. However, 

we have to modify condition 9.4 in order to handle wire delay. Obviously, 
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condition 9.4, s(u) — s{v) < —d{v) for every edge e E E such that r{u) —r{v)= 

w(u,v)’ does not take wire delay duv into account. To tackle this problem, we 

proposed the following condition in place of condition 9.4: 

(*) s{u) + duv + T{w{u, v) + r{v) - r(u)) < s(v) for every edge eE E, 

Divide (*) by T and use the same substitution s{v) = T{R{v) — r{v)), it can 

be rewritten as below: 

(**) R(u) - R{v) < w{u, v) - duv/T — dJT for every edge e e E, 

Let us analyze the physical meaning of (*) to see why this condition is 

proposed. First, consider if there is no register on the edge 6„”，i.e., w(u, v) + 

r{v)-r{u) = 0’ (*) becomes s{u)-\-duv+dy < s{v). It means that the maximum 

delay at the output of gate v, s(v), is no less than the maximum delay at the 

output of gate u, s{u), plus the wire delay of e ^ and the gate delay of v itself. 

Obviously, this is true because there is no register on the wire. 

Next, if there are registers on the edge Cuv, i.e., w{u,v) + — r{u) > 1， 

we subtract an amount of T for each register from s{u) + duv + dv on the left 

hand side of (*). Since s{u) is no greater than T and there is at least one 

register on the edge, we can always place the first register at a distance of 

T-s{u) from the outgoing pin of gate u which can be viewed as a subtraction 

of T from s{u) + duv + ‘ For the rest of the registers, we can place them at 

a distance of T from each other. 

If s{u) + duv - T{w{u,v) + r{v) - r{u)) becomes negative, it means that 

there are many registers on Cuv and the last one can be placed right in front of 

the input of gate v, and thus s{v) can be as small as dy. On the other hand, if 

s{u) + duv dy- T{w{u, v) + r{v) - r{u)) is non-negative, it means that the 

last register on the edge is at a distance of s{u) d^v — T{w{u, v) -\-r{v) —r{u)) 

away from the input of gate v. If there is no register on s{v) will be equal 
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to s{u) + duv + dy. Otherwise, s{v) will be equal to s{u) + duv-\-dv — T{w(u, v) + 

r(v) — r{u)). 

The modified condition is very much the same as condition 9.4 which still 

preserves the form of Xi — Xj < aij so that it remains as a special case of MILP 

and can be solved efficiently. 

Given a feasible solution that satisfies condition 9.1，9.2, 9.3 and the pro-

posed condition (**), we are able to compute the locations for every register 

such that the clock period under test, T, is satisfied. First, consider an edge 

Cut；, since r{v) and s{v) are all known where d” < s{v) < T for every vertex 

V in G, we can place the first register, if any, at a distance of T — s{u) from 

the outgoing pin of gate u and others at a distance of T from the previous one 

until reaching the incoming pin of gate v. Once we reach the incoming pins 

of gate V, we can place the remaining registers there. Such an arrangement of 

registers must be feasible since this is derived from a feasible solution satisfying 

the necessary conditions. 

For example, consider an edge e^v, assuming that T = 5, s{u) = 3, duv = 17, 

and Wr{u, v) = 5. The positions of the registers on ey,v would look like: 

s(u)=3 

‘ = 1 7 Z 

Z �� 

T-s(u) T T T 
二 5 - 3 

= 2 

Figure 4.1: Register arrangement in the optimal algorithm. 

Together with the technique of binary search, we can find the optimal clock 

period of retiming with wire and gate delay in polynomial time. In addition, 

we know exactly where to place the registers on each edge. 
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Implementation Outline 

The implementation of the optimal algorithm is based on [21] which has given 

three different efficient algorithms to solve the special case of MILP, i.e., to 

determine a feasible solution for the MILP in the form of Xi — Xj < aij, or to 

determine there is no solution. 

The first two algorithms R and M are mainly based on the idea of the 

Bellman-Ford algorithm [8] and can be implemented straightforwardly using 

adjacency-list or adjacency-matrix, giving a runtime of 0{\V\\Vj\\E\), where 

\V\ denotes the total number of variables (integer + real), |V/| denotes the 

number of integer variables and denotes the number of edges in the con-

straint graph, i.e., the number of constraints. The last algorithm D is the 

most efficient implementation using many techniques such as reweighting in 

Dijkstra's algorithm [17] and Fibonacci heap [14] to achieve a complexity of 

Oi\V\\E\ + \V\\Vj\lg\V\). 

Since the near-optimal fast algorithm (to be discussed in the next section) 

was implemented using some simple data structures, we chose to implement al-

gorithm M for the optimal approach such that we could have a fair comparison 

of the two approaches by using similar data structures. 

Every vertex is associated with a retiming label r{v) and a real function 

s(v). We initialized a graph, GM, with 2 x number of vertices, half of 

them representing r{v) and the other half representing s{v). Constraints are 

extracted by reading the vertices and edges in G, and the corresponding con-

straints will be added to GM^ i.e., by inserting edges into GM-

For example, given two vertices u and v, and an edge 已训，we first consider 

condition 10.1 which states that r{v) - R{v) < -dy/T for every vertex v eV. 

This condition requires us to add an edge of weight -d^^/T from vertex R{v) to 

vertex r{v) in GM- Similarly, condition 10.2 means inserting an edge of weight 

1 from vertex r{v) to R(v) in GM. Both condition 10.1 and 10.2 are associated 
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with vertices in G. Next, condition 10.3 which states that r{u)-r(v) < w{u, v) 

for every edge Cuv E G can be enforced by inserting an edge of weight w{u, v) 

from r(v) to r(u) in GM- Similarly, condition 10.4 can be enforced by inserting 

an edge of weight w{u,v) —DY/T from R{v) to R{u) in GM. Finally, algorithm 

M will be applied on GM to determine a feasible solution and registers will be 

placed accordingly. 

4.4 Near-Optimal Fast Approach [2 

In the previous section, an algorithm that solves the problem of retiming with 

gate and wire delay optimally is presented. However, the optimal approach 

runs too slow to be practical, though its runtime is polynomial in theory. To 

increase the applicability of retiming, a near-optimal fast approach is proposed 

and implemented. My main contributions in this approach were implementing 

the algorithm, testing and conducting the experiments. 

This near-optimal fast approach gives optimal solution if gate delay is ne-

glected and only wire delay is considered. When both types of delay are 

considered, it gives solutions that are very close to the optimal as shown by 

the experimental results. 

In this approach, we first replace each gate by a wire of the same delay and 

then solve the problem optimally and efficiently with wire delay only. Those 

registers got retimed "inside" a gate are moved either to the input or the 

output wires of the gate. Once the number of registers on each wire is fixed, 

we can determine the exact positions of the registers by a linear program such 

that the clock period is minimized. In the following, we first present how the 

retiming problem with wire delay only can be solved optimally. Then, we 

discuss in detail how gate delay can be handled simultaneously. 
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4.4.1 Considering Wire Delay Only 

In this subsection, we assume that dy = 0 for all v E V, i.e., gate delay is 

ignored. On the other hand, wire delay is assumed to be proportional to the 

length of the wire as buffers can be inserted optimally. We will show that the 

problem of retiming with wire delay only can be transformed into a problem 

of solving a set of linear constraints. 

Transformation to a Directed Acyclic Graph 

In the first step, the retiming graph model G is transformed into a directed 

acyclic graph (DAG), G', by breaking the back edges obtained when traversing 

the graph in a depth-first manner. This is illustrated in fig. 4.2 (start DFS 

from A). 

\ I / 
GraphG \ \ | GraphG ？ 

Figure 4.2: DFS transformation of a sequential circuit retiming graph model. 

As we can see in the figure above, there are some extra vertices introduced 
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and C in this example). Let E^ be the set of back edges and V̂  be the set of 

all vertices with an incoming back edge. For each v G Vj,, we introduce an extra 

vertex v'. Also, we remove the back edge Cuv from G and introduce an extra 

edge in G'. Therefore, G'{V', E') is a new graph where V' = V\j{v\v G H } 

and JE' = E — EbU {e训'丨6„„ G Eb}. Obviously, G' is a DAG. 

Timing Constraints 

In the second step, a set of timing constraints is constructed so that the 

Bellman-Ford algorithm can be applied to solve the problem. 

