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Abstract of thesis entitled: 
3D Coarse-to-Fine Reconstruction from Multiple Image Sequences 

Submitted by IP Che Yin 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in September 2004 

Structure from motion is the problem of recovering the 3D structure from an 
image sequence for a scene. The literature proposes a lot of methods for this 
problem and they do obtain good results. However, because of the limited 
resolution of digital images from common domestic use cameras, the detailed 
reconstruction for a large environment is still difficult. Some methods 
separate the reconstructions for the detailed objects in the scene from 
that for the large environment, and then combine them together manually 
or semi-automatically. Other methods improve the reconstruction for the 
large environment using additional constraints, such as planes and cylinders. 
However, these methods are only applicable to particular applications. 

This thesis addresses the problem of detailed reconstructions for a large 
environment and proposes a framework that reconstructs the detailed ob-
jects as well as the large environment automatically. We first take two 
image sequences, one for the large scene and another one for the detailed 
object in the scene. Subsequently, we reconstruct the 3D structures of the 
large scene and the detailed object independently. Then, we find the point 
correspondences between the two image sequences using multi-scale image 
matching techniques. Finally, the 3D structures from the two different 
scales are merged together using the point correspondences, and the overall 
structure with fine details is recovered. 

In this thesis, the techniques for 3D reconstruction and image matching 
of different resolutions will be described. Synthetic experiments on the 
rematching algorithm and the 3D model registration were performed and 
will be reported. Experiments on real images have shown that we can 
successfully build up the 3D structure of a large environment with fine 
details. 
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論文題目：利用由粗糖到細緻的多影像序列來重建場景的三維結構 

作者： 葉子筵 

摘要Z 

「由運動到結構」是一個怎樣利用一個場景的影像序列去重建這場景的三 

維結構的問題。許多學者發表了很多解決這問題的方法，而且得到不錯的 

成績。但是，由於家用相機的解象度是有限的，怎樣去重建一個廣闊的場 

景的三維結構始終都是一個困難的謀題。有一些方法先分開重建廣闊的場 

景和場景內細緻的物件的三維結構，然後將它們用全人手或半人手結合。 

有另一些方法利用一些另加的條件，例如平面和柱狀’去改善廣闊的場景 

的三維結構；可是，這方法只適用於特定的應用。 

這篇論文發表廣闊環境的細緻三維重建的問題，以及提出一個自動地 

重建廣闊的場景和細緻的物件的方法。我們首先拍攝兩輯影像序列；一輯 

是爲廣闊的場景拍攝的，而另一輯是爲場景內細緻的物件拍攝的°然後’ 

我們獨立地重建它們的三維結構。接著，我們利用多尺度影像配對方法去 

尋找這兩輯影像序列之間的點關係。最後，利用這些點關係去將那兩個不 

同尺度的三維結構結合° 

這篇論文將會解釋三維結構重建的技術和不同解象度的影像配對的 

技術。我們亦進行了兩個重新點對點配對和三維結構的配對的人工資料實 

驗。一個利用真實的影像序列的實驗亦証明了我們的方法可以重建一個廣 

闊環境的細緻的三維結構° 
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Chapter 1 

Introduction 

1.1 Motivation 

Recovering the 3D structure of an object is a popular research topic in 

computer vision. It is very useful in many applications including scene 

structure recovery, virtual reality, augmented reality and game development. 

Large amount of work is proposed to solve this problem including structure 

from motion [74, 77，29, 18，17, 9], shape from splines [71，6, 67, 46’ 82], 

and reconstruction from aerial images [31, 11]. Our main concern is the 

investigation of practical but accurate structure from motion approaches. 

The reconstruction of the 3D structure for a large scene is important in 

many applications. Many algorithms could recover the rough 3D structure 

for a large scene from images of a fixed resolution taken by hand-held 

cameras. In some cases, the fine and detailed 3D structure for the large 

scene may also be required. However, because of the limited resolution of 

the digital images, the 3D structures recovered by these algorithms usually 

lack the fine structures even if the maximum number of reliable feature 

points are extracted. Also, the textures placed on these structures are poor 
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CHAPTER 1. INTRODUCTION 2 

to view in detail. 

Figure 1.1(a) shows an example of 3D reconstruction for a large scene 

containing several objects. Figure 1.1(b) shows the 3D reconstruction for a 

small object inside the large scene. The top left picture in Figure 1.1 is one 

of the images from the image sequence for the large scene, and the top right 

picture is that for the small object. The middle and the bottom pictures 

show their reconstructed texture-mapped 3D models and their wire-frame 

models respectively. The wire-frame model for the small object has a denser 

structure than that for the large scene. Also, its texture mapped image is 

better and clearer. To reconstruct the fine structures of a large scene, a 

coarse-to-fine approach that integrates the 3D reconstruction for the large 

scene and that for the detailed objects can be used. 

This thesis proposes an automatic coarse-to-fine method that integrates 

the 3D structures of a large scene and a fine object inside the large scene 

in order to recover a detailed 3D structure for the whole scene. 

1.2 Previous Work 

This section introduces several approaches that are relevant to our approach. 

1.2.1 Reconstruction for Architecture Scene 

El-Hakim [14] proposed a method that first reconstructs a rough 3D model 

of a man-made object, and then allows the user to add specific constraints 

on the detailed elements of the object. The user can add a number of seed 

points and the type of elements manually, and the method computes the 

detailed 3D structure for the object. El-Hakim et al. [15] extended the above 

method by combining with the methods of range-based modelling [4，59 . 
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_ _ 

mm 
(a) (b) 

Figure 1.1: The comparison of the 3D reconstructions for (a) a coarse structure 
and (b) a fine structure. Each top image shows one of the image frame, the 
middle image shows the texture-mapped 3D model, and the bottom image shows 
the wire-frame model for each structure. 
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Range-based modelling method can recover a surface in very high detail. 

The method allows the user to merge the structure from the range-based 

modelling method to the 3D structure by selecting a number of merge points 

manually. 

Werner and Zisserman [81] proposed a method that reconstructs more 

detailed 3D structures for architectural objects by automatically detecting 

special features of the architectural objects, and adding the constraints 

for the special features to refine the 3D structures. This method is fully 

automatic, but it only targets on specific architectural scenes. 

1.2.2 Super-resolution 

The approach of super-resolution [10，8] is used to construct a "better" im-

age or estimate a more detailed image from a sequence of images. However, 

this approach does not recover a more detailed 3D structure of a large scene. 

1.2.3 Coarse-to-Fine Approach 

Recently, a number of authors proposed methods that reconstruct detailed 

structures of a large scene. Koch et al. [30] proposed a multi-scale inte-

gration approach (also refers to as the coarse-to-fine approach) to recover 

detailed 3D structures by integrating the coarse and the fine 3D models 

interactively. The user is required to give the point correspondences between 

the coarse and the fine 3D structures, so that the two 3D structures can be 

integrated. 

Ramalingam and Lodha [58] proposed an automatic hierarchical regis-

tration method of texture-mapped 3D models. This approach integrates a 

coarse structure and a fine structure automatically by first finding the point 

correspondences between the two image sequences using a scale-sensitive 
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image registration algorithm, and then registering the 3D models using 

a scale-sensitive 3D model registration algorithm. The scale-sensitive im-

age registration algorithm registers the 2D points extracted for 3D recon-

struction on the two image sequences directly, and the scale-sensitive 3D 

model registration algorithm estimates the metric transformation between 

the coarse and the fine 3D models. 

This method is similar to our method, but our method differs from it in 

two ways. First, instead of matching the 2D points for 3D reconstruction 

directly, we first match a pair of images from each image sequence using 

the multi-scale image matching approaches [62，40, 13，47] and obtain the 

2D transformation information between the pair of images. Then, we use a 

2D rematching method and the 2D transformation aforementioned to link 

the 2D points that are used for 3D reconstruction. This method can make 

the correspondence problem between the coarse and the fine sequences more 

flexible such that we can use any multi-scale image matching method for the 

problem. Also, as described in [58], the multi-scale image matching methods 

can handle larger multi-scale differences in general for image matching as 

compared to the scale-sensitive image registration algorithm. Moreover, the 

scale-sensitive image registration is based on correlation, it cannot match 

the images with a rotation difference. 

Second, instead of estimating the metric transformation between the 

coarse and the fine 3D models, our method estimates the affine transfor-

mation for the 3D registration. Our experiment has shown that the affine 

transformation provides better 3D registration than the metric transforma-

tion. 
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1.3 Proposed solution 

In this thesis, we describe our solution to the detailed reconstruction for a 

large scene. In brief, we take the first (coarse) image sequence for the large 

scene, and the second (fine) image sequence for the object that we want to 

reconstruct the more detailed 3D model. Then, one image from each image 

sequence is selected for image matching. 

The 2D image point sequence is extracted and tracked, and the 3D 

model is reconstructed for each image sequence. Then, one of the major 

steps of our solution is to match the image sequences through a multi-scale 

image matching algorithm on the selected pair of images. Because of the 

limitation of the multi-scale image matching method we used in our system, 

an assumption that the selected pair of images have similar view angles to 

the scene is required. 

Using the rematching algorithm, we obtain the common point corre-

spondences between the 2D image point sequences. Then, we register and 

integrate the coarse and the fine 3D models using these point correspon-

dences. 

1.4 Contribution 

The following is the contribution in this thesis: 

• An alternative solution to the automatic coarse-to-fine 3D registration 

problem is developed. Our method merges the 3D structures recon-

structed from a coarse image sequence (for a large scene) and a fine 

image sequences (for a smaller scene inside the large scene) to build a 

model for a large environment with fine details. Because of using the 
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rematching methology to build the linkage between the coarse and the 

fine image sequences, the image matching step is flexible and is not 

restricted to one matching algorithm, so that a lot of image matching 

algorithms can be used in our framework. 

1.5 Publications 

• S. H. Or, K. H. Wong, M. M. Y. Chang, and C. Y. Ip. Large scene 

reconstruction with local details recovery. In International conference 

on pattern recognition, August 2004. 

• C. Y. Ip, K.-H. Wong, and M. M. Y. Chang. Detailed 3d recon-

struction for large environment. IEEE Transactions on Circuits and 

Systems for Video Technology. In preparation. 

1.6 Layout of the thesis 

Chapter 2 describes the background techniques for the proposed method, 

and Chapter 3 explains the details of the proposed method. Chapter 4 

presents the synthetic and real experiments and their results. Finally, the 

thesis is concluded in Chapter 5. 

• End of chapter. 



Chapter 2 

Background Techniques 

This chapter describes the background knowledge about the techniques used 

in our project including interest point detectors and descriptors, steerable 

filters, the techniques for feature point tracking, RANSAC (Random sample 

consensus) [16], and the structure-from-motion algorithms. 

2.1 Interest Point Detectors 

In order to understand an image, researchers have been proposing a lot of 

feature detectors for different applications. The common features include 

edges, corners, contours, textures, colors, regions, shapes, and etc. Most of 

these topics are introduced in the literature [20，60 . 

In this project, interest points of an image are very useful. As defined 

in [65], an interest point is defined as a point feature where local image 

intensity changes in two orthogonal directions. 

This project is about the multi-resolution image matching, so this sec-

tion first introduces the concept of scale-space representation. Then, four 

corner detectors including the standard Harris point detector and three 

8 
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modifications of the Harris point detector adapting the idea of scale-space 

are introduced. Moreover, a blob detector, and a corner detector for color 

images are introduced in this section. 

2.1.1 Scale-space 

Before the introduction of various interest point detectors, this section 

describes the concept of scale-space [34，35，12, 47'. 

The scale-space representation is a set of image feature points that is 

used to represent an image at different levels of resolutions. In general, 

different resolutions of an image (and so different scales of the image) can be 

created using the convolutions of the image with Gaussian kernel G{x, y, a) 

of different standard deviations (cr). The 2D Gaussian function is defined 

ill Equation 2.1. 

= (2.1) 

where {x, y) is the position relative to the center of the kernel. Thus, the 

different resolutions of an image is computed by Equation 2.2. 

L�0C, y�cr) = G{x, y, (j) * / (x , y)� (2.2) 

where I{x, y) is the intensity of the image at position (x,y), and "•” is a 

convolution operation. 

For the Gaussian derivative, let 02 = sa and s is the scale ratio of (J2 to 

cr, the derivative of the image I{x,y) with respect to directions …，dm 
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is 

Qjjn 
L‘.An(jr,y,(72) = ^ ^ ( r ， 仏 內 ) (2.3) 

=’...,drAx,y,cT). 

From Equation 2.3，we can easily observe that the amplitude of the deriva-

tives decreases with scale (5), in general. To maintain the property of scale 

invariance, the derivative functions must be normalized with respect to the 

scale. Define the m-th order scale-normalized Gaussian derivative of the 

image I(x, y) with respect to directions c / i , . . . ,心 of scale a by: 

= a - G V . ’ d ( 7 ) * / ( : r ’ z / ) , (2.4) 

where is the Gaussian derivative with respect to directions 

• • • dm' 

Using the concept of scale-space representation and the scale-normalized 

Gaussian derivatives, various scale-invariant interest point detectors were 

proposed to detect the features response to different resolutions of an image. 

2.1.2 Harris Corner detectors 

In this project, corners are the major concerns for the interest point detec-

tion. In this section, we first describe the standard Harris point detector, 

which is not scale-invariant. Then, three variations of Harris point detector 

including Dufournaud's scale-space Harris point detector, Lindeberg's cor-

ner detector and Harris-Laplacian corner detector, which are used to detect 
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interest points of different resolutions, are introduced. 

Standard Harris point detector 

Harris and Stephens [25] proposed an interest point detector to detect 

intensity changes in 2 directions on an intensity image. More precisely, 

consider an image point (x,y) and the associated image intensity value 

I(x,y). The standard Harris point detector consists of the following steps: 

1. Compute the image derivatives Lx{x, y, a-p) and Ly{x, y, av) of the 

whole image in the x and y directions, respectively, by the convolution 

with a Gaussian first order derivative kernel of standard deviation ap： 

y , (Jv) = y ) * y , a p ) 
(2.5) 

Ly[x, y, (Jv) = I{x, y) * Gy{x, y, g-d) 

where Gx{x^ ?/, crp) and y, ap) are the Gaussian first order deriva-

tives along x-direction and y-direction of standard deviation dp respec-

tively. 

2. Form the auto-correlation matrix Mharris{x, y, (Jv, as shown in Equa-

tion 2.6. 

Mharris{x, y, (Jv, cFi) = G{x, y, (Jx) 

y, (Jv) y, (Jv)Ly{x, y, av) 
• (2.6) 

y, (TT>)Ly{x, y, gv) LI{X, y�GV) 

where the Gaussian kernel of standard deviation (jj, G{x, y, ctj), acts 

as the weighting factor for the matrix. 
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3. The image position {x, y) is considered as a candidate point if the auto-

correlation matrix Mharris{x, y, crp, (Tj) has two significant eigenvalues. 

