
p i : : ‘ •

Mobile Personal Authentication using Fingerprint

Cheng Po Sum

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Department of Computer Science & Engineering

@ The Chinese University of Hong Kong
July 2003

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part of the whole of the materials in this
thesis in a proposed publication must seek copyright release from the Dean
of the Graduate School.

(g(T3 W 腿) j |

Table of Contents
List of Figures >

List of Tables Hi

Acknowledgments iv

臓 V

Thesis Abstract vi

1. Mobile Commerce 1
1.1 Introduction to Mobile Commerce 1
1.2 Mobile commence payment systems 2
1.3 Security in mobile commerce 5

2. Mobile authentication using Fingerprint 10
2.1 Authentication basics 10
2.2 Fingerprint basics 12
2.3 Fingerprint authentication using mobile device 15

3. Design of Mobile Fingerprint Authentication Device 19
3.1 Objectives 19
3.2 Hardware and software design 21

3.2.1 Choice of hardware platform 21
3.3 Experiments 25

3.3.1 Design methodology I - DSP 25
3.3.1.1 Hardware platform 25
3.3.1.2 Software platform 26
3.3.1.3 Implementation 26
3.3.1.4 Experiment and result 27

3.3.2 Design methodology II - SoC 28
3.3.2.1 Hardware components 28
3.3.2.2 Software components 29
3.3.2.3 Implementation 29

Department of Computer Science and Engineering iii

3.3.2.4 Experiment and result 30
3.4 Observation 30

4. Implementation of the Device 31
4.1 Choice of platforms 31
4.2 Implementation Details 31

4.2.1 Hardware implementation 31
4.2.1.1 Atmel FingerChip 32
4.2.1.2 Gemplus smart card and reader 33

4.2.2 Software implementation 33
4.2.2.1 Operating System 33
4.2.2.2 File System : 33
4.2.2.3 Device Driver 35
4.2.2.4 Smart card 38
4.2.2.5 Fingerprint software 41
4.2.2.6 Graphical user interface 41

4.3 Results and observations 44
5. An Application Example - A Penalty Ticket Payment System (FTPS) •.…47

5.1 Requirement 47
5.2 Design Principles 48
5.3 Implementation 52
5.4 Results and Observation 57

6. Conclusions and future work 62

7. References 64

Department of Computer Science and Engineering iii

List of Figures
Figure 1.1: Software electronic coins payment system 3
Figure 1.2: Hardware electronic coins payment system 4
Figure 1.3: Background account payment system 5
Figure 1.4: Symmetric cryptography 7
Figure 1.5: Asymmetric cryptography 1

Figure 1.6: Digital signature 8
Figure 1.7: Digital certificate 9
Figure 2.1: Fingerprint matching system 12
Figure 2.2: (a) Termination (a) Bifurcation (c) Core point 14
Figure 2.3: Orientation field 14
Figure 3.1: Block diagram of physical access control system 19
Figure 3.2: fingerprint and smart card authentication system 20
Figure 3.3: Architecture of SoC processor 22
Figure 3.4: General architecture of a DSP [8] 23
Figure 4.1: Proposed mobile device for authentication 31
Figure 4.2: Reset pin circuit 32
Figure 4.3: Overview of Linux I/O system 36
Figure 4.4: Atmel FingerChip device driver components 37
Figure 4.5: Image slices alignment technique 38
Figure 4.6 General APDU byte sequence 39
Figure 4.7: Two minutiae in polar coordinate 40
Figure 4.8: Touch screen interface between QT and device driver 43
Figure 4.9: Structure of touch screen raw data 43
Figure 4.10: FAR and FRR curves of 6, 9 and 18 matching minutiae used 44
Figure 5.1: General situation when the driver involve in a traffic offence 47
Figure 5.2: Parties involved in FTPS 48

Department of Computer Science and Engineering i

Figure 5.3 Driver verifies policeman using digital signature 50
Figure 5.4 Driver verifies policeman using a low speed processor smart card 50
Figure 5.5 Payment preparations 52
Figure 5.6: Certificate generation process 56
Figure 5.7: Software and hardware architecture of FTPS 57
Figure 5.8: Performance of certificate generation in different platforms 58
Figure 5.9: Performance of adding certificate information in different platforms 58
Figure 5.10: Performance of adding encrypted information in different platforms58
Figure 5.11: Performance of signing certificate in different platforms 59
Figure 5.12: Performance of verifying driver in different platforms 59
Figure 5.13; Performance of verifying PDA in different platforms 59
Figure 5.14: Overall performance of FTPS 60

Department of Computer Science and Engineering iii

List of Tables
Table 2.1: ARM architecture embedded processor speed comparison table 16
Table 3.1: Performance and Programmability of domain specific processor 25
Table 4.1: Pins connection between the Atmel finger chip and the Lubbock device32
Table 4.2: Flash drive partition design of mobile device 35
Table 4.3: APDU for fingerprint matching inside smart card 39
Table 4.4: EERs of the matching algorithm against different number of minutiae45
Table 4.5: Average times of downloading template data to a smart card 45
Table 4.6: Average matching times using different number of minutiae 45
Table 5.1: APDU of the driver card 53

Department of Computer Science and Engineering iii

Acknowledgments
I would like to give my sincere thanks to my supervisor Dr. Y. S. Moon for giving me advice
to explore the topics and help me to solve the difficulties in writing the thesis. Dr. Moon gave
me a lot of opinions so that I gain much valuable experience from him. Dr. Moon, as a
supervisor, also becomes my friend during my Master of Philosophy (MPhil.) study. He gives
advice to me time to time from research field to my future.

I would like to thank my colleagues, K.C. Chan, T.Y. Tang, K.F. Fong, M.L. Ho, H.M. Tang
and K.F. Jang for giving me an unforgettable campus life. They also gave me a lot of valuable
discussions and solutions when I met some problems in my research. They let me feel that I
am not working by myself.

I would like to thank my family and friends, especially my parents, for supporting my graduate
study. They gave me encouragement on helping and pushing me to finish the whole research
study.

Department of Computer Science and Engineering iii

摘要

現時，個人電子助理和手機等個人流動設備變得越來越普及°由於工業界推出了很

多新的工業設許和技術，流動設備可支援更多先進的應用°如生物辨識和多媒體處

理，這些應用雖然需要複雜的計算，但它們也開始移植到流動設備上。在眾多的應用

之中，流動付款對流動設備是一種比較重要的應用。在流動付款系統中’用戶能夠在

任何時間和地方也能靈活地作出付款或其它相關的處理。但是’認證成爲流動付款系

統裏一個重要安全問題，尤其是牽涉到金錢上的商業行爲。所以我們建議用一個較低

成本而又安全的流動系統，系統裏面包括有指模辨認和智能卡的應用，以提高流動保

安系統的安全性。

爲了評估我們的流動保安系統，我們開發了使用告票付款系統（FTPS)�在告票付

款系統中，我們設計了不同的安全模式，它可以讓不同的人或組織在一個安全的渠道

上進行溝通。我們做了不同的實驗去評估安全模式在流動平台上的表現。結果顯示，

我們的告票付款系統能夠有效率地在流動保安系統上運作及達到理想的表現。

Department of Computer Science and Engineering iii

Thesis Abstract
Nowadays, personal mobile devices, such as PDAs and cell phones, are becoming more

and more popular. With the new advancement in industrial technologies, mobile devices can
support more advanced applications. Computational intensive applications such as those for
biometric and multimedia purposes are now deployed to these devices. Among these different
applications, mobile payment is one of the most important applications in mobile platform.
With the ubiquitous characteristic of mobile devices, mobile payment provides flexibility to
users as they can access the devices anywhere at any time. However, authentication is a
critical security concern in the mobile payment system. It is especially important for those
commercial activities involving monetary transfers. Hence a low cost prototype secure mobile
device, which is capable for handling fingerprint and smart card, is proposed here to enhance
the security of the mobile systems.

To evaluate the performance of our proposed mobile security system, a Penalty Ticket
Payment System (FTPS) is developed on top of our constructed device. Different secure
modules are implemented in FTPS so that different parties can communicate with each other
via a security channel. Experiments are conducted to evaluate the performance of the secure
modules in mobile platform. Results show that our mobile security system can be deployed to
PTPS efficiently and it can achieve real time performance.

Department of Computer Science and Engineering iii

1. Mobile Commerce
1.1 Introduction to Mobile Commerce

Mobile commerce is one of important commercial activities nowadays. It often
involves the use of mobile devices when making transactions. Mobile commerce is quite
different from the traditional electronic commerce. Electronic commerce is a more
general term to define the type of commercial activity conducted in an electronic world.
However, mobile commerce emphasizes the wireless way of conducting transactions.
Therefore mobile commerce is a subset of electronic commerce. The use of mobile
devices in mobile commerce makes a significant change in our computer paradigm. The
ubiquitous environment in our real life has a great impact on our living style. We can
use the mobile device to interact with other devices or computers anywhere at anytime.
However this significant change makes a great challenge to the security issue. The uses
of mobile devices are quite different from fixed-location devices (e.g. desktop personal
computers). There will be security holes without a well designed authentication
technique and control access schemes [23]. We will have a more detailed discussion
about the security issue in a later part of the thesis.

The ways of conducting transactions in mobile commerce give more flexibility to
the users. With the mobile devices, users can enjoy the mobile services provided from
the suppliers in real time. For example, a user can buy or sell a stock at a certain price
immediately. Or he can make a bill payment that will overdue a few minutes later.
Mobile users can receive and interact with the services content at an instant in different
ways like HTML (HyperText Markup Language) [17] and SMS (Short Message
Service) [53]. Therefore.with more and more applications deploying to the mobile
world, customers can enjoy a higher quality of services.

Mobile commerce applications become more and more popular and important
because the number of mobile users has grown rapidly from four million in 2000 to
twelve million in 2002 [42]. There are many kinds of mobile commerce applications
that provided to the customer. According to [52], mobile commerce applications can be
divided into three main categories, digital content delivery, telemetry service and
transaction management.

Department of Computer Science and Engineering iii

Digital content delivery

Digital content delivery refers to the transfer of requested information to the user.
Information including weather, stock price, e-book, ticket availability and traffic status
are some of the examples. Digital information can be delivered to a user who owns a
network enabled mobile device. When more advanced equipment like high revolution
LCD display and faster processor is used, information like MP3, video and digital map
can be delivered via higher speed networks.

Telemetry service

Telemetry service is a new way of mobile application. Telemetry technology allows
a user to control home appliances from a mobile device via a wireless network.
However, this type of service is not very popular because IP-enabled home appliances
are still a very new idea that requires the participation of numerous appliance vendors
and the drafting of mutually agreed operation protocols.

Transaction management
r

Transaction management is one type of mobile commerce service that is easier to
deploy to the user. Online shopping and mobile purchasing are two examples. In
transaction management service, a user can enjoy real time information browsing,
product selection and purchasing. All steps can be completed via some small portable
devices, giving great convenience to users to manage their transactions.

Among the above three categories of mobile commerce applications, security
concerns in transaction management is the most important one because it involves a
large amount of monetary transactions. Therefore we will further discuss the mobile
payment systems for handling monetary transfers.

1.2 Mobile commerce payment systems

In traditional desktop-based electronic commerce, many payment systems are
already available. However, as mentioned in [51], direct porting of such systems to
mobile devices are not suitable. The unique characteristic of mobile commerce causes
many difficulties in integrating with the traditional electronic payment systems.

Department of Computer Science and Engineering iii

Therefore, new types of mobile payment systems have been proposed to solve the
problem. Basically, there are three types of mobile payment systems. They are software
electronic coins, hardware electronic coins and background account payment system.

Software electronic coins payment system

Figure 1.1 shows the software electronic coins payment system. This type of
payment system uses software to represent monetary value. Customers can purchase
electronic coins and download them to mobile devices. A coin can be stored as a file
with a serial number and expiry day. Whenever a customer employs a mobile device for
a purchase operation using an electronic coin, the merchant software will retrieve the
coin from the mobile device and forward it to the issuing bank. The bank will then
check the validity of the serial number of the coin. If the coin is valid, the bank will
deduct the purchasing value from the coin and transfer the amount to the merchant's
account. H ~ ； Issuer/Bank

Verifies software coins and
�，. p / credits the merchant's ^ Credit software / ^ \ . / account \ coins / \

1 \ Request

\ 。 一
Mobile \
device ^

Software Merchant
coins ^

Figure 1.1: Software electronic coins payment system
The disadvantage of this system is that the coin needs to be generated externally and

then downloaded to the mobile device. This procedure is not convenient to the customer
because the customer needs to go to the issuing bank for crediting the electronic coin.
Speaking of security issue, the uniqueness of the electronic coin mainly depends on its
serial number. Without a proper encryption to protect the serial number, it can be easily
duplicated and used illegally. Besides, the customer is completely anonymous to the
bank and merchant. That means no parties can identify who is using the electronic coin.

Department of Computer Science and Engineering iii

Therefore, the security level of authentication is weak, making it suitable for small
amount of monetary transfers.