For each vertex v G V', we introduce a timing variable ty that is the 

maximum wire delay from the closest register connecting to an input of gate 

V. Since back edges are removed from G\ for all v e T4, another variable 

is introduced to capture the timing requirement on v due to the back edges. 

The physical meaning of ty is graphically shown in fig. 4.3. 

Figure 4.3: Physical meaning of the timing variable ty. 

Define in{v) for each G to be the set of vertices with an edge pointing 

to V in G'. The set of timing constraints on can be expressed as equation 4.1 

shown below. 

W G V, ty > maxuein{v){tu + d^v _ {w{u,v) + r{v) - r{u))T} (4.1) 
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Consider an edge e^u, we can place the registers at a distance of at most T 

from each other, and the longest possible length covered by the registers on an 

edge Cuv after retiming would be (lym； +�(幻)—r{u) )T. Since the total amount 

of wire delay is t^ + d^v where tu represents the delay "inherited" from vertex u 

and duv represents the wire delay of e^，we can subtract the amount of delay 

covered by the registers to compute the maximum wire delay from the closest 

register on e ^ to the input of v. Therefore, t^ is given by constraint 4.1 when 

every incoming edge of v is considered. 

Since t” denotes the maximum wire delay from a register connecting directly 

to an input of gate v, the following constraint must hold as well, assuming that 

T denotes the target clock period. 

Vv e !/， t ^ < T (4.2) 

In addition, the following constraint is required to guarantee a valid retim-

ing solution in the original graph G. 

W G H, V < U (4.3) 

Constraint 4.3 is to make sure that there are enough registers on any path 

from vertex u to vertex v' for all pair of u and v where v G VJ,. Besides, since 

v' is a duplicated vertex of v, the following constraint must be satisfied. 

e Vb, r{v') = r(v) (4.4) 

If there exists a feasible solution of U and r{v) for all v e V' satisfying 4.1-

4.4, we can perform a legal retiming on G with clock period T. 

Algorithm Outline 

Having constructed the constraints 4.1-4.4 for every edge in we are able to 

translate the set of constraints into a system of difference inequalities in the 

form of: Xi — Xj < aij by simple variable substitution. 
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The main idea of the translation is to express ty for all ；̂ G V" in terms 

of tu and r{u) where u G Vf,. As shown in constraint 4.1, ty is related to tu 

for every edge e ^ in G' where G' is a DAG. We can recursively express the 

constraint using simple substitution until reaching the ancestor vertices in Vj,. 

The whole approach is described in procedure ALG_NEAROPT below. 

Procedure ALG_NEAROPT; 

Input : A sequential circuit C with wire delay only; 

Output : An optimally retimed circuit of C; 

begin 

build graph Giy, E) from C; 

build graph G'{V\ E') from G using DFS; 

Cup = a feasible clock, Ciow = an infeasible clock; 

do 

T = (CUP + CWO/2; 

setup constraints 4.1-4.4 from G'] 

translate the constraints into a set of difference inequalities, 

denoted by / ; 

if(BellmanFord(/) returns a solution) then 

success = 1; Cup = T; 

else 

success = 0; Clow = T; 

while ((Cup - Clow) / Cup) > e; 

T = Cup\ 

compute R{v) and r{v) for each vertex v eV] 

compute the exact position of each register on a wire; 

end. 

First, the algorithm performs a DFS on G to discover all the back edges 

and constructs the corresponding G'. Next, it enters a binary search process 
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until an optimal T is found. For each iteration, the constraints 4.1-4.4 are con-

structed and the Bellman-Ford algorithm is used to determine the feasibility. 

Once we have reached a desired bound of error, e, the binary search process 

terminates. 

4.4.2 Considering Both Gate and Wire Delay 

While the discussion in the previous subsection assumes the existence of wire 

delay alone, we have also proposed a method to deal with gate delay simulta-

neously. The basic idea is to split every vertex v into two vertices vi and 

and an edge ê ivs with dŷ ^̂  equals the gate delay of as shown in fig. 4.4. 

w 
= 5 � V ) vertex splitting > 仏 = 5 

^ A 
Figure 4.4: Vertex splitting to handle gate delay. 

After splitting the vertex, we can use the algorithm described in the pre-

vious subsection to perform retiming (i.e., the algorithm that assumes wire 

delay only). However, the retiming solution obtained may not be a feasible 

solution for the original graph since some of the registers may be retimed into 

a wire that represents a gate originally. Therefore, a post-processing method 

is required to fix the problem. 

The post-processing proposed consists of two main steps. First, we will 

remove the registers from those wires that represent gates. They are removed 

either backward to the input wires or forward to the output wires of the gate, 
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depending on their positions in the retiming solution. If the register is closer 

to the input wires, it will be moved backward; otherwise, it will be moved 

forward. Fig. 4.5 shows an example of moving a register backward. Once we 

have fixed the number of registers on each edge, we can use linear programming 

to minimize the clock period of G. 

Register | Register 
closer to moving backward/ removed from 

inputs I Z the edge 

A A 
Figure 4.5: Removing register on a wire representing a gate. 

Experimental results show that by splitting the vertices into two to handle 

gate delay and then using the technique of linear programming to minimize 

the clock period, the resulting clock is still very close to the theoretical lower 

bound [29]. The largest deviation is reported to be 3.01% from the lower bound 

among all the ISCAS89 benchmarks, while most other gives the optimal lower 

bound retiming solutions. 

4.4.3 Computational Complexity 

The runtime complexity is 0{\Vb\ x max{\E\, x lg{K/eTopt)) where 

denotes the number of vertices having incoming back edges in G, \E\ denotes 

the number of edges in G, K denotes the difference of Cup and Ciow at the 

beginning of the binary search, e denotes the degree of accuracy we want and 

Topt is the optimal clock for G. Notice that comparing to the runtime of 

the optimal approach, 0(|V^||V7||̂ |)，the near-optimal approach is of greater 

practical interest. 
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In fact, a closer investigation of the near-optimal approach reveals that 

its significant speedup over the optimal approach is the result of solving the 

longest path problem on a much smaller graph given the same sequential cir-

cuit. Notice that the cores of both approaches involve the application of the 

Bellman-Ford algorithm; however, the near-optimal approach manages to re-

duce the problem to solving a single-source longest path problem on a reduced 

graph. Therefore, apparent runtime speedup is possible. 

In section 4.4.4, experimental results show that the proposed algorithm 

can retime the circuits in the ISCAS89 benchmark suite within a reasonable 

amount of time. For example, for a circuit with more than 22K gates and 32K 

wires, the algorithm gives a near-optimal solution in 83.56 seconds on a PC 

with a 1.8GHz Intel Xeon processor. 

4.4.4 Experimental Results 

We implemented the two approaches, optimal and near-optimal fast, on a 

1.8GHz Intel Xeon PC with 512KB cache and 512MB RAM. In our exper-

iments, we used the circuits from the ISCAS89 benchmark suite and imple-

mented them using 0.25 fim process technology. Besides, we layout the circuits 

using Silicon Ensemble and wire delays are extracted from the layout accord-

ingly. Notice that wire delays are assumed to be proportional to the wire 

lengths and wire lengths are measured using the shortest Manhattan distance 

between the two connecting points. 

In our implementation, the lower and upper bounds of the binary search 

are set to 0 and 100ns respectively. For the optimal approach, we set the error 

bound e to 0.01% and call its resulting clock period Topt- For the near-optimal 

approach, the error bound is set to 1%. After assigning the registers retimed 

into a gate to the appropriate wires, a linear program is set up to relocate the 

registers on the wires to get the smallest possible clock period T*. On average, 
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Circuit Number o f N u m b e r of Number of Number of 
nodes in V edges in E nodes in Vi> edges in EH 

S 1 4 8 8 ^ r i O S f f ^ 

sl494 649 1411 30 749 
s3271 1574 2707 112 3360 
S 3 3 3 0 1 7 9 1 2 8 9 0 5 6 1 2 0 0 

s3384 1687 2782 98 2041 
S 4 8 6 3 2 3 4 4 4 0 9 3 1 5 4 2 0 4 1 3 

S 5 3 7 8 2 7 8 1 4 2 6 1 6 6 2 5 5 4 

s6669 3082 5399 67 1876 
s9234 5599 8005 325 26570 

S 1 3 2 0 7 7 9 5 3 1 1 3 0 2 5 5 0 4 4 8 2 5 

S 1 5 8 5 0 9 7 7 4 1 3 7 9 4 6 0 3 1 0 0 7 3 8 

S 3 5 9 3 2 1 6 0 6 7 2 8 5 9 0 8 8 4 1 6 3 9 4 5 

S 3 8 4 1 7 2 2 1 8 1 3 2 1 3 5 1 6 5 7 3 0 8 7 9 0 

Table 4.1: Benchmark statistics for retiming. 

the binary search iterates 16.5 times for the optimal approach and 9.6 times 

for the near-optimal approach. 