Therefore, if the value of the Harris function, Charrisi^^ 2/； crp, ctj), 

ill Equation 2.7 is larger than a threshold, (x, y) is considered as a 

candidate point. 

Charris{x,y,(^V,Crx)= 

dQt{Mharris{x,仏 d l ) ) — atV&Ce^{Mkarris dp, (7工))(2.7) 

where a is a parameter to discriminate the case of two large eigenvalues 

against one large eigenvalue, a is usually set to 0.04 [47]. det(Z) is a 

determinant operation of a square matrix Z. trace(Z) is the trace of 

Z or the sum of the diagonal elements of Z. 

4. The candidate point {x, y) is chosen as an interest point if the value 

of Cfiarris (工, is larger than a threshold and the maximum 

among its 8-neighboring pixels. 

According to [65], the standard deviation a工 is usually called an integra-

tion scale because the Gaussian kernel of the standard deviation aj in 

Equation 2.6 performs integral smoothing. The standard deviation crp is 

usually called derivative scale because it controls the scale of the Gaussian 

derivations described in Equation 2.5. 

Because of the symmetry of the auto-correlation matrix Mharris in Equa-

tion 2.6，the standard Harris point detector is rotation-invariant. However, 

it is not invariant to scale change, so it is not adapted to the scale-space 

framework. Dufournaiid et al. [12] proposed a modification of the standard 

Harris point detector which is adapted to the scale-space framework. 
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Scale-space Harris point detector 

Harris point detector is not invariant to the change of the image resolution or 

the image scale. Dufoiirnaud et a/. [12] proposed the scale-space Harris point 

detector by changing the values of the standard deviations and normalizing 

the derivatives in Equation 2.6. 

To detect interest points on an image of different scales, Dufournaud et al. 

12] redefined the Harris function (Equation 2.7). Suppose /(i)(a:i,2/i)= 

/�(0；2’ 仍)，where / � is the high-resolution image and I � is the low-

resolution image, such that (xi.yi) = (sx2,31/2) + itx.ty), where t̂  and 

ty are the translation along x- and ^/-direction respectively, s is the scale 

ratio of / � over I � .B y taking the derivatives of the above expression 

with respect to x- and ？/-direction, we obtain sLx^(xi,yi) = L§\x2�y2�and 

sL^y\xi,yi) = L^y\x2,2/2)- Applying these two relations into Equation 2.6, 

we can obtain the relation: 

Saj) = 2/2, CTv, (Tz) (2.8) 

From Equation 2.4 and Equation 2.8, Dufournaud et al [12] observed 

that the auto-correlation matrix can be modified to Equation 2.9: 

Mscaie{x, y , SCTV, sax) = s^G^sax) 

Ll{x,y,S(Jx,) 以工,y, sav)Ly(3：, y, sdv) 
• . (2.9) 

y, scrv)Ly{x, y�sov) I^JO, y, sdv) 
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Then, the scale-space Harris function of scale s is defined in Equation 2.10: 

Cscaiei^^y^sav^sai) 二 

det{Mscaie{x, y, Sdv, sax)) - atmce^iMscaUx, y, sctv, saj)) (2.10) 

To detect interest points on an image of different scales, we apply the 

framework of the standard Harris point detector but replace the Harris 

function in Equation 2.7 with the scale-space Harris function in Equa-

tion 2.10 of the corresponding values of s. For the values of ap and aj, 

Dufournaud et a/. [12] suggested that they are set to 1 and 2 respectively. 

Lindeberg 's point detector 

Lindeberg [34] observed that a scale-normalized derivative function of an in-

terest point may consist of local maxima along scales. The scale correspond-

ing to the maximum response of the scale-normalized derivative function 

reflects the characteristic length of an interesting computational structure at 

a single spatial point. Lindeberg called this scale as the characteristic scale. 

The characteristic scale of a feature point is the scale of the local maximum 

over scales of a derivative function, F(x, y, Sn) of that point. Scale-space 

Harris function (Equation 2.10), square gradient (Equation 2.11), DifFerent-

of-Gaussian (DoG) (Equation 2.12) and Laplacian function (Equation 2.13) 
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are the examples of the derivative functions. 

Fsg{x,y,Sn) = sl{Ll{x, y, Sn) + Ll{x, y, Sn)) (2.11) 

FDoG{x,y,Sn) = |/(:r;’y)*G0，2/，s„ — 1) 

-/(a:’y)*G(a;，;j/，sJ| (2.12) 

Flaplacianip^ 1 Ui^n) = Hi ^n) 

-\-Lyy{x,y,Sn))\ (2.13) 

Lindeberg [34] designed a framework that detects the interest points at 

their characteristic scales. In order to maintain uniform information change 

between two successive levels of resolution, according to [47], the scale factor 

Sn should be distributed exponentially, such that Sn = k'̂ so with Sq is the 

scale factor of the finest level of resolution, and k is the factor of scale change 

between 2 successive levels. The framework consists of two steps: 

Step 1: (Response Calculation) For every level of resolutions (sn), compute 

the scale-normalized derivative function F{x, y, Sn) for all pixels of the 

image. 

Step 2: (Point Selection) For every level of resolutions (5^), select a point 

(x, y) if the response of the scale-normalized derivative function is 

larger than a threshold and reaches the local maximum among the 

successively larger and smaller scales, and its 8-neighboring pixels. 

The scale-normalized derivative function at the characteristic scales of 

interest points on images of different resolutions may have the same response 

if the interest points correspond to the same point in the scene. Therefore, 

the concept of characteristic scale is useful for image matching by reducing 

the search space of feature points. 
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Harris-Laplacian point detector 

For the application of image matching, Dufournaud's scale-space Harris 

point detector described above is not efficient because it scans every interest 

points at every scale, and so creates additional mismatches and increases 

the storage space for the scale-space representation. Lindeberg's approach 

described above applies the concept of characteristic scale, and reduces the 

mismatched points and the storage space. 

Mikolajczyk and Schmid evaluated the Lindeberg's approach for image 

matching by applying different derivative functions including Square gra-

dient (Equation 2.11), Different-of-Gaussian (DoG) (Equation 2.12), Scale-

space Harris function (Equation 2.10) and Laplacian function (Equation 2.13). 

They found that the scale-space Harris point detector was the best deriva-

tive function for the point detection and Laplacian function was the best 

derivative function for the point selection step. 

However, Lindeberg's approach requires 3D space search {x^y, and n) and 

requires huge storage for the 3D search space. So, Mikolajczyk and Schmid 

proposed the Harris-Laplacian point detector by first applying scale-space 

Harris point detector and then selecting the scale using Laplacian function. 

The following steps are the algorithm of the Harris-Laplacian detector. . 

Step 1: (Point Detection) At each level of the scale-space Sn, detect the 

candidate points using Dufournaud's scale-space Harris point detector 

of scale Sn-

Step 2: (Point Selection) For each candidate point (x, y) detected at each 

level of the scale-space s^, use Laplacian function Fiapiacian[x, y, Sn) for 

the selection of the candidate point. If Fiapiacian{x, y�s„) is greater than 

Flaplacian{x,y,Sn-l) and FlaplaciaJ^X, y, Sn+l), and Fiaplacian{x,y, Sn) is 
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greater than a threshold ⑴，the feature point (x, y) is selected. 

2.1.3 Other Kinds of Interest Point Detectors 

This section briefly introduces the other kinds of interest point detectors 

including a blob-like feature detector and a corner detector for color images. 

Blob Detector 

A Gaussian blob is defined by 

M 工’ 2/，力 o) = & e x p - ( P + 力 ( 2 . 1 4 ) 

where to is the width of the Gaussian blob. 

The Laplacian operation (Equation 2.13) is usually used for blob-like 

feature detection because it gives a strong response at the center of blob-

like structure [44, 5，35]. Lindeberg [34，35] proposed a method that detects 

blob-like features in the scale-space framework. The principle of the method 

is to apply the framework of Lindeberg's point detector (Section 2.1.2) and 

set the derivative function used in the framework to the scale-normalized 

Laplacian operator (Equation 2.13). Lindeberg proved that the character-

istic scale for each detected Gaussian blob directly reflects the width to of 

that blob. 

Corner detector for Color Images 

Montesinos et al [52, 51] proposed a modification of Harris corner detec-

tor for color images. A color image is usually composed by three color 

channels: Red(7^), G r e e n � and B\ue{B). Based on the framework of 

Harris corner detector, Montesinos' method applies Gaussian function and 
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Gaussian derivatives to the three channels and modifies the auto-correlation 

matrix (Equation 2.6) in the framework of Harris corner detector. The auto-

correlation matrix is modified as in Equation 2.15. 

Mcolor{x, y, c T p , (7x) = G { x , y, ax) 

K + Gl + Bl n^Uy + + B^By 
(2.15) 

TZ 工 U y + G.Qy + IS 工 5 y n l + g l + Bl 

where Xk is the short form of y � a - ^ ) , the first-order Gaussian derivative 

of I of standard derivative a-p with respect to direction k at image position 

(a;, ？/), for I = {7Z, Q, B ] and k = { x , p } . 

Montesinos' corner detector for color images described above can be 

easily upgraded to scale-invariant by multiplying the Gaussian derivatives 

for every channel in Equation 2.15 with the scale crp, so that the Gaussian 

derivatives are scale-normalized similar to Dufournaud's scale-space Harris 

point detector (Section 2.1.2). 

2.1.4 Summary 

Scale-space point detectors are commonly used for the matching for multi-

resolution images. They are robust and effective if the scale difference of the 

two images is not very large and the affine change between the two images 

is small, that is, when the viewing angles of the two images are similar. 

If the view angles of the two images are different, the affine-invariant 

point detectors [36，48, 2] can be used. But iterative approaches are required 

for the detection of affine-invariant points, and hence the computation of 

the affine-invariant point detection is more expensive than the scale-space 

point detection. 
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Scale-space point detectors are good for the image matching. How-

ever, because of the operation of the Gaussian blur, the number of points 

extracted is usually smaller while the scale is larger. Therefore, for the 

application of structure from motion, we would apply the point detector in 

the smallest scale to extract more feature points. 

2.2 Steerable filters 

To find the responses of a filter at many directions, we are required to apply 

many versions of the same filter. Freeman and Adelson [72] proposed an 

approach that applies a few filters corresponding to a few angles and inter-

polates between their responses to approximate a response in any direction. 

A steerable filter is a filter which can be synthesized as a linear combi-

nation of a set of basis filters to give a response in any direction. Gaussian 

directional derivatives are steerable as stated in [72] and suitable in the scale-

space framework. Let G be Gaussian function, the Gaussian N仇 derivative 

with respect to the direction 9 can be formulated as: 

Gen = (cos0d工 + sin 紛 ( 2 . 1 6 ) 

where (9 is the direction of the desired derivative measured counter-clockwise 

from the x-axis, dk is the partial derivative operator with respect to direction 

k, and dxG or dyG is the Gaussian derivatives along x- or ？/-direction 

respectively. 

From Equation 2.16, the first {Gq) and the second order (G02) Gaussian 
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derivatives with respect to the direction 6 are formulated as follows: 

Ge 二 cos OGx + sin 9Gy 

Gqi = cos^ QGxx + 2 cos 0 sin QĜ y + sin^ 6Gyy 

2.2.1 Orientation estimation 

Steerable filters are very useful in the estimation of point orientation. The 

orientation of a point is the same direction to the image gradient of that 

point. Prom the interpolation of the basis filters, we can relate the world 

coordinates with the local coordinates of a point by the angle of the orien-

tation 6 of that point. Then, we can estimate the orientation of that point 

using the values of the responses of the basis filters. More specifically, there 

are two methods to estimate the point orientation. 

By an image gradient Let local coordinates v be the direction of the 

image gradient about a point, and u be the direction orthogonal to the 

image gradient. Prom the measured first order Gaussian derivatives along 

X and y axes, L^ and Ly respectively (as defined in Equation 2.5), the 

direction vectors of v and u are 

( \ ( \ 
Lx cos 9 

V = = and (2.17) 
J \ sin <9 

[Ly \ ( sine \ 
u = = , (2.18) 

y —L工 y y -cos(9 

where ||VL|| = y^L^ + L^ and 9 is the angle of the direction counter-

clockwise from x-axis. 
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When the image gradient is orthogonal to the local direction of a point, 

the magnitude of the image gradient is zero. On the other hand, when 

the image gradient is in the local direction of that point, the magnitude of 

the image gradient is ||VL||. That means, is zero and Ly = y/L^ + L^. 

Therefore, we can find 9 simply hy 6 = arctan(Ly, La；), where 6 represents 

the point orientation. 

By the eigenvectors of a Hessian matrix Prom [35], we can align a local 

(p, g)-coordinate system to the eigenvectors of the Hessian matrix in order to 

find the orientation. This means that we can rotate the coordinate system 

by an angle 0 so that Lpq is zero. 

Lpq(0) = dpdgL 

=(cos 9dx + sin 6dy) (sin 9dx — cos 6dy)L 
(2.19) 

=—Lxy cos2 6 + {Lxx — Lyy) COS 9 sin 6 + Lxy sin^ 6 

= 0 

By solving Equation 2.19, we can get cos0 and sin 没，and hence the orien-

tation 9. 

cose = + (2.20) 

sin 没 = { s i g n L , y ) ^ J ^ { l - w ) . (2.21) 

where 

— Lxx — Lyy  
— / = 

- LyyY + 
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By estimating the orientation of a point, we can rotate the window patch 

of that point to the estimated orientation. Then we can cause the point 

descriptors invariant to orientation of that point because its orientation is 

normalized. 

2.3 Point Descriptors 

The correspondence problem on a pair of images refers to finding the rela-

tionship between the images. A point correspondence means a point on the 

first image is related to a point on the other image, and both points are the 

same image point of a 3D feature. 

Point descriptors are very important for the matching of a pair of interest 

points on two images. A similarity measurement has been performed on the 

point descriptors to check whether the matching is valid or not. In the case 

of a small transformation between the images, a point correspondence is 

usually created by first detecting an interest point on each image using 

an interest point detector, e.g. Harris point detector. Then, the nearest 

interest point on the second image to that on the first image is mutually 

compared. If they are similar, the pair of interest points are linked together 

and form a point correspondence. In earlier methods, the comparison of the 

interest points is done by cropping a patch around the interest point on each 

image as the descriptor of the interest point, and then comparing the patch 

using a similarity measurement. The common similarity measurement is 

normalized cross-correlation (NCC) based on the intensity of the patch [60 . 

This approach is very successful for many 3D computer vision applications 

and has been used for many years. 

However, NCC performs poorly for point matching in the situations of 
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large scale (or resolution) change, and large illumination change [49]. More-

over, the above method can only be applied if the transformation between 

the two images is small. Therefore, the above method cannot be applied to 

the matching of images with different scales or resolutions. Recently, Schmid 

and Mohr [62], Lowe [40], Dufornaud et al. [12’ 13], Mikolajczyk and Schmid 

47] introduced local image descriptors based on image derivatives for image 

matching, indexing in image databases and object recognition. For the 

application of the matching of images of different scales, the major idea is 

to detect interest points at each scale-space level. Then, the interest points 

are represented using scale-invariant point descriptors. For each interest 

point on an image, the most similar interest point on the other image is 

found using similarity measurements on the point descriptors. 