Hardware electronic coins payment system

Figure 1.2 shows a hardware electronic coins payment system. In this type of
payment system, a hardware token like a smart card is often used to store the electronic
coin. Using a smart card gives a great convenience to the customer because a smart card
is easy to carry. In conducting a transaction, a customer only needs to connect his/her
smart card, which is provided by the merchant, to the card terminal. The software from
the merchant, which is provided from the card issuer, will check the validity of the smart
card and deduct the purchasing amount from the card. The transaction log will then be
sent to the bank and the bank will credit the merchant's account. There are several
advantages in using this approach. Merchant can conduct transactions with customers
directly and transfer the amounts to the issuing bank. Customer can add credit to the
balance inside the smart card with an Automatic Teller Machine (ATM) directly.
Besides, a hardware token (smart card) is difficult to duplicate [64] and it gives more
pfotection to the customers. But the security protection in those systems is still not
enough because no authentication procedure is involved. Using a hardware electronic
coin like the Mondex card, does not require any authentication before conducting a
transaction. That means anyone who picks up the card can use it for purchasing directly
without any restrictions.

Issuer/Bank
Credits merchant's account
according to transaction log

一

Customer Merchant
‘ Verifies smart

Smart card card

Balance
— ~ •

Figure 1.2: Hardware electronic coins payment system

Department of Computer Science and Engineering iii

Background account payment system

Figure 1.3 shows a background account payment system. In a background account

payment system, a trusted third party who stores the account o f the customer is required

to act as a mediator between the customer and the merchant. When the customer

receives the invoice from the merchant, he or she w i l l send an authentication and

authorisation messages to the merchant. The merchant w i l l then forward those messages

to the trusted third party. The trusted third party w i l l verify the message and settle the

transaction. Famous background account systems like the Secure Electronic

Transactions (SET) belong to this category. In SET, a transaction is encrypted and

digitally signed to prevent unauthorized attacks. The advantage o f using this type o f

payment system is that the account is stored in a trusted third party. Unauthorized

persons cannot access the account directly. In order to attack this type o f system, an

attacker needs to send a fake message to the trusted third party. In this way, the security

o f the system depends on the protection mechanism for the authentication and

authorisation messages.

Trusted third party

Verifies authentication and
authorization messages, and then
credits merchant's account from
customer's account

Z^ T “ I T M e s s a g e s

\ forwarding
Authentication and \
authorization messages \

Customer ―丨 Merchant

Figure 1.3: Background account payment system

1.3 Security in mobile commerce
In the previous section, we have discussed different kinds of mobile commerce

payment systems. Security in those payment systems is very important because it
involves monetary values. Without a proper security measure, payment systems can be
easily attacked. There are many known types of attack to payment systems [7]. To Department of Computer Science and Engineering iii

protect against these attacks, security requirements on payment authentication, integrity,
non-repudiation and confidentiality must be further considered [64].

Authentication

Authentication is to ensure the identities of different parties that involved in the
transactions. There are different types of authentication methodologies for different
applications, for examples, password, smart card and biometric. Each methodology has
its strengths and weakness. We will have a detailed discussion in a later part of this
thesis.

Integrity

Integrity is to ensure that no unauthorized principals can modify the content of the
transaction. Information inside the transaction including payer and payee identities,
purchase details and other related information should ALL be protected.

Non-repudiation
r

Non-repudiation is to ensure that once a customer has committed a transaction, he
or she cannot deny it. A signature from the originator needs to be included in the
transaction so as to provide a non-repudiation feature.
Confidentiality

Confidentiality is to ensure that transaction data will only be disclosed to the
relevant parties during storage or transmission processes. A secret communication
channel is needed during the transfer of data. Different pieces of information inside a
single transaction are separately disclosed to different parties (e.g. SET) on a need-to-
know basis. This requirement adds further complication to the communication
mechanism.

In order to achieve the above four security requirements, a security technology,
Public Key Infrastructure (PKI), is deployed in the world of electronic commerce. There
are lots of cryptography technologies inside PKI. The main components include
symmetric cryptography, asymmetric cryptography, digital signature and digital
certificate. They are described in Figure 1.4 to 1.7 respectively [61] [4].

Department of Computer Science and Engineering iii

In symmetric cryptography, a secret key is used to encrypt the plain text into cipher
text. During data transmission, the cipher text is not viewable from an unauthorized
party. Therefore, it provides data confidentiality. On the receiver side, the cipher text is
decrypted using the same secret key to obtain the plain text. Both parties that involve in
the process need to share the same secret key. Therefore, this method cannot guarantee
authentication and data integrity.

Plain text _ Plain text
/ \ f

� Encrypt / \ Decrypt
Secret key ^

w
Cipher text • Cipher text

Data transmission
Figure 1.4: Symmetric cryptography

In asymmetric cryptography, two keys are used for encryption and decryption.
Therefore it can provide key confidentiality. The two keys are mathematically related
and generated by RSA algorithm [48]. Data encrypted with a public key can only be
decrypted using a private key and vice versa. On the other hand, a private key is
accessible by the owner only while a public key can be distributed to the public.
Therefore, data encrypted with a public key can provide data confidentiality while a
private key cannot. The advantage of this design is that no sharing of a key is necessary.
Each party only needs to keep a private key for decrypting secret messages that are
encrypted with corresponding public key.

Plain text Plain text
r ̂ / ^ A t
^ Encrypt / Public \ / Private \ Decrypt ^

\ r
Cipher text • Cipher text

Data transmission

Figure 1.5: Asymmetric cryptography

Department of Computer Science and Engineering 7

In creating a digital signature, the plain text in a message is first hashed using a
hash function [15]. The hashed plain text is signed by a private key to produce a
signature. After the signature has been transmitted to the receiver side, the receiver uses
the corresponding public key to decrypt the signature in order to get the original hashed
data, say HI. The receiver now produces another hashed data using the same plain text
as the sender, say H2. By checking whether the two hashed data, HI and H2, are equal
or not, the receiver can verify whether the message has been "properly signed". Digital
signature, thus, provides authentication and data integrity features since a digital
signature can only be produced using its owner's private key. Besides, a digital signature
also provides the non-repudiation feature because the sender cannot deny his/her signed
document using his/her private key.

Plain text Plain text
Hash function •

5 r
I Hash

Hash I
^ ^ Same?

, S i g n (encrypt/ Private \ f P u b l i c �V e r i f y (dec ryp t) : ‘

J r
Signature — • Signature

Data transmission
Figure 1.6: Digital signature

A digital certificate is used to ensure that the entity's public key belongs to the
entity it claims to be. There are four main fields in a digital certificate. The first one is
the owner's identity that stores the related owner information. The second one is the
owner's public key. The third one stores the certificate authority's (CA) information.
The last one is the CA's signature that is produced by signing CA's private key on the
hashed owner's information as shown on the left of Figure 1.7. A CA is a trusted party
who is responsible to generate public keys for verified owners. One party can verify
another one by CA's public key as shown on the right of Figure 1.7.

Department of Computer Science and Engineering iii

(1
I ：

Digital certificate ~ ‘ “
丨 Hash by hash

Hash by hash ^ ^ Owner information function function Owner public key j
i The same?

S i p e d b y C A CA information ~ t
private key “

CA Signature _ ^ Verified by CA
1 public key (third
！ 丨 party)

Figure 1.7: Digital certificate

The above four main components in a PKI system provide a complete framework
for various security applications. Each party using this framework can communicate
with the others in the secure channel. In the next chapter of this thesis, we will discuss
the advantages and disadvantages of different authentication techniques that can be
applied to mobile commerce applications.

r

Department of Computer Science and Engineering iii

2. Mobile authentication using Fingerprint
2.1 Authentication basics

Authentication is an important procedure in a secure transaction. If the
authentication layer of the system is not reliable, even strongly encrypted data can
become useless because no reliable identification of the involved parties can be made. In
this way, an unauthorized party may have chance to attack valuable information.
Although PKI can help us to solve different security requirements (which are mentioned
in chapter one), it cannot replace the need for secure authentication mechanism. The
reliability of PKI is strongly dependent on the authentication mechanism.

The protection of the private key is very important in PKI because the private key is
used for identifying the party involved in a transaction. If we do not have a suitable
authentication mechanism to protect the private key, PKI can become untrustworthy
since anyone can copy the private key and pretend to be the owner in order to conduct a
transaction.

Modem authentication mechanisms are based on three common design
considerations: "Something-You-Know" (knowledge factor), "Something-You-Have"
(possession factor) and “Something-You-Are (biometric factor)" [44][4][61].

A "Something-You-Know" architecture refers to remembering some passwords or
PINs. A lot of applications, like ATM card and e-banking, use this strategy nowadays. In
this model, a secret password is shared between the user and the host. The advantage is
that the implementation of this architecture is not complicated and it can be easily
integrated into different applications. However, the disadvantage is that the whole
authentication relies only on the password. If the user discloses the password
accidentally, an unauthorized person can steal the owner's identity easily. Moreover,
passwords made up of strings of numerals and characters that can be guessed by try-and-
error. Moreover, since passwords are stored in a security system, the system shares some
security responsibility. Cases exist in the past where systems were attacked and
passwords were stolen.

Department of Computer Science and Engineering iii

Different from the "Something-You-Know" architecture, the "Something-You-
Have" architecture refers to some physical objects that the user owns. Those physical
objects include hardware token cards or software digital certificates. The
implementation of a hardware token method is often used with a hardware card, e.g. a
smart card. The smart card stores the key used for authenticating its owner. A smart card
reader is needed for reading information from smart card and sending the information to
a host computer. Although it is difficult to attack the information stored inside a smart
card [47]，information can be stolen during the data transmission to/from the smart card
reader from/to the host. Therefore, some smart cards are capable of applying encryption
to its data for protection during transmission. This authentication technique is more
secure than the "Something-You-Know" architecture because an unauthorized person
will have to steal or duplicate the certificate or hardware token before he or she can
access the valuable information. The software certificate may also be stolen if the user's
PC is hacked. As a result, the host can only identify the mathematically strong objects
[44] assigned to the users but not the users themselves directly!

The last authentication mechanism depends on some biometric features, like
fingerprint, face, iris, voice, etc. of a user. It is a strong authentication technique because
only the owner possesses the biometric features himself assuming unique physical
characteristics of a human body. It is very difficult for an unauthorized person is very
difficult to forge or duplicate the same features belonging to a user. Traditionally,
biometric data processing, which is usually considered as a branch of signal processing,
requires extensive computation in order to achieve accuracy and reliability. Fingerprint
authentication is one of the most popular and mature techniques [35][43][33] among all
biometric authentication. techniques. Numerous biometric researches have been
conducted in fingerprint authentication. New technologies based on electronic
capacitance, pressure, thermal radiation have enabled the production of many low cost
and small fingerprint sensors. Thus, fingerprint authentication will become one of the
most popular techniques deployed to the mobile applications in the future.

As mentioned above, there are three main types of authentication factors. An
authentication process can combine different factors to achieve better security. For
example, an authentication system can use a smart card together with biometrics. If a
user cannot present his/her smart card and validate himself/herself through biometric

Department of Computer Science and Engineering iii

tests, he/she will be rejected by the authentication system. This type of system is called
hybrid architecture. Hybrid design provides a flexible architecture in which different
security techniques are fused together to achieve a better security. With the combination
of strong authentication technology and PKI, a high level of security in mobile
commerce can be achieved. In this thesis, we will focus on the investigation of such a
development. Therefore, we will introduce the fingerprint biometric knowledge in the
next section.

2.2 Fingerprint basics

A fingerprint matching system contains several components. Its operations are
made up of two phases, the enrolment phase and the authentication phase. Figure 2.1
shows a generic fingerprint matching system.

！ Enrolment phrase 丨 丨 |
j User database 丨 |
I j Store the feature I I
I Fingerprint Image Feature and associate it j ！
I image capture preprocessing ~ • extraction + • with a unique ED ! |

I Authentication phrase |
I y I

i Fingerprint Image Feature Feature Matching ;
I image capture preprocessing extraction matching —• result I

• Figure 2.1: Fingerprint matching system
The enrolment phase contains four stages: fingerprint image capture, image pre-

processing, fingerprint feature extraction and fingerprint registration. Fingerprint image
capture refers to the capturing of a user's fingerprint from a fingerprint sensor. There are
different kinds of fingerprint sensors. The physical size, fault tolerance and resolution of
a sensor characterize its properties as well as the main features for evaluation. Image
pre-processing refers to the enhancement of a fingerprint image. It is an image

Department of Computer Science and Engineering iii

processing technique to improve the quality of the image like contrast adjustment and
feature reconstruction. Fingerprint feature extraction is a mathematical process applied
to a fingerprint image. This process extracts the unique features from the captured
fingerprint image. Feature extraction is an important step because it is closely related to
the accuracy of the authentication system. The last step is fingerprint registration. It adds
a user's unique features to the database and assigns a unique ID to the corresponding
record.

The authentication phase contains five steps. The first three steps are similar to the
enrolment phrase. The fourth step is feature matching in which the system retrieves the
registered fingerprint features from the database and compares it with the features
extracted from a live fingerprint template. In the last step, the system calculates the
matching result so as to determine whether the two templates belong to the same person
or not.

In a lot of fingerprint systems, the matching result is represented by a score, say
zero to hundred. The threshold score value for matching the fingerprints are often
determined by the calculation of False Rejection Rate (FRR) and False Acceptance Rate
(FAR) [1]. FRR is the rate of rejecting authorized users. FAR is the rate of accepting
unauthorized users. To analyse the characteristic of FRR and FAR, a fingerprint
database is needed to evaluate the fingerprint verification algorithm. The test result can
be regarded as a reference to measure the security level of the system.

