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Abstract 

The extensive use of the photoplethysmographic (PPG) technique in many clinical 

environments has raised great interest in understanding its underlying physiological 

process and therefore making better use of it. In this thesis, based on the Integral 

Pulse Frequency Modulation (IPFM) process mimicking neural physiological 

encoding mechanisms and the circuit theory describing the characteristics of 

cardiovascular system, a new model for the generation of PPG signals is developed, 

with the focus on the application of PPG signals to the analysis of the beat-to-beat 

blood pressure variability (BPV). 

Low-pass filtering (LPF) technique has been suggested in literatures as a simple 

approach to recover the original input modulating information to an IPFM process. 

However, due to the non-linearity of the IPFM model and the difficulty in estimating 

the threshold value of neurons in vivo, it is practically impossible to recover precisely 

the input modulation information through a simple LPF. Instead, we found through a 

mathematical analysis that such demodulation is of special importance for studying 

the firing characteristics of neural and muscle cells. The results of the simulation with 

different patterns of modulating input to the IPFM model show that the firing rate 

function can be reconstructed with reasonable accuracy by a LPF-based demodulation 

method. 

Taking advantage of the IPFM mechanism that reproduces event series of 

modulated cardiac periods, a new model is developed to mimic the generation of the 

PPG signal based on its physiological mechanism. By taking into account the 

characteristics of cardiovascular system, the influence of the sympathetic and 

parasympathetic branches of the autonomic nervous system, together with the 

transmission properties of pressure wave through arterial system, the novel model 

transforms a continuous input signal into event series representing E C G and PPG 

signals. Furthermore, based on the interaction with heart rate, the time-varying BP and 

PTT are realized in the new model. The model is tested by comparing the results of 

the simulation with experimental data from resting subjects. The comparison indicates 

that the proposed IPFM-based new model does plausibly capture a number of 
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important features of the PPG signal that are observed in the experiments. It also 

shows great potential in investigating certain characteristics associated with PPG 

signals under different physiological conditions The analysis on the relationship 

between the modulating inputs and the output of our IPFM-based model suggests that 

the spectra of PPG and E C G trains, which combine the information of firing rate with 

neural dynamics, may serve as a better substitute to evaluate heart rate variability 

(HRV) by analyzing the power of the sidebands. 

Besides the physiological generation mechanism, certain characteristics on the 

waveform of PPG signals that were obtained from experimental data are investigated 

statistically. The results of this study indicate that there could be a significant 

correlation between the FY interval, representing the rising phase, of the PPG signal 

and pulse transit time (PTT) estimated as the time delay from E C G to PPG signals. 

Based on this new finding and the previously reported relationship between PTT and 

arterial blood pressure (BP), a new approach is proposed for the estimation of the 

beat-to-beat BPV, which plays a fundamental role for a better comprehension of the 

patho-physiological properties of the complex mechanisms. Compared with the 

A A M I standard, the results of both the multi-beat and the beat-to-beat estimations of 

BP based on experimental data are promising. The estimated B P V using the FY 

interval is consistent with that from FINAPRES device which indicates that the new 

FY-based method may provide an easy, low cost, and acceptable substitute of the 

existing techniques for analyzing non-invasively and continuously the beat-to-beat 

fluctuations in BP using PPG technique only. The potential application of this 

proposed new method could be huge, and thereby it may contribute significantly to 

both clinical diagnoses and home health care, which can not be achieved by the 

currently limited approaches for BPV analysis. 

The semi-repetitive nature of the PPG signal has lead to another new application 

for human authentication. Distinctive features were extracted from PPG signals to 

generate the template for each subject. They are unique identifiers specific to different 

persons while they are similar enough to recognize the same person. The preliminary 

results with high successful rates for the group of subjects used in this study 

demonstrate that the new method is promising for human verification. 
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论文摘要 

光电体积描记信号的广泛应用激发了人们对深入理解其产生机制，从而更好 

的发掘其应用价值的浓厚兴趣。本论文基于模拟神经编码机制的积分脉冲频率调 

制（IPFM)机制，建立了一个产生光电体积描记信号的新模型，并着重将该信 

号用于估测与每次心脏搏动相对应的血压变化率（BPV)。 

低通滤波技术被人们认为是一种用于还原IPFM过程的起始调制输入信号的 

简单方法。然而，由于IPFM模型的非线性特征，以及从生物体上估计神经元阈 

值的难度，事实上是难以将起始调制输入信号通过简单的低通滤波来精确还原 

的。相反地，我们通过数学推导发现这样的解调方法对于研究神经和肌肉动作电 

位发放特性有着重要的意义。釆用不同形式输入IPFM模型的仿真结果显示神经 

动作电位发放速度这一特性可以较为准确地通过简单的低通滤波来得到。 

利用模拟产生心动周期的IPFM模型，本论文建立了一个可模拟每搏心跳并 

产生相应的光电体积描记信号的新模型。综合考虑心血管系统的特点和脉搏波在 

动脉系统中传输的特性，该模型将连续输入信号转化为离散事件序列，分别表示 

光电体积描记信号和心电信号。同时，基于心率与血压之间的关系，以及血压与 

脉搏波传输时间之间的近似线性关系，该模型还可以产生动态变化的血压和脉搏 

波传输时间。模型的可靠性通过将仿真结果与相应的实验结果相比较而判断。比 

较结果显示本模型合理地纳入了一些重要的光电体积描记信号特性。通过对该模 

型输入与输出之间关系的研究，我们进一步发现光电体积描记信号和心电信号的 

频谱可作为研究心率变化率的一种新途径。 

除了光电体积描记信号的产生机制之外，本论文还从数理统计的角度对该信 

号波形上的某些特征进行了研究。研究结果显示光电体积描记信号的FY间距(代 

表上升延特性）在一定条件下与脉搏波传输时间（由心电信号和光电体积描记信 

号估算得到）有很高的相关性。基于脉搏波传输时间与动脉血压之间的关系，本 

论文提出了采用FY间距来估算与每次心脏搏动相对应的血压及其变化率的新方 

法。血压变化率对于了解人体的病态生理特征有着极其重要的意义。基于实验数 

据，我们分别作了不连续和连续（与每次心脏搏动相对应）的血压估算。通过与 

AAMI标准相比较，该方法的估测结果令人满意。此外，我们还对与每次心脏搏 

动相对应的BPV在时域和频域分别进行了分析。用FY间距估算的BPV结果与 

从另一种测量仪器（FINAPRES)上得到的结果基本一致，从而表明这种仅仅基 

于光电体积描记信号的方法将有可能替代现有技术而成为一种简单而又准确的 

血压测量新方法。 一 

由于光电体积描记信号的波形的近似可重复性，本论文还提出了一种釆用该 

信号进行人体身份识别的新方法。我们从信号中提取了一系列可区别不同个体的 

特征，并生成每一个个体的特征模版。初步的结果令人满意，从而表明这种方法 

将很有可能成为一种用于生物个体识别的新技术。 
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Chapter 1 

Chapter 1 

Introduction 

Photoplethysmographic (PPG) technique has been widely used for a variety of 

applications to provide useful information for the evaluation of clinically valuable 

physiological parameters. Mathematical modeling based on the physiological 

generation process of the PPG signal would certainly provide an insight into better 

understanding of the signal and therefore making better use of it. However, many 

researchers just employed this technique without exploring or elaborating the 

underlying generation mechanism of the PPG signal. In this chapter, an overview on 

the generation mechanism of the PPG signal will be provided, which is closely related 

to features described by the Integral Pulse Frequency Modulation (JDPFM) and the 

Windkessel model, as well as some other properties of the cardiovascular and the 

arterial system. The IPFM model and the Windkessel model will be reviewed based 

on previous work. This is followed by an introduction on the current research status of 

the beat-to-beat blood pressure variability (BPV) analysis which may result in a 

promising new application of the PPG technique. Finally, the main purpose of this 

study is given and the organization of this thesis is outlined. 

1.1 IPFM Model 

1.1.1 Description of the IPFM Model 

Essentially, the IPFM model is a physiologically plausible device to transform a 

continuous non-negative input signal into an event series representing the timings of 

cardiac activity [1] [2]. In the IPFM model, any two consecutive event-occurrence 

times r. and satisfy the relationship [3]: 
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= f(mo+mj (t))dt (1-1) 

fi 

where m, (t) is the information or modulating input signal, m^ is the constant input 

signal, r.is the incidence of the /论 impulse，and V,̂  is the integration threshold. As 

illustrated by Fig. 1-1 (a), the non-negative time-continuous input signal, which 

consists of a D C component m^ and a modulating signal m, (t)，is integrated; 

whenever the integrated value exceeds a threshold V,̂ , a unitary spike is generated and 

the integrator is reinitialized. Fig. l-l(b) shows an integration process denoted by 

x(t) and an output pulse train denoted by y{t) when m^ (t) = Acos{2/fj + 0) is 

applied as the input modulation signal to the IPFM model. 

m̂, ~rv Reset 

^ _ generator 

(Integrator： (Comparator： 

(a) 

，X 10-3 
I — — I 1 1 > 

0 tZ I I I I I 
0 2 4 6 8 10 

1 1 1 1 

1 ——™— — 一 -- — —- —— — — — — -- — — —— 

- . 5 / i i i W / 
2 4 6 8 10 

— — 1 1 1 1 — 

1 -

y(t) 0.5 - -

2 4 Time 6 8 10 

(b) 

Fig. 1-1: IPFM model: (a) Schematic diagram of the IPFM model; and (b) the input and 

output of the IPFM model form,(0 = Acos(27tfj + 0) • 
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To mimic the action potential sequence generation process and various coding 

schemes of neurons, different neuronal models can be built by choosing a specific 

integrator with different parameters reflecting neural electrical behaviors to replace 

the unspecified integral operator as shown in Fig. 1-1 (a). The integration process is 

determined by membrane electrical properties, neuron anatomical structure, etc. The 

membrane threshold V,̂  depends on neuronal geometry and the membrane voltage 

depolarization level at the site of the origin required for action potential initiation. The 

input signals to the IPFM model can be different for different applications, 

representing the input variation, such as stretch, force, pressure, synaptic current, etc. 

In the neuron case, for example, the integrated signal is the neuronal membrane 

potential, which rises until the threshold is reached and consequently a pulse is 

generated. The resetting function corresponds to the reestablishment of resting 

membrane voltage over much of the neuron surface after the passage of a neuronal 

spike or action potential [3]. 

The spectral analysis of an IPFM process could provide insights into the 

mechanisms of encoding and decoding in nervous systems. There is evidence that the 

major features of the spectrum describing an IPFM process are similar to that 

observed in the nervous system, as investigated by Bayly [3]. More importantly, 

Bayly had pointed out that with a single sinusoidal signal m,(r) = Acos{27fj + 6) as 

the input modulation signal to the IPFM model and under certain restrictions, it is 

theoretically possible to recover the input modulation signal through a simple LPF. 

1.1.2 Background of the IPFM Related Modeling 

The IPFM model, capturing some of the crucial neuronal behaviors, but at a much 

reduced complexity, is a powerful tool in studying neural coding aspects. Many 

signals due to physiological event, such as nervous pulse trains and cardiac 
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contractions, can be appropriately interpreted by the IPFM model. Particularly, the 

heart rate variability (HRV) signal, which is recognized as one of the most valuable 

measures reflecting various important cardiovascular pathologies with which an 

alteration of the autonomic nervous system (ANS) may be associated, has been 

extensively studied. On the other hand, due to the possibility in recovering the input 

modulation information through a simple LPF, the IPFM model has become 

especially important when the recovering of a hidden modulation signal behind an 

observed set of events is of interest. As a result, the IPFM model has been used for 

mainly the following two purposes. First, it has been utilized to verify the 

correspondence between the spectral structures of autonomic input and the estimated 

spectrum of the HRV, relying mainly on the theoretical work of Bayly (1968). Second, 

the IPFM model provides a framework for evaluating how precisely the proposed 

method for the H R V analysis could reflect the activities of the ANS. 

Many studies have been carried out to investigate the feasibility of extracting the 

hidden dynamics of the cardiac nervous system from the observable characteristics of 

the H R V obtained from the output of the IPFM model [2]. In these studies, the input 

modulating signal m, (t) is the signal representing the autonomic nervous function, and 

the constant input signal m^is the mean heart rate which determines the duration of 

each RR-interval when there is no autonomic modulation of the sinoatrial (SA) 

node's intrinsic firing rate. The output is thus an RR-interval series. If the IPFM 

model provides a realistic representation of the autonomic regulation of the HRV, and 

if Bayly's theory is applicable to the analysis of the HRV, the spectral structure of the 

HRV, at least in the lower frequency range well below the mean heart rate, would 

faithfully reflect that of the autonomic regulatory input. In fact, Hyndman et al. [4] 

have already confirmed the applicability of this theory to the H R V analysis, and many 

researchers have made use of this approach in their studies [5] [6] [7] [8]. In other 
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words, the IPFM model has greatly facilitated the studies on extrapolating the hidden 

dynamics of autonomic regulation from a series of heart beats (or R R intervals). 

Recently, further studies are being carried out to improve the IPFM model to 

better simulate the H R V signals. On the other hand, several new methods or 

algorithms are emerging to improve the analysis of the H R V signal based on the 

conventional IPFM model or its modified versions. In [9], an improved IPFM model 

for the simulation of the H R V signals is proposed so as to implement an algorithm for 

the signal decomposition. Fig. 1-2 shows the basic structure of the improved model: 

mit) is a non-negative modulating function that controls heart rate, m{t) = k + m (t), 

where k controls the average heart rate and m (t) controls the fluctuation of HRV; 

and m{t) is uniformly sampled. After a reciprocal calculation, 1/jc , the sampled 

values are stored in the memory as a time sequence, l/m^, 1 / m , 1 / m ^ w h e r e 

m^ 二 m (q). Triggered by the reset signal from the output x(t), the sampled values 

are outputted sequentially to the integrator, controlling the rate of integration. The 

output of the integrator, y(t)，is then compared with a threshold value, V^ • Whenever 

the value of y(t) exceeds Vj , a positive going jump is generated at the output, x{t), 

which then serves to reset the integrator. Thus a positive impulse, £̂ (0 (i.e., a point 

event), will be produced in x{t) at this moment. Meanwhile, the next memory 

value, 1 / m̂ ĵ，will be applied to the input of the integrator. 

Mathematically, 

y(t) = r —， when y{t) <Vj,or <t < r 灰+� 

— ’〜 (1-2) 

、 0’ when y(t) =Vj, or t = /左 

In Eq. (1-2), is obtained from: 

V 广 丄 广 1 论 = 二 i (1-3) 

where = r̂ +̂i - i s the time interval between two consecutive point events. The 
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output point process, jc(0 = ̂ S { t -t^), is the signal simulating the beat-to-beat 
k 

heart rate, which is often represented as a uniform time series, called an H R V signal 

(from Eq. 1-3): 

HRV{k) = [r,\k= 0,1,2-•.} — [Vjin, ； k = 0,1,2.- •} (1-4) 

Memory 

, Reset 
t, 1 , 1/m. V 

/ ^ 1/m, / \/ ^ 

m • " “ “ — f \ — > ^ — > 1 ——> … — > ^ — > / 

k Sequential Vj ^^ 
Sampling 

參•參 

Fig. 1-2: Improved IPFM model of HRV signals. 

Based on this modified IPFM model, a decomposition method based on wavelet 

transform is proposed in this work to obtain the individual frequency components of 

the H R V signals. The simulation results show that the model is able to not only 

faithfully represent the physiological process of the H R V signal, but also generate the 

signal that can well approximate the experimental data in both time and frequency 

domains. Therefore, it helps us to better understand the individual frequency 

components of the H R V signal and to further study the underlying mechanism of this 

signal. 

A more recent study [10] presented a new model, which was formed by the 

combination of the Warner model and the IPFM model, to further clarify the 

relationship between the autonomic nervous activity and the H R V signal. As generally 
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known that autonomic nerves release the neurotransmitters that influence the 

automaticity of S A nodal cells, and thereby the timing of a heartbeat generation is 

changed. Since the Warner model can appropriately describe the kinetics of the 

neurotransmitters released from autonomic nerves, it was combined with the IPFM 

model to better describe the characteristics of beat-to-beat fluctuations in heart rate 

under autonomic nervous control. Fig. 1-3 shows the block diagram of this model. 

Inputs, fs (0 and fy ⑴，are the instantaneous neural activities on sympathetic and 

vagal nerves, respectively. The kinetic part of the Warner model is used to produce the 

effective concentrations of neurotransmitters N E (t) and Ach (t). The concentrations of 

N E (t) and Ach (t) are combined to form a modulating signal, m{t), in the IPFM 

model. Finally, the heartbeat interval series，HI[n\, is generated by the IPFM model. 

(For more detailed information about the Warner model, please refer to [10].) Through 

the simulation using this model, the LPF effects on both sympathetic and vagal inputs 

are revealed. Secondly, the effects of mean autonomic tone on the H R V were studied, 

and the results show that an increase in the mean sympathetic tone decreases the H R V 

induced by perturbation of sympathetic activity, and an increase in mean vagal tone 

causes a decrease in the H R V resulting from perturbation of vagal tone. In summary, 

this new model indicates that the fluctuant strength, the fluctuant frequency, and its 

mean value are three major quantities in fluctuant autonomic activity that have an 

effect on the HRV. 

卿 、 广、 m(l) 

m — — ^ • S) ^ — • 丨 秘 M 

Kinetic Part of S-^ '77', 
Warner Model g | m 。 M 。 d e l m ——• • o ， 

Achit) ] 

Fig. 1-3: Diagram of the new model: (t)，fy (t), NE (t), and Ach (t) are the same as those 
in the Warner model. NE (t) and Ach (t) are linearly combined to form a modulating 
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signal, m(0，the input of the EPFM model. 

The IPFM model has also been applied successfully in the analysis of neonatal 

respiratory sinus arrhythmia (RSA) at high respiratory rates [11]. Recently, an 

important mathematical framework was reported by [12] to unveil the complexity and 

nonlinearity of the relationship between the mean heart rate, RSA, and vagal 

activation, and to explain conflicting experimental results previously published. 

Indeed, the IPFM model with a simple but useful structure can be of great 

potential to simulate a complex neural system for investigating neural coding process. 

It represents a reasonable tradeoff between simplicity and faithfulness to key 

attributes of the neural coding. However, it should be pointed out that since Hyndman 

et al. [4] showed the applicability of Bayly's result to the H R V analysis, many 

researchers just followed the idea that the input spectral structure could be fully 

recovered by LPF the output pulse train of the IPFM model. Nevertheless, the 

limitations of this method have also been recognized [5]. Thus, it is worthwhile to 

further investigate that whether it is practically plausible to recover precisely the input 

modulation amplitude or intensity information through a simple LPF. On the other 

hand, it is quite necessary to further explore the physiological mechanisms of other 

important neural or cardiac events based on the IPFM model or its modified versions. 

1.2 Windkessel Model 

The simplicity of the Windkessel model in interpreting pressure and flow behavior of 

the arterial system has extended its use to much of last century. Modem development 

of theories in analyzing BP and flow waveforms, and in explaining pulse transmission 

characteristics, have been focused on the improvement of the original Windkessel 

model [13]. 
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1.2.1 Background of the Windkessel Model 

Lumped model of the arterial circulation was first described by Hales back in 1733. 

Although mostly qualitative, his model did emphasize the storage properties of large 

arterials and the dissipative nature of small peripheral resistance vessels. In this 

manner, the blood ejected by the heart during systole into the arterial system distends 

the large arteries (primarily the aorta). During diastole, the elastic recoil of these same 

arteries propels blood to perfuse the smaller peripheral resistance vessels. This idea 

initiated the earlier conceptual understanding that the distensibility of large arteries is 

important in allowing the transformation of intermittent outflow of the heart to steady 

outflow throughout the peripheral vessels. In other words, the large compliance of the 

larger arteries protects the stiff peripheral vessels of organ vascular beds from the 

large swing of BP caused by pulsations. The latter view is still held by some until this 

day. The significance of arterial pulsations continues to be debated. The necessity of 

pulsatile perfusion, however, is well rooted, and demonstrated in both experimental 

and clinical studies. 

Quantitative description of Hale's concept was not provided until Frank [14] [15], 

whose interest was originated in obtaining stroke volume, or the amount ejected by 

the ventricle per beat, from the measured aortic pressure (AoP) pulse contour. Indeed, 

even decades later, methods to determine the flow from pressure measurement or the 

so-termed pressure-derived flows [16] [17], continued to attract considerable interest 

until the advent of the popularity of electromagnetic blood flow and ultrasonic blood 

velocity measuring devices. Utilizing Frank's air-bellows description of the arterial 

system, the ventricle ejects into a compliant chamber representing the aorta, where 

blood flow is stored in systole, and, on its elastic recoil in diastole, the stiff peripheral 

vessels are perfused. 

In the Windkessel model, the amount of blood flow, Q” stored during each 
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contraction, is the difference between inflow, Q.，to the large arteries and the outflow, 

Qo，to the small peripheral vessels (Fig. 1-4), 

Q s = Q i - Q o (1-5) 

M . 耕 • 斯 辦     

——> Q _ > ._• _.• 
\ .  

Mm Mm. • —. "•盧 11 ••一 輪 I 

Ventricle Aorta Periphery 
Vessels 

Fig. 1-4: Diagrammatic representation of the LV and the arterial circulation, based on the idea 

of the Windkessel. The ventricle ejects into a compliant chamber representing aorta, blood 

flow is stored in systole (solid line), and, on elastic recoil in diastole (dotted line), the stiff 

peripheral vessels are perfused. 

The amount of outflow rate is equivalent to the pressure drop from the arterial 

side (P) to the venous side (P^) due to the peripheral resistance, R̂ ， 

(1-6) 

Assuming that the flow is steady and F̂ is small, we obtain a familiar expression for 

estimating the peripheral resistance, R̂ ， 

(1-7) 

where 2 is the mean total flow rate and P is the mean arterial pressure. With 

pressure having the unit of m m H g and flow rate in mL/s, R^ has the unit of m m H g 

/mL/s. 

The storage property can be described by the use of arterial compliance, which 

expresses the amount of change in blood volume (dV )，due to a change in distending 

pressure (dP) in the artery. So, 

C 二 dV / dP (1-8) 
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Here C represents the total compliance of the arterial system. With volume measured 

in mL, the arterial compliance has the unit of mL/mmHg. Both peripheral resistance 

and arterial compliance have both are the most popular parameters for clinical 

assessment of the properties of the arterial system. 

The amount of blood flow stored, or Q^，because of arterial compliance, is 

related to the rate of change in pressure that distends the artery, 

Q^ =CdPldt (1-9) 

Substituting Eq. (1-9) and (1-6) into (1-5), an expression relating the arterial pressure 

to the flow rate, incorporating the two Windkessel parameters, C and R^ can be 

obtained: 

Q�t�= CdP / dt + P / Rs (1-10) 

In diastole, when inflow rate is zero, as is the case when diastolic aortic flow rate 

equals zero, then 

0 = CdPldt + PIR^ (1-11) 

or dPIP = -dtlR^C. (1-12) 

This equation states that the rate of diastolic aortic pressure drop depends on both the 

compliance of the arterial system and the peripheral resistance. Both of which also 

determine the flow. Integrating of both sides of Eq. (1-12) gives: 

p 二 Poe-叫 (1-13), 

Eq. (1-13) is valid for the diastolic period, or t = 

This last equation is seen to be equivalent to 

(1-14) 

Eq. (1-14) indicates that the decay of the diastolic aortic pressure from end-systolic 

pressure (P̂ )̂ to end-diastolic pressure (P^) follows a mono-exponential manner, 

with a time constant r . The time constant of pressure decay r，is determined by the 
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product of resistance and compliance, i.e., 

r = R,C (1-15) 

It can also be expressed in terms of measured AoP, 

T = (1-16) 

In上 

P, 

The latter expression has been extensively used, and is a popular approach to estimate 

the total arterial compliance when peripheral resistance and aortic pressure pulse 

contour are known. Combining Eq. (1-15) and (1-16) yields 

C 二 td (1-17) 

Rln^ 
P, 

Analysis, utilizing simple electric analog, has given the Windkessel model a 

two-element representation. Arterial compliance is represented by a capacitor, which 

has storage properties, in this case, the electric charge. Peripheral resistance, with its 

viscous properties, is represented by a resistor that dissipates energy. The electrical 

analog of the Windkessel model for the arterial system is given in Fig. 1-5. 

O O 

c 〒 0 民 

O —1 ——o 

Fig. 1-5: The two-element resistance-capacitance electrical analog model of the Windkessel 

model. Compliance is represented by a capacitor and the peripheral resistance by a resistor. 

The two element Windkessel model was found to be insufficient to describe the 

vascular impedance to blood flow and to characterize the gross arterial tree properties. 

A modified Windkessel model (Fig. 1-6), which has three elements, was proposed by 
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Westerhof et al. in 1969. It consists of a characteristic impedance of the proximal 

aorta in addition to arterial compliance and peripheral resistance. 