This section first studies the effect of image derivatives under illumina-

tion change and geometric scale change. Then, we briefly describe the point 

descriptors used in [47 . 

2.3.1 Image derivatives under illumination change 

Let / � and / � be two images related by an affine illumination change in 

Equation 2.22. c and m are the contrast change and the mean illumination 

change (or the brightness change) respectively. 

/ � =c / � + m (2.22) 

It is obvious to observe that the derivatives of images are invariant to 
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the mean illumination change. 

41) = cLi^' 
r � — 广 厂 ⑵ 

However, the derivatives are not invariant to the contrast change. To 

make the derivatives invariant to the contrast change, we can normalize the 

second or higher order derivatives by the magnitude of the first derivatives: 

4 ) = cLg 
|VL � II 一 c||VL � I 

_ 0；̂  

. | V L � 11 二 c||VL(2)|" 

where the first derivatives VL is 

I  
VL = and ||VL|| = + L^ 

/ 

2.3.2 Image derivatives under geometric scale change 

Let X = (x, ？ b e the coordinates on an image I. Suppose two images, / � 

and / � ’ are related by 

/�(X(l))=：：/�(X(2)) 
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under the geometric scale transformation of scale different 5, 

X � 二 s x � . 

Section 2.1.2 already shows that an m-th order scale-normalized deriva-

tive in Equation 2.4 is invariant to the geometric scale change. 

2.3.3 An example of a point descriptor 

Previous sections show that the scale-normalized image derivatives are in-

variant to the scale change and the mean illumination change. If the 

second or higher order derivatives are divided by the magnitude of the 

first derivative, they become invariant to the affiiie illumination change. 

Therefore, image derivatives were commonly used as the descriptor of a 

point. 

Mikolajczyk and Schmid [47] designed a point descriptor based on the 

Gaussian derivatives of a patch. They first separate a half circle by a certain 

number of parts. Then, the first Gaussian derivatives in each direction 

are computed. They use the angle of the maximum derivative as the 

orientation of the point and steer the derivatives to the orientation of 

the point. They compute the Gaussian derivatives up to the 4th order to 

obtain the descriptor. Finally, to make the descriptor invariant to the affine 

intensity changes, they divide the derivatives by the steered first derivative. 

2.3.4 Other examples 

Other examples of the point descriptors are the Scale Invariant Feature 

Transform (SIFT) [40] and the differential invariants [62]. Both use Gaus-

sian derivatives. Montesinos et al. [52，51] proposed a descriptor for color 
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images using Hilbert's invariants, which involve only Gaussian derivatives 

up to the first order. The original Montesinos' descriptor is not scale-

invariant, but updating it to scale-invariant is an easy work by normalizing 

the Gaussian derivatives with the scale. 

Another kind of descriptor is the descriptor involving affine-invariant 

Gaussian derivatives [36, 48’ 2]. But the computation of the affine-invariant 

descriptor is more costly, and the affine-invariant is not necessary for the 

multi-resolution problem, because it is assumed that the affine change of 

the texture is small and can be neglected. 

2.4 Feature Tracking Techniques 

An important step of structure from motion is to extract a set of interest 

points or feature points from the images, and relate the images by tracking 

the feature points. However, a lot of feature points are of poor quality or 

mismatched. They weaken the results of camera self-calibration, camera 

pose estimation and 3D reconstruction. Therefore, selecting good feature 

points and discarding outliers are important in feature tracking process. 

This section introduces the Kanade-Lucas-Tomasi (KLT) tracker, a fa-

mous feature point tracker, selecting good feature points by the texturedness 

of the feature window, and discards bad feature points by dissimilarity. This 

section also introduces the guided tracking technique, which discards feature 

points using the geometric criteria after the tracking of feature points. 

2.4.1 Kanade-Lucas-Tomasi (KLT) Tracker 

The KLT tracker was initially proposed by Kanade and Lucas [41], further 

developed by Tomasi and Kanade [73], and fully described in [63]. The aim 
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of the KLT tracker is to track an individual point between a pair of images. 

Given two images Ii and I2, and a feature window centered at image 

coordinates x = (xi, X2Y in image /丄，the aim of feature tracking is to 

determining the 2 x 2 deformation matrix D and the 2 x 1 displacement 

vector d such that 

/2(Ax: + d) = / i (x) (2.23) 

where A = 1 + Z), 1 is a 2 x 2 identity matrix. 

Because of image noise, Equation 2.23 cannot be exactly satisfied in 

general. Therefore, we have to determine the motion parameters D and d 

such that the dissimilarity is the minimum. The dissimilarity is defined as 

follow: 

e= [ f [hiAx + d) - (2.24) 
J Jw 

where W is the given feature window and w{-x) is a weighting function. 

The main concern of [63] is to select good features during tracking. It 

proposes two selection criteria: texturedness and dissimilarity. 

Texturedness Let us consider the 2 x 2 gradient matrix of the feature 

window: 

^ 9I 9x9y , \ 
Z 二 (2.25) 

_ gl _ 

where QX and Qy are the gradient of the intensity along x and y direction 

respectively. According to [63], If both of the eigenvalues of Z are small, 

the intensity profile within the feature window is roughly constant. A large 

and a small eigenvalues mean an unidirectional texture pattern. Both large 

eigenvalues can represent corners, salt-and-pepper textures, or any other 

patterns that can be tracked reliably. Therefore, to choose reliable corners, 
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we only accept the feature points which Z's have two large eigenvalues. 

That is, 

亡= m i n ( A i ’ A 2 ) > A (2 .26) 

where Ai and 入2 are eigenvalues of Z, A is a predefined threshold. 

The texturedness t defined in Equation 2.26 can also be considered as 

the rank of feature points when the limited number of feature points are 

required. 

Dissimilarity A feature with high texture content can still be a bad feature 

to track. The dissimilarity defined in Equation 2.24 is added to indicate 

the quality of the feature and select a good feature. If the dissimilarity 

of a feature point becomes large relative to the other feature points during 

tracking along the image sequence, the feature point is discarded or replaced 

by another feature point. 

Originally, the KLT tracker is used for stereo images. It is now usually 

extended to track feature points along an image sequence by continuing the 

point selecting and discarding processes along the image sequence. 

The KLT tracker is robust and accurate to track the feature points if the 

motion of the image sequence is small enough. If the motion is large, the 

KLT tracker may cause a lot of outliers and mismatched feature points due 

to the limited size of the feature window. A larger feature window maybe 

useful, however, it would require much more time to execute. 

2.4.2 Guided Tracking Algorithm 

Outlying feature points reduce the accuracy of motion estimation and so 

is the accuracy of the 3D shape reconstructed. Reducing the number of 
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the outliers is useful for motion recovery and 3D shape reconstruction. 

The main idea of the guided tracking algorithm is to apply the geometric 

criteria to select suitable feature points for motion recovery and 3D shape 

reconstruction. 

Gibson el al. [66] introduces a guided tracking algorithm that employs 

an estimate of inter-frame camera motion to guide the feature tracking ([64 

also discusses a similar approach briefly). The main idea of the algorithm is 

that the algorithm first tracks the feature points through the image sequence 

using the KLT tracker, and estimates the fundamental matrix [78] between 

the first image and the last image of the sequence. Then, the tracking 

algorithm removes each feature that moves a significant distance from its 

corresponding epipolar line (Section 2.6.2) during the tracking process. 

RANSAC [16] (Section 2.5) is usually used to remove the outlying features 

in this case. In [66], an experiment showed that higher percentage of inliers 

was tracked by the guided tracking algorithm compared with the standard 

KLT tracker. 

2.5 RANSAC 

RANSAC (RANdom SAmple Consensus) [16] is a model fitting paradigm 

that is often used in 3D computer vision. The principle of RANSAC is 

to repeatedly and randomly draw samples from the data set of the possi-

ble combinations, and compute the relation from the samples. RANSAC 

chooses and outputs the relation as the best relation if the relation contains 

the maximum number of inliers that fulfill certain constraints among the 

trials. The relation can be the fundamental matrix or the 2D homography 

28]. Moreover, the expected number of trails required, N, is determined 
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by Equation 2.27: 

iV = l o g ( l - p ) / l o g ( l —(1-e广） （2.27) 

where n is the number of data points required in the error-free set, p is 

the probability that at least one of the random selections is an error-free 

set, and e is the probability that a selected data point is outside the error 

tolerance of the model. 

RANSAC can be used to remove the outlying features using the fun-

damental matrix as described in Section 2.4.2. Let x = (u, v, 1)^ and 

X' = {u\v', 1)^ be a pair of 2D feature points in the first and the last 

image frames that are supposed to be corresponding each other, respectively. 

Let F be the fundamental matrix, Equation 2.28 shows the vector for the 

epipolar line, 1, on the last frame corresponding to the point x on the first 

frame, and Equation 2.29 is the distance d of a point x' on the last frame 

to the epipolar line. 

, Fx , \ 
1 二 胃 （2.28) 

d = ll.x'l (2.29) 

Algorithm 2.1 shows the RANSAC algorithm using the fundamental 

matrix. Let ^ be a threshold for the error tolerance. If the normalized 

eight point algorithm [26] described in Section 2.6.2 is used to estimate 

the fundamental matrix, n is 8. The point correspondence, x and x'’ is 

an inlier if the pair fulfills the epipolar constraint that the corresponding 

fundamental matrix contains the maximum number of inliers among the 

trials. The RANSAC algorithm using the fundamental matrix requires a 
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reliable fundamental matrix [75], so the difference between the view angles 

of the cameras should be large enough. 

Algorithm 2.1 RANSAC using Fundamental Matrix 
1： Initialize the expected number of trails N using Equation 2.27. 
2: Initialize i 卜 0. 
3： repeat 
4: Randomly select 8 points from the data set, V. Calculate the fundamental 

matrix F. 
5： Set the set of inliers 1 — 
6： for all point correspondences (x and x') from the data set do 
7： Find the epipolar lines, h and I2, of x and x' on the last frame and the 

first frame using Equation 2.28, respectively. 
8： Calculate the distances, di and ^2, of x and x' to I2 and li using 

Equation 2.29, respectively. 
9： if di < t and d) < t then 

10： I ^ JU (x,x') 
11： end if 
12： end for 
13： i i-\-l 
14： Update e 卜（1 — \I\)/\T>\. 
15： Update N by Equation 2.27. 
16： until i > N 

2.6 Structure-from-motion (SFM) Algorithm 

Structure from motion (SFM) refers to the problem of estimating the three-

dimensional information about the environment from the motion of two-

dimensional projection onto a surface [68]. It is an important task for a lot 

of applications including 3D model reconstruction, 3D motion matching, 

camera calibration, 3D coding of image sequences, navigation, 3D scene 

structure recovering and 3D videos and movies. 

3D shape reconstruction is generally formulated as follows. Suppose an 
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object is placed at a certain distance from the camera. The object rotates 

and translates relative to the camera, and the camera takes a number of 

images of the object. Suppose we take a sequence of F images of the object, 

and then extract the feature points from the images and obtain the relation 

of the feature points along the image sequence using a feature point tracker. 

We then track N feature points 彻= { u j , V j ) i in the z-th image, 1 < z < F, 

I < j < N^ the feature points qij in all images 1 < z < F correspond to 

the 3D point X^ = {Xj, Yj, Zj), I < j < N. 3D shape reconstruction is the 

problem of estimating the 3D coordinates Xj = (Xj, Yj, Zj) of the feature 

points from the feature points 彻.At the same time, we usually also recover 

the motions including the rotation and the translation of the object among 

all image views. Figure 2.1 shows the major idea of structure from motion. 

� ，乂"..\ Feature extraction 

J 龜 — 一 
^ / \ 

^ … \ 

Motion / V 

I 卜 ) Image 3D model 
^^^^^^^^^^�} sequence reconstixiction 

Figure 2.1: Overview of Structure from Motion 

Generally, the process of 3D shape reconstruction consists of camera 

positioning, feature point extraction and tracking, 3D model reconstruction, 

and texture mapping. 3D model reconstruction is the major step, and 

has been studied in the literature using different assumptions. Famous 
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algorithms include factorization methods for image sequences [74，55, 53, 

19, 33, 43，24, 7, 76, 1], methods for the epipolar geometry [78，26, 37]’ and 

bundle adjustment [77，64, 9 . 

In the remaining of this section, we describe briefly the factorization 

methods, the techniques for stereo, and the techniques of bundle adjust-

ment. 

2.6.1 Factorization methods 

Factorization method is a mathematical method that recovers the shape and 

the motion of an rigid object from an image sequence of that object. Fac-

torization method for shape and motion recovery was proposed by Tomasi 

and Kanade [74], which is based on orthographic projection model. 

This section first describes the orthographic factorization (also refer to 

as Tomasi and Kanade's factorization or original factorization). Then, we 

briefly introduce several extensions of the factorization methods. 

Tomasi and Kanade's Factorization 

Tomasi and Kanade's factorization method [74] is based on orthographic 

camera model. In this part, the orthographic projection model is first 

described. Then, we describe the principle of factorization method and 

summarize the outlines of the algorithm. 

Orthographic Projection Figure 2.2 illustrates the orthographic projec-

tion model. Suppose the orthonormal unit vectors i/, j / and ky represent the 

image frame / , where if and j / correspond to the x and y axes of the image 

plane of the camera respectively, and k,，where k j = if x j广 represents the 

direction along the optical axis of the camera plane. A feature point p that 



CHAPTER 2. BACKGROUND TECHNIQUES 34 

we are tracking is located at position Sp in the fixed world origin. The vector 

tf indicates the position of the focal point of the camera corresponding to 

the world origin. The imaging rays are projected from the feature point p 

along the direction parallel to the optical axis of the camera plane. This 

point p will be observed at image coordinates (w/p, Vfp) in the camera frame 

f . Therefore, (ufp, Vfp) is the projection of (Sp — tp) onto the camera plane, 

such that 

Ufp = if • (sp - if) and Vfp=jf (sp -if). (2.30) 

Image Plane 

%P 

Focal length:! World ongin 

Figure 2.2: Orthographic projection. 