As we have mentioned above, feature extraction is the process that is closely related
to the accuracy of a fingerprint verification system. Therefore, we must extract the
features of the fingerprint accurately. A fingerprint feature is the characteristic of
ridgelines on the finger so that each finger has its unique set of features [49]. As there
are noise and distortion when capturing a fingerprint image, direct comparison of two
fingerprint images using cross-correlation is not practical. Hence, special information
that will not be influenced too much by noise and distortion has to be selected from a
fingerprint image. These features include core point, orientation field and minutiae. A
core point is the uppermost point of the innermost curving ridge as shown in Figure 2.2.
Most fingerprint images will only contain one core point so that it can be used for
fingerprint alignment. An orientation field is the directional structure of the ridgeline on

Department of Computer Science and Engineering iii

the fingerprint image as shown in Figure 2.3. Minutiae are the ridgeline termination or
bifurcation. The end of a ridgeline forms a termination and the merge of two ridgelines
forms a bifurcation as shown in Figure 2.2. The matching of two fingerprint images is
the calculation on the similarity of those fingerprint information.

^ ^ (a) Termination

^ I (b) Bifurcation ~

Figure 2.2: (a) Termination (a) Bifurcation (c) Core point

_

I • 11 一 一 „

Figure 2.3: Orientation field

There are two types of fingerprint systems, identification and verification systems.
In identification, a database is needed to store the minutiae information of all pre-
registered users. When a user presents his or her fingerprint on the sensor, the system
extracts the features and identifies the matched fingerprint in the database. It is a one to
N matching problem. In verification, the system verifies the fingerprint of the user that

Department of Computer Science and Engineering iii

he or she claims to be. Before a user presents his or her fingerprint, he or she needs to
inform the system his or her own identity to be verified by the system. In this way,
fingerprint verification is a one to one matching and the procedure is much simpler than
identification.

2.3 Fingerprint authentication using mobile device

The process of fingerprint authentication and the characteristic of mobile device
cause a great challenge to the deployment of fingerprint authentication system on mobile
devices. Fingerprint feature extraction is a complicated process that involves a lot of
mathematical calculations. The process can be divided into several parts [34]. They are
image enhancement, image segmentation and orientation, core point location and
minutiae extraction.

(a) Image enhancement/filtering

This part aims at enhancing the image quality before feature extraction. Common
techniques like the application of a directional filter [29] and image normalization [22]
are often employed.

(b) Image segmentation and orientation

This part computes the orientation of the fingerprint image and identifies the
Region of Interest (ROI) [21].

(c) Core point location

This part locates a core point [5] for fingerprint alignment and matching. It is
computed from the orientations of the ridgelines obtained from step (b).

(d) Minutiae extraction

This part traces the ridgeline with the helps of orientation information and finds
out the bifurcation and termination features.

In general, the authentication process is an n^ process, assuming that fingerprint is
an n by n (pixel) image. Steps (a) to (d) involve intensive floating-point calculations,
especially approximations of trigonometric functions.

Department of Computer Science and Engineering iii

Although the fingerprint authentication process is complicated, it can run on
desktop PC in real time because desktop PC has a very fast processing speed. We do not
need much optimisation before constructing the verification software. However, when
the authentication process executes in a mobile device, the situation becomes different
because the software and hardware design of mobile device are quite different from the
desktop PC [30]. Devices such as mobile phones and Personal Digital Assistants
(PDAs) share a number of unique features and limitations. They include processing
power, floating-point computation capability, battery and other physical constraints.

Processing power

With the advancement in electronics technology, the computational capability of
mobile devices increases exponentially, enabling them to execute a wide range of
applications. An embedded processor with large market share is the ARM [57][55]，a
RISC [45] based processor. Table 2.1 shows the speed comparison on different ARM
based embedded processors. From the table, we can observe that even the speed of the
fastest embedded processor is only comparable to speeds of some very obsolete desktop
processors. The speed limitation is due to the consideration of power consumption and
heat dissipation on a mobile device. The power consumption of desktop processor is
quite large when comparing with an embedded processor. Therefore, the battery of a
mobile device cannot meet such demands. Besides, the heat dissipation of desktop
processors is very high and it is senseless to add a fan on a mobile device. Therefore,
desktop processors are not suitable for mobile devices.

Processor/Family Production Year Clock MHz
ARM7 • 100-133
ARM9 2000 180-250
StrongArm 2000 206
XScale 2002 400-1000

Table 2.1: ARM architecture embedded processor speed comparison table
Floating-point co-processor

A floating point co-processor is a dedicated processor for floating arithmetic
calculations such as floating addition, floating substraction, sine, log and etc. It operates

Department of Computer Science and Engineering iii

together with the main processor and is actually resident in desktop PC processor. But
the floating-point co-processor is a luxury in a mobile device because the extra co-
processor draws substantial extra power from the battery. Therefore, most embedded
processors do not have hardware floating-point units. Instead, software floating-point
arithmetic is used.

There are two methods in handling software floating-point. They are software
emulation and software library [37]. In the software emulation approach, when floating-
point is detected during compilation, the compiler will automatically generate assembly
code to emulate specific floating-point co-processor hardware. The advantage of this
design is that the software emulator supports all the floating-point operations available
in the emulated hardware. In the software library approach, all the required floating-
point mathematical operations are simulated using integer operations. When a
programmer encounters a floating-point operation, he or she will make a function call to
a floating point library instead. The advantage of this design is that we can customize
the simulation software for an embedded system. Both approaches are also very popular
for an embedded system and the software developers can make their own choice
depending on their applications.

Battery

Battery technology development advances at a rate far slower than the processing
units in mobile devices [50]. When more advanced functions are added to the mobile
devices, including the multimedia and biometric applications, battery capacities hardly
seem enough for the mobile devices. Therefore, some battery driven system design
methodologies have been developed [27] to increase the battery capacity of the device.
In such a design, the efficiency is closely related to the power drawing procedures.

Physical constraints

The portable feature of a mobile device limits its size and weight. These constraints
cause lots of restriction in the design of a mobile device. The display needs to be small
due to its physical size. Extra peripherals such as external sockets, network modules are
also limited.

Department of Computer Science and Engineering iii

As discussed above，fingerprint authentication is a challenge to mobile devices.
When implementing such an application in an embedded device, we encounter
difficulties due to slower CPU speeds, absence of cache and most important of all,
absence of a floating-point unit. While optimising the authentication, we cannot afford
to sacrifice reliability. Thus, a fast, low cost and accurate methodology must be
developed for fingerprint matching for embedded applications. In the next chapter, we
will discuss the methodology on how to design a mobile fingerprint authentication
device.

Department of Computer Science and Engineering iii

3. Design of Mobile Fingerprint Authentication Device
3.1 Objectives

Before we design the hardware and software components of a mobile device, we
have to determine the application requirements. In a fingerprint system, as mentioned
above, the system can be divided into identification and verification applications.
Identification application identifies a person from a group of individuals. The size of
database can range from a few persons (home use) to hundreds of persons. The
performance of such a system is database size dependent. Access control (e.g. door lock)
is a typical identification example. Figure 3.1 shows the block diagram of a common
access control system. Enrolment is conducted when a user first registers a fingerprint in
the system. The core part of the system is the authentication device. It needs to handle
different connections such as Ethernet, RS232 and Wiegand (an industrial standard
security protocol sending bit strings of specified length and content) to communicate
with the enrolment machine, database server and security controller.

‘ Fingerprint
authentication device
(fingerprint sensor) Fingerprint

Z database server

Fingerprint L r ^ t h e m e t
enrolment machine

(core processor) ^ L �

Wiegand
] r Security Controller • Door Lock

Figure 3.1: Block diagram of physical access control system

With the limited features of a mobile device, it is difficult to conduct identification
using slow speed CPU in a very large database. To solve this problem, we can use a
smart card. Every user in the system is issued with a smart card in which his identity is
stored. When the system needs to verify a user, the user needs to present his smart card
and verify his identity using his fingerprint. With this approach, the mobile
authentication device does not need to perform one to N matching. Figure 3.2 shows the

Department of Computer Science and Engineering iii

block diagram of a fingerprint and smart card authentication system. Similar to Figure
2.1，this figure also contains enrolment phase and authentication phase. In enrolment
phase, the features of the captured fingerprint will be extracted and registered in the
smart card. In authentication phase, the live fingerprint template will be transferred and
matched with the pre-registered one in the smart card. Since this approach is more
practical for mobile device, we decided to adopt this approach in our implementation.

Capture user Features Store feature template
fingerprint extraction ~ • to smart card

1 Match live
Enrolment phase i template with

Smart card ^ the one inside
Authentication phase smart card
User Capture user's Features Transfer live
presents ~ • live fingerprint ^ extraction template to smart
smart card ^̂ ard

Figure 3.2: fingerprint and smart card authentication system
Like other embedded systems, the design of a mobile personal fingerprint

authentication device requires the consideration of cost, development time and runtime
performance. Since real time response is a critical factor in this case, we will focus on
the searching of an appropriate implementation strategy that can yield such
performance.

Before we design the mobile device, we need to understand what an embedded
system is. In [65], Wolf defines an embedded system as "Any sort of device which
includes a programmable computer but itself is not intended to be a general-purpose
computer is said to be an embedded system." Traditionally, an embedded system is
often regarded as a micro controller residing in a special purpose device. Because of its
dedicated purpose(s) and limited resources, there is limited or even no operating system
support. In the event that extensive computation is required, a dedicated processor [24]
is also included to ensure a satisfactory performance. Such systems can be found in
numerous industrial applications, particular in the area of control engineering. With the
advancement in semi-conductor technology and operating system miniature, we are
seeing the births of new kinds of embedded systems. A glance of an embedded Linux
web site clearly reveals this [32]. Embedded systems have been widely used in factories

Department of Computer Science and Engineering iii

and even offices and households. Well known examples include set-top-boxes and
routers. The advent in personal and mobile computing has pushed embedded systems
further to the personal applications. Mobile telephones, personal digital assistants are
some typical examples. In short, embedded systems have quickly become a part of
modem man's life.

3.2 Hardware and software design

Designing an embedded system involves both a hardware part and a software part.
The hardware part includes the core hardware platform that the system used. It can be
the choice of processors, memories and other related peripherals. The software part is
the design of software layer(s) implemented in the embedded system. The software
architecture needs to be designed carefully because it affects the efficiency of the whole
system. It controls the processor and memory resources as well as the communication
protocols between the processor and the peripherals. Therefore, a bad design will affect
the stability and reliability of the system.

3.2.1 Choice of hardware platform

When developing an embedded application, there are a number of choices of the
type of processors. Those domain specific processors [31] can be generally divided into
three areas [46]，System-on-Chip Processor, Digital Signal Processor and Application
Specific Integrated Circuit Processor.

a) System-on-Chip (SoC) Processor

In the past, embedded applications used an 8-bit micro-controller as the core part
of the design. An 8-bit processor micro-controller is designed for low-cost applications
such as servomotor control and simple robot control. Today, the 8-bit processor is still
very popular for low-end applications because they are relatively cheap and easy to
control. With more advanced applications deployed by the embedded systems, an 8-bit
processor seems to be too slow to support the advanced applications. Therefore, a new
technology embedded processor is being developed to suit the applications. We call it a
System-on-Chip (SoC) processor. SoC will play an important part in the next generation
of computing. It is a new type of hardware architecture with complex hardware that

Department of Computer Science and Engineering iii

integrates with different Intellectual Property (IP) cores. As shown in Figure 3.3, the IP
cores may include SDRAM controller, peripheral I/O controller, Ethernet controller,
LCD interface and etc. Those IP cores communicate with the Central Processing Unit
(CPU) via internal bus. The variety of IP cores allows a single SoC to be programmed
for different applications. The new architecture of SoC enables the reusability of
hardware modules and therefore shortens the design time for new systems. In fact, a
SoC processor is similar to a general-purpose desktop processor without floating-point
support because of cost and power consumption considerations. The requirement that
that all processes be performed on a SoC helps to reduce power consumption, minimize
chip areas and simplify the hardware and software development process [46].

