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ABSTRACT 

In recent years, a number of sophisticated architectures have been proposed to 

provide video-on-demand (VoD) service using multicast transmissions. Compared 

to their unicast counterparts, these multicast VoD systems are highly scalable and 

can potentially serve millions of concurrent users. Nevertheless, these systems are 

designed for streaming constant-bit-rate (CBR) encoded videos and thus cannot 

benefit from the improved visual quality obtainable from variable-bit-rate (VBR) 

encoding techniques. To tackle this challenge, this thesis presents a Turbo-Slice-

and-Patch (TSP) algorithm to support VBR video streaming in a multicast VoD 

system. Results obtained from trace-driven simulation of 300 VBR videos show that 

serving VBR videos with the TSP algorithm increases the average latency by only 

9% compared to the CBR case with the same average video bit-rate. Moreover, in 

165 out of the 300 video titles, the TSP algorithm actually outperforms the CBR 

equivalent by shortening the latency by 0.04% to 99%. Given that we can achieve 

similar visual quality by encoding VBR video at half the average rate of CBR video, 

this TSP algorithm can potentially serve VBR videos with more consistent visual 

quality and with less resource compare to CBR-based video streaming systems. 
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摘要 

近年有很多學者以多重播送技術(Multicast)爲基礎，設計出能提供視頻點播 

(VoD)服務的系統。與使用單點傳送技術(Unicast)比較，使用多重播送技術的 

視頻點播系統擁有十分高的可升級性，將能夠同時服務過百萬位使用者。但 

是，此類系統是針對以常數比特率(constant-bit-rate)壓縮而成的視頻而設計。 

故此，不能藉著使用動態比特率(variable-bit-rate)壓縮技術以提升影象質素° 

因此，本論文將提供一個支援動態比特率壓制視頻並能使用於多重播送技術的 

視頻點播系統的演算法，名爲快速切割整合法（Turbo-Slice-and-Patch) °就用 

戶的平均等候時間而言，由使用300套動態比特率壓制視頻的模擬顯示，以快 

速切割整合法提供視頻點播服務比以相同平均比特率、但使用常數比特率壓制 

視頻的系統僅高出9% °而且’於其中的165套視頻’以快速切割整合法比使 

用常數比特率的系統能縮短等候時間0.04%至99%不等°由於使用動態比特 

率壓制的視頻只需要使用常數比特率壓制的平均比特率的一半，便能達到同樣 

的影象質素，快速切割整合法將能夠以比爲常數比特率設計的系統更少的資源 

提供穩定的影象質素。 
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Chapter 1 

INTRODUCTION 

In a true-video-on-demand (TVoD) system, the video server has to reserve a 

dedicated video channel for each user for the entire duration of the video session 

(e.g. two hours for a movie). Consequently, the server and network resources 

required increase linearly with the number of concurrent users to be supported. 

Although current PC servers are already very powerful and capable to serve up to 

hundreds of concurrent video streams, scaling up a system to thousands and even 

millions of concurrent video streams is still prohibitively expensive. 

One promising solution to this scalability challenge is through the intelligent 

use of network multicast. Network multicast enables a server to send a few streams 

of video data for reception by a large number of clients, thereby significantly 

reducing the amount of resources required. A number of pioneering studies have 

investigated such architectures, such as batching [2-4], patching [5-8], and periodic 

broadcasting [9-12]. 

A common assumption among these multicast VoD architectures is that the 

videos are constant-bit-rate (CBR) encoded. This significantly simplifies system 

design and analysis, and enables one to study the system performance independent 

of video encoding variations. Nevertheless, the visual quality of CBR video is not 
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constant and tends to vary according to the video content. For example, complex 

video scenes with a lot of motions will typically result in lower visual quality than 

simple video scenes with little movement. 

By contrast, videos encoded with constant-quality encoding algorithms will 

have more consistent visual quality, albeit at the expense of bit-rate variations. 

However, a study by Tan et al. [14] has shown that VBR-encoded video can achieve 

visual quality similar to CBR-encoded video using only half the bit-rate. This result 

suggests that VBR encoding is not only desirable for providing high-quality VoD 

services, but also has the potential to reduce resource requirements as well. The 

challenge is the complex resource allocation and scheduling problems resulting from 

the video bit-rate variations. 

This study addresses this challenge by investigating a new turbo-slice-and-

patch (TSP) algorithm for serving VBR-encoded video streams in a metropolitan-

scale video streaming service using network multicast. Unlike previous work on 

VBR video streaming focused on unicast network transmission, the TSP algorithm 

investigated in this study employs network multicast to significantly increase the 

system's scalability to cope with the immense workload in a metropolitan scale 

streaming service. Results obtained from trace-driven simulation of 300 VBR videos 

show that serving VBR videos with the TSP algorithm increases the average latency 

by only 9% compared to the CBR case with the same average video bit-rate. 

Moreover, in 165 out of the 300 video titles, the TSP algorithm actually outperforms 

the CBR equivalent by shortening the latency by 0.04% to 99%. Given that we can 

achieve similar visual quality by encoding VBR video at half the average rate of 

CBR video, this TSP algorithm can potentially serve VBR videos with more 
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consistent visual quality and with less resources compare to CBR-based video 

streaming systems. 

The rest of the thesis is organized as follows. Chapter 2 reviews some related 

work and compares them with this study; Chapter 3 reviews the multicast VoD 

architecture; Chapter 4 presents two priority scheduling algorithms; Chapter 5 

presents the Turbo-Slice-and-Patch algorithm; Chapter 6 presents the proof of 

smooth playback guarantee. Chapter 7 evaluates and compares the three algorithms 

using simulation results; and Chapter 8 concludes the thesis. 
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Chapter 4 

RELATED WORKS 

The problem of VBR video delivery in unicast VoD systems has been studied 

extensively. We review some of the more relevant previous work in Section 2.1 and 

compare them with this study in Section 2.2. 

2.1 Previous Work 
One of the best known solutions for VBR video delivery is temporal smoothing [15-

18]. Smoothing makes use of a client-side buffer to receive data in advance of 

playback. This work-ahead technique enables the server to transmit video data in a 

piecewise linear schedule that can be optimized to minimize rate variability [16] or 

to minimize the number of rate changes [17]. The schedule can be computed offline 

and with proper resource reservation, deterministic performance can be guaranteed. 

Interested readers are referred to Feng et al. [18] for a thorough comparison of 

various smoothing algorithms. 

In another study by Lee and Yeom [19], a data prefetch technique is proposed 

to improve video server performance in serving VBR videos. Unlike smoothing, 

where all video data are retrieved from the disk sequentially, data prefetching 

preloads video data corresponding to a video's bit-rate peaks into the server's 

memory during system initialization. During operation, the server then only needs to 
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retrieve the remaining video data from the disk to combine with the prefetched data 

for transmission to the clients. As the remaining video stream has a lower peak bit-

rate, disk utilization is increased. Their simulation results show that up to 81% more 

streams can be served using this prefetch technique. The tradeoffs are increased 

server buffer requirement and additional offline preprocessing of the video data. 

A third approach proposed, by Saparilla et al. [9], schedules video data 

transmission using a priority scheduler (Join-the-Shortest Queue). In particular, the 

server schedules video data transmission according to the demand of data of each 

channel. A channel with the greatest demand of data (the clients listening to this 

channel are most likely to run out of data) will have the highest priority in the next 

round of transmission. However, while server efficiency is improved, this priority 

scheduler does not guarantee a client can receive all data in time. In particular, a 

channel will simply be skipped (i.e. not transmitted) if the data cannot be transmitted 

in time for playback. Their simulation results show that with their Join-the-Shortest 

Queue priority scheduling and allowing the client to retrieve data from seven 

channels synchronously, the start-up latency can be limited to around 100 seconds 

with a loss probability of 10'^. 