Factorization Algorithm Suppose we have tracked P feature points over 

F frames in an image stream. We get the coordinates of the feature points 

(u/p, Vfp) where / = 1, ...，F and p = 1,..., P. We can think of the Ufp and 

Vfp as the entries of two F x P matrices, X and Y respectively. Then, the 

2F X P measurement matrix, W, can be formed using X and Y. 
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Uli . . . Uip 
• . • 
• • • 

X upi •.. ufp 
= (2.31) 

y \ vn viP 

• . • 
• • • 

vfi … V F P 

The rows of the matrix W are then subtracted by the means of the 

entries on the same row. That is, 

Ufp = Ufp- Xf and Vfp = Vfp - i/f (2.32) 

where 
1 P I P 

工 f =pY.^fP and Vf = p^Vfp-
p = i p = i 

Then, the 2F x P registered measurement matrix^ W^ is defined by 

replacing {ufp^Vfp) with {ufp.Vfp): 

Uii . . . Uip 
• • • 

ufi … U F P , 、 

ly = (2.33) 
石 11 . . . ViP 

• • • 

vfi … V F P 

Suppose that the column vector Sp represents the 3D coordinates of 
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the object point corresponding to the p-th feature point on the images 

with respect to the world origin. The orthogonal column vectors if and j / 

represent the orientation of the world coordinate system of the x- and y-

axes respectively, of /-th image frame. The target of Tomasi and Kanade's 

factorization method is to estimate the structure composed of Sp for 1 < 

p < P, and the pose of the cameras if and for 1 < / < F. 

Assume that the world origin is placed at the centroid of the object 

points, therefore, 
1 P 
； = (2.34) 

p = i 

Then, the expressions for ujp and Vfp defined in (2.32) can be rewritten 

as follow: 

^fp =以fp- Tf yfp = '^fp - Vf 

= and (2.35) 
_ •了 _ •了 
= 1/Sp = JfSp 

Because of (2.35), the registered measurement matrix W can be ex-

pressed using the following equation: 

W = RS (2.36) 

where the 3 x P shape matrix^ 5, and the 2F x 3 rotation matrix, R, are 

defined in Equation 2.37. 

S — Si S2 . . . S p 
(2.37) 

r* • • • 1T n = [ii . . . 1/ ji . . . J/ • 
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Assume that 2F > P, W can be decomposed using the singular-value 

decomposition {SVD) into a 2F x P matrix U, a diagonal P x P matrix D, 

and a P X P matrix V^ 

W = UDVT, (2.38) 

such that J9 is a diagonal matrix whose diagonal entries are the singular 

values ai > • • • > (jp sorted in non-increasing order. 

Since i/, j / and k/ are orthonormal, the rank of i? is 3 for the number of 

feature points P > 3. Also, the rank of S is at most 3. Therefore, according 

to the rank theorem in [74], W is at most of rank 3 in the absence of noise. 

In the presence of noise, the rank of W is approximately 3. 

The method of estimating the best rank-3 approximation to W is by 

SVD. By setting all but the three largest singular values in D to zero, we 

can define D' as the 3 x 3 top left submatrix of D corresponding to the three 

largest singular values, and U' and V' as the 2Fx3 and P x 3 submatrices of 

U and V formed by the columns corresponding to the three largest singular 

values in D. 
A A ^ A A 

Two matrices R and S are defined such that W ^ RS. The two matrices 

can be formed by U', V' and D' as follow: 

R = U'D"/^ and 各=D'�丨〜't (2.39) 

The camera orientation vectors if and j / of the matrix R are orthogonal, 

such that i/.iy = l , j / . j / = l, and i / - j / = 0. However, according to [78](p. 

207), if and j / of the matrix R will not be orthogonal. An invertible 3 x 3 
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matrix Q is required so that 

i/QQ'̂ i/ = 1 

l^QQlf = 1 

i'fQQ^h = 0 (2.40) 

With the help of Q, we can find R and S by 

R = RQ and S = Q-^S. (2.41) 

As a result, the structure of the object is estimated in the shape matrix S 

and the poses of the cameras (i/’ j/，k/) are also estimated where kj = if x 

j / . Algorithm 2.2 shows the outline of Tomasi and Kanade's Factorization. 

Algorithm 2.2 Outline of the Factorization method 
1： Compute the registered measurement matrix W, defined in (2.33). 
2: Compute the singular-value decomposition W ^ U'D'V. 
3: Calculate R = U'D’”: and S = D'”"^V丨T, defined in (2.39). 
4: Compute the matrix Q by imposing the metric constraints in (2.40). 
5： Compute the rotation matrix R and the shape matrix S by the equation 

(2.41). 
6： Align the first camera reference system with the world reference system by 

computing the products RG and G? S�where the orthonormal matrix G = 
iijiki] rotates the first camera reference system into the identity matrix. 

Extensions of Factorization 

Factorization method was extended to adapt to more general camera mod-

els, such as weak perspective [80] and para-perspective [55]. Combined 

with Epipolar Geometry, as described in [70], factorization method was 

further extended to the perspective projection model, which is the idealized 
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mathematical camera model [50]. Maliamud and Hebert [43] also proposed 

an iterative factorization method which is based on perspective projection 

model. 

On the other hand, the factorization method was extended to allow 

sequential inputs of images [53] or reconstruct the model recursively [19, 33 . 

These methods are based on orthogonal projection model, which is the same 

as the original Tomasi and Kanade's Factorization method. 

The methods introduced above do not estimate the intrinsic parameters 

of the cameras. Han and Kanade [21] proposed a factorization method 

which is built on the top of Mahamud and Hebert,s iterative perspective 

factorization method [43] to extract the extrinsic parameters as well as the 

intrinsic parameters of the cameras. 

Moreover, Han and Kanade [22, 23’ 24] further extended the factorization 

method to solve the dynamic scene problem. The dynamic scene problem 

refers to the estimation of the motion of cameras and the positions of 

multiple moving objects for a sequence of images. Han and Kanade proposed 

methods that estimate the motion of the cameras and the positions of the 

objects if the objects move in constant velocities. 

Factorization method is a common technique for 3D reconstruction of 

a non-rigid object. Bregler et al. [7] proposed a factorization method for 

recovering a non-rigid object. Torresani et al. [76] further extended the 

idea to track the feature points and recover the 3D structure of a non-rigid 

object. 

2.6.2 Epipolar Geometry 

This section introduces the basic idea of the geometry of stereo, also referred 

to as the epipolar geometry [37，26, 78]. Figure 2.3 shows the epipolar 
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geometry. 

Epipolar line P 
J Epipolar line 

[V X / / / / I 

h . �/ Epipolar Plane ； k 

1 I 

Figure 2.3: Epipolar Geometry 

Figure 2.3 shows two pinhole perspective cameras with their centers of 

projection Oi and Or, and image planes Ii and respectively. xi and x^ 

are the vectors from Oi and Or to the projection of the 3D point P on Ii 

and Ir respectively. X^ and X” are the vectors from Oi and Or to the point 

P, respectively. The line joining 0/ and Or intersects on Ii and Ir at the 

epipoles e/ and ê  respectively. You may imagine that ei is the projection 

of Or on 11； vice versa. 

For each 3D point P, an epipolar plane passes through P and the two 

center of projections Oi and Or- The epipolar plane intersects each image 

planes at the epipolar line. The projections of P must lie on the epipolar 

lines on // and I” this relation is called the epipolar constraint. 

This section mainly introduces the basic components of the epipolar 

geometry including the essential matrix and the fundamental matrix. With 

these matrices, if we know both intrinsic and extrinsic parameters, we can 

reconstruct the 3D model by triangulation. If we only know the intrinsic 

parameters, we can still reconstruct the 3D model and estimate the extrinsic 
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parameters up to a scaling factor. If none of the intrinsic and extrinsic 

parameters are known, we can reconstruct the model only up to an unknown 

projective transformation. More details can be referred to in [78 . 

The Essential Matrix, E 

The image planes of the left and right cameras are related via the extrinsic 

parameters. This defines a rigid transformation in 3D space between the 

two cameras: the translation vector T = {Or — O；), and the rotation matrix 

R. Therefore, the relation between X/ and X^ can be described as follow: 

X , = R{XI — T) (2.42) 

From the epipolar plane, we can find the following relation: 

(Xr - T)^T X Xi 二 0 (2.43) 

Using Equation 2.42, we obtain 

x X i = 0 (2.44) 

Because we can rewrite T x X/ to ^X/, where 5 is a rank 2 matrix: 

0 - T , TY 

S = T, 0 - n (2.45) 

- T y 7； 0 
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Therefore, Equation 2.44 becomes 

X ^ E X i - 0 (2.46) 

with the essential matrix E = RS. By using the fact that x/ = 

and Xr = (^ )Xr , where fi and fr are the focal length of the left and right 

cameras respectively, and X/ = [Xî  Yi, Zi]^ and X” = [Xr, 么]了，we can 

rewrite Equation 2.46 as 

x^j^xz = 0 (2.47) 

According to [78], the essential matrix provides a link between the epipo-

lar constraint and the extrinsic parameters of the stereo system. Also, it is 

the mapping between points and epipolar lines with the prior information 

on the intrinsic parameters. 

The Fundamental Matrix, F 

We can obtain the mapping between points and epipolar lines without 

the prior information on the intrinsic parameters through the fundamental 

matrix. 

Suppose X/ and x^ are the points in pixel coordinates corresponding to 

Xi and Xr in camera coordinates respectively such that 

xi = M�i5ti and x^ = M'^Xr (2.48) 

where Mi and Mr are the matrices of intrinsic parameters (described briefly 

in Appendix A.l) of the left and right cameras respectively. From Equa-

tion 2.47, we have 

x � F x i = 0 (2.49) 
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where 

F = MJEMF\ (2.50) 

Therefore, according to [78], we can reconstruct the epipolar geometry 

with no information at all on the intrinsic or extrinsic parameters through 

the fundamental matrix. 

The Eight-Point Algorithm 

The eight-point algorithm [37] is a commonly used algorithm to compute 

the essential matrix and the fundamental matrix. To compute the essential 

matrix and the fundamental matrix, the eight-point algorithm requires at 

least 8 point correspondences between the pair of images. The principle of 

the eight-point algorithm is first to construct a homogeneous linear system 

from Equation 2.49, and then to compute the entries of the fundamental 

matrix. Prom Equation 2.50, we can also obtain the essential matrix. 

Algorithm 2.3 shows the basic structure of the eight-point algorithm. 

According to [26], the estimation may be unstable. To avoid numerical 

instabilities, we have to normalize xi and Xr- The details of the normaliza-

tion method and the analysis on stability issues can be found in [26’ 42’ 78 . 

Estimation of Projective Matrix 

Beardsley et al. [3] proposed a method to estimate the projective matrix 

for stereo images. The principle of the method is to first assume that the 

projective matrix with respect to the first camera (or left image) in the 

canonical form, and then compute the fundamental matrix and the epipole 

in the right image. Finally, it computes the projective matrix with respect 

to the right image by setting 4 parameters arbitrarily. Algorithm 2.4 shows 
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Algorithm 2.3 The Eight-Point Algorithm 一 

1： Transform Equation 2.49 using n (n > 8) point correspondences to a linear 

system in the form Af = 0. 
2: Compute the singular value decomposition oi A^ A = UDV^. T h e column 

vector f is the column of V corresponding to the least singular value of A. 
3： Compute the singular value decomposition of F, F = UfDfVj. 
4: Set the smallest singular value in Dy to 0 and form D � . Recompute the 

corrected estimate of F, F' by 

F' = UfD'^Vj 

Algorithm 2.4 Estimation of Projective Matrix 
1： Set the first projection matrix Pi to the canonical form: 

Pi =刚 

where / is a 3 x 3 identity matrix and 0 is a 3 x 1 zero vector. 
2: Compute the fundamental matrix F. 
3： Compute the epipole e；̂  in the second image using F^e^ = 0. 
4: Mr = er X F. 
5： T h e projection matrix with respect to the second camera is computed by: 

Pr = [Mr + e^b^lce,.] 

where b and c are an arbitrary 3 x 1 vector and a scalar respectively. 
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the overview of the method. 

Reconstruction of 3D Model 

If we obtain the projection matrices for both images using the technique 

described in the preceding part, we can reconstruct the 3D model using 

the techniques of triangulation [27]. In Figure 2.3, imagine the projection 

matrices are fixed and known, we can obtain the 3D position of a point by 

intersecting the two lines emitted from the corresponding 2D points in both 

image frames. The triangulation problem is to estimate the intersection of 

these two lines in the space. Hartley and Sturm [27] proposed a polynomial 

method for the triangulation problem and studied several linear and itera-

tive methods. The details of the triangulation techniques can be found in 

2 7 ； . 

From Stereo to Sequence 

The techniques for epipolar geometry are only suitable for stereo images. 

If the problem is extended to an image sequence, merging techniques are 

required. An image sequence can be divided into a lot of pairs of im-

ages. Therefore, the problem becomes the reconstructions of a lot of stereo 

images. However, each stereo is reconstructed individually, the structure 

reconstructed for each stereo is up to a projective transformation [78，56 . 

To transform the structures in different projective transformations to be 

with respect to the same projective space, we have to estimate those pro-

jective transformations. Fitzgibbon and Zisserman [18] proposed a sequence 

merging technique that estimates the projective transformation between two 

structures. 

Suppose that an image sequence consists of three image frames. Let li 
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be the z-th image for i = {1,2,3}. Suppose Ii and I2 form a stereo 

and similarly I2 and I3 form another stereo That is, I2 becomes the 

common frame. Let X ; ” and X f \ where X ; ” =(义丄⑴，X^i),对)’义丄”, 

and X f ) = (Xi(2)’X&Xf)，xf))T, be the j-th 3D point with respect to 

the first cameras of and S � respectively, and P � and P � be the 

projection matrices on I2 with respect to the first cameras of and 

� respectively. Let ！！卿 be the projective transformation from the first 

camera of � to that of � such that 

X j i ) = 丑 (2.51) 

P � =p ( 2 ) (丑 ( 3 D ) ) - 1 (2.52) 

The target of the merging techniques is to estimate the projective trans-

formation 巧’ which minimizes 丑 ( 3巧X;2 ) ) subject to the con-

straint P(i) = P � T h e distance D(X,Y) can be Algebraic 

distance (Equation 2.53), Euclidean distance (Equation 2.54), or the re-

projection error [18 . 

3 

DA(X,Y) = - (2.53) 
k=l 3 

Z M X , Y ) = E ( f - 是 ) 2 (2.54) 
k=l 

If the number of common correspondences between � and <S(2) is 

larger than 4，H脚)can be computed by Fitzgibbon's merging method 

by Equation 2.55. 

= � )+ p(2)+hvT (2.55) 

where h and ( P � ) + are the null vector and the pseudo-inverse [32，69] of 
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P � respectively. If Algebraic distance (Equation 2.53) is used, the 4 x 1 

column vector v can be estimated by solving the following linear equation: 

b ( x f ) ^ v = c (2.56) 

where b and c are 3 x 1 column vectors that bk = X^” kk — X^^^hi and 

c, = X ^ i �- X i〜，a = (P�)+尸(2)X(2). 

According to [18], if Euclidean distance or the reprojection error is used 

for the distance, we have to solve Equation 2.55 using iterative optimization 

algorithms because the system becomes non-linear. Gibson et al. [66] pro-

posed an approximate linear solution for Euclidean distance. More details 

can be found in [66 . 