CPU
^ SDRAM Controller)

Interrupt controller
I - Real-Time Clock nC Interface I

LCD Interface -(General Purpose
Ethernet Controller J

� UART • I

^ ^ ^ ^ ^

Figure 3.3: Architecture of SoC processor

In SoC circuit design, system complexity will grow faster than Very Large Scale
Integrated (VLSI) circuit [26] complexity because the functionality of embedded system
based on SoC can be implemented in software. With the help of software
implementation, a SoC can deploy to different applications. Let us take the ARM
[19] [18] series of processors as an example. They are 32-bit RISC processors with
pipelined features. One of the famous ARM-based processors is the Intel PXA250
application processor. This SoC is equipped with an Intel XScale core microprocessor
with different IP cores. It can be used for embedded system with a higher performance,

Department of Computer Science and Engineering iii

lower power consumption and on-the-fly frequency scaling functionality [18]. The on-
chip controllers can increase the communication performance between the core
processor and the peripherals and hence reduce the overhead on the design of the
hardware architecture of the embedded systems. With such design, the PXA250 can be
deployed to different areas of embedded application that range from personal devices,
such as MPS player, handheld device, to advanced applications on network routers,
automobile and high speed cell-phone [14].

b) Digital Signal Processor (DSP)

DSP is a processor that targets on dedicated application (target on algorithm) with
low cost and power consumption. It contains specialized hardware for fast computation
and parallel programming. DSP usually deals with arithmetic manipulation such as
multiplication and addition. Since these two operations often occur simultaneously, as
shown in Figure 3.4，it has to include a parallel hardware so that multiplication and
addition can perform in parallel way. This design will significantly increase the speed of
the DSP for arithmetic operations. Besides, it can be equipped with different memories
and bus architectures targeting high performance, extremely low cost and low power
[46].

address generation lots of registers V signal in

_ _ _

ADDRESS I INTEGER FLOW _ SERUl �E Z Z I Z ^ S ^
[GENBWrORl Ifttomm I i REGiSTlRS j POftT | ：

一 哪 一 一 》 ——一秘viT 、 . 去 、 珊 匪 懇 • 必 ； S i g n a l out ((k I
pardid multiply/add 广 ' e n t I/O ‘ 芸 j

麗 國！ DMA I _ I 1 I I gsystem
multiple memories j

E S S S i ES3mH i ES3QBII ^ x - j S i 善
WICXJIUM DMA j MTA I LINK | : ̂ ^ ^ ^ DSP NsBsawjKWBĝ ^̂•mmmmm̂ -̂mmmmmsM K3trt5 | I

f other DSP

Figure 3.4: General architecture of a DSP [8]

There are quite a lot of applications that are using DSPs nowadays. Therefore, they
are still important components in today's embedded systems. DSP is usually used in
data domain systems. It is often used in applications in which data transport is the

Department of Computer Science and Engineering iii

dominant requirement. When a data stream enters, the DSP needs to process and give
result immediately. If the hardware is not fast enough, significant loss of data will occur
and the system will fail. Application examples are multimedia decoding and
telecommunication. They require the process of input stream and give output
immediately. This type of application has a demand for high computation performance
on high throughput rather than short latency deadline. Besides, DSPs are also used in
applications that often involve a lot of arithmetic calculations, such as communications,
audio and video processing, GPS and navigation. With the use of DSP for dedicated
processing, the runtime performance of the embedded application can be greatly
improved.

The speed of a DSP has exponentially increased in the past 20 years [8]. The typical
representatives of DSPs are those from Texas Instruments (TI). Both the TI C5000 [59]
and C6000 series [60] are widely used in the industry. A C5000 series DSP is equipped
with a 16-bit fixed-point processor. It is widely used in low-end applications such as
MP3 encoding/decoding algorithm. For the C6000 series DSP processors, they support
hardware caching and floating-point operations to increase the flexibility and

f

performance for the high-end applications such as complex image processing algorithm,

c) Application Specific Integrated Circuit (ASIC)
ASIC is a chip that can be designed by an engineer with no particular knowledge

of semi-conductor physics or semi-conductor process. It is an integrated circuit designed
for a specific task. There are two types of ASIC, Field Programmable Gate Array
(FPGA) and Standard Cells. A FPGA design allows more flexibility for changes and
faster turnaround time. As the hardware itself can be programmable for different logics,
development and feedback time can be cut short. But the cost of FPGA is expensive
when comparing with Standard Cells design. It is because transistors can be wasted if
the design does not fully utilize the capabilities of a FPGA chip.

For application design using Standard Cells, every transistor is used inside the
hardware. The manual routing on the Standard Cells can give better utilization and
lower cost [9]. In contrast to a FPGA design, a Standard Cells based design needs a
longer fabrication time and therefore a lot of simulations are needed to ensure its

Department of Computer Science and Engineering iii

correctness. However, the production cost is relatively low when compared to FPGA
because a smaller die size can be achieved in Standard Cells.

We have now discussed three types of embedded system processors. Their
performances and programmability vary according to different processors. In Table 3.1，

it shows that ASIC has no (Standard Cells) or very low (FPGA) programmability.
Although the runtime performance of ASIC is very high, the programmability issue
increases its development cost for application development. In the contrast, DSP and
SoC processor allow more programming flexibility so that they are more suitable to
implement complex software algorithms. Therefore, we decide to conduct experiments
on DSP and SoC processor for performance evaluation when creating our design.

Processor type ASIC DSP SoC
Performance High Medium Medium to Low
Programmability None or very low Low Very high

Table 3.1: Performance and Programmability of domain specific processor
3.3 Experiments

The objective of the experiments is to evaluate the runtime performance of an
image-processing algorithm on DSP and SoC. The algorithm is a fingerprint verification
algorithm [28][67] that involves a lot of floating-point computation. We divide the
algorithm into four parts in order to evaluate the runtime performance of the processors.

3.3.1 Design methodology I - DSP

3.3.1.1 Hardware platform

The low end DSP that we used is TI TMS320C52 fixed-point DSP. It is a C52 core
based DSP chip for low-end device in the C5X family. It is a 16-bit fixed-point DSP
operates on 40MIPS only. It has 544 words of on-chip data RAM and 512 words of on-
chip data/program ROM.

Department of Computer Science and Engineering iii

3.3.1.2 Software platform

For software, we used the Code Composer from TI TMS320C5X DSP as the
development platform. The Code Composer is a compiler tool to convert the C language
to the machine language that is readable by the TMS320C5X series DSPs. It provides a
wide range of function for DSP development such as assembly programming, address
decoding, DSP memory resource management and etc.

3.3.1.3 Implementation

DSP software development can be divided into several fundamental tasks. They are
algorithm, coding specification, compiling and optimisation, simulation, testing,
debugging and integration [20]. Among all those tasks, we only focus on the core part.
The core part includes algorithm compilation, optimisation and simulation.

Our colleagues have previously developed the fingerprint verification algorithm
[66]. In order to implement the algorithm on the DSP platform, two methods are
available:

a) Translate all the C source codes to assembly language manually

This method can result in a very high performance on the fingerprint algorithm.
However, it is a very difficult task because the translation of few thousand lines of code
to assembly language needs lots of time and effort. Moreover, it is difficult to achieve in
a short period of time.

b) Translate all the C source codes to machine language under the Code
Composer software

To shorten the integration time, we decided to use the Code Composer so that we
can simulate the environment of DSP code and create a task environment. With this
approach, we can simulate the interface of other software and hardware components that
will minimize bugs found during integration.

Although we used the Code Composer as our development software, we still had to
make certain modification to our software when integrating to the DSP platform. Below
are the simple steps for migrating the fingerprint verification algorithm to DSP:

Department of Computer Science and Engineering iii

• Remove all the file I/O functions because the DSP does not support reading and
writing of files.

• In order to get the fingerprint image, we need to preload the image in the
memory space so that it can be used during the execution of the algorithm.

• Replace all the dynamic memory allocations to static memory allocations
because dynamic memory allocation is a very time consumption procedure in
DSP processing and we should avoid it in the implementation.

• The memory of the DSP is not large enough to hold the 256x256 fingerprint
image and therefore we should reduce the image size to 128x128 in our
experiment.

In order to verify the performance of the DSP on both floating-point and fixed-point
implementations, we have implemented both approaches using the same DSP so as to
review the effect of floating-point calculation on a DSP processor.

3.3.1.4 Experiment and result

Figure 3.5 shows the result on the number of instructions needed for the DSP to
execute the core fingerprint verification modules using fixed and floating-point
techniques. From the result, we observe that if we compile a floating-point program
using Code Composer on a fixed-point DSP, the performance is extremely low when
compared to fixed-point implementation. We can conclude that the performance of the
floating-point algorithm, which is translated from the Code Composer to DSP platform,
is not acceptable. As a result, the Code Composer can help us to shorten the
development time, but the result may not be useful if real-time performance is required.

Department of Computer Science and Engineering iii

圓
• Fixed
• Floating Gabor filter Segmentation Orientation Feature extraction

Figure 3.5: Comparison on the number of instruction on TMS320C52 of fixed and
floating point in the approach to fingerprint verification implementation

The total number of instructions needed for the fixed-point fingerprint algorithm is
76774545 (-76 million) while floating-point fingerprint algorithm needed 1044426351
(-1044 million) instructions. As the speed of the DSP is operating at 40MIPS, the time
required for fingerprint verification is about 1.9 second and 26.1 second on fixed-point
and floating-point implementation respectively.

The result of this experiment shows that Code Composer cannot efficiently convert
the floating-point algorithm for a fixed-point DSP processor. In addition, the fixed-point
implementation needs 1.9 second for 128x128 pixels image. Real time cannot be
achieved when using full size image (256x256 pixels). From the result, we discovered
that the compiler for the DSP has difficulty in optimising algorithm. Manual
modification of the algorithm, such as the involvement of assembly programming, is
needed in order to have a better performance.

3.3.2 Design methodology II - SoC

3.3.2.1 Hardware components

In SoC development, the hardware platform we chosen is Compaq IPAQ H3600
which is a Windows CE based mobile device and we have converted it into Linux
operating system. The IPAQ mobile device is equipped with an Intel StrongARM

Department of Computer Science and Engineering iii

(206Mhz) embedded processor for running the fingerprint verification algorithm in our
system.

3.3.2.2 Software components

The software architecture of the SoC design can be divided into three layers,
hardware layer, kernel layer and application layer [25]. With this approach, we can
develop multiple applications on a single kernel for extensibility of the embedded
fingerprint system. Besides, we can maximize the reusability on the software code.

3.3.2.3 Implementation

Linking the host application and hardware is the Application Program Interface
(API). We have chosen to use embedded Linux as the operating system because its open
source code allows us to customize the software architecture in our system. With the use
of Linux kernel, we can standardize the API for device drivers, scheduling and
messaging services so as to save a lot of development time and effort.

, For the application layer, we have to port the fingerprint algorithm for the
StrongARM platform. As mentioned before, direct cross-complication of the algorithm
is possible but it results in poor runtime performance (greater than 20 seconds in
verification of one single). Therefore, we started to develop a software reengineering
process to port the software to its new environment. Basically, the re-engineering
process is made up of five steps:

a) Whenever possible, replace floating-point data by integers;

b) Replace the remaining floating-point calculations by fixed-point calculations;

c) Buffer all reusable complex calculations;

d) Avoid the use of subroutines;

e) Recompile using an optimised compiler.

Department of Computer Science and Engineering iii

3.3.2.4 Experiment and result

The above procedure appears routine and straightforward. Yet, there are numerous
domain specific conversions that must be aware of. In our case, the precisions of the
fixed-point system as well as good approximations of the trigonometric functions are
major concerns [11]. We have to be careful to ensure that the reengineered software
yields similar results to the original software. We estimated the errors by applying the
reengineered software to a 300-person database and analysis the resultant False
Acceptance Rates and False Rejection Rates to make sure that they resembled those of
the original software. The 4000 lines of C code took two to three months for
reengineering. Ultimately, the verification time was cut to one second or less.

It took two months to finish the cost development, porting the embedded Linux OS
to StrongARM development board and writing drivers to interface the fingerprint
sensors. Nevertheless, the experience and the source code are reusable.

3.4 Observation

‘ In the above experiments, we have made two case studies to evaluate the
development and performance of two different DSP systems for multimedia and image
processing applications. It seems that the DSP development requires significant
adoption effort when porting algorithm to their platforms. Even with optimised
compilers, assembly code implementations are still very important when optimal
performance is sought. With the new SoC processors, which are equipped with some
DSP-featured hardware, new strategies for designing embedded systems emerge. The
new strategy that enables efficient development is made from the combinations of
hardware and software technologies. With an operating system ported to the SoC
processors, reuse of code and libraries can be achieved. This approach can separate the
hardware design and software design of an embedded application and achieve the
parallelism in development.

Department of Computer Science and Engineering iii

4. Implementation of the Device
4.1 Choice of platforms

After the analysis of the design requirements of our fingerprint authentication
mobile device [40], SoC is taken as the best choice for implementation in terms of both
hardware and software considerations. Its hardware flexibility and software
programmability benefit the design and implementation of mobile device. With the
flexibility from SoC design, we can extend the use of the authentication device to
different applications like door lock systems and time attendance systems.

4.2 Implementation Details

4.2.1 Hardware implementation

Figure 4.1 shows the block diagram of our mobile device. It is made up of three
main components. The Intel Lubbock is one of the main components and it is the core of
our base platform for development. The Atmel finger chip and the Gemplus smart card
reader are the other two components that are added as peripherals for authentication
purpose.

An embBddod d6vk» hĉ tmg the smart c»n$ finoefpiln(aeflsw
__ Frngerprint Core Point Mimftiae I^EnroMmenl Oelecabn ExIfBdion 1 f 竺IWK>» ••••_•••丨•_....._-�

画""" 从游卜RfWpHm 補fiwn Stag^
- Fif̂ sifpflm iterr磁tea咖 Stage

腕德'、 0(Ama\ imm "̂二：’ _I I tr̂ ciTt̂ 秘

r 1 N^Oefplfft ‘ mmrn M 於 ^ ^ ^ _cNf>g • ~ F l n g e f p r l n t • ~ . ！

^ ^ ‘ ~ Card ^ ^ ~ If mrrtchlng score > thr«shci}d Reader Atiiherglc^meitsar Live iJS^- ^
Oth6rvMse.f«|0citheus«r 匕 fingetptkt •一

^ ^ . Smart Card

Figure 4.1: Proposed mobile device for authentication

Department of Computer Science and Engineering 31

4.2.1.1 Atmel FingerChip

The finger chip operates on 3.3V with a small power consumption of 20mW with
IMHz clock cycle. The finger chip uses the temperature difference between the sensor
and the fingerprint to measure the data value. If the temperature difference is too small,
a temperature stabilization feature will be activated to ensure sufficient contrast exists in
the captured fingerprint image.

We connect the finger chip via the GPIO of the base platform. The GPIO
communication allows us to gain full control of the pins in order to communicate to the
finger chip directly. Table 4.1 shows the hardware pin connections between the Atmel
finger chip and the Lubbock device.