The ISCAS89 benchmark statistics are shown in table 4.1. The first column 

shows the names of the circuits under test. The second and third columns give 

the number of vertices and the number of edges in the graph G respectively. 

Notice that all the circuits are not strongly connected. The number of vertices 

and edges listed are those after the addition of a source vertex, a target vertex 

and the associated edges. The fourth and fifth columns show the number 

of vertices and the number of edges in the constraint graphs to be solved 

respectively, as discussed in section 4.4.1. These two values are dependent 

on the vertex being chosen to be the root in the depth-first traversal. In our 

implementation, we pick the additional source vertex s as the root. We notice 

that using other vertices as root does not improve the results significantly. 

The experimental results are shown in table 4.2. The second column shows 

the runtime of the near-optimal approach while the third column shows the 

runtime of the optimal approach. We can see that the near-optimal approach 

is much more efficient than the optimal approach, and this is especially true in 
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° CPU Time Clock Period ° 
Circuit Near-Optimal O p t i m a l T * T ^ . 广 ； : 广 

(sec) (sec) (ns) (ns) (%) 
S 1 4 8 8 ^ 1 8 . 8 5 1 8 . 8 2 0 . 1 6 

S 1 4 9 4 0 . 2 5 4 . 3 7 2 0 . 7 8 2 0 . 7 8 0 . 0 0 

S 3 2 7 1 1 . 0 9 3 3 . 7 0 1 0 . 2 4 1 0 . 2 4 0 . 0 0 

S 3 3 3 0 0 . 5 0 4 3 . 1 4 2 7 . 0 5 2 7 . 0 5 0 . 0 0 

S 3 3 8 4 0 . 7 4 2 5 . 1 9 2 4 . 2 1 2 4 . 1 6 0 . 2 1 

s4863 3.12 87.75 23.58 23.58 0.00 
s5378 1.16 138.68 27.27 27.25 0.07 
S 6 6 6 9 1 . 9 1 1 7 7 . 5 9 2 3 . 0 7 2 2 . 9 6 1 . 0 0 

S 9 2 3 4 4 . 0 8 5 1 2 . 8 6 4 2 . 7 3 4 2 . 7 3 0 . 0 0 

S 1 3 2 0 7 8 . 1 1 1 1 6 1 . 0 7 7 2 . 3 4 7 2 . 3 4 0 . 0 0 

S 1 5 8 5 0 2 4 . 0 2 1 5 4 5 . 5 9 6 7 . 8 2 6 7 . 8 2 0 . 0 0 

S 3 5 9 3 2 6 1 . 2 5 8 6 4 4 . 2 7 2 9 . 5 9 2 9 . 5 4 0 . 1 7 

S 3 8 4 1 7 II 8 3 . 5 6 7 6 8 0 . 7 9 3 6 . 5 3 3 6 . 5 2 0 . 0 3 

Table 4.2: Runtime of the algorithms and clock periods obtained. 

those larger circuits. The reason why the optimal approach runs so slowly can 

be explained by its 0{\V\\Vj\\E\) time complexity (though it is polynomial). 

For example, consider the circuit s4863 which has 2344 vertices and 4093 

edges. Since every vertex is associated with an integer function r{v) and a real 

function s{v), the number of vertices in the constraint graph would be 2 x 

2344，i.e., |\/| = 4688 and 丨！/；丨=2344. Next, consider the constraints 4.1-4.4, 

every vertices would have constraints 4.1 and 4.2, and every edge would involve 

constraints 4.3 and 4.4. Therefore, the total number of constraints would be 

2 X 2344 + 2 X 4093，i.e., \E\ = 4688 + 8186 = 12974. Obviously, |V1|V7||五丨 

would result in billions of unit step for even such a circuit with moderate size, 

not to mention the number of steps required in those larger circuits. 
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4.5 Lin's Optimal Approach [23 

To have a comprehensive study of this problem, Lin's approach is described in 

the following sections. They focused on applying retiming under the context of 

system-on-chip (SoC) designs, i.e., instead of dealing a netlist of simple gates, 

they applied retiming on a netlist of macro-blocks. 

Their problem formulation is basically the same as the one discussed in 

section 4.2 except that they assumed that a global routing solution was given 

and they classified the set of edges E in G{V, E) into two types: Ei and E2. 

El denotes the set of edges that does not allow registers to be placed on them 

while E2 denotes the rest. Since we are not able to insert registers into the 

macro-blocks of a SoC design, Ei is introduced to represent those forbidden 

areas. Besides, given a global routing solution, the Steiner points of the nets 

are also treated as vertices in V, apart from the gates and the macro-blocks of 

a circuit. 

4.5.1 Theoretical Results 

Notations and Constraints 

Since a retiming solution must include the positions of the registers on each 

wire if wire delay is considered, the authors overcome this problem by spec-

ifying the arrival time of every vertex with respect to a clock period. For 

each vertex v e V, they also used a timing variable, ty, as discussed in sec-

tion 4.4 (denoted by t{v) in [23])’ to represent its arrival time with respect to 

the nearest register on its incoming paths. 

Given t们 the positions of the registers directly fanning into v can be found, 

and the positions of the other registers can also be computed. Using this 

notation, the requirements for a retiming solution can be expressed as follows. 
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First, to ensure that no register is inserted on forbidden edges, we need 

r{x) = r{y), Vê y 6 Ei. (4.5) 

Then, to make sure the availability of registers, we must have 

w{u, v) + r{v) - r(u) > 0’ Ve^” G 丑2. (4.6) 

Besides, we need the following inequalities to guarantee that the arrival times 

are all achievable. 

ty 2 t工 + d{x, ？/), Ve即 e El. (4.7) 

tv>tu-\- d(u’ v) - {w{u, v) + r�—r(u))T, G 丑2. (4.8) 

Finally, we need the ensure that U is nonnegative and smaller than the target 

clock period T. 

0<U<T, \/v G K (4.9) 

As we can see, the fixed period wire retiming problem is expressed as 

a mixed integer linear program (MILP) given by 4.5-4.9. In addition, we 

also need to set ty = 0 for every primary input v, and r(v) = 0 for every 

primary input or output v. In general, solving a MILP problem is NP-hard. 

However, this problem can be solved in polynomial time by simplifying the 

set of constraints into a special case of MILP that will be discussed in the 

subsequent subsections. 

Lower and Upper Bounds of Clock Period 

From constraints 4.5-4.9, the authors derived some lower bounds and upper 

bounds of the feasible clock period. First, from 4.7-4.9, it is easy to observe 

that any feasible clock period T must satisfy 
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T>Ti maXe,YEEID{x,y). 

They defined the path delay d{p) of a path p to be the sum of the delays 

of the edges on p. If a path forms a cycle c, d{c) denotes the cycle delay. ‘ 

Similarly, they defined 'w{p) and w{c) as the number of registers on path p and 

cycle c respectively. By applying 4.5, 4.7, and 4.8 on any cycle and PI-PO 

path, a feasible clock period T must also satisfy 

T > T ^ T / M A X E E C Y D E ^ , (4 .10) 

T > maxp讯—po / �� (4.11) 
w{p) + 1 

To simplify the notation, the authors introduced a virtual vertex M as well 

as directed edges from each PO to M with zero delay and weight, and directed 

edges from M to each PI with zero delay and unit weight. In this way, the 

set of cycles covers every PI-PO path. As a result, 4.11 can be incorporated 

into 4.10. 

To derive an upper bound of the feasible clock, the authors showed that 

if each connected component in the subgraph Gi = (V, Ei) is a complete 

bipartite graph, the optimal clock period can be upper bounded by T\ + T2. 