2.6.3 Bundle Adjustment 

The 3D model of an object (model) and the motion of the camera (pose) 

can be estimated using bundle adjustment. Using bundle adjustment to 

estimate the model and the pose, we have to define the error function and 

the parameters. 

Optimization for Re-projection Error 

Suppose we have F views of N 3D points, we wish to estimate the projection 

matrix of the camera Pi, I < i < F, and the 3D points Xj , 1 < j < N, 

which are projected to the image points x^ such that x ĵ = PiXj. We 

estimate all Pi and all X j such that the total re-projection error e of all 3D 

points on all views is the minimum [28]. That is, 

F N 

e = 响 ( 2 . 5 7 ) 
i=l j=l 
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where x^) is the square of Euclidean distance between x^ and Xg. 

Equation 2.57 presents the general idea of bundle adjustment. The form 

of the re-projection error and the parameters adjusted can be modified 

dependent on the situations assumed. Generally, the projection matrix Pi, 

the 3D point Xj , and the 2D point Xij are defined below: 

Pll Pl2 Pl3 Pl4 

Pi = P2l P22 P23 P24 

P31 P32 P33 P34 

X j = [Xi X2 x^ x^f^ 

Xij = [Xi X2 Xs]'^ 

If we assume that the intrinsic parameters are known, the problem can 

be reduced to Euclidean space. Hence, the projection matrix P̂ , the 3D 

point Xj , and the 2D point Xij are redefined below: 

n i ri2 ri3 T工 

Pi = Mint �21 r22 �23 Ty 

厂 31 3̂2 Tz2> TZ 

X j = [Xi X2 X^ 1] 了 

Xi j = [2:1 X2 I p 
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where 

厂 11 ri2 ri3 

2̂1 �22 r23 

厂 3 1 ^ 3 2 厂 3 3 

is the rotation matrix dependent on three rotation angles 4>x4>y4>z- Mint is 

the matrix contains the intrinsic parameters of the camera. 

Lowe's pose estimation algorithm 

Lowe's method [38, 39] assumes that we know the position of the 3D points 

corresponding to a view and the intrinsic parameters of that view, the 

problem can be reduced to estimating the pose (3 rotation angles 

and (j)z, and a translation vector T = [Tx, Tŷ  totally 6 parameters). 

Because Lowe's method only need to find the pose of a view, only that view 

is required. Assume that the camera is calibrated, Lowe formulates the 

normal equations of the Levenberg-Marquardt minimization as follow: 

� = E U 吼 + 小k (2.58) 
k=x,y,z 丫 

一 E 备严 ^ M k (2-59) 

where u and v is the x and y coordinates of j-th 3D projection in the image, 

respectively. 

Lowe computes the re-projection errors of at least three 3D points along 

u and V direction of the image and the Jacobian matrix from an initial guess 

of (0a�’ 0y�02’ Ta�, Ty, T:), and then uses standard least square methods to 

estimate (A0a；, A(/)y, A(f)z, ATa；, ATy, AT^). Hence, improved estimates are 

given by = (pk + and = Tk + AT^ for k = x,y, z. 
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Two-pass Bundle Adjustment 

Two-pass Bundle Adjustment [9] extends Lowe's pose estimation algorithm 

38, 39] to estimate the optimal 3D structure of an object by giving a set 

of 2D feature point sequences along F frames. It assumes that the intrinsic 

parameters of that view are known. 

Two-pass Bundle Adjustment, which is an interleaving bundle adjust-

ment method, consists of two phases per iteration. T h e first phase is to 

estimate the poses from previous guess of 3D points by Lowe's method. 

T h e second phase is to estimate the 3D points from the poses estimated 

in first phase by Levenberg-Marquardt minimization [56]. Algorithm 2.5 

shows the overview of Two-pass Bundle Adjustment. 

Algorithm 2.5 Two-pass Bundle Adjustment  

1： Initialize the guess of the 3D points and the poses 

2: repeat 
3： (First Phase) For each view i, using previous guess of { X j } ^ and the image 

features x ^ for all 3D points in i-th. image, estimate the pose 6i by Lowe's 

method. 

4: (Second Phase) For each 3D point X j , using the guess of the poses 

and the j-th image feature of every image, estimate the better-predicted 

3D point X j using Levenberg-Marquardt minimization [56]. 

5： until the 2D total re-projection error is small enough or too many iterations 

are run. 

2.6 .4 Summary 

Factorization methods and the triangulation methods only obtain the sub-

optimal solution, while bundle adjustment can get the optimal solution. 

However, bundle adjustment is an iterative approach, hence it is much slower 

than factorization methods and the triangulation methods. In practice, 
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the suboptimal solution estimated by the factorization methods or the 

triangulation methods is usually used as the initial solution for the bundle 

adjustment [18, 55], and the bundle adjustment refines the solution to obtain 

the optimal solution. 

• End of chapter. 



Chapter 3 

Hierarchical Registration of 3D 

Models 

T h i s project aims to reconstruct a detailed 3D structure of a large scene 

from at least two image sequences. One for the large scene and the others 

are for the objects that are reconstructed in more details. T h e idea of our 

approach is first to take two image sequences, one is for the large scene 

and the other is for the object. Then, the image sequences are related by 

matching an image of each sequence. Using the point correspondences from 

the previous step, the relative poses of the 3D structures are estimated and 

the 3D structures are integrated to form the detailed 3D structure of the 

large scene. 

Our approach is designed for the large scene that contains only rigid 

and opaque objects, and the scene is static such that the objects do not 

move. Also, the scene and the objects contain enough features (corner 

points) for 3D reconstruction. Moreover, in this thesis, the image sequence 

for the large scene is described as low resolution or coarse, and so are its 

images. O n the other hand, the image sequence for the object in the scene 

52 
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is described as high resolution or fine, and so are its images. In most cases, 

camera calibration is not necessary. If the radial distortion of the camera is 

significant, camera calibration may be required, and the intrinsic parameters 

estimated are given to the 3D reconstruction process. 

In this chapter, we describe our approach for the detailed reconstruction 

for a large scene. Section 3.1 describes the overview of our method. Then, 

the remaining sections explain the details of our method. 

3.1 Overview 

In this section, we describe the arrangement of the image sequences and the 

flow of our framework. 

3.1 .1 The Arrangement of Image Sequences 

In order to reconstruct both of the detailed objects as well as the large 

environment, we take separate image sequences for each detailed object and 

the large environment. For the large environment, each image includes the 

whole scene. For the fine object, the camera is placed nearer to the object, 

so the view of the camera can take the detailed contents of the object. For 

simplicity, in this thesis, we assume that there is one fine image sequence 

and one coarse image sequence. Figure 3.1 illustrates this arrangement. Let 

Sc be the coarse image sequence and Sf be the fine image sequence. Define 

and l y ) be the z-tli and j - th image frames of the coarse and the fine 

image sequences respectively. 

For the better matching between the image sequences, the user should 

select a pair of images (an image from each image sequence) which are taken 

from similar view angles. Let 4。）and i f ) be the selected images from Sc 
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and Sf respectively. Also, I?) and should have an overlapping region 

which is large enough for the matching. Figure 3.2 shows an example of the 

coarse image sequence and fine image sequence. In this example, both of 

the image sequences consist of 19 frames. 

object presented by the fine sequence 

whole large scene 

炉 A \ 
Fine sequence 

jif) \ K / ) image taken 

C > \ ‘ \ � 
/(<=) � � � � - f ^ \ 

' - - ' O Coarse sequence ^ 

I容、 。 

Selected images for matching 

Figure 3.1: The arrangement of image sequences 

3.1 .2 The Framework 

Figure 3.3 shows the flow of the framework. After we arrange the camera 

setup and take the images, the framework consists of four major steps: (1) 

reconstruct the 3D model for each image sequence, (2) match the selected 

pair of images using the multi-scale image matching technique, (3) build the 

linkage between the coarse and the fine sequence, (4) register the 3D models 

together, and (5) form the final V R M L 3D model. These steps are described 

briefly in the remaining of this section, and the details are explained in the 

remaining of this chapter. 
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_ _ _ _ 

(a) 1st, 5th, 10th and 15th frames of the coarse image sequence. 

_ _ _ _ 

t̂ ^̂ BISÎ iiiSirt K L ^ Z ^ J L ^ 

(b) 1st, 5th, 10th and 15th frames of the fine image sequence. 

Figure 3.2: An example of a coarse and a fine image sequences 

3D Model Reconstruction 

A 3D model is reconstructed from each image sequence. The steps of 

3D model reconstruction for each image sequence include region selection, 

feature point extraction and tracking, outlying feature rejection, camera 

self-calibration and structure from motion. 

For each image sequence, the feature points extracted for 3D recon-

struction are of the smallest scale. But they are unsuitable for the multi-

scale image matching, so we need the multi-scale image matching technique 

and the linkage establishment technique to link up the image sequences of 

different resolutions. 

T h e details of the 3D model reconstruction axe described in Section 3.2. 

Multi-scale Image Matching 

T h e selected pair of images, I ? ) and are of different resolutions, but 

they are taken in similar view angles. Therefore, we can use the multi-scale 

image matching technique to find the relation, H ; 冗 ) � ,b e t w e e n these two 
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Coarse Image Sequence, Sc —i 厂 Fine Image Sequence, S/-

Set of feature p o i n t S e t of feature point  
丄 sequence, T'^ sequence, P^� 丄 

3D Model Reconstruction 3D Model Reconstruction 

p-tb image, Q-th Image, 

wi k仿 

Multi-scale Image Matching 

2D Homography,  
丄 脚 

S e t o f f e a L r ' Linkage EstabUshmeni *-^tof featuw 
points on p-th points on q-th 
image, Y/^ Linkage, image, YJO 

丄 

~ ~ C 隱 犯 > 3D Model Registration ^ ^ ^ ^ 

Model,沙 Model 沙 

Combined  
丄 Model 

VRML Modelling 

Final texture-mapped 
3D Mode] 

Figure 3.3: The multi-scale reconstruction framework 
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images. Section 3.3 describes the multi-scale image matching in details. 

Linkage Establishment 

W i t h the relation estimated in the previous step, jU)^ ‘ 观 find the 

linkage between the coarse and the fine image sequences. T h e linkage is a set 

of feature point sequences which is the subset of the intersection of the sets 

of feature point sequences of the coarse and the fine image sequences. We 

obtain this subset using the rematching algorithm. T h e detail is described 

in Section 3.4. 

3D Model Registration 

W i t h the linkage, we obtain the correspondences between the 3D models 

reconstructed from the coarse and the fine image sequences. We estimate 

the 3D affine transformation between these 3D models using the least square 

approximation, and then combine the 3D models using the estimated 3D 

affine transformation. Section 3.5 describes the details of the registration. 

V R M L Modelling 

We form the texture-mapped V R M L model for the combined 3D m o d e l 

T h e detail is described in Section 3.6. 

3.2 3D Model Reconstruction for Each Sequence 

Typical ly, 3D model reconstruction for an image sequence consists of five 

parts including region selection, feature extraction and tracking, rejection of 

outlying feature points, camera self-calibration, and 3D structure recovery. 
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Region Selection Since not the whole region of the image is preferred and 

useful for finding the 3D structure of the scene (or the object), a region is 

selected before the feature extraction. In our project, a rectangular region 

on the image is selected by the user. Only the points in the region are 

extracted in the next process. 

Feature Extraction and Tracking To reconstruct the 3D structure of 

an object , we have to obtain the feature point sequences from the images. 

We use the standard Harris corner detector described in Section 2.1.2 to 

extract feature points from the images. However, not all feature points are 

useful for the tracking in the image sequence. The K L T tracker described in 

Section 2.4.1 is used in our project to track the feature points through the 

image sequence, and remove the poor feature points or the feature points 

that do not exist in the whole image sequence. 

Outlying Feature Rejection The selection process of the K L T tracker 

only considers the textural criteria, but it is not enough to remove the 

mismatched feature points. The geometric criteria can be added to remove 

those mismatched feature points. The common technique of R A N S A C [16 

is used to estimate the accurate fundamental matrix and obtain the inlying 

feature points [75, 64 . 

Here, we assume that the difference in view angles between the first and 

the last frames is large enough to obtain a reliable fundamental matrix [75 . 

Thus , we estimate the fundamental matrix between the first and the last 

image frames as the relation, and the epipolar constraint [28] (or the distance 

from the epipolar line) becomes the constraint to determine the inliers. The 

details of the R A N S A C algorithm using the fundamental matrix is described 
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in Section 2.5. 

Camera Self-calibration We use Pollefeys' method [57] to find the focal 

length of each image frame. The self-calibration method only estimates the 

intrinsic parameters up to scale. T h a t is, the focal lengths estimated are 

actually in ratio between the frames. We have to fix the focal length of the 

first image frame and compute the focal lengths of the other frames. In this 

project, we assume that we know the focal length of the first image frame 

of the coarse image sequence. But for the fine image sequence it can be 

fixed arbitrarily. T h e problem of the scale factor of the fine sequence can 

be solved by 3D model registration (Section 3.5). 

3D Structure Recovery The two-pass bundle adjustment [9] is used to 

reconstruct the 3D structure for each image sequence. The two-pass bundle 

adjustment is faster than the standard bundle adjustment [77], and both 

algorithms can estimate the optimal 3D structure. Therefore, we use the 

two-pass bundle adjustment in our project. The algorithm of the two-pass 

bundle adjustment is presented in Section 2.6. 

3.3 Multi-scale Image Matching 

T h e most important problem of the coarse-to-fine 3D model merging is to 

obtain the correspondences between the coarse image sequence (5c) and the 

fine image sequence (5c). The coarse and the fine image sequences consist 

of sets of feature point sequences among their image f r a m e s , � � and T � ’ 

respectively. Each set of feature point sequence is used to reconstruct the 

3D model. T h e linkage problem between the two image sequences is to 

obtain a subset of the intersection of the sets of point sequences of 
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b o t h the coarse and the fine image sequences, such that T(l) C T �门 T � . 

W e obtain this subset using two steps. First, we estimate the 2D trans-

formation between the selected pair of images (/;。）and 7^)) using a multi-

scale image matching technique. Then, with the estimated 2D transfor-

mation, we obtain this subset using the rematching algorithm. Compared 

wi th the approach of Ramalingam and Lodha [58] that obtains this subset 

by matching the point correspondences of the sets T � and T � directly 

using scale-sensitive correlation technique, our approach is more flexible 

and is not restricted to one multi-scale image matching algorithm, so that 

a lot of multi-scale image matching algorithms which can estimate the 

2D transformation between the selected image pair can be used in our 

framework. Moreover, in general, as shown in [47] and claimed in [58], 

the multi-scale image matching techniques can match higher scale factor 

than the scale-sensitive correlation technique. 