2.2 Comparison 
Compared to the TSP algorithm investigated in this study, both temporal smoothing 

and the data prefetch techniques discussed previously are orthogonal and 

complementary. For temporal smoothing, a smoothed VBR video stream can be 

considered as just another VBR video stream, albeit one requiring additional client 

buffer for proper playback. For the data prefetch technique, the focus is on 

improving disk retrieval efficiency by intelligently preloading some video data into 
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the server memory. Obviously, this technique does not affect the transmission 

schedule at all and can thus be integrated with any transmission scheduling 

algorithms including S&P. 

Compared to the study by Saparilla et al [9], TSP differs in two major ways. 

First, the TSP algorithm guarantees that no video data will be skipped, thus ensuring 

visual quality. Second, TSP is targeted at clients with limited access bandwidth 

(twice the average bit-rate of the video). By contrast, the algorithm proposed by 

Saparilla et al. assumes the client have sufficient bandwidth to receive data from 

many channels simultaneously, which may not be practical for some applications. 

In a previous work [1], we investigat an early version of the TSP algorithm, 

called slice-and-patch (S&P), which shares some of the design principles of the TSP 

algorithm. There are, however, two important differences. First, in S&P the VBR 

video is first smoothed using temporal smoothing (e.g. optimal smoothing [16]) 

before being subjected to the slicing operation. In TSP we divide the video into two 

sections that are independently smoothed. Second, TSP has a different algorithm in 

Phase 2 of the patching process (c.f. Section 5.3) where video data are transmitted at 

the maximum client access bandwidth rather than the original video bit-rate in S&P 

(hence the name turbo-slice-and-patch versus slice-and-patch [1]). Last but not least, 

we have conducted more extensive trace-driven simulation using 300 VBR video 

traces in this study (versus 50 in the previous study [1]) to evaluate the proposed 

algorithms in a much broader context to obtain more complete and reliable results. 
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Chapter 7 

SYSTEM ARCHITECTURE 

In this section, we briefly review the Super-Scalar VoD (SSVoD) architecture 

proposed by Lee and Lee [13]. SSVoD is designed for streaming CBR videos over a 

combination of static and dynamically-scheduled multicast transmission channels. 

Its primary advantages are the super-linear scalability achieved by multicast 

transmission, and the ability to support interactive playback control such as pause-

resume and slow-motion playback without additional server resources. Interested 

readers are referred to the study by Lee and Lee [13] for more details. We discuss in 

Section 3.3 the challenges in streaming VBR video over the SSVoD architecture. 

3.1 Transmission Scheduling 
The SSVoD architecture comprises a number of service nodes delivering video data 

over multicast channels to the clients. SSVoD achieves scalability and bandwidth 

efficiency by sending video data to a large number of clients using a few multicast 

channels. However, simple periodic multicast schemes such as those used in a near-

video-on-demand (NVoD) system limit the time for which a client may start a new 

video session. Depending on the number of multicast channels allocated for a video 

title, this startup delay can range from a few minutes to tens of minutes. To tackle 

this initial delay problem, SSVoD employs patching to enable a client to start video 
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Figure 3.1. The patching process in the super-scalar video-on-demand system 

supporting CBR video. 

playback at any time using a dynamic multicast channel until it can be merged back 

onto an existing multicast channel. The following sections present these techniques 

in more detail. 

Each service node in the system streams video data using multiple multicast 

channels. Let M be the number of video titles served by each service node and let N 

be the total number of multicast channels available to a service node. For simplicity, 

we assume N is divisible by M and hence each video title is served by the same 

number of multicast channels, denoted by NM=N/M. These multicast channels are 

then divided into Ns static multicast channels and Nd:Nm~Ns dynamic multicast 

channels. The video title is multicast repeatedly over all Ns static multicast channels 

in a time-staggered manner as shown in Figure 3.1. Specifically, adjacent channels 

are offset by 

T , = L I N , (3.1) 
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seconds, where L is the length of the video in seconds. Transmissions are repeated 

continuously, i.e. restarted from the beginning of a video title every time 

transmission completes, regardless of the load of the server or how many users are 

active. These static multicast channels are used as the main channels for delivering 

video data to the clients. A client may start out with a dynamic multicast channel but 

it will shortly be merged back to one of these static multicast channels as explained 

in the next section. 

3.2 Admission Control 
To reduce the response time while still leveraging the bandwidth efficiency of 

multicast, SSVoD allocates a portion of the multicast channels and schedules them 

dynamically according to the request arrival pattern. A new user either waits for the 

next upcoming multicast transmission from a static multicast channel, or starts 

playback with a dynamic multicast channel. 

Suppose a new request arrives at time to, which is between the start time of 

the previous multicast cycle, denoted by t,n, and the start time of the next multicast 

cycle, denoted by t,n+\ (see Figure 3.1). The new request will be assigned to wait for 

the next multicast cycle to start playback if the waiting time, denoted by Wj, is equal 

to or smaller than a predefined admission threshold 2S, i.e., w,. . We 

call these requests statically admitted. This admission threshold is introduced to 

reduce the amount of load going to the dynamic multicast channels. 

On the other hand, if the waiting time is longer than the threshold, then the 

client will request a dynamic multicast channel to begin playback {dynamically 

admitted), while at the same time caches video data from the multicast channel with 

the multicast cycle started at time Note that the client may need to queue up and 

9 



wait for a dynamic multicast channel to become available. If additional clients 

requesting the same video arrive during the wait, they will be batched and served by 

the same dynamic multicast channel once it becomes available. Eventually, the 

client playback will reach the point where the cached data began and the client can 

then release the dynamic multicast channel and continue playback using data 

received from the static multicast channel. This integration of batching with 

patching significantly increases the system's efficiency at heavy loads. 

Compared to TVoD systems, an SSVoD client must have the capability to 

receive two multicast channels concurrently and have a local buffer to hold up to TR 

seconds of video data. Given a video bit-rate of 3Mbps (e.g. high-quality MPEG-4 

video), a total of 6Mbps downstream bandwidth is required during the initial 

patching phase of the video session. For a two-hour movie served using 25 static 

multicast channels, the buffer requirement is 108MB. This can easily be 

accommodated using a small harddisk at the client, and in the near future simply 

using memory as technology improves. 

3.3 Challenges in Supporting VBR-
encoded Video 

The SSVoD architecture is designed for CBR videos and thus problems will arise if 

we want to stream VBR videos using the architecture. The first problem is in 

channel allocation. SSVoD partitions the server and network bandwidth into fixed-

bandwidth network channels for allocation purpose. This allocation model is clearly 

undesirable for streaming VBR videos as it requires each channel to have sufficient 

bandwidth to accommodate the peak rate of the video, which is typically many times 

the average video bit-rate. 
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To tackle this problem, we need to abandon the fixed-rate channel allocation 

model altogether and resort to allocating bandwidth according to the exact video bit-

rate profile. Specifically, instead of reserving half the channels for static multicast 

channels, we reserve half the server and network bandwidth for multicasting VBR 

streams in a time-staggered manner. Let v(t) be the video playback bit-rate function 

defining the bit-rate at which video data are being consumed t seconds after 

playback has begun. To multicast a video title in n independent time-staggered 

streams, the aggregate video bit-rate of the ensemble, denoted by Vs(t,n) will be 

given by 

n-\ (f T \ T \ 

= t mod - + — (3.2) 
(=0 VV ^J ^ J 

Thus we can determine the maximum number of time-staggered VBR video streams 

that can fit within the system capacity from 

A ,̂ = max {n IV, (?,«)< 0.5C,Vr,«} (3.3) 

where C is the total server and network bandwidth available. 

