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Abstract 
Abstract of thesis entitled: 

Boundary Value Methods for Transient 
Solutions of Markovian Queueing Networks 

Submitted by MA Ka Chun 

for the degree of Master of Philosophy in Mathematics 

at Tlie Chinese University of Hong Kong in August 2004 

In solving the queuing networks in steady states, one has to solve a system of 

linear equations. For transient states solution, on the other hand, one has to 

solve a system of ordinary differential equations. The initial value method is 

one of the classical methods to solve the system. However, a small time step 

should be used in order for the methods to be stable. This will result in a 

higher computational cost. In this thesis, the boundary value method is proposed 

to solve the problem. The boundary value method, which is unconditionally 

stable even for liigh-order scheme, will transform the problem into a large linear 

system. The algebraic iiiiiltigrid methods are used to reduce the cost of solving 

the linear system. Niunerical results will be given to illustrate the effectiveness 

of the method. 
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摘 要 

香港中文大學碩士論文摘要 

論文題目： 

馬爾可夫排隊網絡瞬時解的邊界値方法 

馬家俊 

二零零四年六月 

在找出排隊網絡的定態解時’我們需要求解綫性方程組°但對於排隊 

網絡的瞬時解’我們則要求解常微分方程組°初値方法是找常微分方 

程數値解的傳統方法，但它的缺點在於它的不穩定性。如果要令初値 

方法變成穩定，則需要採用一個極小的步長，但這樣會使計算量大大 

增加°這篇論文提出另一個找出排隊網絡瞬時解的方法’就是利用邊 

界方値法去求常微分方程組的數値解°邊界値方法是無條件地穩定的 

數値方法，即使高階的邊界値方法也是一樣。邊界値方法的缺點是它 

會把常微分方程組變換成一組更大的綫性方程組’但是，透過利用代 

數多重網格法解這個錢性方程組，計算量就能大大減少’而這篇論文 

的數値結果亦能顯示這種方法的效率。 
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Chapter 1 

Introduction 

Markoviaii queiieing networks are common stochastic models for a number of 

physical systems such as teleconimunication systems [9], manufacturing systems 

10] and inventory systems [11]. For long-run system performance analysis, the 

steady-state probability distribution of the system is required. The steady-state 

probability distribution can be obtained by solving a large linear system. Direct 

metliods [5, 12，14] and iterative methods [3，7’ 9, 10] have been developed for 

this purpose. 

However, to analyze the system in a finite horizon, the transient solution of the 

queiieiiig system is required, and it can be found by solving a system of ordinary 

differential equations (ODEs). Many classical numerical methods can be applied 

to the ODE systems. The Initial Value Methods (IVMs) such as the Runge-Kutta 

method are good explicit metliods for their efficiency and easy implementation. 

But they may require small time step in order to converge. A survey on numerical 

methods for solving transient solutions of homogeneous irreducible Markov chains 

can be found in [18 . 

Ill this thesis, the Boundary Value Methods (BVMs) [2] are proposed to the 

7 



BVMs for Solving Transient Solutions of Markovian Queueing. Networks 8 

ODE systems. BVMs are implicit stable methods and hence there is no restriction 

oil the size of the time step for the method to converge. However, the disadvantage 

is that they require solutions, of large linear systems, and hence may require longer 

computational time when compared with the IVMs. Here we propose to use the 

algebraic inultigrid (AMG) method to solve the resulting linear systems from 

BVMs. 

AMG methods have been developed for more than two decades [20] and have 

been applied to many applications such as solving partial differential equations 

1] and imaging problems [16]. They also have been used successfully for finding 

the steady-state probability distributions of queueing networks by using an ap-

propriate coarse grid approximation, see [7]. In this paper, we use AMG methods 

for queues in transient states. The ODEs are first discretized by BVMs and the 

resulting linear systems are solved by AMG methods. For overflow queueing net-

works, we will see that the resulting method is iimch more efficient than IVMs, 

especially when the systems are ill-conditioned. We will illustrate the effective-

ness of our method through 2-qiieiie overflow networks. A comparison with other 

iterative methods will also be given. 

The thesis is organized as follows. In Chapter 2, we present the overflow 

queues. IVMs and BVMs are introduced in Chapter 3 while the linear system 

solvers are given in Chapter 4. In Chapter 5, numerical examples are given to 

demonstrate the efficiency of our method. 



Chapter 2 

Queueing Networks 

For coiitinuous-tiine Maxkoviaii queueing networks, the transient probability dis-

tribution can be found by solving Kolniogorov's backward equations [8, 21]. We 

introduce the equations here. 

2.1 One-queue Networks 

We will focus oil the birth and death processes first. Suppose that there are n 

states, 

We denote qi{t) be the probability that it is in state i at time t provided that it 

is at state 0 at time (). We define 

qo{t) 

q � = • 

gn-l � 

9 
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then the Kolniogorov backward equation is 

华 = ⑴， (2.1) 
(it 

where 
A 0 

一A A + fi _2", 

G = - A A + s", -<s/i , (2.2) 
. • • 

. • • • • • 

-A A + s/i —sfjL 

() 一 A sfi _ 

s is the number of servers, A and {i are the mean arrival rate and service rate 

respectively, and clearly we have the initial condition q(0) = (1 ,0 , . . . ,0)^ G M". 

This one-queue network is called a Markovian M/M/s/{n — s - 1) queue. The 

true solution for this network can be written as 

q � =e - ( " ' q ( � ) 二 ( / + £ q(0). 

We can, on the other hand, find the solution in another way. If we define 

1 � A * • 

(合）（念） 

S = 1 i , 

G) •. •(。） 
0 . . . 

_ h i � 

where 
1 

^ A y 
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then by direct calculation, we will have 

= S-'GS, 

i.e., S'^GS is symmetric. Thus there exists an orthogonal matrix Q with a 

diagonal matrix 
Fi 0 

r = ， 

0 r.n 
m — 

such that 

C / S - ' G S Q = r. 