T h e multi-scale matching technique consists of four steps: 

1. Scale-space interest point detection 

2. Point descriptor construction 

3. Point-to-point matching 

4. Image transformation estimation 

T h e remaining of this section describes the multi-scale image matching 

technique of our framework in details, and the extension of the scale-factor 

using the matching technique hierarchically. Section 3.4 describes how we 

use the rematching algorithm to obtain the linkage (r(L)) between the sets 

T(c) and T � n . 
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3.3 .1 Scale-space interest point detection 

We use the multi-scale image matching algorithm similar to [47]. The first 

step of matching the two images is to detect a set of interest points on each 

image. In the scale-space framework, we use the Harris-Laplacian interest 

point detector (as described in Section 2.1.2) to detect the interest points 

in different scale-space levels on each image. We set the scales increasing 

from 2 exponentially with a scale factor 1.2 up to 15 successive steps. Also, 

circular window patches are used in the convolution of the Harris-Laplacian 

detector in order to make the detector more invariant to rotation. This 

method effectively detects the feature points on their characteristic scales, 

and these characteristic scales will be used in the computation of the point 

descriptors. Figure 3.4 shows the interest points extracted from an example 

of the image pair, I沪 and The plus signs represent the positions 

of the interest points, and the circle around each of them represents the 

corresponding circular patch. The radius of the circular patch is linearly 

proportional to the characteristic scale of the interest point. As shown in 

the figures, a corner may contain several circles with different characteristic 

scales. 

3.3 .2 Point descriptor 

For each interest point detected on each image, we have to compute a point 

descriptor representing this point using the circular patch around it. In the 

scale-space framework, the scale-normalized Gaussian derivatives are used 

as the point descriptor. In more details, for each interest point detected 

in previous step, a circular patch around it is selected. The radius of the 

patch is linearly proportional to its characteristic scale. We estimate the 
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_ 

V 二 , 一 ： 

Figure 3.4: Interest points extracted for multi-scale image matching from (a) the 

selected coarse image (4。)）and (b) the selected fine image ( 4 � . 
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orientation of the point from its patch using the second method described 

in Section 2.2.1. To make the point descriptor invariant to orientation, the 

circular patch is steered to the orientation estimated. 

T h e absolute values of the responses of the second, the third and the 

fourth order image derivatives in several directions on the patch are used 

as the values of the point descriptor. Totally 8 directions are used in our 

experiment and the angle difference between successive directions is 22.5°. 

To make the point descriptor invariant to the affine illumination change 

(the contrast change), we normalize the image derivatives by dividing them 

by the magnitude of the first derivative. Therefore, the total number of 

invariants of the point descriptor is 24. 

3.3 .3 Point-to-point matching 

T h e interest points on the coarse image (4。)）are matched to those on the 

fine image ( i ^ ) ) . For each interest point on I 沪 , w e find the most similar 

point on /乂）using a dissimilarity measurement on the point descriptor. 

Mahalanobis distance {{di - d2)TA_\di — 0̂ 2)) is commonly used [12’ 47] as 

the distance function on the descriptors, di and 而.However, the covariance 

matrix A is required to be trained by a large number of image samples. We 

do not have any image sample in the situation of the 3D reconstruction, so 

Mahalanobis distance is not suitable in our project. 

T h e dissimilarity measurement we use is the weighted Euclidean dis-

tance. We normalized each invariant by dividing it with the standard 

deviation of its distribution of all descriptors for both images. Then, we 

calculate the Euclidean distance using the normalized point descriptors. 

If the distance between the most similar point on 4"̂ ) of an interest point 

on /�c) is less than a threshold, we count it as a matched pair from I沪 to 
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/ y ) and put it into the set Q " ( c )厂(/)、. Matching is also applied on the reverse 
Up i^q ) 

direction from i ^ ) to I沪,and we obtain the set of matched pairs Q(jj/) /c)). 

Only the matched pairs of the intersection, Q = Q /̂W jU)̂  门 Q(j(/),(<：))’ 

between the 2 sets of matched pairs are kept. T h a t is, only the matched 

pairs from the matching of both directions are counted as the initial matches. 

Moreover, because a single feature point on an image may contain more 

than one characteristic scales, it is possible that a single point correspon-

dence contains duplicated pairs in the set Q. We have to remove the 

duplicated pairs so that each point correspondence has equal weight in the 

R A N S A C counting process during the estimation of the 2D transformation 

(Section 3.3.4). 

3.3 .4 Image transformation estimation 

A f t e r we obtain the initial matches, we may find the transformation between 

the two images. However, the set of initial matches obtained contains a large 

portion of mismatches. Figure 3.5 shows the initial matches of the example. 

T h e plus signs represent the positions of the initial matches. The number 

next to a plus sign represents the index of the pair of the matched points. 

T h e percentage of correct matches may be less than 20%. Therefore, 

we add the geometric constraint using R A N S A C [16] to estimate the most 

voted transformation and separate the inliers from the outliers. 

A s described in Section 3.2, the relation between the images can be the 

fundamental matrix [26’ 78，28] or the 2D homography [28]. However, the 

view angles of the two images are similar, this may cause the fundamental 

matrix to degenerate [75]. Therefore, the 2D homography is used as the 

relation between the point correspondences on the two images in R A N S A C , 

and also is used as the transformation between the two images. 
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藝 
ik 二 - 终 ⑩ - 於 - … 〃 ^ 一 

(b) 

Figure 3.5: Matches from multi-scale image matching for the example. Initial 
matches (plus) and correct matches (circled plus) on (a) the selected coarse image 
(4c)) and (b) the selected fine image 
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Let X = (x i , X 2 , a n d x' = 1)^ be a pair of points of a point 

correspondence on the two images (/i and /之)，the 2D homography from J： 

to I2, is defined in Equation 3.1. 

- ( 3 . 1 ) 

where I l f ) � ) is in the form below 

^11 his 
^(2D) _ , , , 
^{luh) — ^21 1̂ 22 以 23 

0 0 1 

Then, the distance function replacing Equation 2.29 is defined in Equa-

tion 3.2. 

d =丨丨X' - F((,2�)2)X丨丨 (3.2) 

T h e minimum number of point correspondences for calculating the 2D 

homography is 3’ hence, in R A N S A C algorithm, we randomly select 3 points 

from the data set as a sample for every trail. 

In Figure 3.5, the circled plus sign means the match pair is correct and 

is outputted from R A N S A C algorithm. The corresponding 2D homography 

is also obtained. In this case, from the 2D homography estimated, the scale 

ratio of I ( / � o v e r I沪 is about 2.96. 

3.3 .5 Multi-level image matching 

T h e scale factor of the multi-scale image matching technique is limited. 

B u t it can be increased by matching multiple images of different resolutions 

hierarchically. Figure 3.6 illustrates the setup. 
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^ ^ object presented by the fine sequence 

whole large scene 

Fine sequence ^ f 

I � P \ ( 力 image taken 

C ^ � J \ - Added image for matching 

斤）、、、、-•&、： \ 
X ^ - . . , Coarse sequence ^ 

I? \ \ •丨 > ‘ 

Selected images 

Figure 3.6: Multi-level image matching. 

T h e 2 D h o m o g r a p h y can be accumulated using E q u a t i o n 3.3. 

rT(2D) — rr(2D) ^(2D) /o o\ 

However , f rom the experiment in Section 4.1 .1 , the accuracy of the 

r e m a t c h i n g a l g o r i t h m drops w h e n the scale ratio is too large, and the noise 

is more sensit ive and destruct ive to the result of the rematching a lgor i thm 

w h e n the scale rat io is larger. Therefore, the accumulated 2D h o m o g r a p h y 

c a n n o t b e t o o large. In this case, the multiple 3D model registrations instead 

of mult i- level image matching should be used. T h a t is, we hierarchically 

register more t h a n two 3 D models of different resolutions. 
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3.4 Linkage Establishment 

W i t h the 2D transformation 炉 ) ) f r o m the selected coarse image 

(/p)) to the selected fine image (jY)), the second step of the linkage estab-

lishment is the rematching algorithm. This section describes the rematching 

algorithm that finds out the linkage between the coarse image sequence (5c) 

and the fine image sequence {Sf) using the 2D transformation estimated. 

Find out this linkage means finding out the subset r(L) such that r ( L ) = 

n T�,where 7"(。）and T � are the sets of feature point sequences along 

the coarse and the fine image sequences respectively. 

C o m p u t i n g the exact linkage is impossible because the 2D positions 

of the feature points are not exactly matched. But we can compute the 

approximate linkage between ^ T � and T ^ � ’ T(l) . Let x((么）be the A;-th 2D 

feature point tracked in the i-tli image frame of S � w h e r e 1 < i < M(c) and 

M(c) is the number of image frames of S � a n d I <k < N、。、and iV(c) is the 

number of features tracked along Sc. On the other hand, let x(((:) be the l-th 

2D feature point tracked in the j - th image frame of Sf, where I < j < M(乃 

and M � is the number of image frames of 5/, and 1 < / < N � and i V � 

is the number of features tracked along Sf. 

Suppose " K p � = . . . '^(pMc))} is the set of feature points in 

the selected image frame I ? ) of Sc, and Yg^^ = x((�)2)’ . . . ’ x((�)胁,))} is 

that of Sf. Our approximation is to find the set, containing the feature 

points of and Y q � that are approximately common in position under 

the transformation of II(二) (,) . T w o positions are said to be approximately 

common if the Euclidean distance between them is below a threshold ds. 

Algor i thm 3.1 shows the rematching algorithm that computes 
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= (3.4) 

Algorithm 3 .1 Rematching Algorithm 

1： for all xg^) € P?) do 

2: Transform to 交{工）by the transformation,丑((�?))炉)’ using 

Equation 3.4. 

3： Find the nearest feature point in /乂）of 知 ） u s i n g Euclidean distance as 

the distance function. 

4: If the distance is below the threshold dg, the transformed point and the 

nearest feature point is counted as the matched pair and put it into the set 

5： end for 
6： Repeat lines 1 to 5 by reversing Sc with Sf. The transformation between the 

two images is changed to 丑((眾!奶,丑((眾！,约=hiv(丑((眾)),,j/))) and inv(^) 

is the inverse of the square matrix A, The set of matched pairs is 丑…/) 了⑷). 

7: Compute f (L) by f �=五 (炉’炉)）H £；(〈/)’,‘。))• 

Figure 3.7 illustrates the rematching algorithm. The point x c is within 

the range of distance dg centered at the transformed co-ordinates ( H 二 a d . ^ a ) 

of the point x^, and it is the nearest point to that co-ordinates. Also, the 

point x ^ is the nearest point and within the range of distance ds centered 

at the transformed co-ordinates ( H : 眾 ) o f the point x c - Therefore, 

x ^ and Xc form a correspondence. The points xb and x c do not form 

a correspondence because xq is more far away from the transformed co-

ordinates of point Xc than the point x^. 

In our project, the threshold ds is set to twice to the scale ratio of Sf 

over Sc which can be estimated from if((�?)),(,)). 

Figure 3.5 shows an example of the matches. The circled plus signs are 

the matched points in the coarse and the fine image sequences. 
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Coarse image, / , | Fine image, i f 
Figure 3.7: Illustration of the rematching algorithm 

W i t h ！f(L) can also be found very easily because the feature points 

are tracked along the whole image sequence. The index of a feature point is 

the same along the whole sequence. So, the feature point sequences in 

correspond to the same feature points in "f̂ (L). 

3.5 3D Model Registration 

Using the linkage on the feature point sequences found in Section 3.4’ we 

can also establish the linkage of the 3D points between the 3D structures. 

Using this linkage, we can merge the 3D models to form a combined model. 

Let Z �={X(/) ’ X f ， … ， X % �} and 沙）= { X ( , ) , x R . . . ’ } be 

the sets of 3D coordinates of the feature points of the fine image sequence 

and the coarse image sequence relative to their first cameras respectively. 

T h a t is, ( X ” ) ) are the k-th {l-th) 3D points in the 3D structures of 
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t h e fine (coarse) image sequence. E a c h of these 3D points corresponds to 

a 2 D feature point in P ? � o r P f � r e s p e c t i v e l y . Using the linkage 

we are able t o build two sets, C Z � and Z(乙。）c Z⑷，which 

e lements have corresponding feature point sequences in T(L). Suppose 

= and 2([。）= {X产)’ X卜)’ •..，乂；̂丄力， 

w h e r e N ^ = |f(L)|. and Z(、）can be related by E q u a t i o n 3.5 wi th 

t h e 3 D h o m o g r a p h y from Z � to F((!?,))’沙)). 

X(、）= 默洲 ) X ( L � （3.5) 

T h e 3 D h o m o g r a p h y est imated in Equat ion 3.5 can build the linkage 

b e t w e e n t h e 3 D points of Z � and Using 乳 力 。 ) ) ， w e can transform 

t h e 3 D structures , Z � and Z(c)，to each other 's coordinate system by 

E q u a t i o n 3.6 or E q u a t i o n 3.7, respectively. Therefore, the 3D structures of 

t h e t w o sequences are transformed and merged, and we obta in the combined 

model . 

X(c) = 洲 ) X � （3.6) 

X � =i n v ( i 7 ( ( 二 ,洲 ) ) X ( c ) (3.7) 

T h e 3 D t rans format ion can be metric, affine or project ive [56, 28]. In 

this p r o j e c t , we use affine transformation because affine transformation can 

register t h e t w o 3 D models bet ter t h a n metric t ransformation (as shown 

in S e c t i o n 4.1 .2) . P r o j e c t i v e transformation is useful w h e n the 3D models 

r e c o n s t r u c t e d for the image sequences are scale up to project ive transfor-

m a t i o n . B u t t h e 3 D models reconstructed in this pro jec t are scale up to a 

scalar , so p r o j e c t i v e t ransformat ion is not necessary for this project . Also , 
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t h e c o m p u t a t i o n of project ive transformation (Section 2.6.2) is more com-

plex t h a n affine transformation, in our observation, the result of project ive 

t r a n s f o r m a t i o n is less stable t h a n affine transformation for this project . 

T h e i m a g e sequences can be calibrated using the self-calibration algo-

r i t h m u p to a scale factor. W e assume that we know the focal length of the 

first i m a g e f rame of the coarse image sequence to fix the scale factor, but 

for t h e fine image sequence it can be fixed arbitrarily. From the experiment 

in Sect ion 4.1 .2, the registration error is small even if the focal length of the 

fine image sequence is fixed arbitrarily. 

E q u a t i o n 3.8 shows the format of the 3D homography for affine trans-

f o r m a t i o n , X is in the form of ( X i , X2, X 3 , 1 ) ^ . 

• — 

hii hi2 his hu 

(3D) ^21 ^22 ^23 ^24 
丑 ⑷ ） = (3.8) 

hsi /132 ^33 ^34 

0 0 0 1 

T h e 3 D h o m o g r a p h y for affine transformation can be est imated using the 

least square a p p r o x i m a t i o n on E q u a t i o n 3.5. 

R A N S A C can also be used to remove the out ly ing point correspondences 

for the e s t i m a t i o n of the 3D homography. W e can change the relation to 

aff ine t r a n s f o r m a t i o n (Equat ion 3.8) and replace the distance funct ion b y 

t h a t is defined in E q u a t i o n 3.9. 