The second problem is in the client access network where the client has an 

access network bandwidth equal to twice the video bit-rate. While this is sufficient 

for receiving two CBR video streams, it is likely to run into congestion when VBR 

video is streamed due to the inherent video bit-rate variations. The use of temporal 

smoothing can alleviate this problem but cannot solve it completely without adding 

excessive start-up delay. In the next section, we address this problem by presenting 

two streaming algorithms based on priority scheduling. 
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Chapter 12 

PRIORITY SCHEDULING 

The primary problem in streaming VBR video in SSVoD is that dynamically-

admitted clients may not have sufficient access bandwidth to accommodate both the 

dynamic and the static multicast channel. For example, let Ry be the average video 

bit-rate, then the client has an access bandwidth of 2尺v However, a VBR video of 

average bit-rate Ry will likely have bit-rate peaks substantially higher than Ry even 

after smoothing is applied (e.g. some of the videos in our collection have average 

bit-rate 4Mbps but have peak bit-rate exceeding 12Mbps). It is easy to see that the 

access channel will become seriously congested whenever peaks from both dynamic 

channel and static channel overlap. 

Obviously we can increase the access network bandwidth to accommodate 

the overlapping bit-rate peaks. However this trivial solution suffers from two 

limitations. First, the access network bandwidth is often limited by the access 

network technology employed. For example, if Ethernet is employed as the access 

network infrastructure, then the access bandwidth can never exceed 10Mbps (lower 

in practice due to frame/packet header overheads). Thus in this case the access 

network cannot even accommodate one single stream of the VBR video (which has 

peaks over 10Mbps), let alone two streams. Second, the precise access bandwidth 
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required is dependent on the particular video being streamed, thus rendering it 

impossible to fix the access network bandwidth during system design. 

Therefore we present in the following two priority-scheduling algorithms that 

can operate with a given access network bandwidth (say two times the average video 

bit-rate) and yet are able to support the caching and patching operations in SSVoD. 

4.1 Static Channel Priority (SCP) 
In the static channel priority algorithm, we schedule the static channels to transmit at 

the original video bit-rate. The dynamic channel will simply use the remaining 

access network bandwidth to transmit video data for patching so that the aggregate 

bit-rate does not exceed the access bandwidth limit. Before streaming can start, we 

will process the video offline by collecting all the data above the bit-rate R臓 for 

0<R<L to form the prefetch block P, which is of bit-rate given by: 

• I 调 又 i f v � ( r ) > / C _ (4.1) 
P [O otherwise 

where VO(T) is the original video bit-rate for any playback points 0<t<L. We can thus 

guarantee that the client's access bandwidth will be sufficient for caching data from 

the static channel after the dynamic channel is released. This block P will be 

multicast periodically by a static channel at the bit-rate 尺腿.A client arriving at the 

1 L 
system will first prefetch data from this channel for a period of v^ {t)dt 

Rmax 0 

seconds. 

Assume the client finishes prefetching at time to and the immediate previous 

multicast cycle begins at time The client will immediately begin caching video 

data from the static multicast channel starting from a playback point of to-t,,, and 
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request a dynamic channel to stream the missed video data from playback point 0 to 

to-tm. Then the amount of residual access bandwidth left for the dynamic channel at 

time t is equal to u{t) = R,nax 一 for t>t\ where V(T)=VO(T)-Vp(T) for all 0<t<L. 

As the client has already missed the first tQ-t„i seconds of the video, a 

dynamic channel will be allocated to stream video data from the beginning of the 

video to the playback point tQ-t,,” The transmission duration, denoted by d,n, can 

then be obtained by solving the following equation: 

h+dm h+Oo-'n,) 

u{T)dT = j v{T-t^)dT ( 4 . 2 ) 

h h 

However, since the residual bandwidth available to the dynamic channel may not be 

sufficient to sustain continuous playback, the client may need to introduce an extra 

delay before playback can begin. Specifically, if the following inequality is satisfied: 

I I 

'u{T)dT> jv{T-t^)dT, fovt^<t<(t^+dJ ( 4 . 3 ) 

Then it implies that the amount of video data received from the dynamic channel 

always exceeds the amount required for continuous playback. In this case the client 

can begin playback as soon as the dynamic channel becomes available. Otherwise, 

the client will have to delay playback by say ds seconds so that the continuity 

condition is satisfied: 

t t 

d^ = m i n d u{T)dT> v[T-t^-d)dT, for ( ^ j < ( ^ 1 + ,)> (4.4) 

As we will show in Section 7.1, ds can become very large for certain videos. 

Next we derive the client buffer requirement for SCP. Specifically, the client 

will need to buffer video data from both the dynamic channel and the static channel. 

First, we derive the amount of data received at any time t. From the time the client 
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has finished prefetching at time to, data will be cached from the static channel up to 

the end of the video section at time (f,„+L). The amount of data received from the 

t 
static channel at any time t where tQ<t<{t^+ L) is equal to v{T-t^)dT . To 

'0 

simplify notations, we set v(约=0 for all r>L and r<0. From time to time t\+d’n’ the 

client will receive video data from the dynamic channel at the rate u{t). Thus the 

t 
accumulated amount of video data received by time t is equal to u(T)dT. Note that 

'1 

m(0=0 for all r <r, (i.e., before dynamic channel becomes available) and 

d’J (i.e., patching is completed). 

Therefore the total amount of data received at any time t is simply given by 

L t t • M M 
V (T)dT+ viT-tJdT+ u{T)dT ( 4 . 5 ) 

• ^ J J 
0 to 

Now as the client begins playback from time ti+ds, the accumulated amount of data 

consumed by the time t for (r, is then given by 

I 

h+^s 
I t-Oj+d,) 

='v(T-{t,+d^))dT+ J V^(T)dT ( 4 . 6 ) 
h+d, 0 

Finally, we can compute the amount of excess data received but not yet played back 

at any time t from 

fL \ 
u 鄉(to，,1，0 = jv, {r)dT + j v ( r - )dT + \u{T)dT 

\0 '0 h J 

, / t-ih+d,) 、 

- j v{T-{t,+d^))dT+ j V^{T)dT 

。 丨 0 
L t t t 

= V 州 J v ( r - �打 + f (4.7) 
to ti tj+d, 
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The maximum of (4.7) thus determines the client buffer requirement 

K + T , ) , t , < t , < < ? < ( ? , + d �+ L)} (4.8) 

4.2 Dynamic Channel Priority (DCP) 
To avoid the startup delay in the previous static channel priority algorithm, we can 

alternatively give priority to the dynamic channel. Unlike the previous algorithm, 

the static channel cannot simply transmit video data using the leftover access 

bandwidth because the static channels are periodically multicast in a fixed schedule 

to a large number of clients. Therefore, once a dynamic channel becomes available 

at time t\=to+w, the server will transmit video data from the beginning of the video 

at the maximum rate R…似 until it catches up with the playback point, say 5, currently 

being multicast by the static channel at time +s. At that instant, the client can 

then release the dynamic channel and continue receiving data from the static channel 

for the rest of the session. Similar to the SCP algorithm, the video is processed 

offline to extract video data exceeding the client access bandwidth into a prefetch 

block P, which is then multicast periodically at the rate R ^ , The client will prefetch 

block P before requesting for a dynamic channel to begin playback. 