Otherwise, a procedure is proposed to compute a tighter bound as follows. 

First, an optimal retiming solution without considering the forbidden edges 

is found. This can be done based on the computation of T2. Next, a local 

adjustment to move registers out of the forbidden edges is done to obtain a 

feasible solution. In this step, the increase in clock period is kept as small as 

possible. 

In general, there are two kinds of forbidden edges: those that form a com-

plete bipartite graph and the others that do not. If a register is moved out of 

an edge that forms a complete bipartite graph, there is at most a 7\ increase in 
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clock period. Otherwise, if a register is moved out of an edge not in a complete 

bipartite graph, the increase will be larger. However, the local adjustment step 

will keep the number of registers being moved out of a non-forbidden edge to 

minimum. 

Fixed Period Wire Retiming 

In this subsection, we will see how the MILP problem can be solved such 

that a retiming solution that satisfies a clock period T can be found, if T is 

achievable. The authors used an approach similar to that of Leiserson and 

Saxe [22] to solve the problem in polynomial time. 

First of all, they define the sequential delay of a path p, sd{p), as follows: 

sd{p) = dip) - w(p)T 

where T is the clock period. Next, they define the sequential delay sd{u,v) 

of any two vertices u and v to be 

sd{u, v) = maxp^u-^vsd{p). 

Then, consider the following set of inequalities 

r(v) - r{u) > \sd{u,v)/T] — 1 W ^ v E V (4.12) 

Using the definition of sequential delay, (4.12) means that for any edge 

ûv ^ 丑2’ 

w{u,v)-\-r{v)-r{u) > \d{p)/T] - 1 > 0. 

Obviously, (4.12) implies (4.6). In addition, the authors showed that equa-

tions (4.5) and (4.12) give a solution to the fixed period wire retiming problem 

under the lower bound condition of (4.12). This is stated in the following 

theorem. 
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Theorem 1 The fixed period wire retiming problem is feasible if and only if 

(4.5), (4.10) and (4.12) have a solution. 

4.5.2 Algorithm Description 

In this section, their proposed algorithm in solving the fixed period wire retim-

ing problem will be discussed. The algorithm can be divided into three major 

parts as follows. 

The first step is the computation of the lower and upper bound for the 

binary search. Condition 4.10 actually denotes a cycle property in graph also 

known as the maximum cycle ratio problem (MCRP). To solve MCRP, a lot of 

algorithms have been designed and presented such as Burns' [1], Lawler's [19], 

Howard's [10], etc. Since Howard's algorithm has the lowest complexity, they 

adopted an improved version of this algorithm in their implementations. To 

calculate the upper bound, they followed the steps described in the previous 

subsections. 

In the second step, binary search is used to find the optimal clock period. 

Given a target clock period T, the authors apply the Johnson's all-pair shortest 

path algorithm [8] to compute sd(u,v) = maxp^u--^vsd(p), i.e., the sequential 

delay of all pairs of u to v. Next, a new graph rG is created with all the 

vertices in V and all edges where u ^ v e V of weight \sd{u,v)/T'] — 1 

if there exists a path from li to i) in G. An extra node is added to rG as 

well as directed edges from each PO to it and from it to each PI with zero 

weight. The Bellman-Ford algorithm is then applied in rG to check if there 

exists a positive cycle. If no positive cycle exists, T is a feasible clock period. 

Otherwise, T cannot be achieved. The bounds of the binary search are then 

adjusted accordingly. 

In the final step, the optimal clock period and the corresponding retiming 

label r{v) are used to calculate the maximum arrival time ty for all v E V. 
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By Theorem 1，a feasible solution for all t” is guaranteed. To further improve 

the performance of their proposed algorithm, pruning is proposed to eliminate 

redundancy in the constraints. Experimental results showed that optimal so-

lutions were resulted but the runtime was still too slow for large benchmark 

circuits. 

4.5.3 Computational Complexity 

To calculate the lower and the upper bounds for the binary search, Howard's 

algorithm is invoked. In [9], the runtime of Howard's algorithm is bounded by 

0{\V\\E\a) and Oi\V\^\E\{wmax — it^mm)/e), where a is the number of simple 

cycles in G. Next, Johnson's all-pair shortest path algorithm is used to calcu-

late the sequential delay sd[u, v) between any pair of u and v if v is reachable 

from u in G, The algorithm makes use of the Bellman-Ford algorithm and 

Dijkstra's algorithm. Using Fibonacci heap to implement the priority queue 

in the Dijkstra's algorithm, the Johnson's all-pair shortest path algorithm is 

bounded by 0{\V\Hg\V\ + 

However, the dominant part of runtime is spent on applying the Bellman-

Ford algorithm to rG. In the worst case, rG is a complete graph and consists 

of number of edges. Solving this will take Therefore, the time 

complexity of the whole algorithm is where e measures the 

degree of accuracy, T^ and T] are the upper and the lower bounds of the 

binary search respectively. 

4.5.4 Experimental Results 

Lin et al implemented their approach on a PC with two 2.4GHz Intel Xeon 

processors and 1GB RAM. They performed retiming on the ISCAS89 bench-

mark suite. In the absence of delay information for the circuits, they randomly 

assigned delay values between 1.0 and 2.0 units to gates (they treated them as 
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Circuit Runtime (sec.) Topt 
myex ^ ^ O o 18.7 
s386 519 700 1.97 51.1 
s400 511 665 1.64 32.2 
s 4 4 4 5 5 7 7 2 5 2 . 2 3 3 5 . 2 

s838 1299 1206 8.79 76.0 
s953 1183 1515 9.76 60.6 

S 1 2 3 8 1 5 8 1 2 1 0 0 7 . 8 8 1 0 0 . 3 

S 1 4 8 8 2 0 5 4 2 7 8 0 3 5 . 1 7 7 0 . 6 

S 1 4 9 4 2 0 5 4 2 7 9 2 3 4 . 1 3 7 6 . 9 

S 5 3 7 8 II 7 2 0 5 8 6 0 3 | 6 8 4 . 6 0 1 1 1 . 2 

Table 4.3: Runtime of Lin's approach and the optimal clock periods obtained. 

macro-blocks) and 0.2 to 5.0 for wires. Since they focused their discussion on 

chip level, the delay range was intentionally chosen in order for wire delay to 

be commensurate or even many times larger than block delay. 

Experimental results are shown in table 4.3. The first column shows the 

name of the circuits. The number of vertices and edges are shown in the 

second and third column respectively. Notice that the number of vertices and 

edges are more than the number of gates and wires in the original benchmark 

circuits. It is because they took the global routing solutions into account, i.e., 

the Steiner points and their associated edges were treated as extra vertices 

and edges respectively. The fourth column shows the runtime of the algorithm 

while the fifth column shows the optimal clock period found. On average, the 

binary search iterated 5 times for each circuit. 

To compare Lin's approach and our two proposed approaches in terms 

of runtime, we can measure the runtime of a single iteration in the binary 

search for circuits with similar sizes. For example, consider the circuit s3384 

in table 4.2 and the circuit sl238 in table 4.3. The former circuit has 1687 

vertices and 2782 edges while the latter one has 1581 vertices and 2100 edges. 

Both circuits have similar sizes. 
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The average runtime of a single iteration on s3384 using our optimal and 

near-optimal approaches are 1.526 seconds and 0.077 seconds respectively (as-

suming that the number of iterations taken are 16.5 and 9.6 respectively). 

However, the average runtime of a single iteration on sl238 using Lin's ap-

proach is 1.576 seconds, although they had used a faster computing platform 

to perform the experiments. 

4.6 Summary 

Regardless of how powerful the technique of retiming is, it draws little attention 

in industrial practice because it does not take wire delay into consideration. 

While most traditional retiming algorithms have ignored wire delay safely, we 

have proposed two elegant approaches to solve the problem of retiming with 

gate and wire delay efficiently and simultaneously. 

Our first approach is extended from the MILP approach in paper [22] and 

can solve the problem optimally. Our second approach is an improvement 

over the first one in terms of practical applicability. The main idea is to solve 

the problem of retiming in a reduced constraint graph, which involves vertices 

with incoming back edges only. We have implemented both algorithms and 

compared their performance on the ISCAS89 benchmark suite. Experimental 

results show that the near-optimal fast approach gives solutions that are only 

0.13% larger than the optimal on average but in a much shorter runtime. 

