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Abstract 

Given a source language term, machine transliteration is to automatically 
generate the phonetic equivalents in a target language. It is useful in many 
cross language applications. R,eceritly, there are increasing concerns about 
automatic transliteration, especially with languages with significant distinc-
tions in their phonetic representations, e.g. English and Chinese. Despite 
many cross-language applications in English/Chinese, machine translitera-
tion between the two languages has not been studied comprehensively. 

Existing English-Chinese transliteration techniques are typically based 
oil source-channel framework, e.g. IBM SMT model. The accuracy of this 
model is rather low. In this thesis, we propose to use a direct approach 
for Engiisli-to-Chinese transliteration. We propose two direct translitera-
tion models： In the first model, we model the problem as direct phonetic 
mapping from English phonemes to a set of rudimentary Chinese phonetic 
symbols plus dynamically discovered mapping units from training process. 
An effective algorithm for alignment of phoneme chunks is presented. In the 
second model, contextual features of each phoneme are taken into consid-
eration by means of Maximum Entropy formalism, and it is further refined 
with the precise alignment scheme based on phoneme chunks. We compared 
the direct approaches with the source-channel baseline implemented with 
Uie IBM SMT model, and showed that the second approach is significantly 
superior. 
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摘要 

机器音译就是根据发音将给定的源语言中的专有名词自动翻译成目标语 

言中对应的词汇。它在跨语言应用中有较多的用途。近来，自动音译的研 

究受到越来越多的关注，特别是当音译所涉及的两种语言在声音的表示方 

面有很大差别的情况，比如英文和中文。尽管关于中英文的跨语言应用研 

究有很多，但是这两种语言之间的机器音译还没有经过全面广泛的探索。 

典型的英中文音译技术是基于信 -源模型，例如，釆用 I B M统计机器翻 

译模型。这个模型应用在机器音译上准确率非常低。在本论文中，我们 

提出了釆用从英文到中文直接音译的方法。我们运用了两种直接音译模 

型：在第一个模型里，音译问题被建模成从英文音素集合到一个基本中 

文音素集合的直接映射，再附以从训练过程中动态探测得到的发音映射单 

元，并且我们展示了一个用于对齐音素群的有效算法。在第二个模型中， 

我们通过釆用最大熵理论考虑了每个音素所在的上下文特征，并且近一步 

使用音素群精确对齐的方法改善这个模型。我们比较了直接音译方法和釆 

用 I B M统计机器翻译技术实现的信-源模型系统，结果显示我们的第二个方 

法有显著的优势。 
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Chapter 1 

Introduction 

1.1 What is Transliteration? 
The adoption of a foreign name into one language is usually a process of ad-
justing its original pronunciation to suit the phonological regularities in the 
target language. This procedure of phonetically "translating" foreign names 
is called transliteration. For instance, English name "Britain" is transliter-
ated into Mandarin Chinese as “ 不歹ij颠，，(/bu lie diaii/i) , which undergoes 
significant transformations to accommodate the phonological characteristics 
of Chinese language. 

The growing trend of globalization demands effective and efficient world-
wide information access across language barriers. Automatic name transla-
tion mechanisms are recognized as important issues in many cross-language 
applications. Cross-lingual information retrieval (CLIR) involves keyword 
translation from the source to target language and document translation 
ill the opposite direction. Proper names are especially frequent targets in 
queries. Similar demands are also becoming imminent in machine trans-
lation (MT) and spoken language processing, such as cross-lingual spoken 
document retrieval and spoken language translation. Contemporary lexicon-
based translation techniques are ineffective as translation dictionaries can 
never be comprehensive for proper names. New names appear almost daily 
and they become unregistered vocabulary in the lexicon. This is known as 
the Out-Of- Vocabulary (OOV) problem in lexicography [16]. The lack of 
translation for OOV names hinders the performance of the underlying appli-
cations. One way to solve this problem is not to rely on a dictionary alone 
but to combine it with machine transliteration techniques [19 . 

1 Mandarin pinyin is used as phonetic representations of Chinese characters throughout 
this paper. For simplicity, we ignore the four tones in the pinyin system. 

1 



C H A P T E R . 1, INTRODUCTION 2 

Machine transliteration is classified in two directions: forward and back-
ward. Given a name pair (0，t), where 0 is the original in one language and 
t is the transliterated name of 0 in another language, forward transliteration 
(or transliteration) is converting from 0 to t; and backward transliteration 
(or back-transliteration) is retrieving the correct 0 given t. For example, 
"Britain—> 不歹Ij真页“is a typical forward transliteration pair and the corre-
sponding back-transliteration is “ 不歹ij颠—Britain". 

Regardless of the directions, machine transliteration can also be classi-
fied in terms of the level of units being transliterated, i.e. phoneme-based 
and grapheme-based, which are sometimes referred to as the pivot and di-
rect'^ methods [21], respectively. Phoiierne-based transliteration is done in 
steps: (a), convert the words into pronunciation symbols, i.e. phonemes; 
(b). transliterate the phonemes of the source language into the counterparts 
ill the target language; (c). convert the resultant phonemes to the target 
words. In grapheme-based method, source words are transcribed to the tar-
get words based on graphematic units directly without making use of their 
phonetic representations. 

In our research, we concentrate on phoneme-based techniques for auto-
matic transliteration of foreign names in English to their Chinese counter-
parts, i.e. forward transliteration. 

1.2 Existing Problems 
Unlike other research areas in human language technologies, machine translit-
eration is relatively immature. It suffers from the following problems: 

1. Ambiguous Standards: In practice, transliterations are hand-coded 
using rules of thumb. Existing rule bases are compiled manually. They 
are not easy to expand and are mostly subjective, i.e. they are sub-
jected to the interpretation of individual producers. De facto stan-
dards have been established, but the rules are often inconsistently vised. 
Dialectical discrepancies may further aggravate the inconsistency of 
transliteration standards. Table 1.1 lists some of these examples ap-
pearing in the three major Chinese language communities: mainland 
China, Hong Kong and T a i w a n � � D u e to dialectical differences, each 
region uses its respective set of rules for transliteration. However, we 

^Note that the direct method here refers to transliteration based on graphemes directly 
instead of involving phoneme-level representations. It is not the direct transliteration model 
we will propose in this thesis. See later chapters for details. 

3The regional transliterations and their usage shown in the table were extracted from 
the major news websites of the three regions using a search engine. 
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Original Name Chinese Transliterations Mainland Hong Kong Taiwan 

艾塔 /ai ta/ I x/ 
A , � ^ 埃塔 /ai ta/ y/ V ~ ~ 

qaeda 阿盖达 /a gai da/ — ^ 7 
盖达 /gai da/ 丄 yj 

, /ai ta/ v/ s j 
(Mohammed) Atta f \ ； ^—— 

阿塔 / a ta/ V ± V 
本拉登 /ben la deng/ y/ yj 

」 宾拉登 /bill la deng/ y/ 7 V 
Laden 本拉丹 /ben la dan/ ^ 一 ^ 

宾拉丹 /bin la dan/ 一 — ^ 
安然 /an ran/ •sj ~ •s! s j 

/an long/ ^ V y/ 
Enron 安隆 /an long/ � � %/ 

恩龙 /en long/ ^ V ~ 
恩隆 /en long/ V 
侯塞因 /hou sai yiii/ � � 

Hussein 海珊 /hai shan/ V 
珊 /ha shan/ — y/ 

因特 (网） / y i n t e ( w a n g ) / 7 ~ ~ V 
〃 ' ) 英特 (网） / y i n g te (wang)/ ^ V V 

萨斯 /sasi/ V V V 
SARS 沙士 / shashi / y/ _ y/ V ~ 

沙斯 /sha si/ I v̂  I I V̂  

Table 1.1: Some transliteration confusions found in Chinese websites and 
news media. 

observe that multiple transliterations of the same original name coexist 
even in the same region. Moreover, transliteration initially produced 
by one region could sometimes spread over the entire communities. The 
transliterated word would then be assimilated as the equivalents of the 
local transliteration in other regions. Thus, the established rules and 
standards actually have been undermined by the existent translitera-
tion discrepancies. 