L u b b o c k L E D 2 1 32 Vl [~9 [T o V u ~ V l [a
GPIO
Finger ^ PCLK D e O D e l D e 2 ~ ~ D e 3 ~ ~ D o O D o l D o 2 Do3
chip pins:

RST: Reset pin, PCLK: Input Clock, DeO-3: Even pixel, DoO-3: Odd pixel «
Table 4.1: Pins connection between the Atmel finger chip and the Lubbock device
The Reset pin of the finger chip is connected to LED21 of the Lubbock to indicate

finger chip reset signal. As the LED operates from 1.5 V to 2V only, an extra circuit, as
shown in Figure 4.2，is added to increase the voltage range in order to trigger the reset
signal of the finger chip.

— p 3 V 3
J IkQ

. J RST
LED21 1 N N I
Input M 1 / 1 \

200Q

Figure 4.2: Reset pin circuit

Department of Computer Science and Engineering 32

4.2.1.2 Gemplus smart card and reader

A smart card is actually a card-sized computer with a microprocessor and some
memory chips packaged in the form of a paper card. The card can be programmed to suit
different applications. The smart card that we use contains a Java virtual machine. It
allows Java programs to run on a smart card, we choose an 8-bit processor with
20Kbytes on-card memory to reduce the cost of the device. For connection, we use the
FF serial port of the Lubbock [18] to connect smart card with it.

4.2.2 Software implementation

4.2.2.1 Operating System

On the top of our hardware, we choose embedded Linux as our operating system.
We choose Linux because it is an open source operating system. We can study the
source code and modify it by ourselves without any restrictions. Linux is a powerful and
sophisticated system with lots of management facilities, organized device driver layer
and well documented. Linux contains so many features and makes it too resource
demanding when it is ported to a mobile device. Therefore, people started to develop the
embedded version of Linux. Embedded Linux is a trimmed down version of Linux in
which the operating system is customized to fit most embedded system requirements.

4.2.2.2 File System

File system is very important to an embedded system because it stores all the
system files and application programs in the device. There are several types of file
systems and each of them has its advantages and disadvantages.

a) RAMDISK

Ramdisk [16] is a file system that represents a portion of memory as a hard
drive. The advantage of ramdisk file system is that the access speed is very fast
compared to a hard drive. The content, however, will be lost if the power of the
device is cut off. Ramdisk is often used in the early stages of development in
which it is often used as an INITRD [63] feature in Linux. INITRD allows a
small file system to be loaded with the same mechanism as the procedure of

Department of Computer Science and Engineering iii

loading the kernel. That means if you can load the kernel to the device, you can
also load the INITRD and the developer can test the device driver inside the
ramdisk immediately.

b) CRAMFS

It is a compressed read only file system. It compresses a file one page at a time
so that it allows random page access. It is often used in system files which
stores read only partition to prevent the system from file corruption.

c) JFFS2

JFFS2 is developed from the Joumaling Flash File System (JFFS). JFFS
provides the storage media with the crash and power down protecting
mechanism. Besides, version two (JFFS2) supports the compression that can
save about fifty percent of the storage space.

After comparing the above file systems, we decided to use JFFS2. Table 4.2 shows
the partition design in the Lubbock development board. The first partition is bootloader
that is responsible for establishing power on communication between the host and the
target board. The second partition is used for storing the parameters setting of
bootloader so that we can load the setting each time we power on the board. The third
partitions stores the Linux kernel that controls the entire device drivers. The last
partition is the user space partition that stores all the files inside the file system. We use
separate partition for the Linux kernel and the user file because we want to separate the
system file from the user space. With this approach, we can easily upgrade the kernel
without affecting the files stored inside the user space.

Department of Computer Science and Engineering iii

Partition name Flash address Memory address Length Entry point
Bootloader 0x04000000 0x04000000 0x80000 0x00000000
Bootloader 0x05F80000 0x05F80000 0x40000 0x00000000
parameter
Linux kernel 0x04080000 0x04080000 OxCOOOO 0x00000000
User file 0x04140000 0x04140000 0x1200000 0x00000000

Table 4.2: Flash drive partition design of mobile device
4.2.2.3 Device Driver

Device driver plays an important role in the Linux I/O system [10]. It controls all
the hardware devices that exist in the system. A device driver provides a bridge between
the user applications and the hardware so that the user programs can access the hardware
with a standard API. With the device driver, the programmer can control the hardware
without a need to fully understand the details of the hardware I/O operations. The device
driver hides all the complicated communication. Therefore, device driver can influence
the efficiency of the whole system if it is not well designed. Figure 4.3 shows the block
diagram of the Linux I/O system. We can see that device driver is a layer that is the
closest to the hardware. Any I/O from the hardware devices needs to pass through the
driver before going to the upper software layer.

Department of Computer Science and Engineering iii

System call
1 T t

Virtual File System (VFS) Network software protocol
2 z z } r

File system
type

t
Buffer cache

_ _ 1 ^ ^ r 1
Character Block device Network device
device driver driver driver

1 t t t ^
Architecture (CPU) Device drivers
dependent code

t t ‘
Hardware

, Figure 4.3: Overview of Linux I/O system

There are three main classes of device drivers in Linux operating system. They are
character device driver, block device driver and network device driver.

a) Character device driver

Hardware devices that can be accessed as characters (streams of bytes) are
belonging to this category. Such as serial port or serial console, we can
write/read a byte to/from those character devices. In Linux, it uses file node and
major number [3] to represent the device.

b) Block device driver

Different from character device, block devices can read/write a block of data
to/from the hardware. This type of device can usually be accessed randomly and
cache is needed to reduce the writing cost. It uses the same mechanism as the
character device driver to separate the different kind of devices.

Department of Computer Science and Engineering iii

c) Network device driver

A network device driver is quite different from character and block device
drivers. Linux uses name to represent different network device like ethO, ethl
and etc. Network devices often communicate with the other hosts by
sending/receiving package via different networks.

In our system, there are two main hardware peripherals. They are Atmel FingerChip
and Gemplus smart card reader. Both hardware devices need a software driver
implementation so that it can be interfaced with the user applications.

The Atmel FingerChip driver

As the finger chip outputs the fingerprint image pixels as a stream of bytes, we can
use a character driver to implement the software controller for the finger chip. Figure 4.4
shows the block diagram of character device driver components for Atmel FingerChip.

1. Start capturing fingerprint image 4. Get fingerprint image
• ^ a. Initial image space

~T~r ‘ “““ ~~~~ b. Wait until finger move 2. Open the device driver ^ ^ ^ . ‘ •
1 ^ c. Get fingerprint image slice

i d. Calculate displacement of
3. Reset the finger chip ^ image slice

e. Construct two image slices
f. Repeat step (c) until no

detection of moving finger
g. Return whole image

5. Copy data to user space ^

6. Close the device driver

Figure 4.4: Atmel FingerChip device driver components
As the size of the fingerprint sensing area contains only 280x40 (width x height)

pixels, a full image is actually obtained by joining several image slices together. The
technique used in alignment the image slices is shown in Figure 4.5. We first calculate
the horizontal and vertical displacement of two slices by comparing the similarity of the

Department of Computer Science and Engineering iii

pixel value along the alignment region. Then we reconstruct the whole image using a
total of 11 aligned slices.

Alignment region
Figure 4.5: Image slices alignment technique

The Gemplus smart card reader driver

We do not need a device driver for the Gemplus smart card reader because it is
directly connected to serial port in which a serial port device driver is already available
in the standard Embedded Linux operating system. The software that we need is the
communication protocol control software between the serial port and the smart card
reader. The smart card we use is an ISO-7816-4 compliant smart card that is compatible
to the PC/SC [36] standard. Therefore, we can use the free source code from [36] to
establish the communication control between the mobile device and the smart card
reader.

4.2.2.4 Smart card

In today's e-commerce world, a credit card is one of the popular payment
methods. Many people use a credit card because it is convenient for them to make
transactions. One disadvantage is that the storage space in credit card is very limited and
it is impossible to store the transaction records. In addition, security protection in credit
card is not strong enough. Credit card contains a magnetized strip that is not difficult to
duplicate. People may use an illegal reader to read the information in the credit card and
duplicate the information in a fault card.

To solve the security and storage problem, a smart card is proposed to cover the
disadvantage of a credit card. The name "smart" in smart card means it has intelligence
to process data. A smart card is not only a memory card; it also contains a processor for
data manipulation.

Department of Computer Science and Engineering iii

The type of card we chosen is Java card. Java card also contains a processor with
Java Virtual Machine (JVM). With JVM, it is possible to execute Java bytecodes inside
the card. Then we can write Java program and execute it inside the smart card.

Design and implementation of the Java card

In order to support fingerprint authentication, we need to implement some routines
inside the Java card and hence to communicate with the host. The communication
protocol between the host and smart card is called Application Protocol Data Unit
(APDU). Figure 4.6 shows the general APDU command sequence. Table 4.3 shows the
design of the Application Protocol Data Unit (APDU) inside the smart card.

CLA I N S [h [? 2 [T c Data Le
CLA: Application class ED
INS: Instruction ID for specific application
PI, P2: Specific definition for single instruction ED
Lc: Number of bytes transfer to the smart card
Data: Bytes sequence send to the smart card
Le: Number of bytes return from the smart card

‘ Figure 4.6 General APDU byte sequence

Command CLA INS P I I T c Data [T e ^
Register master 0x00 0x38 0x00 0x00 0x181 Master ^
fingerprint fingerprint
template template
Download live 0x00 0x43 0x00 0x00 0x81 L i ^ ^
fingerprint fingerprint
template template
Match live “ 0x00 0x44 0x00 0x00 …- Matched 0x02
template with score
master template

Table 4.3: APDU for fingerprint matching inside smart card
Because the storage size of a smart card is very limited, we need to compress the

fingerprint features in the host before loading them to the smart card. The routine for
downloading master and live fingerprint templates (features) from a host to smart card is
trivial. We define two variables in the Java applet to store two templates. The Lc
column of Table 4.3 shows that the size of the master template is larger than the live

Department of Computer Science and Engineering iii

template. This is because the master template is used for matching reference. The master
template needs to contain more minutia information in order to yield more accurate
matching result. In contrast, a live template will be used once only and therefore we can
reduce the number of minutiae in the live template to achieve a faster matching and
transferring time.

In the fingerprint template matching routine, we need to perform a point-to-point
matching in the smart card. This is significant because the confidential master template
data never leaves the smart card. Each feature vector in the template contains the
distance to the core point (r), minutiae orientation (a) and the rotated orientation (6) as
shown in Figure 4.7. For two minutiae, if the differences of their distances and
orientations are within some threshold values, i.e. |rl-r2| < 8 and |al-a2| < 35, they are
regarded as matched. We will then assign marks to the matched live minutiae according
to their Euclidean distance. Moreover, marks will be adjusted according to the
difference between their rotated orientations. If the difference is smaller than a defined
threshold value, i.e. |01-02| < threshold, the mark will be multiplied. [66]

— / / Fi is the distance to core； / / h / / cci is the orientation of a minutia i
汉2 9i is the orientation of a rotated minutia i

Figure 4.7: Two minutiae in polar coordinates

Department of Computer Science and Engineering iii

We use the following routine to match two fingerprints:

For i=l to Minutiae—Number N
{ 一

For j=l to Minutiae_Number N { “
If (orientation between minutia i and j <=35 AND

distance to core point between minutia i and j <= 8) {
Regard j as "Matched" .
Mark = a fixed value - orientation x distance difference

}
If (rotated orientation between minutia i and j <= threshold)

Mark is multiplied
}
If (more than one j ' s are marked) {

Resolve the conflict by choosing the j with the highest mark
}
Delete the corresponding j in the selection set of Minutiae in the live template

}
r

The matching score will be between 1 and 100. If the score is higher than a
predefined value, the user is authenticated as the valid cardholder. Otherwise, the user
may repeat the authentication process to verify his identity again.

4.2.2.5 Fingerprint software

For the fingerprint software library, we have developed a fixed-point fingerprint
verification system [28] that can be used in embedded system applications. The software
can be divided into two parts: feature extraction and feature matching. The feature
extraction of the software can be either executed on a desktop PC or on the mobile
device.

4.2.2.6 Graphical user interface

A Graphical User Interface (GUI) is important in our secure mobile device because
we need to display captured fingerprint image and user messages on the LCD display of

Department of Computer Science and Engineering iii

the mobile device. There are several GUI toolkits available for the embedded Linux
environment:

a) PocketLinux

PocketLinux is a Java based windowing system. It uses open source
implementation of Java virtual machine, named Kaffe. The virtual machine can be
scaled down to suit different embedded devices. It has two low level layers for handling
framebuffer display and touch screen. On the top of the low level layers, it contains a
PocketLinux class that has implemented its own widgets. Then it uses XML for
programming the GUI of the display. Since Java is pretty slow even it is trimmed down,
its runtime performance is not very efficient.

b) Microwindows

Microwindows aims at supporting a graphical windowing environment in an
embedded device. It mainly contains two layers: Microwindows and Nano-X.
Microwindows is a device dependent layer for controlling framebuffer drawing. Nano-X
is a device independent layer that builds on top of Microwindows layer. It aims at
providing a unique API for writing GUI. As the core of Microwindows is not designed
very well and it causes flashing problem when we draw widgets. It is also not suitable
for embedded device.

c) Qt/Embedded

QT is a windowing system providies full features including window manager,
application launcher and input methods. The Qt/Embedded version is designed for an
embedded device. It uses C++ language for GUI programming and abstracts the C
object layer. Therefore, it is very efficient in running on the embedded device.

