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Abstract of thesis entitled:
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Submitted by IP Che Yin
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in September 2004

Structure from motion is the problem of recovering the 3D structure from an
image sequence for a scene. The literature proposes a lot of methods for this
problem and they do obtain good results. However, because of the limited
resolution of digital images from common domestic use cameras, the detailed
reconstruction for a large environment is still difficult. Some methods
separate the reconstructions for the detailed objects in the scene from
that for the large environment, and then combine them together manually
or semi-automatically. Other methods improve the reconstruction for the
large environment using additional constraints, such as planes and cylinders.
However, these methods are only applicable to particular applications.

This thesis addresses the problem of detailed reconstructions for a large
environment and proposes a framework that reconstructs the detailed ob-
jects as well as the large environment automatically. We first take two
image sequences, one for the large scene and another one for the detailed
object in the scene. Subsequently, we reconstruct the 3D structures of the
large scene and the detailed object independently. Then, we find the point
correspondences between the two image sequences using multi-scale image
matching techniques. Finally, the 3D structures from the two different
scales are merged together using the point correspondences, and the overall
structure with fine details is recovered.

In this thesis, the techniques for 3D reconstruction and image matching
of different resolutions will be described. Synthetic experiments on the
rematching algorithm and the 3D model registration were performed and
will be reported. Experiments on real images have shown that we can
successfully build up the 3D structure of a large environment with fine
details.
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Chapter 1

Introduction

1.1 Motivation

Recovering the 3D structure of an object is a popular research topic in
computer vision. It is very useful in many applications including scene
structure recovery, virtual reality, augmented reality and game development.
Large amount of work is proposed to solve this problem including structure
from motion [74, 77, 29, 18, 17, 9], shape from splines (71, 6, 67, 46, 82],
and reconstruction from aerial images [31, 11]. Our main concern is the
investigation of practical but accurate structure from motion approaches.
The reconstruction of the 3D structure for a large scene is important in
many applications. Many algorithms could recover the rough 3D structure
for a large scene from images of a fixed resolution taken by hand-held
cameras. In some cases, the fine and detailed 3D structure for the large
scene may also be required. However, because of the limited resolution of
the digital images, the 3D structures recovered by these algorithms usually
lack the fine structures even if the maximum number of reliable feature

points are extracted. Also, the textures placed on these structures are poor



CHAPTER 1. INTRODUCTION 2

to view in detail.

Figure 1.1(a) shows an example of 3D reconstruction for a large scene
containing several objects. Figure 1.1(b) shows the 3D reconstruction for a
small object inside the large scene. The top left picture in Figure 1.1 is one
of the images from the image sequence for the large scene, and the top right
picture is that for the small object. The middle and the bottom pictures
show their reconstructed texture-mapped 3D models and their wire-frame
models respectively. The wire-frame model for the small object has a denser
structure than that for the large scene. Also, its texture mapped image is
better and clearer. To reconstruct the fine structures of a large scene, a
coarse-to-fine approach that integrates the 3D reconstruction for the large
scene and that for the detailed objects can be used.

This thesis proposes an automatic coarse-to-fine method that integrates
the 3D structures of a large scene and a fine object inside the large scene

in order to recover a detailed 3D structure for the whole scene.

1.2 Previous Work

This section introduces several approaches that are relevant to our approach.

1.2.1 Reconstruction for Architecture Scene

El-Hakim [14] proposed a method that first reconstructs a rough 3D model
of a man-made object, and then allows the user to add specific constraints
on the detailed elements of the object. The user can add a number of seed
points and the type of elements manually, and the method computes the
detailed 3D structure for the object. El-Hakim et al. [15] extended the above

method by combining with the methods of range-based modelling [4, 59].
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(a) (b)

Figure 1.1: The comparison of the 3D reconstructions for (a) a coarse structure
and (b) a fine structure. Each top image shows one of the image frame, the
middle image shows the texture-mapped 3D model, and the bottom image shows
the wire-frame model for each structure.
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Range-based modelling method can recover a surface in very high detail.
The method allows the user to merge the structure from the range-based
modelling method to the 3D structure by selecting a number of merge points
manually.

Werner and Zisserman [81] proposed a method that reconstructs more
detailed 3D structures for architectural objects by automatically detecting
special features of the architectural objects, and adding the constraints
for the special features to refine the 3D structures. This method is fully

automatic, but it only targets on specific architectural scenes.

1.2.2 Super-resolution

The approach of super-resolution [10, 8] is used to construct a “better” im-
age or estimate a more detailed image from a sequence of images. However,

this approach does not recover a more detailed 3D structure of a large scene.

1.2.3 Coarse-to-Fine Approach

Recently, a number of authors proposed methods that reconstruct detailed
structures of a large scene. Koch et al. [30] proposed a multi-scale inte-
gration approach (also refers to as the coarse-to-fine approach) to recover
detailed 3D structures by integrating the coarse and the fine 3D models
interactively. The user is required to give the point correspondences between
the coarse and the fine 3D structures, so that the two 3D structures can be
integrated.

Ramalingam and Lodha [58] proposed an automatic hierarchical regis-
tration method of texture-mapped 3D models. This approach integrates a
coarse structure and a fine structure automatically by first finding the point

correspondences between the two image sequences using a scale-sensitive
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image registration algorithm, and then registering the 3D models using
a scale-sensitive 3D model registration algorithm. The scale-sensitive im-
age registration algorithm registers the 2D points extracted for 3D recon-
struction on the two image sequences directly, and the scale-sensitive 3D
model registration algorithm estimates the metric transformation between
the coarse and the fine 3D models.

This method is similar to our method, but our method differs from it in
two ways. First, instead of matching the 2D points for 3D reconstruction
directly, we first match a pair of images from each image sequence using
the multi-scale image matching approaches [62, 40, 13, 47] and obtain the
2D transformation information between the pair of images. Then, we use a
2D rematching method and the 2D transformation aforementioned to link
the 2D points that are used for 3D reconstruction. This method can make
the correspondence problem between the coarse and the fine sequences more
flexible such that we can use any multi-scale image matching method for the
problem. Also, as described in [58], the multi-scale image matching methods
can handle larger multi-scale differences in general for image matching as
compared to the scale-sensitive image registration algorithm. Moreover, the
scale-sensitive image registration is based on correlation, it cannot match
the images with a rotation difference.

Second, instead of estimating the metric transformation between the
coarse and the fine 3D models, our method estimates the affine transfor-
mation for the 3D registration. Our experiment has shown that the affine
transformation provides better 3D registration than the metric transforma-

tion.



CHAPTER 1. INTRODUCTION 6

1.3 Proposed solution

In this thesis, we describe our solution to the detailed reconstruction for a
large scene. In brief, we take the first (coarse) image sequence for the large
scene, and the second (fine) image sequence for the object that we want to
reconstruct the more detailed 3D model. Then, one image from each image
sequence is selected for image matching.

The 2D image point sequence is extracted and tracked, and the 3D
model is reconstructed for each image sequence. Then, one of the major
steps of our solution is to match the image sequences through a multi-scale
image matching algorithm on the selected pair of images. Because of the
limitation of the multi-scale image matching method we used in our system,
an assumption that the selected pair of images have similar view angles to
the scene is required.

Using the rematching algorithm, we obtain the common point corre-
spondences between the 2D image point sequences. Then, we register and
integrate the coarse and the fine 3D models using these point correspon-

dences.

1.4 Contribution

The following is the contribution in this thesis:

e An alternative solution to the automatic coarse-to-fine 3D registration
problem is developed. Our method merges the 3D structures recon-
structed from a coarse image sequence (for a large scene) and a fine
image sequences (for a smaller scene inside the large scene) to build a

model for a large environment with fine details. Because of using the
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rematching methology to build the linkage between the coarse and the
fine image sequences, the image matching step is flexible and is not
restricted to one matching algorithm, so that a lot of image matching

algorithms can be used in our framework.

1.5 Publications

e S. H. Or, K. H. Wong, M. M. Y. Chang, and C. Y. Ip. Large scene
reconstruction with local details recovery. In International conference

on pattern recognition, August 2004.

e C. Y. Ip, K-H. Wong, and M. M. Y. Chang. Detailed 3d recon-
struction for large environment. IEEE Transactions on Circuits and

Systems for Video Technology. In preparation.

1.6 Layout of the thesis

Chapter 2 describes the background techniques for the proposed method,
and Chapter 3 explains the details of the proposed method. Chapter 4
presents the synthetic and real experiments and their results. Finally, the

thesis is concluded in Chapter 5.

O End of chapter.



Chapter 2

Background Techniques

This chapter describes the background knowledge about the techniques used
in our project including interest point detectors and descriptors, steerable
filters, the techniques for feature point tracking, RANSAC (Random sample

consensus) [16], and the structure-from-motion algorithms.

2.1 Interest Point Detectors

In order to understand an image, researchers have been proposing a lot of
feature detectors for different applications. The common features include
edges, corners, contours, textures, colors, regions, shapes, and etc. Most of
these topics are introduced in the literature [20, 60].

In this project, interest points of an image are very useful. As defined
in [65], an interest point is defined as a point feature where local image
intensity changes in two orthogonal directions.

This project is about the multi-resolution image matching, so this sec-
tion first introduces the concept of scale-space representation. Then, four

corner detectors including the standard Harris point detector and three
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modifications of the Harris point detector adapting the idea of scale-space
are introduced. Moreover, a blob detector, and a corner detector for color

images are introduced in this section.

2.1.1 Scale-space

Before the introduction of various interest point detectors, this section
describes the concept of scale-space (34, 35, 12, 47].

The scale-space representation is a set of image feature points that is
used to represent an image at different levels of resolutions. In general,
different resolutions of an image (and so different scales of the image) can be
created using the convolutions of the image with Gaussian kernel G(z,y, o)
of different standard deviations (¢). The 2D Gaussian function is defined
in Equation 2.1.

G(z,y,0) = exp~ @ +¥")/20 (2.1)

where (z,y) is the position relative to the center of the kernel. Thus, the

different resolutions of an image is computed by Equation 2.2.
L(z,y,0) = G(z,y,0) x I(z,y), (2.2)

where I(z,y) is the intensity of the image at position (z,y), and “4” is a
convolution operation.
For the Gaussian derivative, let oy = so and s is the scale ratio of oy to

o, the derivative of the image I(z,y) with respect to directions dy,...,d,
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is
o™
La,,..dn(2,y,02) = m(w,y,fm) (2.3)
o Ldl,---,dm(xaya 50)

1
= s—del,...,dm(z,y,O')-

From Equation 2.3, we can easily observe that the amplitude of the deriva-
tives decreases with scale (s), in general. To maintain the property of scale
invariance, the derivative functions must be normalized with respect to the
scale. Define the m-th order scale-normalized Gaussian derivative of the

image I(z,y) with respect to directions dy,...,d,, of scale o by:

Ddl,....dm (I, Y, U) — Udel....,dm (:E, Y, U)

= 0"Gq,...4.(0) x I(z,9), (2.4)

where Gy, a4, (0) is the Gaussian derivative with respect to directions
dy,...,dn.

Using the concept of scale-space representation and the scale-normalized
Gaussian derivatives, various scale-invariant interest point detectors were

proposed to detect the features response to different resolutions of an image.

2.1.2 Harris Corner detectors

In this project, corners are the major concerns for the interest point detec-
tion. In this section, we first describe the standard Harris point detector,
which is not scale-invariant. Then, three variations of Harris point detector
including Dufournaud’s scale-space Harris point detector, Lindeberg’s cor-

ner detector and Harris-Laplacian corner detector, which are used to detect
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interest points of different resolutions, are introduced.

Standard Harris point detector

Harris and Stephens [25] proposed an interest point detector to detect
intensity changes in 2 directions on an intensity image. More precisely,
consider an image point (z,y) and the associated image intensity value

I(z,y). The standard Harris point detector consists of the following steps:

1. Compute the image derivatives L.(z,y,0p) and L,(z,y,0p) of the
whole image in the z and y directions, respectively, by the convolution

with a Gaussian first order derivative kernel of standard deviation op:

Le(x,y,0p) = I(2,y) * Ga(2,y,00) (2.5)

Ly<x) Y, U'D) = I(iE, y) * Gy(xa Y, UD)

where G, (z,y,0p) and Gy(z,y, op) are the Gaussian first order deriva-
tives along z-direction and y-direction of standard deviation op respec-

tively.

2. Form the auto-correlation matric Mygrris(z,y, 0p, 07) as shown in Equa-

tion 2.6.

A/Iharris(ma Y,0p, OI) — G(xa Y, UI)

L?z:(xiyi UD) Lz(mvy) UD)Ly(fB,y) U'D)
* (2.6)

Ly(z,y,0p)Ly(z,y, 0D) L:(z,y,0p)

where the Gaussian kernel of standard deviation oz, G(z,y,07), acts

as the weighting factor for the matrix.
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3. The image position (z, y) is considered as a candidate point if the auto-
correlation matrix Mparris(, y, 0p, 07) has two significant eigenvalues.
Therefore, if the value of the Harris function, Charris(T,Y,0p,071),
in Equation 2.7 is larger than a threshold, (z,y) is considered as a

candidate point.

Charris(xy Y,0p, UI) =

det(Mharris(z’ Y,0p, UI)) = atracez(Mharris(xy Y,0p, UI)) (27)

where « is a parameter to discriminate the case of two large eigenvalues
against one large eigenvalue. « is usually set to 0.04 [47]. det(Z) is a
determinant operation of a square matrix Z. trace(Z) is the trace of

Z or the sum of the diagonal elements of Z.

4. The candidate point (z,y) is chosen as an interest point if the value
of Charris(2,y,0p,07) is larger than a threshold and the maximum

among its 8-neighboring pixels.