2. Specific to Applications: Several methodologies for English-Chinese 
transliteration have been proposed for specific applications, such as in-
formation retrieval [8, 22, 23, 33], acquisition or extraction of equiva-
lent word pairs from parallel corpus [14，20], and construction of named 
entity translation dictionary [13, 34]. Since they are specific to desig-
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nated applications, comprehensive experiments evaluating translitera-
tion accuracy, e.g. comparing machine-generated transliteration with 
the standard counterparts, are usually missing. Beside [23, 33], which 
present syllable errors based on edit distance, others only evaluate the 
performance of the underlying application, e.g. precision/recall in in-
formation retrieval. Thus, true transliteration accuracy practically re-
mains unknown. 

3. Lack of Comparisons: There is neither a widely recognized bench-
mark nor consistent measurement for machine transliteration, making 
it hard for comparative evaluation. Furthermore, the evaluation process 
often requires human judgement. The accuracies of existing transliter-
ation techniques are vinsatisfactory. But there is no useful guidelines 
to improve them. 

1.3 Objectives 
Our method is phoneme-based. Grapheme-Phoneme transformation and 
Pinyin-to-Hanzi'^ conversion applied in the phonerne-based methods are ex-
tensively studied in other areas like Text- To-Speech (TTS) in speech synthesis 
and Speech- To- Text in speech recognition. In our research, we focus on the 
intermediate processes for transliterating phoneme pairs. Addressing the 
aforementioned problems, in this thesis, we propose to: 

• Investigate existing approaches for English-Chinese transliteration tasks 
and identify their pitfalls; 

• Identify the central problems of phonetic transliteration between En-
glish and Chinese phoneme sequences. 

• Apply the well-known methodologies as the baseline and propose im-
proved models to overcome the problems identified. 

• Compare the transliteration performance between the proposed meth-
ods and the baseline model by experimentations. 

1.4 Outline 
111 this introductory chapter, we have given an overview and definition of the 
machine transliteration problem. 

4l.t; is also referred to as the process converting generalized initial and final (GIF) 
symbols to Chinese characters. 
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Chapter 2 presents a survey on the existing transliteration methodologies. 
We will highlight the related contributions for Engiish-Chinese translitera-
tion. Our stress will be given to the well-known source-channel model and 
an English-to-Chinese transliteration system based on it [33]. 

Chapter 3 addresses the limitations of the source-channel model for English-
to-Chinese transliteration problem. The phoneme transliteration module de-
scribed in [33] is implemented using IBM Statistical Machine Translation 
(SMT) toolkits as the baseline for the comparative experiments with our 
proposed approaches in later chapters. The preliminary experimental results 
on I,his baseline is presented. 

Chapter 4 proposes a direct transliteration model Direct-1 to partly over-
come the problems faced by the source-channel model. The experiments on 
the Direct-1 model are conducted, which include but are not limited to the 
comparisons with the baseline system. 

Chapter 5 proposes an improved direct transliteration model, which is 
referred to as Direct-2, by incorporating flexible contextual features of 
neighboring phoneme dependencies. Then the model is further refined by 
Direct-2R using a precise alignment scheme. Comparative experiments on 
the Direct-2 and the Direct-2R are conducted. Their improvements on 
performance are justified compared to the baseline. 

Finally, Chapter 6 summarizes the thesis and discusses future extensions 
and applications of the proposed approaches. 

• End of chapter. 



Chapter 2 

Background 

Several approaches have been proposed for automatic name transliteration 
between various language pairs in both directions. Regardless of languages 
and directions, the underlying mathematical models are more or less based 
oil statistics, where a number of previous works typically employed source-
channel framework as their probabilistic foundation. In the English-Chinese 
arena, although approaches varied with applications employing translitera-
tion, statistical strategies also dominated other methods. This chapter will 
first retrospect previous works based on source-channel model, and then in-
vestigate the major contributions in English-Chinese arena, in which we will 
highlight statistical approaches. Note that there are various other approaches 
proposed for transliterating English to Asian languages, such as Korean and 
Japanese. Because they were implemented and tested specifically for the tar-
geted language pairs, it would be hard to directly compare these systems with 
that for English and Chinese. Thus, we focus our research on comparisons 
of methods dealing with our designated languages. 

2.1 Source-channel Model 
Based on the Bayes，theorem, [19] described a generative model, in which 
tliey adopted finite state transducers and a decoder to transform transliter-
ated names in Japanese katakana back to their origins in English. Given a 
katakana string o observed by an optical character recognition (OCR) pro-
cess, the system aimed to find the English word w that maximizes P{iu\o) 
19]: 

argma^ P{w\o) = d^rgmax {P{w) . P(e\w) . P ( j | e ) . P{k\j) . (2.1) 
11) 111 

where the five probability distributions denote: 

6 
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F{w)— the probability of the generated written English word sequence w; 

F(e\iv)— the probability of pronounced English word sequence w based on 
English sound e; 

— the probability of converted English sound units e based on Japanese 
sound units j\ 

P(k\j)——the probability of the Japanese sound units j based on the katakana 
writing k; 

P{o\k)——the probability of katakana writing k based on the observed OCR 
pattern o. 

The individual models were impleinerited in a weighted finite state accep-
tor (WFSA) for P{iu) and the four weighted finite state transducers (WFST) 
for the other four distributions to map corresponding source sequences to 
the targets. The five automatas were created using different data sources: 
P(w) was estimated adopting a simple iinigram scoring method by using a 
262,000-entry frequency list; was built from the on-line CMU pronun-
ciation dictionary without stress marks; P{j\e) was approximated using EM 
algorithm from 8,000 pairs of English-Japanese sound sequences; P{k\j) was 
constructed manually according to Japanese sound to katakana rules; and fi-
nally, P{o\k) was approximated by estimating the symbol-mapping probabil-
ities between the katakana symbols in the 19,500 original katakana words and 
the OCR-generated katakana symbols from a printout of those words. Using 
a general composition algorithm, an integrated model combining the five sep-
arate automatas was formed. They implemented k-shortest-paths algorithms 
for extracting the best transliterations from the large resulting WFSA given 
a source katakana word. 

In general, the generative model above can be simplified as a maximiza-
tion problem without intermediate steps, assuming that the parameters could 
be reliably obtained from the given source and target name pairs: 

argrna^Pr(T|5) = argrnax{Pr(6' | r) x P r ( r ) } (2.2) 
T T 

where we use Pr(.) to denote a general probability distribution, and S and 
T are the source and target names, respectively. This fundamental equation 
is also referred to as source-channel model. 