Zo 

O 1 I o 

c � 0 民 

o o 

Fig. 1-6: A modified Windkessel model with three elements. 

1.2.2 Modeling using Windkessel models 

The three-element Windkessel (WK3) model for the systemic arterial tree has been 

widely used [18] [19] to study the transmission properties of arterial pulses. It 

contributes to understanding the differences in pulse and flow waveforms in different 

parts of the vascular tree in a human body. The distinct features of pulse and flow 

waveforms as the pulse wave travels away from the heart and their explanations are 

significant in understanding the functional aspects of the arterial system. 

Consequently, considerable diagnostic information can be derived from these pulse 

and flow waveforms. 

By the acquisition of only two pressure pulse waveforms at proximal and distal, 

respectively, A.S. Ferreira et al. proposed the use of the W K 3 model for the 

determination of the arterial compliance from the brachial to radial arterial segment. 

With the impulse response of the W K 3 model, and an experimental version of the 

proximal pressure pulse, a theoretical output pulse (theoretical distal pulse) can be 

obtained from the convolution of proximal pulse and the impulse response function. 

This theoretical output is compared with its experimental counterpart. The arterial 

compliance can be determined through an optimization algorithm. Similar approaches 
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have been used by many researchers for the estimation of not only the arterial 

compliance, but also the peripheral resistance and the characteristic impedance of the 

proximal aorta [7], [20]. 

Cavalcanti, S. et al (1996) had developed the Windkessel model to analyze the 

influence of time delay in the baroreflex control of the heart activity as shown in Fig. 

1-7. The mean arterial pressure in the Windkessel model is controlled by a nonlinear 

feedback driving a non-pulsatile model of the cardiac pump in accordance with the 

steady-state characteristics of the arterial baroreceptor reflex. A pure time delay is 

placed in the feedback to simulate the latent period of the baroreceptor regulation. By 

changing the value of the time delay within a range of physiological importance, 

dynamics with different patterns of behavior is observed. As a result, the nonlinear 

characteristics of the cardiovascular system are better understood in terms of the time 

delay influence on the baro-reflex control. 

”，\ — Circulation 
_ _ ！ H e a r t 2 . ^  

7；⑴ Q = � P 尺U 丁 P � 
T T 

M  
Steady-state 

Delay ^ ^ ^ 
Baroreflex Property p⑴ 

TAP T,(t) = T(t-T) V(t) 个 ^ _ 1 ： _ 

Fig. 1-7: Schematic representation of the mathematical model employed to study the 

influence of the time delay in the baroreflex control of the heart activity [18]. 

1.3 Photoplethysmogram (PPG) 
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1.3.1 Principle of the PPG 

The radial stretch of the ascending aorta brought by the left ventricular ejection 

initiates a pressure wave that is propagated down the aorta and its braches [21]. As 

mentioned before, pulse and flow waveforms at different sites of a human body have 

distinct features which could be significant in understanding the functional aspects of 

the arterial system. With advanced technologies, it is easy to obtain arterial pressure 

contours at various sites along the aorta. Therefore it can be used to the extract the 

pulse transmission information, such as pulse wave velocity (PWV) which has been 

widely used as an index of the elastic properties of arteries, and to interpret of 

hemo-dynamic alterations under diseased conditions [13]. 

The pulse wave at peripheral sites has attracted considerable interest among 

many researchers in recent years. This is probably due to the advantage that it can be 

measured at the peripheral sites, such as fingers, ears, toes, etc. A number of 

techniques are employed to obtain the distal pulse waves, such as the ultrasonic 

Doppler method [22], the electronic palpation method [23], the M R I technique [24], 

the impedance plethysmography [25], and the PPG [26] [27] [28], etc. Among these 

techniques, the PPG offers remarkable convenience and advantages, and is one of the 

most widely used approaches for a variety of applications, including monitoring of 

arterial BP [26] and compliance [29], recording of heart and respiratory rates [30], 

oxygen saturation measurement [31], detecting anxiety [32], etc. 

The PPG was first used by Hertzman [33] for studies of blood volume pulsations 

in the skin. It is a non-invasive technique that utilizes an optical sensor that produces a 

signal associated with the change in the volume of red blood cells in the peripheral 

micro-vascular bed with each pressure pulse initiated by the heart. More specifically, 

it consists of a light source, a photo-detector, and an A C amplifier and can be used to 

detect flow variations in the periphery during the cardiac cycle. The light is impinging 
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on the skin surface, and is then absorbed, scattered and reflected by tissue and blood. 

The perfusion and structural changes modulate the intensity of the light received by 

the photo-detector [34]. Thus the signal from the photo-detector is closely related to 

blood volume changes in tissue. The repetition of PPG pulses should be the same as 

that of E C G signals over the same cardiac cycles. Therefore, it seems to be promising 

that PPG signals can also be interpreted based on the IPFM mechanism coupled with 

certain transmission characteristics of the pressure wave through the arterial system. 

1.3.2 Characteristics of the PPG Signal 

Based on the principle of the PPG technique, as reported in several literatures, the 

intensity variations of the PPG signal mainly arise from the change in blood volume 

in the peripheral micro-vascular bed with each pressure pulse initiated by the heart. In 

spite of its simple waveform, the time intervals, such as those reflecting the rising or 

falling phases, of the PPG signal could contain important information that is 

corresponding to the periods of systole and diastole [23] [26]. Specifically, the signal 

of the photo-detector decreases when tissue blood volume increases, as during heart 

systole — the heart contraction, when blood is ejected from the heart to the tissue; 

while the PPG signal increases with the decrease in the volume of red blood cells, as 

during heart diastole [38] [39]. Thus, the rising phase and the falling phase of the PPG 

signal could to some extent reflect the periods of systole and diastole respectively. 

Besides, the PPG technique provides a complement to existing methods for the 

non-invasive measurement of pulse transit time (PTT). PTT is defined as the 

difference in time between two pulses detected at two different locations from the 

heart. It can be measured in two ways. One method employs two arterial pulse 

pickups located at different locations from the heart. The other method, which really 

measures pulse arrival time, employs one arterial pulse pickup and the R-wave of 
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electrocardiogram (ECG) as a timing signal [36]. Current non-invasive methods for 

the measurement of PTT rely on the time lag between features on E C G and PPG taken 

at the finger. The advantage of this technique is in its simplicity and the ease of use. It 

has been shown that using such technique could yield accurate estimations of PTT 

[37]. Recently, it has been reported in several literatures that PTT assessed by the time 

delay between the characteristic points on E C G and PPG signals are being used for 

non-invasive estimation of arterial BP [26][36][38]. It has been shown by several 

studies that there is statistically high linear correlation between PTT and arterial BP. 

As generally known, arterial BP is routinely measured in patients, and it provides an 

important clue to the cardiovascular status. Most of the currently used approaches for 

BP estimation are still based on 1) the auscultatory measurement, which detects the 

Korotkoff sound using an occlusive cuff and a stethoscope. The cuff is inflated to a 

pressure exceeding the expected systolic arterial pressure (PJ so that the segment of 

the artery under the cuff is forced to collapse. During the deflation, the first vascular 

sounds that emerge are generally referred to as the P̂  phase, and when the vascular 

sounds become muffled or disappeared completely, the diastolic pressure (F^) is 

obtained; 2) the oscillation method, which measures the mean arterial pressure when 

the oscillation of the cuff pressure is maximal. The P^and P^ is then obtained using 

empirical derivations; 3) ultrasound method, which records BP waveforms by 

detecting Doppler signals received as the motion of the blood vessel varies under 

different states of occlusion; or 4) intra-arterial approaches, which most commonly 

utilize the fluid-filled catheter to monitor the pulsatile BP waveforms in cardiac 

chambers and major vessels; etc. However, these methods are either incapable of 

providing continuous BP measurement, or they are difficult to operate and make 

patients feel uncomfortable since they are invasive. In order to avoid all these 

problems, the PTT based BP measurement could probably provide a breakthrough as 
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a non-invasive and non-encumbering means to monitor beat-to-beat variations in BP. 

More and more researchers are making use of the PPG technique in extensively 

various applications. Mathematical modeling based on the physiological generation 

process of the PPG signal would provide an insight into better understanding the 

underlying mechanism of the signal. It could also be helpful in clarifying the 

relationship between PPG signals or PPG related information and other cardiovascular 

signals. On the other hand, it is worthwhile to investigate systematically certain 

characteristics of the PPG waveform, such as the rising phase, falling phase, and PTT, 

for the evaluation of clinically useful physiologic parameters. The variations in the 

systolic or diastolic portions of the pressure wave, as well as that in PTT, may be, to 

some extent, correlated to the time-varying properties of the vascular and peripheral 

systems, as suggested by the Windkessel model. However, the complex interactions 

among these important parameters are not yet fully established. Thus, it is necessary 

to investigate whether the parameters extracted from the waveform of the PPG are 

correlated with each other, and how these parameters are associated with the 

properties of cardiovascular or arterial systems. 

1.4 A Study on the Beat-to-Beat BPV 

As one of the most important cardiovascular parameters, BP has been studied 

extensively. The oscillatory behavior of BP has been known for long time. The 

analysis of the oscillations in BP plays a fundamental role for a better comprehension 

of the patho-physiological properties of the complex mechanisms which act through 

neural, mechanical, vascular, humoral factors and others [40]. Particularly, 

considerable attention has been focused on the fluctuations occurring at frequencies in 

the range of approximately 0.04-0.35 Hz, which are believed to reflect intrinsic 

vascular activity and neural modulation of the vascular tone. 
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Essential to the study on the beat-to-beat B P V is the availability of a continuous 

recording of the B R However, as mentioned before, there are certain limitations in the 

beat-to-beat measurement of BP. The auscultatory and oscillation approaches, 

although simple and commonly used, are not able to provide continuously BP 

monitoring. The intra-arterial recordings allow accurate beat-to-beat measurement, 

but the invasive procedure limits the widespread use of such methodologies and the 

repetition of the tests in different conditions. Thus, a continuous non-invasive BP 

monitoring would be preferable. 

Since its introduction in clinical research in the early 80，s，the FINAPRES device 

(from FINger Arterial PRESsure) or the Finometer has raised great interest for its 

ability to provide non-invasive beat-to-beat BP recordings. It operates through a cuff 

wrapping the middle phalanx of the finger, and BP is recorded by a PPG measuring 

arterial blood flow. Studies performed in a laboratory setting and during surgical 

interventions have shown that the BP values continuously provided by this device are 

similar, although not identical, to those simultaneously recorded by an inter-arterial 

catheter. However, it is undeniable that there is noise from the measuring instruments. 

Moreover, there also exists the physiological disturbance particularly from the 

respiratory rhythm. 

BP estimation based on PTT or other beat-to-beat parameters could provide an 

alternative to existing approaches for the non-invasive continuous BP monitoring. 

These methods can be even simpler in implementation and easier to use than the 

FINAPRES device. However, such methods have not been carried one step further to 

measure the beat-to-beat variability of BP, which is still an unknown. 

1.5 Main Objectives of the Study 

The original motivation of this work is triggered by the extensive use of the PPG 
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technique, and its potential applications to the analysis of the beat-to-beat BPV and 

etc. The study on the underlying physiological process of PPG activity could be 

important in better understanding the signal, and therefore making better use of it. The 

main objectives of this study are listed as follows: 

1) To investigate the generation process of the PPG signal from physiological point 

of view, and to develop a new mathematical model for the generation of the PPG 

signal based on its physiological mechanisms. 

2) To test the mathematical model by comparing simulation results from the model 

the experimental data from testing subjects, and to do analysis on the relationship 

between the modulating inputs and the output of our newly developed model. 

3) To look into certain characteristics of the PPG waveform from experimental data, 

to further understand the physical generation mechanism of the PPG signal and to 

investigate its potential applications. 

4) To explore new applications of the PPG signal based on the understanding of its 

physiological mechanism and the features on its waveform for the analysis of the 

beat-to-beat BPV and the human authentication. 

1.6 Organization of the Thesis 

This thesis is mainly divided into five parts. The first part is a theoretical study on the 

neural firing rate function based on the IPFM model. The second part is the 

development and analysis of the new model for the generation of the PPG and E C G 

signals. The third part is focused on a correlation study on the features related to PPG 

signals. The fourth part is on investigating new approaches for the beat-to-beat BPV 

estimation. Finally, a new application of the PPG and E C G signals for human 

verification is introduced. This thesis consists of 7 chapters. The following is the 

online of each chapters. 
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Chapter 1 provides the background information on some basic models used in 

this study, the history and current status of the related works, and an overview of this 

thesis. 

Chapter 2 presents a study on the spectral analysis of the DPFM process. In this 

chapter, further investigation is carried out on whether it is practically plausible to 

recover precisely the input modulation amplitude or intensity information from the 

IPFM model through a simple LPF. An expression approximating the instantaneous 

firing rate as a function of the input intensity for the IPFM model is also derived. 

Chapter 3 introduces the details of the new model, and provides the theoretical 

analysis and simulation results using this new model. In the first part of this chapter, 

the physiological and mathematical background of this model is given. It is followed 

by the elaboration on the theoretical analysis and computer simulation. 

Chapter 4 focuses on a correlation study from statistical point of view to 

investigate the relationship between the PPG related parameters and their association 

with the parameters from E C G signals such as R R interval. 

Chapter 5 presents a new approach for the BP estimation as well as for the 

analysis on the beat-to-beat BPV based on the results from Chapter 4. The feasibility 

of the new approach is investigated by using the data obtained from the FINAPRE 

device as reference. 

Chapter 6 presents a new approach for human verification using PPG signals. 

Experiments were carried out to obtain PPG signals from different subjects. The 

preliminary results demonstrate that the new approach is promising for human 

verification. 

Chapter 7 concludes the original contributions in this thesis and provides some 

potential research directions based on the current work. 
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Chapter 2 

Spectral Analysis on the IPFM Process 

2.1 Introduction 

The IPFM model has been widely used for encoding physiological or physical 

information into variable spike intervals. This is a very simple but yet powerful tool in 

exploring a relationship between the input modulation signal and the events generated 

by the neural encoding system. It is especially useful when the recovering of the 

hidden modulation information in a set of observed events is interested in. Therefore, 

many physiological events, such as nervous pulse trains and the signals associated 

with cardiac contractions, can be appropriately interpreted by the IPFM model. 

The spectral analysis of the IPFM process has played an important role in 

understanding the mechanisms of encoding and decoding in nervous systems. It was 

reported in many early studies [3] [4] that, if the modulation depth and frequencies 

were suitably restricted, demodulation of the IPFM process by a simple LPF could be 

used to recover the input modulation information attached with physiological 

meanings. In fact, many researchers have made use of this approach in their studies 

without further justifications. However, it is found that in order to fully recover the 

input modulating signal, the knowledge of the threshold of the IPFM model is 

necessary. Indeed, in a complex biological living system, the threshold very much 

depends on the cell geometry and the membrane voltage depolarization level at the 

site of the origin required for pulse initiation, and is therefore difficult to obtain 

without extensive exploration of the physiological mechanism of the pulse generation 

in the nerve cells. As a result, it is practically implausible to recover precisely the 

22 



Chapter 1 

input modulation amplitude or intensity information by a simple LPF. However, 

demodulation by LPF can be useful in reconstructing some important features, such as 

firing rate functions, which is closely related to the original input information. In the 

first part of this chapter, the spectral characteristics of the IPFM process is studied 

from demodulation point of view. 

On the other hand, the information-carrying train of events at the output of an 

IPFM model is often simplified as a series of stereotyped impulses, which provide 

only the information of their occurrence times. However, in reality, the significance of 

the modulated series of events is also attached to the detailed dynamics of the event 

itself. Indeed, when the detailed properties of the event itself are taken into account, 

the spectrum of the whole IPFM process can be quite different, which complicates the 

process of reproducing the original modulation signal. Therefore a simple LPF for 

demodulation could no longer be satisfactory to recover the important hidden neural 

information unless appropriate pre-processing is applied. In the second part of this 

chapter, a study on the nature of the interaction between the detailed neural dynamics 

and the neural coding processes is presented. 

2.2 A Theoretical Study on the Neural Firing Rate Function 

In this section, the spectrum of the IPFM model is studied from demodulation point of 

view. An expression approximating the instantaneous firing rate as a function of the 

input intensity is derived. The theoretical work provided by Balay is also introduced 

on the spectral analysis of the IPFM process. Comparing with the spectral results from 

the corresponding IPFM model shows that the firing rate function can be recovered by 

a simple LPF. 

2.2.1 Mathematical Derivation of the Neural Firing Rate 
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In the IPFM model shown in Fig. 2-1(a), the occurrence times of the ith and (/ + \)th 

pulses, f. and ，satisfy the relationship 

= \{m,-^m,{t))dt (2-1) 

where m^ {t) is the information or modulating input signal, m。is the constant input 

signal, and V出 is the integration threshold. The non-negative input signal 

ttiQ + mj (0 is integrated, and whenever the integrated value exceeds the threshold V)；,， 

a unitary spike is generated and the integrator is reinitialized. Fig. 2-1(b) shows an 

integration process denoted by x(t) and an output pulse train denoted by y(t) when 

m, (0 = Acos(27tfj + 0) is applied as the input modulation signal to the IPFM 

model. 

He |—Ts. Reset 

J > + y(t; pulse ej^ 
_ ^ ^ generator 

(Integrator) t̂h '"̂ mparator) 

(a) 
〜X 10—3 
乙 J 1 1 » 1  

m1 (t) 0 • 乂 \ \ -

.？‘— 1 1 1 1  
0 2 4 6 8 10 

1 1 1 r———— 

0。 2 4 6 8 10 
1 1 ！ 1  

1 -

y(t) 0.5 -

� 0 2 4 Time 6 8 10 

(b) 

Fig. 2-1: IPFM model: (a) Schematic diagram of the IPFM model; and (b) the input and 

output of the IPFM model form,(f) = Acos{27tfj + 6). 
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By converting the input modulating signal that mimics the physical process 

(pressure, current, etc.) into a time series, the output of an IPFM model clearly reflects 

the important features of a neuron with close relevance to the physical input such as 

firing rate. Considering m(t) = m^ with the input modulating signal m, {t) = 0 as a 

simple example, the expression of the firing rate can be easily derived as ro=m(/Vth 

according to Eq. (2-1). It is clear that the firing rate r̂  is proportional to the D C input 

component mo and inversely proportional to the threshold V,/,. More generally, if 

= + + such that m(t) is ensured nonnegative) is the 

input signal to the DPFM model, Eq. (2-1) becomes: 

V,, = j{m^+Acos(27tfj + 0))dt 
'' (2-2) 

Considering that sin a-smh = 2 sin(-~-) cos(—，we have 

=m。(r,、i + - + (2-3) 

This can be further simplified by the Taylor series of the sinusioidal function given by 

sin x = ) + (-)-(—) + •... (2-4) 
3! 5! 7! 

In fact, the difference between sin jc and x is less than 4 % when x < 0.5. For x with 

values less than 0.75, the deviation is not greater than 10% and for x with values 

closer to one, the difference can become as high as 16%. On the other hand, in most 

physiological situations, the time interval between two consecutive firings is less than 

or close to one. For example, in nervous system the interpulse intervals are normally 

ranged from the order of 10ms to the order of 100ms, while for neuro-cardiac case, 

the normal range of heart rate is 60 to 100 beats per minute [41]. If the frequency of 

the modulation signal can be restricted such that x 二 爪 Af,. is much less than one, the 
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first order approximation of by Ttf̂ At. will be reasonable. The actual 

physiological series of point events, e.g. neural spike trains or series of heart beats, are 

often influenced by slow modulation, such as respiration which has a 

frequency /爪 around 0.3Hz [42]. Hence, the resulting firing rate sequence is 

approximated by 

— ^ + cos(27tfm h^O). (2-5) 
广/+1 — h Kh Kh 

where = . 

‘ 2 

In order to facilitate the discussions, the parameter t̂  is replaced by the 

continuous time variable t. Therefore the approximated firing rate can be expressed 

as: 

厂 = 丄 二 一 - ^[m, -^-AxcosilTtfj + ")]， (2-6) 

T ,,+1 - h ^th 

Eq. (2-6) gives the relationship between the firing rate and the input intensity of the 

modulation signal. 

As schematically depicted in Fig.2-2(a), the time interval between two 

consecutive firings will be lengthened as m, {t) decreases, and vice versa. Fig.2-2(b) 

gives the approximated firing rate as a function of time under different thresholds. It is 

obvious that smaller values of threshold result in higher firing rates for a given 

intensity, and vice versa. This result supports the experimental observations on the 

relation between the firing rate and the intensity reported before [43] [44]. When the 

intensity of the input stimulation (synaptic current, stretch, or pressure, etc.) increases, 

the time for the integrate-to-fire process will be shorten, which results in a 

corresponding increase in the firing rate. Conversely, when the fixed threshold V̂ ^ 

representing the depolarization level of membrane potential required for potential 

initiation increases, the integration process will last for longer time, resulting in a 26 
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decrease in the firing rate. 

-0.81 . . . , ^ 2.5-
m1(t) ^ ^ 

-0.9- - ， Vth = 1 

-1 — ^ • . _ _ A A 
0 0.1 0.2 0.3 0.4 0.5 vT / \ / \ 

:CZfflHIII iT /U ,入 
1°___0:1 0|:2 |0 3 04 05 E / 厂 \ \ 

H iiiiiiiiiiiiiiii r \ 
0 0-1 0.3 0.4 0.5 % 2 4 丁. ，、6 8 10 

Time (s) Time (s) 
(a) (b) 

Fig. 2-2: (a) The output of the IPFM model when the modulating input signal is given by 

Acos{27ifrnt-^0), the parameters used are: A=\,fm=0.2Hz, Q二7t, mo-\, Vth=^- (b) The 
approximated firing rate as a function of time for different threshold values with the other 

conditions remaining unchanged. 

2.2.2 Spectral Analysis of the IPFM Process 

The spectral analysis of the IPFM process could provide insights into the mechanisms 

of encoding and decoding in nervous systems. For simplicity, it is assumed that the 

impulses have a surface area of unit. Using Parseval relation and Bessel function, 

Bayly [3] derived the spectrum of the IPFM process: 

IV) 二&风/) + •例/ ± 几）. 
、 (2-7) 

I x .附土 W o +"/J}.expO=M，J . 

in which (—)(1 + ， and (/),, = IkTtf̂ a + ne-\-co with 

fm ¥ o ’ 
CO - ^m{27if^a - 9)，where J^ is the Bessel function of the first kind of the order 
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n, a denotes an arbitrary initial time instant as mentioned before,几 is the frequency 

of the modulating signal, and is the pulse mean firing rate (or carry frequency) 

proportional to the D C signal component m。. 

A f 
If the ratios, —a n d—, are properly restricted, the spectrum of the IPFM 

^th fo 

signal will have the form as shown in Fig.2-3 [3]. From this figure and Eq. (2-7), three 

clusters of frequency components can be identified as follows: 

1) The D C component represents the average value of the pulse train. 

2) The modulation or input information related to the signal component at the 

modulating frequency, , next to the D C component, is given by . 

Demodulation is, therefore, possible through the estimation of the firing rate by 

LPF without any harmonic distortions if the threshold V̂ ^ is known. 

3) The components at harmonics of the mean sampling rate kf̂  are surrounded by a 

cluster of side components at sums and differences of the mean firing rate and 

modulating frequency, i.e., kf̂  士 "/州.These harmonic components and sidebands 

are attributed to the nonlinearity of the IPFM model, specifically the threshold 

operation for the integrate-to-fire process. 

tUr. 
� ' V ‘ V f ^ th V ihJ ttt 

I ？ ， . ‘ 丄 ( 1 +几.〜 
CD ViJm Vy cY’,,L 

O Cp y/̂  
CD cyZ 

A 

…… cp T T ^ c 
cp CD  

O Q  
<p cp 

T T . J T l …?Ti lTcp„T T  
(j)©®®®(t> ''''' g) '''''''' ' ®Q® ®®® ‘ ' ® ' ' 

-fm 0 fm fo-fm fo fo+fm 

Fig. 2-3: The spectrum of the IPFM signal. 
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Accordingly, a demodulation method using LPF with a proper cut-off frequency 

is illustrated in Fig.2-4, where the main requirement on the filter is that its cut-off 

frequency be high with respect to the frequency of the modulation and low with 

respect to the carrier frequency [3]. Fig.2-4 (a) gives the schematic diagram of the 

demodulation of an IPFM pulse train by LPF. The actual output is 

— + 0 + + Noise， （2-8) 
^th 

where |G| is the gain of the low-pass filter. Therefore, it is theoretically possible to 

recover the input modulating information ( m J O 二 +(9) )，with the 

knowledge of V,；, and|G . 