According to [65], the standard deviation oz is usually called an integra-
tion scale because the Gaussian kernel of the standard deviation o7 in
Equation 2.6 performs integral smoothing. The standard deviation op is
usually called derivative scale because it controls the scale of the Gaussian
derivations described in Equation 2.5.

Because of the symmetry of the auto-correlation matrix Mparris in Equa-
tion 2.6, the standard Harris point detector is rotation-invariant. However,
it is not invariant to scale change, so it is not adapted to the scale-space
framework. Dufournaud et al.[12] proposed a modification of the standard

Harris point detector which is adapted to the scale-space framework.
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Scale-space Harris point detector

Harris point detector is not invariant to the change of the image resolution or
the image scale. Dufournaud et al.[12] proposed the scale-space Harris point
detector by changing the values of the standard deviations and normalizing
the derivatives in Equation 2.6.

To detect interest points on an image of different scales, Dufournaud et al.
[12] redefined the Harris function (Equation 2.7). Suppose I®(zy,31) =
I®(z4,1,), where I is the high-resolution image and I® is the low-
resolution image, such that (z1,v1) = (sz2,sy2) + (tz,ty), where ¢, and
t, are the translation along z- and y-direction respectively, s is the scale
ratio of I over I®. By taking the derivatives of the above expression
with respect to z- and y-direction, we obtain sL:(cl)(:c, VY1) = Lg“’)(xg, y2) and
ng(,l)(zl, Y1) = L§2)(x2, y2). Applying these two relations into Equation 2.6,
we can obtain the relation:

2
S2Mi(u112'ris (xl’ Y%, $0p, SGI) = Mi(zalris(x% Y2, 0D, UI) (28)

From Equation 2.4 and Equation 2.8, Dufournaud et al. [12] observed

that the auto-correlation matrix can be modified to Equation 2.9:

Mscale(xa Y, S0Dp, SUI) = 32G(SUI)

Lg(fD,y,SU'D) Lz(x,y,SUD)Ly(fL',y,SO"D)
* . (2.9)

L:z:(:ra Y, SO"D)Ly(iL',y, SUD) Lg(xayv SUD)



CHAPTER 2. BACKGROUND TECHNIQUES 14

Then, the scale-space Harris function of scale s is defined in Equation 2.10:

Cscale(x’ Y, S0D, SUI) =

det(Mscate(, Y, 50, 507)) — atrace’ (Micate(2, Y, 50D, 507))  (2.10)

To detect interest points on an image of different scales, we apply the
framework of the standard Harris point detector but replace the Harris
function in Equation 2.7 with the scale-space Harris function in Equa-
tion 2.10 of the corresponding values of s. For the values of op and o7,

Dufournaud et al.[12] suggested that they are set to 1 and 2 respectively.

Lindeberg’s point detector

Lindeberg [34] observed that a scale-normalized derivative function of an in-
terest point may consist of local maxima along scales. The scale correspond-
ing to the maximum response of the scale-normalized derivative function
reflects the characteristic length of an interesting computational structure at
a single spatial point. Lindeberg called this scale as the characteristic scale.
The characteristic scale of a feature point is the scale of the local maximum
over scales of a derivative function, F(z,y,s,) of that point. Scale-space
Harris function (Equation 2.10), square gradient (Equation 2.11), Different-

of-Gaussian (DoG) (Equation 2.12) and Laplacian function (Equation 2.13)
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are the examples of the derivative functions.

Fsg(.’L‘, Y, Sﬂ) = s?z(Lg:(x»y) Sn) ¥ L:(IL‘, Y, Sn)) (2'11)

Fpog(2,y,8n) = |I(z,y) x G(z,y,50 — 1)
—I(z,y) x G(z,y, sn)| (2.12)
Fiaplacian(%, Yy $n) = |83 (Laz(@, Y, 8n)
+Lyy(z, Y, 8n))| (2.13)

Lindeberg [34] designed a framework that detects the interest points at
their characteristic scales. In order to maintain uniform information change
between two successive levels of resolution, according to [47], the scale factor
sn should be distributed exponentially, such that s, = k™sy with sg is the
scale factor of the finest level of resolution, and k is the factor of scale change

between 2 successive levels. The framework consists of two steps:

Step 1: (Response Calculation) For every level of resolutions (s,), compute

the scale-normalized derivative function F'(z,y, s,) for all pixels of the

image.

Step 2: (Point Selection) For every level of resolutions (s, ), select a point
(z,y) if the response of the scale-normalized derivative function is
larger than a threshold and reaches the local maximum among the

successively larger and smaller scales, and its 8-neighboring pixels.

The scale-normalized derivative function at the characteristic scales of
interest points on images of different resolutions may have the same response
if the interest points correspond to the same point in the scene. Therefore,
the concept of characteristic scale is useful for image matching by reducing

the search space of feature points.
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Harris-Laplacian point detector

For the application of image matching, Dufournaud’s scale-space Harris
point detector described above is not efficient because it scans every interest
points at every scale, and so creates additional mismatches and increases
the storage space for the scale-space representation. Lindeberg’s approach
described above applies the concept of characteristic scale, and reduces the
mismatched points and the storage space.

Mikolajczyk and Schmid evaluated the Lindeberg’s approach for image
matching by applying different derivative functions including Square gra-
dient (Equation 2.11), Different-of-Gaussian (DoG) (Equation 2.12), Scale-
space Harris function (Equation 2.10) and Laplacian function (Equation 2.13).
They found that the scale-space Harris point detector was the best deriva-
tive function for the point detection and Laplacian function was the best
derivative function for the point selection step.

However, Lindeberg’s approach requires 3D space search (z,y, and n) and
requires huge storage for the 3D search space. So, Mikolajczyk and Schmid
proposed the Harris-Laplacian point detector by first applying scale-space
Harris point detector and then selecting the scale using Laplacian function.

The following steps are the algorithm of the Harris-Laplacian detector.

Step 1: (Point Detection) At each level of the scale-space s,, detect the

candidate points using Dufournaud’s scale-space Harris point detector

of scale s,,.

Step 2: (Point Selection) For each candidate point (z,y) detected at each

level of the scale-space s,, use Laplacian function Flspiacian (2, Y, Sn) for

the selection of the candidate point. If Fiapiacian(Z, ¥, Sn) is greater than

Flaplacian (-’E; Y, sn—l) and Flaplacian (13, Y, Sn+l)a and Flaplacian (xa Y, Sn) is
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greater than a threshold (¢), the feature point (z,y) is selected.

2.1.3 Other Kinds of Interest Point Detectors

This section briefly introduces the other kinds of interest point detectors

including a blob-like feature detector and a corner detector for color images.

Blob Detector

A Gaussian blob is defined by

1
h(IL', Y, tO) = '2' 7T—t0 exp_(””2+y2)/2‘° A (214)

where t; is the width of the Gaussian blob.

The Laplacian operation (Equation 2.13) is usually used for blob-like
feature detection because it gives a strong response at the center of blob-
like structure [44, 5, 35]. Lindeberg [34, 35] proposed a method that detects
blob-like features in the scale-space framework. The principle of the method
is to apply the framework of Lindeberg’s point detector (Section 2.1.2) and
set the derivative function used in the framework to the scale-normalized
Laplacian operator (Equation 2.13). Lindeberg proved that the character-

istic scale for each detected Gaussian blob directly reflects the width ¢y of

that blob.

Corner detector for Color Images

Montesinos et al. [52, 51| proposed a modification of Harris corner detec-
tor for color images. A color image is usually composed by three color
channels: Red(R), Green(G) and Blue(B). Based on the framework of

Harris corner detector, Montesinos’ method applies Gaussian function and
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Gaussian derivatives to the three channels and modifies the auto-correlation
matrix (Equation 2.6) in the framework of Harris corner detector. The auto-

correlation matrix is modified as in Equation 2.15.

A/[color(x, Y,0p, 0'1') = G(:E, Y, UI)

R2 + G2+ B2 R:Ry + G.Gy + BB
* ©o - 4 Y1 (2.15)

R:Ry + G:Gy + B, B, R2+ G2+ B2

where Z, is the short form of Zy(z, y, op), the first-order Gaussian derivative
of Z of standard derivative op with respect to direction k at image position
(z,y), for T = {R,G,B} and k = {z,y}.

Montesinos’ corner detector for color images described above can be
easily upgraded to scale-invariant by multiplying the Gaussian derivatives
for every channel in Equation 2.15 with the scale op, so that the Gaussian
derivatives are scale-normalized similar to Dufournaud’s scale-space Harris

point detector (Section 2.1.2).

2.1.4 Summary

Scale-space point detectors are commonly used for the matching for multi-
resolution images. They are robust and effective if the scale difference of the
two images is not very large and the affine change between the two images
is small, that is, when the viewing angles of the two images are similar.

If the view angles of the two images are different, the affine-invariant
point detectors [36, 48, 2] can be used. But iterative approaches are required
for the detection of affine-invariant points, and hence the computation of
the affine-invariant point detection is more expensive than the scale-space

point detection.



CHAPTER 2. BACKGROUND TECHNIQUES 19

Scale-space point detectors are good for the image matching. How-
ever, because of the operation of the Gaussian blur, the number of points
extracted is usually smaller while the scale is larger. Therefore, for the
application of structure from motion, we would apply the point detector in

the smallest scale to extract more feature points.

2.2 Steerable filters

To find the responses of a filter at many directions, we are required to apply
many versions of the same filter. Freeman and Adelson [72] proposed an
approach that applies a few filters corresponding to a few angles and inter-
polates between their responses to approximate a response in any direction.

A steerable filter is a filter which can be synthesized as a linear combi-
nation of a set of basis filters to give a response in any direction. Gaussian
directional derivatives are steerable as stated in [72] and suitable in the scale-
space framework. Let G be Gaussian function, the Gaussian n'* derivative

with respect to the direction @ can be formulated as:
Gon = (cos 00, + sin 69,)"G (2.16)

where 0 is the direction of the desired derivative measured counter-clockwise
from the z-axis, Jy is the partial derivative operator with respect to direction
k, and 9,G or 0,G is the Gaussian derivatives along z- or y-direction
respectively.

From Equation 2.16, the first (Gy) and the second order (Gy2) Gaussian
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derivatives with respect to the direction # are formulated as follows:

Gy = cosfG, +sin0G,

Ggr = c08>0Gy; + 2c0s0sin G,y + sin® 0G,,

2.2.1 Orientation estimation

Steerable filters are very useful in the estimation of point orientation. The
orientation of a point is the same direction to the image gradient of that
point. From the interpolation of the basis filters, we can relate the world
coordinates with the local coordinates of a point by the angle of the orien-
tation @ of that point. Then, we can estimate the orientation of that point
using the values of the responses of the basis filters. More specifically, there

are two methods to estimate the point orientation.

By an image gradient Let local coordinates v be the direction of the
image gradient about a point, and u be the direction orthogonal to the
image gradient. From the measured first order Gaussian derivatives along
z and y axes, L, and L, respectively (as defined in Equation 2.5), the

direction vectors of v and u are

J L, cos
V= oo = and (2.17)
L, sin @
; L, sin ¢
u= 271l S ) (2.18)
—L, —cos @

where ||VL|| = \/LZ+ L2 and 0 is the angle of the direction counter-

clockwise from z-axis.
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When the image gradient is orthogonal to the local direction of a point,
the magnitude of the image gradient is zero. On the other hand, when
the image gradient is in the local direction of that point, the magnitude of
the image gradient is |[VL||. That means, L, is zero and L, = /L2 + L2.
Therefore, we can find 6 simply by 6 = arctan(L,, L, ), where 0 represents

the point orientation.

By the eigenvectors of a Hessian matrix From [35], we can align a local
(p, q)-coordinate system to the eigenvectors of the Hessian matrix in order to
find the orientation. This means that we can rotate the coordinate system

by an angle 0 so that L,, is zero.

Lpg(0) = 0p0,L
= (cos 00, + sin 09,)(sin 09, — cos09,) L
% ! (2.19)
= —Lgy c0s? 0 + (Lyz — Lyy) cos@sinf + Ly, sin® 6

=0

By solving Equation 2.19, we can get cos @ and sinf, and hence the orien-

tation 6.
1
cosf = \/E(l-i-w), (2.20)
sinf = (signLyy) % (1—w). (2.21)
where
w o= L:cx — Lyy

\/(Lm — Ly,)? +4L2,



CHAPTER 2. BACKGROUND TECHNIQUES 22

By estimating the orientation of a point, we can rotate the window patch
of that point to the estimated orientation. Then we can cause the point
descriptors invariant to orientation of that point because its orientation is

normalized.

2.3 Point Descriptors

The correspondence problem on a pair of images refers to finding the rela-
tionship between the images. A point correspondence means a point on the
first image is related to a point on the other image, and both points are the
same image point of a 3D feature.

Point descriptors are very important for the matching of a pair of interest
points on two images. A similarity measurement has been performed on the
point descriptors to check whether the matching is valid or not. In the case
of a small transformation between the images, a point correspondence is
usually created by first detecting an interest point on each image using
an interest point detector, e.g. Harris point detector. Then, the nearest
interest point on the second image to that on the first image is mutually
compared. If they are similar, the pair of interest points are linked together
and form a point correspondence. In earlier methods, the comparison of the
interest points is done by cropping a patch around the interest point on each
image as the descriptor of the interest point, and then comparing the patch
using a similarity measurement. The common similarity measurement is
normalized cross-correlation (NCC) based on the intensity of the patch [60].
This approach is very successful for many 3D computer vision applications
and has been used for many years.