19)'s method is the first attempt in applying statistics to the translit-
eration problem. Some steps in the model have to be carried out by hand. 
Errors could propagate between generations. Enlightened by their initia-
tives, the source-channel model was extended for different tasks: [32] applied 
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source-channel based automat,as to Arabic-to-English back-transliteration. 
1] used the same model to combine phoneme-based and grapheme-based ap-

proaches for Arabic-to-English transliteration. A similar model was proposed 
by [5] to combine the phoneme and grapheme sources for Japanese-to-English 
back-transliteration. It was also applied to English-Korean language pairs: 
English-to-Korean transliteration by [21, 28] and Korean-to-English back-
transliteration by [15] used pure statistical estimation rather than partially 
hand-coded generative automatas. 

2.2 Transliteration for English-Chinese 
Previous models for Engiish-Chinese transliteration/back-transliteration vary 
with the application domains. 

2.2.1 Rule-based Approach 

[34] was the first contribution developing a grapheme-based transliteration 
mechanism from English proper nouns to Chinese for a multilingual text 
generation system. In this approach, they used handcrafted rules. The 
algorithm first syllabified English words based on a rule set and instance 
learning. The syllabification module identified syllable boundaries based on 
consonant clusters and vowels. A sub-syllabification procedure then divided 
each identified syllable into the form of consonant-vowel, i.e. conforming to 
the mono-syllabic nature of Chinese. The sub-syllables are then mapped to 
the pinyin equivalents and consequently to the Chinese characters by means 
of two handcrafted mapping tables. This approach is intensively ad-hoc and 
dialect dependant. No report on its performance was provided. 

2.2.2 Similarity-based Framework 

8, 22] proposed a similarity-based method for CLIR to find the best match-
ing words from a set of target candidates in English given a Chinese query 
containing foreign proper names. Similarity-based approaches were tested in 
the grapheme level as well as phoneme level. Piirthermore, [22] addressed 
the problem of ad hoc assigned phonetic similarities by developing a learning 
algorithm to automatically acquire the similarities from a training corpus. 
With the learning algorithm, the labor of assigning phonetic similarities be-
tween two languages could be removed leading to improved transliteration 
performance. The accuracy was measured by the average rankings of the 
correct candidates found. Compared with the generative model [2, 19，32 
for other language pairs, the similarity-based framework directly addressed 
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the problem of similarity measurements, and could be evaluated without hu-
rriari judgment [22]. However, this approach assumed that a set of target 
candidates could be identified first and could only find the best matching 
words from the candidate set. The mechanism would not work if the correct 
l,arget was not included in the candidate set. Thus, its application is limited. 

2.2.3 Direct Semi-Statistical Approach 
23] presented a learning algorithm for transliteration of OOV names from 
English to Chinese in the context of Cross-Language Spoken Document Re-
trieval. For clarity, the process is illustrated by Figure 2.1, which is excerpted 
from [23 . 

They first used a set of handcrafted phonological rules by adding or drop-
ping proper phonemes to normalize English syllables into consonant-vowel 
format. This aimed to overcome some of the phonological differences be-
tween the two languages. The process of cross-lingual phonetic mapping 
(CLPM) then applied a set of automatically generated one-to-one phonetic 
transformation rules to map English phonemes to their Chinese counterparts. 
These rules were learned from aligned parallel data using transformation-
based error-driven /eamm^(TEL) [6]. The pinyin syllabic constraints were 
then added to the Chinese phoneme sequences generated by CLPM for elimi-
nating the errors in the sequences. A phoneme lattice of pinyin sub-syllables 
were generated based on a confusion matrix obtained from the mapping dif-
ferences between reference phonemes and output phonemes. They searched 
the phoneme lattice exhaustively for Chinese phonetic sequences that could 
constitute legitimate syllables to create a syllable graph. Finally, a syllable 
bigrarn language model was applied together with the probabilities derived 
from the confusion matrix to search the graph to find the most probable 
syllable sequence. The transliteration performance measured by the syllable 
accuracy of was 47.5%. 

One shortcoming of this method is that the manually enumerated rules 
initiated for CLPM are unable to balance all the phonological discrepancies 
of two names. This may introduce errors to probability estimation in later 
stages. For example, the following rules: 

[rule 1] Insert a reduced nuclei /ax/ between clustered consonants. 
Clinton-^/ir L IH N T AH N/-^/K acc L IH N T AH N/— /k e 1 in d 
un/ 

[rule 2] Duplicate nasals whenever they are surrounded by vowels. 
Diana->/D AY AE N AH/->/D kY KE N N AH/-^/d ai an n a/ 

could be easily undermined by the following exceptions, respectively: 
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OOV names 

Y 
Detect Romanized Chinese ^ Chinese syllables 

names 

，f Foreign names 

Acquire English pronunciation by: 
• Pronunciation lexicon lookup or 
• Automatic letter-to-phoneme transformation 

English phonemes, e.g. /K R IH S 
^ r T AA F ER/ are generated for 

Apply cross-lingual phonological rules, Christopher 
e.g. syllable nuclei /ax/ insertion 

English phonemes, e.g. /K 
^ I ^ R IH S ax T AA F ER/ 

Cross-lingual phonetic mapping: English 
phonemes to Chinese phonemes (one-to-one 

mapping rules learned using TEL ) 

Chinese "phonemes", 
t e.g. /k e I i s i t uo f u/ 

Generate Chinese phoneme 
lattice and syllable graph 

1 r 
Search Syllable graph with syllable 

bigram language model 
y 

Chinese syllables, N-best output 
(N=1), e.g. Ike Ii si tuofu/ 

(克里斯托弗） 

Figure 2.1: The transliteration process in [23 
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[exception 1] Clint ^/K L IE N r/^/k e 1 in t e/ 

[exception 2] Canada—^/K AE TV AH D AH/—^/j ia n a d a/ 

Unlike the consonant cluster / K L/ obeying rule 1，where an / a x / should be 
inserted between them, such an insertion is not required in the similar cluster 
of / N T / ill the example of exception 1. Likewise, the nasal / N / surrounded 
by vowels also need not to be duplicated in the example of exception 2 as 
opposed to the stipulation of rule 1. 

In summary, this method, which was not presented as a model in [23], 
could be generalized using the following equation: 

argmax Pr(T|6') = argrna^c {Pr(T|5') x Pr(T)} (2.3) 
T T 

This equation is beyond Beyes' theorem. Eq.(2.3) is basically a direct translit-
eration model which will be discussed in detail in later chapters. 

2.2.4 Source-channel-based Approach 

Based on the source-channel framework, [33] described a fully data-driven ap-
proach for English-to-Chiriese transliteration using the state-of-the-art sta-
tistical machine translation (IBM SMT) model [7]. We will compare our 
work closely with [7] as their system adopts widely recognized model and 
their research objectives are similar to ours. 