. Let q(^) be such that q(力)=SQq(t). Then (2.1) will become 

^ 二 - 剛 dt 

( 剛 ⑴ = - G S Q m 
dt 

华 = - 嚇 dt 

By using the above auxiliary equation, the solution of (2.1) is 

q � = - SQe-'\{0) 

"e-rv, 0 

=SQ Q^S-'m. 

0 e—r’“ 
• • 

The one-queue solution can be found exactly by using the above formula. This 

kind of solution is the transient solution of the network. On the other hand, 

one may consider the behavior when the network reaches an equilibrium after 

a sufficiently long time. This solution is called the steady-state solution. The 
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steady-state solution can be found by imposing 

� — 0 

i.e., finding a vector q such that 

Gq 二 0. 

It is easy to see that the matrix G has a left eigenvector ( 1 ,1 , . . . , 1) G M"' with 

eigenvalue 0. So one more constraint should be added to make q a probability 

distribution, i.e., q should be non-negative with ||q||i = 1. The focus of this thesis 

will be on the transient solution, and more results on the steady-state solution 

can be found in [3 . 

Now that the results for one-queue networks have been reviewed. The follow-

ing section will be about the two-queue networks. 

2.2 Two-queue Free Networks 

We begin our discussion of a simple two-queue free network first. In this network, 

there are no interactions between the two Markovian M / M / s ^ / { u i - S i - l ) queues, 

i = 1,2. Here Si and (n^ - ŝ  - 1) denote the number of parallel servers and the 

number of queueiiig spaces in Queue i respectively. In state ('i, j ) , we mean that 

there are i customers in Queue 1 arid j customers in Queue 2. For simplicity 

of notations, let pij{t) be the probability that the network is in state {ij) at 

time t provided at time 0 it is in state (0,0). In general, the initial state can be 

arbitrary. If we let 

P�=(P0’0�,..•，,:P0，《2-1 � ’ :P l ’ 0 � , • . . ,Pl，n2-l⑴， 

• • . ，l^rf.i一 1,0(0，• . . 1 P n i - 1 . 7 7 . 2 ’ 
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then the Kolniogorov backward equations can be written as 

= ⑴， （2.3) 

(it 

where 

A. -IM 0 
-Xi Xi + fk 

• • • • • • . « • 

Gi 二 -A i Xi + SiiM -SiiM ， （2.4) 

•.. . . . •.. 

-Xi K + SiiM -SiiM 

0 Sif.Li 

and Ai and are the mean arrival rate and the mean service rate of the servers in 

Queue ?；. Since there are no interactions between the queues, the transient solution 

can be obtained in tensor product forms from the solutions of individual queues, 

i.e., if q“力)is the transient solution for Queue z, i =1，2, then ( q i � � q 2 � )i s 

the transient solution for (2.3). In fact, 

二 -Giqi ⑴(8) q 2 ⑴ - q i ⑴(8) 

=-{Gi (8) In2 + c y ( q i �( g ) q 2 � ) . 

The two-queue free network is not very interesting because the solution can be 

found explicitly. But when some interactions are allowed between the two net-

works, the problem will get more complicated as we will see in the next section. 

2.3 Two-queue Overflow Networks 

111 this section we present two-queue overflow networks. Unlike two-queue free 

networks, they allow overflow from one queue to another. Here we consider the 
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following overflow discipline: 

1. When the first queue is full, customers arriving at Queue 1 are allowed to 

overflow to Queue 2 if it is not yet full. 

2. Overflow from Queue 2 to Queue 1 is not allowed. 

Then the transient solution p(力)satisfies 

华 = — 0 /,., + In, ® G2 + e . 乂 � i?i)p⑴， (2.5) 
at 

w h e r e � = ( ( ) , . . . , ( ) , 1 ) € IT] and 

‘ 1 0 

- 1 1 

Bi = A] • . . . . . . • 

- 1 1 

0 - 1 0 _ J 

For two-queue overflow networks, there are no product form solutions, and thus 

niiinerical methods must be used to find the solutions. One can easily extend 

these ideas to obtain the backward equations for more general g-queue overflow 

networks, see [4 . 

2.4 Networks with Batch Arrivals 

Unlike birth and death processes, this network allow batch arrivals. A one-queue 

network with batch arrivals can be described as follows. Let Xk be the batch 

arrival rate for batches with size A;, k > 1, and define 

oo 

j=i 
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If the arrival batch size is larger than the places available, only part of the batch 

can arrive the system. With the same definition as in §2.1, the probability dis-

tribution q � satisfies 

^ = -CqW, 
at 

where 

A -ft 0 0 0 … 0 

-Ai 入 + ", -2 / i 0 0 . . . 0 

� , , . • 
—入2 — Ai 入 + 2/i • • .. . • ” 

6 = : ... ... — 0 . (2.6) 
； ； ••• • •. \\s\ji ... 0 

-An-2 — 入 . • . — A + S\.l _S/i 
oo oo � 

- E - E  
j=n-l j—n-2 _ 

111 the next chapter, some of the numerical methods for solving the ODE will 

be discussed. 

I 



Chapter 3 

ODE Solvers 

III this chapter, we will introduce the classical initial value methods and the 

boundary value methods. The convergence and stability of the methods will also 

be discussed. 

3.1 The Initial Value Methods 

3.1.1 The Linear System of Ordinary Differential Equa-

tions 

For general Kolmogorov's backward equations, it is in the form: 

婴 = - ( 3 . 1 ) 
at 

where H depends on the queueiiig networks. 

Before describing the IVMs, we define the notation for the discretization. 