一 t ' I M DEMODULATING 〇 , ： 

尸(广，汉)，...—�—�...".....八、 LOW-pass . f + +没 +广 + ••从 

FILTER 

G(f) 

(a) 

Input spectrum Output spectrum 

I ? p i 

. . . . . . Noise 

otIIIIIt. Ill jlll.IL _f T̂ T T . Ill tTT. T . _ _ 

(b) 

Fig. 2-4: (a) Schematic diagram of the IPFM demodulation by LPF; and (b) the corresponding 

input and output spectra. Distortion at the output occurs when the first carrier component at fo 

and its lower sidebands are not completely removed by the LPF. IGI is the gain of the filter. 

However, the threshold very much depends on the neuronal geometry and the 

membrane voltage depolarization level at the site of the origin required for pulse 
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initiation. Therefore, it is practically difficult to be obtained without extensive 

exploration of the physiological mechanism of the pulse generation in the neurons. 

The qualitative aspects of the thresholds in vivo cannot be captured at present, 

although much has been speculated on this topic. Therefore, it is physiologically 

implausible to recover precisely the input modulation amplitude or intensity 

information by a simple LPF due to the difficulty in estimating the exact value of the 

threshold value V,̂  in the complicated living biological systems. 

2.2.3 Reconstruction of the Neural Firing Rate through LPF 

Though it is implausible in practice to recover precisely the input modulation 

amplitude or intensity information to the IPFM model, demodulation by LPF can be 

of special importance for studying the firing rate characteristics of a neuron. In 

comparison with the approximated firing rate by Eq. (2-6), the output of the IPFM 

demodulator without noise is actually the instantaneous firing rate with both the D C 

component proportional to m^and the A C component to the modulating signal, as 

shown in Fig.2-4(b). Therefore, the demodulation by LPF is possible in reality for the 

estimation of the firing rate which is closely related to the intensity of input signals. 

Simulations were carried out to evaluate the feasibility to reconstruct the firing 

rate using a simple low-pass filter. Different patterns of input modulation signals were 

used in simulations as illustrated in Table 2-1. In Simulation A, a sinusoidal signal 

was used as the modulation input, which was also employed in Bayly's studies. In 

Simulation B and C, more complicated signals were generated from Gaussian random 

sequence to investigate the applicability of this approach using more generalized input 

signals. Two different thresholds were selected for each simulation. For demodulation, 

a low-pass filter with a cutoff frequency at 0.1 Hz was applied. 
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Table 2-1: Different patterns of inputs for simulations. 

Simulations Input signals Vth 

A 〜二 1; 0.8,1.2 

m,(0 = 2x10"^ .cos(0.2瓜+ ;r) 

B 肌0=1; 0.8，1.2 

A zero-mean unit variance Gaussian random sequence is 

generated, m, (t) is obtained by filtering the sequence with 

a low pass filter at a cutoff frequency at 0.1 Hz multiplied 

by 4. 

C 肌0=1; 0.8, 1.2 

A zero-mean unit variance Gaussian random sequence is 

generated, m^ (t) = 4- m�: (0 , in which m,】is 

obtained by filtering the sequence with a low pass filter at 

a cutoff frequency at O.lHz, andm^^ (0 by filtering the 

sequence with cutoff frequencies at O.lHz and 0.5Hz. 

The results of Simulations A, B, and C are given in Fig. 2-5. The dotted line in 

each simulation represents the input signal m^ + m! (t) ； the dashed line is the 

corresponding firing rate function of the IPFM process; and the solid line is the signal 

generated by demodulating the output of the IPFM model using a low-pass filter. It is 

clear that without scaling the output of the demodulator by the threshold V,̂ , it is 

certainly unable to recover precisely the amplitude of the original input, neither the 

amplitude of the constant input signal nor the oscillation amplitude ofm, (t). On the 

contrary, it is observed that the theoretical firing rate function tallies almost perfectly 

with the output signal of the low-pass filter especially in Simulations A and B, 

regardless the value of the threshold. In Simulation C, with a more generalized input 
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signal, the difference between the dashed line and solid line is magnified to some 

extent. Nevertheless, even under a higher threshold (Fig. 2-5 (f)), the error is still 

reasonable. It therefore suggests that demodulation by a simple LPF can be useful to 

recover the firing rate function not only under a special condition when the 

modulating input signal is given by Acos{27fmt-^0), but may also for other cases. 
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Simulation C Simulation C 
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Fig. 2-5: The results of simulation A, B，and C under different thresholds. Dotted line: the 

input signal; dashed line: the theoretical firing rate of EPFM model; and solid line: the output 

of the low-pass filter. 

2.3 Effects of the Neural Dynamics 

The specific characteristics of the pulse may contain the important information of 

dynamic changes in physiological systems, including the variations of ionic currents 

in the underlying ionic channels and the changes in the membrane permeability. 

Therefore cannot be neglected in order to better understand of the coding of neural 

information. As a result, the ultimate output spectrum of the IPFM process integrated 

with neural dynamics is determined by the multiplication of the action potential 

spectrum with the spectrum given by Bayly. 

Let P(t) represents the function of an action potential. Eq. (2-7) and p(t) together 

yield the ultimate output spectrum of the IPFM process integrated with neural 

dynamics: 

= = 所 + 土九）.所/±/Jexp(不 y•的 
r̂. (2-9) 

+ P 糊0 + 对m)).利 / 土 Wo exp(平 M’„ ) 
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It is clearly indicated by Eq.(2-9) that the amplitude of the frequency 

components in the IPFM spectrum given by Eq. (2-7) are modulated byP(/). As 

illustrated in Fig.2-6, with different action potentials P, and P^, the information signal 

A C component around/。= IHz may be distorted to different extents. From the point 

of view of the demodulation process, the interaction of the action potential with the 

IPFM process results in a scaling factor and it complicates the process of recovering 

any original information. Hence, demodulation by a single LPF can no longer be able 

to recover either the simplified firing rate function, or the original input modulation 

signal. In order to solve this problem, pre-whitening techniques can be considered to 

offset the influence of the "dynamic waveform" before LPF. 
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Fig.2-6: The spectra of the frequency modulated pulses taking into account the neural 
dynamics. 
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2.4 Discussion & Conclusions 

In this chapter, with a single sinusoidal signal as the input modulation signal to the 

IPFM model, a mathematical expression approximating the instantaneous firing rate 

as a function of the input intensity is derived. Meanwhile, the corresponding output 

spectrum of the IPFM process is studied, particularly from demodulation point of 

view. Comparing with the spectral components as shown in Fig. 2-3，it is interesting 

fYi 
to note that the D C component is exactly the mean firing rate given by — as shown 

Kh 

in Eq. (2-6). Furthermore, the modulation or input information related to the signal 

component at the modulating frequency, given byA/2V,；,, is proportional to the A C 

component of the firing rate function defined by Eq. (2-6). 

Using a simple LPF, it is found that the output of the IPFM demodulator without 

noise is actually the approximated instantaneous firing rate, rather than the original 

input modulation signal as reported by Bayly. In our simulations, the modulation 

frequency to carrier rate ratio f j /o(/o 二 was appropriately selected, so 

that the modulation signal component can be isolated in frequency from other spectral 

components, and in this case, demodulation by LPF is reasonable [3]. The simulation 

result with different patterns of input signals demonstrates that without the knowledge 

of the threshold, it is impossible to recover precisely the input amplitude or intensity 

information, neither the amplitude of the constant input signal, m^，nor the oscillation 

amplitude ofm, (t) . It also shows that reconstruction of the firing rate function 

through LPF can be applicable for more generalized inputs besides the single 

sinusoidal signal. Therefore, this theoretical analysis provides an insight into the 

quantitative evaluation of mean firing rate and the rate variability at the physiological 

modulating frequency. The results could be useful in exploring underlying relevant 

modulation mechanisms of a biological living system. However, when either or both 
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the modulation frequency to carrier rate ratio, /明 / /。，or modulation depth to carrier 

rate ratio are large, the signal recovery for both the modulation input and the firing 

rate function becomes more difficult. 

Taking into account the detailed properties of the output events, another 

important aspect beneficial to better understanding of the IPFM process for neural 

decoding has been addressed in this chapter. The results show that the neural 

dynamics may induce some serious distortions to the amplitude at the original 

modulation frequency components. This study suggests that a proper processing 

before LPF, e.g. pre-whitening, is necessary in order to recover the original neural 

information accurately. The details about the preprocessing technique will be under 

further investigation. 
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Chapter 3 

A New Model for the Generation of PPG 

3.1 Introduction 

Triggered by the simple but yet powerful structure of the IPFM model, it is quite 

necessary to further develop this model for exploration of the physiological 

mechanisms of other neural or cardiac related events, such as PPG signals. The PPG 

signal measured using a photo-detector on the skin surface of human body is 

associated with the change in the volume of red blood cells in the peripheral 

micro-vascular bed with each pressure pulse initiated by the heart. In other words, 

the repetition of PPG pulses should be the same as that of E C G signals over the 

same cardiac cycle. Therefore, it seems to be promising that PPG signals can also be 

interpreted based on the IPFM mechanism coupled with certain transmission 

characteristics of the pressure wave through the arterial system. 

Due to its advantage in the ease of measurement at the peripheral sites and in 

providing useful information on some physiological parameters, PPG signals have 

been widely used for a variety of applications, including monitoring of arterial 

pressure and compliance in human [45], recording of heart and respiratory rates [30], 

oxygen saturation measurement [31], detecting anxiety [32], etc. However, many 

researchers just made use of PPG signals without elaborating or exploring their 

generation mechanism. Consequently, it remains controversial on what contributes 

to the generation of those peripheral signals. Weinman et al. [46] concluded that 

scattering, reflection, absorption and movement of the vessel wall all play a role in 

producing PPG signals. Most recently, Moyle described that there are four 

37 



Chapter 2 

absorption strata at a PPG site. The majority of light produced by the light source is 

scattered by tissue, venous blood and arterial blood; while a small portion of light 

experiences variable scatter due to the pulsation of arterial blood [47]. The first 

objective of this chapter is to clarify the fundamental mechanism of PPG signals in 

terms of the characteristics of the cardiovascular system and the arterial system, and 

the principles of fluid mechanics. 

Despite the complex source which affects only the details in the waveform, the 

repetition of PPG pulses should be strictly consistent with that of heart beats. In fact, 

PPG signals have already been used for heart rate monitoring for a long time. In the 

second part of this chapter, the mathematical modeling taking the advantage of the 

IPFM mechanism is carried out to provide an insight into better understanding the 

underlying mechanism of the PPG signal. 

3.2 Principles of PPG 

In this section, the elementary principles for the generation of the PPG signal are 

provided. Though the actual composition of the PPG signal could be complex, the 

explanation based on hemodynamics and certain characteristics of the biological 

systems would be of great importance in understanding this signal. The basic laws or 

equations in fluid mechanics with certain assumptions, though cannot be rigorously 

applied to biological systems, they perform almost certainly as a close and practical 

approximation for understanding the interrelationship among the oscillatory pressure 

wave, blood flow and arterial properties in a biological system. 

3.2.1 Relationship between Pressure and Flow 

A small shift of fluid elements in a compressible media will induce in due course 

similar movements in adjacent elements and that in this way a disturbance, called 
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acoustic wave or pressure wave, which propagates at a relatively high speed, the 

speed of sound, through the media. It is therefore easy to imagine that with the onset 

of the ejection phase during a cardiac cycle, giving rise to a sharp increase in aortic 

pressure, a pressure wave is initiated in the radial stretch of the ascending aorta and 

it is propagated down the aorta and its branches [21]. 

^ / / \ \ (A) Pressure curves 

80 I I I T ^ ^ l ^ 
0。 90。 180" 270° 360。 

3 厂 八 / P r P i 
g _ / \ (B) Pressure gradient 

i ： V X 
-3 L (C) Differential of 

pressure curve 

-3 -

Fig. 3-1: A diagram that shows how a traveling pressure wave creates an oscillatory pressure 

gradient. (A) Two pressure waves recorded a short distance apart along the femoral artery of 

a dog; (B) The pressure gradient derived by subtracting the pressure at the downstream site 

from that at the upstream site at 15° intervals and dividing by the distance between the 

recording sites; and (C) The derivative with respect to time of the upstream pressure wave 

{dP^ Idt). 

The pulsatile flow rate depends on the pressure gradient along the artery [48]. 

The calculation of the pressure gradient is explained by Fig. 3-1. Owing to the fact 

that the pressure pulse generated in the aorta due to expulsion of blood by the 

ventricle travels along the arteries, the crest of the wave reaches the upstream 

recording site a short time before it reaches the downstream site. At this time, the 

pressure is higher at the first set than that at the second site and the pressure gradient 
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occurs in this direction. The situation rapidly reverses, and when the crest has 

reached the second site the pressure gradient is in the opposite direction. The 

resultant pressure gradient, therefore, is one that oscillates about a mean as shown in 

Fig. 3-1 (B). As there are traveling waves in all arteries, pressure gradients in all 

arteries will be of this form. 

Pressure is one of the principle determinants of the rate of flow rate. Based on 

Poiseuille's law, for the steady, laminar flow of a Newtonian fluid through a 

cylindrical tube, the flow rate, Q，varies directly with the pressure difference, AP， 

and the fourth power of the radius, r, of the tube, and it varies inversely with the 

length, L，of the tube and the viscosity, ju，of the fluid. The expression of 

Poiseuille's law is 

Q= ^ J (3-1) 

where ；r /8 is the constant of proportionality [21]. 

Obviously, the blood itself is not simple, homogeneous solution but instead is a 

complex suspension of red and white corpuscles, platelets, and lipid globules 

dispersed in a colloidal solution of proteins [21]. Besides, the aorta, the pulmonary 

artery, and their major branches constitute a system of conduits with considerable 

volume and distensibility. As a result, the mathematical equation to describe the 

relationship between the oscillatory pressure gradient and the blood flow in the 

arteries differs from Eq. (3-1) (For the details of the derivation of the relationship 

between the oscillatory pressure gradient and the flow, please refer to [48]). 

Nevertheless, the pressure gradient is directly related to the flow just as that in 

Poiseuille's law. The relationship between pressure and flow velocity, which 

depends on the pressure gradient, can be represented by Fig. 3-2. It can be seen that 

a considerable similarity exists between the simultaneously recorded pressure and 
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flow waveform. 

M _ 

h- \ \ ：；：{ 

P 30° 60�90° \ 180° / 270° 

V7 
Fig. 3-2: The flow velocity (Q: ml/s) determined by the pressure gradient and the arterial 

pressure pulse (P) recorded simultaneously in the femoral artery of a dog [48]. 

3.2.2 Peripheral Pressure and Flow Curves 

Structural and geometric non-uniformities give rise to differences in pressure and 

flow contours in different anatomic locations in the arterial system. As the pulse 

wave is transmitted down the arterial system, simultaneous recordings of pressure 

and flow waveforms in different parts of the vascular tree have clear distinct features. 

The changes in configuration of the pressure and flow pulses with distance are 

shown in Fig. 3-3 [48]. Aside from the increasing delay in the onset of the initial 

pressure rise, three major changes occur in the pulse contour as the pressure wave 

travels distally. First, the high frequency component of the pulse, such as the 

incisura (the notch that appears as a result of an aortic valve closure at the end of 

ventricular ejection), is damped out and soon disappear; and a hump may appear on 

the diastolic portion of the pressure wave [21]. Second, the systolic portion of the 

pressure wave becomes narrowed and elevated; that of the flow waveform behaves 
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in just the opposite manner. Third, the pulse pressure increases and the flow 

amplitude decreases progressively, though the mean pressure falls very slowly until 

reaching the arteriolar beds [13]. On the other hand, in general, pressure and flow 

waveforms are similar at corresponding anatomic sites among many mammalian 

species [49]. 
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Fig. 3-3: Pressure and flow waveforms in the ascending, thoracic, and abdominal aortas, as 

well as the femoral and saphenous arteries. 

These changes in the pressure contour are mainly caused by the differences in 

total peripheral resistance and arterial compliance in different sites of the arterial 

system. Since the arteries become less compliant with advancing in age, the changes 

of the pressure contour are more pronounced in young individuals. The pulse wave 

of elderly patients maybe transmitted virtually unchanged from the ascending aorta 

to the periphery. Furthermore, the precise mechanism for the peaking of the pressure 

wave is controversial. Probably several factors affect the peaking of the pressure, 

including reflection, tapering, resonance, and changes in transmission velocity with 

the pressure level. 
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3.2.3 Generation of the PPG Signal 

As the pressure wave travels from the ascending aorta toward the periphery, the 

corresponding pulsatile flow occurs with the oscillatory pressure gradient. The 

pulsations of the arterial blood can be detected by an optoelectronic detector, and 

hence generating the PPG signal. 

As shown in Fig. 3-4, there are four absorption strata at a PPG site indicated. 

The majority of light produced by the LED (light source) is scattered by tissue, 

venous blood and arterial blood. A small portion of the light experiences variable 

scatter due to the pulsation of arterial blood. Some portion of the light is detected by 

an optoelectronic detector, and therefore, contains the signature of the pulsatile 

component of the arterial blood flow. 
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Fig. 3-4: The principle of the PPG technique [47]. 

It is also indicated by Fig. 3-4 that the intensity of the light passing through the 

tissue during diastole is at the high peak (/" ). The absorbers that are present during 

diastole are the D C component. The optical path length in the arteries increases 

during the systole, therefore the transmitted light reaches the low peak (I[). 
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In summary, the PPG signal is associated with changes in the volume of arterial 

blood in the peripheral micro-vascular due to the pressure pulse initiated by the heart. 

Particularly, the variations in the intensity of the signal reflect the pulsations of 

arterial blood flow occurring as the pressure wave travels along the arteries. 

However, as the detected light that contains the pulsatile component is only a 

fraction of the total received light, the PPG signal could give only a rough 

representation of the peripheral flow waveform, which may differ a little bit from 

that detected at aorta, and it so far only yields a qualitative description of BP or flow. 

Nevertheless, the generation and properties of PPG signals are closely related to that 

of the pressure wave. Mathematical modeling based on such physiological 

mechanism is just under way. 

3.3 Model Description 

As described in the last section, the elementary generation mechanism of the PPG 

signal can be concluded as: 1) the onset of the ventricular contraction coincides with 

the peak of the R-wave of the E C G signal There is a time interval between the start 

of the ventricular contraction and the opening of the semilunar valves (when 

ventricular pressure rises abruptly), which is termed as isovolumic contraction or the 

pre-ejection period (PEP). After the PEP, the opening of the semilunar valves marks 

onset of the blood ejection phase that gives rise to a sharp increase in aortic pressure, 

and a pressure wave is initiated in the radial stretch of the ascending aorta; 2) the 

pressure wave is then propagated down through the arterial system, including the 

aorta and its branches; 3) and finally, as the pressure wave travels distally, the 

corresponding pulsation of the blood flow at the periphery is detected by the 

photo-detector which generates the PPG signal. Such a mechanism for PPG signal 

generation is the basis of the model in this study. Since the IPFM model is widely 
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used to mimic the mechanism of heart beat generation, the timing of the occurrence 

of the R peaks (or the ventricular systoles) can be determined by using this model. 

On the other hand, the Windkessel model can be used to describe the arterial system, 

through which the pressure wave is transmitted. Therefore, a mathematical model is 

constructed for the generation of the PPG signal based on these two models. 

3.3.1 IPFM Model 

The details of the IPFM model have already been introduced in the last chapter. As a 

physiologically plausible model, it transforms a continuous non-negative input 

signal, representing the A N S activity on the SA node, into a series of cardiac events 

(firing events). Here, it is utilized as a realistic model of R R intervals. 

The occurrence times of any two consecutive R peaks satisfy the relationship: 

广 + m,(t))dt (3-2) 

where m, (t) is the modulating input signal, m^is the constant input signal，V," is 

the integration threshold, and t- . a n d a r e the occurrence time of the ith and 

{i + \)th pulses, respectively. The structure of the IPFM model is given in Fig. 3-5. 

The output firing pulses are represented by a discrete time series y{t) .The pulse 

generator p{t) can be a QRS complex generator. 

in,- Reset 

mi ⑴ 人 P � ( � 
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generator 
(Integrator) th ""̂ Comparator) 

Fig. 3-5: Schematic diagram of the IPFM model. 
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3.3.2 Windkessel Model 

A three-element Windkessel (WK3) model is utilized to represent the characteristics 

of the aorta and its branches, through which the pressure wave is propagating. 

Arterial compliance is represented by a capacitor, C，which has the storage 

properties, in this case, the electric charge. Peripheral resistance, with its viscous 

properties, is represented by a resistor, R, that dissipates energy. In addition, a 

characteristic impedance of the proximal aorta, or the input impedance to the arterial 

system, is also represented by a resistor, >. The electrical analog of the Windkessel 

model for the arterial system is shown in Fig. 3-6. 

r 

〇 1 h p o 

c H " R 

〇 J o 

Fig. 3-6: A Windkessel model with three elements. 

This three-element Windkessel model for the systemic arterial tree has been a 

useful tool in studying the transmission properties of arterial pulses [13] [18] [19]. It 

helps to understanding the differences in pulse and flow waveforms in different parts 

of the vascular tree in a human body. More specifically, through this model, the 

distal pressure pulse can be interpreted as the output, being the proximal pressure 

pulse the input. Such interpretation is illustrated in Fig. 3-7: the pressure wave 

generated at the ascending aorta propagates through the arterial trees represented by 

the Windkessel model, and the peripheral pulse is therefore obtained which has 

some distinct features from that of the original one. The differences in the 
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configuration of the pulse contour have been elaborated in section 3.2.2. 

j ̂：、J。 n�vy i^^： 
Fig. 3-7: Three-element Windkessel modeling the arterial system, with the proximal pulse as 

the input and the distal pulse as the output. 

Once the proximal pulse is applied to the model, the distal pressure pulse can 

be determined by the model parameters. In other words, the output distal pulse is the 

convolution of the input proximal pulse with the impulse response, h(t)，of the W K 3 

model. Similar to the derivations in Chapter 1，the relationship between the pressure 

and flow rate, incorporating the W K 3 parameters, r, C, and R , can be expressed as: 

Q{t) = C- dPc (0 ldt + Pc{t)IR, (3-3) 

and 

m 二 Pc ⑴+ Q⑴.r (3-4) 

in which P(0 and Q(t) are the input aortic BP and flow rate, respectively; 

Pc (t) represents the peripheral systemic pressure. 

Substituting Eq. (3-3) into Eq. (3-4)，we have: 

P{t) 二 C.r.dPc(t)/dt + (l + -)Pc(t) (3-5) 
R 

By using the analytic solution of Eq. (3-5), the impulse response of the W K 3 

model can be obtained: 

h(t)=厂 1 ( ^ ) = I (4：). . 0 (3-6) 
尸（/) rC R • r • C 

in which the constant k is used to scale the proximal to distal pulses, considering 

that the proximal pressure pulses have lower amplitude than that of the distal ones. 
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With this impulse response function and an input pressure pulse, a theoretical distal 

pulse can be calculated. 

3.3.3 ANew Model for the Generation of PPG 

Based on the IPFM model and the W K 3 model with a pulse generator and a time 

delay generator, a new model for the generation of the PPG signalis constructed. The 

diagram of this model is illustrated in Fig. 3-8. 
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/ ： 
R PC Sym(t) / I 
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Fig. 3-8: The schematic diagram of the new model for the generation of PPG. 

The upper part of Fig. 3-8 is a conventional IPFM model mimicking the 

generation process of SA firings. The continuous non-negative input modulating 

signal, consisting of the autonomic nervous activity and the respiration effect, is 

integrated. The A N S is represented by its two branches, the sympathetic and the 

parasympathetic nervous activities, which decreases and increases the interval 

between depolarizations of the SA node, respectively. Once the integrated value 
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exceeds the threshold, V,^，a unitary spike is generated at the output of the 

comparator and the integrator is reset to zero. This nerve spike series is regarded as 

the timings of the peak of the R-wave in the E C G signal. By the convolution of the 

nerve spikes with the E C G dynamics, a train of the E C G signal is generated at the 

output of the complex generator. 

The lower part in Fig. 3-8 extends the conventional IPFM model for the 

generation of the PPG signal. As the firing time of the nerve spikes coincides with 

the onset of the ventricular contraction, and after a time interval PEP, the semilunar 

valves open that marks the onset of the blood ejection phase and gives rise to a 

pressure wave in the ascending aorta. A time interval (PEP) and a pulse generator 

are also connected to the output of the EPFM model. Through the convolution of the 

nerve spikes with the time interval PEP and the pulse waveform, a series of pressure 

wave is generated which synchronizes with the corresponding heart beats. The time 

interval PEP is assumed to be a constant under normal physiological conditions. 

The pressure wave is then propagated down the aorta and its branches. Since 

the pulse transmits with a finite speed, the speed of sound in the arterial system, 

there is an increase in the time delay in the onset of the initial pressure rise with the 

increase in the distance from the heart. In other words, at certain anatomic locations 

in the arterial system, the occurrence of the pressure wave during the same heart 

cycle is some time after that at the proximal. This time delay could be attributed to 

several factors that may affect the transmission velocity, such as the elastic modulus 

of the arterial wall, the thickness of the wall, the lumen radius, and the density of 

blood, etc. It could also be associated with temperature, age, or other physical status. 