(3.9) 

T h e m i n i m u m number of correspondences required for the est imat ion of 
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affine transformation is 4. Hence, the number of correspondences required 

for each trial is 4. 

3.6 VRML Modelling 

In our implementation, the wire-frame for each individual 3D model is 

generated using the "delaunay" function in Matlab [45] on the middle image 

frame of the corresponding image sequence. The 3D wire-frame model is 

then created with the 3D points by the 3D model reconstruction. For each 

triangle of the wire-frame model, the texture of the corresponding triangle 

in the largest area among image frames of the corresponding image sequence 

is chosen as the texture of that triangle. The 3D models are outputted using 

the V R M L format. 

For the combined 3D model, we first remove the triangles of the coarse 

3D model which are inside the "region" of the fine 3D model. Then, we 

directly place the fine 3D model into the coarse 3D model. The region is a 

rectangular region that its boundaries are the minimum and the maximum 

X and y co-ordinates of the re-projection of the fine 3D model on the middle 

frame of the coarse image sequence. 

• End of chapter. 



Chapter 4 

Experiment 

T h i s chapter presents the experiments that show the characteristics of our 

system and evaluate the proposed method. T w o synthetic experiments that 

investigate the rematching algorithm and the 3D model registration are 

presented in Section 4.1. Section 4.2 presents the results of the proposed 

algorithm for the real cases. The platform we used was M a t L a b [45] version 

6.5 ill Windows. T h e machine we used was a P C with C P U of Intel 

Pentium(g)4 2GHz. 

4.1 Synthetic Experiments 

T h i s section presents two synthetic experiments that evaluate the rematch-

ing algorithm and compare affine transformation with metric transformation 

for the 3D model registration. 

4 .1 .1 Study on Rematching Algorithm 

T h i s experiment aims to test the effectiveness of the rematching algorithm 

(Section 3.4) using synthetic data. In this section, we first describe the 

74 
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setup and the measurement of this experiment, and then we present and 

discuss the results. 

Setup 

For each run of the experiment, a set of n 2D points and a set of 

rii 2D points for the object of size w in the fine image [ I � )a r e 

randomly generated. The first set of points (A'/) were transformed by the 

metric transformation, H (3x3)，and generated the set of 2D points, A'f. 

T h i s metric transformation contains a fixed scale ratio s, and a randomly 

generated rotation angle and a randomly generated translation vector. A 

set of 712 2D points (X^) for the whole scene in the coarse image ( / � )w e r e 

randomly generated. The two sets (A'/ and X ^ � w e r e combined to form a 

set ； a n d the other two sets {X^ and were combined to form a set 

T h e combined set A'/ simulates the set of 2D points tracked by the K L T 

tracker (Section 2.4.1) for the fine image sequence, and the combined set 

^^ simulates the set of 2D points tracked by the K L T tracker for the coarse 

image sequence. 

T o test the effectiveness of the rematching algorithm under noise, we 

added noise or error to the data points or the transformation. The 2D 

points in the sets ； a n d A'2 were added with 2D noise with amplitude 

noise^D. T h e rotation angle, the translation vector and the scale were 

added with fixed errors with values e扣 et and ê  x s (e^ is a scale error 

ratio), respectively. A n evaluation transformation, H � was then formed 

using the new rotation angle, translation vector and scale. T h e rematching 

algorithm was then used to rematch the sets and using H � .T h e 

points in A'/ should be rematched to the corresponding points in X^. 
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Table 4.1: The parameters used in the experiment 
Parameter Part 1 丨 Part 2 丨 Part 3 丨 ParrT" 

The no. of runs 100 100 100 lo6~~ 

n 50 50 50 50 
ni 250 250— 250 “ 250 
712 250 250 250 250 
w (pixel) 300 300 300 300 

s 1 to 4 1 to 4 1 to 4 1 to 4 

noise^^ (pixel) 0 to 6 0 0 0 

e办(degree) 0 0 to 5 0 0 

et (pixel) 0 0 0 to 5 0 

Cs 0 0 0 0 to 0.1 

To evaluate the results in different situations, we divided the experiment 

into four parts: the probability for different scales against 1) the 2D noise 

(nozse^^), 2) the rotation angle error {e^), 3) the translation error (et) and 

4) the scale ratio error (cg) will be investigated. 

Table 4.1 summaries the values of the parameters used in this experi-

ment. 

Measurement Let Nm be the number of rematched pairs and Nc be the 

number of correctly rematched pairs. The case is "valid" if Nc is larger than 

or equal to 8, and ^ > 0.5. The former criterion to the doubling of the 

minimum number of correspondences required for 3D affine transformation 

is 4. T h e latter one exists because we can remove the outliers (mismatched 

pairs) using R A N S A C for 3D affine transformation (Section 3.5). In this 

experiment, we used 100 runs of the experiment and count the number of 

the valid runs. T h e measurement was the probability that the run is valid, 

( _ Number of the valid runs N 
、— Number of runs '' 
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Results Discussions 

Probability against 2D noise 
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Figure 4.1: Probability of successful matching against 2D noise for different scales 

1) 2D noise (noise2D) Figure 4.1 shows the results of part 1 of the 

experiment. T h e probabilities were 1 when the 2D noise to the data sets 

was small {noise2D < 1). When the 2D noise was small, the pairs of points 

were correctly rematched by the rematching algorithm. However, when the 

2D noise became larger, the probabilities began to drop. The situation was 

the most serious for the scale of 3, and the least serious for the scale of 1. 

T h i s is because when the scale ratio is larger, the points in the coarse image 

(A'^) is more concentrated together and the distance between each pair of 

points in the same image is smaller. T h e points are more easily mismatched 



CHAPTER 4. EXPERIMENT 78 

during the rematching process. 

Probability against rotation angle error 
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Figure 4.2: Probability of successful matching against rotation angle error for 
different scales 

2) Rotation angle error (e^) Figure 4.2 shows the results of part 2 of the 

experiment. Similarly, the probabilities were 1 when the rotation angle error 

to the d a t a sets was small < 1). W h e n the rotation angle error was small, 

the pairs of points were correctly rematched by the rematching algorithm. 

However, when the rotation angle error became larger, the probabilities 

began to drop. T h e situation was the most serious for the scale of 1, and 

the least serious for the scale of 3. This is because the threshold d̂  of the 

rematching algorithm (Section 3.4) increases as the scale. It has a larger 
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range for a point to find the corresponding point in the other image when 

the threshold is larger. But the 2D transformation estimated is usually 

more accurate as the scale is smaller. 

3) Translation error (e^) Figure 4.3 shows the results of part 3 of the 

experiment. Similarly, the probabilities were 1 when the translation error 

to the data sets was small {et < 1). When the translation error was small, 

the pairs of points were correctly rematched by the rematching algorithm. 

However, when the translation error became larger, the probabilities began 

to drop. T h e probability of a larger scale dropped more quickly. This 

is because the translation error had relatively larger drifting effect on the 

coarse image when the scale was larger. It causes more mismatching corre-

spondences during the rematching algorithm. 

4) Scale error {cg) Figure 4.4 shows the results of part 4 of the experiment. 

Similarly, T h e probabilities were 1 when the scale error to the data sets was 

small (cs < 0.02). W h e n the scale error was small, the pairs of points were 

correctly rematched by the rematching algorithm. However, when the scale 

error became larger, the probabilities began to drop. Similar to part 2, the 

situation was more serious for a smaller scale. 

Summary 

T h i s experiment shows the effectiveness of the rematching algorithm. Gen-

erally speaking, the rematching algorithm can endure small error on the 

2D transformation and the noise on the data points. However, when the 

error or the noise becomes larger, the results of the rematching algorithm 

turn poor quickly. Therefore, the rematching algorithm requires an accurate 



CHAPTER 4. EXPERIMENT 80 

Probability against translation error 
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Figure 4.3: Probability of successful matching against translation error for 
different scales 

relation between the selected image pair to build the linkage between the 

coarse and the fine image sequences. 

4.1 .2 Comparison between Affine and Metric transformations for 

3 D Registration 

T h i s experiment is used to compare the affine transformation with the 

metric transformation for 3D registration using synthetic data. This section 

first describes the setup of the experiment, and then presents and discusses 

the results. 
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Probability against scale error ratio 
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Figure 4.4: Probability of successful matching against scale error for different 
scales 

Setup 

For each run of the test, a 3D object of size w with N 3D points were 

randomly generated. The 3D object was projected to two sequences of 10 

frames. For each sequence, the object rotated 2 degrees along both x-axis 

and y-axis for every successive frame of the sequence. Also, the focal length 

for every frame was fixed along the sequence. Let /i and /之 be the focal 

lengths for the first and the second sequences respectively. 2D noise with 

the maximum value, noise, was added to every 2D point. 

In this experiment, we set the size of the object to 0.13 m and the 

pixel width to 5.42 /rni. The number of points (iV) was 100. The focal 
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Table 4.2: Values of the parameters used for second synthetic experiment 
Parameter Value 

w 0.13 m 

~N ™  
fi 500 pixels 

~J2 500，1000 and 1500 pixelT 

noise 0, 1, 2, 3 pixels 

length for the first sequence (/i) was fixed at 500 pixels. For the second 

sequence (/之)，it was set to 500, 1000 and 1500 pixels. The maximum value 

of noise (noise) was set to 0, 1, 2 and 3 pixels. Table 4.2 summaries the 

values of the parameters. 

For each combination of noise and /2, we reconstructed the 3D models 

for both sequences using the two-pass bundle adjustment (Section 2.6.3). 

T h e number of loops of the two-pass bundle adjustment was set to 100. 

Then, the 3D models were registered using 1) affine transformation and 2) 

metric transformation. For each transformation, we measured the registra-

tion error using the 3D registration root-mean-square (rms) error which is 

defined by Equation 4.1. 

e 二 严 ( �- X i 丨 丨 ) (4.1) 

where X(i) and X(2) are 3D co-ordinates of the z-th points of the first % 1 

reconstructed 3D model, and the second 3D model transformed by the 

estimated transformation, respectively. 

T h e two-pass bundle adjustment (Section 2.6.3) we used does not adjust 

the focal length of each frame, hence we must fix a focal length for it. To 

test the 3D transformations under the case of wrong setting of the focal 
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length, we used the correct focal length of the reconstruction for the first 

sequence, and we set the focal length of the reconstruction for the second 

sequence to the same value as the first one. 

We repeated the experiment 100 times, and then obtained the average 

3D registration rms error for each case. 

R e s u l t s 

Figure 4.5 shows the experiment results that the reconstruction for the 

second sequence used the correct focal lengths. Figure 4.6 shows the exper-

iment results that the reconstruction for the second sequence used the focal 

length of the first sequence. 

For all combinations of focal lengths of the second sequence (J2) and 

the maximum noise (noise), and for both using correct and incorrect focal 

lengths, the 3D registration rms errors of affine transformation were smaller 

than that of metric transformation. 

Also, for both transformation methods, the error increased while the 

maximum noise {noise) increased if the focal length of the second sequence 

was fixed. 

Moreover, in Figure 4.6, when the maximum noise (noise) was 0, the 

3D registration rms error increased while the focal length increased. On the 

other hand, in Figure 4.5, the 3D registration rms errors were near the same 

for all focal lengths when noise was 0. However, when noise was larger, the 

3D registration errors for using a correct and an incorrect focal length were 

similar if affine transformation was used. 
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RMS error against noise for different focal lengths (correct focal length) 
0.04 I 1 1 1  

affine,focal length=500 
- A - affine,focal length=1000 
- V - affine,focal length=1500 

0.035 - metric,focal length=500 ‘ 
- A - metric,focaMength=1000 
- V - metric,local length=1500 

一” 
0.03 - ^ - " 

—• Z 

•=•0.025 - , , 一 
B 
<U z z 一 

f � . � 2 _ Z 
I z X 
工 0.015 - , Z -

0 0.5 1 1.5 2 2.5 3 
noise (pixel) 

Figure 4.5: Average 3D registration rms errors against noise for different focal 
lengths of the second sequence. The reconstruction for the second sequence 
used the correct focal lengths. The dotted lines show the results of metric 
transformation, and the solid lines show the results of affine transformation. 
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RMS error against noise for different focal lengths (wrong focal length) 
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Figure 4.6: Average 3D registration rms errors against noise for different focal 
lengths of the second sequence. The reconstruction for the second sequence 
used the focal length same as the first sequence. The dotted lines show the 
results of metric transformation, and the solid lines show the results of affine 
transformation. 
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Discussions 

Generally, affine transformation is better than metric transformation in reg-

istering 3D models. Also, the results also show that 3D registration is worse 

when the noise increases. This is because of the poor reconstruction result 

of the 3D model when the noise increases. Therefore, the 3D registration is 

worse while the 3D reconstruction is poorer. 

T h e 3D registration errors for using a correct and an incorrect focal 

length were similar if affine transformation was used. Also, the errors were 

small in all cases. This means that the wrong setting of focal length for 

the 3D reconstruction for the fine (second) image sequence causes small 

error in 3D model registration. If the 3D structure for the coarse (first) 

image sequence is reconstructed accurately, the transformed 3D structure 

for the fine (second) image sequence is also accurate. Therefore, the focal 

length of the fine (second) image sequence can be fixed arbitrarily for the 

3D reconstruction. 

4.2 Real Scene Experiments 

T h i s section demonstrates the 3D coarse-to-fine reconstructions for three 

real scenes using our proposed method. 

"Steps" Scene 

Figure 4.7 shows the coarse and the fine image sequences for the "Steps" 

scene. Figure 4.8 shows the selected images. Figure 4.9 shows the correct 

matched points of the multi-scale image matching algorithm for the selected 

coarse and fine images. Figure 4.10 shows the results of the rematching 

algorithm. T h e magenta plus signs are the points tracked by the K L T 
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tracker and the points circled by yellow circles are the rematched points. 

F i g u r e 4 . 1 1 and Figure 4.12 show the individual 3D V R M L models for 

t h e coarse and the fine image sequences respectively. Table 4.3 shows the 

i n f o r m a t i o n of the coarse and the fine image sequences for the "Steps" scene. 

F i g u r e 4 .13 shows the combined 3D V R M L model for the "Steps" scene. 

A l s o , T a b l e 4.4 shows the 2D and 3D scales approximated from the 2D 

h o m o g r a p h y and the 3D homography respectively. B o t h homographies are 

aff ine t ransformat ion, the approximated 2D and 3D scales can be obtained 

b y E q u a t i o n 4.2 and Equat ion 4.3 respectively. Moreover, the c o m p u t a t i o n 

t i m e for the "Steps" scene is shown in Table 4.5. 

s(2D) 二 Vihli + hh) + Vihl + hi,) (4.2) 

= E L i + hi + h^ (4.3) 
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Figure 4.7: Frames for the "Steps" scene. 1st, 5th, 10th and 15th frames of 
(Upper row) the coarse image sequence and (Lower row) the fine image sequence. 

coarse fine 

Figure 4.8: Selected images for "Steps" scene. 