Suppose we want to find p (T) for some final time T < oo. Then we divide 

the time horizon into N steps, with step size h 二 TjN. Denote p^ 二 p(A;/i), 

16 
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0 < A; < N, the probability distribution that we want to find. With these 

notations, some of the classical IVMs will be reviewed. 

3.1.2 Euler's Method 

The forward Eiiler method can be derived by using the following approximation, 

dp{kh)�p{kh + h)-pikh) 
~ ； “ , 

dt h 

for A: = 0 , 1 , . . . , TV - 1. The forward Eiiler formula then become 

p.+i = { I - hH)p,. (3.2) 

The forward Eiiler nietliod is an explicit method, and it requires only matrix-

vector multiplication for finding the approximation for next time step if the pre-

• vious one is known. By Taylor's expansion, 

p(A:". + h) 二 p(A;/'0 + 響 + 0{h：'). 

As a, result, the approximation in the Euler method is of order 0{h). 

3.1.3 Runge-Kutta Methods 

Another most powerful IVM for solving a general ODE is the Runge-Kutta. 

method. We will consider the Runge-Kutta method of order 4 (RK4). RK4 

can be used to solve the ODEs of the following type: 

华 二 射 ) ) ， 
at 

where f is an arbitrary function. The well-known RK4 formula is as follows, 

Pk+i 二 Pk + + 2A'2 + 2/(3 + 
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where 

Ki = / (" ’ " , Pfc)， 

K2 = mi +�,Pk + h 令、 

K‘s = f�kh+t•！+ h 华、 

Ka 二 + + 

In our case, 

/(力，p� 

therefore 

A'l = /(/>:", PA:) 

=-Hpk, 

A', = /(/.•/?.+ + 

=/(/>'•" +会,Pa：-•彻） 

= - H { p , -会丑P A : ) 

Ks = f{kh + •，PA: + \�-H + 

lU = f{h-h + h. Pa: + h{-H + -H'' — 

/ '2 hS 
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As a. result, RK4 can be simplified as follows: 

P.+i =Pk + ^(K： + 2/(2 + 2Ks + lU) 
0 

+ ^ + - Ji'H' + 芸i/4) ph 

p �= ( I - hH + - ^h'H' + (3.3) 

for A; = (), Like the Euler method, RK4 requires only matrix-vector 

niultiplicatioiis. By Taylor's expansion, 

P(A:/, + h) = p(kh) + h - ^ + + J^ET- + + o�h ). 

So the approxiination is of order 0(11"̂ ). 

3.1.4 The Stability of the IVMs 

The stability of the IVMs is a good criterion for choosing the most suitable 

nunierical method. In general, if an IVM can be expressed as: 

Pfc+i = Tpk, 

then the method is stable if ||T|| < 1. So for the Euler method, by (3.2), it is 

stable if 

\\I-hH\\ < 1. 

For RK4, it is stable if 

11/一 hH + hi'H'' - h'H' + 們 I < 1, 
L D Z堪 
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by (3.3). 

For the Euler method, using the triangle inequality for matrix norm, 

- ||/|| < \\I-hH\. 

We can then derive a necessary condition for the Euler method to be stable, 

\\hH\\ < ||/-/ii/|| + ||/|| 

h\\H\\ < 2 
, 2 

So if the norm of H increases, the time step size h should decrease accordingly 

ill order to keep the method stable. This result is also true for RK4. 

3.1.5 Applications in Queueing Networks 

For the overflow network in (2.5), we can take 

H = Gi � In, + In, ^ 0-2 + enie【i (g) Ri. (3.4) 

The IVMs are efficient for finding the transient solution, but we note that for 

some queueing parameters, ||i/|| may increase as the sizes of the queues increase. 

Ill these cases, h has to be small in order that RK4 converges, and this will render 

the IVMs to be less efficient. 

For the batch arrival network, take H = G where G is defined in (2.6). 

3.2 The Boundary Value Methods 

The BVMs are stable implicit metliods which can be used especially if the problem 

is ill-conditioned. The Generalized Backward Differentiation Formulae (GBDF) 

which is an important, class of BVMs will be presented. 
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3.2.1 The Generalized Backward Differentiation Formu-

lae 

We define f；̂’ 二 for k 二 0 , 1 ’ . . . ,见 The GBDF of order m can be 

defined as 
m 

y ^ diPk+i 二 
i=0 

for A; = 0 , 1 , . . . , A/‘ - m, where 

‘ 

爭 if k is even, 

毕 if k is odd, 

\ 

and the coefficients a � a r e chosen to make the approximation to be of We 

require m more equations to find all pk- Suppose we add /i initial conditions and 

m - ft final conditions. The discrete problem for (3.1) will then become 
Po 

(A / + hB ® H) Pi =ei(g)po, (3.5) 

PN 
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where ei = (1 ,0 , . . . , 0 广 G 股“十、A and B are {N + l)-by-(7V + 1) matrices: 

1 … 0 

a '&i )…c^i , ! ) 
: : : 0 • • • 

J" ) ,v(") 
ttf) • • • 0'7n 
tto • . . 

« ( ) … O i m 
A 二 ， 

« • • 

. . • . » • 

0；0 … ^m 
,� {N-m+p + l) (N-m+^i+1) () Q̂q . . . CXm 

. • • 
争 • • 
• • • 

(N) (yv) a；), … _ 

and 

0 … 0 

/.•？⑴ ,•？⑴ Po . . . 

it�…“义） 0 

Po … A . 
Po … A n 

B = • 
• • • 

• • • 

. • • . * • . » • 

A) … An 

() Po … A n 
. • • . • • . • • 

..(Â ) rm Po … Pm _ 
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Now define A and B be two N-hy-N matrices: 

•a' i i )…a4丨） -

： ： ： 0 

Q'l ‘…Ci)n 

a'() . . • a,n 

tto . • • «7n 
L •.. ••• ••• , 

•.. •.. ••• 

ao •… <^771 
„ (N-7n+fj.+ l) (N-m+^+1) 0 ag …Oijn 

. • • . • » . • • 
(AO (N) 

and 

-/̂ S” … A ” _ 
• • • 

tf” . . . 成 a � 0 

PQ … A n 

Po … A n 
B = ••• ••. ••• • 

. • • 

Po … Pm. 