. After the analysis on the pros and cons of different embedded GUI toolkits, we
decide to choose QT. Although QT/Embedded have already provided a complete
framework for embedded GUI programming, some low-level software integrations such
as touch screen compatibility need to be redesigned in order to make it compatible for
our device.

Department of Computer Science and Engineering iii

Since QT does not support the touch screen of Intel Lubbock touch screen driver,
we need to write our own version of touch screen routine to handle the signal from the
kernel. Figure 4.8 shows the routine for touch screen used inside QT. We define the
structure as shown in Figure 4.9 to receive the touch screen information from the
hardware.

1. Open touch screen device 4.
^ If the pressure > threshold value {

2. Read current device status f / v e the x, y value If we get 5 sampled x, y values {
i Average them and return the

3. Get the pressure and x, y position ^ averaged x, y position }
}

5. Close the touch screen device driver <——else {
^ Ignore this touch event

6. Emit the touch screen event to GUI ^

Figure 4.8: Touch screen interface between QT and device driver

We use a threshold value to filter out some touch screen events because the touch
screen is very sensitive for external signals. Noise can appear even when there is no real
touch event. For sampling technique, we use averaging so that we can get a more
accurate result. After we have solved the touch screen problem, we can compile the
toolkits using the XScale compiler and QT/Embedded library is successfully integrated
to our mobile platform.

typedef struct {
unsigned short pressure;
unsigned short x;

- unsigned short y;
unsigned short pad;

, unsigned short stamp;
} TS_EVENT;

Figure 4.9: Structure of touch screen raw data

Department of Computer Science and Engineering 43

4.3 Results and observations

a) Fingerprint matching accuracy of our secure mobile device

The accuracy of our proposed system depends on the feature extraction and
matching processes. The feature extraction process is discussed in detail in [28]. The
matching algorithm that is executed in a smart card is difficult to test. Therefore, we
evaluated its performance through simulation experiments on a PC with Redhat Linux
9.0 and JDKl.4.1 installed. A fingerprint database that contained 383 different
fingerprints supplied the test data. Each record in the data was created when a person
scanned his or her finger 3 times through a fingerprint sensor, resulting in 1149
fingerprint images in total.

The Java minutiae matching program used in this experiment was exactly similar to
the one used in our smart card. Only byte and short Java primitive types of variables
were used in the matching program.

FAR and FRR curves
1 1 1 1 1 1 1 1 I •-•-»•-.-;--- •

- ' ' ' [— 1 8 FAR
0.9 — - 18 FRR -

. \ — 9 FAR
0.8 \ / 》 ' — • 9 FRR -

n / / : ' ' 一 6 FAR

0.7 -\1 I — 6 FRR L / _
！。.5- \ / -
� 4 _ \ / -

0.1 • -

0 •10 20 30 40 50 60 70 80 90 100
Score

Figure 4.10: FAR and FRR curves of 6，9 and 18 matching minutiae used
The 1149 fingerprint images were registered and their minutiae data were written

into templates in binary format correspondingly. Using a methodology that optimises the
number of minutiae used in a matching process [28], we varied the number of matching
minutiae, choosing 6, 9 and 18，and obtained the False Accept Rates (FAR) and False
Reject Rates (FRR) as shown in Figure 4.10. The results of the test on the 1149
fingerprint images showed that the Equal Error Rates (EER) rates were about 9.6%,

Department of Computer Science and Engineering iii

7.9% and 7.2% when 6，9 and 18 minutiae were used for matching respectively. The test
results are summarized in Table 4.4.

Number of Minutiae used EER (%)
6 9.6
9 7.9
18 7.2

Table 4.4: EERs of the matching algorithm against different number of minutiae
b) Speed of the whole authentication algorithm

In another experiment, we tested the speed of the complete authentication system.
We used different numbers of minutiae in the matching: 9，18 and 25 minutiae. Since
the storage requirement of each feather vector is 12 bytes and the header of each
template (image quality, fingerprint type, number of minutiae, etc) is 17 bytes, the sizes
of the 9，18 and 25 minutiae templates are 125, 233 and 317 bytes respectively. During
authentication, the features are extracted in the mobile device and downloaded to the
smart card in a 128 bytes/transfer fashion. Hence, the time of transferring a 25-minutia
template file is about triple that of transferring a 9-minutia template file. Table 4.5
summarized the average transfer time of different sizes of template.

Different Template Sizes Average Transfer
Time (s)

9 minutiae template (125 bytes) 0.70
18 minutiae template (233 bytes) 1.28
25 minutiae template (317 bytes) 1.89

Table 4.5: Average times of downloading template data to a smart card
Different Minutiae Average Time used in matching(s)

> used
9 minutiae 1.10
18 minutiae 3.28
25 minutiae 6.49

Table 4.6: Average matching times using different number of minutiae

Department of Computer Science and Engineering iii

The runtime of the matching algorithm is 0(N2), where N is the number of
minutiae used in the matching. The average times of different minutiae used in the
matching algorithm are listed in Table 4.6. The time for minutiae extraction is a
function of the number of minutiae used and is less than 10 milliseconds. This amount is
negligible when compared to the time used in data transfer and minutiae matching in the
smart card. It is clear that the number of minutiae used greatly affects the times of
template transfer and minutiae matching on the smart card.

The above analysis, with experimental result support, shows that it is feasible to
conduct the fingerprint authentication using an 8-bit smart card processor on the
embedded Linux. The whole fingerprint authentication can be completed in around 2
seconds in our proposed system if 9 matching minutiae. In this way, our system achieves
the dual goals of speed and reliability.

r

Department of Computer Science and Engineering iii

5. An Application Example 一 A Penalty Ticket Payment System
(FTPS)
5.1 Requirement

Figure 5.1 shows the procedure for handling a traffic offence in an open street. It
involves a driver, his driving licence, a policeman, penalty, The procedure is a legal
case so that it must be handled formally. Moreover, if the offence is minor, the penalty
can be settled by fixed sum of money. Under such a situation, monetary transfer
becomes necessary.

In the beginning, a driver's car is first stopped by a policeman. The policeman
verifies the driver's identity by checking the driver's photo on the license. But at the
same time, the driver may not know whether the policeman is genuine or not. To settle
this matter, authentication becomes necessary. If a driver agrees to pay the penalty,
monetary transfer becomes necessary. Such a complicated matter can be nicely handled
using our intelligent mobile smart card reader.
" 1. Driver stopped

2. Show driver license
[

3. Policeman verifies license

4. Policeman informs driver his offence

Accept with cash / \ Not accept / Accept without cash
7 \

5. Pay with cash card 8. Policeman station to settle manually
- I ^

6. Get receipt
� ^

7. Policeman department
redeems money from
bank • 9. Exit

Figure 5.1: General situation when the driver involve in a traffic offence

Department of Computer Science and Engineering iii

5.2 Design Principles

Before we design the penalty ticket system, we need to determine the parties
involved in the system. There are four parties, namely, the driver, policeman, bank and
trust organization. Figure 5.2 shows the relationships of all the parties involved in the
penalty ticket system. The policeman carries the intelligent mobile smart card reader
with him. The ideal intelligent mobile smart card reader should look like a PDA
equipped with a smart card reader. From hereon, we shall refer to the device simply as a
PDA.

Driver smart card: Policeman PDA:
1. Driver's digital certificate 1. Policeman's digital
2. Driver's fingerprint < • certificate
3. Electronic balance 2. CA's public key

I 乂 T
Certificate Authority Bank:

• 1. Bank's digital certificate
1. CA's public key

Figure 5.2: Parties involved in FTPS

In Figure 5.2, we can see that the Certificate Authority (CA) builds up a channel to all
other parties. The CA is the party responsible for issuing digital certificate. It is a trust
organization that the client can obtain a digital certificate from. When two clients invoke
any transaction, they can verify each other by verifying their certificates issued by the
same CA. Therefore without the certificate issued by the same CA, two parties cannot
verify each other. In other case, it is reasonable to assume that the common CA is the
government.

The driver is another party invoked in the system. He is issued a driver licence that
is a smart card containing his digital certificate, fingerprint and cash balance. Although
the digital certificate can help the policeman to verify the validity of the smart card, the
policeman cannot verify whether the smart card belongs to the driver or not. This is the
basic authentication problem encountered in many different applications [13]. In order
to verify the identity of the driver, the policeman can verify the driver's live fingerprint
with the one registered in the smart card. Then both the identities of smart card and

Department of Computer Science and Engineering iii

driver can be verified. The cash balance stored inside the smart card is used for paying
the penalty due to the traffic offence.

The policeman is another party who issues traffic offence to the driver. The
fingerprint sensor in his PDA is used to capture the live fingerprint from the driver. The
PDA's smart card reader is used to accept the driver licence (smart card) from the
driver. The PDA also contains a CA's public key for verifying the genuineness of the
driver licence using the digital certificate stored inside the smart card. .

The bank is the party directly responsible for handling the monetary transfer. All
money transactions between the PDA and the smart cards are recorded in the PDA.
After one day's work, the policeman will bring this PDA back to the police station
where the PDA will be connected to a network that links the bank. The bank will decode
each transaction and transfer the amount to the police's account. We will assume that
the driver can "buy" credit in the form of electronic coins from the bank and store the
coins in his driver licence, the smart card. When necessary and under his authorization,
the driver can shift the coins to the policeman's PDA.

To implement the PTPS, we need to ensure the security issues following the steps
below:

a) Driver verifies policeman

In this step, the driver needs to have a secure and reliable mechanism to verify
whether the policeman should be trusted or not. He can do this by checking the
policeman's digital signature stored inside the PDA. This verification will be a further
safeguard when the driver transfers electronic coins to the PDA. Figure 5.3 shows this
normal verification procedure.

After the transfer of the coins, the policeman's information as well as other details
of the offence will be transferred to the driver's smart card using a MD5 hashing method
or similar. The hashed information that is equivalent to a receipt for the penalty fee will
be stored in the card's memory, say HI. Secondly, the CA signature will also be
transferred to the card that will perform a RSA decryption using CA's public key to
make sure that the receipt has been "signed" by a proper authority. Inside the card, the

Department of Computer Science and Engineering iii

resultant decrypted data, say H2 will be compared with HI. If HI equals to H2, it means
that the digital certificate of the policeman is valid and he has the right to access the
driver's smart card licence.

Driver Policeman

2. MD5 4 1. Policeman information
3. Hashed �
[Policeman

5 RSA < 4. CA signature on
(eA’s Hashed [Policeman information]

, , public key)
7. Same digest?

i ‘ / Digit certificate

_ /
6. Hashed [Policeman
information]

Figure 5.3 Driver verifies policeman using digital signature

Driver card Policeman

1. Encrypted PoUceman PubKev (pre-dcfmed message) “ ^ 2. RSA decryption with
police's private key

3. Decrypted pre-defined message ^

i yes
r ^ 6. Output the message and verify by

5. The same? | \ driver manually
7.Reject any card access

4. Pre-defined message (plan text)

Figure 5.4 Driver verifies policeman using a low speed processor smart card

Unfortunately, the above procedure is not feasible in our implementation because
the smart card only has a 5MHz processor that is not fast enough to perform the MD5
hashing and RSA decryption. There are some fast enough smart cards equipped with
special built-in PKI hardware to perform those cryptographic operations. We have not
chosen such cards because they are too expensive. Therefore, we redesign the driver

Department of Computer Science and Engineering iii

verification procedure in order to let a low speed processor to verify the policeman's
PDA.

Figure 5.4 shows the block diagram of how a driver can verify a policeman using a
low speed smart card. To verify the policeman, it is the same as verifying whether the
policeman has a valid private key or not. Therefore, in every driver smart card, we
decide to add a pre-defined message that is encrypted with policeman's public key. The
encryption is done when the smart card driver licence is created. Now, both the
encrypted and original message chosen by the driver are stored inside the card. When
the smart card is inserted into the policeman's PDA, the encrypted message will be
transferred to the PDA that will decrypt the message using the police's private key and
send the decrypted message back to the smart card. The verification procedure then is
only a text base comparison and a 5MHz processor is capable of performing such an
operation. If the verification fails, that means the policeman cannot present a correct
private key and any card access will be rejected. If the verification succeeds, the
message will be sent back to the police's PDA that will display the message to let the
driver have a manual check of his/her own recorded message.

This scheme can achieve the same security level as if a digital signature verification
technology has been used. One drawback of this approach is that the driver will have to
go to the card issuing office whenever he or she wants to use a message.

b) Policeman verifies driver

After the driver has successfully verified the identity of the policeman, it is the
policeman's time to verify whether the driver card belongs to the driver. This step is
important because the driver may present a driver card that does not belong to him.
When issuing a new driver card to a driver, the driver needs to register his fingerprint so
that his personal information is stored inside the driver card. No one can claim to be the
owner of the driver smart card unless his fingerprint matches the stored record inside the
smart card. Once the fingerprint is captured by the policeman's PDA, the fingerprint's
features will be extracted by the PDA and sent to the smart card for matching as
described previously.