The IBM SMT model is based on the well-known source-channel frame-
work, which was initially tested for Prench-to-English machine translation. 
The model was intensively studied by quite a number of researches in machine 
translation [1, 12, 27, 25]. When applied to English-to-Chinese translitera-
tion, the fundamental equation is as follows: 

C = argmaxFT(C\E) = argmax{Pr(£: |C) x Pr (C)} 
c c 

= a r g r n a x U ( e 产 丨 x p ^ ( c P ) } (2.4) 
cfl L 

where E — e严 denotes a |E|-phorieme English word as the observation on 
channel output, and C = c P represents E,s 卜phoiierne Chinese transla-
tion by pinyin as the source of channel input. The channel decoder reverses 
the direction, i.e. to find the most probable input pinyin sequence given an 
observation E. The posterior probability Pr(C|丑)is indirectly maximized by 
optimal combination of the transliteration model P r ( ^ | C ) and the language 
model Pr(C). We use p{.) to denote model-based probability distributions 
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Training Corpus 
Given English Name 

(Floyd 佛洛伊德) 

(Clinton 克林顿） "I 
(Benjamin 木杰明） I —— 4 4 

... Preprocessing 
{Festival Speech Synthesis} 

. ^ 

i ； , 
，『 Transliteration Model Pr(E\C) 

" " " ^ ^ {GIZA++} • Channel Decoding: Global Search 
I {USC-ISI Rewrite Decoder} 

Dictionary ^ 
J Chinese Language M o d e l / r r q C = arg max {Pr( C ) • P r ( … C ) } 

{CMU-Cambridge LM Toolkits) • 

i , 
Postprocessing 

+ 

Chinese Transliterations 

Figure 2.2: English-to-Cliiriese transliteration system [33] based on IBM SMT 
model 

with particular assumptions in contrast to the general probability distribu-
tions Pr(.). 9 and 7 are the parameters associated with the two models 
respectively. 

The transliteration process is illustrated in Figure 2.2. The transliteration 
model Pr(£^|C) was trained from name pairs represented in International 
Phonetic Alphabet (IPA) symbols at the English side and pinyin notations 
at the Chinese side. Standard bootstrapping of the IBM translation models 
using G I Z A + + � [ 1 ] was applied in the training process. Specifically, 5 EM 
iterations of Model-1 followed by 5 of Model-2, 10 of Model-HMM and 10 
of Model-4 were used. The Language model Pr(C) was trained on pinyin 
vocabulary using trigram of pinyin symbols with Good- Turing smoothing and 
Katz hack-off provided by CMU-Cambridge Language modeling toolkits^ [9 . 
Searching was done by using USC-ISI Re Write Decoder^ [12]. These are 
standard packages for IBM SMT model training and testing, which will be 

1 h t tp : / /www. i s i . edu /�och /GIZA++ .h tml 
^http://rni.eng.earn.ac.uk/~prcl4/tookit.html 
^http://www.isi.edu/license-sw/rewrite-decoder/ 

http://www.isi.edu/%e3%80%9coch/GIZA++.html
http://rni.eng.earn.ac.uk/~prcl4/tookit.html
http://www.isi.edu/license-sw/rewrite-decoder/
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System Training Size Test Size Pinyin Errors 
2 m i m ^ 52.5% — 

MT [33] 2233 1541 — 50.8% “ 
Big MT [33] 3625 250 49.1% 

Table 2.1: Comparisons presented by [33] on error rates between transliter-
ation systems, namely [23] and [33 

briefly introduced in the next chapter. Note that Festival speech synthesis 
system^ was employed to convert English names into their corresponding 
phonetic representations. 

Experimental Study 

The method proposed by [23] was compared with this system by [33] using 
the same data set. The performance was measured by pinyin error rates 
with edit distance. The result is shown in Table 2.1. There are at least three 
noticeable observations from the experiment: 

1. Small MT and [23] shared the same data set for training and testing. 
Source-channel approach showed slightly better results. However, since 
the two systems employed different letter-to-phoneme generators, it 
was unclear whether they distinguished due to grapheme-to-phoneme 
generation, or the phoneme transliteration process or both; another 
possible reason might be different language models used, i.e. syllable 
bigram by [23] and symbol trigram by [33], but it was not conclusive 
since the two language models differed not only from length of grams 
n, but also from level of grams considered, i.e. syllable or sub-syllable 
(symbol). 

2. Better performance was observed in Big MT. Big MT is based on the 
same implementation as Small MT, except a different and larger train-
ing set and a smaller testing set. Thus it was evident that a larger train-
ing set could probably yield better results. But this shallow comparison 
could not provide useful guidelines for identifying and improving the 
intrinsic deficiencies in the underlying model. 

3. Edit distance based measurement may be not effective enough to dif-
ferentiate the performance of the two transliteration systems since the 
criteria is relatively loose. Even though the edit distance error of the 

4 htt p: / / fife • speech. cs .emu .edu/festival / 
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two systems is close, true performance on accuracy may be even larger. 
We will testify this supposition in later chapters. 

Other Remarks 

Back to the source-channel model, it was initially proposed for backward 
transliteration from Japanese to English origins [19], in which the reversed 
prior probability P r ( J 间 can naturally coincide with the original direction 
ill producing transliterations by human translators, i.e. the model still con-
ceiil,rates on how to produce J given E origins. When the model is applied 
to forward transliteration, however, it should be noted that the conditional 
probability P r (^ |C ) in Eq.(2.4) is an opposite estimation of actual transliter-
ation. Conditioning on C, one has to consider how probable to produce each 
given pinyiri symbol from certain English phoneme(s). It is intuitively uri-
11 at viral and more seriously, error-prone for forward transliteration due to the 
difficulties of identifying mapping relationships conditioning on individual 
target symbols (see Section 3.2). 

2.3 Chapter Summary 
We have summarized the previous techniques for machine transliteration. 
We paid much attention to source-channel based and other statistical ap-
proaches, particularly on the contributions of [23] and [33] for English-to-
Chinese transliteration. Statistical approaches have obvious advantages: 
They are more extendable as they are data-driven, and can remove ad hoc 
procedures in rule-based methods; they can readily tolerate existing translit-
eration discrepancies; they are capable of both producing transliterations and 
recognizing transliterations compared to similarity-based approaches. We 
highlighted the system applying the IBM SMT model. We will proceed to 
use this well-known model as our baseline. 

• End of chapter. 



Chapter 3 

Transliteration Baseline 

Before we proceed to propose a new transliteration model. We will analyze 
the widely used IBM statistical machine translation (IBM SMT) system and 
identify its limitations in Engiish-to-Chinese name transliteration. In this 
chapter, we replicate the system described by [33] using IBM SMT. This 
implementation provides the baseline for our research. 

3.1 Transliteration Using IBM SMT 

3.1.1 Introduction 
IBM SMT model is a well-established language-independent probabilistic 
framework for translating a sentence from a source to a target language 
according to the statistical translation relations acquired from bilingual cor-
pora. SMT views any target language word as a potential translation of any 
word in the source language [1]. The probability distribution in Eq.(2.2) is 
over all pairs of words. Given S�the model can output T which maximizes 
Pr(T|5'). The priori Pr{S\T) (i.e. the translation model) works for ensuring 
that T is normally interpreted as S but not others, while P[T) (i.e. the 
language model) ensures the output T natural and grammatical. Training 
algorithms are required to fix two models' parameters, and a decoding algo-
rithm is needed for searching the most probable T. The algorithms are imple-
mented in GIZA++ for translation model training, CMU-Cambridge toolkits 
for language model training and USC-ISI Rewrite Decoder for searching. 