In our model, this time delay is defined as the interval between the occurrences of 

the proximal and peripheral pressure waves. Here, the time delay is assumed to 

depend on factors other than the arterial compliance, peripheral resistance, and the 
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vascular impedance which are included in the W K 3 model. These factors are 

relatively stable under normal physiological conditions. Therefore, a time delay 

generator is connected to the pulse generator, which gives a constant. 

Aside from the delay in the onset of the initial pressure rise, changes also occur 

in the pulse contour as the pressure wave travels distally. These changes, as 

mentioned in section 3.2.2，are mainly caused by the differences in total peripheral 

resistance and arterial compliance in different sites of the arterial tree. The W K 3 

model, representing the major features of the systemic arterial tree, is therefore 

included in our model. With the proximal pulse as the input, the W K 3 model is able 

to render the possible changes in the pulse contour by convoluting of the proximal 

wave with its impulse response, h{t). Finally, the PPG signal, which is regarded as 

the peripheral pulse in our model, is generated at the output of the photo-detector. 

3.4 Simulation 

In this section the simulation will be carried out using the new model with the 

numerical input, mimicking the sympathetic and the parasympathetic nervous 

activities, as well as the respiration signal. The parameters of the W K 3 mode] either 

fixed or controlled by certain neural activity. 

3.4.1 Generation of the ECG Signal 

To simulate the SA firings, the input time-varying signal to the IPFM model is 

expressed as [50]: 

m(t) (k,S(0 - k,PS(t)) + k,RS(J) + AT (3-7) 

The interpretation of the parameters is as follows: 

S{t): The time-varying sympathetic nervous activity on the SA node; 

PiS⑴:The time-varying parasympathetic nervous activity on the SA node; 

50 



Chapter 6 

RS{t): The time-varying respiration activity on the SA node; 

Jcq : The intrinsic rate of the rise of the SA node cell potential; 

/：! ： The weight that adjust the A N S effect on the SA node; 

k^ ： The weight of the SA sympathetic influence; 

k^: The weight of the SA parasympathetic influence; 

众4: The weight of the SA respiratory influence; 

AT: The tonic autonomic activity at the SA node. 

The standard physiological interpretation of this model is that m(t) resembles 

the membrane potential of the SA node cells, and V,̂  (as shown in Fig. 3-8) is the 

threshold level for initiation of an action potential. From Eq. (3-7)，the rate of the 

increase of the membrane potential is controlled by a rate k、，the autonomic neural 

influence S(t), PS(t) and AT, and the respiratory modulation RS{t). The parameter 

A r represents the tonic autonomic (sympatho-vagal) activity, while (0 and PS(t) 

represent the phasic sympathetic and parasympathetic responses. Sympathetic 

influence is prevalent when (0 > PS{t) + AT , and will cause an increase in the rise 

of the cell potential, and therefore a decrease in the interval between two successive 

firings. Parasympathetic dominance is evident when PS{t) > S(t) + AT , and will 

result in a decrease in the rise of the cell potential, and hence prolong the firing 

intervals [49]. 

The signals, S{t), PS{t) and RS{t), are created by first generating zero-mean 

unit variance Gaussian random sequences. Sympathetic signals are obtained by 

filtering the Gaussian random sequence with a low pass filter at a cutoff frequency at 

O.lHz, reflecting the slower time dynamics of sympathetic innervation. 

Parasympathetic signals are obtained by filtering the sequence with cutoff 

frequencies at O.lHz and 0.5Hz. Respiratory signals are obtained by filtering a 

second zero-mean unit variance Gaussian random sequence with a band-pass filter 
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between 0.25 and 0.3Hz [50]. 

The full set of the parameters used for the simulation is given in Table 3-1. 

Through such suitable choice of scaling variables, the threshold V出 can be 

approximately equal to the mean R R interval. The E C G complex is constructed from 

experimental data to represent general P-QRS-T dynamics. Since the purpose is not 

to investigate the details of the neural dynamic, a uniform E C G complex is used for 

each pulse. Simulations can also be carried out for different mean heart rates by 

changing the threshold and adjusting other parameters. 

Table 3-1: Simulation parameters for the IPFM model. 

Variable Value 

K 1 

k、 0.8 

众2 5 

k, 0.5 

k, 2 

AT 0.05 

0.8 

A data segment of 20 seconds was simulated by using MATLAB. The input 

modulation signals, S{t)，PS(t) and RS(t)，and the simulated R R intervals are 

illustrated in Fig. 3-9. The R R intervals as a discrete time series are plotted at their 

corresponding time of firings. It can be observed that the R R intervals in Fig. 3-9 (d) 

oscillate almost at the same low frequency, around O.lHz, as the sympathetic input 

signals in Fig. 3-9 (a). There is a phase shift of about n，however, which 

52 



Chapter 6 

demonstrates that an increased sympathetic nervous activity leads to a decrease in 

R R intervals, and vice versa. The parasympathetic signals and the respiratory signals 

contribute to the relatively high frequency fluctuation in R R intervals. The 

parasympathetic signals in Fig. 3-9(b) are almost in phase with the R R series, while 

there is also a phase shift of about ；r between the respiratory signals in Fig. 3-9(c) 

and R R series. Therefore, the heartbeat intervals generated by the IPFM process 

indeed carry the information of all the input signals, which can be clearly reflected 

by spectral analysis as discussed later. 

Sympathetic input signal 
0.01 1 1 1 1 1 —jzzz 1 1 1 / 

^ ( a ) 

-0 011 1 1 1 1 1 1 ‘ 1 ‘ 
Parasympathetic input signal 

0.1 1 I I I I I I I I 

0 — — / 广 (b) 

-0 1 1 1 1 1 ‘~—~' 1 1 1  
Respiration input signal 

0.021 1 1 1 1 1 1 1 1 1  
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RR intervals by simulation 
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n yql I 1 1 1  
4 8 12 16 20 (s) 

Fig. 3-9: a) Sympathetic signals S(0 ； b) Parasympathetic signals PS(0 ； c) Respiratory 

signals RS(t) ； and d) The simulated RR intervals. 

The simulation results of the integration process and the output neural spike 

series, as well as the corresponding E C G signals are shown in Fig. 3-10 (a), (b), and 

(c), respectively. Only one fourth (5 seconds) of the total simulated results are 

displayed. It is clearly illustrated that whenever the integrated value reaches the 

threshold77i in Fig. 3-10 (a), a unitary impulse is generated in Fig. 3-10 (b). Fig. 

3-10 (d) shows the generation process of the neural dynamics. The E C G complex is 
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obtained by averaging several E C G complexes extracted from experimental data of 

a healthy subject. The neural spikes are convoluted from the given E C G complex, 

and the E C G signals with uniform P-QRS-T complexes (/？^̂ ^ (t)) are generated, in 

which the R peaks are located at the timings of neural firing. The output train of 

E C G signals can be expressed as: 

eECG(0 = y(t)''PQ,si0 (3-8) 

where y(t) is the neural spike train generated by the IPFM model. 

Integration process 
(s)j 1 1 1 ； 1 1 1 1 1 
1 - -

Th 7 1 7 1 7 1 7 7 T T (a) 
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Fig. 3-10: (a) The integration process of the simulated EPFM model; (b) The neural spike 

train at the output of the comparator; (c) The corresponding ECG signals; and (d) The 

generation process of the neural dynamics of the ECG signals. 
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The spectral analysis of the simulation results could provide useful information 

in better understanding the characteristics of the signal itself; and by comparing with 

that of experimental results, it could also justify the feasibility of the new model. 

The spectra of R R intervals from simulation and experimental data are given in Fig. 

3-11 (a) and (c)，respectively. It is clearly observed in Fig. 3-11(a) that the spectrum 

of the R R interval, calculated from the total simulation data of 20-second using FFT, 

reflects apparently the rhythms of the input modulation signals: the low-frequency 

component centered around (XI Hz is mainly contributed by the sympathetic input 

signals; while the high-frequency component, generally between 0.25-0.3Hz, is 

mainly determined by the respiratory frequency with the contribution of the 

parasympathetic signals. Fig. 3-11(c) is the spectrum from a healthy subject with the 

same data length of 20-second using FFT. Frequency components at similar regions 

with similar powers can be identified from these two spectra. The difference in the 

magnitude of the spectra is due to the difference in mean heart rate between the 

simulation and the experimental data. 

The ultimate output spectrum of the IPFM process integrated with neural 

dynamics of E C G can be expressed as: 

where (/) is the spectrum of the given P-QRS-T complex Pqj^^ (0 . The 

magnitude spectra of E C G signals with neural dynamics from the simulation and 

experimental data are given in Fig. 3-11(b) and (d)，respectively. Again, apparent 

similarity can be observed between these two spectra, which contain peaks at the 

mean heart rate and its multiples. There are fewer noises in Fig. 3-11 (b) because the 

E C G signal from the simulation contain a uniform and smoother P-QRS-T complex. 
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Spectrum of RR interval from simulation 
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Fig. 3-11: (a), (b) The spectra of the RR interval and ECG signal from the simulation; and 

(c), (d) The spectrum of RR interval and ECG signal from experimental data of a normal 

subject. 
3.4.2 Generation of the PPG Signal 

Since we do not concern much about the details of the pressure waveform is not a 

concern here, a pulse with a simple waveform is synchronously generated at the 

firing of each neural spike at the output of the IPFM model. With the knowledge of 
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the cardiac period, R R interval, an aortic pressure wave is synthesized by means of 

two cubic splines [51]. Suppose the length of the R R interval isT, the coefficients of 

the two cubic splines are determined by satisfying the following conditions: 

a) Passage through three points of coordinates (0, P^), and (T, P^), where 

t̂  is the time interval between the diastolic (Pj) and systolic (PJ pressure 

values (P^ and Pj are assumed as constants), and is roughly determined as one 

fourth of the cardiac periodT [21]; 

b) Zero time derivative in the same three points. 

In this way, similar pulse waveforms are generated depending on the length of 

the corresponding R R intervals. An example of such spline interpolation is shown in 

Fig. 3-12. The diastolic and systolic pressures are SOmmHg and 120mmHg, 

respectively. 
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Fig. 3-12: Example of the spline interpolation to generate a pulse waveform. 

Base on the knowledge of the cardiovascular physiology and the foot-to-foot 

transmission velocity of the pressure wave in arterial system, a constant 

PEP=50 ms and a constant time delay t = 130m5" are used in the simulation [37]. 

The W K 3 model parameters, the large vessel compliance C and the proximal 
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aorta impedance, r, are assumed constant in our model [52]; while the peripheral 

resistance, R, is under the modulation of sympathetic nervous activity [53]. The 

dynamic change of R is in accordance to the actual physiological mechanism, i.e., t 

during a cardiac cycle, the A N S reacts to the baro-receptors not only by modulating 

the autonomic resting tones to heart through sympathetic and parasympathetic 

activities, but also by modulating peripheral resistance through sympathetic control 

[53]. On the contrary, the vessel compliance, C，and the proximal aorta impedance, 

r，are of constant values remains a reasonable approximation in many studies, and it 

is proved to be adequate to usual measurement and model errors [18] [52]. Therefore, 

the constant C was calculated from the radial artery cross-sectional compliance and 

the mean superficial length of the forearm of all subjects [54]. The r value was 

obtained by Poiseuille's equation [48] from the radial artery radius [54], and the D C 

value of R from [55]. It is generally known that the peripheral resistance varies 

proportionally with the sympathetic activities. Thus, the ac value of R is directly 

proportional to the input sympathetic signals. The impulse response 

1 R r 
h{t) = k •(——).exp( 1) is also determined by appropriate selection of k . 

rC R r C 
The values of these parameters are listed in Table 3-2. 

Table 3-2: Values of the parameters in the W K 3 model. 

Parameter Value 

C 6.22x10"^ cm^ I dyn 

r 1.15x10^ dyn • s/cm^ 

i?(DC) 6.81x105 dyn-s/cm^ 

R(AC) - S(t) 

k 10'' 
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Fig. 3-13 shows an example of the distal pulse wave generated through the 

convolution of proximal pressure wave v/iih h(t). It is clearly indicated that the 

systolic portion of the pressure wave becomes narrowed and elevated, which is 

consistent with the practical situation. Other changes expected can not be reflected 

due to the simplicity of the waveform itself. The distal pulse waves, though not 

exactly the PPG signals, are strictly synchronized with PPG pulses with similar 

contours (see Fig. 3-2). In other words, the distal pulses generated by the new model 

can be regarded as PPG signals. 

1 1 1  

160 i i i  
/ 广广、、-、 ： ： 

^ ^ / ； ； ； 

0 ) / ； ： ： 

工 / … ^ ； -
E / 丨 、：.. ： 

E / ； ： \ \ ： 

2 1 2 0 - … … i … … ； … … i - … ： 二 i -I -

80 丨 丨 ； 丨…̂ ：̂：̂^̂：̂  

i i i  
0 Time (s) T 

Fig. 3-13: An example of the distal pulse wave (dotted line) compared with the proximal 

pressure wave (straight line). 

The output train of PPG signals can therefore be expressed as: 

eppG (0 = yit - A卜 PEP) * h(t) * (0 * c W (3-10) 

where p^p (t) is the pulse waveform generated with the firing of each neural spike 

at the output of the IPFM model, Ans a constant provided by the time delay 

generator, and h{t) is the impulse response of the W K 3 model, and 
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c⑴= (-l)x/oe-“灿圳](Beer-Lamber，s law, in which x(t)is exactly determined 

by the instantaneous amplitude of the distal pressure wave at time t[6l].) is the 

impulse response of the photo-detector. In this way, E C G and PPG signals can both 

be obtained, as shown in Fig. 3-14 (a). There is a delay between the R peak of E C G 

signals and the onset of PPG signals, which is induced by the time delay constant 

At in the model. Obviously, this is in accordance to the reality, in which the delay in 

time between the characteristic points on E C G and PPG signals is regarded as PTT. 

The ultimate output spectrum of PPG signals can be expressed as: 

Eppo ( f ) = Y ( f ) x e-难滞)xH{f)xP,,{fr C{f) (3-11) 

where //(/) and C(/) are the transfer functions of the W K 3 model and the 

photo-detector, P^p (/) is the PSD of an individual BP waveform. The magnitude 

spectra of E C G and PPG signals are given in Fig. 3-14 (b), which contain the first 

sharp peak at the same mean firing rate with smaller peaks at its harmonics. This is 

absolutely in consistence with reality that the repetition of PPG pulses is the same as 

that of E C G signals over the same cardiac cycles, as represented by the first peak. 

ECG PSD of ECG 
, , . I ——-1 2000 [ 1 1 ‘ 1 — 

- -

�AJiAJKJAJ/lJAJr' , I 1 . . 
I . . . I I 0 」L . .八 J a . 叙 」 
^ PPG PSD of PPG 
& , . . , n I 1200, j . . . r—  

0 1 2 3 4 5 0 2 4 6 8 10 
Time (s) frequency (Hz) 

(a) (b) 

Fig 3-14: (a) ECG (upper panel) and PPG (lower panel) signals generated by the new model; 

and (b) the spectra of ECG and PPG signals in (a). 
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The magnitude of the spectra of E C G and PPG signals from the simulation and 

experimental data are given in Fig. 3-15. Apparent consistence can be observed 

between these two sets of spectra, which contain peaks at the mean heart rate and its 

harmonics with decaying amplitudes. It should also be emphasized that besides the 

same location of the first sharp peak in the PSD of E C G and PPG signals, the 

corresponding harmonics are also located at the same frequencies—the multiples of 

the mean heart rate, which is already realized by the new model. 

2000 PSD of ECG PSD of ECG 
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frequency (Hz) frequency (Hz) 

(a) (b) 

Fig. 3-15: PSD of the ECG and PPG signals (a) simulation results; and (b) experimental 

from a healthy subject. 

Furthermore, it can be observed that the amplitude of the harmonics decays 

much faster in the PSD of PPG signals than that in the PSD of E C G signal. This 

feature is also appropriately captured by the new model, which is closely associated 

with the dynamics of the signal. The percentage of the harmonics over the first peak 

in the PSD of E C G and PPG signals are calculated, respectively. Fig. 3-16 (a) gives 

the results of the simulation results. Fig. 3-16 (b) shows the averaged experimental 

data (mean土>SZ)) of 10 healthy resting subjects. Both results indicate clearly that 
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the dynamics of the E C G signal contain a frequency range which is higher than that 

of PPG pulse dynamics. This result suggests that the details in the contour of the 

waveform may have little influence on either the spectra of E C G and PPG signals. 

Therefore, the simplification in the new model is further validated to be reasonable. 
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Fig. 3-16: The percentage of the first four harmonics over the first peak in the PSD of 

ECG and PPG signals from (a) simulation results and (b) experimental data of healthy 

subjects (mean 土 SD，n=10). 
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According to Eqs. (3-11) and (3-9), phase difference certainly exists between 

E C G and PPG signals. Both the impulse response of the W K 3 model, h{t)，and the 

constant time delay, At, may contribute to this phase difference. The individual 

phase spectra of E C G and PPG signals from both simulation and experimental data 

are illustrated in Fig. 3-17. The only major discrepancy between the simulation 

results and the experimental data is that the simulated phase spectrum of PPG 

signals seems to be far less variable, which is nearly constant in high frequency 

range from 0.1-0.5Hz. It is likely due to the constant time delay in the new model, 

which might play a major role in the phase spectrum. The plots of the phase 

difference further illustrate such phenomena, as shown in Fig. 3-18. The phase 

difference between PPG and E C G signals from simulation does not vary 

significantly as that from experimental data, especially in the high frequency range. 

Phase of ECG Phase of ECG 
200. ： p ‘ — 200 r . ‘ 

2001 ‘ ‘ ‘ ‘ a, -2001 ‘ ‘ ‘ ‘ 
^ Phase of PPG Phase of PPG 

Q_ 200 . 二 ‘ ^ 200 . . . ‘ 

\ ^ 一\/\!\广\\, 
.200' ‘ ‘ ‘― ‘ -200 ‘ ‘ ‘ ‘ ‘ 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 
frequency (Hz) frequency (Hz) 

(a) (b) 

Fig. 3-17: Phase spectra of ECG and PPG signals (a) Simulation results; and (b) 

experimental results from a normal subject. 

> 
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Phase Difference between PPG and ECG Phase Difference between PPG and ECG 
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(a) (b) 

Fig. 3-18: Phase difference of ECG and PPG signals (a) Simulation results; and (b) 

experimental data from a normal subject. 

3.4.3 Effects of the Modulation Depth on the Output 

The strength of the modulation is called the modulation depth or percentage of 

modulation. It is defined as 100% x (A-5)/(A+ 5) where A and B are the 

maximum and minimum peak-to-peak amplitudes of the modulated signal 

respectively. In this study, the responses to the different depths of the input 

modulation are revealed by changing the oscillation amplitude (the maximum 

peak-to-peak difference) of the sympathetic, parasympathetic, and respiratory 

signals, respectively (see Table 3-3). The responses of the model in terms of mean 

and SD of heartbeat intervals are also given in Table 3-3. 

The results of all three patterns suggest that changes in the modulation depth of 

the input signals have little influence on the mean heartbeat intervals, while the SD 

of R R intervals (HRV) apparently goes up with the increase in modulation depths. 

The magnitudes of variations in H R V are different in Pattern A, B, and C, which is 

mainly due to the difference in the weight of each individual signals in m{t) (refer 

to Table 3-1). 
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Table 3-3: Different patterns of input signals with different modulation depths (MD stands 

for modulation depth and OA stands for the oscillation amplitude). 

Pattern A (OAs of parasympathetic and respiratory signals are fixed): 

O A of sympathetic M D of the input Mean R R SD of R R 

signal signal (%) interval (ms) intervals (ms) 

0.0086 4.5034 803 11.4 

0.017252 5.8074 803 15.9 

0.025877 7.1796 804 21.5 

0.034503 8.565 805 27.9 

0.043129 9.9843 805 34.5 

Pattern B (OAs of sympathetic and respiratory signals are fixed): 

O A of M D of the input Mean R R S D o f R R 

parasympathetic signal (%) interval (ms) intervals (ms) 

signal 

0.053206 5.3499 803 15.6 

0.10641 5.8074 803 15.9 

0.15962 6.2613 804 16.6 

0.21282 7.1447 805 17.9 

0.26603 8.195 806 19.5 

Pattern C (OAs of sympathetic and parasympathetic signals are fixed): 

O A of respiratory M D of the input Mean R R SD of R R 

signal signal (%) interval (ms) intervals (ms) 

0.012273 4.7979 803 14.3 
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0.024545 5.8074 803 15.9 

0.036818 6.8614 804 18.4 

0.049091 7.954 804 21.5 

0.061364 9.0548 804 25 

Fig. 3-19 shows the relationship between the SD of the heartbeat intervals and 

the modulation depths of the input signal An almost linear relationship is observed 

in Pattern A, B, and C, indicating that a larger modulation depth induces a lager 

variation in R R intervals. It is also found that the slope of Pattern A is the greatest, 

and the slope of Pattern B is the smallest. This result probably implies that the 

sympathetic nervous activities play a major role in modulating the oscillation 

amplitude of the heartbeat intervals, while the parasympathetic nervous activities 

could only have relatively minor influence on HRV. 

p 1 r- I > I ‘ ‘ ‘ ‘ ‘ 
CMC — e — Pattern A  
8 1 5 . — :卜 Pattern B “ 35 - Pattern A P _ 

Pattern C _ ^ Pattern B / 
^ 8 1 0 • I 3 Q . — P a t t e r n C _ 

^ 800 - - I Zjf^ 
§7的- o . 

^ 7 9 0 - - (O 1 5 - -
z 

785 1 0 -
. I I I t I I  

4 5 6 7 8 9 10 4 5 6 7 8 9 10 11 

Modulat ion depth (%) Modulation depth (%) 

(a) (b) 

Fig 3-19: The relationship between (a) mean heart beat interval and (b) the SD of the 

heartbeat intervals and the modulation depths of the input. 
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Changes in the modulation depth of the input signals could also be reflected in 

the PSD of the E C G and PPG trains. Fig. 3-20 shows the output spectra from the 

new model when the M D is increased to 20.0% by changing the O A of the 

parasympathetic input. As the parasympathetic signal contains frequency 

components that are in the range of 0.1-0.5Hz, the power of each frequency band 

(LF and HF) in the spectra of the heart beat interval is increased compared with Fig. 

3-11 (a). This phenomenon can also be observed by the variations in the sidebands 

of the mean heart rate and its multiples in the spectra of the E C G and PPG trains. 

The power of the sidebands that are corresponding to the parasympathetic signal is 

increased. Because of the lower frequency component (O.lHz) in the 

parasympathetic input, the increased peaks of sidebands are not apparently isolated 

from the mean heart rate and its multiples. 

The sympathetic input is found to have a more distinct effect on the spectra of 

the E C G and PPG trains, although the M D is increased to the same level, as shown 

in Fig. 3-21. Obviously, the LF component that is corresponding to this signal 

becomes more predominant in the spectra of the heart beat interval. Meanwhile, the 

sidebands in the PSD of both E C G and PPG signals are greatly increased, which 

could even exceed the first peak and its multiples. Though they are not isolated 

ideally from the mean heart rate and its multiples, due to the low frequency of the 

sympathetic signal, the increased sharp peaks of the sidebands are still detectable. 

By changing the O A of the respiratory signal to achieve the same level of the 

MD，as shown in Fig. 3-22, there is an increase in the power of the sidebands that 

are corresponding to the respiratory signal. It is more interested to note that in this 

case, the increased peaks of sidebands are clearly isolated from the mean heart rate, 

which is attributed to the relatively separable frequency (0.3Hz) of the respiratory 

signal. In other words, the increased sidebands representing an increase in the O A of 
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respiratory signal can probably be distinguished from that representing an increase 

in the O A of the neural activities. Therefore, through the analysis of the sidebands, 

the PSD of the E C G and PPG trains can also be used as a measure of the H R V to 

identify certain variations in neural control or the respiratory effect. 

Spectrum of RR Intervals PSD of ECG 
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Fig. 3-20: PSD of a) Heart beat intervals and b) ECG and PPG trains when the M D is 

increased {MD — 20.0% ) by changing the OA of the parasympathetic signal. 
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Fig. 3-21: PSD of a) Heart beat intervals and b) ECG and PPG trains when the M D is 

increased (MD = 20.0% ) by changing the OA of the sympathetic signal. 
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Spectrum of RR Intervals PSD of ECG 
1.51 ‘ 1 1 , 15001 1 , , . 1  

A 1000 

! 1. / \ • I J . JL JuWWvA一、 
& \ O) PSD of PPG 

s \ - ^ ‘ ^ ‘ ^ ‘ ^ • 
••5- / \ 1200- _ 

/ � H tJL^a ‘ 
0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5 6 

frequency (Hz) frequency (Hz) 
(a) (b) 

Fig. 3-22: PSD of a) Heart beat intervals and b) ECG and PPG trains when the M D is 

increased (MD = 20.0% ) by changing the OA of the respiratory signal. 