Compared with the proposed method in [23], our approaches can give solu-

tions for large benchmark circuits within a reasonable amount of time whereas 

their method could not. In fact, no experimental results for large circuits were 

reported in their paper. 
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Register Insertion in 

Placement [36 
* • 

5.1 Introduction 

While the technique of retiming can be applied to improve the performance of 

a sequential circuit, the placement of registers after the optimization is another 

challenge. Since a multiple-pin net is represented as a branch of edges in a 

retiming graph model, there is no information about the topology of the routes 

or the position of each register in the net. Thus, it is unknown whether the 

clock period obtained from retiming can be realized in the actual layout. If 

we arbitrarily share the registers among the interconnections of a net, it may 

violate the retiming solution and render the optimization process useless. 

In this chapter, we study the problem of realizing a retiming solution on 

a global netlist by inserting registers in placement to achieve the target clock 

period. This problem involves two main sub-problems, namely, topology finding 

and register placement. 

As we have mentioned before, a net is modeled as a branch of edges in the 

retiming graph, the problem of topology finding refers to the determination of 

an optimal sharing of the registers among the fanout edges of a net given the 

geometric positions of the connected gates such that the optimal clock period 

55 
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Register with the I Delay of this path 
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丨 

Registers ^ — — — 

Figure 5.1: An illustration of the definition of a[v) for a gate v. 

obtained from retiming can be preserved. After obtaining the topology tree 

of a net, we need to find an appropriate position for each register given the 

constraints in placement (some occupied areas do not allow register insertion) 

and this problem is known as register placement Given a placement (we used 

standard cell design in our experiments) and a retiming solution (we used the 

technique in [2] to generate the retiming solutions in our experiments), our 

proposed algorithm can insert registers into the placement solution to preserve 

the clock period as much as possible. 

Notice that our algorithm has no dependency on the retiming algorithm 

being used, as long as it considers wire delay and gives a retiming solution with 

a target clock period, retiming labels and the maximum arrival time at each 

gate output, a{v). Fig. 5.1 shows an example that illustrates the definition of 

a{v). 

Our algorithm can find the optimal topology, i.e., using the minimum num-

ber of registers while preserving the clock period, for nets with 4 or fewer pins. 

Since nets with 4 or fewer pins constitute over 90% of nets in a circuit on aver-

age, the proposed algorithm offered an agreeable performance as shown in the 

experiments. Nearly all the nets had their best topology found and registers 

inserted successfully while achieving the target clock period. 
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5.2 Problem Formulation 

PROBLEM STATEMENT. Given a placed sequential circuit and a retiming so-

lution, i.e., an optimal clock period elk, a retiming label r{v) at each gate v 

and the maximum arrival time a(v) at the output of gate v, we want to insert 

registers into the circuit layout to realize the retiming solution, preserving the 

clock elk as much as possible. 

We can represent the circuit as a graph G{V, E), where each vertex v eV 

corresponds to a combinational gate, and each directed edge Cuv ^ E represents 

a connection from the output of gate u to the input of gate v. Let w{u,v) be 

the number of registers along the edge e训’ duv be the wire delay of edge Cuv if 

no register lies along the edge. Note that the wire delay duv is assumed to be 

proportional to the shortest Manhattan distance between u and v. 

Now, consider a net N{s, D, L), where s denotes the driving gate, D denotes 

the set of all driven gates, and L denotes the set of interconnections between 

s and each of the gates di 6 D. Obviously, { s } U D C V and L C E. 

For each edge ê d. 6 L, we have a value Wr(s,di) representing the number 

of registers along the edge ê 山 after retiming. The problem is to insert the 

minimum number of registers for this net into the circuit according to the 

retiming solution such that the clock period is preserved as much as possible. 

This problem comprises two main sub-problems known as topology finding 

and register placement. Topology finding is the problem of finding a topology, 

Tyv, of net N given the exact geometric positions of the gates such that the 

minimum number of registers is used and the target clock period is preserved. 

Register placement is the problem of finding the corresponding position for 

each register given the topology Tn of net N. 

A topology T;v = (Pj/C) is a tree (an acyclic graph with no designated 

root yet) that describes the structure of net N on the plane. Each node 
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Figure 5.2: Graph model of a 4-pin net in which each edge has a single register 
after retiming. 

p0 ^ 
O - H < D © “ " " “ 

L © 
Figure 5.3: Case (a) - a single register is shared among the edges (maximum 
sharing). The topology tree of this configuration is shown on the right. 

p e P corresponds to either a combinational gate or a register, and each edge 

kuv € K represents a physical connection between gate u and gate v. Each 

node peP that has only one adjacent node in T^/, i.e., deg(p) = 1, represents 

a combinational gate while an internal node p e P that has more than one 

adjacent node, i.e., deg(p) > 1, represents a register. In fig. 5.2，an example of 

a 4-pin net in which each source-to-sink edge has a register after retiming is 

shown. There are five possible register sharing topologies in this example: (a) 

all the edges share a single register (maximum sharing) as shown in fig. 5.3; 

(b) each edge has its own register (no sharing) as shown in fig. 5.4; (c) for the 

rest three equivalent cases, two of the edges share a single register while the 

other has a separate one, as shown in fig. 5.5. 

Although we can always identify the topology tree which has the maximum 

sharing of registers for a net, it is not always possible to place the registers 

on a chip using that topology while preserving the given clock period. Using 

case (a) in fig. 5.3 as an example, suppose the clock period resulted from 
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O 1 — 0 © 

Figure 5.4: Case (b) - each edge has a separate register (no sharing). The 
topology tree of this configuration is shown on the right. 

pO 

Lho ^ ^ 
Figure 5.5: Case (c) - two of the edges share a register while the other has a 
separate one. The topology tree of this configuration is shown on the right. 

retiming, elk, equals 1.5 units and the positions of gate u, a, b and c are (0，0), 

( - 3 , 0 ) , (0,3) and (3,0) respectively, as depicted in fig. 5.6 below. 

Obviously, it is impossible to share a single register among the three edges 

without clock violation. Three separate registers have to be allocated and 

inserted exactly at ( -1 .5 ,0 ) , (0,1.5) and (1.5,0) for edge e^a, eub and e„c 

respectively in order to satisfy elk. 

Even if we have a feasible topology tree, it can happen that the suggested 

position for a register has been occupied by some other gates, i.e., the target 

area is blocked, and we have to look for another appropriate position. Section 

4 will address how a feasible topology tree can be found and how the positions 

of the registers can be finalized. 
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Figure 5.6: A situation in which the registers cannot be shared in order to 
preserve the clock period elk = 1.5 units. 

5.3 Placement of Registers After Retiming 

5.3.1 Topology Finding 

In this section, an algorithm is proposed to find the topology of a net given the 

constraints in placement such that maximum sharing of registers is achieved 

and the clock period is preserved. This method can find the optimal topology 

for a net with 4 or fewer pins, and can give near-optimal solution for a net 

with 5 or more pins according to the experimental results. 

Algorithm Description 

Given a net N(s,D,L), a clock period elk, and the maximal arrival time at 

the output of gate v, a{v), we can obtain a feasible topology tree of N, Tm, as 

described below. 

First, we construct the best possible topology TyVopt for TV, i.e., a topology 

having the minimum number of internal nodes (an internal node represents 

a register). Obviously, the number of internal nodes in TV�pt equals Q = 

maxdieD{'Wr(s,di)}, where Wr(s,di) denotes the number of registers on the 

edge Csdi after retiming. We label each internal node as ri representing the 
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Figure 5.7: The retiming graph model (left) and the corresponding best pos-
sible topology TNopt (right) of a 4-pin net example. 

i-th register on the net from the source s for 1 < i < Q. An example of the 

retiming graph model and the corresponding best possible topology T^opt for 

a 4-pin net is shown in fig. 5.7. 

We call the region of the plane where a register r can be placed the candidate 

region of r and is denoted by C{r). For consistency, the candidate region C(v) 

of a combinational gate v is the position of v itself, i.e., its coordinates {xy, y^), 

since v is fixed after placement. An 6-extended region of a region 况，denoted by 

况)’ is the region of the plane at a distance 5 or less from some points in 况， 

assuming that the distance between two points is measured by their shortest 

Manhattan distance. 