Department of Computer Science and Engineering iii

c) Transfer of Payment

After both the driver and the policeman have verified the identity of each other, the
policeman can start preparing the offence payment. Figure 5.5 shows the block diagram
of the payment preparation procedure. Firstly, the policeman's PDA prepares a penalty
record by collecting information such as payment ID, driver ID, and payment amount
from the driver smart card as well as the policeman's PDA itself. Then, the electronic
coins inside the cash card are transferred to the policeman's PDA. If the transfer is
successful, the PDA will encrypt the payment record using the bank's public key. There
is an option that a tiny printer is connected to the PDA for printing a payment receipt for
the driver. The policeman's PDA encrypt the payment information in the form of a
receipt.

Policeman PDA Cash card

1. Make payment 2. Deduct value of electronic
coins

H — — ^ ^ ^ 一 ^
3. RSA -
(bank's
public key) Bank

i 5. Decrypt the payment using
4. Encrypted payment • private key

Figure 5.5 Payment preparations

d) PDA verifies policeman

Before the policeman can use the PDA, the policeman needs to present his
policeman card to the PDA and to be verified using his fingerprint. This can prevent
unauthorized person to steal the PDA for illegal use. The authentication mechanism is
almost the same as the one in part b.

5.3 Implementation

To implement FTPS, we use the OpenSSL [58] as the core library and integrate it
with the fingerprint verification and smart card modules in our secure mobile device, i.e.
the policeman's PDA. OpenSSL is a robust open source library for the purpose of

Department of Computer Science and Engineering iii

cryptography operations. It provides a variety of cryptography functions that can be used
to develop different secure applications. Famous protocols such as Secure Sockets Layer
[54] and Transport Layer Security [62] are also supported in OpenSSL. To support the
FTPS system, we have developed a software library on top of OpenSSL. The software
library is divided into two core modules; they are the card module and the embedded
device module. The card module is responsible for the handling of the digital certificate
and the embedded device module is responsible for the cryptography operations
conducted inside the policeman's PDA.

a) Driver card implementation

To support FTPS, the driver card needs to include three sources of information;
they are the digital certificate, fingerprint and electronic balance of the driver. As we
have already developed a smart card that support fingerprint verification (in section
4.2.2.4), therefore we can add new modules to support the remaining functions.

Command CLA I INS I P I I T c Data [Te
Register master 0x00 0x38 0x00 0x00 0x181 Master …-

‘ fingerprint fingerprint
template template
Download live 0x00 0x43 0x00 0x00 0x81 L i ^ ^
fingerprint fingerprint
template template
Match live 0x00 0x44 0x00 0x00 …- Matched
template with score
master template
Get balance 0x00 0x30 0x00 0x00 …- Balance
Credit balance 0x00 0x32 0x00 0x00 0 x 0 2 C r e d i t ^

value
Debit balance 0x00 0x31 0x00 0x00 0x02~~~Debit value ——
New Message 0x00 0x40 0x00 0x00 0 x 1 4 P r e - d e f i n e d ——

message
Verify PDA 0x00 0x41 0x00 0x00 —— ^ ^
Put certificate 0x00 0x36 0x00 0x00 0x460 C e r t i f i c a t e ^
Get certificate 0x00 0x37 0x00 0x00 —— C e r t i f i c a t e 0 x 4 6 0 ^

Table 5.1: APDU of the driver card

Department of Computer Science and Engineering 53

Table 5.1 shows the APDU of the driver card. Seven operations are added to the
smart card to support FTPS. Get balance, credit balance and debit balance commands
are used to handle the electronic coins inside the smart card. Put certificate and get
certificate commands are used to handle the digital certificate of the driver. New
message command is used to update the pre-defined message (as mentioned in section
5.2) stored inside the smart card. Verify PDA is used to verify the validity of the
policeman PDA using the original and pre-defined message.

b) Secure software library implementation

We have developed the six software modules for FTPS based on OpenSSL. The secure
software modules provide a complete secure infrastructure in our system.

1) GEN—CERT

This module generates a digital certificate. Before we execute this module, a
subject file that contains the owner information is needed to construct a digital
certificate. When this module is executed, it first generates a pair of RSA keys (public
key and private key). Then it uses the subject file and the public key to generate the
digital certificate. This digital certificate now contains the owner name, owner
organization, owner public key and related information. In the last step, it converts the
certificate to the X.509 [6][2] format. The X.509 standard is a popular standard used in
digital certificate for representing data fields and distribution of pubic keys. With this
module, we can generate certificates for different parties in FTPS such as driver and the
policeman department.

2) SIGN-CERT •

Before a digital certificate can be used, it needs to be digitally signed by the CA.
When this module is executed, it adds the CA's subject name to the issuer field of the
certificate. Then it signs the certificate with the CA's private key and finally outputs the
signed certificate to the system.

3) ADD_INFO

Department of Computer Science and Engineering iii

Besides the standard data fields defined in X.509 format, we can add extra
information to the digital certificate for specific usage. For example, in FTPS, we can
add the driver ID to the certificate so that any modification of the driver ED will cause
failure in verification. Data added to the certificate cannot be changed as it is encrypted
by the CA's private key.

4) ADD一ENCR

This module allows the addition of encrypted message in the certificate. The
encrypted message is mainly used for the verification of policemans's PDA in our
system. When it is executed, it reads the plain text message and encrypts the message
with policeman's private key. Then the encrypted message is added to the digital
certificate using the ADD INFO module.

5) VERIFY—PDA

This module verifies the police PDA using the encrypted message stored in the
driver card. When this module is executed, it reads the certificate from the driver card
•and uses the policeman's private key to decrypt the message. The decrypted message
will then be sent back to the driver card for in-card verification.

6) VERIFY_DRIVER

This module verifies the driver using the digital certificate stored inside the driver
card. When this module is executed, it reads the certificate from the driver card and uses
CA's public key to verify the validity of the certificate. This module only contributes
part of the driver verification process because after the certificate verification is
finished, the fingerprint verification process will be called by the system to verify the
fingerprint of the driver.

�. The above six modules are integrated into our secure mobile device to enable
FTPS. Figure 5.6 shows the flow diagram of how a digital certificate is created for
different parties. Firstly, the CA itself needs to generate its own certificate so that other
parties can get the public key from that certificate for verification. This process will
involve GEN_CERT, ADD_INFO and SIGN_CERT modules one by one. The
certificate of policeman department will use the same procedure as CA. But for the

Department of Computer Science and Engineering iii

certificate of the driver, ADD—ENCRY module is needed between ADD INFO and
SIGN CERT so that pre-defined message can be encrypted and stored inside the
driver's certificate.

Digital certificate generation
I

GEN_CERT
1 r

ADD—INFO
] r

ADD_ENCRY

I f J
SIGN-CERT

y r
Output the certificate *> •

Figure 5.6: Certificate generation process

Figure 5.7 shows the software and hardware architecture of FTPS in the secure
mobile device. It describes the communication between the fingerprint and smart card
modules with the FTPS secure modules. As shown in the diagram, we separate the
software layer into an application layer and a library layer. The library layer contains the
fingerprint module and smart card module. These two modules are the core software
libraries that are responsible for communicating with the hardware device and
conducting verification using fingerprint sensor and smart card. We separate this library
layer from the application layer so that we can develop different applications based on
our secure mobile device. On top of the library layer, the application layer contains all
the related modules for FTPS. With this approach, the application development can be
isolated from the lower layer so that we can modify the hardware layer and library layer
without affecting the application layer. Therefore, portable application can be achieved.

Department of Computer Science and Engineering iii

Application layer
PTPS main software stream

_ _ * ^
I VERIFY—PDA VERIFY—DRIVER

Digital ^ J I I
certificate J
generation 1 ^ ^ certificate
moHiilp,

Y ” +
Library layer Smart card library Fingerprint library

牛 个 —

Hardware Layer 2
Smart card Fingerprint sensor

Figure 5.7: Software and hardware architecture of PTPS

5.4 Results and Observation

, Since PTPS is used in a mobile device, speed is a critical factor. Experiments on
different modules are conducted to evaluate the performance. Figures 5.8 to 5.13 show
the runtime performance of secure modules GEN CERT, ADD INFO, ADD ENCRY,
SIGN—CERT，VERIFY一DRIVER and VERIFY—PDA, respectively. Each module is
executed a hundred times and the average result is calculated. We simulate the driver
smart card as a normal file so that we can ignore the influence of smart card I/O
overhead. Result shows the generate certificate is the most time consuming part among
all the secure modules, because a time consuming process, the RSA key pairs
generation, is involved in this step. ADD INFO, ADD—ENCRY and SIGN_CERT are
part of the certificate generation process. Those modules can achieve acceptable
performance even if they are executed in a mobile platform (SAll lO and PXA250
processors). As certificate generation is only executed once for issuing a new driver card
at the beginning, it is not a must to achieve real time performance. If necessary, it can be
done in a desktop PC for efficiency consideration. The VERIFY_DRJVER and
VERIFY_PDA, modules are often involved because the policeman and different drivers
need to use them for mutual authentication. The most time consuming parts of these two

Department of Computer Science and Engineering iii

modules are for reading and decrypting of information in certificates. Experiments show
that these two modules can achieve real time performance in a mobile platform.

5 ITT""" 1 •；•"."V" ；> ： . • ”鹏wummk̂

• -‘ • ：

Q I * 丨 •.八 . 3 . _ _ … … … • 1 I ,1"•沉丨油mlf^ 1 . i f e , — i t “ , 、 1 _ . A

PII 300 P i n i G SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM)

Figure 5.8: Performance of certificate generation in different platforms

。 ” 鹤 � . . . I
3 � . i 5 — I I
I � . i • �) :K -
。.：U：- - : ; I H : H

PII300 PHI IG SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM)

Figure 5.9: Performance of adding certificate information in different platforms

0,1 - • ^

PII 300 PHI IG SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM)

Figure 5.10: Performance of adding encrypted information in different platforms

Department of Computer Science and Engineering iii

lirrrlll
PII 300 PI I I IG SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM)

Figure 5.11: Performance of signing certificate in different platforms

‘ o.oj ^ ^ ^ ^ ^ 二 • 敏

PII300 PI I I IG SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM)

Figure 5.12: Performance of verifying driver in different platforms

! � . i 霧j!
‘ ‘ � + �5 m / : . _ , � • ’ ;

^ H n 9 H WBm
Q — I � ‘ — - 言 絕 W ‘ ,

PII 300 PI I I IG SAl l lO PXA250
(64MB) (512MB) (32MB) (32MB)

Platform (RAM) Figure 5.13: Performance of verifying PDA in different platforms

Department of Computer Science and Engineering iii

PUT.MSG VERIFY.MSG VERIFY_CERT RSA DECRYPTION READ.CERT
FTPS operations

Figure 5.14: Overall performance of FTPS

Figure 5.14 shows the performance of FTPS in our secure mobile platform without
file simulation. It includes the overhead of smart card I/O so that we can evaluate the
overall system performance. PUT MSG is the time for uploading the pre-defined
message to the driver card. VERIFY_MSG is the time for comparing the pre-defined
message inside the driver card. VERIFY_CERT is the time for verifying the certificate.
RSA DECRYPTION is the time for decrypting the encrypted pre-defined message and
READ—CERT is the time for reading the certificate from the driver card.

The results show that all the operations except READ CERT operation can execute
in less than one second. The main overhead of READ CERT is due to the reading of
certificate from the smart card in the PDA. The certificate is about 1120 bytes and a few
second is needed for I/O process. The time for verifying the driver and verifying the
policeman can be calculated by equation VI and V2 respectively.

V1: READ 一C E R T + VERIFY 一 CERT
=4.45 + 0.35
=4.80s

V2: READ 一 CERT + RSA_DECRYPTION+PUT_MSG+VERIFY_MSG
=4.45 + 0.0558+0.23+0.1502
=4.886

Department of Computer Science and Engineering iii

Although the time for both VI and V2 needs about 5 seconds, we can observe that
the READ CERT operation is duplicated. After the driver verifies the policeman, we
can pre-store the retrieved certificate so that it can be used in the procedure of verifying
the driver. Therefore the actual mutual authentication time:

4.80s + 4.886s - 4.45s = 5.236s

In general, real time performance of FTPS in a mobile platform is shown to be
achievable and therefore an efficient and secure mobile system is developed for
handling traffic offence applications.

r

Department of Computer Science and Engineering iii

6. Conclusions and future work
In this thesis, we have investigated different infrastructures for constructing mobile

payment systems. From the investigation, we observe that even if PKI is deployed to the
payment systems, security still cannot be guaranteed if a system does not have a good
authentication mechanism. Therefore we propose a fingerprint and smart card combined
authentication technique in which fingerprint templates are matched inside smart card to
protect user privacy. We studied the various methods for implementing the architecture
using embedded systems. Through experiments, we have shown that SoC is a better
approach for constructing our secure mobile device because SoC has the flexibility to
support multiple and diversified applications as well as the ease to accommodate
additional hardware devices. The whole authentication can be built using existing
mobile platforms so that it can be integrated to the popular mobile payment systems
very easily.

To evaluate the performance of our designed secure mobile device, we have
developed FTPS for use in traffic offences. The system allows a policeman and the

' driver to settle the traffic offence payment efficiently. FTPS combines different secure
software modules to support digital certificate, digital signature and mutual
authentication on our proposed embedded system. Experiments were also conducted to
evaluate the performance of FTPS. Results show that satisfactory performance can be
achieved.

Engineering can always be conceived as a combination of art and science to solve
problems. In our particular case, the science aspect comes from the computer hardware,
the system software. We have contributed the art aspect by choosing a flexible platform
(SoC + Embedded Linux) and the application software (Fingerprint Verification, Smart
Card Programming, PKI Programming, System Integration) to solve a very difficult
problem (Personal Authentication for Mobile Payment). Our contribution is obvious
from our demonstrable results.