The above results from the simulation using the new model are found to be 

realistic. Fig. 3-23 illustrates the experimental data recorded at different periods with 

different magnitudes of the LF component from the same subject. It is clear that 

when there is a significant increase in the magnitude of the LF component, the 

power of sidebands in the spectra of both E C G and PPG signals increases 

substantially, while these sidebands are almost indiscernible as shown in Fig. 3-23 

(b). The sharp peaks of the sidebands, though not isolated ideally from the mean 

heart rate and its multiples, can still be identified clearly. Therefore, these peaks are 

likely to be used as an indicator of the increase in the LF neural activities. 

This can be further demonstrated by the data from a second healthy resting 

subject In Fig. 3-24(a) and (b), both the LF and HF components are strong, thus the 

sidebands corresponding to these two components can be identified. In Fig. 3-24 (c) 

and (d)，the HF component becomes dominant. As a result, the sidebands 

corresponding to the LF component becomes almost indiscernible, while that 
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corresponding to the H F component can be identified more easily. Hence, the 

spectra of the E C G and PPG trains can be useful to some extent in reflecting the 

relationship between the LF and HF components of the HRV, or even in determining 

the levels of autonomic neural activities and the strength of respiration. 
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Fig. 3-23: The spectra of the RR interval, ECG and PPG trains from a healthy resting 

subject (a) and b) the LF component is not strong; c) and d) the LF component is dominant. 
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Spectra of RR Interval PSD of ECG 
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Fig. 3-24: The spectra of the RR interval, ECG and PPG trains from another healthy 

resting subject (a) and b) both the LF and HF components are strong; c) and d) the HF 

component is dominant. 

3.4.4 Effects of the Mean Autonomic Tone on the HRV 

The variation in R R intervals is not only caused by the fluctuation in the modulation 

depth of the input autonomic and respiratory signals, but is also influenced by the 

mean autonomic tone [56], [57]. In this study, different mean autonomic tones were 

applied by changing the parameter/ĉ , the intrinsic rate of the rise of the SA node 

cell potential, to investigate the responses of the proposed model. Table 3-4 shows 

simulation results of the mean and standard deviation of RR intervals under different 
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mean autonomic tones, while the threshold and other parameters are fixed. The 

mean heartbeat intervals are within the range that is physiologically plausible. The 

results indicate that an increase in the mean autonomic tone causes a remarkable 

decrease in both the mean and SD of heartbeat intervals. It can be observed that the 

relationship between either the mean autonomic tone and mean R R interval or the 

mean autonomic tone and the SD of R R intervals is almost exponential, as illustrated 

in Fig. 3-25 (a) and (b) respectively. For different thresholds, similar relationships 

are observed. The decreases in both the mean and SD of heartbeat intervals are more 

abrupt at smaller mean autonomic tones. 

Table 3-4: Mean and SD of RR intervals for different mean autonomic tones. 

k̂  (spikes/s) Mean R R interval SD of R R intervals V," 

(ms) (ms) 

0.6 1007 33.0 0.6 

0.8 753 18.8 

1 602 12.9 

1.2 502 8.5 

1.4 430 6.4 

1.6 376 5.1 

0.6 1342 44.2 0.8 

0.8 1005 24.9 

1 803 15.9 

1.2 669 11 

1.4 573 8.2 

1.6 501 6.3 
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Fig. 3-25: a) and b) The simulated data from the proposed model; and c) and d) The 

experimental data from healthy subjects during the recovery period after exercise. 
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Fig. 3-25 (c) and (d) illustrate the experimental data from three healthy subjects. 

The data were recorded sequentially from stage 6 to stage 1 during the recovery 

period after running exercise. Each recording lasted for about 20 seconds, and the 

interval between each two consecutive recordings was within 5 minutes. The mean 

and SD of R R intervals were calculated for each recording to represent the 

physiological status at different stages with different mean autonomic tones. Though 

the knowledge of the threshold within each subject is not available, it is 

physiologically plausible to assume that different subjects have different thresholds. 

In this sense, these experimental data can be used as references to validate the 

simulation results from the proposed model. It is clear that similar relationships can 

be observed in the experimental data, therefore validating the results of the model. 

3.5 Discussion & Conclusions 

The PPG signal has attracted great interest in recent years. This is not only attributed 

to the remarkable convenience of the PPG technique, but also the abundance in 

useful information the signal contains for various clinical applications. Few 

literatures, however, have made it clear about the underlying principle of the PPG 

technique. To better understand this signal and to make better use of it, the 

fundamental mechanism of PPG is clarified in the first part of this chapter using the 

principles of fluid mechanics with the characteristics of the cardiovascular system 

and the arterial system. The actual source of PPG signals could be complex, 

probably including scattering, reflection, absorption and movement of the vessel 

wall, etc. Nevertheless, the most valuable information the PPG signal carries is the 

pulsation of the arterial blood flow caused by pressure gradient with each pressure 

pulse initiated at the onset of a cardiac cycle. Such understanding could provide 

insight into mathematical modeling of the PPG signals, which is still a blank in 
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current modeling work. 

With the knowledge of the relationship between the pressure wave and flow 

pulsation in biological systems, the elementary principle for the generation of the 

PPG signal can be described by the combination of a conventional IPFM model and 

a W K 3 model, together with a pulse generator and two time delay generators (the 

time delay caused by PEP and the transmission of the pressure wave through arterial 

tree). In this way, this new model is able to capture certain characteristics of the 

cardiovascular system and to describe certain transmission properties of the pulse 

wave through arterial system. It therefore transforms a continuous input signal into 

event series representing E C G and PPG signals. The model is tested by comparing 

the spectra from the simulation results with that of the experimental data from 

healthy resting subjects. It is found that though under certain simplifications, the 

model does correctly present a number of important features of the PPG signal. First, 

the repetition of PPG pulses is exactly the same as that of E C G signals over the 

same cardiac cycles. Second, with the pulse generator and W K 3 model, the new 

model is able to render some changes in the pulse contour which are in accordance 

to the reality as the pulse wave traveling down the arterial system. Furthermore, the 

relationship between E C G and PPG signals is also appropriately interpreted with a 

certain time delay between the R peak of the E C G signal and the onset of a PPG 

pulse. 

Through spectral analysis, it is found that the new model can appropriately 

capture the features in the PSD of E C G and PPG signals. The first sharp peak, 

located at the meant heart rate in both spectra, represents the same repetition rate of 

the signal under the same autonomic control. The harmonics located at the multiples 

of the mean heart rate in both spectra, however, have amplitudes that decay much 

faster in the PSD of PPG signals than that in the PSD of E C G signals. This is due to 
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the difference in the PSD of individual pulse dynamics of E C G and PPG signals. 

The PSD of E C G complex contains more high frequency components, while the 

PSD of PPG pulse has components mainly centered at the mean heart rate. It is 

therefore concluded that although the generation of E C G complex and PPG pulse is 

to some extent simplified in the proposed model, it nevertheless maintains the most 

important characteristics in both spectra of E C G and PPG trains. 

The relationship between the input signal and the output heartbeat intervals is 

also studied. The information of the heartbeat interval is carried by both the E C G 

signal and the PPG signal. It is found that the modulation depth and the mean value in 

the fluctuant input signal are two important quantities that have an effect on HRV. 

When there is an increase in the modulation depth induced by perturbation of 

sympathetic activity, the oscillation amplitude of the heartbeat interval increases, and 

vice versa. This can also be reflected by an increase in the spectral power of the H R V 

that is corresponding to the sympathetic activity。Similar results are observed by the 

perturbation in parasympathetic or respiratory signals. However, it is interested to 

note that compared with parasympathetic and respiratory signals, sympathetic activity 

could have a more distinguished influence on the HRV. In other words, an abrupt 

change in heartbeat intervals is most probably due to the increased sympathetic 

nervous activity. This result may therefore have considerable diagnostic value. The 

effect of mean autonomic tone on the H R V is also significant. The results in this study 

are consistent with those from other studies [10], [58] and our own experimental data, 

i.e., both the heartbeat interval and H R V fall with the increasing of the mean values of 

the input signal. This result can be useful in explaining phenomena under some 

physiological and pharmacological conditions. 

The changes in the input modulating signals could also affect the spectra of E C G 

and PPG trains. The increase in the O A of each input modulating signal would cause 
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an increase in the corresponding sidebands of the mean heart rate and its multiples. 

With the same level of the M D , the increase in the power of the sidebands caused by 

the sympathetic input is much more significant than the increase due to the 

parasympathetic or respiratory input. This is consistent with the results that the 

sympathetic signal plays a more dominant role in controlling the time domain HRV. It 

is more interested to note that the increase in sidebands corresponding to an increase 

in the O A of the respiratory signal can possibly be isolated from the increase in both 

mean heart rate and sidebands caused by neural (sympathetic or parasympathetic) 

activity. These results are found to be in accordance with the experimental data from 

healthy resting subjects. It is therefore concluded that the spectra of E C G and PPG 

trains may serve as an alternative to evaluate the H R V by analyzing the power of the 

sidebands. 

Based on the structure of the proposed new model, it is necessary to further 

explore the details of the pressure waveform that are associated with the beat-to-beat 

hemo-dynamic information. It is generally asserted that the pressure contour is a 

valuable indicator of the information on arterial BP. Considering the relationship 

between the heart rate and BP, the pulse generator in the current model could 

possibly be improved more realistically to carry dynamic information of BP and 

some timing intervals. It should also be pointed out that in fact, the time delay 

between the occurrences of the proximal and peripheral pressure waves, the PTT, 

varies with each cardiac cycle rather than being a constant. This is reflected by the 

discrepancy in phase between the simulated spectra and the spectra of experimental 

data from a normal subject. Though the variation in PTT is quite small 

^ 5 tan dard deviation � � � � � . . � � • , r r 
( 2 ~ 3%), It IS indeed an index oi the properties oi the 

mean 

arterial elasticity [37]. It is also of great potential for non-invasive estimation of the 
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arterial BP, as reported by several recent studies [36] [38]. A number of factors 

could affect PTT, or the pulse transmission velocity, such as the elastic modulus of 

the arterial wall, the thickness of the wall, the lumen radius, and the density of blood, 

etc. Further investigations on the interactions between these factors together with the 

characteristics of the arterial system may eventually clarify the mathematical 

derivation of pulse transmission velocity, and therefore PTT. Therefore, the time 

delay generator in the current model could also be better modified to generate of the 

time varying PTT. 
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Chapter 4 

A Correlation Study on the Beat-to-Beat Features of 

Photoplethysmographic Signals 

4.1 Introduction 

Based on the principle of the PPG technique, it is found that fluctuations in the value 

of the PPG signal are similar to that in some of the physiologic parameters of 

cardiovascular systems. It is believed that the PPG can provide useful information on 

the beats of the aortic origin, the characteristics of the vascular system, the properties 

of the peripheral vessels, the state of the blood flow, etc. [35]. It has also been 

reported in several literatures that the PTT assessed by the time delay between the 

characteristic points on E C G and PPG signals could be used for non-invasive 

estimation of arterial BP [36] [38]. 

Undoubtedly, it is worthwhile to investigate systematically certain characteristics 

on the PPG waveform for the evaluation of clinically useful physiologic parameters. 

In spite of its simple waveform, the timing intervals, such as those reflecting the rising 

or falling phases, of the PPG signal could contain important information that is 

corresponding respectively to the periods of systole and diastole [23] [26]. The 

variations in the systolic or diastolic portions of the pressure wave, as well as that in 

PTT, may be to some extent correlated with the time-varying properties of the 

vascular and peripheral systems, as suggested by the Windkessel model. 

In this chapter, we investigate whether the beat-to-beat parameters extracted 

from the waveform of PPG are correlated with each other, and how these parameters 

are associated with the properties of cardiovascular or arterial systems. Specifically, 
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the correlation coefficient was calculated as an indicator of to what extent one 

parameter is associated with another from the statistical point of view. 

4.2 Methodology 

In order to study comprehensively the relationship between PPG related parameters 

and their association with the parameters from E C G signals such as R R interval, 

different experimental conditions were taken into account. These conditions might 

induce certain variations in the properties of cardiovascular or arterial systems, or in 

the physiological status of the subjects. 

4.2.1 Experimental Conditions 

Data used in this study were obtained from experiments previously carried out in our 

laboratory [59] [60]. All the subjects participated in this study were healthy, aged 

22-30, and were asked to rest for 5 min before the measurement (except for the 

dynamic situation), and sat still on a comfortable chair throughout the whole period of 

data recording [59] [60]. 

The PPG sensor used in the experiment was of reflective type, consisting of a 

LED and a photo-detector. This PPG sensor also included a thin film force sensor 

(Flexiforce pressure sensor PS-01, American) and a temperature sensor (LM35CAH, 

National semiconductor, Japan), which were used to monitor continuously the 

contacting force signal and the local skin finger temperature. The E C G signal was 

recorded by the Model 7400 - Physiological Recorder with three electrodes on the left 

arm, right arm and right leg, respectively. A treadmill (model C956, Precor) was also 

used in the study of the dynamic state. The PPG signal at the right index finger tip and 

the E C G signal as well as the contacting force and the finger temperature were 

recorded simultaneously under the following different experimental conditions: 
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1) At Normal Relaxed State: Data were obtained from 10 subjects. Subjects were 

under normal relaxed state, with normal strength of contacting force applied on the 

sensor. Subjects remained relaxed throughout the whole period of data recording, 

which lasted for about 5 minutes. 

2) At Different Levels of Contacting Force: Data were obtained from 30 subjects, and 

were recorded over a range of different contacting forces applied on the sensor. To 

start with, each subject was asked to put their fingertip naturally on the PPG sensor 

without consciously exerting contacting force, and signals were recorded for about 15 

seconds. In the successive recordings, subjects were instructed to exert different levels 

of contacting force on the PPG sensor with the index finger tip. The signal recordings 

were obtained over a range of contacting force varying from O.IN to 1.2N, and each 

of the recordings lasted for about 15 seconds [59]. 

3) At Different Levels of Local Skin Finger Temperatures: Data were obtained from 15 

subjects, and were recorded over a range of different local skin finger temperatures. 

Before data recording, a cold pressor test was preformed by asking the subject to 

immerse his/her right index finger into water of 18°C for 1 minute. Immediately after 

the finger was taken out, data were continuously recorded until the finger temperature 

recovered to the natural state. Each of the recordings lasted for about 10 minutes [60]. 

4) At Dynamic State: Data were obtained from 15 subjects. Each subject took part in 

a 4-minute's running exercise with a uniform speed of 8kph. The slope of the 

treadmill was set to zero. Immediately after exercise, three trials of data recording 

were conducted on each subject, and each of the recordings lasted for about 1 minute. 

The time period between each two successive recordings was within one minute. 

4.2.2 Definition of the Parameters 

A set of parameters were defined on the PPG waveform as shown in Fig. 4-1 (a). 
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Point F is defined as the foot of PPG waveform, corresponding to the onset of the 

systolic phase or the end of the diastole phase [26]. Point Y is defined as the peak of 

PPG waveform. Point W is the first turning point encountered during the descending 

phase of PPG waveform if such a point exists; otherwise it is regarded as the point 

with amplitude 50% of the F Y amplitude. Point G can be the last turning point after 

which the slope (absolute value) remains below 0.1 until the next F point of 

consecutive PPG pulse (or it can be the point with amplitude 5 % of the FY 

amplitude). 
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Fig. 4-1: Definitions of the PPG related parameters. 

In this way, a number of parameters can be generated from the PPG waveform, 

such as F Y interval, Y G interval, FF interval, etc. Particularly, as shown the Fig. 4-1 

(b) slope F Y is defined as F Y amplitude/FY interval, and slope Y G is defined as Y G 

amplitude/YG interval. This study was focused mainly on the FY interval, the Y G 

interval, the FF interval, the slope FY and the slope YG. The PTT was assessed by the 

time delay between the R-peak of E C G and the F point of PPG The R R interval is 

calculated from the time interval between two consecutive R peaks of E C G signal. 

A set of seven parameters as indicated in Fig. 4-1(c) were obtained from 

15-second segments for different experimental conditions. A correlation analysis was 

carried out to investigate the relationship between these beat-to-beat parameters. The 
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correlation coefficients between FY and R R intervals, Y G and R R intervals, R R 

interval and PTT, FF and R R intervals, F Y and Y G intervals, F Y interval and PTT, 

and Y G interval and PTT were calculated for each level of contacting force, each level 

of finger temperature, the normal relaxed state and the dynamic state. Meanwhile, the 

correlation between slope F Y and R R interval, slope Y G and R R interval, slope F Y 

and PTT，slope Y G and PTT and slope F Y and slope Y G were also determined. 

4.3 Data Analysis 

In this section, the correlation coefficients between those PPG and E C G related 

parameters are calculated under different experimental conditions. 

4.3.1 At Normal Relaxed State 

Table 4-1 presents the correlation coefficients between the five timing intervals, F Y 

interval, Y G interval, FF interval, PTT and R R interval, under the normal relaxed state. 

As expected, the correlation coefficient between the FF interval of PPG and the R R 

interval of E C G is fairly high (0.981 ±0.0146，p<0.0001) since the repetition of PPG 

pulses should be the same as that of E C G signals over the same cardiac cycles. 

Besides, a significantly high correlation was also found between the Y G interval and 

the R R interval, of which the correlation coefficients range from 0.90 to 0.98 

(pcO.OOOl). Meanwhile, PTT exhibits a moderate correlation with FY interval in some 

subjects. This table also indicates that some parameters may have no correlation with 

each other (see Table 4-1). If the absolute value of the correlation coefficient is less 

than 0.3, the correlation is considered negligible [26]. For example, there seems to be 

little correlation between R R and FY intervals, PTT and R R interval, PTT and Y G 

interval, and FY and Y G intervals. 
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Table 4-1: The correlation coefficients among the five timing intervals under normal relaxed 

state (SD represents for standard deviation). 

Sub. R R & R R & R R & PTT & PTT & PTT & FY & 

Y G F Y FF R R FY Y G Y G 

1 0.912 0.493 0.987 -0.442 -0.422 -0.422 -0.484 

2 0.904 0.454 0.980 -0.537 -0.698 -0.353 -0.087 

3 0.981 0.430 0.996 -0.363 -0.365 -0.416 0.457 

4 0.982 0.107 0.995 -0.226 -0.466 -0.682 0.702 

5 0.983 0.233 0.990 -0.423 -0.831 -0.665 0.401 

6 0.970 -0.039 0.981 -0.153 -0.543 -0.194 -0.317 

7 0.967 0.106 0.966 -0.214 -0.650 -0.318 0.229 

8 0.961 -0.027 0.947 0.235 -0.409 0.309 0.415 

9 0.975 0.470 0.982 0.112 -0.498 0.002 -0.211 

10 0.966 0.100 0.988 -0.054 -0.326 0.131 0.435 

Mean 0.960 0.233 0.981 -0.206 -0.521 -0.261 0,154 

SD 0.028 0.211 0.015 0.249 0.161 0.326 0.398 

Table 4-2 gives the correlation coefficients between the timing intervals and the 

slope information. Slope FY seems to be highly inversely proportional to slope Y G in 

most subjects. However, there is hardly any statistical relationship between PTT and 

slope FY, PTT and slope YG, R R interval and slope FY, and R R interval and slope YG. 

Table 4-2: The correlation coefficients between the timing intervals and the slope information. 

Sub. PTT & PTT & R R & Slope R R & Slope Slope FY & 

Slope FY Slope Y G FY Y G Slope Y G 

1 -0.107 0.034 -0.268 0.202 -0.927 
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2 0.049 0.516 -0.095 -0.462 -0.607 

3 -0.092 0.238 0.041 -0.092 -0.874 

4 -0.186 -0.471 0.084 0.675 -0.522 

5 -0.214 0.484 -0.138 -0.071 -0.860 

6 -0.266 0.028 -0.248 0.206 -0.554 

7 0.0353 0.081 -0.137 0.23 -0.890 

8 -0.453 0.627 -0.489 0.486 -0.607 

9 -0.317 0.387 -0.227 0.212 -0.520 

10 0.345 0.014 -0.283 0.435 -0.724 

Mean -0.121 0.194 -0,176 0.182 -0.708 

SD 0.225 0.326 0.167 0.326 0.165 

4.3.2 At Different Levels of Contacting Force 

Seven levels of contacting forces were recorded during the experiment. Table 4-3 

gives the recorded forces with F1-F7 representing the seven different levels. As some 

subjects were not able to achieve all the seven force levels, the number of subjects at 

each force level is also given in Table 4-3. 

It is generally know that the contacting force may affect the amplitude or other 

features on the pulse contour. The PPG signals of one subject at different levels of 

contacting force are illustrated in Fig. 4-2. Similarly to that under normal relaxed state, 

high correlations also exist between R R and Y G intervals, and the values of those 

correlation coefficients do not have much variation with different force levels. 

Meanwhile, the overall correlations between R R and FY intervals, R R interval and 

PTT, PTT and Y G interval, and FY and Y G intervals are still insignificant at whatever 

force levels. The mean and SD of the correlation coefficients for the timing intervals 
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at each force level are given in Fig. 4-3. 

Table 4-3: Mean and standard deviation of the seven force levels, and the number of subjects 

at each level. 

Fl F2 F3 F4 F5 F6 F7 

Force (N) (Mean) 0.11 0.21 0.40 0.60 0.80 1.01 1.19 

Force (N) (SD) 0.03 0.03 0.02 0.02 0.02 0.04 0.03 

No. of Subjects 16 29 30 30 29 20 10 

Unlike that under normal relaxed state, however, the correlation between PTT 

and F Y interval becomes much more remarkable under relatively higher levels of 

contacting force, though the ranges of higher force to obtain the higher correlations 

may vary a little bit from person to person. It is clearly indicated by Fig. 4-3 that the 

correlation coefficient between PTT and FY interval goes up with the increasing of 

force levels, which can be as high as r = —0.8384士0,0912 (/?< 0.0001) at the F7 level. 

The negative correlation coefficients between the PTT and the FY interval of PPG 

appears to imply that the transit time of PPG pulse along the peripheral system will 

decrease with the increase of FY interval which might be associated with cardiac 

dynamics or arterial BP. 

Fig. 4-4 shows the mean and SD of correlation coefficients between the timing 

intervals and the slopes at different force levels. Similar to that between PTT and FY 

interval, the correlations between PTT and slope FY, PTT and slope YG, and slope FY 

and slope Y G go up with the increasing of force levels. Therefore, at relatively higher 

levels of contacting force, there is a moderate correlation between PTT and slope FY, 

and PTT and slope YG; while slope FY and slope Y G exhibit an even higher 

correlation (r reaches up to -0.76 at F7 level). On the contrary, there is still little 

correlation between R R and slope FY, and R R and slope Y G at whatever force levels. 
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Fig. 4-2: PPG signals at different levels of contacting force from one subject. 
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Fig. 4-4: The mean and SD of correlation coefficients between the timing intervals and the 

slopes at different force levels. 

4.3.3 At Different Levels of Local Skin Finger Temperature 

By performing the cold pressor test, a range of different local skin finger temperatures 

was achieved. Seven different temperatures were studied. Table 4-4 gives the detailed 

temperature values with T1-T7 representing the seven different levels, and the number 

of subjects at each temperature level as well. The temperature range (24-30°C) used in 

our study also have a effect on the amplitude of PPG signals, but is not so significant 

as the force effect, as illustrated in Fig. 4-5. 
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Table 4-4: Values of the seven temperature levels and the number of subjects at each level. 

Tl T2 T3 T4 T5 T6 T7 

Temperature (士 0.5 °C) 24 25 26 27 28 29 30 

No. of Subjects 11 12 15 14 14 14 13 
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Fig. 4-5: PPG signals at different temperatures from one subject. 

Fig. 4-6 shows the mean and SD of the correlation coefficients for the timing 

intervals at different temperature levels. There is consistently high correlation 

between R R and Y G intervals, as well as that between R R and FF intervals at 

whatever temperature levels. PTT also exhibits a moderate correlation with FY 

interval, especially in levels from T3 to T6 (|r| > 0.6,/?< 0.0001 )• On the other hand, 

the overall correlation between R R and FY intervals, R R interval and PTT, PTT and 

Y G interval, and F Y and Y G intervals are still not significant, which also seem to be 
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independent of the temperature level. The mean and SD of correlation coefficients 

between the timing intervals and the slopes are given in Fig. 4-7. It seems that there is 

little correlation between these parameters at whatever temperature levels, except that 

slope F Y exhibits moderate correlation with slope Y G at certain temperatures. 
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Fig. 4-6: The mean and SD of correlation coefficients for the timing intervals at different 

temperature levels. 
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Fig. 4-7: The mean and SD of correlation coefficients between the timing intervals and the 

slopes at different temperature levels. 