Unlike SCP however, the client in DCP can always begin playback once a 

dynamic channel is available. The client does not cache video data from a static 

channel until the dynamic channel catches up with the playback point currently 

being broadcast by the static channel. When the dynamic channel becomes available 

at time ti and releases at time (tm+s), the client would have received video data of 

size R_ .(?�, , while missed video data from playback point 0 to 5 of size 
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given by v ( r ) J r . So, to determine this switchover point, we need to find s that 
0 

satisfies the following equation: 

i 
R画 jv ( r ) dT, where t,„+s> t, (4.9) 

0 

The dynamic channel in DCP will consume more resource than its SCP counterpart. 

In particular, the dynamic channel itself is streamed at the maximum access bit-rate 

(i.e., Rmax)' Also, the client cannot cache video data from the static channel while the 

dynamic channel is streaming, thus increasing the time it takes to catch up with the 

static channel. Both factors increase the dynamic channel's bandwidth consumption. 

To determine the client buffer requirement, we first consider the amount of 

data being received from the dynamic channel. At time h, the dynamic channel 

starts streaming data to the client at the rate 尺匪 up to the time (r,„+5) when the 

dynamic channel is released. The accumulated amount of data received from the 

dynamic channel by time t where t^<t< + s) is given by 

r(t)'(t-t,) (4.10) 

where r(t) equals 尺隱 for t^<t< ( � ,+ 5 ) or 0 otherwise. After the dynamic channel 

finishes, i.e. time t > {t„,+s)，the client will cache data from the static channel and 

thus the accumulated amount of data received by time t where < (广爪 + L) 

I 

is given by v ^ [ T - t ^ ) d T , where VXT)=V(T) for s<t<L or 0 otherwise because 

video data of playback point before s will not be received from the static channel. 

Therefore the total amount of data received by time t where t^<t< + L) is then 

given by 
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L t 

\^{T)dT+r{t)-{t-t,)+ (4.11) 

Now as the client begins playback at time t^，the accumulated amount of data 
I 

consumed by time t is given by v ( r - ? i ) + v “ r - d r . Thus the excess amount 
'I 

of video data received but not yet played back at time t is given by 

( L , \ 
二 \v^{T)dT+r{t)-{t-t,)+ \v^{T-t^)dT 

f t t-t, \ 
— v ( r - r , ) \v {T)dT 

J J ^ 

V'l 0 
t t L 

= j \\j{t)-v[T-t^)\dT^ \vp{T)dT (4.12) 
/| t-ty 

The maximum of (4.12) thus determines the client buffer requirement 

= max{f/彻(r.,0, |r„, <t,<(t„,+T,),t,<t<{t,+d^ + L)} (4.13) 
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Chapter 19 

TURBO-SLICE-AND-PATCH 

The two priority scheduling algorithms presented in the previous section have their 

pros and cons. In this section, we present the turbo-slice-and-patch (TSP) algorithm 

that combines the virtues of the static channel priority and the dynamic channel 

priority algorithms. In TSP, we divide the video stream into three portions (i.e. 

slicing) and admit clients using a three-phase patching process (i.e. patching). The 

following sections present the algorithm in detail. 

5.1 Video Pre-processing 
Before a video is put online for streaming, two offline processing steps are 

performed, namely temporal smoothing and slicing of the video. First, we apply 

temporal smoothing [16] to reduce the video's peak bit-rate. However, experiments 

show that temporal smoothing may also increase bandwidth consumption during the 

patching process. This is because temporal smoothing employs work-ahead to 

aggressively stream video data to the client as long as buffer allows. Consequently, 

this work-ahead mechanism will substantially increase the transmission rate of the 

video's initial portion, thus increasing the time to complete the patching process. 
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Figure 5.1 Video slicing in the Slice-and-Patch algorithm. 

To tackle this problem, we divide the video into two segments and then perform 

temporal smoothing to these two segments independently. The first video segment 

comprises video data from the beginning to the playback point Ta given by 
f o 、 

r = — — u r n _ T (5.1) 
A R -R R \ max \ut J 

where Tr is the repeating interval for the static multicast channels. The physical 

meaning of Ta is the latest possible playback point when the three-phase patching 

process will end. We will derive T^ in Section 5.3 after we have presented the three-

phase patching process. 

The rest of the video data then form the second video segment. This two-

segment smoothing process can substantially reduce the initial transmission bit-rate 

as the work-ahead algorithm will not transmit ahead of time video data beyond the 

playback point Ta. TO simplify discussions, we will refer to the smoothed video bit-

rate simply as the video bit-rate. 
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Figure 5.2 The three types of multicast channels in the Slice-and-Patch algorithm. 

In the second step, we slice the smoothed video into three parts for transmission in 

three separate multicast channels. As depicted in Figure 5.1, the video data stream is 

sliced at two bit-rate thresholds: and (Rmax-Rcut), where R匪 is the maximum 

access bandwidth of the client and Rcut is a system parameter configurable from Ry 

to ( 2 /3 ) /W. 

The first part, Slice A, comprises two portions. The first portion includes 

video data exceeding the bit-rate Rcut (e.g. Ai, A2, etc., in Figure 5.1) from the 

beginning of the video until the playback point Ta given by (5.1). The purpose of 

this slicing is to reduce the peak rate of the video stream to prevent congesting the 

client's access channel during patching. The second portion includes video data 

exceeding the client access bandwidth R隱 from the playback point Ta to the end of 

the video. 

This portion is similar to the prefetch block in the SCP/DCP algorithms and 

the purpose is to keep the video streaming bit-rate within the client access 

bandwidth limit. Let the size of this first video data block be A Mb. It will be 
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multicast repeatedly at a rate of R隱 once every d\=A/R,nax seconds as shown in 

Figure 5.2. 

The second part, Slice B in Figure 5.1, also comprises two portions. The first 

portion, covering the first Ta seconds of the video, includes the video data that 

exceed the bit-rate (Rniax-Rcut) but excludes those already in Slice A. The second 

portion, covering from playback point Ta until the end of the video, comprises all 

video data that exceeds the bit-rate (R匪-Rc“t) except those already in Slice A. This 

slice will be multicast repeatedly over a separate multicast channel following the 

actual video bit-rate (as opposed to the constant transmission rate for Slice A) as 

shown in Figure 5.2. 

Lastly, the third part, Slice C in Figure 5.1, comprises the rest of the video 

data not included in Slice A and Slice B. This slice will be multicast repeatedly over 

a third multicast channel following the actual video bit-rate as shown in Figure 5.2. 

5.2 Bandwidth Allocation 
Let B,„ax be the total server (or network, whichever is smaller) bandwidth allocated 

for a video of average bit-rate Ry bps and length L seconds. First, a bandwidth of 

Rmax will be allocated for multicasting Slice A. Then the remaining bandwidth will 

be equally divided between the static multicast channels and dynamic multicast 

channels. Simulation results have shown that this equal allocation results in the best 

performance (c.f. Section 7.6). 