Because of advancement in technologies and the emergence of new artful concepts,
engineering design never stops. Such advancements, in turn, impact our software design.
In future work, we can foresee at least improvement in two areas. First, redesign the

Department of Computer Science and Engineering iii

secure mobile device so that its physical size can be further reduced to a portable
version. Secondly, redesign of the complete system using the concept of hardware and
software co-design for the embedded system. We will pause here.

r

Department of Computer Science and Engineering iii

7. References
1. A. Jain, R. Bolle, and S. Pankanti, Biometrics: Personal Identification in

Networked Society, Kluwer Academic Publishers, 1999
2. Adams, C.，Cain, P., Pinkas, D. and R. Zuccherato, "Internet X.509 Public Key

Infrastructure Time-Stamp Protocol (TSP)", RFC 3161, August 2001
3. Alessandro Rubini, Jonathan Corbet, Linux Device Drivers, Edition,

O'Reilly & Associates, Inc 2001
4. Andrew Nash, William Duance, Celia Joseph, Derek Brink, PKI implementation

and Management E-Security, McGraw-Hill, 2001,pp299-375
5. Asker M. Bazen and Sabih H. Gerez, Extraction of Singular Points from

Directional Fields of Fingerprints, Mobile Communications in Perspective,
Annual CTIT Workshop, Enschede, The Netherlands, February 2001

6. Bassham, L.，Polk, W. and R. Housley, "Algorithms and Identifiers for the
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
Lists (CRL) Profile", RFC 3279，April 2002

7. Bellare, M., et al.，Design, Implementation and Deployment of a Secure
Account-Based Electronic Payment System, Research Report RZ 3137, IBM
Research Division, June 1999

8. Berkeley Design Technology, http://www.bdtlcom
9. Bob Zeidman, President, The Chalkboard Network, Introduction to ASIC

Design, Embedded System Conference, San Francisco 2002
10. Chi-Wei Yang, Paul C. H. Lee, Ruei-Chuan Chang, Reuse Linux Device Drivers

in Embedded Systems, In Proceedings of the 1998 International Computer
Symposium (ICS'98), Tainang, Taiwan

11. Darrell Dunn, Intel scale up StrongARM with new XScale platform, Aug, 2000
12. Dave Jaggar, ARM Architecture and Systems, IEEE Micro, Vol.17, No. 4, Jug-

Aug. 1997，pp9-ll
13. David D. Zhang, Biometric Solutions For Authentication In An E-World,

Kluwer Academic Publications, 2002
14. Digital Signal Processing Design Using the TMS320C5X, Instructor's Manual
15. Hash function, http://www.rsasecuritv.com/rsalabs/faq/2-1-6.html
16. How to use Ramdisk for Linux,

http://www.linuxfocus.org/English/Novemberl999/articlel24.html
17. HyperText Markup Language (HTML) Home Page, http://www.wS.orz/MarkUp/

Department of Computer Science and Engineering iii

http://www.bdtlcom
http://www.rsasecuritv.com/rsalabs/faq/2-1-6.html
http://www.linuxfocus.org/English/Novemberl999/articlel24.html
http://www.wS.orz/MarkUp/

18. Intel PXA250 and PXA210 Application Processors, Developer's Manual,
February 2002

19. Intel StrongARM SA-1110 Microprocessor, Developer 's Manual, June 2000
20. Introduction to VLIW Computer Architecture, Philips Semiconductors
21. Jain, A.; Lin Hong; Bolle, R.，On-line fingerprint verification, Pattern Analysis

and Machine Intelligence, IEEE Transactions on, Volume: 19 Issue: 4，April
1997 pp302 -314

22. Jain, A.; Lin Hong; Yifei Wan, Fingerprint image enhancement: algorithm and
performance evaluation, Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Volume: 20 Issue: 8，Aug 1998 pp777 -789

23. Jalal Al-Muhtdi, Anand Ranganathan, Roy Campbell, M. Dennis Mickunas, A
Flexible, Privacy-Preserving Authentication Framework for Ubiquitous
Computing Environments, 22"“ International Conference on Distributed
Computing Systems Workshops, 2002

24. Jennifer Eyre, The Digital Signal Processor Derby, Berkeley Design Technology
Inc. IEEE Spectrum, Jim. 2001, pp62-68

25. Jennifer Eyre, The Digital Signal Processor Derby, Berkeley Design Technology
Inc. IEEE Spectrum, Jun. 2001，pp62-68

26. John P. Uyemura, Introduction to VLSI Circuits and Systems, Wiley, 2002
27. K. Lahiri, A. Raghunathan, and S. Dey, Battery-driven system design: A new

frontier in low power design, in Proceeding Joint Asia and South Pacific Design
Automation Conference / International Conference VLSI Design, pp261-267,
Jan. 2002.

28. K.C. Chan, Y. S. Moon, P. S. Cheng, Fast fingerprint verification using sub-
regions of fingerprint images, to be appeared in IEEE CSVT, 2003

29. Kamei, T.; Mizoguchi, M., Image filter design for fingerprint enhancement,
Computer Vision, 1995. Proceedings, International Symposium on, 21-23 Nov
1995,ppl09 -114

30. Kapil- Raina, Anurag Harsh, mCommerce Security, A Beginner's Guide,
McGraw-Hill 2002

31. Liang-Gee Chen, The Technology Trend of Embedded Processor, Department of
Electrical Enginnering, National Taiwan University

32. Linux Device, the Embedded Linux Portal, http://www.linuxdevices.com
33. Liu, S.; Silverman, M.; A practical guide to biometric security technology

IT Professional, Volume: 3 Issue: 1，Jan.-Feb. 2001 pp27 -32

Department of Computer Science and Engineering iii

http://www.linuxdevices.com

34. Maio, D.; Maltoni, D., Direct gray-scale minutiae detection in fingerprints,
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Volume: 19
Issue: 1，Jan 1997 Page(s): 27 -40

35. Miller, B.’ Vital signs of identity, Spectrum, IEEE, Volume: 31 Issue: 2’ Feb.
1994，pp22-30

36. MUSCLE, http://wwwMnuxnet.com/info.html
37. Net Winder Floating Point Notes, http://www. netwinder. ors/~scottb/notes/FP-

Notes.html
38. Neudoerffer, D.， 5 Steps to Secure Mobile Data,

http: //techupdate.zdnet. co. uk/storv/0,. t481-s2125672,00. html
39. Overview of the SET Protocol,

http://www. seas, upenn. edu/�tcom500/commerce/set.htm
40. P.S. Cheng, Y.S. Moon, Z.G. Cao, K.C. Chan, T.Y. Tang, Enabling Fingerprint

Authentication in Embedded Systems, International Workshop on Signal
Processing for Wireless Communication 2003, Vol. II，pp. 228-231

41. Pandey, R, Advances in DSP Development Environments, ELECTRO '96.
Professional Program. Proceedings, 1996, pp299-301

， 42. Peter Thayer, Security Aspects of Wireless Devices, San Francisco Embedded
Systems Conferences, 2001

43. Phillips, PJ. ; Martin, A.; Wilson, C I . ; Przybocki, M.; An introduction
evaluating biometric systems, Computer, Volume: 33 Issue: 2, Feb. 2000, pp56 一
63

44. Promoting Web-Enabling eBusiness, Authentication Architectures,
Technologies, and Commercial Implementations, Technical White Paper Series,
eFORCE Inc.

45. RISC Processor Architecture,
http://www.ece.iit.edu/~istme/ece529/handouts/skew.ppt

46. Rolf Ernst, Embedded System Architectures, NATO Science Series: Applied
Sciences, volume 357 oiSystem-Level Synthesis, ppl-43, II Ciocco, August 1999

47. Ross Anderson, Markus Kuhn, Tamper Resistance - a Cautionary Note,
USENIX Workshop on Electronic Commerce Proceedings, Oakland, California,
1996, pp 1-11

48. RSA key generation, http://www.cs.usask.ca/grads/iilO72/crvpto/RSA-
1/imsO.htm

49. S. Pankanti, S. Prabhakar, and A. K. Jain, On the Individuality of Fingerprints,
IEEE Transactions on PAMI, Vol. 24，No. 8, pplOlO-1025, 2002.

Department of Computer Science and Engineering iii

http://wwwMnuxnet.com/info.html
http://www
http://www
http://www.ece.iit.edu/~istme/ece529/handouts/skew.ppt
http://www.cs.usask.ca/grads/iilO72/crvpto/RSA-

50. S. Ravi, A.Raghunathan and N. Potlapally, Securing Wireless Data: System
Architecture Challenges, International Symposium on System Synthesis
(ISSS) ,October 2002

51. S. Schwiderski-Grosche and H. Knospe, Secure mobile commerce, Electronics
and Communication Engineering Journal, October 2002

52. Senn, J.A, The Emergence of M-Commerce, Computer, Volume: 33 Issue: 12,
Dec. 2000, ppl48-150

53. SMS (Short Message Service) - Technical Overview,
http://www. cswl. com/whiteppr/tech/sms. html ‘

54. SSL 3.0 Specification, http://wp.netscape.com/eng/ssl3/
55. Steve Furber, ARM System-on-Chip Architecture, second edition, Addison-

Wesley, 2000
56. Steve Furber, ARM System-on-Chip Architecture, second edition, Addison-

Wesley, 2000
57. The ARM architecture,

http://www.ann.com/amitechyARM Arch?OpenDocument
58. The OpenSSL project, http://www.openssl.org

‘ 59. TI C5000 series DSP, http://www.go-dsp.com/xdspgt/swfs/swfs/start-
c5000.html

60. TI C6000 series DSP, http://www.go-dsp.com/xdspgt/swfs/main-c6000.html
61. Tom Austin, PKI: A Wiley Tech Brief, John Wiley & Sons, Inc., 2001,pp3-21
62. Transport Layer Security, http://www.ietf.org/html.charters/tls-charter.html
63. Unix man pages: initrd, http://www.rt.eom/man/initrd.4.html
64. Vesna Hassler, Security Fundamentals for E-Commerce, Artech House, 2001,

pp76-100，369-383
65. Wayne Wolf, Department of Electrical Engineering Princeton University
66. Xiping Luo, Jie Tian, Yan Wu, “A minutiae matching algorithm in fingerprint

verification", Proceedings. International Conference on Pattern Recognition,
2000，Volume: 2, 2000, ppl038-1041

67. Y. S. Moon, F. T. Luk, T. Y. Tang, K.C. Chan, C. W. Leung," Fixed-Point
Arithmetic for Mobile Devices-A Fingerprint Verification Case Study,"
Proceedings of the SPIE 2002 Seattle, Advanced Signal Processing Algorithms,
Architectures, and Implementations XII，volume 4791, pp 144 -149

Department of Computer Science and Engineering iii

http://www
http://wp.netscape.com/eng/ssl3/
http://www.ann.com/amitechyARM
http://www.openssl.org
http://www.go-dsp.com/xdspgt/swfs/swfs/start-
http://www.go-dsp.com/xdspgt/swfs/main-c6000.html
http://www.ietf.org/html.charters/tls-charter.html
http://www.rt.eom/man/initrd.4.html

> / 考

. t i t S - , » • ̂ ̂ h r

- - - \ > - / ...

• A . 1 - . • V • , . « • /
•

 . • • ̂ • • ‘ - - . r i . . 4 .

1 二 . 、 ： .

: : ‘ : , : . , , , 、 . … 1 月 . 「

. . 、 ： 二 . ‘ 二 r ^ ^ p ? .

. / • ； , 藝 V

•

 • ： ： . - - i . w . . - . :

. ~ ~ 。 • ， 、 ％ • 會 r : f - ’ ： . . . ：

• - - . - . . , , ， . ： 广 气 n . . . 藝 ” ， V - . 〜 ： - . .

- - v - y •

.. 3 、 l . X . - 、 ； v v , - r . ‘ . - v . . V -

• .

..
•

 1 .” / . - f ^ i f ^ v : - .
、
:

•

- - _ . : 、 ” i . 、 ： ， / > - . • . .

.. - i : - - y • — ， ， - . .

. . 、 . . .
•

 .. . h , : - : - . . .

, 、 • . . r . . . V

. c - V - : - c ,

•

- -

• • . ‘
•

 - . r . - .

. ‘ . . . ： ： . ： • ， . . . ’ ： .

•

 . . - , ’ ； ， - 」 ： - 、 . i

•

 - . . -
•

 t . . / . .

一 - • -
•

 •

• . •

. ； • . . - ？ ‘ ： . - “

； . 、 - > .

. . . .

. . . . - .

- J -
•

•

 • , .

‘ • . . A

/ - • ’ > - 、 • • . ,

• 广 i • ‘ • .

. . - ； ‘ : ；

. . - .

• - - . . -

• « -

. . , ； .

. ； - - ”

- •

- , 1 . . -

• ‘ •

, . ： -

.

• ,

. ： 〔

、

•

 . V

• . - ；

； . - “

. < V .

, „ • .

. .. i

• ••’•

... .� .

•• .. 一 ——•- —“‘ .

TDEhhThOO .

.iiiiin^^�• saLjejqtn >IHn3 丨
• . .. • 、 ‘

• �. • •

J -

•.

• f . I.

‘ • •

•
• ‘ - . 一. • .’. •

“ .

， • .

\ .