4.3.4 At Dynamic State 

Three successive data recordings were obtained from each subject immediately after 

running exercise. As generally known, heart rate and some other physiological 

parameters, such as BP, etc., may have large fluctuations due to exercise. Thus, the 

three independent data recordings could be associated with quite different 

physiological statuses during the recovery period. As shown in Fig. 4-8, Period 1, 

Period 2 and Period 3 are corresponding to the three different trials of data recording, 

respectively. The mean and SD of the correlation coefficients for the timing intervals 
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at each period is also given. 
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Fig. 4-8: The mean and SD of correlation coefficients for the timing intervals at different 

periods during the recovery period of exercise. 

Besides the remarkable correlation between R R and Y G intervals, PTT again 

exhibits a high correlation with FY interval, which is around r = -0.6, p < 0.0001. 

Meanwhile, the correlation between RR and FY intervals, RR interval and PTT, PTT 

and Y G interval, and FY and Y G intervals do not show much difference from that 

under other conditions. 

As shown in Fig. 4-9，a relatively high correlation is still found between slope 

FY and slope Y G in period 2 and period 3. These two periods were the latter stage 

during the recovery after exercise. In other words, this result is consistent with that at 

normal relaxed state. 
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Fig. 4-9: The mean and SD of correlation coefficients between the timing intervals and the 

slopes at different periods during the recovery of exercise. 

4.3.5 Repeatability Study 

According to the results above, it is interesting to note that there is a statistical 

significant correlation between PTT and FY interval under certain conditions, 

especially at higher levels of contacting force. In order to further demonstrate this 

phenomenon, a repeatability test was conducted on 10 of the 30 subjects studied in 

section 4.3.2. This test was carried out several days after the first experiment and was 

under exactly the same experimental protocol, as described in section 4.2.1 (2). The 

number of subjects at each force level is given in Table 4-5. 
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Table 4-5: Mean and standard deviation of the seven force levels, and the number of subjects 

at each level in the repeatability test. 

F1 F2 F3 F4 F5 F6 F7 

Force (N) (Mean) 0.10 0.21 0.39 0.60 0.80 1.01 1.19 

Force (N) (SD) 0.02 0.01 0.02 0.01 0.02 0.02 0.03 

No. of Subjects 10 10 10 9 7 6 3 

The mean and SD of the correlation coefficients between PTT and FY interval at 

each force level are given in Fig. 4-10. The result is consistent with that in section 

4.3.2: the correlation coefficient between PTT and FY interval goes up with the 

increasing of force levels. Thus, this phenomenon is further demonstrated to be true. 
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Fig. 4-10 Mean and SD of the correlation coefficients between PTT and FY interval at each 

force level in the repeatability test. 

4.3.6 Spectral Analysis 

To further understand the relationship between PTT and FY interval, it is also 

worthwhile to look into the individual spectra of PTT and FY interval. 

Fig. 4-11 shows the spectra of PTT and FY interval from two different subjects 
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(a) and (b) at normal relaxed state. The spectra were calculated from 15-second data 

segments using FFT. The correlations between PTT and FY interval corresponding to 

(a) and (b) are almost negligible (for (a): r = -0.148, = 0.5215; for (b): r = -0.403, 

p = 0.1241). It is clearly indicated by Fig. (5) that the dominant frequency components 

of PTT and FY interval appear at quite different frequency bands. For both (a) and 

(b), a remarkable component around 0.3Hz can be observed in the spectra of PTT; 

while in the spectra of FY interval, the main component is in the lower frequency 

range, between 0.04-0.15Hz. This may consequently lead to the insignificant 

correlation between PTT and FY interval. 
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Fig. 4-11: Spectra of PTT (upper panel) and FY interval (lower panel) from two subjects (a) 

and (b) at normal relaxed state. 

Fig. 4-12 shows the spectra of PTT and FY interval from another two different 

subjects under relatively higher levels of contacting force. Under such a condition, as 

reported above, significant correlations exist between PTT and FY interval. For 

(a): r = —0.930，p < 0.0001 ； for (b): r = -0.908, p < 0.0001. Unlike that under normal 

relaxed state, the spectra of PTT exhibit a considerable increase in the low-frequency 

power, between 0.04-0.15Hz. The spectra of FY interval maintain the dominant 
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low-frequency component as that at normal relaxed state. As a result, the similarity 

between these two spectra can be observed in both (a) and (b). The significant 

correlation between these two time series indicates that the low-frequency component 

could be the key factor in determining the correlation between the time series. 
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Fig. 4-12: Spectra of PTT (upper panel) and FY interval (lower panel) from two subjects (a) 

and (b) under relatively higher levels of contacting force. 

4.4 Discussion 

As reported in several literatures [38] [39] [61], the intensity variations of the PPG 

signals mainly arise from blood volumetric changes in the peripheral micro-vascular 

bed with each pressure pulse initiated by the heart. Specifically, the signal of the 

photo-detector decreases when tissue blood volume increases, as during heart 

systole — the heart contraction, when blood is ejected from the heart to the tissue; 

while the PPG signal increases with the decrease in the volume of red blood cells, as 

during heart diastole. Thus, the FY interval and the Y G interval of the PPG signal 

could to some extent reflect the periods of systole and diastole respectively. 

It is often stated that the systolic and diastolic pressure, as well as PTT are 

affected by the changes in elastic properties of arteries [21]. Such changes could also 
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be associated with the variations in durations of systole, diastole, and the heart cycle. 

However, it is not yet fully established the complex interactions among these 

important parameters. A study on the characteristics of PPG signal as described by a 

set of its parameters can be useful for further understanding the underlying 

mechanisms of these cardiovascular processes. This preliminary work therefore was 

focused on the correlation study from statistical point of view to investigate the 

relationship between PPG related parameters and their association with the parameters 

from E C G signals such as R R interval. 

Aside from the control under neural activities, the changes in the arterial 

elasticity may also be attributed to some other factors, such as the temperature 

fluctuations [62], or a large contacting force that results in the flattening of the arterial 

wall [21]. Also, the dynamic state that is immediately after exercise is taken into 

account, which could cause some variations in the physiological status in association 

with the changes in certain physiological parameters, such as heart rate, BP, etc. 

Therefore, the relationships of the PPG parameters under different experimental 

conditions were studied in this work. 

Significantly high correlation is found consistently between the Y G interval and 

the R R interval under all the different conditions. As mentioned before, Y G interval of 

PPG could probably represent the period of heart diastole, during which elastic recoil 

of the arterial walls propels blood to perfuse the smaller peripheral resistance vessels. 

In fact, the end of diastole, or more precisely the onset of the ventricular contraction 

coincides with the R peak of E C G [21]. Thus, this result suggests that diastolic period 

is rather determined by the duration of a heart cycle than other factors, such as total 

peripheral resistance, or arterial compliance, etc. However, there is still a need to 

further investigate how closely the Y G interval is related to the actual period of heart 

diastole. 
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It is interesting to note that the correlation between PTT and FY interval 

becomes substantially higher at larger contacting force levels. As reported in several 

literatures, PTT estimated from E C G and PPG agreed well with that obtained from 

some established methods [37], therefore it could be an index of the elasticity of the 

arterial wall. According to the early elaboration, the FY interval of PPG may be 

closely associated with the heart systole. As the pressure wave propagates down the 

aorta and its braches, the systolic portions of the wave become narrowed and elevated 

due to the changes in vascular compliance [21]. In other words, the systolic portions 

of the pressure wave could also provide value information about the elastic 

characteristics of the arterial tree. This leads to the possible conclusion that when 

under a large external pressure and the arterial wall is flattened, the changes in the 

local vascular compliance could be remarkable. Such changes will consequently 

influence PTT as well as the systolic portions of the pulse wave. Therefore, there 

could be highly correlated information in both PTT and FY interval. On the contrary, 

when under relaxed situation, there might be little variation in vascular compliance, 

which results in the independence of PTT and FY intervals. Similarly, as the 

temperature fluctuations may also induce variations in the arterial elasticity, the 

moderate correlation between PTT and FY interval at certain lower temperatures 

(26-29。c) can be understood. The slightly lower correlations at levels T1 (24 ±0.5。C) 

and T2 (25 ±0.5。C) might be attributed to the poor quality of the PPG signals at such 

low levels of finger temperature, which could probably disturb the peripheral blood 

microcirculation to certain extent. The correlation between PTT and FY interval at 

dynamic state is comparable to the results at resting state. 

The spectral analysis plays an important role in interpreting the correlation 

between the PTT and FY interval. When at normal relaxed state, for some cases that 

have lower correlation between PTT and FY interval, the spectra of PTT and FY 
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interval contain dominant components at quite different frequency ranges. In the 

high-frequency range, generally around 0.3Hz, a remarkable component can be 

identified in the spectra of PTT. Such a rhythm, synchronous with the respiration rate, 

is probably due to the intra-thoracic pressure change and mechanical variations caused 

by the breathing activity [63]. In the low frequency range, between 0.04-0.15Hz, there 

is a rhythm, generally centered around 0.1 Hz, in the spectra of FY interval. Both 

sympathetic and parasympathetic contributions can be involved in this low frequency 

activity. However, an increase in its power has always been observed as a 

consequence of the sympathetic activation. Thus, an increase in the low-frequency 

power is regarded by many researchers as a marker of the sympathetic activity [63]. 

The distinctive difference in the main frequency components therefore results in an 

insignificant correlation between these two time series of PTT and FY interval. 

However, on the other hand, it is interesting to note that there is an apparent increase 

in the low-frequency power of the PTT spectra when PTT exhibits higher correlation 

with FY interval at relatively higher levels of contacting force. Such an increase is 

mainly attributed to the sympathetic activation, as mentioned before, which provides 

the major neural control of the peripheral vessels. In other words, variations in the 

properties of the peripheral system, such as the peripheral resistance and compliance, 

etc. [21], though induced by some external factors, may eventually be associated 

closely with the sympathetic nervous activity. Consequently, the spectral analysis 

leads to the same conclusion that with large changes in the characteristics of the 

peripheral vessels, it is possible to identify a certain increase in the frequency power 

corresponding to the sympathetic activation. Hence, PTT and FY interval could 

contain highly correlated information in the low-frequency range. 

The correlation between PTT and RR varies considerably from person to person. 

In some subjects, the correlation coefficient can be as high as r=-0.8, while in some 
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Others there is little correlation. Meanwhile, the results do not show much difference 

under different experimental conditions. This result demonstrates that the duration of 

the heart cycle as measured by R R interval is not so significantly associated with the 

arterial elasticity as PTT does. During recent years, several studies have employed 

PTT as an indicator of the arterial BP with reasonable accuracy, while in some other 

work a combination of PTT and R R was used for arterial BP estimation [64]. 

However, the relationship between PTT, R R and the beat-to-beat BP has not yet been 

fully explored. Further study based on the simultaneous recording of beat-to-beat BP, 

ECG, and PPG could be helpful in clarifying the matter. Based on these findings, the 

improvement of the non-invasive BP estimation only using PPG technique is just 

under way. 
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Chapter 5 

The Estimation of the Beat-to-Beat Blood Pressure 

Variability 

5.1 Introduction 

The systemic arterial BP fluctuates with each heart cycle between a diastolic value 

and a higher systolic value. Obtaining estimates of an individual's systolic and 

diastolic pressures is one of the most routine diagnostic techniques available to 

physician for assessing the cardiovascular status. More importantly, the analysis of the 

beat-to-beat oscillations in BP plays a fundamental role for a better comprehension of 

the patho-physiological properties of the complex mechanisms which act through 

neural, mechanical, vascular, humoral factors and others [40]. 

Essential to the analysis on BP is the availability of the BP measurements. Two 

methods are commonly employed currently in the non-invasive arterial pressure 

measurement: 1) sampling of arterial pulse pressure, including the occlusive 

cuff-based approaches of Korotkoff and oscillometry; and 2) continuous recording of 

the pulse waveform. The sampling methods typically provide systolic and diastolic 

pressures, and sometimes mean pressure. These values are normally obtained from 

different heart beats within a minute. These methods are neither comfortable or 

convenient for frequent use nor capable of continuous BP monitoring. Alternatively, 

continuous recording methods provide resolution of the single beat pulse waveform 

and beat-to-beat pressure as well additional hemo-dynamic information [68]. However, 

these approaches still employ an occlusive cuff with the cuff pressure continuously 

altered to equal to the arterial pressure, such as the FINAPRES device. In other words, 
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they do not improve much the ease of positioning and manipulating or the patient 

comfort. 

The BP estimation based on PTT or other beat-to-beat physiological parameters 

could provide an alternative to existing approaches for the non-invasive continuous 

BP monitoring. It has been reported in several literatures that PTT determined by the 

time delay between the characteristic points on E C G and PPG signals can be used for 

non-invasive estimation of arterial BP with reasonable accuracy [26] [36] [38]. Such an 

approach is much easier to use with much lower cost of development. Furthermore, it 

may also provide the information on the beat-to-beat variation of BP as well. 

Undoubtedly, it is necessary to explore further the estimation of BP and BPV 

using PTT and other related parameters. Based on the correlation study in last chapter, 

a new parameter, the FY interval of PPG signals, which has a significant correlation 

with PTT at relatively large contacting forces, could possibly be of great potential for 

the non-invasive BP estimation, using only PPG technique. This will provide a 

substitute that is even simpler and more comfortable for continuously monitoring of 

BP and BPV. In this chapter, the feasibility of BP estimation using FY interval is first 

investigated. In the second part, FY interval as well as PTT is employed for the 

analysis of the beat-to-beat BPV. 

5.2 BP Estimation using FY Interval 

In this section, BP estimation using the FY interval of PPG signals is introduced. 

Different estimation scenarios were applied to investigate the feasibility of this new 

approach for either non-continuous BP measurement or the beat-to-beat BP 

estimation. 

5.2.1 Multi-Beat BP Estimation under Different Levels of Contacting Force 
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Based on the results that the correlation between PTT and FY interval becomes 

substantially higher at larger contacting force levels, the BP estimation using FY 

interval is carried out on the same experimental data as that used in last chapter at 

different levels of contacting force. Seven levels of contacting forces were recorded 

during the experiment, and each was followed by a BP measurement using standard 

oscillometric BP meter (Model BP-8800, COLIN) at the left upper arm. Some of the 

standard BP recordings were used for calibration, while the others were used as 

reference values to evaluate the accuracy of the BP estimations. (The mean and 

standard deviation of the seven force levels, as well as the number of subjects at each 

level can be referred to Table 4-3.) 

The mean values of FY interval at each level of contacting force were calculated 

for each subject, so as to be used for the estimation of BP corresponding to that 

certain period. Fig. 5-1 shows the mean and standard deviation of FY intervals over 

the 30 subjects at different force levels. There is an apparent decreasing trend in the 

value of FY interval with the increasing of force levels. In other words, the rising 

phase of the PPG signal becomes narrowed when under a large external pressure. 
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Fig. 5-1： Mean and standard deviation of FY intervals over the 30 subjects at different force 

levels. 
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Since F Y interval is inversely correlated with PTT (see 4.3.2), while PTT is 

inversely correlated with BP [36], a simple equation for BP estimation is proposed as: 

BP = aFY" +b (5-1) 

where BP can be either the SBP or DBP, FY represents the F Y interval, a and b are 

two constants determined by calibrations on each individual, and n > 0(n=2 is used 

in this study). Taking into account the decrease in FY intervals with the increase in 

contacting force, a two-point calibration is necessary to obtain the values of aandb， 

using the mean F Y interval of the lowest and highest force levels of each subject, 

respectively, so as to include the full range of FY intervals. Once a and b are 

determined after calibration, the estimation of BP at all other force levels can be 

carried out according to Eq. (5-1). Meanwhile, the same calibration approach is 

applied to the estimation equation for BP using PTT: 

BP = c/PTT1 + d (5-2) 

to obtain the values of c andJ . The PTT-based BP estimation was carried out as well 

for comparison. 

For a force level besides the lowest and highest force levels, only one BP value 

was estimated using the mean FY interval or mean PTT at that force level. The mean 

and standard deviation of the estimation error were calculated by comparing the 

estimated BP values with that from the standard BP measurement taken immediately 

after the data recording. The overall results for 30 subjects using both estimation 

approaches, FY interval approach and PTT approach, are given in Fig. 5-2 (SBP 

stands for systolic BP and D B P stands for diastolic BP). It is observed that though the 

mean errors in the estimation of SBP and DBP using PTT are slightly smaller than 

that using FY interval, either approach provides satisfactory results in terms of mean 

error (the A A M I standard: \mean\ < 5mmHg )• On the other hand, the standard 
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deviations of the estimation error using F Y interval ( SD = 5.1 mmHg for SBP 

and SD = 6AmmHg for DBP) are obviously smaller than that using PTT 

(SD = S.SmmHg for SBP and SD = 9.6mmHg for DBP), which still meet the A A M I 

standard (SD < SmmHg). In this sense, based on the two-point calibration approach 

under different levels of contacting force, the overall performance (mean ± ) of BP 

estimation using F Y interval so far are within the A A M I standard for these 30 subjects, 

and the errors of both approaches are not significantly different from zero (p < 0.05). 
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Fig. 5-2: Overall mean and standard deviation of the estimation errors using FY interval and 
PTT at different levels of contacting force. 

Fig. 5-3 shows the estimation results at different contacting forces (level F1 and 

F7 are not included because of the two-point calibration approach). It is interesting to 

note that though the correlation between FY interval and PTT goes up with the 

increasing of force levels, the estimation results are not improved much or become 

even worse at relatively higher levels of contacting force, especially for the estimation 

of DBP. This is most likely due to the distortion of the PPG signals at higher levels of 

contacting force, which might influence to a large extent the relationship between BP 
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and PTT that is estimated by E C G and PPG signals. Hence, though there is a high 

correlation between FY interval and PTT at higher contacting force, the correlation 

between FY interval and BP may not be significant enough. 
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Fig. 5-3: Mean and standard deviation of the estimation errors using FY interval at each level 

of contacting force. 

5.2.2 Beat-to-Beat BP Estimation 

The knowledge of the continuous beat-to-beat BP could be of significant clinical 

value for better understanding the oscillatory behavior of BP. It can be particularly 

useful for monitoring continuously the patho-physiological statuses, and therefore 

providing valuable information about the neural and mechanical activities. As FY 

interval is a beat-to-beat parameter, it is also worthwhile to investigate the feasibility 

of using this new parameter for the estimation of the beat-to-beat BP. 

Data used in this study are from another experiment conducted on 12 subjects at 

normal relaxed state. The subjects participated in this experiment were healthy, aged 

22-30, and were asked to rest for 5 min before the measurement, and sat still on a 

comfortable chair throughout the whole period of data recording. 
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Fig. 5-4: The experimental setup for simultaneous recording of PPG signals, finger 

arterial pressure and ECG signals. 

The PPG sensor used in the experiment was of reflective type, consisting of a 

led and a photo-detector. The E C G signal was recorded by the Model 7400 -
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Physiological Recorder with three electrodes on the left arm, right arm and right leg, 

respectively. Meanwhile, the FINAPRES monitor (FMS, Finapres Medical Systems 

BV, Netherland) was used for the continuous recording of the arterial pressure, the 

cuff of which was wrapped on the right middle finger. The PPG signal at the right 

index finger tip, the arterial pressure wave at the right middle finger, and the E C G 

signal as well were recorded simultaneously for about two minutes for each subject 

(see Fig. 5-4). During the whole period of recording, the subjects were asked to exert 

natural strength of contacting force on the sensor that they felt comfortable with. 

Due to the interruptions by the inflation of the FINAPRES monitor from time to 

time during the period of data recording, the arterial BP waves were not absolutely 

continuous. Therefore, a data segment of 20 seconds was selected from each 

recording, which contains continuous recordings of ECG, PPG and BP waveforms. 

For each data segment, the beat-to-beat SBP and D B P were obtained from the BP 

wave; the beat-to-beat F Y interval was extracted from the PPG signal; and the 

beat-to-beat PTT was estimated by the time delay between the R-peak of the E C G 

signal and the F point of the PPG signal. 

Unlike that under different levels of contacting force, the F Y interval does not 

vary significantly during the whole period of data recording at the normal relaxed 

state. As a result, the two-point calibration approach becomes unnecessary for the BP 

estimation. Alternatively, a one-point calibration method is used, and the equation for 

the estimation is expresses as: 

" W 二 (5-3) 

� DBP = b.FY2 +50’ 

where SBP and DBP represents the systolic and diastolic BP, respectively, 

a and Z? are the constants determined by the one-point calibration on each subject. In 

other words, once the value of SBP, DBP and FY interval corresponding to one 
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particular heart cycle is known, a and 办 can be calculated, and the beat-to-beat BP 

estimation using F Y interval is just under way. Similarly, the same one-point 

calibration approach is applied to the estimation equation using PTT: 

" SBP = c/PTT2 (5-4) 

�D B F = d/PTT^ -\-50, 

to obtain the values of c and d . The PTT-based beat-to-beat BP estimation was 

carried out as well for comparison. 

For each data segment, the values of SBP, DBP, F Y interval and PTT 

corresponding to the first heart cycle of the segment were used for the calibration. The 

beat-to-beat BP values of the subsequent heart cycles of that data segment were then 

calculated. The mean and standard deviation of the estimation error were obtained by 

comparing the estimated BP value with that from the BP wave corresponding to the 

same heart cycle. The overall results for 12 subjects as a whole using both estimation 

approaches, FY interval approach and PTT approach are given in Fig. 5-5. The errors 

of both approaches are not significantly different from zero (p < 0.05). 
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Fig. 5-5： Mean and standard deviation of the beat-to-beat BP estimation errors using the FY 

interval and PTT at the normal relaxed state. 
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It is clearly observed that the two approaches for the beat-to-beat BP estimation 

provide quite comparable results in terms of either mean error or standard deviation. 

The mean estimation errors of SBP and D B P using F Y interval are - 0.54mmHg 

and - OJmmHg，respectively; while those using PTT are - 0.13mmHg and 

-0.64mmHg . The standard deviations of the estimation errors using F Y interval are 

5.7mmHg md3.5mmHg for SBP and DBP, respectively; while those using PTT are 

53mmHg and3.4mm//^ . The results of both methods are satisfactory compared with 

the A A M I standard. 

5.2.3 Repeatability Study 

In order to further validate the feasibility of the beat-to-beat BP estimation using F Y 

interval for long-term BP monitoring, the repeatability study was carried out as well. 

In this test, calibration is no longer needed. The constants in the estimation equations 

were determined by previous calibrations and the estimation equations were applied to 

data segments that are different from what used in Section 5.2.2 for each subject. In 

other words, the aim of this repeatability test is to investigate that whether the 

estimation equation determined by a randomly chosen point can be applicable to the 

subject for a long time without new calibrations. 

The new data were obtained from that same 12 subjects several days after the 

first experiment and was under exactly the same experimental protocol. The overall 

results for 12 subjects as a whole both estimation approaches are given in Fig. 5-6. 

For the SBP estimation, the PTT based approach provides better results that the FY 

based method; while for the DBP estimation, the two approaches provide quite 

comparable results in terms of either mean error or standard deviation. Overall, the 

repeatability results of the FY based method for the beat-to-beat BP estimation 

(SB/^em?厂= 1.34±7.13mm//g，DBP error =—1.50:t4.95mmHg ) are still 
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acceptable compared with the A A M I standard. 
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Fig. 5-6 Mean and standard deviation of the beat-to-beat BP estimation errors using the FY 

interval and PTT in the repeatability test. 

5.3 A Study on the Beat-to-Beat BPV 

The analysis of the beat-to-beat oscillations in BP plays a fundamental role for a better 

comprehension of the patho-physiological properties of the complex mechanisms 

which act through neural, mechanical, vascular, humoral factors and others [40]. 

However, due to the technical limitations in the non-invasive continuous BP 

measurement, the BPV has not yet been studied extensively. 

Based on the promising results of the beat-to-beat BP estimation using either FY 

interval or PTT, it is of great importance to further extend these simple approaches for 

the study of the beat-to-beat BPV. In this section, the feasibility of using the FY 

interval and PTT for the analysis of the beat-to-beat BPV is investigated. 

5.3.1 Background of the Beat-to-Beat BPV 

The beat-to-beat analysis on arterial BP has been possible by using invasive 
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techniques which employ either an external or an internal transducer. Recently, 

non-invasive plethysmographic techniques have raised great interest in the study of 

the beat-to-beat B P V and also become commercially available (FINAPRES) in 

clinical applications. 

Through proper detection algorithm, a few beat-to-beat parameters like systolic 

/diastolic/mean/pulse pressure values can be recognized on arterial BP waveforms. In 

this way, systograms, diastograms and so on, intended as discrete series synchronous 

to the corresponding cardiac cycles, may be obtained, which reflect the beat-to-beat 

fluctuations of arterial BP with time. An example of the systogram and diastogram is 

given in Fig. 5-7. 
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Fig. 5-7: An example of systogram and diastogram obtained from continuously BP recording 

of a normal subject [40]. 