However, NCC performs poorly for point matching in the situations of
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large scale (or resolution) change, and large illumination change [49]. More-
over, the above method can only be applied if the transformation between
the two images is small. Therefore, the above method cannot be applied to
the matching of images with different scales or resolutions. Recently, Schmid
and Mohr [62], Lowe [40], Dufornaud et al. [12, 13], Mikolajczyk and Schmid
[47] introduced local image descriptors based on image derivatives for image
matching, indexing in image databases and object recognition. For the
application of the matching of images of different scales, the major idea is
to detect interest points at each scale-space level. Then, the interest points
are represented using scale-invariant point descriptors. For each interest
point on an image, the most similar interest point on the other image is
found using similarity measurements on the point descriptors.

This section first studies the effect of image derivatives under illumina-
tion change and geometric scale change. Then, we briefly describe the point

descriptors used in [47].

2.3.1 Image derivatives under illumination change

Let IV and I® be two images related by an affine illumination change in
Equation 2.22. ¢ and m are the contrast change and the mean illumination

change (or the brightness change) respectively.
IO =¢I@ 4 (2.22)

It is obvious to observe that the derivatives of images are invariant to
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the mean illumination change.

LY = L
LY = Ll

However, the derivatives are not invariant to the contrast change. To
make the derivatives invariant to the contrast change, we can normalize the

second or higher order derivatives by the magnitude of the first derivatives:

Ly eL¥
IVZOI — [VLO)]
B, Ll

IVLO ~ ¢[VLO]

where the first derivatives VL is

L,
T and ||VL|| = /L2 + L2.
Ly

2.3.2 Image derivatives under geometric scale change

Let x = (z,y)7 be the coordinates on an image I. Suppose two images, 1)

and I, are related by

I (xW)y = 1@ (x3)
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under the geometric scale transformation of scale different s,
x) = x@,

Section 2.1.2 already shows that an m-th order scale-normalized deriva-

tive in Equation 2.4 is invariant to the geometric scale change.

2.3.3 An example of a point descriptor

Previous sections show that the scale-normalized image derivatives are in-
variant to the scale change and the mean illumination change. If the
second or higher order derivatives are divided by the magnitude of the
first derivative, they become invariant to the affine illumination change.
Therefore, image derivatives were commonly used as the descriptor of a
point.

Mikolajczyk and Schmid [47] designed a point descriptor based on the
Gaussian derivatives of a patch. They first separate a half circle by a certain
number of parts. Then, the first Gaussian derivatives in each direction
are computed. They use the angle of the maximum derivative as the
orientation of the point and steer the derivatives to the orientation of
the point. They compute the Gaussian derivatives up to the 4th order to
obtain the descriptor. Finally, to make the descriptor invariant to the affine

intensity changes, they divide the derivatives by the steered first derivative.

2.3.4 Other examples

Other examples of the point descriptors are the Scale Invariant Feature
Transform (SIFT) [40] and the differential invariants [62]. Both use Gaus-

sian derivatives. Montesinos et al. [52, 51] proposed a descriptor for color
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images using Hilbert’s invariants, which involve only Gaussian derivatives
up to the first order. The original Montesinos’ descriptor is not scale-
invariant, but updating it to scale-invariant is an easy work by normalizing
the Gaussian derivatives with the scale.

Another kind of descriptor is the descriptor involving affine-invariant
Gaussian derivatives [36, 48, 2]. But the computation of the affine-invariant
descriptor is more costly, and the affine-invariant is not necessary for the
multi-resolution problem, because it is assumed that the affine change of

the texture is small and can be neglected.

2.4 Feature Tracking Techniques

An important step of structure from motion is to extract a set of interest
points or feature points from the images, and relate the images by tracking
the feature points. However, a lot of feature points are of poor quality or
mismatched. They weaken the results of camera self-calibration, camera
pose estimation and 3D reconstruction. Therefore, selecting good feature
points and discarding outliers are important in feature tracking process.
This section introduces the Kanade-Lucas-Tomasi (KLT) tracker, a fa-
mous feature point tracker, selecting good feature points by the tezturedness
of the feature window, and discards bad feature points by dissimilarity. This
section also introduces the guided tracking technique, which discards feature

points using the geometric criteria after the tracking of feature points.

2.4.1 Kanade-Lucas-Tomasi (KLT) Tracker

The KLT tracker was initially proposed by Kanade and Lucas [41], further
developed by Tomasi and Kanade [73], and fully described in [63]. The aim
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of the KLT tracker is to track an individual point between a pair of images.

Given two images [; and I», and a feature window centered at image
coordinates x = (z1,22)7 in image I}, the aim of feature tracking is to
determining the 2 x 2 deformation matrix D and the 2 x 1 displacement

vector d such that

L(Ax +d) = L, (x) (2.23)

where A =1+ D, 1 is a 2 X 2 identity matrix.

Because of image noise, Equation 2.23 cannot be exactly satisfied in
general. Therefore, we have to determine the motion parameters D and d
such that the dissimilarity is the minimum. The dissimilarity is defined as

follow:

€= / /W [Lo(Ax + d) — I (x)]2w(x)dx (2.24)

where W is the given feature window and w(x) is a weighting function.
The main concern of [63] is to select good features during tracking. It

proposes two selection criteria: texturedness and dissimilarity.

Texturedness Let us consider the 2 x 2 gradient matrix of the feature

window:

2
g 929
T | FE g (2.25)

99y 9;
where g, and g, are the gradient of the intensity along x and y direction
respectively. According to [63], If both of the eigenvalues of Z are small,
the intensity profile within the feature window is roughly constant. A large
and a small eigenvalues mean an unidirectional texture pattern. Both large
eigenvalues can represent corners, salt-and-pepper textures, or any other

patterns that can be tracked reliably. Therefore, to choose reliable corners,
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we only accept the feature points which Z’s have two large eigenvalues.

That is,
t = min(A;, Ag) > A (2.26)

where \; and A, are eigenvalues of Z, ) is a predefined threshold.
The texturedness t defined in Equation 2.26 can also be considered as

the rank of feature points when the limited number of feature points are

required.

Dissimilarity A feature with high texture content can still be a bad feature
to track. The dissimilarity defined in Equation 2.24 is added to indicate
the quality of the feature and select a good feature. If the dissimilarity
of a feature point becomes large relative to the other feature points during
tracking along the image sequence, the feature point is discarded or replaced
by another feature point.

Originally, the KLT tracker is used for stereo images. It is now usually
extended to track feature points along an image sequence by continuing the
point selecting and discarding processes along the image sequence.

The KLT tracker is robust and accurate to track the feature points if the
motion of the image sequence is small enough. If the motion is large, the
KLT tracker may cause a lot of outliers and mismatched feature points due
to the limited size of the feature window. A larger feature window maybe

useful, however, it would require much more time to execute.

2.4.2 Guided Tracking Algorithm

Outlying feature points reduce the accuracy of motion estimation and so

is the accuracy of the 3D shape reconstructed. Reducing the number of
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the outliers is useful for motion recovery and 3D shape reconstruction.
The main idea of the guided tracking algorithm is to apply the geometric
criteria to select suitable feature points for motion recovery and 3D shape
reconstruction.

Gibson el al. [66] introduces a guided tracking algorithm that employs
an estimate of inter-frame camera motion to guide the feature tracking ([64]
also discusses a similar approach briefly). The main idea of the algorithm is
that the algorithm first tracks the feature points through the image sequence
using the KLT tracker, and estimates the fundamental matriz [78] between
the first image and the last image of the sequence. Then, the tracking
algorithm removes each feature that moves a significant distance from its
corresponding epipolar line (Section 2.6.2) during the tracking process.
RANSAC [16] (Section 2.5) is usually used to remove the outlying features
in this case. In [66], an experiment showed that higher percentage of inliers
was tracked by the guided tracking algorithm compared with the standard
KLT tracker.

2.5 RANSAC

RANSAC (RANdom SAmple Consensus) [16] is a model fitting paradigm
that is often used in 3D computer vision. The principle of RANSAC is
to repeatedly and randomly draw samples from the data set of the possi-
ble combinations, and compute the relation from the samples. RANSAC
chooses and outputs the relation as the best relation if the relation contains
the maximum number of inliers that fulfill certain constraints among the
trials. The relation can be the fundamental matrix or the 2D homography

[28]. Moreover, the expected number of trails required, N, is determined
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by Equation 2.27:
N =log(1—p)/log(l — (1 —e)") (2.27)

where n is the number of data points required in the error-free set, p is
the probability that at least one of the random selections is an error-free
set, and e is the probability that a selected data point is outside the error
tolerance of the model.

RANSAC can be used to remove the outlying features using the fun-
)T

damental matrix as described in Section 2.4.2. Let x = (u,v,1)" and

x' = (u/,v,1)T be a pair of 2D feature points in the first and the last
image frames that are supposed to be corresponding each other, respectively.
Let F be the fundamental matrix, Equation 2.28 shows the vector for the
epipolar line, 1, on the last frame corresponding to the point x on the first

frame, and Equation 2.29 is the distance d of a point x’ on the last frame

to the epipolar line.

Fx
l = —— 2.28
TPx (2:28)
d = [1.¥| (2.29)

Algorithm 2.1 shows the RANSAC algorithm using the fundamental
matrix. Let ¢ be a threshold for the error tolerance. If the normalized
eight point algorithm [26] described in Section 2.6.2 is used to estimate
the fundamental matrix, n is 8. The point correspondence, x and x/, is
an inlier if the pair fulfills the epipolar constraint that the corresponding
fundamental matrix contains the maximum number of inliers among the

trials. The RANSAC algorithm using the fundamental matrix requires a
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reliable fundamental matrix [75], so the difference between the view angles

of the cameras should be large enough.

Algorithm 2.1 RANSAC using Fundamental Matrix
1: Initialize the expected number of trails N using Equation 2.27.

2: Initialize 7 « 0.

3: repeat
4:  Randomly select 8 points from the data set, D. Calculate the fundamental
matrix F.

5:  Set the set of inliers Z « @.

6: for all point correspondences (x and x’) from the data set do

7 Find the epipolar lines, 1; and lp, of x and x’ on the last frame and the
first frame using Equation 2.28, respectively.

8: Calculate the distances, d; and ds, of x and x’ to l; and 1; using
Equation 2.29, respectively.

9: if d; <t and ds <t then

10: I —TU(x,x')

1 end if

12:  end for

132 1+—1+1

14:  Update e — (1 —|Z|)/|D|.
15  Update N by Equation 2.27.
16: until i > N

2.6 Structure-from-motion (SFM) Algorithm

Structure from motion (SFM) refers to the problem of estimating the three-
dimensional information about the environment from the motion of two-
dimensional projection onto a surface [68]. It is an important task for a lot
of applications including 3D model reconstruction, 3D motion matching,
camera calibration, 3D coding of image sequences, navigation, 3D scene
structure recovering and 3D videos and movies.

3D shape reconstruction is generally formulated as follows. Suppose an
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object is placed at a certain distance from the camera. The object rotates
and translates relative to the camera, and the camera takes a number of
images of the object. Suppose we take a sequence of F' images of the object,
and then extract the feature points from the images and obtain the relation
of the feature points along the image sequence using a feature point tracker.
We then track N feature points g;; = (u;,v;); in the i-th image, 1 <i < F,
1 < j < N, the feature points ¢;; in all images 1 < ¢ < F correspond to
the 3D point X; = (X5, Y5, Zj), 1 < j < N. 3D shape reconstruction is the
problem of estimating the 3D coordinates X; = (X, Y}, Z;) of the feature
points from the feature points ¢;;. At the same time, we usually also recover
the motions including the rotation and the translation of the object among

all image views. Figure 2.1 shows the major idea of structure from motion.

@ AN Feature extraction
15 b 4| endtracking
%
\,_,...MV
Motion /

Image 3D model

> sequence reconstruction
o o

Figure 2.1: Overview of Structure from Motion

Generally, the process of 3D shape reconstruction consists of camera
positioning, feature point extraction and tracking, 3D model reconstruction,
and texture mapping. 3D model reconstruction is the major step, and

has been studied in the literature using different assumptions. Famous



CHAPTER 2. BACKGROUND TECHNIQUES 33

algorithms include factorization methods for image sequences [74, 55, 53,
19, 33, 43, 24, 7, 76, 1], methods for the epipolar geometry [78, 26, 37], and
bundle adjustment [77, 64, 9].

In the remaining of this section, we describe briefly the factorization
methods, the techniques for stereo, and the techniques of bundle adjust-

ment.

2.6.1 Factorization methods

Factorization method is a mathematical method that recovers the shape and
the motion of an rigid object from an image sequence of that object. Fac-
torization method for shape and motion recovery was proposed by Tomasi
and Kanade [74], which is based on orthographic projection model.

This section first describes the orthographic factorization (also refer to
as Tomasi and Kanade’s factorization or original factorization). Then, we

briefly introduce several extensions of the factorization methods.

Tomasi and Kanade’s Factorization

Tomasi and Kanade’s factorization method [74] is based on orthographic
camera model. In this part, the orthographic projection model is first
described. Then, we describe the principle of factorization method and

summarize the outlines of the algorithm.

Orthographic Projection Figure 2.2 illustrates the orthographic projec-
tion model. Suppose the orthonormal unit vectorsiy, j; and ks represent the
image frame f, where iy and j; correspond to the x and y axes of the image
plane of the camera respectively, and ky, where ky = iy X j, represents the

direction along the optical axis of the camera plane. A feature point p that
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we are tracking is located at position s, in the fixed world origin. The vector
t; indicates the position of the focal point of the camera corresponding to
the world origin. The imaging rays are projected from the feature point p
along the direction parallel to the optical axis of the camera plane. This
point p will be observed at image coordinates (usp, vsp) in the camera frame

f. Therefore, (ug,,vyp) is the projection of (s, —t,) onto the camera plane,

such that
upp=1f-(sp—ty) and wp =js- (sp —ty). (2.30)
Image Plane
(%\9:)1 --------------------
.................................. ®
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Figure 2.2: Orthographic projection.