0 Po …f^rn 
« • • 
. • • • • • 

_ / T … A " ) . 
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Then (3.5) can be written as 

/「 "I 「 1 \ 
/ / 0 . . . 0 0 0 … 0 � �" I � 1 

^ "0 Pi 0 

: A^I + : B 0 hH :1 二 ： • 

aJr)/ P�o'.�hH . n 
Lpw� L 

y QqI PohH �y 

By eliininatiiig the redundant equations, we get 
_ô J)i)P�"| 巧 I H P � ] Pi � 

： : P2 0 
• + • -{-{A^I + hB^H) = ’ 

alr^Po A丨丑P� ： ： 

aoPo [ Poh,Hpo J [PN\ [0_ 

or r r 1 厂 n 
� ] L(i)1 � /I � 

Pi "0 

(A 0 / + hB (g) H) = — , � � Po — ③ 丑 P o . 
:• i t � 

Pn Po J L J L � 

3.2.2 A n example 

All example of BVMs is the third order generalized backward differentiation for-

mulae (GBDF3)： 

i(2p/,+i + 3pfc — Qpk-i + Pfc-2) = "ffc, A; = 2,3, 

+ 6p2 - 3pi - 2po) == /?'fi’ 

l ( l l p N - 18pyv-i + 9p/v_2 - 2p/v-3) 二 "fyv, 6 
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see [2, p. 132]. In matrix form, it is 

Pi 

A (g) / + IiIn <S) H] P2 二-a(g)po， (3-6) 

Pyv 

where = (-!，0， . . .，0) G R"，and A is the N-hy-N matrix 

1 - i 0 
‘2 i 6 

1 1 1 — I 一 — 1 2 3 
1 _ 1 i i 
6 1 ‘2 3 

I - 1 I i • 
. . • • 

1 1 1 1 一 — — 一 

6 丄 2 3 

n 1 3 Q n 
_ 0 " 3 2 6 . 

The GBDF3 is stable in the sense that a. very large time step can be used, while 

the drawback is that we need to solve the big linear system (3.6) which has size 

N times the size of H. There are many alternative ways to solve (3.6). In the 

next chapter we will review some of them. 



Chapter 4 

The Linear Equation Solver 

There are many methods to solve a linear system. They include direct methods 

and indirect methods. Some of the indirect methods will be reviewed in this 

chapter and the application of tlieiii on (3.6) will then be discussed. 

4.1 Iterative Methods 

Suppose we want to solve the following n linear equations in matrix form, 

= (4.1) 

Instead of finding the solution directly, one can find the solution by an iterative 

forauila of the form 
= Tx � + c, 

where T is called the iterative matrix. Therefore, given an initial guess Xq, we can 

find successively x̂；, k > 1. Define r；, to be the residual vector after k iterations, 

i.e., 

rjt = b - VKxfc, 

26 
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for each k > 0. When we use the iterative method, we may stop the iteration if 

Ikoll 

for all some k < A', where e is called the tolerance. In this case we say that the 

iterative method converges in k iterations at the tolerance level e. 

If eventually 

——> e, ro 
for all k < A', then we say that the iterative method does not converge at the 

tolerance level e. 

After these basic notations, two important iterative methods will be intro-

duced a,lid more advanced methods based on them will be discussed afterward. 

4.1.1 The Jacobi method 

The matrix W =('�）can be decomposed as 

W = D-L-U, 

where D is a, diagonal matrix, L a, strictly lower triangular matrix, and U a 

strictly upper triangular matrix, i.e., 

'�11 

'�nn 
_ • 

_ 一 

0 

IU21 0 
L =— , 

• • • . • • 
Wni • • . Wn’n-1 0 • _ 
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0 Wi2 • . • Win 
• • • 

u =— . 
0 Wn-l,n 

0 

Then (4.1) can be written as 

(D - L - U)x = b 

Dx = (L + U)x + b. 

The Jacobi method is then defined as 

= + [/)x � + iTib. 

Then for each i = 1 ,2 , . . . , n, 

/ \ 

\ j尹 / 

where x(⑷）二 (xj 叫）,：4�），..., 

4.1.2 The Gauss-Seidel Method 

Using the same notation in §4.1.1, the Gauss-Seidel method can be defined as 

follows. Prom (4.1), 

{D-L-U)x = b 

(D - L)x = [/x + b, 

the Gauss-Seidel method is then defined as 
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or for each i = 1, 2,...，n, 

� “ V j=l j=i+l / 

4.1.3 Other Iterative Methods 

Besides the classical iterative methods like the Jacobi and Gauss-Seidel methods, 

there are many others like the conjugate gradient method and the generalized 

miiiinmni residual (GMRES) method. More details of these methods can be 

found in [17 . 

4.1.4 Preconditioning 

The principle of preconditioning is that we want to find a suitable matrix to 

decrease the number of iterations required to achieve the desired tolerance level. 

Suppose we find a matrix VF such that W-^W is close to identity. Then instead 

of solving (4.1), we solve 
二 It-lb. 

Here W is called a precoiiditioner. If it can be found properly, the iterative 

met hod can become swifter. 

For example, T. Chan's precoiiditioner c{G) for G where G is defined in §2.1 

is -| 
7o _7i -入 

- A 7o - 7 i 
c(G) 二 ••. ••• ， 

-A 7o —7i 
- 7 i -X 7o 

where 

70 = ^ ( ( " . - 1)A + s}j ’ 
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and 
1 n—1 

7i =——-VAAmin{j,s}. 
- 1 ^ 

See [6] for more details. The preconditioning method is good for some well-

conditioned problem. However, if the problem is ill-conditioned, some other 

methods are required. 