Simply and uncritically using the SMT toolkits, [33] didn't relate the 
model with enough information concerning its application to Engiish-to-
Chinese transliteration. It is unclear about its operations over phonemes 
and its appropriateness for this yet another different task. We therefore at-
tempt to identify the limitations of the model for this application and provide 

15 
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useful guidelines for improvements. In this study, S and T correspond to En-
glish and Chinese respectively, and sentences for translation are reduced to 
phoneme sequences and words in sentences are reduced to phonetic units (see 
Eq.(2.4)). 

3.1.2 G I Z A + + for Transliteration Model ing 
GIZA++ [25, 27] is an extension of the GIZA program [1] (part of the SMT 
toolkit E G Y P T � ) . We applied the toolkit to transliteration model training. 
GIZA++ reversely considers how transliteration can be done from target 
pinyin symbol sequences back to source English phoneme sequences. Here 
source and target refer to Chinese and English respectively. The toolkit im-
plements the SMT alignment models of Model-1 through Model-4 described 
ill [7] and Model-HMM in [31], in which the training is typically carried 
out as a bootstrapping process starting from a simple model toward more 
complex models to iteratively improve alignments between parallel phoneme 
sequences until the EM algorithm converges to the Viterbi alignment of all 
pairs [1, 18，33]. These models differ from alignment details and parame-
ters in terms of the correspondence defined between phonetic units in the 
pronunciation sequences of given name pairs. 

Alignment Scheme 

We first exemplify Model-3^ to illustrate the typical pairwise alignments and 
types of dependencies provided in IBM SMT model. A good alignment over a 
pair of phoneme sequences that obtained from GIZA++ training is shown in 
Table 3.1^. Conditioning on the pinyin side, each English phoneme is aligned 
to only one pinyin symbol. The numbers are the positions of phonetic sym-
bols in the respective sequences. If a pinyin symbol has • English phonemes 
aligning to it, it has a fertility of If it remains unaligned to any English 
phoneme, it is known as zero-fertility. Likewise, if an English phoneme is 
left unaligned, it is called NULL-generated. For example, / i / is zero-fertility, 
which is aligned to the mute £ � / a n / has fertility 2, other pinyin symbols 
have fertility 1 and / D / is NULL-generated, which is aligned to the NULL 
symbol. Note that position 0 is reserved for all NULL symbols. 

�http://www.clsp.jhu.edu/ws99/projects/rnt/toolkit/ 
^Although Model-3 currently is not supported by G I Z A + + any longer, the understand-

ing of this typical model helps know all the others. We hence exemplify it here. 
•^Lowercase letters denote pinyin symbols. Capitalized letters are English phonemes 

represented by computer-readable IPA notations-APRABET. 

http://www.clsp.jhu.edu/ws99/projects/rnt/toolkit/
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Stanford 
T 1 I 2 I 3 ~ 4 I 5 I 6 I 7 
S £ T AE N F ER D 

s i t an f u null 
1 2 3 4 5 6 0 

斯坦福 

Table 3.1: Example of Phoneme Alignment in Model-3 

To produce the corresponding English phoneme sequence of a pinyin sym-
bol sequence without knowing the alignment in advance, a stepwise decision-
making process is used. The process assumes a set of model parameters: 

• C: Chinese pinyin symbol sequence. 

• E: English phoneme sequence. 

• Q： The zth pinyin symbol. 

• Cj� The j t h English phoneme. 

• I: The number of symbols in the pinyin sequence. 

• m: The number of phonemes in English phoneme sequence. 

• A: Alignment between C and E, a vector of integers A = {ai，<22,..., a ^ } 
where 0 < a j < I. 
Example: A — {1,3,4,4，5，6,0} given the alignment in Table 3.1. 

• (ij: The pinyin position connected to by the j t h English phoneme in 
alignment A. 
Example: a\ = 1, = as = <24 = 4, as 二 as = 6, a? = 0 

• Ca . ： The actual pinyin symbol connected to by the jth English phoneme 
in alignment A. 
Example: Ca�^ = Ca^ = / a n / 

• (pi� Fertility of pinyin symbol q where 1 < z < given the alignment 
A. ‘ ‘ 

• 00: Fertility of NULL symbol, also be the number of NULL inserted. 

• n((f)ilci): n table—fertility probability of pinyin symbols. 
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• Pi, po: p t ab leprobab i l i ty of inserting or NOT inserting NULL after 
a pinyin symbol, po = 1 — pj. 

• t{ej\ca.)'. t table — probability of translating the pinyin symbol to the 
English phoneme under the alignment A. 

• d(J\aj, I, m): d table — Distortion probability of English phonemes not 
generated by NULL, j is the target phoneme position, a j is the position 
in the pinyin sequence of the symbol that generated the jth English 
pi ion erne now being placed, given the alignment A. 

The decision-making process proceeds as follows: 

1. Every pinyin symbol q in C is assigned a fertility (pi according to prob-
ability table n{<j)i\ci). 4>.i — m. 
Example: /s/ < I j i / d 0, A / I Jan/ ：< 2 ’ / / / d l j u / < 1("」,， 
denotes fertility) and rJi 二 6, or other possibilities accordingly. 

2. Make a new C sequence by deleting pinyin symbols with fertility zero, 
copying symbols with fertility one, and duplicating symbols with fer-
tility two, etc. 
Example: /s i t an f u / ^ / s t, an an f u / or other possibilities accord-
ingly. 

3. After producing each pinyin symbols in the new sequence, make a de-
cision to insert � number of NULL symbols with probability pi or not 
(insert) with probability po. The total number of C symbols then be-
comes rn 二 + The NULL symbols will finally be used to produce 
NULL-gerierated English phonemes. 
Example: /s t an an f u /—/s t an an f ii null/. Note that the insertion 
is attempted at every possible position accordingly. 

4. Perform replacement of each symbol in C with an English phoneme 
according to the probability table t{ej\caj)^ including NULL symbols. 
Example: /s t an an f u null/^/S T AE N F ER D/ or other possi-
bilities accordingly. 

5. Assign English phoneme positions to those phonemes not generated by 
NULL according to the probability table d(j\aj, l^rn). Note that this 
step is for sentence translation and may be ineffective since the order 
of phoneme pairs of the two languages are strictly sequential without 
distortion. 
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6. Assign English phoneme positions for the NULL-generated phonemes. 
They should fall into � empty positions with equal probability 1/00!. 

7. Output the generated English phoneme sequence. 

These steps are modeled as a generative stochastic process. It starts from 
a given C and results in different choices of E as well as different alignments 
A o^ E with C. The probability p{E\C) is the summation over all possible 
alignments A: 

P(E\C) = Y:P{E.A\C) (3.1) 

p{E, A\C) is symbolized as the following probability by Model-3 [1, 7, 18]: 

I I 
p{E,A\C) = X 

i二0 

( � _ 如 ) X 
V 於 。 乂 
m 

E ^ f e k a , ) X 

丄 

rn n (3.2) 

where the factors separated by x denote fertility, NULL-insertion, transla-
tion, distortion of NULL-generated phonemes and distortion of non-NULL 
generated phonemes in terms of the generative decisions above. In this re-
gard, Model-3 is a zero-order dependency and many-to-one (from source to 
target phonetic units) stochastic alignment model allowing for distortion of 
target symbol positions. 