There are two types of static multicast channels, one type transmitting Slice B 

and the other transmitting Slice C. As the numbers of these channels are equal, we 

will refer to a pair of such channels as a static multicast channel. Unlike the case of 

CBR videos, a static multicast channel in TSP does not occupy a constant amount of 
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Figure 5.3 The three-phase patching process in the Slice-and-Patch algorithm. 

bandwidth. Therefore offline numerical procedures are used to compute the 

maximum number of static multicast channels that can fit within the bandwidth limit 

(B,nax-Rmaxy2. The remaining bandwidth will be used by the dynamic channels to 

patch newly admitted users and then merge them to one of the static multicast 

channels. Once the merging is completed, the user will not incur any additional load 

to the server for the rest of the video streaming session. 

5.3 Three-Phase Patching 
A new client goes through a three-phase patching process to begin a new video 

streaming session. Let the client arrive at time to. It immediately enters Phase 1 by 
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caching Slice A at the maximum rate R,nax for a duration of d\ seconds as shown in 

Figure 5.3. Next, the client will request and wait for a dynamic channel to begin 

Phase 2. Once a dynamic channel becomes available at time the client begins 

receiving and playing back video data blocks {B\, C]} while simultaneously caching 

block C2 into a local buffer. The dynamic channel sustains video playback by 

streaming the missed content (i.e., blocks {5i，Ci}) to the client at the bit-rate Rcut-

Thus the transmission duration in Phase 2’ denoted by 屯 is given by 

h-'m 
• ^ V^(T)dT+ V^{T)dT 

d 广 』 ^  

Kut 
h-<m 

‘ h �+ v“ r )> / r 

Kut 

where and Vc{f) are the transmission rates of Slice B and Slice C at playback 

point T. Note that for t<T^, + is bounded by Rcut according to the slicing 

procedure described in Section 5.1. Due to the rate varying nature of the video, it is 

possible that the combined bit-rate + is lower than Rem for some playback 

points. Thus, the transmission duration, denoted by dz, cannot be larger than the 

length of video to be patched 0广“)： 

d , < { t , - t j (5.3) 

By the end of Phase 2, the client will have already cached block C2 and completed 

playback of blocks {5i，C\}. However, due to the limited client access bandwidth, 

the client cannot cache block B2 and thus in Phase 3 the server will use the dynamic 

channel to stream block B2 at the bit-rate (Rmax-Rcut) to sustain continuous video 

playback. Concurrently, the client continues to cache data (e.g. B3, C3) from the 
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static channel for the rest of the video session. The duration of Phase 3, denoted by 

ch, is given by 

h-'m+dz 

= R (5.4) 
K瞧-Kut 

where the numerator is the size of block B2 and the denominator is the transmission 

rate. To deduce the upper bound for the transmission duration ds, we would first 

show that the bit-rate of slice B in the first Ta seconds is actually bounded by {Rmax-

Rcut) in the following lemma. 

L^mma 7: I f t h e n v, (r) J for all t<T,. 

Proof. Firstly,(凡,似 一 / ^ ) > (K,似一 = ^ . Secondly, according to 

the slicing procedure, the bit-rate of slice B is bounded by Rcur-{Rmax-Rcut) (Please 

refer to Figure 5.1 and Figure 5.2). Thus, 

=狄⑶丨-R臓 

(5.5) 
3 

So, Lemma 1 follows. From (5.4), we can now deduce the upper bound for the 

transmission duration d^ 

h-'m+dl 

v,{r)dT  

R -R max cut 

.• (R瞧-RcJdT 

< h-^m  

Rrnax ^cut 

(5.6) 
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With the three-phase patching process defined, we can proceed to derive Ta used 

earlier in Section 5.1. 

Recall that (c.f. Section 5.1) pre-processing of the video depends on the 

duration of the three-phase patching process, which in turns depends on the client 

arrival time. We first define D{t\) to be the length of time from r„„ i.e. the start of the 

multicast cycle, to the end of Phase 3 given that the dynamic channel is available at 

time t\. This time interval comprises three parts. The first part is the time from t,n to 

the time the dynamic channel becomes available, having a length of (ti—t,n) seconds. 

The second part is the transmission duration of Phase 2 as given by (5.2). The last 

part is the duration of Phase 3 as given by (5.4). Thus we can express D{ti) as 

D(ti)=(ti-t„,)+d2+d3 (5.7) 

To determine the maximum duration of this interval, i.e., Ta, we first note that {t\-t,n) 

is upper-bounded by Tr because it is the maximum time to the next multicast cycle. 

Thus if the dynamic channel is not available before then, the client can simply 

receive video data from the new multicast cycle to begin video playback. For the 

length of Phase 2，we note that the combined bit-rate Vb{t)+Vcit) cannot exceed Rcut 

due to the slicing procedure. Thus, the maximum length of Phase 2 can be computed 

from 

h-t„, 

Rc", 

< - 0 
Kut 

<7； (5.8) 
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Similarly, the maximum length of Phase 3 is equal to the maximum size of segment 

B2 (see Figure 5.3) divided by the transmission rate {Rmax-̂ cut)'- 

Kax - Ku, 
h-lm+d2 

< since V , � < 讽 - / C x ) 
^max — cut 

⑶ , - 尺 蘭 K 
R__RaU 

< 匪、Tr d u e t o ( 5 . 8 ) ( 5 . 9 ) 

Rmax - ^cut 

Finally, substituting (5.8) and (5.9) into the R.H.S. of (5.7) gives the desired result: 

<7；+7；+ 

Rmax Rciit 

= - Kut ) I '^Kut - Rmax 1 丁 

、R"ulx ^cut Rmax ^cut J 

= ^ T = r (5.10) 
R —R r A 
�( u - V̂wr 

5.4 Client Buffer Requirement 
In this section, we derive the maximum client buffer size needed under the TSP 

algorithm by considering the buffer required during the three phases of patching. 

First, in Phase 1 the client prefetches slice A and thus the amount of buffer required 

Ta 

is simply equal to the size of slice A, i.e., {T)dT. 
J 

0 

Phase 2 begins at time t\ when the dynamic channel is available and finishes 

at time t2=t\+d2. The client in this phase receives two streams of video data, one 

from the dynamic channel at the rate 尺隱 and the other from the static channel 
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multicasting slice C. Thus, the total amount of data received at any time during 

Phase 2 (i.e., < r < ) is given by 

Ta t t 
."v, {T)dT + jR_dT + jv , (T)dT (5.11) 
0 ,, f, 

Phase 3 begins at time h and finishes at time 广3=?1+<̂ 2+杰.In this phase, the dynamic 

channel streams B2 (see Figure 5.3) to the client at the rate {Rmax-Rcut)- Concurrently, 

the client also caches data from the static channels multicasting slice B and slice C. 