Besides, we define an adjacent-gate region for each node p in a topology 

tree, denoted by A{p), as an 知extended region from its candidate region C(p), 

i.e., A{p) = where 6 is defined differently for different types of 

nodes. The physical meaning of A(p) refers to the region on the plane such 

that it encompasses all the possible positions for an adjacent gate of p in the 

net. Therefore, the value of 5 for A(p) of a node p is described as follows. If 

node p is an internal node, 5 equals elk. If node p represents a driven gate, 5 

equals a(p) — dp, where a(p), given by the retiming solution, is the maximum 

arrival time at the output of gate p and dp is the gate delay of p. Otherwise, 

node p represents the driving gate, and we set 6 to elk — a(p). Notice that all 

these regions are 45°-rotated rectangles on the rectilinear plane because of the 

Manhattan distance measurement. 
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Starting from the best possible topology TN�pt, we will modify the topology 

incrementally until an optimal feasible topology T ^ is obtained for net N. 

First of all, we choose the node that represents the driving gate s as the root 

in T^opt and direct all the edges away from s. Then, we will process each 

internal node n in Tno^, from i = Q to i = 1, i.e., from the furthest register 

to the closest register to the driving gate s, in the following manner. 

For each internal node Vi with a set of children 仍’.•.，gVn’ find a minimal 

set of all the overlapping regions between A{qj) for 1 < i < m, denoted by 

Ymin = (2/1, • • • ,2/fc), such that the union of the elements in Ymin covers at least 

one point from each region A(qj). For each yi in Y^in, we call the number 

of regions that yi has covered at least a point as the size of yi, denoted by 

s{yi). Sort the elements in Ymin in a non-ascending order of their sizes, using 

a greedy procedure ALGSETY as described below. 

Procedure ALGSETY(ri, T^)； 

begin 

overlapped := a boolean flag; 

ymin <""“ 

add A{qi) to Ymin, i.e., Vi < ~ ^(^i)； 

for j = 2 to m 

overlapped i——false; 

for I = 1 to |ymm| 

if {yinA{qj)^(l>) 

yi <~ yz A 乂(^); 

sort elements in Ymin in a non-ascending order of their sizes; 

overlapped <true; 

break; 

end if; 

end for; 
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if {overlapped = = false) 

increment \Ymin\ by 1; 

add A{qj) to Ymin at the end, i.e., y\Y„un\ ^ ” ^fe)； 

end if; 

end for; 

OUTPUT(y^in)； 

end. 

Notice that the union of the elements in Ymin covers at least one point from 

each region, A(qj), for 1 < j < m. Next, we can remove all the edges from u 

to its children qi,... ,qm in T;v�p" split the node n into k new internal nodes, 

m , . . . ’nfc, where node ni corresponds to element yi in ymin for 1 < / < /c. In 

addition, we will assign region yi as the candidate region of n,’ i.e., yi = C(n/), 

for all I. 

Starting from the yi whose s{yi) is the largest in Ymin, add an edge from ni 

to each qj that has no parent node and whose A{qj) is covered by yi. Repeat 

this step until all yi have been processed. Finally, add an edge from the parent 

node of u to every newly generated internal nodes rii and u can then be 

removed from the topology tree. The above operations are described in the 

procedure ALGMODITREE below. 

Procedure ALGMODITREE(ri, Ymm, Tyv)； 

begin 

remove all the edges from 7\ to its children gi，. • . ， i n Tyv; 

instantiate k new internal nodes, n i , . . . ,nfc, where k = | Ymin I； 

assign region yi as the candidate region of n ,̂ i.e., 

yi = C{ni), for all I] 

for I = I to k 

for j = I to m 

if [yi n + 0 and qj has no parent node) 
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add an edge from ni to qj\ 

end if; 

end for; 

add an edge from the parent node of n to nr, 

end for; 

remove r̂ ; 

OUTPUT(TAr); 

end. 

After visiting all the internal nodes n in T̂ Vopt and modifying the topology 

as described above, we will get a new topology tree Tjv at the end such that 

the clock period elk is preserved. The whole algorithm for topology finding of 

a net N is described in the procedure ALGTOPOTREE. 

Procedure ALGTOPOTREE(A^); 

begin 

construct the best possible topology T;v�pt for net N； 

T/v <~ Tyvopt; 

for i = Q to I 

Ymin 卜 ALGSETY(r“ T^,); 

T n — ALGMODITREE(n, Ymin, 

end for; 

OUTPUT(T;v)； 

end. 

Optimality Proof 

To prove the correctness of the above algorithm, we have the following three 

lemmas. 

Lemma 1 Given a set of n 45°-rotated rectangles Ri,Rn on a rectilinear 
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plane, if n . . . n i?n — 0’ then fl . . .门 + 0，where a: is a 

non-negative real number. 

Lemma 2 Given a set of n 45°-rotated rectangles Ri,…，Rn-i and 5 on a 

rectilinear plane, if n # (/) for 1 g i S n - 1 and f l . . . n + 0’ then 

L e m m a 3 Given two 45°-rotated rectangles, A and B, on a rectilinear plane, 

we denote the n times elk-extended regions of A and B as An and respec-

tively, i.e., = 叫 ( � and Bn 二 叫 (B) . Suppose A n B = 

RAB 0 , we denote the n times elk-extended region of RAB by {RAB)^ i.e., 

{RABU = It is claimed that if there exists a point a; € 

a: e R+'^'{{RAB)n-i) for all n > 1. 

Proof: We prove by induction on n. 

Base case： 

Consider the case when n = 1. Suppose x e n 5i，the d/c-extended 

region from the position of x is given by R'^^ (x). 

Obviously, �n y i o + • 

and 认(:c) n Bo (f) because a: e n Bi. Since AqHEq ^ ({> (... A) 二 

A 召0 = 召 and n 召 0), n (A) A So) (/) by lemma 2. Therefore, 

X E and the claim is true for n 二 1. 

Inductive step: 

Assume that the claim is true for n = j - I, where j is a positive integer 

> 2’ i.e., if there exists a point a; e lAB—i，a; 6 / ? + �认 C o n s i d e r 

the case when n = j. Given a point x e Aj n Bj and the elk-extended region 

from its position is denoted by Obviously, 议 n 外_ i + (j) and 

说(a;) n + (j) because a: € n Bj. By lemma 1, since 4 �A "̂ o 

Aj-i n Bj.i — (f). Therefore, n ( �一 1 n Bj_i) ^ (/> hy lemma 

By the induction hypothesis, if (工）门（々―土 门 i) + (j), 认(a:) n 

说 + Therefore, x G 认((i?仙)j—i). 
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Theorem 1 The proposed algorithm finds a topology that maximizes the 

sharing of registers for an i-pin net, where 2 < i < 4, and the given clock 

period elk is preserved. 

Proof: We prove the three possible cases one-by-one. 

Case 1\ i = 2 

This case is trivial because there is only one source s, one sink ti and one 

edge esti in a 2-pin net, there is no other edges to share registers with. The 

algorithm will start from the furthest internal node TQ and take the adjacent-

gate region of ti, A(ti) 二 (亡 1)-4'1)((：7(亡1)), as the candidate region of rg, 

i.e., C(rQ) = A{ti). Next, the algorithm will process node rq - i and take the 

adjacent-gate region of rg, A(rQ) = i?+c '�C(rQ)) ’ as the candidate region of 

TQ-U i.e., C(rQ_i) = A(rQ). 

By substitution, C(rQ-i) can be represented as an extended region from the 

position of the sink ti, as C(rQ_i) = 山i)+圳((^(ti)). The algorithm 

repeats the above steps until it reaches the first internal node n where C ( r i ) = 

丑+((a(ti)-dti)+(Q-i)xdfc)(c(力 1)) Since the retiming solution is valid, the distance 

between s and ti will not exceed {elk — a(s)) + ((Q - 1) x elk) + (a(ti) -dtj. 

Therefore, the algorithm will find the candidate regions for every register and 

return the best possible topology when it terminates. 