Factorization Algorithm Suppose we have tracked P feature points over
F frames in an image stream. We get the coordinates of the feature points
(ufp, v5p) where f =1,...,F and p =1, ..., P. We can think of the uy, and
vsp as the entries of two F' X P matrices, X and Y respectively. Then, the

2F x P measurement matriz, W, can be formed using X and Y.
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V1

urp

Urp

vip

VFP
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(2.31)

The rows of the matrix W are then subtracted by the means of the

entries on the same row. That is,

Upp =usp— 5 and Vg =g — Yy

where

P
1
Ty = -ﬁZufp and y;=
1

p:

1 P
o
=1

(2.32)

Then, the 2F x P registered measurement matriz, W, is defined by
replacing (ugp, vyp) With (Usp, Vyp):

~

U11

Up

U1

i U1

Urp

Urp

Uip

VFp

(2.33)

Suppose that the column vector s, represents the 3D coordinates of
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the object point corresponding to the p-th feature point on the images
with respect to the world origin. The orthogonal column vectors iy and j;
represent the orientation of the world coordinate system of the z- and y-
axes respectively, of f-th image frame. The target of Tomasi and Kanade’s
factorization method is to estimate the structure composed of s, for 1 <
p < P, and the pose of the cameras iy and j; for 1 < f < F.

Assume that the world origin is placed at the centroid of the object

points, therefore,

P
1
5 N =il (2.34)
p=1
Then, the expressions for iy, and vy, defined in (2.32) can be rewritten
as follow:
Upp = Upp — Ty Upp =Vpp—Ys
=i} (sp — %Zf___l sq) and =jf (s,, - %2;1 sq) (2.35)

Because of (2.35), the registered measurement matrix W can be ex-

pressed using the following equation:
W = RS (2.36)

where the 3 X P shape matriz, S, and the 2F x 3 rotation matriz, R, are

defined in Equation 2.37.

S=[81 S2 ... SP] (237)

R=[iy ... igj1 ... jj]"
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Assume that 2F > P, W can be decomposed using the singular-value
decomposition (SVD) into a 2F x P matrix U, a diagonal P x P matrix D,
and a P x P matrix V/,

W =UDVT, (2.38)

such that D is a diagonal matrix whose diagonal entries are the singular
values oy > -+ > op sorted in non-increasing order.

Since iy, j; and kj are orthonormal, the rank of R is 3 for the number of
feature points P > 3. Also, the rank of S is at most 3. Therefore, according
to the rank theorem in [74], W is at most of rank 3 in the absence of noise.
In the presence of noise, the rank of W is approximately 3.

The method of estimating the best rank-3 approximation to W is by
SVD. By setting all but the three largest singular values in D to zero, we
can define D’ as the 3 x 3 top left submatrix of D corresponding to the three
largest singular values, and U’ and V"’ as the 2F x 3 and P x 3 submatrices of
U and V formed by the columns corresponding to the three largest singular
values in D.

Two matrices R and $ are defined such that W ~ RS. The two matrices

can be formed by U’, V' and D’ as follow:
R=U'DY? and §=D"Y?VT (2.39)

The camera orientation vectors iy and j; of the matrix R are orthogonal,
such that iy -iy = 1, js-jy = 1, and iy - j; = 0. However, according to [78](p.
207), i 5 and j s of the matrix R will not be orthogonal. An invertible 3 x 3
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matrix @ is required so that

i7QQTi; =1
37QQTj; =1

17QQi; =0 (2.40)

With the help of @, we can find R and S by

A

R=RQ and S=Q7'S. (2.41)

As a result, the structure of the object is estimated in the shape matrix S
and the poses of the cameras (if, jr, ky) are also estimated where ky = iy X

Js- Algorithm 2.2 shows the outline of Tomasi and Kanade’s Factorization.

Algorithm 2.2 Outline of the Factorization method

1: Compute the registered measurement matrix W, defined in (2.33).

2: Compute the singular-value decomposition W ~ U'D'V".

3: Calculate R = U'D'/2 and S = D'V/2V'T, defined in (2.39).

4: Compute the matrix @ by imposing the metric constraints in (2.40).

5: Compute the rotation matrix R and the shape matrix S by the equation
(2.41).

6: Align the first camera reference system with the world reference system by
computing the products RG and GT S, where the orthonormal matrix G =
[i1j1ki] rotates the first camera reference system into the identity matrix.

Extensions of Factorization

Factorization method was extended to adapt to more general camera mod-
els, such as weak perspective [80] and para-perspective [55]. Combined
with Epipolar Geometry, as described in [70], factorization method was

further extended to the perspective projection model, which is the idealized
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mathematical camera model [50]. Mahamud and Hebert [43] also proposed
an iterative factorization method which is based on perspective projection
model.

On the other hand, the factorization method was extended to allow
sequential inputs of images [53] or reconstruct the model recursively [19, 33].
These methods are based on orthogonal projection model, which is the same
as the original Tomasi and Kanade’s Factorization method.

The methods introduced above do not estimate the intrinsic parameters
of the cameras. Han and Kanade [21] proposed a factorization method
which is built on the top of Mahamud and Hebert’s iterative perspective
factorization method [43] to extract the extrinsic parameters as well as the
intrinsic parameters of the cameras.

Moreover, Han and Kanade [22, 23, 24] further extended the factorization
method to solve the dynamic scene problem. The dynamic scene problem
refers to the estimation of the motion of cameras and the positions of
multiple moving objects for a sequence of images. Han and Kanade proposed
methods that estimate the motion of the cameras and the positions of the
objects if the objects move in constant velocities.

Factorization method is a common technique for 3D reconstruction of
a non-rigid object. Bregler et al. 7] proposed a factorization method for
recovering a non-rigid object. Torresani et al. [76] further extended the
idea to track the feature points and recover the 3D structure of a non-rigid

object.

2.6.2 Epipolar Geometry

This section introduces the basic idea of the geometry of stereo, also referred

to as the epipolar geometry [37, 26, 78]. Figure 2.3 shows the epipolar
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geometry.

Epipolar line P ' ;
/ Epipolar line

Figure 2.3: Epipolar Geometry

Figure 2.3 shows two pinhole perspective cameras with their centers of
projection O; and O,, and image planes I; and I, respectively. x; and x,
are the vectors from O; and O, to the projection of the 3D point P on I,
and I, respectively. X; and X, are the vectors from O; and O, to the point
P, respectively. The line joining O; and O, intersects on [; and I, at the
epipoles e; and e, respectively. You may imagine that e; is the projection
of O, on I; vice versa.

For each 3D point P, an epipolar plane passes through P and the two
center of projections O; and O,. The epipolar plane intersects each image
planes at the epipolar line. The projections of P must lie on the epipolar
lines on [; and I,, this relation is called the epipolar constraint.

This section mainly introduces the basic components of the epipolar
geometry including the essential matriz and the fundamental matriz. With
these matrices, if we know both intrinsic and extrinsic parameters, we can
reconstruct the 3D model by triangulation. If we only know the intrinsic

parameters, we can still reconstruct the 3D model and estimate the extrinsic
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parameters up to a scaling factor. If none of the intrinsic and extrinsic

parameters are known, we can reconstruct the model only up to an unknown

projective transformation. More details can be referred to in [78].

The Essential Matrix, FE

The image planes of the left and right cameras are related via the extrinsic

parameters. This defines a rigid transformation in 3D space between the

two cameras: the translation vector T = (O, — O;), and the rotation matrix

R. Therefore, the relation between X; and X, can be described as follow:

X, = R(X,—T)

From the epipolar plane, we can find the following relation:

X, —T)I'TxX; =0

Using Equation 2.42, we obtain

(RTX,)TT x X; =0

(2.42)

(2.43)

(2.44)

Because we can rewrite T x X, to SX;, where S is a rank 2 matrix:

S=| T, 0

g T

0 -1 T

-T.

0

.

(2.45)
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Therefore, Equation 2.44 becomes
XTEX; =0 (2.46)

with the essential matrix £ = RS. By using the fact that x; = (‘Zf';)X,
and x, = (JZ&r)Xr, where f; and f, are the focal length of the left and right
cameras respectively, and X; = [X;,Y;, Z))T and X, = [X,, Y:, Z,]T, we can
rewrite Equation 2.46 as

xTEx; =0 (2.47)

According to [78], the essential matrix provides a link between the epipo-
lar constraint and the extrinsic parameters of the stereo system. Also, it is
the mapping between points and epipolar lines with the prior information

on the intrinsic parameters.

The Fundamental Matrix, F

We can obtain the mapping between points and epipolar lines without
the prior information on the intrinsic parameters through the fundamental
matrix.

Suppose X; and X, are the points in pixel coordinates corresponding to

x; and X, in camera coordinates respectively such that
By M,‘lfq and x,= M:lir (2.48)

where M; and M, are the matrices of intrinsic parameters (described briefly
in Appendix A.1l) of the left and right cameras respectively. From Equa-

tion 2.47, we have

x'Fx; =0 (2.49)
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where

F=MTEM™. (2.50)

Therefore, according to [78], we can reconstruct the epipolar geometry
with no information at all on the intrinsic or extrinsic parameters through

the fundamental matrix.

The Eight-Point Algorithm

The eight-point algorithm [37] is a commonly used algorithm to compute
the essential matrix and the fundamental matrix. To compute the essential
matrix and the fundamental matrix, the eight-point algorithm requires at
least 8 point correspondences between the pair of images. The principle of
the eight-point algorithm is first to construct a homogeneous linear system
from Equation 2.49, and then to compute the entries of the fundamental
matrix. From Equation 2.50, we can also obtain the essential matrix.
Algorithm 2.3 shows the basic structure of the eight-point algorithm.
According to [26], the estimation may be unstable. To avoid numerical
instabilities, we have to normalize z; and z,. The details of the normaliza-

tion method and the analysis on stability issues can be found in [26, 42, 78].

Estimation of Projective Matrix

Beardsley et al. [3] proposed a method to estimate the projective matrix
for stereo images. The principle of the method is to first assume that the
projective matrix with respect to the first camera (or left image) in the
canonical form, and then compute the fundamental matrix and the epipole
in the right image. Finally, it computes the projective matrix with respect

to the right image by setting 4 parameters arbitrarily. Algorithm 2.4 shows
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Algorithm 2.3 The Eight-Point Algorithm
1: Transform Equation 2.49 using n (n > 8) point correspondences to a linear
system in the form Af = 0.

2. Compute the singular value decomposition of A, A = UDVT. The column
vector f is the column of V corresponding to the least singular value of A.

3: Compute the singular value decomposition of F', F = UyD foT :

4: Set the smallest singular value in Dy to 0 and form D}. Recompute the
corrected estimate of F', F' by

F' =UsDVf

Algorithm 2.4 Estimation of Projective Matrix
1: Set the first projection matrix P; to the canonical form:

B = [1]0]

where I is a 3 x 3 identity matrix and 0 is a 3 x 1 zero vector.
Compute the fundamental matrix F'.

Compute the epipole e, in the second image using FTe, = 0.
M, =e.x F.

The projection matrix with respect to the second camera is computed by:

P, = [M, + e;bT|ce;]

where b and ¢ are an arbitrary 3 x 1 vector and a scalar respectively.
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the overview of the method.

Reconstruction of 3D Model

If we obtain the projection matrices for both images using the technique
described in the preceding part, we can reconstruct the 3D model using
the techniques of triangulation [27]. In Figure 2.3, imagine the projection
matrices are fixed and known, we can obtain the 3D position of a point by
intersecting the two lines emitted from the corresponding 2D points in both
image frames. The triangulation problem is to estimate the intersection of
these two lines in the space. Hartley and Sturm [27] proposed a polynomial
method for the triangulation problem and studied several linear and itera-

tive methods. The details of the triangulation techniques can be found in

[27].

From Stereo to Sequence

The techniques for epipolar geometry are only suitable for stereo images.
If the problem is extended to an image sequence, merging techniques are
required. An image sequence can be divided into a lot of pairs of im-
ages. Therefore, the problem becomes the reconstructions of a lot of stereo
images. However, each stereo is reconstructed individually, the structure
reconstructed for each stereo is up to a projective transformation [78, 56].
To transform the structures in different projective transformations to be
with respect to the same projective space, we have to estimate those pro-
jective transformations. Fitzgibbon and Zisserman [18] proposed a sequence
merging technique that estimates the projective transformation between two
structures.

Suppose that an image sequence consists of three image frames. Let I;
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be the i-th image for i = {1,2,3}. Suppose I; and I, form a stereo S,
and similarly I, and I3 form another stereo S®). That is, I, becomes the
common frame. Let X§-I) and Xg.z), where Xg.l) = (Xl(l),Xél),Xél),X‘gl))T
and X§2) = (x® xP xP XP)T be the j-th 3D point with respect to
the first cameras of S(*) and S® respectively, and P") and P® be the
projection matrices on I, with respect to the first cameras of S() and
S® respectively. Let H®P) be the projective transformation from the first

camera of S® to that of S such that

R = geix @) (2.51)
PO = p@(HBD)-1 (2.52)

The target of the merging techniques is to estimate the projective trans-
formation H®P), which minimizes > D(X§1), H®D )ng)) subject to the con-
straint P = P@(HBD)~-1  The distance D(X,Y) can be Algebraic
distance (Equation 2.53), Euclidean distance (Equation 2.54), or the re-

projection error [18].