Thus, the total amount of data received at any time t during Phase 3 (i.e., t^<t<t^) 

is the sum of the total amount of data received up to time h given by (5.11) plus the 

amount received during this phase up to time t, giving a total of 

� > '> V V, \ 
yAT)dT+ R_dT+ V^(T)dT+ {v,(T) + V^(T))dT 

tf J •f tf ¥ 
0 ,1 h h 

Ta t t t t 
= \ v ^ { T ) d T + \v,{T)dT- (5.12) 

J J J J J 
0 '1 '2 h 

After Phase 3 completes, i.e. at time h, the dynamic channel will be released and the 

client will continue caching both slice B and slice C from the static channel. So, the 

total amount of data received at any time t where t^<t L is simply the sum of 

the total amount of data received up to time t3 given by (5.12) and that received after 

time giving a total amount of 
Ta h '3 '3 '3 t 
jv^(T)dT+ jv^(T)dT+ jv,^(T)dT- jR,,jT+ j{v,(T) + V^(T))dT 

0 '1 h '2 h 

Ta h t t h 

='v„(T)dT+ f/^u 打 ⑴ 打 ⑴ 打 — J X " , 打 (5.13) 
J J J J 

0 /, '1 '2 '2 

To simplify notations, let 

= ^ f t , < t < t , (5.14) 

0 otherwise 
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and 

V“卜 r j \ft,<t<t^ 

Vr ⑴小(卜。+ v “卜。ift,<t<t̂+L (5.15) 

0 otherwise 

Then the sum of (5.11) to (5.13), i.e., the amount of data received by the client at 

any time t where t^<t<t^+L can be expressed as 

Ta t t 
'v,(T)dT+ jr(t)dT+ (5.16) 

0 

Now as playback starts at t\, the accumulated amount of data consumed by time t is 

given by v ( r ) J r . Thus the excess amount of video data received but not yet 
0 

played back at time t where t^<t<t^+L \s given by 

Ta t t 卜'1 
f/,,,(rpO= jr{T)dT+ (5.17) 

0 '1 0 

and the maximum of (5.17) thus determines the client buffer requirement: 

f / , 7 \ft,,t t,<t<{t,+L)} (5.18) 
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Chapter 30 

PLAYBACK CONTINUITY 

In the three-phase patching process, the client does not always receive video data 

according to the playback sequence. Consider the example in Figure 5.3，the client 

receives in Phase 2 video segments Ci, and C2 simultaneously but C2 is not 

played back until Phase 3. Consequently, to guarantee continuous video playback, it 

is not sufficient to just ensure the reception data rate is not lower than the video 

playback bit-rate. In the following, we investigate this playback continuity issue and 

present a proof that TSP can indeed guarantee playback continuity for the entire 

video duration. 

Let v(7) be the playback bit-rate of the video at playback point T where 

0<T^. Let v(t) = (t) + v̂  (t) + v̂  (r) for 0 < r < L where v^Ct), vz,(t) and Vc(x) are 

the playback bit-rate of slice A, slice B and slice C at playback point T respectively. 

Let c(t) be the total amount of continuous video data received by the client at time t. 

Assume the previous multicast of the static channel begins at time t,n and the client 

starts playback at t\ as shown in Figure 5.3.Then to guarantee playback continuity 

we need to ensure that the amount of continuous video data received must always be 

larger than the amount required for continuous playback, or mathematically we need 

to establish that 

30 



t 
c(t)> \v(T~t^)dT f o r t^<t<(L + t^). (6 .1) 

H 

Note that as playback does not begin until Phase 1 is completed, playback continuity 

is not affected by Phase 1. To derive c(t) for the rest of the video session, we 

consider Phase 2 and Phase 3 in turn. 

To begin with, we first denote the amount of continuous data received up to 

time t to be Ca{t), Cb{t) and cdt) for slice A, slice B and slice C, respectively. Since 

the client has already received the whole slice A after Phase 1 is completed, 

T-T、 

Cfl(0= v^{T)dT at any time rfor fj <t<L + t^. 
J 

0 

Phase 2 begins at time ti when a dynamic channel becomes available and 

ends at time t2=t\+d2 when the dynamic channel has streamed all the missed data to 

the client. The following theorem proves the playback continuity during Phase 2. 
T 

» 

Theorem 1: Video playback is continuous in Phase 2，i.e., c{t) > v{T-t^)dT, 
H 

for t ^ < t < t ^ . 

Proof. Consider Cb{t) and cdt). Since the dynamic channel streams blocks {B\, 

Ci} to the client continuously at the rate ^ + the amount of video 

data transmitted by the dynamic channel at time t, t>tu can be computed from 

T 

'-'1 

= “ K u A 
0 

卜'1 

> j K ( r ) + v , ( r ) ] J r (6.2) 
0 
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Next, we note that the dynamic channel streams slice B and slice C in a continuous 

playback sequence. Thus (6.2) also gives the amount of continuous video data 

received by the client: 

c“t) + cc(t) = (t-t 凡, 

卜'1 

J 
0 

t 
= + (6.3) 

'1 . 

Together with slice A already received, we can compute the total amount of 

continuous data received at any time t during phase 2 from 

i-'i 
='v„{T)dT + C , ( t ) + C^(t) 

J 
0 

'-'l t 
> I {T)dT + j [ v , (T-t,) + V^iT-1, )]dT 

0 

t I 
=\(T-t,)dT+ \[v,{T-t^) + V^{T-t,)]dT 

J J 
h h 
t 

J 

t 
='v{T-t^)dT ( 6 . 4 ) 

which shows that playback is always continuous during phase 2. • 

Before we proceed to the next theorem, we first derive the latest possible end 

time of Phase 2. From (5.3), d^ < {t̂  - ) because the dynamic channel may 

transmit slice B and slice C at a bit-rate higher than the playback rate. Therefore if 

we express t2 in terms of t\ and d:, we can deduce the upper bound of t2： 

(6.5) 
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In the next theorem, we prove that from h up to t̂  + {t̂  - ) within Phase 3, 

playback is also continuous. 

t 
Theorem 2: Playback is continuous, i.e. c{t) > v{T-t^)dT , for 

h 

Proof. For the client will have received the video blocks Bu Ci, and C2, 

h-tm 
and is receiving Bi- Given that the sizes of B\ and C\ equal v̂  (T)dT and 

J 0 

v^(T)dT respectively, we can obtain the following inequality 
J 0 

+ + (6.6) 
0 

Therefore, we can compute the total amount of continuous video data received at 

time t from 

cit) = c^(t) + c,(t) + c^{t) 
l-h 'l-tm 

> {v^(T)dT+ [v,(T) + V^(T)]dT J _ 0 0 
t t-t, <l-'m 

='v^(T-OdT+ ([v,(T) + V^(T)]dT+ f [v,(T) + V^(T)]dT V t < t^ 
J J •’ 

I, 0 t-li 
t t-ll 
« •‘ 

^ 0 
/ t 
• •‘ 

h h 
t 

=J[v“r-fi) + v “ r - 0 + VC(卜 胁 
h 
t 

='v{T-t,)dT ( 6 . 7 ) 

h 

which shows that playback is continuous for f j < f < G + (艺1 —）• • 
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Intuitively, Theorem 2 considers the duration after Phase 2 when the client 

simply plays back the excess video data transmitted in Phase 2. The client 

accumulates excess video data because the dynamic channel in Phase 2 may transmit 

slice B\ and C\ at a rate higher than the playback rate. 

After Phase 2, the client enters Phase 3 of a duration denoted by d^. In the 

following, we prove that playback is also continuous during Phase 3. 

t 

Theorem 3: Video playback is continuous in Phase 3, i.e., c{t) > v{T-t^)dT, 

for 

Proof. We consider two possible cases depending on the total duration of 

Phase 2 and Phase 3. 

Case I: + - t j 

In this case, q + = [O! + |/i -?,„)], which implies that Phase 

3 ends before the time t̂  +(^1 As Theorem 2 has already established playback 

continuity for t 2< t< t^ —?,„), playback in Phase 3 must also be continuous as 

well. 