Case 2: 2 = 3 

Given a 3-pin net, let s be the source, and ti and t � b e the two sinks. Let 

Wr{s ,ti) and uv(s’ 力 2) be p and q respectively, where I <p <q. Suppose that 

there exists a topology tree of maximum register sharing for the 3-pin net such 

that the first k registers, where 1 < /c < p, are shared (notice that if the k-th. 

register can be shared, the h-th register can be shared where l<h<k), and 

that the algorithm cannot find such a topology. 
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Since the algorithm cannot find that optimal topology, it must fail to find 

an overlapping region for the k-th register to be shared. At the point of fail-

ure, the algorithm should find that the regions R+i{a{ti)-dt,)+cikxip-k-i))(^^^^ 

and _R+((a“2)-t^)+ciA:x(g-fc-i))(�2) do not overlap. However, these two regions 

encompass all the possible positions for the placement of the k-th register from 

ti and t2 respectively such that the clock period elk would not be violated. 

Therefore, should the k-th register be able to be shared as assumed, it must 

lie within these two regions and the algorithm must be able to find it. Con-

tradiction occurs. 

Case 3: 2 = 4 

Given a 4-pin net, let s be the source, and ti,亡2 and t^ be the three 

sinks. Let Wr{s,ti), Wr{s,t2) and Wris.ts) be p, q and r respectively, where 

I < p < q < r. Suppose the algorithm is attempting to share the k-th. register 

where I < k < p, i.e., it is trying to find a minimal subset of the overlapping 

regions such that it covers all the extend regions /?+((•)-认X(P-A;-I))(“）， 

丑+((a(t2)-dt2)+c/fcx(<7-fc-i))(,2) and i?+((a(<3)-dt3)+dfcx(r-fc- 1))(右3)’ denoted by A, 

B and C respectively. Notice that we only consider when k < p and assume 

that the three paths from s to ti, t�and ts are not merged yet (i.e., no sharing 

of registers from /c + 1 to r). It is because, otherwise, the situation will fall 

into case 1 or case 2 discussed above. 

There are 4 distinct cases. First, if A, B and C are disjoint, it means that 

the k-th register cannot be shared and the algorithm will introduce three new 

internal nodes to represent the registers and continues with the next internal 

node rk-i. Second, if A, B and C overlap with each other, it means that the 

k-th register can be shared among ti, t) and 亡3. The algorithm will introduce 

a single internal node to represent the register and continues. The correctness 

of the algorithm in these two cases is trivial and will not be elaborated here. 



Chapter 5 Register Insertion in Placement [36] 68 

The third case is, without loss of generality, that A n 5 + and 5 门 

(7 (/) but n C = Denote the region A n 召 as RAB and the region 

5 n C" as RBC- There are three possible options that the algorithm can choose 

from when evaluating the k-th. register: (1) it does not share the k-th. register 

and introduces three different registers for the sinks; (2) it shares the k-th 

register between ti and 亡2 but a separate one for 3̂； (3) it shares the k-th. 

register between t? and 亡3 but a separate one for ti. Our algorithm will choose 

arbitrarily either (2) or (3) as the number of adjacent-gate regions covered by 

RAB and RBC are the same, but it will never choose (1). We assume that the 

algorithm chooses (2) in the following analysis. 

First, we compare the choices of (1) and (2). Notice that (1) can be better 

than (2) only when the three separate paths can be merged together at a 

subsequent step of processing register h where 1 < h < k, while the combined 

path of ti and t2 and the path of U cannot be merged at the h-th register. We 

are going to show that this will not happen. 

If we choose (1), suppose that there exists a point x on the plane such that 

a; e •Aj. n Bj n Cj, where Aj, Bj and Cj represent the j times elk-extended 

regions of A, B and C respectively, during a subsequent step of processing 

register h where 1 < h < k. By lemma 3, it is shown that x e /?+�议 

where {RAB)J-I is the ( j -1) times elk-extended region from RAB- This means 

that if it is possible to share the h-th register among the three edges without 

sharing the k-th register at the first place, by choosing (2), i.e., to share the 

A;-th register between ti and 亡2, the algorithm will also be able to share the 

h-th. register among the edges. 

Next, we compare the choices of (3) and (2) similarly. Suppose we choose 

(3) and there exists a point x on the plane such that ;r e Aj. A (JiBC�j, where 

AJ and {RBc)J represent the j times d/c-extended regions of A and RBC re-

spectively, during a subsequent step of processing register h where 1 < h < k. 

Obviously, there exists a point y covered by Aj A 巧 H Q , i.e., y 6 � n j 5 j n C 7 j . 
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By lemma 3, y E i.e., V e R ' ' '\ [RAB)3-I )门 Cj, so the h-th 

register will also be shared among the three source-to-sink paths by choosing 

(2). Therefore, (2) is no worse than (3). As a result, the algorithm can find 

the optimal solution by choosing arbitrarily either (2) or (3) (using the greedy 

algorithm). 

Finally, if two pairs of the regions overlap while the other is disjoint, i.e., 

门 5 but n C 二 and 召 n 二 (/)’ the analysis is similar to the third 

case above. 

5.3.2 Register Placement 

In this section, we discuss how registers are actually placed using the topology 

tree yielded from the algorithm discussed in the previous subsection. Using 

an idea similar to the technique in [30, 15], the positions of the registers are 

determined. 

Since some of the chip areas are occupied by the standard cells, we need to 

know where on the chip a register can be placed. To tackle this problem, we 

divide the chip into a mesh of m x n grids. For each grid g* we keep track 

of its center coordinates, [Xg.^.Vg,,), and the size of the free space in the grid, 

f {gi j ) . We finalize the position for a register in the following manner. 

Given a topology tree TAT, choose arbitrarily an internal node r to be the 

root of TAT, and direct the edges of TM away from r. Starting from the root r, 

we choose a grid whose center is contained in C(r), i.e., the candidate region 

for placing the register r, and it has the largest free space available. We denote 

this grid as g(r). If f{g{r)) > z, where z denotes the size of a register, we 

take the center of g{r) as the position of the register r. Otherwise, we allow 

a controlled degree of inaccuracy by extending C{r) one grid width further, 

i.e., 加(C(r))，where g边 represents the width of a grid. Repeat the same 

process using instead of C(r) in the search of a feasible grid for 
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Topology tree 厂v 

Xi) 
Figure 5.8: The topology tree of a 3-pin net Tyv where n and r2 are two shared 
registers. 

placing register r. If no such grid is found, we report that this register cannot 

be placed. This could happen because the register counts may increase greatly 

after retiming. 

Let qi,... ,qm be the set of internal nodes which are the children of r in a 

topology tree After fixing the position of r, register qj, for 1 < j < m, is 

placed arbitrarily in its candidate region C{qj) provided that it is at a distance 

of elk or less from r. After visiting all the internal nodes of T^v, the position 

of each register is located. 

Suppose we have a 3-pin net N{s, D, L) and its topology tree Tyv is shown 

in fig. 5.8. The topology tree Tn shows that the two driven gates di and d] will 

share two registers represented by the internal node n and�2. In this example, 

we assume that elk = 3 units. Consider a 5 x 5 mesh as shown in fig. 5.9， 

where the positions of the driving gate s and the two driven gates, di and d), 

are assumed to be the centers of the grids containing them correspondingly, 

i.e., gate s is located at (4’ 0)，gate di is located at (0’ 4) and gate 6,2 is located 

at (2,4). Suppose TV is rooted at node n and the algorithm has fixed its 

position at (1,0), let us examine how the position of T2 is determined. 

The candidate region C{r2) of T2 covers the centers of grids c/03, c/04,仍2’ 

^13, g23 and 仍4. Starting from the position of register n , the algorithm 

expands a rectangle of distance elk from it, denoted by /?+�认(r^i) as shown. 

Next, the algorithm will find that 6 ^ 2 ) n ig not empty and covers 

the center of grid gn and 仍3 - the candidate positions of register 7*2. If the free 
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space of gi2 is greater than that of pis, i.e., f i g u ) > fiQis) > z, the algorithm 

will assign the center of gu as the position of register 

y 

/ \ / \ 
/ / \ 

/ A；]—木1—’、 
\ 創 创 _y 

candidate�� i \ / / j 
positions for .̂ ^̂ —j：：： ：̂  乙 . ^ 乙！ CfrJ D R^c'气 r,) 
register^- \ / i 

/K7 v \ I / 1 _ —— \ i . J ry ^ { i 

/ ； - - •• - --~ y 

\ 丨.........LuA y..B.9-) ^ 
\ 

\ / \ 
\ / 

\ / 
\/ 

Figure 5.9: An illustration of how the final position of register 厂2 is determined. 