3

DA(X,Y) = ) (XiYi—YiXy) (2.53)
k=1
i.X ¥

Dg(X,Y) = D (5 ~%) (2.54)
Tl 4 4

If the number of common correspondences between S®) and S@ is
larger than 4, H®P) can be computed by Fitzgibbon’s merging method
by Equation 2.55.

HBDP) = (PM)*+ P 4 phyT (2.55)

where h and (P™")* are the null vector and the pseudo-inverse [32, 69] of
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PO respectively. If Algebraic distance (Equation 2.53) is used, the 4 x 1

column vector v can be estimated by solving the following linear equation:
b(XP)Tv=c (2.56)

where b and ¢ are 3 X 1 column vectors that b, = Xﬁl)hk = X,(cl) hs and
= X,El)a4 2 Xﬁl)ak, a= (PW)+pRxQ,

According to [18], if Euclidean distance or the reprojection error is used
for the distance, we have to solve Equation 2.55 using iterative optimization
algorithms because the system becomes non-linear. Gibson et al. [66] pro-
posed an approximate linear solution for Euclidean distance. More details

can be found in [66].

2.6.3 Bundle Adjustment

The 3D model of an object (model) and the motion of the camera (pose)
can be estimated using bundle adjustment. Using bundle adjustment to
estimate the model and the pose, we have to define the error function and

the parameters.

Optimization for Re-projection Error

Suppose we have F views of N 3D points, we wish to estimate the projection
matrix of the camera P;, 1 < ¢ < F, and the 3D points X;, 1 < j < N,
which are projected to the image points x;; such that x; = FX;. We
estimate all P; and all X; such that the total re-projection error e of all 3D

points on all views is the minimum [28]. That is,

N
e= Z Z d*(P;X;, xi;) (2.57)

i=1 j=1
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where d?(x,, X;) is the square of Euclidean distance between x, and x;.

Equation 2.57 presents the general idea of bundle adjustment. The form
of the re-projection error and the parameters adjusted can be modified
dependent on the situations assumed. Generally, the projection matrix P,
the 3D point X, and the 2D point x;; are defined below:

P11 P12 P13 DPu4
Fi= | py pa P pu

P31 P32 P33 P34

Xj=[X1 Xg X3 X4]T
Xij=[$1 T III3]T

If we assume that the intrinsic parameters are known, the problem can
be reduced to Euclidean space. Hence, the projection matrix P;, the 3D
point X;, and the 2D point x;; are redefined below:
T Tiz T3 I

P; = My To1 To2 To3 Ty

T31 Tz T3z 1:

X=X X2 X% 1IfF

xij = [IE] D) 1]T
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where

i1 Ti2 Ti13

21 [r22 123

1131 %32 F33

is the rotation matrix dependent on three rotation angles ¢z,¢y,¢.. Min; is

the matrix contains the intrinsic parameters of the camera.

Lowe’s pose estimation algorithm

Lowe’s method [38, 39] assumes that we know the position of the 3D points
corresponding to a view and the intrinsic parameters of that view, the
problem can be reduced to estimating the pose (3 rotation angles ¢,,¢,
and ¢., and a translation vector T = [T}, T, T:|”, totally 6 parameters).
Because Lowe’s method only need to find the pose of a view, only that view
is required. Assume that the camera is calibrated, Lowe formulates the

normal equations of the Levenberg-Marquardt minimization as follow:

D Oty S ATk + O Aity (2.58)
k—-:x:,yz ¢
O )
dvj= 3 %AT 3:; Ady (2.59)
k=zy,2

where u and v is the z and y coordinates of j-th 3D projection in the image,
respectively.

Lowe computes the re-projection errors of at least three 3D points along
u and v direction of the image and the Jacobian matrix from an initial guess
of (¢a, by, ¢z, 1w, Ty, T:), and then uses standard least square methods to
estimate (A¢y, Ady, Ad,, AT, AT,, AT,). Hence, improved estimates are
given by ¢} = ¢r + A¢y and T}, = T, + AT}, for k = z,y, 2.
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Two-pass Bundle Adjustment

Two-pass Bundle Adjustment [9] extends Lowe’s pose estimation algorithm
[38, 39] to estimate the optimal 3D structure of an object by giving a set
of 2D feature point sequences along F' frames. It assumes that the intrinsic
parameters of that view are known.

Two-pass Bundle Adjustment, which is an interleaving bundle adjust-
ment method, consists of two phases per iteration. The first phase is to
estimate the poses from previous guess of 3D points by Lowe’s method.
The second phase is to estimate the 3D points from the poses estimated
in first phase by Levenberg-Marquardt minimization [56]. Algorithm 2.5

shows the overview of Two-pass Bundle Adjustment.

Algorithm 2.5 Two-pass Bundle Adjustment
1: Initialize the guess of the 3D points {X;}{’ and the poses {6;}{
2: repeat

3:  (First Phase) For each view i, using previous guess of {X;}4' and the image
features x;; for all 3D points in i-th image, estimate the pose 6; by Lowe’s
method.

4:  (Second Phase) For each 3D point X, using the guess of the poses {6;}1
and the j-th image feature of every image, estimate the better-predicted
3D point X; using Levenberg-Marquardt minimization [56].

5: until the 2D total re-projection error is small enough or too many iterations

are runm.

2.6.4 Summary

Factorization methods and the triangulation methods only obtain the sub-
optimal solution, while bundle adjustment can get the optimal solution.
However, bundle adjustment is an iterative approach, hence it is much slower

than factorization methods and the triangulation methods. In practice,
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the suboptimal solution estimated by the factorization methods or the
triangulation methods is usually used as the initial solution for the bundle
adjustment [18, 55], and the bundle adjustment refines the solution to obtain

the optimal solution.

O End of chapter.



Chapter 3

Hierarchical Registration of 3D
Models

This project aims to reconstruct a detailed 3D structure of a large scene
from at least two image sequences. One for the large scene and the others
are for the objects that are reconstructed in more details. The idea of our
approach is first to take two image sequences, one is for the large scene
and the other is for the object. Then, the image sequences are related by
matching an image of each sequence. Using the point correspondences from
the previous step, the relative poses of the 3D structures are estimated and
the 3D structures are integrated to form the detailed 3D structure of the
large scene.

Our approach is designed for the large scene that contains only rigid
and opaque objects, and the scene is static such that the objects do not
move. Also, the scene and the objects contain enough features (corner
points) for 3D reconstruction. Moreover, in this thesis, the image sequence
for the large scene is described as low resolution or coarse, and so are its

images. On the other hand, the image sequence for the object in the scene

52
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is described as high resolution or fine, and so are its images. In most cases,
camera calibration is not necessary. If the radial distortion of the camera is
significant, camera calibration may be required, and the intrinsic parameters
estimated are given to the 3D reconstruction process.

In this chapter, we describe our approach for the detailed reconstruction
for a large scene. Section 3.1 describes the overview of our method. Then,

the remaining sections explain the details of our method.

3.1 Overview

In this section, we describe the arrangement of the image sequences and the

flow of our framework.

3.1.1 The Arrangement of Image Sequences

In order to reconstruct both of the detailed objects as well as the large
environment, we take separate image sequences for each detailed object and
the large environment. For the large environment, each image includes the
whole scene. For the fine object, the camera is placed nearer to the object,
so the view of the camera can take the detailed contents of the object. For
simplicity, in this thesis, we assume that there is one fine image sequence
and one coarse image sequence. Figure 3.1 illustrates this arrangement. Let
S, be the coarse image sequence and Sy be the fine image sequence. Define
I,-(c) and I](f ) be the -th and j-th image frames of the coarse and the fine
image sequences respectively.

For the better matching between the image sequences, the user should
select a pair of images (an image from each image sequence) which are taken

from similar view angles. Let 1,S°’ and Iéf ) be the selected images from S,
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and Sy respectively. Also, I,(,c) and I,Sf ) should have an overlapping region
which is large enough for the matching. Figure 3.2 shows an example of the
coarse image sequence and fine image sequence. In this example, both of

the image sequences consist of 19 frames.

/ The object presented by the fine sequence

x whole large scene
2
[l(f B 2 S
______ 7 Finesequence ©f W
I‘; 1) Igﬁ, image taken

O Coarse sequence 8,
I

Nt
Selected images for matching

Figure 3.1: The arrangement of image sequences

3.1.2 The Framework

Figure 3.3 shows the flow of the framework. After we arrange the camera
setup and take the images, the framework consists of four major steps: (1)
reconstruct the 3D model for each image sequence, (2) match the selected
pair of images using the multi-scale image matching technique, (3) build the
linkage between the coarse and the fine sequence, (4) register the 3D models
together, and (5) form the final VRML 3D model. These steps are described
briefly in the remaining of this section, and the details are explained in the

remaining of this chapter.
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(b) 1st, 5th, 10th and 15th frames of the fine image sequence.

Figure 3.2: An example of a coarse and a fine image sequences
3D Model Reconstruction

A 3D model is reconstructed from each image sequence. The steps of
3D model reconstruction for each image sequence include region selection,
feature point extraction and tracking, outlying feature rejection, camera
self-calibration and structure from motion.

For each image sequence, the feature points extracted for 3D recon-
struction are of the smallest scale. But they are unsuitable for the multi-
scale image matching, so we need the multi-scale image matching technique
and the linkage establishment technique to link up the image sequences of
different resolutions.

The details of the 3D model reconstruction are described in Section 3.2.

Multi-scale Image Matching

The selected pair of images, I,(, and Ig () are of different resolutions, but
they are taken in similar view angles. Therefore, we can use the multi-scale

image matching technique to find the relation, H (c) 10y between these two
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Fine Image Sequence, .S/

Coarse Image Sequence, S, — —
Set of feature point Set of feature point
sequence, T sequence, TV
3D Model Reconstruction 3D Model Reconstruction
p-th image, g-th Image,
L@ i]am
Multi-scale Image Matching
2D Homography,
H2D)

Set of featurs Linkage Establishment Set of feature
points on p-th points on q-th

image, Y, Linkage, image, Y,

7

Coarse 3D 3D Model Registration Tine 3D

Model, Z¢ Model, Z0
Combined
Model
VRML Modelling
Final texture-mapped
3D Model

Figure 3.3: The multi-scale reconstruction framework
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images. Section 3.3 describes the multi-scale image matching in details.

Linkage Establishment

With the relation estimated in the previous step, H((z?,),]é,)), we find the
linkage between the coarse and the fine image sequences. The linkage is a set
of feature point sequences which is the subset of the intersection of the sets
of feature point sequences of the coarse and the fine image sequences. We

obtain this subset using the rematching algorithm. The detail is described

in Section 3.4.

3D Model Registration

With the linkage, we obtain the correspondences between the 3D models
reconstructed from the coarse and the fine image sequences. We estimate
the 3D affine transformation between these 3D models using the least square
approximation, and then combine the 3D models using the estimated 3D

affine transformation. Section 3.5 describes the details of the registration.

VRML Modelling

We form the texture-mapped VRML model for the combined 3D model.
The detail is described in Section 3.6.

3.2 3D Model Reconstruction for Each Sequence

Typically, 3D model reconstruction for an image sequence consists of five
parts including region selection, feature extraction and tracking, rejection of

outlying feature points, camera self-calibration, and 3D structure recovery.
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Region Selection Since not the whole region of the image is preferred and
useful for finding the 3D structure of the scene (or the object), a region is
selected before the feature extraction. In our project, a rectangular region
on the image is selected by the user. Only the points in the region are

extracted in the next process.

Feature Extraction and Tracking To reconstruct the 3D structure of
an object, we have to obtain the feature point sequences from the images.
We use the standard Harris corner detector described in Section 2.1.2 to
extract feature points from the images. However, not all feature points are
useful for the tracking in the image sequence. The KLT tracker described in
Section 2.4.1 is used in our project to track the feature points through the
image sequence, and remove the poor feature points or the feature points

that do not exist in the whole image sequence.

Outlying Feature Rejection The selection process of the KLT tracker
only considers the textural criteria, but it is not enough to remove the
mismatched feature points. The geometric criteria can be added to remove
those mismatched feature points. The common technique of RANSAC [16]
is used to estimate the accurate fundamental matrix and obtain the inlying
feature points (75, 64].

Here, we assume that the difference in view angles between the first and
the last frames is large enough to obtain a reliable fundamental matrix [75].
Thus, we estimate the fundamental matrix between the first and the last
image frames as the relation, and the epipolar constraint [28] (or the distance
from the epipolar line) becomes the constraint to determine the inliers. The

details of the RANSAC algorithm using the fundamental matrix is described
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in Section 2.5.

Camera Self-calibration We use Pollefeys’ method [57] to find the focal
length of each image frame. The self-calibration method only estimates the
intrinsic parameters up to scale. That is, the focal lengths estimated are
actually in ratio between the frames. We have to fix the focal length of the
first image frame and compute the focal lengths of the other frames. In this
project, we assume that we know the focal length of the first image frame
of the coarse image sequence. But for the fine image sequence it can be
fixed arbitrarily. The problem of the scale factor of the fine sequence can

be solved by 3D model registration (Section 3.5).

3D Structure Recovery The two-pass bundle adjustment [9] is used to
reconstruct the 3D structure for each image sequence. The two-pass bundle
adjustment is faster than the standard bundle adjustment [77], and both
algorithms can estimate the optimal 3D structure. Therefore, we use the
two-pass bundle adjustment in our project. The algorithm of the two-pass

bundle adjustment is presented in Section 2.6.