Spectral analysis was first used in 1978 to obtain the beat-to-beat BPV [65], [66]. 

It has been used more extensively in the last few years to provide useful information 

on neural control of the cardiovascular system [40]. Particularly, considerable 

attention has been focused on fluctuations occurring at frequencies in the range of 
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approximately 0.04-0.45 Hz, which are believed to reflect intrinsic vascular activity 

and neural modulation of the vascular tone. 

Fig. 5-8 shows an example of the autospectra for systogram series detected in a 

healthy subject. It is easy to identify the three main components: 1) a very low 

frequency (VLF) component located around 0.01-0.04Hz; 2) a low frequency (LF) 

component at around O.lHz; and 3) a high frequency (HF) component synchronous 

with the respiration rate, generally from 0.15Hz to 0.45 Hz. The power spectral 

densities of these three frequency bands are closely associated with baroreflex control, 

sympathetic and parasympathetic nervous activities, and the respiratory activity. 

Therefore, the spectral analysis of the beat-to-beat BPV could definitely provide more 

information that is of great physiological importance. 
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Fig. 5-8: An example of the autospectrum of SBP from a healthy subject [40]. 

5.3.2 Analysis of the Beat-to-Beat BPV 

The beat-to-beat BP estimations using FY interval and PTT have already been carried 

out on 12 subjects in Section 5.2.2 (Estimations were carried out on a 20-second 

period for each subject.). The further analysis on the beat-to-beat BPV in both time 

domain and frequency domain is based on these estimation results; and its reliability 

is verified by comparing with the analysis based on the data from the FINAPRES. 
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Figs. 5-9, 5-10, and 5-11 give the systograms and diastograms from three of the 

twelve subjects over 20-second periods. The solid lines represent BP obtained from 

the FINAPRES, which is used as the reference value. The results of the BP 

estimations using F Y interval and PTT are plotted as dotted lines and dashed lines, 

respectively. In all three subjects, the estimations of BP using either F Y interval or 

PTT agree well with the data from FINAPRES. (The mean and standard deviation of 

the errors for the 12 subjects are given in Section 5.2.2.) 
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Fig. 5-9: (a) Systogram; and (b) diastogram from subject 1，healthy and aged 40. 

(mmHg) (mmHg) 
1301 . , I I — I 901 1 丨 I I = r [ 

——SBP Estimated by PTT ——DBP Estimated by PTT 
……SBP Estimated by FY Interval 85 - DBP Estimated by FY Interval -

120- ——SBP from FINAPRES — DBP from FINAPRES  
8 0 - -

1 0 0 - 6 5 -

6 0 - -

90-
55-

8 0 1 ' “ ‘ ‘ ——‘ ‘ ‘ ‘ 25 
0 No. of beats � “ No. of beats 

(a) (b) 

Fig. 5-10: (a) Systogram; and (b) diastogram from subject 2, healthy and aged 26. 
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Fig. 5-11: (a) Systogram; and (b) diastogram from subject 3，healthy and aged 23. 

To evaluate the accuracy of the beat-to-beat B P V estimations in the frequency 

domain, the spectral characteristics of each estimation segment and each recording 

from FINAPRES were calculated using Fast Fourier Transform (FFT). Cumulative 

powers were computed over two main frequency bands, the LF band between 

0.04-0.15Hz and the H F band between 0.15Hz and 0.45Hz. Since each segment lasted 

for only 20 seconds, the VLF component located around 0.01-0.04Hz is not 

considered in this study. 

For each subject, LF and H F powers were calculated in absolute values 

integrating the density curves over the corresponding frequency ranges, and then over 

the total absolute power from 0 to 0.5Hz. The mean and standard deviation of the LF 

and H F power percentages were obtained for the group of twelve subjects. 

Fig. 5-12 gives the spectra of Subject 2, the same one used in Fig. 5-10, 

calculated from both the estimated SBP and the SBP from FINAPRES. Obviously, the 

LF component, centered around 0.05Hz, and the H F components, centered around 

0.3Hz， can be identified in the power spectra of the SBP obtained from FINAPRES 
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recordings. The power spectral density (PSD) of the SBP estimated from FY interval 

shown in Fig. 5-12 (b) is quite similar to that in Fig. 5-12 (a). The locations of the LF 

band and HF band in Fig. 5-12 (b) are found in correspondence with those in Fig. 

5-12 (a). The LF component shown in Fig 5-12 (c)is hardly observed, while the HF 

component is as strong as that in Fig. 5-12 (a) and (b). 
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Fig 5-12: (a) Power spectral density (PSD) of SBP obtained from FINAPRES; (b) PSD of 

SBP estimated by the FY interval;, and (c) PSD of SBP estimated by PTT from the same 

subject of Fig. 5-10. 

To illustrate more clearly the relationship between the spectral characteristics of 

the three SBP series shown in Fig. 5-12, the respective coherence functions are also 

computed. Fig. 5-13 shows the magnitude square coherence (MSG) functions between 

the estimated BP and that from FINAPRES. The result is consistent with that 

manually observed. The coherence is quite high between the SBP of FINAPRES and 

the SBP estimated by FY interval in both the LF and HF bands. The coherence 

function between the SBP of FINAPRES and the SBP estimated by PTT has a sharp 
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decrease in the LF range, but is still as high as the one in HF range. 
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Fig. 5-13: (a) Magnitude square coherence (MSG) functions between BP series estimated by 

FY interval and that from FINAPRES; and (b) Magnitude square coherence (MSG) functions 

between BP series estimated by PTT and that from FINAPRES. 

Fig. 5-14 illustrates the average of the cumulative power percentages of BP 

spectral components obtained from FINAPRES and estimated BP values for the 12 

subjects. The LF and HF power percentages are given in Fig. 5-14(a) 

and (b), respectively. For the LF power percentage, the BPs using both FY interval 

and PTT are underestimated. On the contrary, for the HF power percentage, both FY 

interval and PTT approaches give overestimated BPs. It is also found that the FY 

interval based BP estimation seems to perform better that the PTT based method. It 

provides less underestimated LF power percentages than those using PTT (about 25% 

underestimation using FY interval and about 50% underestimation using PTT), and 

less overestimated HF power percentages (about 25% overestimation using FY 

interval and 50% overestimation using PTT). 
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Fig 5-14: LF (upper panel) and HF (lower panel) power spectral densities of SBP and DBP. 

Data are shown as mean 士 SD for the group as a whole. 

5.4 Improving the PPG Model with the Time-Varying BP 

So far, the new PPG model proposed in this study does not take into account any 

dynamic information related to the beat-to-beat oscillatory B R Undoubtedly, it would 

be of great importance if this new model can be further extended to reflect the 

beat-to-beat fluctuation of arterial BP. Also, it should be noticed that the transmission 

time delay generated in the model has been simplified as a constant, as introduced in 

Chapter 3. In fact, however，the transmission delay is the time for the pressure wave 
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traveling down the arterial system, or actually the PTT and it varies from beat to beat. 

The discrepancy between the simulation results and the experimental data has already 

been identified in Fig. 3-17. Therefore, it is desirable that the time delay generator in 

the current model could be modified for generation of the time varying PTT. 

5.4.1 Modification of the PPG Model 

The first objective of the modification of the PPG model is to generate the 

beat-to-beat oscillatory arterial BP. Since the new model is able to mimic the 

generation of heart beats, it would be a breakthrough if there is certain relationship 

between the beat-to-beat heart rate and BP. 

Obviously, the interaction between the heart rate and BP is not simple, which 

involves the baroreflex control and therefore the modulation of neural activities as 

well. The fundamental mechanism in the control of arterial BP and heart rate may be 

illustrated by the diagram in Fig. 5-15 [63]. 

Central v 
-Nervous .. Vagal 

System 、、、、、\ŝ fast) 

‘(slow) 二 i: 
Baroreceptors 丨 laraiac   

； Pacemaker 

\ Peripheral / 
\ Resistance / 

BP \ X / 
\ X / RR interval 

Cardiac 1 / 
Output 

Fig. 5-15: Schematic diagram of cardiovascular system. 
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The value o f B P is sensed by the barorcccplors, and accordingly, the central 

nervous system ( C N S ) adjusts the heart rate by both fast vagal (parasympathet ic) 

act ion and s lower sympathet ic action (baroreflex control o f I IR ) . The barorcl lcx also 

affccls the peripheral rcsistancc but only via sympathet ic efferent activity、which has 

already been taken into account in the new model . The heart rate (or ccjuivalcntly I he 

length o f the R R interval) ind ucnccs the cardiac output , wh ich together with I he 

peripheral rcsistancc determines the value of the BP ami thus closes the loop. 

The relationship between the heart rale and BP can he consicicrccl as two 

branches: ihc forward branch (heart rale -> BP) and the fccclback branch (BP -> heart 

rate). The fccclback branch is actually ihc barorcccplor-hcart rate reflex. Quantitatively, 

It can be evaluated by (he barorcllcx sensitivity (BRS), that is Ihc ratio between the 

increase (or dccrcasc) in coiisccutivc RR intervals aiul ihc incrcasc (or clccrcasc) in 

succcssivc SBPs |4()|. The CNS processes the bamrcccptor input lor the adjustment of 

both the last parasympathetic activity ami slower sympathetic activity, and I he re fore 

modulating ihc next heart heals. U is this baroreflex control lhal provitics a proper 

atiaphUion ihc cardiovascular system lo specific physiological coiKlilions. The feed 

forward branch in which BP vanes accordingly (o heart rate, on (he olhcr hand, can be 

appi(v\imalcci by ihc cnipincal signû iclal law. as shown in f-ig. | 1 S|. 
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Fia. S-16: Relationship between heart rale and mean arterial BP in steady state. 

121 



Chapter 6 

The second objective of the modification of the new model is to generate the 

dynamic beat-to-beat PTT. As mentioned before, the significant linear relationship 

between PTT (PEP plus the actual transmission time) and arterial BP has been 

recognized for long time [36] [38]. The feasibility of using PTT for either discrete or 

beat-to-beat BP estimation has also been confirmed in the above sections. Indeed, the 

statistical correlation between PTT and BP can be quite high. Fig. 5-17 illustrates the 

beat-to-beat correlation between PTT and BP from a healthy subject. 
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Fig. 5-17： The beat-to-beat correlation between PTT and (a) SBP; and (b) DBP obtained 

simultaneously with the SBP in (a). 

The correlation between average PTT and BP can even be much higher. Both the 
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PTT and BP are calculated as the mean of the beat-to-beat values of 10-second data 

segments. Fig. 5-18 gives the results for the same subject used in Fig. 5-17. 
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Fig. 5-18: The correlation between average PTT and (a) average SBP; and (b) the 

corresponding average DBF. 

Based on these results, the time delay generator in the new PPG model can be 

modified to make it more realistical by taking into account this nearly linear 

relationship between BP and PTT. More specifically, using BP as an input for the time 

del4y generator, PTT can be generated accordingly. A generalized diagram of the 
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modified model is shown in Fig. 5-19 (a). Fig. 5-19 (b) gives the specification that is 

used in our study. 
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Fig. 5-19: (a) Generalized diagram of the modified model; and (b) the model specification 

that is used in our study. 
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Taking into account the time-varying BP and PTT, the output train of PPG 

signals in our modified model can therefore be expressed as: 

eppG (0 = y(t - At(BP) - AT(PEP)) * h(t) * p,, (t) * c(t) (5-5) 

where y(t) is the neural spike train generated by IPFM model and is adjusted by the 

baroreflex control as well, At (BP) .is the time-varying transmission delay determined 

by BP, h{t) is the impulse response of the W K 3 model, p^p (t) is the dynamic BP 

waveform determined by the sigmoidal function together with the corresponding heart 

rate, c{t) is the impulse response of the photo-detector. Fig 5-20 gives an illustration 

of PPG generation according to Eq. (5-5). 
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Fig. 5-20 Illustration of the generation of PPG signals. 
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5.4.2 Simulation 

The empirical sigmoidal function was determined by best-fitting data drawn from 

physiological literature [18]: 

20 
P{HR) = 90 + ,, 動 (5-6) 

1 + 6.7x10 〜-3 續 旧 5 

in which HR represents the beat-to-beat heart rate, and P is the value of BP 

corresponding to the same cardiac cycle. It should be pointed out that the pressure 

P in the Eq. (5-6) is regarded as the mean arterial BP rather than SBP or DBP. In other 

words, with the generation of each heart beat, the mean arterial BP corresponding to 

the same cardiac cycle can be estimated. The relationship between the mean BP (P^ )， 

SBP (Ps) and D B P (P^ ) can be approximated by the following empirical formula: 

p厂 P � P s - P � (5-7) 

In our simulation, D B P is fixed as a constant (DBP = ISmmHg )，and thus SBP can be 

derived from Eq. (5-7). By doing so, the baroreceptor senses the change in two 

consecutive SBPs and sends the information ( 仰 八 " ” )back to control the neural 
SBP{n) 

activities so as to counteract possible deviations of BP from the reference set point. 

According to the study by [68], an equal weight (w, 二沙之=1) is used for the 

contribution of baroreflex control to the parasympathetic and sympathetic activities. 

The simulation is thus carried out by assuming a normal physiological status. 

Fig. 5-21 (a) shows the simulated beat-to-beat oscillatory BP waves. DBP is 

assumed as constant, while SBP exhibits the beat-to-beat oscillations, as illustrated in 

Fig. 5-21 (b). 
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Fig. 5-21: (a) The simulated BP wave; and (b) the oscillation of simulated SBP. 

The spectrum of the simulated SBP is also computed, as shown in Fig. 5-22 (a). 

Similar to the spectra of R R interval, the PSD of SBP also reflects clearly the 

frequency components associated with the input modulation signals, and it agrees 

with the that from experimental data as shown in Fig. 5-22 (b). Therefore, by utilizing 

the empirical sigmoidal relationship between heart rate and mean BP and by taking 

into account the baroreHex control, the new model is able to generate beat-to-beat 

SBP (or mean BP) that is physiologically plausible. 
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Fig 5-22: Spectra of SBP from (a) simulated data and (b) experimental data. 

Fig. 5-23 shows the cumulative LF and H F power percentages of the R R interval 

and SBP obtained from both the simulations and the experimental data for 10 healthy 

subjects, respectively. It can be seen that from either the simulation or the 

experimental data, the R R interval provides comparable results with that of SBP in 

terms of LF or H F power percentage. Indeed, there is prominent consistence between 

the spectra of R R interval and SBP [40], and they serve as alternatives to analyze the 

mechanisms responsible for the cardiovascular control. 
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Fig. 5-23 LF and HF power spectra densities of RR interval and SBP obtained from (a) 
simulated data and (b) experimental data (mean 土 SD, n - 10). 
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Besides the measure of individual LF or H F power, the ratio between LF power 

and H F power also carries valuable information associated with the balance of the 

sympatho-vagal control mechanism affecting the heart rate. Fig. 5-24 gives the 

comparison between the simulated LF / HF ratio and that from experimental data 

(the same subjects as used in Fig. 5-23). Obviously, the simulated results are within 

the normal physiological range. 

2 

11LF/HF from experimental data 

1 一 ^ ' ^ m Simulated LF/HF 

。：bJdJ: 
RR SBP 

Fig. 5-24 LF / HF ratio of RR interval and SBP obtained from simulation (dark 
columns) and experimental daia (mean 土 SD, n = 10，light columns). 

Considering that D B P is fixed in the new model while SBP varies from beat to 

beat, we use SBP is used as the input to the transmission time delay generator. The 

parameters a mdb can be predetermined for each individual subject through linear 

regression. In this simulation, the subject in Fig. 5-17 and 5-18 is used as an example 

to obtain a m d b , and the PPG signals can therefore be generated with reasonable 

time-varying PTT calculated from PTT = a*SBP + b 

(fl:-1.6678 = 342.5584). The results of the simulated PTT series and its 

spectrum are given in Fig. 5-25. 
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Fig. 5-25 (a) Simulated PTT series and (b) its spectra. 

Fig. 5-26 gives the phase spectra of E C G signal and pressure wave, respectively. 

From the experimental data of simultaneously recorded E C G and figure pressure 

wave (see Fig. 5-26 (b))，it is clearly indicated that these two signals are almost in 

phase with each other. Our simulated data provide similar results, as shown in Fig 

5-26 (a), which further demonstrates the feasibility of using the sigmoidal function to 

interpret the feed forward relationship between heart rate and BP, and therefore paving 

the way for the generation of beat-to-beat BP series in our model. 
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Fig. 5-26: The phase spectra of ECG (upper panel) and pressure wave (lower panel) 

from (a) simulated data and (b) experimental data. 
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The modification to include the time-varying PTT in the PPG model, as a result, 

could also affect the phase spectra of simulated PPG signals, as shown in Fig. 5-27. It 

can be noticed that the simulated phase spectrum of PPG signals with variable PTT 

becomes more realistic compared with that of experimental data than the results of our 

previous simulation with a constant PTT (see Fig. 3-17). The spectra of E C G and PPG 

signals, on the other hand, remain almost unchanged. 
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Fig. 5-27: (a) Phase spectra of PPG and ECG signals with time-varying PTT; and (b) Phase 
spectra of experimental PPG and ECG signals. 

5.4.3 Application of the PPG Model 

The above modifications have made the new model more comprehensive and 

physiologically plausible by including the approximated beat-to-beat BP series，and 

thereby mimicking the generation of PPG signals with time-varying PTT. The 

modified model could be a useful tool to investigate certain characteristics of PPG 

signals under different physiological conditions. 

Take an example that is after the administration of certain vasoactive agents, 

such as ephedrine and phenylephrine, which could have an effect on the duration of 
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PEP, i.e. PEP decreases by the inotropic action after ephedrine and it increases by 

reflex negative inotropic action after phenylephrine. Under such conditions, the PTT 

assessed by the time delay between the R peak of the E C G signal and the onset of the 

PPG signal, which actually includes the PEP and the transmission time, could no 

longer exhibit a significant linear relationship with arterial BP, or at least the slope 

(parameter a) or the intercept (parameter b) may change. On the other hand, there is 

little influence on the relationship between the actual transmission time and the 

arterial BP. In other words, the new model is still workable under such abnormal 

physiological conditions. However, the PTT based BP estimation is likely to provide 

unsatisfactory results under such conditions. 

Assume that the PEP is 10% shortened after the administration of ephedrine. A 

simulation is done to investigate the difference between the PTTs before and after the 

administration of ephedrine, as shown in Fig. 5-28. Obviously, if the same equation 

for the PTT based BP estimation is used, there is inevitably a biased error after the 

administration of ephedrine. 
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Fig. 5-28: Simulated PTT series under normal and abnormal physiological conditions. 
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To investigate the effect of the conditions under different physiological status on 

PTT, such as the dynamic state immediately after exercise, it is necessary to adjust or 

further modify the sigmoidal function that is derived on a steady-state basis since it 

may not be well applicable to an abnormal physiological status. It is therefore of great 

importance to understand better the relationship between the heart rate and BP under 

different physiological status, and thereby enabling the new model for more 

comprehensive studies. 

5.5 Discussion & Conclusion 

As one of the most important cardiovascular parameters, the arterial BP has been 

studied extensively. Most of the currently used approaches for the BP estimation are 

still based on the auscultatory measurement and the oscillation method. These 

cuff-based methods, however, could only provide discrete BP measurements, and 

therefore can hardly tell the beat-to-beat hemo-dynamic information. 

The beat-to-beat oscillatory behavior of BP has been known for long time. The 

analysis of the oscillations in BP plays a fundamental role for a better comprehension 

of the pathophysiological properties of the complex mechanisms which act through 

neural, mechanical, vascular, humoral factors [40]. The currently available methods 

for beat-to-beat BP monitoring include intra-arterial (invasive) recordings and some 

non-invasive approaches which have already been commercialized, such as the 

tonometer and the Finometer (FINAPRES), etc. Certain limitations such as the lack in 

patients' comfort, the difficulty in manipulating or positioning the cuff, and the high 

cost, etc, have undoubtedly kept these methods from being extensively used. 

In this chapter, the feasibility of a new approach for the beat-to-beat BP 

estimation is studied. It simply employs a beat-to-beat parameter extracted from PPG 

signals, the FY interval. The results from last chapter show that there is a significant 
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correlation between PTT and FY interval. Taking into account the relationship 

between PTT and BP, the estimation of BP using the FY interval was carried out 

similarly to the PTT-based BP estimations. The accuracy in both discrete and 

beat-to-beat BP estimation was investigated using the standard BP monitor or the 

FINAPRES as reference. The result from the FY interval based approach was also 

compared with PTT-based approach. 

For either multi-beat or beat-to-beat estimation, the result of FY interval based 

approach is satisfactory in comparison with the A A M I standard for the group of 

subjects used in our study. It is comparable to or even better than the result from the 

PTT-based method. It is therefore a promising approach to realize the beat-to-beat BP 

monitoring using the PPG signal only even at natural strength of the contacting force. 

This is because the correlation between FY interval and PTT can also be quite high 

with the normal strength of contacting force for some subjects. In the future 

development, with a finger clip to fix a moderate level of the contacting force, the 

estimation of the beat-to-beat BP could possibly achieve better accuracy. There are 

certainly a number of distinguished advantages in this new approach, including much 

lower cost, the ease in the measurement, the improvement in patients' comfort, etc. 

Furthermore, it should be emphasized that by discarding the use of a cuff, this new 

approach could possibly provide beat-to-beat BP measurement that is continuous for 

as long as necessary with a single PPG sensor, while the person may still have the 

flexibility to move around. 

The accuracy in the analysis of the beat-to-beat BPV using this new approach is 

also investigated. Particularly, the spectral analysis could provide insight into 

understanding the similarity in the elementary rhythms of the estimated BP and the BP 

obtained from FINAPRES. The spectral characteristics of each individual frequency 

band can be described in terms of the power percentages. All power percentages of 
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SBP and DBP over the frequency ranges considered in our study were evaluated by 

analysis on both the estimated BP and the BP obtained from FINAPRES. 

For the LF band, the FY interval based method gives underestimated power 

percentages. On the contrary, for the H F band, it gives overestimated power 

percentages. Both the underestimation and overestimation are around 25%. This result 

indicates that there are certainly different relationships between LF and HF rhythms 

of BP and FY interval. Specifically, according to the individual spectra and the M S G 

functions, it is found that the main difference is in the absolute power of LF band, 

which is remarkably lower in the spectra of the estimated BP using either FY based or 

PTT based approach. The absolute values of the HF power are in fact almost the same 

in all three spectra. Therefore, it is concluded that the only significant difference 

between the proposed new approaches, using both FY interval and PTT, and the 

Finapres in the spectral estimation is the underestimation of LF power. The main 

factor causing this discrepancy might be associated with the sympathetic nervous 

control. Further studies to explore the underlying relationship between sympathetic 

nervous activity and FY interval and PTT could be extremely useful in improving the 

accracy of this new approach from physiological point of view. 

Nevertheless, this new approach is still of great potential as an acceptable 

substitute for estimation of the beat-to-beat BP or BPV. It should be pointed out that 

the BP recordings from FINAPRES may not be accurate enough. In fact, several 

studies have investigated the reliability of the FINAPRES device. By comparing with 

the simultaneously obtained BP values by inter-arterial cannulation, it has been 

reported that the LF power of SBP is overestimated by FINAPRES [40], [67]. In this 

sense, the FY interval based (or PTT based) method could probably provide much 

better estimations of the actual arterial BR In other words, the true accuracy of this 

new method might be higher than that reported in this study by using FINAPRES as 
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reference. 

So far, the simplest equation was applied to BP estimation and the results are 

reasonable. It is necessary to improve these equations, as well as the calibration 

approaches, to enhance the accuracy for the BP estimation. It could be useful by 

including other parameters which are also extracted from the PPG signal (see Chapter 

4)，or by integrating PTT together to estimate BP. Future work on interpreting 

physiologically the relationship between these parameters and arterial BP will be 

important to improve this new method before it can finally be put into use practically. 

Considering the importance of the beat-to-beat oscillatory BP, as well as the 

beat-to-beat varying nature of PTT, the new PPG model proposed in this study has 

been further modified by integrating the relationship between the heart rate and BP, 

and the nearly linear relationship between PTT and BP. Based on the physiological 

mechanism of baroreflex control and the empirical sigmoidal law, the modified PPG 

model is able to generate more realistic BP (SBP and mean BP) series. Furthermore, 

using the BP series as an input for the time delay generator, the PTT series were 

generated varying with each heart cycle. As a result, the discrepancy in phase between 

the simulated spectra and the spectra of experimental data from a normal subject has 

to some extent been addressed. 