Case II: (r, - t j 

From Theorem 2，playback is continuous up to t=t\+{t\-t,n). So, in the 

following, we only need to consider the duration [t̂  - t^^)]<t<[ t2 + d^] (see 

Figure 5.3). During this duration, the dynamic channel is streaming block B2 at a 

rate of (Rmax-^cut)- Now, according to Lemma 1，the playback rate of block B2 must 

be lower than the dynamic channel's transmission rate, i.e., v^(r) < (R^^ -R^^,). 
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Thus after a duration of d' = t-t^ from the start of Phase 3, the amount of video 

data streamed by the dynamic channel is equal to 

h+d' h-t„,+d' 
: ( R瞧 - K J d z•乏 j (6.8) 
h 

The continuous data of slice B at time t contains the whole video block B\ and the 

part of block B2 transmitted by the dynamic channel. Since the data is streamed in-

order, the amount of continuous video data received d’ seconds after Phase 2 is 

given by 

h-tm 
C,(t)= f V,(T)dT+ J I - 尺 c J 打 

0 h 
h-'m 

> j V,(T)dT+ j V,(T)dT 
‘ 0 '�'m 

=‘V,{T)dT ( 6 . 9 ) 
J 
0 

For slice C, the continuous video data at time t contains the whole video block C\ 

streamed by the dynamic channel during Phase 2, the whole video block C2 cached 

from the static channel during Phase 2, and the portion of block C3 transmitted by 

the dynamic channel. Since the video data is streamed in-order, the total amount of 

continuous data received d' seconds after Phase 2 is given by 

tl-t,n h-'m+dl t2 + d' 

c^(t)= I V^(T)dT+ j V^(T)dT+ j V^(T)dT 

0 '�',„ h 

> (6.10) 
0 

Therefore, the total amount of continuous data received by the client at time t is 

given by 
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> Vy{T)dT+ V^{T)dT (6.11) 
J J •‘ 
0 0 0 

Now consider the upper limit of the second integral in (6.11) 

= “ +卜 , 2 

=代+卜(…2) 

>t-t, since d^ < ( r ,-t j by (5.3) (6.12) 

For the upper limit of the third integral in (6.11) 

广 1 +。 
since d^ < {t,-tj by (5.3) and d^ < d^ by (5.5) 

since t<t^+d2+d^ (6.13) 

We can then rewrite (6.11) as follows: 

c{t) = C„{t) + C,(t) + C^it) 
t-h h-t„,Hh-t,n) 

> \v(T)dT+ V^{T)dT+ V^{T)dT 
J J •‘ 
0 0 0 

r-/, 卜/i t-ti 
> \v^(T)dT+ \v,iT)dT+ \v^{T)dT (from (6.12) and (6.13)) 

J • 
0 0 0 

= v(j)dT 
• 

0 
t 

='v{T-t,)dT (6.14) 
h 

which shows that playback is also continuous during Phase 3. • 

Up to now we have proved that playback is continuous from t=t\ up to t=t2+(h, 

i.e., covering the period from Phase 1 to Phase 3. In the next theorem, we will show 

that playback is also continuous from the end of Phase 3 to the end of the video 

session. 
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Theorem 4: Video playback is continuous for the rest of the video session 

t 
after Phase 3’ i.e., c{t)> \v{T-t^)dT, fox + 

h 

Proof. At any time t after Phase 3, the client has received the whole video 

blocks B\, B2, Ci, and Ci. And at the start of Phase 3, i.e. when t=t2, the client will 

start caching data from the static channel for blocks B3 and C3. Thus, the continuous 

data so far received for slice B includes blocks B\, B2 and B3 with a total size given 

by 

tl-'m h-'m+dz '-'m 

c州=j Vi,(T)dT+ j Vi,(T)dT+ J V,(T)dT 

l-t„, 
=‘v,(T)dT (6.15) 

0 

Similarly, the continuous data so far received for slice C includes blocks Q , C2 and 

C 3 with a total size given by 

C,it)= j V^(T)dT+ j V^(T)dT+ J V^{T)dT 

l-'n, 
=_ V^{T)dT (6.16) 

w 
0 

Therefore the total amount of continuous data received by the client is given by 

r-/, t-t,n '-'n, 
='v^{T)dT+ F J v^iT)dT 

0 0 0 
卜'1 卜'1 

> v„ {T)dT + f V, iT)dT + {T)dT ... t, > 

0 0 0 

Hi 
=v(T)dT 

0 
t 

='v{T-t,)dT (6.17) 
J 
'1 

37 



which shows that playback is continuous after Phase 3 until the end of the video 

session. • 

Together, Theorem 1 to Theorem 4 establish the fact that playback continuity 

is guaranteed by the TSP algorithm for the entire duration of the video session. 
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Chapter 39 

PERFORMANCE EVALUATION 

In this section, we present simulation results to evaluate and compare the Static 

Channel Priority (SCP), Dynamic Channel Priority (DCP), the original Slice-and-

Patch (S&P) [1], and the Turbo-Slice-and-Patch (TSP) algorithms investigated in 

this study. The simulator is developed in C++ using the CNCL simulation library 

[20]. The VBR video bit-rate traces are measured from 300 DVD videos comprising 

a wide variety of contents, ranging from full-length movies to documentaries. These 

video traces exhibit a wide spectrum of properties. For example, the video length 

ranges from 93 seconds to 14585 seconds, and the video bit-rate ranges from 1.02 

Mbps to 9.85 Mbps. Note that the maximum bit-rate in fact exceeds the rate 

specified by the DVD standard. This is due to the way we measure the bit-rate traces. 

In particular, we do not measure the video bit-rate directly as most of the DVD bit 

streams are encrypted. Instead, we measure the I/O activities while playing back the 

DVD using a hardware MPEG2 decoder. Thus the bit-rate profiles not only capture 

the variations in the video encoding, but also capture the I/O behavior of the decoder 

as well. 

The server is configured with a bandwidth of 50Rv bps and the client an 

access bandwidth of 2尺avg Mbps, where Ravg is the average bit-rate of the VBR-
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encoded video. Each simulation runs for a simulated time of 30 days, with 

randomized initial condition. The arrival rate of client is 1 request per second. For a 

video of length 2 hours or 7,200 seconds, this arrival rate represents an average of 

7,200 concurrent clients in the system. 

In configuring the S&P and the TSP algorithms, which both has a system 

parameter Rcut that affects the system's performance, we simulate 20 values of Rcut 

4 
linearly spaced from Ravg to and select the one that achieves the lowest 

average latency. Our results in Section 7.3 show that while the choice of Rcut is 

dependent on the video bit-rate profile, the sensitivity is relatively modest and thus 

the simple procedure we employed is sufficient to obtain good results. 

In the following sections, we first present results obtained from simulating 

300 videos to evaluate and compare the algorithms' average latency (Section 7.1) 

and client buffer requirement (Section 7.2). Next, we show the effect of simulating 

using more values of Rcut (Section 7.3). Then, we investigate the performance 

variations between different videos by picking three videos from the first quartile, 

median, and third quartile respectively based on their latency performance, and 

compare their average latency versus arrival rate (Section 7.4), versus server 

bandwidth (Section 7.5)，and versus the ratio of bandwidth allocated to static 

channel (Section 7.6). 

7.1 Average Latency 
Figure 7.1 compares the four algorithms' latency for 300 different videos. The figure 

is plotted as a cumulative plot. The horizontal axis is the latency increase compared 

to the CBR case. For example, a latency increase of 10% represents a latency 10% 
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Figure 7.1 Comparison of mean latency for all videos. 

longer than the latency achieved by the system streaming a CBR video of the same 

average bit-rate and duration. Note that a negative latency increase means that the 

VBR case achieves latency shorter than the CBR equivalent. 