3.3 Multi-scale Image Matching

The most important problem of the coarse-to-fine 3D model merging is to
obtain the correspondences between the coarse image sequence (S.) and the
fine image sequence (S.). The coarse and the fine image sequences consist
of sets of feature point sequences among their image frames, 7 and T,
respectively. Each set of feature point sequence is used to reconstruct the
3D model. The linkage problem between the two image sequences is to

obtain a subset (T™) of the intersection of the sets of point sequences of
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both the coarse and the fine image sequences, such that 7 C T() T,

We obtain this subset using two steps. First, we estimate the 2D trans-
formation between the selected pair of images (I,(,c) and I,gf )) using a multi-
scale image matching technique. Then, with the estimated 2D transfor-
mation, we obtain this subset using the rematching algorithm. Compared
with the approach of Ramalingam and Lodha [58] that obtains this subset
by matching the point correspondences of the sets T and T) directly
using scale-sensitive correlation technique, our approach is more flexible
and is not restricted to one multi-scale image matching algorithm, so that
a lot of multi-scale image matching algorithms which can estimate the
2D transformation between the selected image pair can be used in our
framework. Moreover, in general, as shown in [47] and claimed in [58],
the multi-scale image matching techniques can match higher scale factor
than the scale-sensitive correlation technique.

The multi-scale matching technique consists of four steps:
1. Scale-space interest point detection

2. Point descriptor construction

3. Point-to-point matching

4. Image transformation estimation

The remaining of this section describes the multi-scale image matching
technique of our framework in details, and the extension of the scale-factor
using the matching technique hierarchically. Section 3.4 describes how we
use the rematching algorithm to obtain the linkage (7)) between the sets
T and T,
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3.3.1 Scale-space interest point detection

We use the multi-scale image matching algorithm similar to [47]. The first
step of matching the two images is to detect a set of interest points on each
image. In the scale-space framework, we use the Harris-Laplacian interest
point detector (as described in Section 2.1.2) to detect the interest points
in different scale-space levels on each image. We set the scales increasing
from 2 exponentially with a scale factor 1.2 up to 15 successive steps. Also,
circular window patches are used in the convolution of the Harris-Laplacian
detector in order to make the detector more invariant to rotation. This
method effectively detects the feature points on their characteristic scales,
and these characteristic scales will be used in the computation of the point
descriptors. Figure 3.4 shows the interest points extracted from an example
of the image pair, I,S.“) and Iéf ). The plus signs represent the positions
of the interest points, and the circle around each of them represents the
corresponding circular patch. The radius of the circular patch is linearly
proportional to the characteristic scale of the interest point. As shown in
the figures, a corner may contain several circles with different characteristic

scales.

3.3.2 Point descriptor

For each interest point detected on each image, we have to compute a point
descriptor representing this point using the circular patch around it. In the
scale-space framework, the scale-normalized Gaussian derivatives are used
as the point descriptor. In more details, for each interest point detected
in previous step, a circular patch around it is selected. The radius of the

patch is linearly proportional to its characteristic scale. We estimate the
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Figure 3.4: Interest points extracted for multi-scale image matching from (a) the
selected coarse image (I,S°)) and (b) the selected fine image (Iéf )).
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orientation of the point from its patch using the second method described
in Section 2.2.1. To make the point descriptor invariant to orientation, the
circular patch is steered to the orientation estimated.

The absolute values of the responses of the second, the third and the
fourth order image derivatives in several directions on the patch are used
as the values of the point descriptor. Totally 8 directions are used in our
experiment and the angle difference between successive directions is 22.5°.
To make the point descriptor invariant to the affine illumination change
(the contrast change), we normalize the image derivatives by dividing them
by the magnitude of the first derivative. Therefore, the total number of

invariants of the point descriptor is 24.

3.3.3 Point-to-point matching

The interest points on the coarse image (I,(,c)) are matched to those on the
fine image (I{”). For each interest point on I, we find the most similar
point on Iéf ) using a dissimilarity measurement on the point descriptor.
Mabhalanobis distance ((d; —dy)TA~!(dy — d3)) is commonly used [12, 47] as
the distance function on the descriptors, d; and d;. However, the covariance
matrix A is required to be trained by a large number of image samples. We
do not have any image sample in the situation of the 3D reconstruction, so
Mahalanobis distance is not suitable in our project.

The dissimilarity measurement we use is the weighted Euclidean dis-
tance. We normalized each invariant by dividing it with the standard
deviation of its distribution of all descriptors for both images. Then, we
calculate the Euclidean distance using the normalized point descriptors.

If the distance between the most similar point on I,Sf ) of an interest point

on I,(,c) is less than a threshold, we count it as a matched pair from I,(,C) to
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Iéf ) and put it into the set @ (1) 180): Matching is also applied on the reverse
direction from I,;f ) to I,(,c), and we obtain the set of matched pairs Q( 189,19y
Only the matched pairs of the intersection, @ = Q(I,(f’. 10y N Q(Iéf),lt(’c)),
between the 2 sets of matched pairs are kept. That is, only the matched
pairs from the matching of both directions are counted as the initial matches.

Moreover, because a single feature point on an image may contain more
than one characteristic scales, it is possible that a single point correspon-
dence contains duplicated pairs in the set Q. We have to remove the
duplicated pairs so that each point correspondence has equal weight in the
RANSAC counting process during the estimation of the 2D transformation

(Section 3.3.4).

3.3.4 Image transformation estimation

After we obtain the initial matches, we may find the transformation between
the two images. However, the set of initial matches obtained contains a large
portion of mismatches. Figure 3.5 shows the initial matches of the example.
The plus signs represent the positions of the initial matches. The number
next to a plus sign represents the index of the pair of the matched points.

The percentage of correct matches may be less than 20%. Therefore,
we add the geometric constraint using RANSAC [16] to estimate the most
voted transformation and separate the inliers from the outliers.

As described in Section 3.2, the relation between the images can be the
fundamental matrix [26, 78, 28] or the 2D homography [28]. However, the
view angles of the two images are similar, this may cause the fundamental
matrix to degenerate [75]. Therefore, the 2D homography is used as the
relation between the point correspondences on the two images in RANSAC,

and also is used as the transformation between the two images.
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Figure 3.5: Matches from multi-scale image matching for the example. Initial
matches (plus) and correct matches (circled plus) on (a) the selected coarse image

(I,(,c)) and (b) the selected fine image (I,gf )).
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Let x = (1,2,1)7 and x’ = (2, 2%,1)T be a pair of points of a point
correspondence on the two images (I; and I,), the 2D homography from I;

to I, H((?Bl)z), is defined in Equation 3.1.

— p(2D)
x' = H 7,% (3.1)

where H((ff,)z) is in the form below

hiy hiz haz

2D
H((Il,l)g) = | har hao hos
I 0 0 1 |

Then, the distance function replacing Equation 2.29 is defined in Equa-

tion 3.2.

d=|jx' - Hi L x| (3.2)

The minimum number of point correspondences for calculating the 2D
homography is 3, hence, in RANSAC algorithm, we randomly select 3 points
from the data set as a sample for every trail.

In Figure 3.5, the circled plus sign means the match pair is correct and
is outputted from RANSAC algorithm. The corresponding 2D homography
is also obtained. In this case, from the 2D homography estimated, the scale

ratio of I} over I{? is about 2.96.

3.3.5 Multi-level image matching

The scale factor of the multi-scale image matching technique is limited.
But it can be increased by matching multiple images of different resolutions

hierarchically. Figure 3.6 illustrates the setup.
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Figure 3.6: Multi-level image matching.

The 2D homography can be accumulated using Equation 3.3.

H((Z‘?’)Jé’ = H((Z‘?’).zr) ((fD;é’ ) (3:3)

However, from the experiment in Section 4.1.1, the accuracy of the
rematching algorithm drops when the scale ratio is too large, and the noise
is more sensitive and destructive to the result of the rematching algorithm
when the scale ratio is larger. Therefore, the accumulated 2D homography
cannot be too large. In this case, the multiple 3D model registrations instead
of multi-level image matching should be used. That is, we hierarchically

register more than two 3D models of different resolutions.
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3.4 Linkage Establishment

With the 2D transformation (H (2(]3,) m)) from the selected coarse image
(Ip (C)) to the selected fine image (I3 (f )) the second step of the linkage estab-
lishment is the rematching algorithm. This section describes the rematching
algorithm that finds out the linkage between the coarse image sequence (S,)
and the fine image sequence (Sy) using the 2D transformation estimated.
Find out this linkage means finding out the subset 7™ such that 7 =
TEONTY), where T and T) are the sets of feature point sequences along
the coarse and the fine image sequences respectively.

Computing the exact linkage is impossible because the 2D positions
of the feature points are not exactly matched. But we can compute the
approximate linkage between T and TU), T, Let x5 be the k-th 2D
feature point tracked in the i-th image frame of S, where 1 <: < M (© and
M is the number of image frames of S, and 1 < k < N(© and N is the
number of features tracked along S.. On the other hand, let x(f ) be the I-th
2D feature point tracked in the j-th image frame of Sy, where 1 5 j< MO
and M) is the number of image frames of Sy, and 1 <1 < N) and N/

is the number of features tracked along Sy.

Suppose Yp(c) = {xgz)l), xg:)z)» éc) N(c))} is the set of feature points in
the selected image frame I\ of S, and Y) = {xg)l), (5)2), s g )N( m}is

that of S;. Our approximation is to find the set, ¥, containing the feature
points of Y(c) and Y(f ) that are approximately common in position under
the transformation of H @n (c, 10y Two positions are said to be approximately
common if the Euchdean dlstance between them is below a threshold d;.

Algorithm 3.1 shows the rematching algorithm that computes Y,
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o(e) _ pr(2D) x! )
X (o) (19,157 X (o) (3.4)

Algorithm 3.1 Rematching Algorithm

1: for all xEc)k) € P(c) do

3 (c) - (c) ; (2D) ;
2. Transform x4 to x(;'k) by the transformation, H(I,(,",I,S”)’ using

Equation 3.4.

3:  Find the nearest feature point in I ) of xgc)k) using Euclidean distance as
the distance function.

4:  If the distance is below the threshold ds, the transformed point and the
nearest feature point is counted as the matched pair and put it into the set
E(l,(’c)'l‘('f))'

5. end for

6: Repeat lines 1 to 5 by reversing S, with Sy. The transformation between the

two images is changed to H (D) (4D} mv(H(l(c, ( ,,)) and inv(A)

is the inverse of the square matnx A The set of matched pairs is E( 189,169y

X L L
7: Compute Y1) by Y1) = Eu,g°>,13”) nE(Ié”.I,‘,C))

Figure 3.7 illustrates the rematching algorithm. The point x¢ is within
the range of distance d, centered at the transformed co-ordinates (H ((1‘13’) X X1)
of the point x4, and it is the nearest point to that co-ordinates. Also, the
point x4 is the nearest point and within the range of distance d, centered
at the transformed co-ordinates (H((f?z,zgﬂ)’“) of the point x¢. Therefore,
x4 and x¢ form a correspondence. The points xp and x¢ do not form
a correspondence because xp is more far away from the transformed co-
ordinates of point x¢ than the point x4.

In our project, the threshold ds is set to twice to the scale ratio of Sy
over S, which can be estimated from H ((12,(?,),13 Ny
Figure 3.5 shows an example of the matches. The circled plus signs are

the matched points in the coarse and the fine image sequences.
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Figure 3.7: Illustration of the rematching algorithm

With Y& 7(1) can also be found very easily because the feature points
are tracked along the whole image sequence. The index of a feature point is
the same along the whole sequence. So, the feature point sequences in 7'

correspond to the same feature points in Y™,

3.5 3D Model Registration

Using the linkage on the feature point sequences found in Section 3.4, we
can also establish the linkage of the 3D points between the 3D structures.
Using this linkage, we can merge the 3D models to form a combined model.

Let 2= (X, x{",..., X1} and 200 = (X, X{P,..., Xy} be
the sets of 3D coordinates of the feature points of the fine image sequence
and the coarse image sequence relative to their first cameras respectively.

That is, Xﬁcf ) (Xfc)) are the k-th (I-th) 3D points in the 3D structures of
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the fine (coarse) image sequence. Each of these 3D points corresponds to
a 2D feature point in Péf ) or P,Ec) respectively. Using the linkage 7w
we are able to build two sets, Z&r) € Z() and ZUe) C Z©, which
elements have corresponding feature point sequences in 7). Suppose
2180, = (LR s e 12 = P DR XY
where N& = |TM)|. Z(E5) and Z(Ee) can be related by Equation 3.5 with

the 3D homography from Z\Y) to Z\9, H ((;I(),))'Z(c)).

X&) = HZp gy X0 (3.5)

The 3D homography estimated in Equation 3.5 can build the linkage
between the 3D points of Z\) and Z©). Using H ((;?,)), Z(ey» We can transform
the 3D structures, Z) and Z(©), to each other’s coordinate system by
Equation 3.6 or Equation 3.7, respectively. Therefore, the 3D structures of

the two sequences are transformed and merged, and we obtain the combined

model.

3D
X = HED s XY (3.6)

XD = inv(HE yay) XY (3.7)

The 3D transformation can be metric, affine or projective [56, 28]. In
this project, we use affine transformation because affine transformation can
register the two 3D models better than metric transformation (as shown
in Section 4.1.2). Projective transformation is useful when the 3D models
reconstructed for the image sequences are scale up to projective transfor-
mation. But the 3D models reconstructed in this project are scale up to a

scalar, so projective transformation is not necessary for this project. Also,
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the computation of projective transformation (Section 2.6.2) is more com-
plex than affine transformation, in our observation, the result of projective
transformation is less stable than affine transformation for this project.

The image sequences can be calibrated using the self-calibration algo-
rithm up to a scale factor. We assume that we know the focal length of the
first image frame of the coarse image sequence to fix the scale factor, but
for the fine image sequence it can be fixed arbitrarily. From the experiment
in Section 4.1.2, the registration error is small even if the focal length of the
fine image sequence is fixed arbitrarily.