Other models are somewhat different from Model-3, which are briefly 
introduced as follows: 

• Model-1 only uses a t table, and is a zero-order dependency and one-
to-one alignment model, assuming a uniform alignment probability [7]： 

1 m. 
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• Model-2 is also zero-order HMM and one-to-one alignment model, which 
uses t table and alignment probability d{aj\j, /, m) instead of distortion 
probability d{j\aj, l ,m) [1, 7]: 

m 
p{E,A\C) 二 J ] Z(ej|c�.)a(aj|j,Z，m) 

• Model-HMM is a first-order HMM and one-to-one alignment model, 
which uses t table and assumes alignment position a j depends only one 
its previous alignment position a^-i [31]: 

m 

j=m 

• Model-4 is extended from Model-3, which does not use distortion ta-
ble d, but instead differentiates permuting English phonemes that are 
heads, non-head arid NULL-generated. The permutation encourages 
the adjacent pinyin symbols to translate into adjacent English phonemes. 
This is more appropriate than Model-3 which allows for distortions re-
quired in translation but unnecessary in transliteration. However, it is 
also a zero-order dependency and rnany-to-one alignment model. See 
7, 12] for details. 

Remarks 

The model uses many stochastic parameters, catering for the randomized pre-
sentation and positioning of unaligned words in machine translation. How-
ever, these parameters and operations may be ineffective when the model is 
applied to transliteration. We noticed that the following operations tend to 
be inaccurate: (a), the zero-fertility pinyin symbols are deleted in step 2, 
which should be somehow (actually randomly) reproduced during decoding 
stage; ( b ) . � NULL symbols are inserted with the probability po in step 
3. The positions for insertion are determined in terms of parameters � , p o 
and p\ by probing every possible position in the source sequence; (c). each 
NULL-generated English phoneme in step 4 is assigned one of the � posi-
tions with probability 1/</>•! in step 6. Then we would naturally raise the 
(question: if the appearances and positions of unaligned pinyin symbols and 
English phonemes were not stochastic, where should they practically go? Or 
what could be a more precise decision-making process? 
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3.1.3 CMU-Cambridge Toolkits for Language Model-
ing 

The CMU-Carnbridge language modeling toolkit was released for facilitating 
the construction and testing of n-gram language models. It is currently used 
by many institutions worldwide. Its usage details can be found in [9 . 

We use the toolkit for training the target language model based on tri-
grarns of pinyin sub-syllables (initials and finals, see Section 3.3.1). The 
mjDdmum likelihood estimate is biased high for observed grams and biased 
low for unobserved ones. To correct this bias, smoothing techniques are used 
to redistribute some probability mass from the observed grams to the unseen 
ones. Good-Turing discounting and Katz back-off [9, 33] are applied for re-
distribution of probability mass toward unobserved trigrams in the training 
data. 

3.1.4 R e Write Decoder for Decoding 
Rewrite Decoder includes probabilistic decoding algorithms used to yield the 
most likely machine translations according to the previously trained param-
eters of the translation model and language model. Given a new English 
phoneme sequence, the decoder searches for the pinyin symbol sequence that 
maximizes p(C\E) in terms of Eq.(2.4) where p{E\C) is the summation of 
p{E, A\C) over all alignments A shown as Eq.(3.1). Because the sum in-
volves significant computations, it is typically avoided by instead search for 
an < C, A > pair that maximizes • p{C) [12:. 

The solution was built incrementally by applying operations to each sub-
set of input phonemes and iteratively testing partial hypotheses generated ac-
cording to the parameters previously learned until optirnality/sub-optimality 
is reached. There are four possible operations [12]: 

• Add adds a new pinyin symbol and aligns a single English phoneme 
to it. 
Example: / S /一 / s / . 

• AddZfert adds two new pinyin symbols. The first has fertility zero, 
while the second is aligned to a single English phoneme. 
Example: + / T / - > / t / . 

• Extend aligns an additional English phoneme to the most recent pinyin 
symbol so as to increase its fertility. 
Example: /AE + N/->/ari / . 
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• AddNull aligns an English phoneme to the piriyin NULL symbol. 
Example: /D/—/null/. 

A d d Z f e r t considers inserting a zero fertility pinyin symbol before each 
transliteration of each newly unaligned English phoneme [12]. A d d N u l l 
considers each input phoneme as possible NULL-generated phoneme aligned 
to the NULL symbol. This is because the model believes that it is impossible 
to know the positions in advance where zero-fertility pinyin symbols and 
NULL-generated English phonemes should appear. The decision is left for the 
optimization process, in which the partial hypotheses incrementally maximize 
the posterior probability using a hill-climbing, strategy participated by the 
transliteration model and the language model. 

3.2 Limitations of IBM SMT 
IBM SMT model was designed for machine translation. It has several limi-
tations for Erigiish-to-Chinese transliteration noticeably: 

Problem 1: The model has a tight constraint on mapping relationship be-
tween the source and target words. It allows only one target language 
word to be associated with a contiguous group of source language 
words, but not vice versa. As such in English-to-Chinese transliter-
ation, one English phoneme can never be converted to a group of Chi-
nese piriyin symbols. The limitation results from the difficulty due to 
conditioning on C in the inverted conditional probability Pr(E\C) as 
the transliteration model is unable to detect possible contiguous com-
biriatioris of target phonemes prior to training. 

The example in [33] exposes this obvious limitation (see Figure 3.1). 
Because of the restriction, / u / and the second / i / in the third line have 
to be considered as zero-fertility "words". Typical zero-fertility pinyiri 
symbols collected by GIZA++ training include {i,e)u,o,ou,ie,..-�, 
which are finals that usually form syllables with their previous sylla-
ble initials. In fact, such syllables are initial-final clusters which are 
aligned to single English phonemes, such as / F / — / f u / and / S / — / s i / 
in the example. Zero-fertility symbols are "deleted" by source-channel 
during training and stochastically "reproduced" during decoding. R,e-
production is done by the AddZfert operation. It inserts a possible 
zero-fertility symbol before each target symbol of each remaining un-
aligned source phoneme and it needs to consider all the possible zero-
fertility symbols. To reduce the cost of AddZfert, two approximations 
are adopted [12]: 
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English Name FRANCES TAYLOR 
English Phonemes F R AE N S IH S T E Y L E R 

ili l / i i i i i l i i 
Initials and Finals f u 1 x i s i t m 1 e 
Chinese Piny in fli lang xi si tai le 
Chinese Transliteration 弗 朗 西 丝 泰 勒 

Figure 3.1: The Erigiish-to-Chinese transliteration example using IBM SMT 
model in [33 

1. Only consider certain pinyiri symbols as candidates for zero-fertility, 
namely symbols which both occur frequently and have high prob-
ability of being assigned fertility zero. 

2. Only insert a zero-fertility symbol if it will increase the probability 
of a hypothesis. 

We observe that zero-fertility symbols are unavoidable in source-channel 
since the model does not allow for one-to-many mappings from source 
to target symbols, which results from the reversed priori conditional 
probability. Because the prediction for zero-fertility position is entirely 
stochastic, the model would be less capable of predicting zero-fertility 
finals that are very likely sticking to their preceding initials. 