From the application point of view, the modified model could be a useful tool to 

investigate certain characteristics associated with PPG signals under different 

physiological conditions. For example, the effect after the administration of certain 

agents can be reflected by the change in PEP; and other variations in physiological 

status can possibly be interpreted by adjusting or further modifying the sigmoidal 

function between the heart rate and BR Furthermore, the new model could be of 

certain importance in evaluating the PTT or FY interval based BP estimation from 

physiological point of view. It may be noticed that in the mathematical derivation of 
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the output PPG signal (see Eq. 5-5), not only PTT but the impulse response of the 

Windkessel model (h{t)) as well as the dynamic BP waveform (p^p (t)) are to some 

extent associated the beat-to-beat arterial B R Therefore, the accuracy of the PTT or 

F Y interval based BP estimation can be enhanced by taking into account some other 

physiological parameters. 

By realizing the generation of time-varying BP and PTT, the proposed model is 

improved to better mimic the PPG signal. As mentioned before, PTT is a valuable 

parameter for various applications. In other words, the new model consequently 

carries plenty of useful information related to PPG and E C G signals. However, the 

feasibility of the new model has not been fully tested for the generation of 

beat-to-beat SBP or mean B R Also, D B P is so far simplified as a constant. Future 

research should further investigate the complex interaction between the heart rate and 

blood pressure, and it is desirable that the pulse generator in the current model could 

possibly be improved to more realistically render dynamic information of both SBP 

and DBP. 
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Chapter 6 

A Novel Biometric Approach 

6.1 Introduction 

Automatic human authentication using biometrics is an emerging important 

technology to secure human interactions with safety systems. Its potential application 

can be great in many different areas such as telemedicine or e-banking. Nowadays, 

most systems that control access to financial transactions, computer networks, or 

secured locations still identify authorized persons by recognizing passwords, or ID 

cards. These systems are not reliable enough, because the information is easy to be 

stolen or forged. Being able to eliminate such common problems, biometric systems, 

which use unique human physical or behavioral characteristics to automatically 

identify a person, can ensure much greater security or confidentiality. 

Biometric approaches used today have been made possible by the explosive 

advances in computing power, and have been made necessary by the widespread 

connection of computers all over the world. Certain characteristics of our bodies or 

features of our behaviors have been studied as means of human identification, such as 

fingerprint, face [69] [70], voice [71], retina/iris [72], lip movement [73], gait motion 

[74]，electroencephalograph (EEG) [75], and E C G [76] [77]. New applications based 

on these biometric approaches would provide us with a promising and irrefutable 

future of human identification. However, fingerprint can be recreated in latex, face 

recognition can be fooled by a photo, voice can be imitated [78]，and the methods 

based on E E G or E C G are to some extent cumbersome because several electrodes are 

required to pick up the bio-signals. 
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The PPG technique is under increasing recognition for extensive applications. In 

this chapter, it is proposed to use PPG signals for human verification. Compared with 

other biometric approaches, PPG technique has several distinct advantages including 

low development cost, easy to use without any complicated procedure or special skill, 

and conveniently accessible to various sites of human body, such as finger, ear lobe, 

wrist or arm. The specific aim of this work is to investigate the feasibility of this new 

approach. The preliminary results of the experiments performed on the fingertip of the 

subjects demonstrate that the PPG approach is promising for human verification. 

6.2 Human Verification by PPG Signal 

In this section, a new application of PPG signals for human verification is introduced. 

Different approaches for decision-making are used to study the feasibility of this new 

method. 

6.2.1 Experiment 

The PPG data were obtained from 17 healthy subjects, aged 23-30. During the 

experiment, all the subjects sat still on a chair and let their muscle relaxed. The PPG 

probe (reflective), consisting of a LED and a photodetector, was attached on the 

fingertip of the right index finger by a belt. PPG signals were recorded continuously 

for about one minute for each person, and converted into digital signals at the 

sampling rate of IK samples/s. 

The raw data were preprocessed by filtering the low frequency and high 

frequency components. The PPG signals from three different subjects are shown in 

Fig. 6-1, in which distinct features can be observed from each individual signal from a 

certain subject. 
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Fig. 6-1: PPG signals from three different subjects. 
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6.2.2 Feature Extraction 

As shown in Fig. 6-1，distinct characteristics of the PPG signal can be observed in 

different subjects. Therefore, four feature parameters ~ peak number, time interval, 

upward slope and downward slope ~ were extracted from the PPG signals of each 

subject (see Fig. 6-2). The four features are defined as follows: 

1) The peak number M : the number of peaks on each pulse; 

2) The upward slope k、: the slope between the bottom of each waveform and the 

first peak; 

3) The downward slope k:: the slope between the last peak of each waveform and 

the bottom; 

4) The time interval t̂ : the time interval between the bottom point and the first peak 

point; 

The template vector consisting of four average feature parameters was then 

formulated for each subject. 

Peak ti 

—[T/ A \ I 
xfc] Ml \1 

Fig. 6-2: The definitions of the four features extracted from the PPG waveform. 

6.2.3 Decision-making 

1) Euclidean distance 
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In order to determine the discriminability of the four features and the weight P. of 

each parameter, a statistical analysis was performed. A ratio F. between the 

interclass and intra-class variabilities as defined in Eq. (6-1) was calculated. The 

higher the ratio, the more discriminant the feature is. 

I N — 二 ~ 

——^ (y,- —u)^ 
r Interclass Variability \ N ^ ,, i � 
r = = - . , (6-1) 

Intraclass Variability \ ^ j \ ^ 一、2 

where F. is the ratio for the jth feature, y.. is the mean of the jth feature of the 

ith subject, is the mean of jth feature, 时 is the jth feature of the kth pulse 

of the ith subject, N is the number of subjects, and K^ is the number of pulses 

used for feature extraction from the ith subject. 

The verification was carried out by comparing the sample vector obtained at 

different periods of time with the template feature vector. The final decision was made 

based on the Euclidean distance,d, combined with the weight p. of each feature 

parameter, 

， (6-2) 
V M 

where L being the dimension of the feature vector, P. the weight coefficient which 

is determined by the percentage of F. distributed to the jth feature, Xj the jth 
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component of the sample feature vector, and t. the jth component of the template 

feature vector. 

The Euclidean distance, d，between each sample vector and each template 

vector was calculated. The decision of the verification was done on the subject with 

the minimum value of d . 

2) Fuzzy logic 

Fuzzy logic was implemented for decision-making, in which an output score was 

generated as the result of the comparison between the enrollment template and the 

newly generated one. The Gaussian Function was selected as the membership 

function (MF), which can be expressed as follows: 

G{x; Mij, } 二 exp(-(x-//"•)2 /1(7ij2) (6-3) 

where //.. is the average value of the jth feature parameter of the ith subject, and 

is the standard deviation of jth feature parameter of the ith subject. 

The degree of membership for each feature parameter was determined by the 

maximum value of the overlapped area created by the Gaussian curves of the two 

templates. Fig. 6-3 illustrates how the approach works: the enrollment template 

parameter iŝ ,. = 1.852 ±0.076; while the newly generated template parameter is 

given by 5. = 1.784±0.057. 

Inserting the two sets of parameters into (6-3) respectively generates two curves 

as shown in Fig. 6-3. The shadowed area is overlapped by the two curves and the 

maximum value is recorded as the membership degree. The values inclining towards 1 
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on the vertical axis indicate a good match, while those inclining towards 0 represent a 

poor match. 

0.9- ‘ /YT‘ -
08 r f \ expH/2*(JC-： .852)' /0.076') 

exp(-Pf 2*(jc-1.784)' /0.057'i H \ / 

1 1.5 2 2.5 

Fig. 6-3: The Gaussian curves generated by the two templates. 

In this way, each newly generated feature parameter will produce a value 

comparing with the enrollment template parameter. This leaves four membership 

values for a single subject, which must be consolidated using an A N D operator to 

obtain a final output score that lies between 0 and 1. Normally, the fuzzy logic A N D 

operator takes the minimum value of all the membership values [80]. However, in 

practice it shows that the minimum value often does not reflect the true degree to 

which two templates match [81]. So finally, a type of M E A N operator was utilized, 

which takes the weighted average of the four membership values. 

The verification was also carried out by comparing the two templates generated in 

the same trial but at different periods of time. 

144 



Chapter 6 

6.2.4 Results 

1) Euclidean distance 

Table 6-1 gives the results using Euclidean distance based decision-making. Each cell 

represents the calculated distance between the template and the sample. The shortest 

distances are shadowed. 

Table 6-1: PPG Verification results using Euclidean distance based decision-making. 

dl d2 d3 d4 d5 d6 d7 d8 d9 dlO dll dl2 dl3 dl4 dl5 dl6 dl7 
、、、、： 

1 04)08 4 2.529 14.852 0.859 22.203 0.599 6.443 0.219 0.649 178.457 1.004 84.296 21.852 0.750 29.502 2.408 65.682 

2 2.604 0 f : � 5.286 0 . 9 8 9 12.755 0.795 1 . 1 6 4 3 . 0 0 2 3.988 141.154 1 . 6 2 3 6 1 . 2 9 11.588 2 . 7 1 0 15.882 0 . 2 1 5 4 9 . 5 3 4 、、h冰、、奴、 
�c^��嫁识& r—^ 

3 3.152 0 J 4 0 7.417 8.883 6.739 1.742 11.646 14.148 106.983 8.350 42.896 7.245 10.936 7.517 3.809 39.634 

4 0.848 1.320 11.270 0.025 20.194 0.369 4.319 0.845 0.824 167.652 1.406 78.385 18.799 1.626 25.239 1.596 62.172 

— — 

5 22.135 12.166 9.286 18.524 0.017 17.963 6.258 25.003 25.517 80.58 13.925 21.091 0.307 16.731 2.267 10.445 12.809 
、s:、:、h、  

6 0.344 1.712 12.156 0.346 22.435 o i ^ g < 5.538 0.216 0.942 173.851 1.632 82.902 21.422 1.706 27.917 2.075 66.867 
‘ ‘‘z 

‘‘ 

7 4.900 0.583 4,094 2.647 8,008 2.510 5.805 6.498 125.863 2.305 50,530 7.001 3.772 10„800 0.402 39,465 

8 0.139 2.829 15.006 0.885 25.044 0.639 7.342 m m ； 0.705 183.281 1.906 88.765 24.355 1.651 31.679 3.078 71.043 

9 0.624 3.784 17.563 0.981 26.379 1.403 8.197 0.509 0.025 188.78 2.198 91.834 25.318 1.695 33.601 3.887 71.809 

10 187.873 148.300 104.335 171.926 87.912 170.373 125.273 193.031 197.884 Q 3 H 166.310 25.231 85.748 176.945 68.700 147.304 55.600 

11 2.294 1.190 9.315 1.896 10.633 1.572 2.018 3.424 3.690 144.55 D.289 60.353 10.599 0.895 16.823 0.431 44.167 

,‘ 

12 128.813 96.984 63.905 116.180 48.224 114.887 78.224 133.515 137.134 110.471 6.921 46.865 119.048 34.953 95.651 26.741 

13 25.043 13.694 9.321 20.347 0.415 20.188 7.036 27.854 27.979 74.793 16.348 18.568 0.091 19.457 1.356 12.137 11.600 

14 1.185 3.073 15.411 2.188 16.426 1.858 5.451 2.230 2.055 166.688 0.240 74.063 16.849 0MI 25.122 2.072 53.664 

. . / , 
： - , 

15 29.916 15.879 6.835 23.910 2.546 23.537 8.693 32.295 33.639 63.222 21.422 15.136 1.438 25.359 0 15.132 14.169 

16 2.741 0.146 5.276 1.545 11.383 1.030 1.115 3.363 4.662 138.338 1.433 58.878 10.683 2.544 14.995 0 J 4 1 47.080 

17 75.230 57.904 48.400 69.374 16.665 69.047 43.732 81.187 79.680 49.106 58.245 8.727 18.623 62.579 19.603 53.489 0.447 

I I I I I I I I I I I 
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The performance of this approach is evaluated by the R O C curve, as shown in 

Fig. 6-4. The individual points on the curve represent the verification results as 

genuine acceptance rate vs false acceptance rate with different thresholds. The values 

of the thresholds are: 0.01，0.02, 0.03，0.05, 0.10, 0.14，0.15，0.20, 0.30, 0.34，0.40, 

0.45, 0.60, 1.0, 3.0, 6.0, 7.0, and 8.0. It is found that when the threshold is around 0.45, 

the best performance can be achieved. That is, the genuine acceptance equals to 16/17, 

while the false acceptance rate is less than 0.05. 

1 1 1 1 -p—© 
©e e e 0 

0.9- I -

I 。.8-/ _ 
8 0.7 f -
§ O 
^ 0.61 -
§ I 
^ 0.5 - -

•3 0.4(》 -
a 
<D 
O O.Zo -

0 
0 2 ' ‘ ‘ ‘ ‘ 

0 0.1 0.2 0.3 0.4 0.5 

False acceptance rate 

Fig. 6-4: Performance of the PPG verification using Euclidean distance. 

2) Fuzzy logic 

Table 6-2 gives the results using Fuzzy logic based decision-making. Each cell 

represents the averaged membership degree between the template and the sample. The 

largest final output scores are shadowed. 
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Table 6-2: PPG verification results using fuzzy logic based decision-making. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 0.982 ： 0.478 0.388 0.492 0.291 0.532 0.168 0.699 0.322 0.064 0.407 0.299 0.075 0.330 0.298 0.263 0.053 

2 0.575 li.dOO/’ 0.508 0.638 0.369 0.538 0.519 0.475 0.413 0.232 0.481 0.468 0.256 0.477 0.466 0.581 0.205 
'經 

、产::：、二̂二::…、 

3 0.380 0 . 3 1 0 梦 t 0.168 0.264 0.253 0.339 0.463 0.105 0.102 0.276 0.228 0.162 0.253 0.377 0.315 0.155 

�� � ‘ t•乂 
、？‘ S、"“̂  ••、、、、 

N \ 、 
4 0.414 0.315 0.062 0.674 0.203 0.548 0.226 0.281 0.635 0.329 0.083 0.250 0.371 0.098 0.210 0.167 0.253 

5 0.415 0.664 0.431 0.475 0.995 0.584 0.672 0.420 0.397 0.368 0.450 0.472 0.863 0.374 0.680 0.635 0.516 
N> ^ 

6 0.903 0.675 0.433 0.847 0.610 0.905 0.572 0.895 0.845 0.402 0.688 0.479 0.480 0.609 0.421 0.716 0.409   

“ " V " ！ ‘“ 's'丨'_'• "――~ 

7 0.599 0.808 0.841 0.715 0.723 0.712 6,9i53 0.609 0.667 0.475 0.782 0.585 0.716 0.672 0.644 0.908 0.666 

" " " " " " " " " " " " J , , ” "‘‘ “ 

8 0.945 0.482 0.452 0.615 0.335 0.654 0.221 0.998；； 0.557 0.107 0.551 0.327 0.125 0.477 0.302 0.366 0.072 

：  
‘ ‘ ,‘ 

9 0.658 0.396 0.342 0.645 0.321 0.425 0.493 0.697 0^70. 0.457 0.441 0.438 0.470 0.427 0.496 0.343 0.382 
‘‘‘ ‘/%::《： 

：；>：：|：；：： /, J 

10 0.003 0.012 0.001 0.025 0.145 0.156 0.108 0.001 0.420 6.941； 0.173 0.162 0.487 0.044 0.009 0.225 0.404 

11 0.799 0.731 0.661 0.767 0.549 0.894 0.626 0.802 0.565 0.328 0.897 0.438 0.402 0.737 0.403 0.844 0.268 
‘‘"‘‘ ‘ ‘‘ ‘： 

V丨'丨丨11"丨口‘；丨丨丨丨丨丨J"  

12 0.398 0.542 0.528 0.552 0.519 0.388 0.550 0.409 0.463 0.687 0.280 0723 0.537 0.231 0.671 0.412 0.507 

13 0 287 0.488 0.418 0.395 0.709 0.449 0.617 0.262 0.591 0.537 0.4500 0.356 0.987 0.401 0.575 0.543 0.870 

14 0.389 0.362 0.272 0.138 0.188 0.333 0.136 0.288 0.297 0.012 0.507 0.080 0.012 OMI 0.019 0.399 0.256 

15 0.288 0.449 0.693 0.528 0.538 0.292 0.590 0.280 0.463 0.391 0.210 0.489 0.695 0.147 L000 0.348 0.380 

16 0.531 0.431— 0.307 0.270 0.349 0.265 0.460 0.081 0.054 0.494 0.262 0.056 0.477 0.301 0.603 0.054 

17 0.084 0.231 0.108 0.158 0.308 0.167 0.254 0.099 0.305 0.438 0.094 0.260 0.540 0.305 0.172 0.203 0.985 

The R O C curve to evaluate the performance of this approach is shown in Fig. 

6-5. The values of the thresholds are: 1, 0.99，0.98，0.96，0.94, 0.92, 0.9，0.85, 0.8, 

0.75, 0.7，0.65，0.6，and 0.5. 
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Fig. 6-5: Performance of the PPG verification using fuzzy logic. 

6.3 Discussion 

A new approach of using PPG signals for human verification is presented in this 

chapter. The verification is accomplished by simply putting the fingertip on the PPG 

sensors. The result of this study shows that the PPG signals have predominant 

characteristics that can be used to identify different persons. Considering the 

physiological mechanism of the PPG generation, as described in Chapter 3, the 

stability in features of the PPG signal can be a result of the almost unchanged 

physiological status as well as the properties of the arterial system under normal 

relaxed conditions for healthy subjects. 

According to the experimental results, the rate of correct verification can reach 

up to 94% (one out of seventeen in errors), while the false acceptance rate is within 

5%. The false authentications were mainly attributed to the poor quality of the signals 

from the subjects, perhaps due to respiration and motion artifacts, which resulted in 

some distortions in the template feature vector. 

Two approaches for decision-making were implemented: 1) Euclidean distance; 
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and 2) Fuzzy logic. The performances of the verification under these two different 

approaches were evaluated by the R O C curve respectively, which indicates that the 

Euclidean distance approach seems to achieve better verification results. However, 

this might be due to the small size of database studied in this work. In other words, the 

fuzzy logic approach could be more efficient for a large number of subjects. 

The results presented above are under the condition that the template and the 

sample were within the same trial. For those generated from different trials, the result 

is not yet satisfactory. This is perhaps mainly due to the variations in the contacting 

force applied on the PPG sensor during different trials, which could probably 

influence the contour of the PPG signal to a large extent. In the future development, a 

finger clip would be preferable, which is able to achieve relatively stable contacting 

force for each subject. Also, further research based on large database must be done to 

improve this new method before it can be finally put into use in practice. 
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Conclusions 

7.1 Conclusions of Major Contributions 

The extensive use of PPG signals in various applications has attracted great interest in 

studying its physiological generation mechanism, and in investigating certain 

characteristics of the PPG waveform for the evaluation of clinically useful physiologic 

parameters. In this thesis, a new model is developed for the generation of the PPG 

signal based on its physiological mechanisms. The investigation on the features of the 

PPG waveform in this study has lead to two important new applications of this signal. 

The first part of this thesis is focused on a theoretical study of spectral 

characteristics of the IPFM model. In this part, with a single sinusoidal signal as the 

input modulation signal to the IPFM model, an expression for the relationship 

between the instantaneous firing rate and the intensity of the input signals is derived. 

The corresponding output of the IPFM model and its spectra are also studied from 

demodulation point of view. It is found that the output of the IPFM demodulator 

without noise is actually the approximated instantaneous firing rate rather than the 

original input modulation signal as reported before in several literatures [5] [6] [7] [8]. 

Simulations with different patterns of the input modulation signals are carried out 

under certain restrictions on the modulation depth and frequencies. The result further 

demonstrates that without the knowledge of the threshold, it is practically implausible 

to recover precisely the input modulation amplitude or intensity information. 

Meanwhile, it is also found that the firing rate function can be reconstructed with 
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reasonable accuracy by a simple LPF, which can be even applicable to more 

generalized input signals. 

Based on the simple but powerful structure of the IPFM model, a mathematical 

model is developed for the generation of PPG signals. Taking advantage of the two 

fundamental models, the IPFM model and the Windekessel model, together with the 

transmission properties of the pressure wave, the new model proposed in this study 

can reasonably mimic the physiological generation process of PPG signals. The 

simulation result indicates that though under certain simplifications, the model does 

correctly produce a number of important features of the PPG signal in both time and 

frequency domains, as well as the relationship between E C G and PPG signals with 

certain time delay. The relationship between the input modulating signal and the 

output of the proposed model is also studied. It is found that the modulation depth and 

the mean value in the fluctuant input signal are two important quantities that have an 

effect on HRV. It is also found that the PSD of E C G and PPG trains may serve as an 

alternative to evaluate the H R V by analyzing the power of the sidebands. These 

results could be of certain diagnostic value, and may be useful in explaining 

phenomena under some physiological and pharmacological conditions. 

The features on the waveform of the PPG signal obtained from experimental data 

are studied from statistical point of view in the third part of this thesis. In this part, a 

significantly high correlation (r = 0.962±0.029, p < 0.0001) was found between the RR 

interval of the E C G signal and the Y G interval of the PPG signal. The FY interval of 

the PPG signal also exhibits a high correlation (r = -0.8383±0.0912 , p < 0.0001) with 

the PTT at a relatively high contacting force between the finger and the sensor; while 

at low temperature and at the dynamic state, moderate correlations can be observed 

between these two parameters. The correlation between the PTT and the R R intervals, 

on the other hand, is not significant. The results of this study indicate that the Y G 
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interval could reflect to a large extent the relevant rhythm information associated with 

the duration of a heart cycle, while the FY interval might provide valuable 

information about the cardiac dynamics and the properties of the arterial elasticity 

under certain conditions. 

Based on the results of the correlation study and considering the previously 

、 reported relationship between PTT and arterial BP [36] [38], a new approach for the 

beat-to-beat BP estimation is proposed in the fourth part of this thesis. For either 

multi-beat or beat-to-beat estimation, the result of the FY-based approach is 

satisfactory in comparison with the A A M I standard on the non-invasive BP evaluation. 

The results of this new approach, comparable to or even better than under certain 

conditions those from the PTT-based method, demonstrate that the beat-to-beat BP 

monitoring can be implemented using the PPG technique only, which would provide 

much more convenience for the continuous non-invasive BP measurement. The 

analysis of the beat-to-beat BPV is also carried out using this new approach. By 

comparing with the result from FINAPRES device, it is concluded that the only 

possible error of the new method in the spectral estimation is the underestimation of 

the LF power. Taking advantage of the relationship between heart rate and BP, as well 

as the nearly linear relationship between BP and PTT under the resting condition, the 

new model is modified considering time-varying BP and PTT, which indeed makes 

this model more physiologically plausible. 

Considering its semi-repetitive nature, another new application of PPG signals is 

proposed for human verification. Although with a simple waveform, the PPG signal 

does contain characteristics that can be considered as unique identifiers specific to 

different persons while they are similar enough to recognize the same person. The 

preliminary result with a reasonable successful rate shows that this method is 

promising for human verification. 
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In summary, this thesis deals with a comprehensive study on simple but useful 

PPG signal, which not only provides an insight into better understanding the 

underlying mechanism of the PPG signal, but also results in two important new 

applications of the PPG signal for the non-invasive continuous BP monitoring and the 

human authentication. 

7.2 Work to Be Done 

For the first part of work, taking into account the detailed properties of the output 

events, it is necessary to further explore proper processing techniques before LPF in 

order to recover the original neural information faithfully. 

For the further improvement of the new model for the generation of the PPG 

signal, it might be important to focus on the specialization of the pulse generator and 

the time delay generator. In fact, both the pressure wave contour and the time delay 

(PTT) are associated with the arterial BP. Further research on the complex interaction 

among heart rate, BP, pulse wave contour, and pulse wave velocity in the 

cardiovascular and arterial systems would be crucial to improve our model. Ideally, 

the pulse generator in the current model could possibly be improved to more 

realistically carry dynamic information of both SBP and DBP and thereby some 

timing intervals, and the time delay generator in the current model could also be 

modified for more accurate generation of the time varying PTT. Furthermore, the 

refractory period may also be taken into account so that the new model is able to 

better interpret the underlying mechanism of heart beat generation. 

In order to enhance the reliability of the beat-to-beat estimation of BP and BPV, 

further studies to explore the physiological indications of the FY interval are 

extremely useful. It is also necessary to improve the estimation equations, as well as 

the calibration approaches. It could be useful to include other parameters which are 
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also extracted from the PPG signal, or by integrating PTT together to estimate B R 

Future work on interpreting physiologically the relationship between these parameters 

and arterial BP will be important to improve this new method before it can be finally 

put into use practically. 

For the new application of the PPG signal in biometrics, further research based 

on large database must be done. Also, it is important to explore features that are more 

stable within the same person while they can still be used to identify different persons. 

It is also desirable to further explore a better decision-making approach to improve the 

performance of the PPG-based authentication. 
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