Equation 3.8 shows the format of the 3D homography for affine trans-

formation, X is in the form of (Xi, X, X3,1)7.

hii hia hiz hag
ho1 hoa haoz hog
3D

H((z(f)),z(c)) o (3.8)
hs1 hse haz has

g 0., 0, d

L

The 3D homography for affine transformation can be estimated using the
least square approximation on Equation 3.5.

RANSAC can also be used to remove the outlying point correspondences
for the estimation of the 3D homography. We can change the relation to
affine transformation (Equation 3.8) and replace the distance function by

that is defined in Equation 3.9.

d=|X® - HZ) ;o) X (3.9)

The minimum number of correspondences required for the estimation of
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affine transformation is 4. Hence, the number of correspondences required

for each trial is 4.

3.6 VRML Modelling

In our implementation, the wire-frame for each individual 3D model is
generated using the “delaunay” function in Matlab [45] on the middle image
frame of the corresponding image sequence. The 3D wire-frame model is
then created with the 3D points by the 3D model reconstruction. For each
triangle of the wire-frame model, the texture of the corresponding triangle
in the largest area among image frames of the corresponding image sequence
is chosen as the texture of that triangle. The 3D models are outputted using
the VRML format.

For the combined 3D model, we first remove the triangles of the coarse
3D model which are inside the “region” of the fine 3D model. Then, we
directly place the fine 3D model into the coarse 3D model. The region is a
rectangular region that its boundaries are the minimum and the maximum
z and y co-ordinates of the re-projection of the fine 3D model on the middle

frame of the coarse image sequence.

0O End of chapter.



Chapter 4

Experiment

This chapter presents the experiments that show the characteristics of our
system and evaluate the proposed method. Two synthetic experiments that
investigate the rematching algorithm and the 3D model registration are
presented in Section 4.1. Section 4.2 presents the results of the proposed
algorithm for the real cases. The platform we used was MatLab [45] version
6.5 in Windows. The machine we used was a PC with CPU of Intel
Pentium®4 2GHz.

4.1 Synthetic Experiments

This section presents two synthetic experiments that evaluate the rematch-
ing algorithm and compare affine transformation with metric transformation

for the 3D model registration.

4.1.1 Study on Rematching Algorithm

This experiment aims to test the effectiveness of the rematching algorithm

(Section 3.4) using synthetic data. In this section, we first describe the

74
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setup and the measurement of this experiment, and then we present and

discuss the results.

Setup

For each run of the experiment, a set of n 2D points (X{) and a set of
ny 2D points (XJ) for the object of size w in the fine image (I\)) are
randomly generated. The first set of points (le ) were transformed by the
metric transformation, H (3 x 3), and generated the set of 2D points, Y.
This metric transformation contains a fixed scale ratio s, and a randomly
generated rotation angle and a randomly generated translation vector. A
set of ny 2D points (X¢) for the whole scene in the coarse image (1)) were
randomly generated. The two sets (&] and XJ) were combined to form a
set X7, and the other two sets (X and X5) were combined to form a set
&S

The combined set X simulates the set of 2D points tracked by the KLT
tracker (Section 2.4.1) for the fine image sequence, and the combined set
X¢ simulates the set of 2D points tracked by the KLT tracker for the coarse
image sequence.

To test the effectiveness of the rematching algorithm under noise, we
added noise or error to the data points or the transformation. The 2D
points in the sets A7 and X, were added with 2D noise with amplitude
noise*”. The rotation angle, the translation vector and the scale were
added with fixed errors with values €5, €; and €5 X s (€5 is a scale error
ratio), respectively. An evaluation transformation, H® was then formed
using the new rotation angle, translation vector and scale. The rematching

algorithm was then used to rematch the sets X and X¢ using H®). The

points in A] should be rematched to the corresponding points in Xf.
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Table 4.1: The parameters used in the experiment

lParameter Part 1 | Part 2 I Part 3 l Part 4 l
The no. of runs 100 100 100 100
n 50 50 50 50
ny 250 250 250 250
n9 250 250 250 250
w (pixel) 300 300 300 300
S ltod | 1to4 1tod 1to4d
noise?P (pixel) | 0to 6 0 0 0
€4 (degree) 0 0tod 0 0
¢ (pixel) 0 0 0tob 0
€s 0 0 0 0 to 0.1

To evaluate the results in different situations, we divided the experiment
into four parts: the probability for different scales against 1) the 2D noise
(noise®P), 2) the rotation angle error (e4), 3) the translation error (e;) and
4) the scale ratio error (€s) will be investigated.

Table 4.1 summaries the values of the parameters used in this experi-

ment.

Measurement Let N,, be the number of rematched pairs and N, be the
number of correctly rematched pairs. The case is “valid” if IV is larger than
or equal to 8, and -NIY: > 0.5. The former criterion to the doubling of the
minimum number of correspondences required for 3D affine transformation
is 4. The latter one exists because we can remove the outliers (mismatched
pairs) using RANSAC for 3D affine transformation (Section 3.5). In this
experiment, we used 100 runs of the experiment and count the number of

the valid runs. The measurement was the probability that the run is valid,

(= Number of the valid runs
Number of runs
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Results & Discussions
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Figure 4.1: Probability of successful matching against 2D noise for different scales

1) 2D noise (noise2D) Figure 4.1 shows the results of part 1 of the
experiment. The probabilities were 1 when the 2D noise to the data sets
was small (noise2D < 1). When the 2D noise was small, the pairs of points
were correctly rematched by the rematching algorithm. However, when the
2D noise became larger, the probabilities began to drop. The situation was
the most serious for the scale of 3, and the least serious for the scale of 1.
This is because when the scale ratio is larger, the points in the coarse image
(X¢) is more concentrated together and the distance between each pair of

points in the same image is smaller. The points are more easily mismatched
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during the rematching process.

Probability against rotation angle error
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Figure 4.2: Probability of successful matching against rotation angle error for
different scales

2) Rotation angle error (¢;) Figure 4.2 shows the results of part 2 of the
experiment. Similarly, the probabilities were 1 when the rotation angle error
to the data sets was small (¢, < 1). When the rotation angle error was small,
the pairs of points were correctly rematched by the rematching algorithm.
However, when the rotation angle error became larger, the probabilities
began to drop. The situation was the most serious for the scale of 1, and
the least serious for the scale of 3. This is because the threshold ds of the

rematching algorithm (Section 3.4) increases as the scale. It has a larger
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range for a point to find the corresponding point in the other image when

the threshold is larger. But the 2D transformation estimated is usually

more accurate as the scale is smaller.

3) Translation error (¢) Figure 4.3 shows the results of part 3 of the
experiment. Similarly, the probabilities were 1 when the translation error
to the data sets was small (¢, < 1). When the translation error was small,
the pairs of points were correctly rematched by the rematching algorithm.
However, when the translation error became larger, the probabilities began
to drop. The probability of a larger scale dropped more quickly. This
is because the translation error had relatively larger drifting effect on the
coarse image when the scale was larger. It causes more mismatching corre-

spondences during the rematching algorithm.

4) Scale error (¢;) Figure 4.4 shows the results of part 4 of the experiment.
Similarly, The probabilities were 1 when the scale error to the data sets was
small (eg < 0.02). When the scale error was small, the pairs of points were
correctly rematched by the rematching algorithm. However, when the scale
error became larger, the probabilities began to drop. Similar to part 2, the

situation was more serious for a smaller scale.

Summary

This experiment shows the effectiveness of the rematching algorithm. Gen-
erally speaking, the rematching algorithm can endure small error on the
2D transformation and the noise on the data points. However, when the
error or the noise becomes larger, the results of the rematching algorithm

turn poor quickly. Therefore, the rematching algorithm requires an accurate
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Probability against translation error
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Figure 4.3: Probability of successful matching against translation error for
different scales
relation between the selected image pair to build the linkage between the

coarse and the fine image sequences.

4.1.2 Comparison between Affine and Metric transformations for

3D Registration

This experiment is used to compare the affine transformation with the
metric transformation for 3D registration using synthetic data. This section
first describes the setup of the experiment, and then presents and discusses

the results.
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Figure 4.4: Probability of successful matching against scale error for different
scales

Setup

For each run of the test, a 3D object of size w with N 3D points were
randomly generated. The 3D object was projected to two sequences of 10
frames. For each sequence, the object rotated 2 degrees along both z-axis
and y-axis for every successive frame of the sequence. Also, the focal length
for every frame was fixed along the sequence. Let f; and f; be the focal
lengths for the first and the second sequences respectively. 2D noise with
the maximum value, noise, was added to every 2D point.

In this experiment, we set the size of the object (w) to 0.13 m and the

pixel width to 5.42 pum. The number of points (V) was 100. The focal
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Table 4.2: Values of the parameters used for second synthetic experiment

| Parameter Value
w 0.13 m
N 100
fi 500 pixels
f2 500, 1000 and 1500 pixels
noise 0, 1, 2, 3 pixels

length for the first sequence (f;) was fixed at 500 pixels. For the second
sequence (fy), it was set to 500, 1000 and 1500 pixels. The maximum value
of noise (noise) was set to 0, 1, 2 and 3 pixels. Table 4.2 summaries the
values of the parameters.

For each combination of noise and fo, we reconstructed the 3D models
for both sequences using the two-pass bundle adjustment (Section 2.6.3).
The number of loops of the two-pass bundle adjustment was set to 100.
Then, the 3D models were registered using 1) affine transformation and 2)
metric transformation. For each transformation, we measured the registra-
tion error using the 3D registration root-mean-square (rms) error which is

defined by Equation 4.1.

M _ x @2
e=\ﬁ£’=l<uxiN x®1) e

where Xgl) and X?) are 3D co-ordinates of the i-th points of the first

reconstructed 3D model, and the second 3D model transformed by the
estimated transformation, respectively.

The two-pass bundle adjustment (Section 2.6.3) we used does not adjust
the focal length of each frame, hence we must fix a focal length for it. To

test the 3D transformations under the case of wrong setting of the focal
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length, we used the correct focal length of the reconstruction for the first
sequence, and we set the focal length of the reconstruction for the second
sequence to the same value as the first one.

We repeated the experiment 100 times, and then obtained the average

3D registration rms error for each case.

Results

Figure 4.5 shows the experiment results that the reconstruction for the
second sequence used the correct focal lengths. Figure 4.6 shows the exper-
iment results that the reconstruction for the second sequence used the focal
length of the first sequence.

For all combinations of focal lengths of the second sequence (f;) and
the maximum noise (noise), and for both using correct and incorrect focal
lengths, the 3D registration rms errors of affine transformation were smaller
than that of metric transformation.

Also, for both transformation methods, the error increased while the
maximum noise (noise) increased if the focal length of the second sequence
was fixed.

Moreover, in Figure 4.6, when the maximum noise (noise) was 0, the
3D registration rms error increased while the focal length increased. On the
other hand, in Figure 4.5, the 3D registration rms errors were near the same
for all focal lengths when noise was 0. However, when noise was larger, the
3D registration errors for using a correct and an incorrect focal length were

similar if affine transformation was used.
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RMS error against noise for different focal lengths (correct focal length)
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Figure 4.5: Average 3D registration rms errors against noise for different focal
lengths of the second sequence. The reconstruction for the second sequence
used the correct focal lengths. The dotted lines show the results of metric
transformation, and the solid lines show the results of affine transformation.
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RMS error against noise for different focal lengths (wrong focal length)
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Figure 4.6: Average 3D registration rms errors against noise for different focal
lengths of the second sequence. The reconstruction for the second sequence
used the focal length same as the first sequence. The dotted lines show the
results of metric transformation, and the solid lines show the results of affine

transformation.
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Discussions

Generally, affine transformation is better than metric transformation in reg-
istering 3D models. Also, the results also show that 3D registration is worse
when the noise increases. This is because of the poor reconstruction result
of the 3D model when the noise increases. Therefore, the 3D registration is
worse while the 3D reconstruction is poorer.

The 3D registration errors for using a correct and an incorrect focal
length were similar if affine transformation was used. Also, the errors were
small in all cases. This means that the wrong setting of focal length for
the 3D reconstruction for the fine (second) image sequence causes small
error in 3D model registration. If the 3D structure for the coarse (first)
image sequence is reconstructed accurately, the transformed 3D structure
for the fine (second) image sequence is also accurate. Therefore, the focal
length of the fine (second) image sequence can be fixed arbitrarily for the

3D reconstruction.

4.2 Real Scene Experiments

This section demonstrates the 3D coarse-to-fine reconstructions for three

real scenes using our proposed method.

“Steps” Scene

Figure 4.7 shows the coarse and the fine image sequences for the “Steps”
scene. Figure 4.8 shows the selected images. Figure 4.9 shows the correct
matched points of the multi-scale image matching algorithm for the selected
coarse and fine images. Figure 4.10 shows the results of the rematching

algorithm. The magenta plus signs are the points tracked by the KLT
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tracker and the points circled by yellow circles are the rematched points.
Figure 4.11 and Figure 4.12 show the individual 3D VRML models for
the coarse and the fine image sequences respectively. Table 4.3 shows the
information of the coarse and the fine image sequences for the “Steps” scene.
Figure 4.13 shows the combined 3D VRML model for the “Steps” scene.
Also, Table 4.4 shows the 2D and 3D scales approximated from the 2D
homography and the 3D homography respectively. Both homographies are
affine transformation, the approximated 2D and 3D scales can be obtained
by Equation 4.2 and Equation 4.3 respectively. Moreover, the computation

time for the “Steps” scene is shown in Table 4.5.

D) — (h3, + h3,) + V/(h3, + h3,)

s(3D) Z?:l V(b3 + h + hy)
3
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Figure 4.7: Frames for the “Steps” scene. 1st, 5th, 10th and 15th frames of
(Upper row) the coarse image sequence and (Lower row) the fine image sequence.

coarse

Figure 4.8: Selected images for “Steps” scene.