Problem 2: Due to smoothing, the language model may not assign zero 
probability to an illegal piriyin sequence that is unobserved in the train-
ing data, e.g. one containing two consecutive initials. Such sequences 
are required to be corrected by inserting suitable finals between them 
until a legitimate pinyin sequence is obtained [33]. Although this could 
fix illegitimate pinyin, it would produce wrong transliterations as the 
insertion of a final has no probabilistic basis. 

We observe that consecutive initials can come from the model stochas-
tically predicting positions for zero-fertility symbols. For instances, for 
/K L IH N T IN N/ (Clinton) which should be transliterated into /ke 
liri dun/ (克林顿），if the model is unable to correctly predict that 
there should be a zero-fertility / e / inserted between / k / and / I / in the 
transliteration, the consecutive initials /k l / would result. This would 
leave the correction be done by groundless insertion trials since the 
language model also accepts it with some probability mass. 



C H A P T E R , 3. TRANSLITERATION BASELINE 24 

Observations , . , 

English Pronunciation: ... ( j f j f ^i+i j … 

p(ei-i| Ci_i) p(ei| Ci) 

Chinese Pronunciation: ... { z- i f c \ 

w w … 
Figure 3.2: Transliteration model is implemented under two assumptions of 
Markov model 

Problem 3: Transliteration model P r (^ |C ) is approximated by Markov chains 
29]. Markov model is implemented primarily under two assumptions: 

Markov assumption (first-order or second-order) on state transition 
and conditional independence assumption on observation. This is illus-
trated ill Figure 3.2. Markov assumption hypothesizes that transition 
probability to a state (i.e. Chinese pinyin symbol), depends only on 
its immediate previous one or two states. Conditional independence 
assumption assumes that an observation unit (i.e. English phoneme), 
depends only on the state (i.e. Chinese pinyin symbol) that generates 
it, and not on its neighboring observation units. 

With these assumptions, it is hard to extend the model with additional 
dependencies [26], such as features of neighboring phonemes on both 
sides. Albeit the trigrarn language model Pr{C) is combined, it can 
only make use of a short history in the target language context. One 
may consider to use longer distance dependencies in Pr(E |C) , and it 
is possible to break down the longer history in the conditional prob-
ability into smaller fragmented probability terms in order to alleviate 
its vulnerability to data sparseness. However, one has to assume cer-
tain dependencies or independencies for this case in terms of heuristics, 
e.g. longer fragments could be substituted by shorter ones as redun-
dant terms exist in longer fragments, or some terms is farther from the 
current, prediction position than others. 

Problem 4: Since the training of the language model is independent of the 
transliteration model, their combination sometimes may yield unpre-
dictable results. Empirically, Eq.(2.4) cannot be optimal unless true 
probability distribution of the two individual portions are used [26 . 
Yet the used models and trained methods in machine translation only 
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GIZA++ EM Itera. CMU-Camb. LM ReWrite Decoder 
Model-1: 5 n-gram: 3 search: fast greedy 
Model-2: 5 discounting: Good-Turing 
Model-HMM: 10 back-off: Katz 
Modle-4: 10 forced back-off: <s>,</s> 

Table 3.2: Experimental settings to the IBM SMT toolkits 

| p | t | k | b | d | g | m | n 

Consonants (24) F V TH " P H S ~ Z 
~ m C H J H L W R Y H I T 

lY IH EY EH AE ER AH AX 
Vowels (16) • ay aw "aX" OW O厂 AO UW" UH 

Table 3.3： 40 symbols in the ARPABET prorninciation inventory 

provided poor approximations of true distributions [26]. This implies 
that it is difficult for the transliteration model to achieve optimality. 
Therefore, a different combination of language model and translitera-
tion model might be more effective or ineffective. 

3.3 Experiments Using IBM SMT 
We carried out experiments to evaluate IBM SMT toolkits for transliter-
ation performance. Experimental settings on the model were the same as 
33], which is listed in Table 3.2. But we excluded the letter-to-phoneme 

and Pinyin-to-Harizi modules (see [33]). The omission helps identify errors 
produced by the phonerne-based transliteration. 

3.3.1 D a t a Preparation 
The Phonetic Representation 

Pronunciation sequences of English names are represented by computer-
readable IPA equivalents, ARPABET symbols, for American English. There 
are 40 APRPABET symbols in total, in which 24 are consonants and 16 are 
vowels as shown in Table 3.3. The vowel phoneme / A X / is known as nuclei 
or schwa, and generally does not appear in real corpus. Thus the number 
of symbols actually being used would be 39. The correspondence between 
APRABET symbols and IPA symbols is listed in Appendix A. 
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Ij p rn f d t n 1 g k h j 
Initials (23) ： ： ： — 

q X zh ch sh r z c s y w 

a o e ai ei ao ou er an en ang eng 
Finals (35) i ia ie iao iu ian in iarig ing iong u ua 

uo uai ui uan un uang ong ii iie iian iin 

Table 3.4: 58 GIF symbols in pinyin Romanization system 

Chinese transliteration is phonetically represented by pinyin symbols us-
ing the common Romanization system for Mandarin Chinese. Pinyin are 
composed of 23 initials and 35 finals, which are also referred to as general-
ized initial and finals (GIF) in [33]. Table 3.4 shows these symbols. Note that 
the symbol "ii" is non-ASCII, it is substituted by the symbol "v" internally. 

Corpus 

We obtained the beta release v. 1.0 of LDC's Chinese-English bi-directional 
named entity list"* compiled from Xinhua's database. The entire corpus con-
sists of 9 pairs of lists, from which we chose the English-to-Chinese proper 
name list of people as raw data. The list contains 572,213 foreign people's 
names and their Chinese transliterations. Note that although the list is in 
English, it contains names originated from different languages, e.g. Russian, 
German, Spanish, Arabic, Japanese, Korean, etc. One assumption is that 
the Chinese translations were produced based on their English pronuncia-
tions directly. The exceptions are Japanese and Korean names, which are 
generally translated in terms of meaning as opposed to pronunciation. We 
consider these names as noisy data. 

We used CMU's pronunciation dictionary^ and LDC's Chinese character 
table with pinyin to convert name pairs in the list into a parallel corpus of 
English phonemes and pinyin symbols. We extracted all the translation name 
pairs from the selected named entity list, which also appeared in CMU pro-
nunciation dictionary with deterministic phonetic representations. We then 
obtained their English pronunciations and the pronunciations of their Chinese 
equivalents by looking up the pronunciation dictionary and the character-
piny in conversion table. We ended up with 46,305 pairs, which were used 
as our experimental data pool. In our experiments, 90% instances (41,674 
instances) were randomly selected for training, in which a portion of 4,631 
instances were used for close test, and the remaining 10% (4,631 instances) 
for open test. The transliteration model and language model were trained on 

' 'Catalog Number by Linguistic Data Consortium: LDC2003E01 
^ftp://ftp.cs.crau.edu/afs/cs.cmu.edu/data/anonftp/project/fgdata/dict/ 



C H A P T E R , 3. TRANSLITERATION BASELINE 27 

C.A. II W.A. 
Close Open Close Open 

6 6 . 3 ^ 65.15%" 20.73% ~8.27% 

Table 3.5: Experimental results by our implementation of [33]'s translitera-
tion system 

the same 41,674 instances, in which the Chinese part of the parallel corpus 
is used to train language model and the entire parallel corpus for transliter-
ation model. This data set is referred to as Base-0, which was used in our 
comparative experiments. 