4.2 The Multigrid Method 

The multigrid method has been used for solving linear equations discretized from 

differential equations. The idea of the multigrid method comes from iterative 

refinement and filtering, 

4.2.1 Iterative Refinement 

The linear system (4.1) can be solved by iterative refinement as follows. If Xq is 

an initial approximation of (4.1). Then for k > 0, define 

rfc = b - W k̂-

We find e^ such that 

Wek = i-fc, 

tlieii xa;+i = X". + e".. This procedure is called iterative refinement. 

4.2.2 Restriction and Prolongation 

The idea of restriction and prolongation can be explained most easily through 

solving a. one-diinensioiial Poisson's equation on the interval [0,1] with Dirichlet 

lioinogenous boundary conditions by the finite difference method. Suppose that. 
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1 k the step size is ~ w h e r e m is an integer, and x^ is the approximation at — , 
2 爪 2 川 

A; = 0 , 1 , . . . , 2川.If we want to pass this approximation to an approximation Xk, 

A; = 0 , 1 , . . . , 2川一 1, at a. coarser grid with step size , we can do it as follows, 
2爪一丄 

• r n 「 • 
0 0 0 

I 

X2 Xl + 2X2 + Xs) 

工,3 

： ^ ： = ： , 

X2"I-2 .T2m-l_i |(2；2，"—3 + 一 2 + —1) 

— 1 

0 0 0 - J L J L- � 

or in matrix form, 

xi r 1 3：2 
1 2 1 

1 1 2 1 . 

: : • 
- 3 

1 2 1 

—1 

In fact, the one-diiiiensioiial restriction operator from grid size ^ to ^ is 

defined as 
1 2 1 0 

1 1 2 1 "n _ ：；： 

�m+l — 4 , 

0 1 2 1 

where its size is (2"' - l)-by-(2川+i - 1). 
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On the other hand, if the approximation k = 0,1，...，2爪 " , a t a coarser 

grid with step size being given, and we would like to pass it to an approx-
2"卜丄 

imatioii x^, k = 0 ,1 , . . . , in a finer grid with step size — , we can do it as 

follows, 

0 1 0 0 

xi + Xi) 
.X'l X2 

X3 |(:ri +X2) 
: ^ ^ 丨 = ： , 

3；2"1_3 去(•云 2"卜 1-2 + 无2”1-1 _ 1) 

〜 --

工 •-1—1 工 2"'.-2 一 1 _ 1 

.T2'n_i 全(;£‘2m_i_i + 0) 
0 0 0 

or in matrix form, 

1 

.Ti 2 
X'2 1 1 Xi 
x-i 2 X2 
• 1 1 • • 
: = 5 1 : : • • � 
川,-3 : X2m-1_2 

• 1 -
- 2 ‘ 丄 ； 川 - 1 — 1 

- 1 2 

1 

Similar to restriction, the oiie-diniensioiial prolongation operator from grid size 
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J— to ~^—r is defined as 
2m 2爪+1 

1 
2 

1 1 
2 

,m+l _ 1 1 : 
丄m — 2 丄. ‘ 

： 1 

2 

1 

where its size is (2"'+i - l)-by-(2'" - 1). 

4.2.3 The Geometric Multigrid Method 

There are two types of inultigrid inetliods, namely geometric and algebraic. The 

algorithm of geometric multigrid metliod and its efficiency can be shown by solv-

ing the following ODE, 
f 

'xl\£) - 0, 
< 

w(0) = u{l) = 0, 
\ 

using central difference approximation as follows. 

Suppose that the finest grid size is ^ and coarsest grid size i . Denote 11(爪） 

1 8 
be the approxiination with grid size — . The discrete problem at the finest grid 

Li 

is 
2 -1 u f 0 

- 1 2 - 1 43) 0 
64 • •. ： 二 ： . 

- 1 2 - 1 '43) 0 
- 1 2 u f 0 
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A pre-smoothiiig process of ki iterations of Jacobi method is performed with the 

following iterative matrix, 

" o 全 -

I 0 i 
. • • • 

I 0 i 
_ I 0. 

Set ki = 1 for an illustration, and the initial guess is set to be 

/ I 1 3 3 1 i V 
V 4 ' 2 ' 4 ' ' 4 ' 2 ' 4 j • 

This initial guess is said to be of low frequency. After one iteration, u � is updated 

to be 
/ I 1 3 3 3 1 
V 4 ' 2 ' 4 ' 4 ' 4 ' 2 ' 4 ； • 

Then the residual vector of this solution will be passed to a coarser grid, 

2 - 1 1 

- 1 2 - 1 I 

1 2 1 - 1 2 - 1 I - 4 

" 7 1 2 1 64 - 1 2 - 1 ! = 一 8 . 

4 � ̂  
1 2 1 - 1 2 - 1 I 一4 

- 1 2 - 1 i 

_ -1 2 J 
T 1 

Since now the residual vector ( - 4 ’ 一8,-4) is at a grid with grid size - , the 

matrix at this grid can be found by using the central difference method with step 

size i . This matrix is called the coarse grid matrix. Since this grid is not the 

coarsest, one iteration of pre-smoothiiig with initial guess (0, 0, 0)^ is performed 
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on the following system, 

2 - 1 42) - 4 

16 —1 2 - 1 wf = - 8 , 
- 1 2 42) - 4 

‘ ( 1 1 
and u � is updated to be — — - , —- . The residual vector is passed to a 

\ 8 4 8 J 
coarser grid with grid size 

[ l - i ] � 2 - 1 1 [ - * ] � 
1 r 1 r 1 - 1 2 ij - 8 - 1 6 - 1 2 - 1 = [ - 4 . 

v N [ -1 2 J h J； 

Now it is at the coarsest grid, the coarse grid matrix is found by the central 

difference inetliod with step size and the equation is solved exactly, i.e., we 

solve 

8w(ii) = - 4 , 

which gives = - - . This solution is passed to a finer grid and added to u(2)’ 

i.e., u � is updated to be 

i1 厂 厂 3 
一 I — — 8 1 8 1 r 1 

_ 1 I ± 9 _ 1 _ _ 3 

—万 2 L — 到 — . 
_ 1 I _ 3 

_ 8 J [ / � [_ 8. 