There are several observations. First, in terms of the median of latency 

increase over all 300 videos, SCP performs the worst at 190% (i.e., latency double 

of the CBR equivalent), DCP at 130%, S&P at 20%, and TSP the best with no 

increase at all (i.e., 0%). That is, the latency of half of the videos have lower mean 

latency than the CBR equivalent in TSP. Second, in terms of variations in latency 

increases, TSP is also the best with a standard deviation of only 37%. By contrast, 

SCP has the worst variation with a standard deviation of 4,867%, and a maximum 

latency increase over 2,000%. This shows that the performance of TSP is more 

robust and less affected by the variations in the video bit-rate profile. 
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The significantly higher variation in the latency of SCP is due to variations in the 

bit-rate of the video's initial portion. In particular, the algorithm gives priority to 

cache from the static channel video data that cannot be used to begin video playback. 

Therefore if the initial portion of the video has a high bit-rate, then the dynamic 

channel will take a longer time to cache sufficient video data to begin playback and 

so lengthens the latency. By contrast, the DCP, S&P, and TSP algorithms are less 

sensitive to this effect because they allocate more bandwidth to cache video data that 

can be played back immediately. Figure 7.2. illustrates this problem by plotting the 

distribution of playback delay of SCP, i.e., the ds in (4.4). The results show that 

more than 60% of videos require a playback delay of 5 seconds or more, with a 

mean as high as 13.9s. Note that this playback delay adds to the latency experienced 

by the client regardless of the system load, thus significantly degrading SCP's 

performance. 
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Figure 7.3 Comparison of client buffer requirement. 

Third, comparing DCP with TSP, DCP manages to achieve lower latency 

than TSP in 6 out of the 300 videos. It is possible to devise a rule based on the ratio 

of the prefetch latency to the length of TV as an indicator to select between DCP and 

TSP given a video's bit-rate profile. Our experiments show that such threshold-

based selection can correctly pick the better performer 5 out of 6 times. Nevertheless, 

such a selection process still relies on the appropriate choice of the threshold and 

thus the accuracy is not guaranteed. Alternatively, since the selection is an offline 

process, one can always perform simulations of the two algorithms and pick the one 

with the best performance for use in the system. 

7.2 Client Buffer Requirement 
Figure 7.3. compares the four algorithms' client buffer requirement. These results 

are generated based on the assumption that there is a server bandwidth of SORavg bps. 

We first observe that the client buffer requirement of TSP is mostly within the range 

of 5% to 6.5% of the video size. The mean client buffer requirement for SCP, DCP, 
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S&P, and TSP are 5.7%, 8.6%, 5.6%, and 5.4% respectively. For instance, for a 

video of size 2 GB, the amount of buffer required by TSP will be around 130 MB. 

This can be accommodated by a low-cost harddisk or even stored in memory given 

the continuous drop in RAM cost. 

Second, the maximum client buffer requirement over all 300 videos are 

11.4%, 10.6%, 11.4%, and 7.8% for SCP, DCP, S&P, and TSP respectively. Again 

for a video of size 2GB, this translates into a buffer requirement of 156 MB for TSP, 

clearly within the storage limit of even the smallest harddisk. 

7.3 Choice of Parameter Rcut 
So far we have obtained TSP's performance results by picking the value of Rcut 

among 20 samples across the valid range that produces the lowest latency. To 

investigate the performance impact of this procedure, we repeat the simulations for 

20, 40，and 80 samples, and summarize the results in Table 1. We observe that while 

evaluating more samples will produce lower latency, the difference quickly 

diminishes. For example, increasing the number of samples from 20 to 80 results in 

only 2% decrease in latency. Nevertheless, as the process is performed offline, one 

could afford to trade off simulation time to obtain better performance. 

Table 1. Mean of lowest latency for different number of Rcut values. 

Number of Data Points 20 40 80 

Mean Latency (s) 4.59 4.52 4.49 
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Figure 7.5 Comparison of latency for different arrival rates (Video 2). 
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Figure 7.6 Comparison of latency for different arrival rates (Video 3). 

7.4 Latency versus Arrival Rate 
By fixing the server bandwidth at SO/̂ avg bps and a maximum of 50% server � 

bandwidth allocated for static channels, we vary the arrival rate to study the effect 

on the latency. Figure 7.4-7.6 shows the mean latency versus arrival rate ranging 

from 1x10—2 to 3.0 requests per second for three different videos. These three videos 

are chosen to represent videos from the first quartile (video 1), median (video 2), 

and third quartile (video 3) of the latency distribution. As expected, the latency 

generally increases with the arrival rate. When the arrival rate increases beyond 0.5 

requests per second, the latencies of both SCP and TSP level off while the latency of 

DCP continues to increase. Another observation is that while SCP performs well in 

video 1，its performance deteriorates significantly when streaming video 2 and video 

3. This shows the sensitivity of SCP's performance to the particular video bit-rate 

profile. The performance of DCP and TSP are more robust in comparison, with TSP 

achieving the lowest latency in all three cases. 
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Figure 7.9 Performance gain on increasing server bandwidth (Video 3). 

7.5 Server Bandwidth Comparison 
To investigate the effect of server bandwidth to the mean latency, we fix the arrival 

rate at 1 request per second and allocate at most 50% of server bandwidth for static 

channels. Figure 7.7-7.9 show the mean latency versus server bandwidth for video 1’ 

2, and 3 respectively. The horizontal axis shows the number of equivalent CBR 

channels. For example, the value of 50 represents the server bandwidth is SORy. As 

expected, the mean latency drops when more server bandwidth is available. The 

results indicate that the latency decreases nearly exponentially when the server 

bandwidth increases. This suggests that all four algorithms are super-scalar, i.e., the 

performance increases super-linearly with respect to the resources provided. This is 

also consistent with the super-scalar property of the original SS-VoD architecture 

streaming CBR videos [13]. 
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7.6 Bandwidth Partitioning 
To investigate the performance impact of different bandwidth partitioning, we run 

simulations with a fixed arrival rate of 1 request per second and varying the 

bandwidth partition ratios. Figure 7.10-7.12 show the latency versus the ratio of 

static channel bandwidth for Videos 1，2, and 3 respectively. The horizontal axis is 

the percentage of bandwidth allocated to static channels. We observe that for TSP, 

the latency is lowest when half of the bandwidth is assigned to static channels. 

However, for DCP and SCP, the optimal partition ratio that gives the lowest mean 

latency is not constant. For example, there are a number of local minima for both 

algorithms for video 1. In the other two videos, the latency of SCP decreases with 

more static channel bandwidth while the optimal partition ratios for DCP is 40% for 

both Videos 2 and 3. These results suggest that TSP is significantly simpler to 

deploy in practice as a bandwidth partition ratio of 50% can already provide 
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consistent performance. By contrast, the service provider will need to determine and 

adjust the bandwidth partition ratio for DCP and SCP on a video-by-video basis to 

obtain the best performance. 
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Chapter 52 

CONCLUSIONS 

The Turbo-Slice-and-Patch algorithm investigated in this study addresses two 

challenges in video streaming. First, TSP employs network multicast to achieve a 

super-linear scalability that is essential to achieving economy-of-scale in 

provisioning metropolitan-scale video streaming services. Second, TSP employs a 

novel three-phase slice-and-patch algorithm to support the streaming of VBR-

encoded videos with on average only 9% increase in latency. Given that a previous 

study has shown that one can achieve the visual quality of CBR-encoded videos 

using only half the bit-rate with VBR encoding, streaming VBR video using TSP in 

fact requires less resources than streaming CBR videos. With the continuous 

deployment of multicast in the infrastructure, TSP will serve as a candidate for 

implementing the future metropolitan video streaming services. 
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