Table 4.3: Information of the “Steps” scene

Information Coarse Sequence | Fine Sequence]
No. of frames of the sequence 19 19

No. of requested features 2000 2000

No. of features tracked by KLT 419 888

No. of features selected by RANSAC 260 796

No. of 3D points 260 796
Selected image first image first image
Width of each image (pixel) 640 640

Height of each image (pixel) 480 480

Table 4.4: The scales approximated for the “Steps” scene

Information

Combined Model

2D scale approximated

2.96

3D scale approximated

2.80
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Figure 4.9: The result of the multi-scale image matching for the “Steps” scene.
(Upper) The coarse image, (Lower) the fine image.
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Figure 4.10: The result of the rematching algorithm for the “Steps” scene.
(Upper) The coarse image, (Lower) the fine image. The plus signs are the
points tracked by the KLT tracker and the points circled by yellow circles are
the rematched points.
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Figure 4.11: The 3D coarse model for the “Steps” scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model.
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Figure 4.12: The 3D fine model for the “Steps” scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model.
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Figure 4.13: The combined 3D VRML model for the “Steps” scene. (Upper) The
texture-mapped 3D model and (Lower) the wire-frame 3D model.
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“Box” Scene

This case shows the matching of the images using the multi-level image
matching method. Figure 4.14 shows the coarse and the fine image se-
quences for the “Box” scene. Figure 4.15 shows the coarse, middle and fine
images. Figure 4.16 and Figure 4.17 show the correct matched points of the
multi-scale image matching algorithm. Figure 4.18 shows the results of the
rematching algorithm. The magenta plus signs are the points tracked by
the KLT tracker and the points circled by yellow circles are the rematched
points.

Figure 4.19 and Figure 4.20 show the individual 3D VRML models
for the coarse and the fine image sequences respectively. Table 4.6 shows
the information of the coarse and the fine image sequences for the “Box”
scene. Figure 4.21 shows the combined 3D VRML model for the “Box”
scene. Also, Table 4.7 shows the 2D and 3D scales approximated from
the 2D homography and the 3D homography respectively. Moreover, the

computation time for the “Box” scene is shown in Table 4.8.
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Table 4.5: The computation time for the “Steps” scene

Step Time (sec)
KLT tracking for coarse model 41.55
RANSAC for coarse model 0.87
KLT tracking for fine model 40.63
RANSAC for fine model 0.11
3D reconstruction for coarse model 78.39
3D reconstruction for fine model . 205.34
Multi-scale image matching 175.81
Rematching 1.61
3D model registration 0.54
VRML modelling for coarse model 27.72
VRML modelling for fine model 126.38
Others 1.46
Total: 700.41

Figure 4.14: Frames for the “Box” scene. lst, 5th, 10th and 15th frames of
(Upper row) the coarse image sequence and (Lower row) the fine image sequence.
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coarse

middle

Figure 4.15: Selected images for the “Box” scene.

Table 4.6: Information of the “Box” scene
Information Coarse Sequence | Fine Sequence
No. of frames of the sequence 15 18
No. of requested features 2000 2000
No. of features tracked by KLT 790 837
No. of features selected by RANSAC 595 580
No. of 3D points 595 580
Selected image 6th image 15th image
Width of each image (pixel) 640 640
Height of each image (pixel) 480 480

Table 4.7: The scales approximated for the “Box” scene

Information Combined Model
2D scale approximated between coarse and middle 1.90
2D scale approximated between middle and fine 1.37
3D scale approximated 2.71
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Figure 4.16: The result of the multi-scale image matching for the “Box” scene.
(Upper) The coarse image, (Lower) the middle image.
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“Box” scene.

Figure 4.17: The result of the multi-scale image matching for the

(Lower) the fine image.

(Upper) The middle image,
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Figure 4.18: The result of the rematching algorithm for the “Box” scene. (Upper)
The coarse image, (Lower) the fine image. The plus signs are the points tracked
by the KLT tracker and the points circled by yellow circles are the rematched
points.



CHAPTER 4. EXPERIMENT 100

Figure 4.19: The 3D coarse model for the “Box” scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model.
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(Upper) The texture-

Figure 4.20: The 3D fine model for the “Box” scene.

mapped 3D model and (Lower) the wire-frame 3D model.
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Figure 4.21: The combined 3D VRML model for the “Box” scene. (Upper) The
texture-mapped 3D model and (Lower) the wire-frame 3D model.
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“Weight” Scene

Figure 4.22 shows the coarse and the fine image sequences for the “Weight”
scene. Figure 4.23 shows the selected images. Figure 4.24 shows the correct
matched points of the multi-scale image matching algorithm for the selected
coarse and fine images. Figure 4.25 shows the results of the rematching
algorithm. The magenta plus signs are the points tracked by the KLT
tracker and the points circled by yellow circles are the rematched points.
Figure 4.26 and Figure 4.27 show the individual 3D VRML models for
the coarse and the fine image sequences respectively. Table 4.9 shows the
information of the coarse and the fine image sequences for the “Weight”
scene. Figure 4.28 shows the combined 3D VRML model for the “Weight”
scene. Also, Table 4.10 shows the 2D and 3D scales approximated from
the 2D homography and the 3D homography respectively. Moreover, the

computation time for the “Weight” scene is shown in Table 4.11.
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Table 4.8: The computation time for the “Box” scene

Step Time (sec)
KLT tracking for coarse model 32.77
RANSAC for coarse model 0.39
KLT tracking for fine model 38.20
RANSAC for fine model 0.75
3D reconstruction for coarse model 126.45
3D reconstruction for fine model 148.08
Multi-scale image matching (Coarse to middle) 193.44
Multi-scale image matching (Middle to fine) 157.11
Rematching 2.04
3D model registration 1.21
VRML modelling for coarse model 76.95
VRML modelling for fine model 90.79
Others 2.55
Total: 870.73

Figure 4.22: Frames for the “Weight” scene. 1st, 4th, 7th and 10th frames of
(Upper row) the coarse image sequence and (Lower row) the fine image sequence.
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Figure 4.23: Selected images for “Weight” scene.

coarse

fine

Table 4.9: Information of the “Weight” scene

Information Coarse Sequence [ Fine Sequence
No. of frames of the sequence 20 12

No. of requested features 2000 2000

No. of features tracked by KLT 733 538

No. of features selected by RANSAC 481 432

No. of 3D points 481 432
Selected image 11th image 3rd image
Width of each image (pixel) 640 640
Height of each image (pixel) 480 480

Table 4.10: The scales approximated for the “Weight” scene

Information Combined Model
2D scale approximated 1.74
3D scale approximated 1.73
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Figure 4.24: The result of the multi-scale image matching for the “Weight” scene.
(Upper) The coarse image, (Lower) the fine image.
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Figure 4.25: The result of the rematching algorithm for the “Weight” scene.
(Upper) The coarse image, (Lower) the fine image. The plus signs are the
points tracked by the KLT tracker and the points circled by yellow circles are
the rematched points.
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Figure 4.26: The 3D coarse model for the “Weight” scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model.
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Figure 4.27: The 3D fine model for the “Weight” scene. (Upper) The texture-
mapped 3D model and (Lower) the wire-frame 3D model.
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Figure 4.28: The combined 3D VRML model for the “Weight” scene. (Upper)
The texture-mapped 3D model and (Lower) the wire-frame 3D model.
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Table 4.11: The computation time for the “Weight” scene

Step I Time (sec)
KLT tracking for coarse model 47.75
RANSAC for coarse model 0.57
KLT tracking for fine model 21.88
RANSAC for fine model 0.20
3D reconstruction for coarse model 135.19
3D reconstruction for fine model 74.73
Multi-scale image matching 162.36
Rematching 172
3D model registration 0.94
VRML modelling for coarse model 47.69
VRML modelling for fine model 50.49
Others 2.27
Total: 545.79

Summary

Compare with the coarse 3D models, the combined 3D models consist of
denser structure and better texture for the fine objects. It can show that
our proposed method can register and combine the fine 3D model with the
coarse 3D model, and reconstruct the denser 3D model for the whole scene.

However, our method does not handle the merging of the 3D meshes.
Therefore, there are splits at the boundaries between the coarse and the

fine 3D VRML models.

O End of chapter.
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Conclusion

This thesis proposes an alternative solution to the automatic coarse-to-fine
3D registration problem. The method merges the 3D structures recon-
structed from a coarse image sequence for a coarse (or large) scene and
a fine image sequence for a finer (or smaller) scene inside a scene of the
same environment. The coarse and fine models reconstructed are combined
to build a more detailed 3D model for the whole scene. This solution
does not require human interaction by giving correspondences between the
coarse image sequence and the fine image sequence. It only requires the
arrangement of the image sequences, and our system matches the image
sequences and integrates the coarse and the fine 3D models automatically.

The method first reconstructs the 3D models for the coarse image se-
quence and the fine image sequence individually. Subsequently, the linkage
between the two image sequences are built up by first matching one im-
age of each sequence using the multi-scale image matching method, and
then linking up the feature points of the sequences using the rematching
algorithm. Using this linkage, the 3D transformation between the two 3D

models is estimated, and finally we can combine the two 3D models and
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form the combined 3D VRML model.

Because of using the rematching algorithm to build the linkage between
the coarse and the fine image sequences, the image matching step is flexible
and is not restricted to one image matching algorithm. A lot of multi-scale
image matching algorithms can be used in our framework.

Two synthetic experiments and an experiment on real cases were held to
evaluate the method. The first synthetic experiment was used to evaluate
the rematching algorithm. It shows that the rematching algorithm accepts
small error on the 2D homography estimated by the multi-scale image
matching algorithm and small noise on the 2D feature points. But when the
error and the noise become larger, the probability that the rematching algo-
rithm successfully rematches the image sequences will drop. Therefore, the
multi-scale image matching algorithm used in the proposed method should
estimate an accurate 2D homography, and the feature point extraction and
tracking algorithm should provide accurate feature points for both image
sequences.

The second synthetic experiment was used to compare affine transforma-
tion with metric transformation for 3D model registration. The results show
that affine transformation is better than metric transformation in registering
two 3D models.

The real scene experiment shows that our proposed solution of coarse-to-
fine matching and rematching can automatically register the 3D structures
of a large scene and the fine object inside the scene. Hence, the 3D model

for the large scene with fine details can be recovered.
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5.1 Future Work

The following can be the directions of future investigation.

e Many image matching algorithms may be suitable for our method. Dif-
ferent matching algorithms such as [61, 79] can be further investigated

in future.

e The rematching algorithm requires an accurate 2D homography; oth-
erwise, the linkage will not be accurate enough for the 3D model
registration. A refining algorithm that refines the linkage can be

investigated in future.

e The assumption that the selected pair of images have to be taken in
similar view angles can be removed by using the affine image matching
algorithms (36, 2, 48], and the fundamental matrix instead of 2D
homography. But the rematching algorithm has to be updated for
the fundamental matrix. The affine image matching algorithms and

the new rematching algorithm can be further investigated.

e This project does not deal with the problem of 3D mesh merging. A
3D mesh merging algorithm with better texture morphing that creates

a better combined 3D model can be investigated in future.

e The proposed framework can be modified for more applications. One
of the applications is the automatic 3D registration for a planar back-
ground with non-planar 3D fine objects in the scene. This problem
can be further extended to the automatic 3D registration for the 3D
structure from the panorama around a fixed camera point for an indoor

environment with 3D detailed objects in the scene. The solution
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of the manual registration was proposed in [54]. An automatic 3D

registration for the problem can be investigated in future.

e The proposed method can be incorporated with the other approaches,
such as super-resolution and the approaches using edges and planes,
to obtain a finer and more accurate reconstruction with better texture

mapped model for large scenes.

O End of chapter.



Appendix A

Camera Parameters

This section describe briefly the camera parameters including intrinsic pa-

rameters and extrinsic parameters.

A.1 Intrinsic Parameters

The intrinsic parameters [78, 56] are a set of parameters characterizing
the optical, geometric and digital characteristics of the camera. For a

perspective (or pinhole) camera, we have the following intrinsic parameters:

1. Focal length of the camera, f.

2. The transformation between camera frame coordinates and pixel coor-
dinates. Let (Zimg, Yimg) be the coordinates of an image point in pixel
units in image reference frame with the coordinates (z,y) of the same
point in the camera reference frame. Then, they have the following
relation:

& = —(Timg — 0z)Sz (A.1)

Y= _(yimg - Oy)sy
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where (o0, 0,) are the coordinates in pixel of the image center, and

Sz, Sy) are the effective width and height of the pixel respectively.
Yy y

3. The geometric distortion introduced by optics. Since the quality of the
digital camera nowadays is good, the distortion due to optical effect

can be ignored.

For a perspective camera, we can define a matrix M;,, to include the

intrinsic parameters f, (0,0,) and (sz,s,) for linear matrix operation.

Mp=| 0 -L o, (A.2)
0 0 1

A.2 Extrinsic Parameters

As defined in (78], the extrinsic parameters identity the transformation
between the unknown camera reference frame and a known world reference
frame. The typical choice of notation describing the transformation includes
a 3-dimensional translation vector T, and a 3 x 3 orthogonal rotation matrix
R. T describes the translation between the origins of the reference frames,
and R describes the transformation between the corresponding axes of the
two reference frames.

From Figure A.1, suppose there is a transformation (R, T) from the
world reference frame to the camera reference frame, the coordinates of a
point P relative to the world reference frame and camera reference frame,

P, and P,, respectively, can be related by

P, = R(P,—T) (A.3)
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Figure A.1: Relation between camera and world reference frames.

O End of chapter.
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