Use the updated u � as an initial guess to perform one more time of Jacobi 

method, i.e., u � is updated to be 

n i l �_iil �—4I � _ i 
^̂  2 云 1 2 
— () — — — "4~ — 只 — — — • 

2 2 4 3 2 2 

I n _4 _1 
_ 2 � ‘ �L 云 」 L � L 

This process is called post-smoothing. Then this updated 11(2) is passed to a finer 
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grid and added to u � ’ i.e., u � is updated to be 

"ij [1 ] � 

i 2 0 
3 1 1 � � ] 1 
4 2 4 

3 I 1 o 1 — 1 

4 + 2 2 - 2 - 4 • 

3 1 1 _ i i 
4 _ 4 

i 2 0 

i J [ i j [0. 
Using this as an initial guess to perform one more iteration will give 

/ 1 1 1 1 1 Y 
'8'8'4'8'8'； ’ 

which is the output of one complete V-cycle. If one more V-cycle is to be per-

fonned, this output should be used as the initial guess of the next V-cycle and 

so oil. Since the zero function is the solution of the ODE, the max norm of the 

error after one V-cycle is If the discrete problem at the finest grid is solved by 

the Jacobi method, the approximation after 5 iterations is 

^ II II iZ ^ lY 
3 2 ' 8 ' ^ y , 

17 
with the error —. The problem of Jacobi method is that it can handle high 

32 

frequency error well but not for low frequency error. As a result, most of the iter-

ations are devoted to handling the low frequency error. Using multigrid method, 

low frequency error can be passed to a coarser grid and become high frequency 

error, then the iterative method can work well at the coarser grid. The geometric 

nmltigrid inetliod is smnmarized as follows. 

Fix the finest grid size to be and the coarsest grid size Let A—) 
° 2爪2 

be the coarse grid matrix at the grid with grid size — . Suppose also that the 
2 爪 

problem at the finest grid is 

= (4.2) 
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Then the following steps describe the V-cycle algorithm. 

1. Apply ki Jacobi iterations on (4.2) using last V-cycle output as the ini-

tial guess, and choose an arbitrary initial guess for the first V-cycle. The 

approximation is denoted by 

2. For ni from m‘2 to nii + 1, compute the residual vector 

_ b(爪.）_ 乂(川.）, 

and pass it to a coarser grid, denoted by b—_i), 

b(m_l) _ jm-lr(m) 

If m + ni.i + 1, apply k： Jacobi iterations using arbitrary initial guess for 

and the approximation is denoted by u(爪一i), update m — m — 1 and repeat 

t.lie process. 

If rn = ?7?,i + 1, find u(川such that 

乂 (mi)U(m.i) = 

3. Then for m from rn.i to m.2 — 1, update u(爪+i) to be 

u(川+1) — u(爪+1) + C+'u^'"). 

u("'+i) is further updated by applying /q Jacobi iterations on 

using u(”'+i) as an initial guess. Then update m —> m + 1 and repeat the 

process. The output u(川2) is the approximation after one V-cycle. 



BVMs for Solving Transient Solutions of Markovian Queueing. Networks 38 

4.2.4 The Algebraic Multigrid Method 

The difference between the geometric and algebraic multigrid method is how to 

define the coarse grid matrix at a coarser grid. The geometric multigrid method 

reformulates the problem by discretizing the original ODE with a new step size. 

The algebraic multigrid method, on the other hand, defines the coarse grid matrix 

/!('") at tlie grid with grid size ^ to be 
Zd 

= 二 • •. Ig-iA—I二-1... I二 

where mi < rn < m'z. The algebraic multigrid method coincides with the geo-

metric inultigTid method except for this definition of the coarse grid matrix. 

4.2.5 Higher Dimensional Cases 

The multigrid methods can be generalized to highly dimensional cases using ten-

sor product. For example, the prolongation operator is defined as 

C + � C " 1 , 

and the restriction operator is defined as 

� C+i’ 

with regard to the definition in §4.2.2. 

The two diineiisional coarse grid matrix at the grid with grid size — is 
Li 

(C+i � C+1). •. ( C - 1 � C—IM("…(C—1 � C - i ) . •. (C+i 0 C+i). 

4.2.6 Applications in Queueing Networks 

For the 2-queue overflow network in (2.5), (3.6) becomes 

：乂 � In, % ha + hiN �( G i � + In, <8)^2 + e^e^i 0 Ri)]x 二 一 a (g) Po. (4.3) 



BVMs for Solving Transient Solutions of Markovian Queueing. Networks 39 

Here we describe our method for solving (4.3). Let A = PDP-i be the spectral 

decomposition of A with D being a diagonal matrix with diagonal entries pi, 

I < i < TV, where Pi are complex numbers with positive real part, see for instance 

2, Figure 5.2 . 

Let y = ( p - i (g) 4J (g) /„2)x. Then (4.3) becomes 

[D (g) In, (S) /n,2 + hiN (8) {Gi (g) In^ + + (g) = —P—ia (g) Po. 

We decompose this system of equations into N sub-systems of smaller size: 

'pi{In, 0In2) + KGi ® + (S)G'l + e,,!e^j (g)Ri)]yi = Qpo, 1 < z < Â , (4.4) 

where q is the ztli entry of — P—�a and y^ = (yf , y『，...’ y f ) . 