Table 4.3: Information of the “Steps" scene  

Information Coarse Sequence Fine Sequence 

No. of frames of the sequence ^  

No. of requested features 2000 2000 

No. of features tracked by KLT 888 

No. of features selected by R A N S A C " ^ 796 

No. of 3D points ^ 796 

Selected image first image first image 

Width of each image (pixel) ^ 640 

Height of each image (pixel) 480 480 

Table 4.4: The scales approximated for the "Steps" scene 
Information Combined Model 

2D scale approximated 2.96 

3D scale approximated 2.80 
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Figure 4.9: The result of the multi-scale image matching for the "Steps" scene. 
(Upper) The coarse image, (Lower) the fine image. 
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Figure 4.10: The result of the rematching algorithm for the "Steps" scene. 
(Upper) The coarse image, (Lower) the fine image. The plus signs are the 
points tracked by the K L T tracker and the points circled by yellow circles are 
the rematched points. 
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Figure 4.11: The 3D coarse model for the "Steps" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 
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Figure 4.12: The 3D fine model for the "Steps" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 
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Figure 4.13: The combined 3D V R M L model for the "Steps" scene. (Upper) The 
texture-mapped 3D model and (Lower) the wire-frame 3D model. 
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"Box " Scene 

T h i s case shows the matching of the images using the multi-level image 

matching method. Figure 4.14 shows the coarse and the fine image se-

quences for the "Box" scene. Figure 4.15 shows the coarse, middle and fine 

images. Figure 4.16 and Figure 4.17 show the correct matched points of the 

multi-scale image matching algorithm. Figure 4.18 shows the results of the 

rematching algorithm. The magenta plus signs are the points tracked by 

the K L T tracker and the points circled by yellow circles are the rematched 

points. 

Figure 4.19 and Figure 4.20 show the individual 3D V R M L models 

for the coarse and the fine image sequences respectively. Table 4.6 shows 

the information of the coarse and the fine image sequences for the "Box" 

scene. Figure 4.21 shows the combined 3D V R M L model for the "Box" 

scene. Also, Table 4.7 shows the 2D and 3D scales approximated from 

the 2D homography and the 3D homography respectively. Moreover, the 

computat ion time for the "Box" scene is shown in Table 4.8. 
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Table 4.5: The computation time for the "Steps" scene 
Step Time (sec) 

KLT tracking for coarse model 41.55 

R A N S A C for coarse model 0.87 

K L T tracking for fine model 40.63 

R A N S A C for fine model 0.11 

3D reconstruction for coarse model 78.39 

3D reconstruction for fine model 205.34 

Multi-scale image matching 175.81 

Rematching 1-61 

3D model registration 0.54 

V R M L modelling for coarse model 27.72 

V R M L modelling for fine model 126.38 

Others 1.46 

Total: 700.41 

t —.—. • ———-—--一 — _-

Figure 4.14: Frames for the "Box" scene. 1st, 5th, 10th and 15th frames of 
(Upper row) the coarse image sequence and (Lower row) the fine image sequence. 
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coarse middle fine 

Figure 4.15: Selected images for the "Box" scene. 

Table 4.6: Information of the “Box” scene  
Information Coarse Sequence Fine Sequence 

No. of frames of the sequence ^  

No. of requested features 2000 2000 

No. of features tracked by KLT m 837 

No. of features selected by R A N S A C " ^ 580 

No. of 3D points 580 

Selected image 6th image 15th image 

Width of each image (pixel) m 640 

Height of each image (pixel) 480 480 “ 

Table 4.7: The scales approximated for the "Box" scene  

Information Combined Model 

2D scale approximated between coarse and middle  

2D scale approximated between middle and fine  

3D scale approximated 2.71 
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Figure 4.16: The result of the multi-scale image matching for the "Box" scene. 
(Upper) The coarse image, (Lower) the middle image. 
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Figure 4.17: The result of the multi-scale image matching for the "Box" scene. 
(Upper) The middle image, (Lower) the fine image. 
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Figure 4.18: The result of the rematching algorithm for the "Box" scene. (Upper) 
T h e coarse image, (Lower) the fine image. The plus signs axe the points tracked 
by the K L T tracker and the points circled by yellow circles are the rematched 
points. 
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Figure 4.19: The 3D coarse model for the "Box" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 



CHAPTER 4. EXPERIMENT 101 

_ 

_ 

Figure 4.20: The 3D fine model for the "Box" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 
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m 
Figure 4.21: The combined 3D V R M L model for the "Box" scene. (Upper) The 
texture-mapped 3D model and (Lower) the wire-frame 3D model. 
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" W e i g h t " S c e n e 

Figure 4.22 shows the coarse and the fine image sequences for the "Weight" 

scene. F igure 4.23 shows the selected images. Figure 4.24 shows the correct 

matched points of the multi-scale image matching algorithm for the selected 

coarse and fine images. Figure 4.25 shows the results of the rematching 

algorithm. T h e magenta plus signs are the points tracked by the K L T 

tracker and the points circled by yellow circles are the rematched points. 

F igure 4.26 and Figure 4.27 show the individual 3D V R M L models for 

the coarse and the fine image sequences respectively. Table 4.9 shows the 

information of the coarse and the fine image sequences for the "Weight" 

scene. Figure 4.28 shows the combined 3D V R M L model for the "Weight" 

scene. Also, Table 4.10 shows the 2D and 3D scales approximated from 

the 2D homography and the 3D homography respectively. Moreover, the 

c o m p u t a t i o n t ime for the "Weight" scene is shown in Table 4.11. 
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Table 4.8: The computation time for the “Box” scene 
Step Time (sec) 

K L T tracking for coarse model 32.77 

R A N S A C for coarse model 0.39 

K L T tracking for fine model 38.20 

R A N S A C for fine model 0.75 

3D reconstruction for coarse model 126.45 

3D reconstruction for fine model 148.08 

Multi-scale image matching (Coarse to middle) 193.44 

Multi-scale image matching (Middle to fine) 157.11 

Rematching 2.04 

3D model registration 1.21 

V R M L modelling for coarse model 76.95 

V R M L modelling for fine model 90.79 

Others 2.55 

" T b t a l ; 870.73 

鼻鼻一森鼻 
l i " M l — ^ T v H — T m i l l I^^BMBBK 

^ M i M M M i 
Figure 4.22: Frames for the "Weight" scene. 1st, 4th, 7th and 10th frames of 
(Upper row) the coarse image sequence and (Lower row) the fine image sequence. 
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Figure 4.23: Selected images for "Weight" scene. 

Table 4.9: Information of the "Weight" scene  

Information Coarse Sequence Fine Sequence 

No. of frames of the sequence ^  

No. of requested features — 2000 2000 

No. of features tredked by KLT ^  

No. of features selected by RANSAC— ^ 432 

No. of 3D points ^ 432 

Selected image — Hth image 3rd image 

Width of each image (pixel) ^ 640 

Height of each image (pixel) 丨 480 480 

Table 4.10: The scales approximated for the "Weight" scene 
Information Combined Model 

2D scale approximated 1.74 

3D scale approximated 1.73 
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Figure 4.24: The result of the multi-scale image matching for the "Weight" scene. 
(Upper) The coarse image, (Lower) the fine image. 
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Figure 4.25: The result of the rematching algorithm for the "Weight" scene. 
(Upper) The coarse image, (Lower) the fine image. The plus signs are the 
points tracked by the K L T tracker and the points circled by yellow circles are 
the rematched points. 
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Figure 4.26: The 3D coarse model for the "Weight" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 
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Figure 4.27: The 3D fine model for the "Weight" scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model. 
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Figure 4.28: The combined 3D V R M L model for the "Weight" scene. (Upper) 
The texture-mapped 3D model and (Lower) the wire-frame 3D model. 
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Table 4.11: The computation time for the "Weight" scene 
S t e p T i m e (sec) 

KLT tracking for coarse model 47.75 

R A N S A C for coarse model 0.57 

KLT tracking for fine model 21.88 

R A N S A C for fine model 0.20 

3D reconstruction for coarse model 135.19 

3D reconstruction for fine model 74.73 

Multi-scale image matching 162.36 

Rematching 1.72 

3D model registration 0.94 

VRML modelling for coarse model 47.69 

VRML modelling for fine model 50.49 

Others 2.27 

Total ; I 545.79 

S u m m a r y 

Compare with the coarse 3D models, the combined 3D models consist of 

denser structure and better texture for the fine objects. It can show that 

our proposed method can register and combine the fine 3D model with the 

coarse 3D model, and reconstruct the denser 3D model for the whole scene. 

However, our method does not handle the merging of the 3D meshes. 

Therefore, there are splits at the boundaries between the coarse and the 

fine 3D V R M L models. 

• End of chapter. 
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Conclusion 

T h i s thesis proposes an alternative solution to the automatic coarse-to-fine 

3D registration problem. T h e method merges the 3D structures recon-

structed from a coarse image sequence for a coarse (or large) scene and 

a fine image sequence for a finer (or smaller) scene inside a scene of the 

same environment. T h e coarse and fine models reconstructed are combined 

to build a more detailed 3D model for the whole scene. This solution 

does not require human interaction by giving correspondences between the 

coarse image sequence and the fine image sequence. It only requires the 

arrangement of the image sequences, and our system matches the image 

sequences and integrates the coarse and the fine 3D models automatically. 

T h e method first reconstructs the 3D models for the coarse image se-

quence and the fine image sequence individually. Subsequently, the linkage 

between the two image sequences are built up by first matching one im-

age of each sequence using the multi-scale image matching method, and 

then linking up the feature points of the sequences using the rematching 

algorithm. Using this linkage, the 3D transformation between the two 3D 

models is est imated, and finally we can combine the two 3D models and 

112 
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form the combined 3D V R M L model. 

Because of using the rematching algorithm to build the linkage between 

the coarse and the fine image sequences, the image matching step is flexible 

and is not restricted to one image matching algorithm. A lot of multi-scale 

image matching algorithms can be used in our framework. 

T w o synthetic experiments and an experiment on real cases were held to 

evaluate the method. T h e first synthetic experiment was used to evaluate 

the rematching algorithm. It shows that the rematching algorithm accepts 

small error on the 2D homography estimated by the multi-scale image 

matching algorithm and small noise on the 2D feature points. But when the 

error and the noise become larger, the probability that the rematching algo-

r i thm successfully rematches the image sequences will drop. Therefore, the 

multi-scale image matching algorithm used in the proposed method should 

est imate an accurate 2D homography, and the feature point extraction and 

tracking algorithm should provide accurate feature points for both image 

sequences. 

T h e second synthetic experiment was used to compare affine transforma-

tion wi th metric transformation for 3D model registration. T h e results show 

that affine transformation is better than metric transformation in registering 

two 3D models. 

T h e real scene experiment shows that our proposed solution of coarse-to-

fine matching and rematching can automatically register the 3D structures 

of a large scene and the fine object inside the scene. Hence, the 3D model 

for the large scene with fine details can be recovered. 
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5.1 Future Work 

T h e following can be the directions of future investigation. 

• M a n y image matching algorithms may be suitable for our method. Dif-

ferent matching algorithms such as [61，79] can be further investigated 

in future. 

• T h e rematching algorithm requires an accurate 2D homography; oth-

erwise, the linkage will not be accurate enough for the 3D model 

registration. A refining algorithm that refines the linkage can be 

investigated in future. 

• T h e assumption that the selected pair of images have to be taken in 

similar view angles can be removed by using the affine image matching 

algorithms [36, 2，48], and the fundamental matrix instead of 2D 

homography. B u t the rematching algorithm has to be updated for 

the fundamental matrix. T h e affine image matching algorithms and 

the new rematching algorithm can be further investigated. 

• T h i s project does not deal with the problem of 3D mesh merging. A 

3D mesh merging algorithm with better texture morphing that creates 

a better combined 3D model can be investigated in future. 

• T h e proposed framework can be modified for more applications. One 

of the applications is the automatic 3D registration for a planar back-

ground with non-planar 3D fine objects in the scene. This problem 

can be further extended to the automatic 3D registration for the 3D 

structure from the panorama around a fixed camera point for an indoor 

environment wi th 3D detailed objects in the scene. T h e solution 
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of the manual registration was proposed in [54]. A n automatic 3D 

registration for the problem can be investigated in future. 

• T h e proposed method can be incorporated with the other approaches, 

such as super-resolution and the approaches using edges and planes, 

to obtain a finer and more accurate reconstruction with better texture 

mapped model for large scenes. 

• End of chapter. 



Appendix A 

Camera Parameters 

T h i s section describe briefly the camera parameters including intrinsic pa-

r a m e t e r s and extrinsic parameters. 

A. l Intrinsic Parameters 

T h e intrinsic parameters [78, 56] are a set of parameters characterizing 

t h e opt ica l , geometric and digital characteristics of the camera. For a 

p e r s p e c t i v e (or pinhole) camera, we have the following intrinsic parameters: 

1. Focal l ength of the camera, /• 

2. T h e t ransformat ion between camera frame coordinates and pixel coor-

dinates . Let {ximg^Vimg) be the coordinates of an image point in pixel 

units in image reference frame w i t h the coordinates (x, y) of the same 

point ill the c a m e r a reference frame. T h e n , t h e y have the following 

relation: 

^ 二 {Ximg 
( A . l ) 

y ~ ~ {yimg — Oy)Sy 
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where (ox, Oy) are the coordinates in pixel of the image center, and 

(sx, Sy) are the effective width and height of the pixel respectively. 

3. T h e geometric distortion introduced by optics. Since the quality of the 

digital camera nowadays is good, the distortion due to optical effect 

can be ignored. 

For a perspective camera, we can define a matrix Mint to include the 

intrinsic parameters /，(ox? Oy) and (sa；, Sy) for linear matrix operation. 

/ , \ 
- f 0 0, Sx 

M i n t = 0 - 丄 (A.2) 

I 0 Q 1 J 
A.2 Extrinsic Parameters 

A s defined in [78], the extrinsic parameters identity the transformation 

between the unknown camera reference frame and a known world reference 

frame. T h e typical choice of notation describing the transformation includes 

a 3-dimensional translation vector T , and a 3 x 3 orthogonal rotation matrix 

R . T describes the translation between the origins of the reference frames, 

and R describes the transformation between the corresponding axes of the 

two reference frames. 

From Figure A . l , suppose there is a transformation {R, T ) from the 

world reference frame to the camera reference frame, the coordinates of a 

point P relative to the world reference frame and camera reference frame, 

P ^ and Pc , respectively, can be related by 

Pc = RCPw - T ) (A.3) 
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入 r 
\ ^^^^^ Camera reference 

World reference ^ ^ ^ frame 
frame \ ^ 

^ / 

p 

Figure A . l : Relation between camera and world reference frames. 

• E n d o f c h a p t e r . 
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