5.4 Experimental Results 

We performed retiming and our proposed register placement algorithm on the 

ISCAS89 benchmark. The program was implemented in C language and run 

on a 1.5GHz Intel Pentium IV processor with 256KB cache and 512MB RAM. 

In our experiments, we implemented the circuits using a 0.35/im CMOS 

standard cell library from Austria Micro Systems and Silicon Ensemble was 

used to layout the design with a setting of 50% row utilization. Gate delays 

were referenced from the data book while wire lengths were estimated using 

the Manhattan distance between the connected cells. We scaled the wire delay 

according to [4] in which a 1mm wire was assumed to have a delay of 150ps 
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Number of Nets with Nets with 
Circuit logical registers 4 or fewer edges 5 or more edges 

after retiming with registers with registers 
s ^ ^ ^ 0 
s713 94 54 1 
s820 24 23 0 
s832 23 22 0 

S 1 1 9 6 3 1 1 7 1 

S 1 2 3 8 3 2 1 7 1 

S 1 2 6 9 2 5 9 1 1 3 1 4 

S 1 4 8 8 9 0 7 1 2 

S 1 4 9 4 7 8 6 0 2 

s3271 826 276 18 
S 4 8 6 3 6 2 2 3 6 0 2 2 

S 1 5 8 5 0 . 1 1 5 5 4 1 2 0 3 2 6 

S 3 5 9 3 2 5 4 5 5 2 6 0 1 2 8 0 

Table 5.1: Benchmark statistics after retiming. 

approximately. The size of a grid was set to twice as large as a D-type flip flop. 

During the placement of a register, we allowed an error of one-grid width, i.e., 

the width of a D-type flip flop. 

The ISCAS89 benchmark statistics are shown in table 5.1. The first column 

indicates the name of the circuits under test. The second column shows the 

number of logical registers existed in the retiming graph model after retiming. 

The number of registers had increased after retiming for most of the circuits 

because the retiming method that we used did not minimize the number of 

registers as one of its objectives. Although this increase in register counts does 

hinder our algorithm to place registers, it is not the main concern addressed in 

this paper. Next, the third column shows the statistics of the number of nets 

containing 4 or fewer edges with registers whereas the fourth column shows the 

number of nets having 5 or more edges with registers. Clearly, a larger number 

of nets in a sequential belongs to net with 4 or fewer edges with registers, thus 

our proposed algorithm can find the optimal solutions for almost all nets in 

each circuit. 
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Min. # Actual # # of regs. # of r e g s . — 
of regs. of regs. placed within placed with CPU time 

Circuit using max. by our candidate controlled (sec.) 
sharing method region error  

s m ^ ^ ^ 0 O l 
s713 55 55 55 0 0.02 
s820 23 23 23 0 0.01 
s832 22 22 22 0 0.01 

S 1 1 9 6 1 8 1 8 1 8 0 0 . 0 0 

S 1 2 3 8 1 8 1 8 1 8 0 0 . 0 0 

S 1 2 6 9 1 2 7 1 2 7 1 2 7 0 0 . 0 2 

S 1 4 8 8 7 3 7 3 7 3 0 0 . 0 2 

sl494 62 62 62 0 0.01 
s3271 342 438 438 0 0.18 
S 4 8 6 3 4 0 8 4 1 7 4 1 7 0 0 . 2 5 

S 1 5 8 5 0 . 1 1 2 6 4 1 2 6 4 1 2 6 4 0 2 . 5 2 

S 3 5 9 3 2 2 8 9 9 2 8 9 9 2 8 9 9 0 1 3 . 4 1 

Table 5.2: Results of register placement with clock preservation. 

The experimental results are shown in table 5.2. In the second column, 

the minimum possible number of register required after sharing is shown, i.e., 

assuming that every net could be realized using the best topology. The third 

column shows the number of registers that have actually been inserted after 

using our proposed algorithm. It can be observed that the numbers in the third 

column are the same as those in the second column except for circuit s3271 

and s4863. This observation showed that almost all the nets in our test cases 

could have their registers placed using the best topology, revealing that our 

proposed algorithm can often find near-optimal solutions for register insertion. 

The fourth column shows the number of registers that are placed within 

their candidate regions while the fifth column shows the number of registers 

that are placed outside their candidate regions but with a controlled error range 

(one grid size). As we can see, all the registers are placed in their candidate 

regions successfully in all the test cases. Finally, the CPU runtime is shown in 

the last column. 
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5.5 Summary 

In this chapter, we have proposed an algorithm that solves the problem of 

register insertion on global wire given a placed sequential circuit and a retiming 

solution. The proposed algorithm can preserve a given clock period with a 

controlled error using as few registers as possible in contrast to many previous 

works with post-retiming register placement that have the problem of clock 

period violation. In addition, the algorithm is also proved to be giving the 

optimal topology for nets with 4 or fewer pins. Since this type of nets makes 

up for about 90% of the nets in a sequential circuit on average, the algorithm 

performs very well and effectively under most situations. 

Together with any powerful retiming method which is designed to han-

dle global netlist with block and wire delays, our proposed algorithm can be 

applied to locate where a register should be inserted to pipeline long global in-

terconnects such that the target clock is preserved. This is particularly useful 

in today's designs in which multiple clock cycles are required to propagate a 

signal across a global wire. 

Improvements can be made to handle the situation when there is no room 

for the candidate region of a register. Instead of scanning the neighboring grids 

for free spaces, incremental shifting and reshuffling of cells can be performed 

to free continuous rooms for register insertions. 
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Conclusion 

Because of the wire delay dominance in today's DSM design, propagation of 

electrical signals on global wires within one single clock cycle becomes very 

difficult, if not impossible. As a result, multiple clock cycles are introduced on 

these long wires by inserting more registers, i.e., wire pipelining. To pipeline 

the wires of a circuit without changing its functionality or increasing its latency, 

a sequential circuit optimization, called retiming, can be applied. The basic 

idea and literature review of retiming are presented in the early chapters. 

However, there are two major problems that hinder the use of retiming on 

global nets. The first problem is the lack of wire delay consideration in retiming 

while the second problem is the placement of registers after the optimization. 

In this thesis, we have proposed solutions to the above problems. 

Wire delay is ignored in the traditional formulation of the retiming problem. 

Even though there are some previous works attempting to integrate wire delay 

into retiming, they suffer from the problem of over-simplification, e.g., they 

do not consider the delay between a pair of adjacent registers on a wire. As 

the feature size of the CMOS technology continues to scale down, this kind of 

inaccuracy can no longer be neglected. In chapter 4, the problem of retiming 

with gate and wire delay are studied and discussed. 

Our first approach is an extension of the MILP approach in the original 

retiming paper [22]. By introducing some new variables and modifying one of 

75 
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the retiming constraints, we are able to extend the MILP approach to handle 

both gate and wire delay optimally in polynomial time. Our second approach 

is an improvement over the first one regarding to the dramatical speedup in 

runtime. In fact, this approach can give optimal solution if only wire delay is 

considered and can give near-optimal results when both gate and wire delays 

are present. Experimental results show that the second approach gives solu-

tions that are only 0.13% larger than the optimal on average but in a much 

shorter runtime. 

Another problem of applying retiming in practice is that the resulting so-

lutions do not give information of how to share the registers among a net and 

where to put them on the layout without clock violation, because a multi-pin 

net is usually modeled as a branch of 2-terminal edges in the retiming graph 

model. To solve this problem, we have proposed an algorithm to perform 

post-retiming register placement that can preserve a given clock period with 

a controlled degree of error using as few registers as possible. 

Our proposed algorithm is proved to be optimal for nets with four or fewer 

pins, and this type of nets comprises over 90% of the nets in a sequential circuit 

on average. Besides, it can handle the blockages on a chip when inserting the 

registers into the placement. Experimental results show that our proposed 

algorithm can almost always find optimal solutions for the nets of the ISCAS89 

benchmark circuits. 

In conclusion, we have studied and solved two problems related to retim-

ing. One is the problem of retiming with gate and wire delay while the other 

problem is post-retiming register placement. Our proposed algorithms have 

contributed to the applicability of retiming in today's DSM designs. Future 

works can be focused on reducing the number of registers increased after re-

timing and on improving the register placement heuristics. 
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