In [7], an AMG method has been used successfully to solve a system of the 

form 

(Gi (g) In�+ In,� + ��� Ri)x = b, 

which is the system corresponds to the steady-state queues, and is equal to the 

transient system in (4.4) but without the first term. Here we will use the same 

AMG method to solve (4.4). 

Suppose in the finest grid we have (2川2 _ i ) equations and at the coarsest 

grid we have (2"” - 1) equations. We use the V-cycle algorithm here with one 

pre-siiiootliiiig and one post-smoothing at each grid. The smoother we used is 

the Gauss-Seidel iterative method [13, p. 49 . 

The prolongation operator is equal to 2(/二丄广 For queueing networks, 

we use the modified restriction operator described in [7] which is defined as 

follows. Suppose = (cij), then f二1 三(己《，）)where 

Cij = and dj = V c y . 
(ij 
J t 

If is the matrix at grid m, i.e., there are (2爪一1) equations, then at grid 

rn — 1，the matrix satisfies 卜 1 = /；；；_!. The reason for using the 
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modified restriction operator is to keep the singularity as well as the structure of 

Gi and G2, see [7] for more details. 

For two-queue systems, the prolongation operator and the modified restriction 

operator are � 7二’+�and (S) 了二丄 respectively, and the two dimensional 

coarse grid matrix can be defined accordingly. Note that the coarse grid matrix 

of an identity matrix is a. matrix with 3 bands. We will use this fact in the cost 

analysis. 



Chapter 5 

Numerical Experiments 

In this section, we first compare the cost of using IVMs and BVMs for solving 

overflow queues. Then we illustrate the efficiency of our method on three overflow 

queues and two networks with batch arrival. A comparison of the AMG method 

and the GMRES method [17] will also be given. 

Consider a general two-queue network with Queue i having Ui states. For a 

general IVM, in each time step, it requires only a few matrix-vector multiplica-

tions wliicli are of order 0(nin2) as the matrix H in (3.4) is a banded matrix 

of size iiiU'i-hy-niU'i with 5 bands. If he is the largest time step guaranteed for 

convergence, then the IVM will require T/hcS time steps to get the final time T. 

But in order for the method to converge, he should be of order 0{1/\\H\\). Thus 

the total cost of the IVM is of 0(?7,in2||i/||T). 

For a general BVM, there are T//z's sub-systems to be solved. We solve 

each sub-system by the AMG method. The cost for each V-cycle is of •(nin?) 

operations since the coefficient matrix of each sub-system is of size nin2-by-nin2 

and has at most 9 bands. Thus the total cost is about 0{nin2kT/h), where k 

is the maximum of the numbers of V-cycles required for convergence for each 

41 
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sub-system. 

We remark that if |問| is bounded independent of n ,̂ then both methods 

will be of the same order. However, if ||//|| is increasing with rii, then the BVM 

will be less costly than the IVM. We illustrate this by three examples. The first 

example describes the situation that the arrival and service rate are independent 

of the size of the queues. The second and the third examples, on the other hand, . 

describe the situations with arrival and service rate dependent on the size of the 

queues. 

Example 1: For z = 1,2, let G f be the s a m e � 2 ^ - - 1) matrix as in 

(2.4) with Si = 5’ fj,i = = SiiM —决h - 1)—1 = 5 - | ( 2似 - 2 ) " ^ 

Example 2: For i = 1，2, let Gf^ be the (2几'—l)-by-(2似-1) matrix, 

2几/一 1 _ 2 ^ — 1 Q 

— 2 几/ - 1 2 几' 一 2 似 - 1 

GM . . . 
= • 

2 • • • • 
— 2 似 - 1 

Example 3: For i = 1, 2, let G f be the same - - 1) matrix as in 

(2.4) with iM = 2几厂 1, - 5, A, - SiiM _ — 1)—i = 5 . 2似—i -全（2似 -2 ) "^ 

In all examples, we solve for the probability distribution vector at T = 10. 

We assume that the initial state is (0, 0). In solving (4.4) by the AMG method or 

the GMRES method, we use a, stopping tolerance of 10—6. For the AMG method, 

we set mi, the coarsest grid level, to be 2. 

In Example 1, 严|| and hence ||i/|| is bounded. Thus, the total costs for 

both the IVM and the BVM are of order 0 ( 2 2似 ) . E x a m p l e s 2 and 3 ， i s 

of order 0(2^0- So for the IVM, the total cost is But for the BVM, h 

can be kept constant regardless of \\H\\. Thus the total cost for each V-cycle is 

still of order To be more specific, in the following we estimate the total 

costs for RK4 and GBDF3 in terms of number of scalar multiplications. 
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For RK4, 4 matrix-vector multiplications, 4 vector-vector operations, and 6 

scalar-vector multiplications are required in each time step. The matrix involved 

is a 5-baiid matrix of size { 2 似 - - 1)2. Thus 

4 • 10(2 '̂̂  - 1)2 + 4(2似一1)2 + 6(2似一1)2 = 50(2^^ - i f 

operations are required in each time step. In Example 1, he = 0.25. Since 

T/hc = 40 time steps axe required, the total cost is ( 2000 .�2 ̂一 1)2) operations. 

Ill Example 2, since (10 • 2似+i) time steps are required, the total cost is (1000 • 

2八'/(2几/ — iy2j operations. In Example 3’ since (10.2力''+3) time steps are required, 

the total cost is (4000 • 2 似 — 1)2). 

For GBDF3 with the AMG method, we first estimate the cost for each V-

cycle. As the cost of a Gaiiss-Seidel iteration for a 9-band matrix is 18 operations 

for each update of a variable, the cost for each V-cycle is 

M M 
2 18(2^ - 1)^ < 3G < 12 . 4似+i 二 48 • 2 謝 

i=2 i=2 

operations. We can take h = 1 for all three examples as the method is stable. 

Thus there are 10 sub-systems to be solved by the AMG solvers. The total cost 

is therefore less than (48QA; • operations. 

Tables 5.1 to 5.3 give / ? �k , the total number of operations as estimated above, 

and the CPU times in solving the problems by Matlab. We can see that the 

BVM together with the AMG method is more efficient in finding the transient 

solutions when compared with the IVM. We see also that the AMG method 

is very efficient in solving these systems—the number of V-cycles required for 

convergence is independent of the queue sizes even when \\H\\ increases. 

Regarding Examples 2 and 3, it seems that the matrix G f in these two 

examples can be made better conditioned by scaling down by the factor 2似—玉 as 

follows: divide 2似一i from both sides in the ODE (3.1) and let i = 2似―丄力，then 
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we have 

where |肉| is independent of M. However, in order to find p � at time T, one 

lias to find p(i) at time f = 2似-iT. By the previous results, the total cost for 

the IVMs on this new ODE is of order 0{nin2\\H\\t) = 0{nin2\\H\\T). That 

means the order of the total cost cannot be reduced by scaling. 

After that, we compare the AMG method with the preconditioned GMRES 

nietliod [17]. The preconditioiier for (4.4) is 

A(/ni � I.,J + h(c(Gi) <S> In, + /ni � C(G2)). 

Table 5.4 gives the inaxinmin number of iterations for the (preconditioned) GM-

RES inetliod over each sub-system in (4.4). We note that the cost per iteration 

of the GMRES metliod is of the same order as the AMG method, as it requires 

mainly matrix-vector inultiplications. However, as we can see from Table 5.4, its 

number of iterations required for convergence increases with the size of queues 

for Examples 2 and 3. Hence it is more costly than the AMG method. 

The BVM with the AMG method also works for the networks with batch 

arrival. Consider a one-dimensional batch arrival problem as follows. 

Example 4: Take 

A . - l 
入 ] - 2 厂 

in (2.6). So 

OO 

k=l 
Example 5: Take 

~ v / 2 川 — 1 

An = — , 

ill (2.6), thus 

OO 

k=l 
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In these two e x a m p l e s , = 
s 

The Kolniogorov backward equation for the batch arrival is again discretized 

by using the GBDF3, and the resulting linear system is solved by the AMG 

. method. The ODE is also solved by RK4 as a comparison. Table 5.5 shows h � f o r 

R.K4 and k for the GBDF3 for Example 4 and Example 5 for s = 1, and Table 

5.6 gives the results for s = 5. The numerical results show that k is independent 

of ni but he decreases as m increases for Example 5. 

Table 5.1: Total number of operations and CPU times in seconds for Example 1. 

IVM BVM 

M he Operations CPU time k Operations CPU time 

3 2-2 98,000 0.49 7 215,040 1.00 

4 2—2 450,000 2.37 7 860,160 5.85 

5 2-2 1,922,000 10.81 7 3,440,640 28.26 

6 2—2 7,938,000 49.05 7 13,762,560 111.71 

7 2—2 32,258,000 222.06 7 55,050,240 546.06 
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Table 5.2: Total number of operations and CPU times in seconds for Example 2. 

IVM BVM 

M he Operations CPU time k Operations CPU time 

3 2-4 392,000 1.91 8 245,760 1.13 

4 2-5 3,600,000 18.66 8 983,040 6.49 

5 2-6 30,750,000 170.70 8 3,932,160 32.24 

6 2-7 250,016,000 1,649.07 9 17,694,720 161.99 

7 2,064,512,000 19,131.92 9 70,778,880 792.72 

Table 5.3: Total number of operations and CPU times in seconds for Example 3. 

IVM BVM 

M he Operations CPU time k Operations CPU time 

3 2—6 1,568,000 7.62 8 245,760 1.13 

4 2—7 14,400,000 75.02 8 983,040 6.66 

5 2—8 123,000,000 693.18 8 3,932,160 32.26 

6 2-9 1,000,064,000 6,634.67 9 17,694,720 166.58 

7 2-K) 8,258,048,000 >50,000 9 70,778,880 819.20 
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Table 5.4: •Maximum number of iterations needed for the GMRES method. 

No precoiiditioner T. Chan's precoiiditioner 

M Ex. 1 Ex. 2 Ex. 3 Ex. 1 Ex. 2 Ex. 3 

3 27 30 30 19 20 21 

4 50 58 69 26 32 35 

5 56 89 133 31 51 59 

6 54 132 244 28 79 102 

7 54 168 >300 26 123 179 

Table 5.5: Results for Example 4 and Example 5 for s = 1. 

Example 4. Example 5. 

IVM BVM IVM BVM 

M he k he k 

3 2-1 4 2-2 8 

4 2-1 5 2-:， 8 

5 2-1 4 2-3 8 

6 2-1 4 2-4 7 

7 2-1 4 2-4 7 
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Table 5.6: Results for Example 4 and Example 5 for s = 5. 

Example 4. Example 5. 

IVM BVM IVM BVM 

M he k he k 

3 2-1 4 2-2 6 

4 2-1 5 2-3 8 

5 2-1 4 2-3 8 

6 2-1 4 2-4 7 

7 2-1 4 2-4 6 



Chapter 6 

Concluding Remarks 

111 this thesis, the AMG method is used to solve the resulting linear system from 

the BVMs. A comparison for the IVMs and the BVMs with the AMG method is 

given. Some networks like two-queue overflow networks and networks with batch 

arrival have been tested. The numerical results illustrate that the BVMs with 

the AMG method can be satisfactorily applied to queueing networks, even the 

problem is ill-conditioned. Further research on applications to other queueing 

networks can be conducted. In addition, the numerical results also support the 

convergence of the methods, of which the convergence in finding the steady-state 

solutions is already proved in [7 . 
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