3.3.2 Performance Measurement 

There is no existing criterion for measuring machine transliteration accuracy. 
Some tests require human judgment [1, 19]. The performance was evaluated 
with two levels of accuracy, i.e. character-level accuracy (C.A.) and word 
level accuracy {W.A.) in [17 . 

C .A = (3.3) 
L/ 

VKyl # of correct names generated 
# of tested names 

In Eq.(3.3), L is the length of the standard transliteration of a given 
foreign name, and i, d, and s are the number of insertion, deletion and sub-
stitution respectively, i.e. edit distance between machine-generated translit-
eration and the standard. If L < (H- (i + s), we set C.A. = 0. Eq.(3.4) is 
the percentage of the rnimber of transliterations identical to the standards in 
all the tested names. Here we prefer to use "identical" rather than "correct" 
because the standard transliterations are de facto rather than absolute. 

3.3.3 Experimental Results 
The experimental results of close and open tests on data set Base-0 measured 
by C.A. and W.A. is shown in Table 3.5. 

We note that the C.A. of our implementation is reasonably higher in our 
tests than that reported in [33] where they achieved the pinyin errors in edit 
distance by 42.5%�50.8% (see Table 2.1), corresponding to 49 .2%�59.5% 
if using our C.A. measure. Although the discrepancies are mainly due to 
the different data sets, one of the possible reasons leading to their lower 
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accuracy is the use of letter-to-phoneme generation system in [33] whereas 
we used prommciation dictionary. We will use the results as the baseline for 
comparing with our models. 

3.4 Chapter Summary 
This chapter first analyzed the application of IBM SMT system to Englisli-to-
Chinese transliteration in order to reveal the limitations the source-channel 
model. Before proposing our direct models to overcome such limitations, 
we have replicated the phoneme transliteration system described by [33] in 
order to compare the performance between our contribution and the source-
channel based approach. This implementation also serves as the baseline for 
comparative experiments in later chapters. 

• End of chapter. 



Chapter 4 

Direct Transliteration Modeling 

The source-channel based transliteration model fails to correctly handle map-
ping probabilities of zero-fertility symbols in the target names (see Section 
3.2). In Figure 3.1, it would be more natural and easier to handle if / f -u / 
and /s- i / were treated as initial-final (duster when they were converted from 
the single English phonemes / F / and /S / , respectively. 

Different from the source-channel model, we propose to estimate the pos-
l,erior probability direct,ly. We adopt a different angle of observation to avoid 
1,1 le use of the reversed conditional probability, i.e. we propose to condition on 
E rather than on C. As such, Figure 4.1 shows the application of the align-
irient scheme of our approach to the previous example in Figure 3.1. Notice 
that combination of pinyin symbols are regarded as initial-final clusters, e.g. 
/ F / to /fvi/ and / S / to / s / . 

English Name FRANCES TAYLOR 
English Phonemes F R AE N SIH S T E Y L E R 

f \ \ l i t l i v • • • • 
Initials and Finals t u 1 m £ e x i ^ t ai 1 e 
Chinese Pinyin lli lang xi si tai le 
Chinese Transliteration 弗 朗 西 丝 泰 勒 

Figure 4.1: The phoneme alignment scheme in direct transliteration modeling 

29 
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4.1 Soundness of the Direct Model——Direct-1 
We substitute PV{E\C) by PT{C\E) in Eq.(2.4) resulting in the following 
transliteration method: 

C - a rgmaxPr(C |^) = argmax{Pr(C|£；) x Pr(C)} 
c c 

= a r g m a x x p^(cpl)} (4.1) 
C1C2 …C丨 � 

PV{C\E) aims to produce the most likely transcriptions for a given E, 
but ill-formed pinyin sequences may result. The language model Pr(C) is 
introduced to make correction, e.g. eliminating illegal pinyin strings and 
yielding better ranking of the resulting syllables. Although Eq.(4.1) is be-
yond the Bayes' theorem, it is mathematically sound under the more general 
Mmirnum Entropy (MaxEnt) framework [4, 26 . 

MaxEnt is a well-founded framework for directly modeling the posterior 
probability, where a set of M feature functions fm(E, C) and their corre-
sponding model parameters ( m = 1, . . .，M) are introduced. According 
to [26], direct transliteration probability can be approximated by: 

exp I e ^ - 1 Xm- fm{E,C)} 
Pr{C\E) ^ p,.{C\E) 二 二 二 “ (4-2) 

where the denominator 

= j:explf:Xm' UE, C')] 
C lm=l J 

is a normalizing constant determined by the requirement that Vx^ = 
] f o r all E. C denotes all possible Chinese transliterations for the given E. 

The computation for the normalizing constant is very time-consuming, 
but it is not required for maximization (search) process [26]. We could then 
obtain the target sequence C that maximizes the posterior probability by 
omitting the denominator: 

C = argmax Pr{C\E) = argmax < exp V Am . /m(迟’ C) > (4.3) 
c C I Lm=l J J 

We can select two feature functions and their parameters: 

fi(E,G) = logMCf丨丑产 I) 

f2(E,C) = \ogp,(Cf) 
入1 = 入2 二 1 
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Thus, Eq.(4.1) obtains in combination of direct transliteration model 
P 0 ( c P | e � l ) and target language model with respect to model pa-
rameters 0 arid 7. The optimal parameters are estimated individually from 
(,he parallel training corpus. This model is referred to as Direct-1. 

4.2 Alignment of Phoneme Chunks 
There are 4 possible general conditions, in which an English phoneme can 
map to items in the pinyin's vocabulary in the direct model: 

1. An English phoneme maps to an initial or a final, which is the most 
usual case; 

2. An English phoneme maps to an initial-final cluster, e.g. / F / - / f u / and 
/ S / - / s i / in the previous example; 

3. An English phoneme maps to a mute e, e.g. /S T AE N F ER, D / 
(Stanford) to /si tan fu/ (斯坦才自),where / N / and / D / are omitted 
in translation; 

4. Insert additional pinyin syllables, e.g. / F L OY D/ (Floyd) to / fu liio 
yi de/ (佛、洛伊德)，where /y i / is inserted to cater for the sound / O Y / 
that has already been mapped to /uo/ . 

We introduce alignment indicators between a pair of sound sequences, 
E and C. Within 39 English phonemes (24 consonants, 15 vowels) and 58 
pinyin symbols (23 initials and 35 finals), there are always some indicative 
elements, i.e. indicators, which facilitate alignment. For E, they are: 

• all the consonants; 

• vowel at the first position; 

• and the second vowel of two contiguous vowels. 

Correspondingiy in C, they are: 

• all the initials; 

• final at the first position; 

• and the second final of two contiguous finals. 

Note that similar indicators can be easily identified in other Chinese Roman-
ization systems. Hence, they are independent of alignment model. Also, we 
define the following variables: 
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• r(S) = # of indicators in sequence S, S £ {E^ C) 

• t(E, C) = max { r ( ^ ) , r (C)}, represents the maximum number of indi-
cators in E and C. 

• d{E, C) = \T{E) — r (C) | , is the difference of the number of indicators 
in E and C. 

We chunk E and C by tagging the identified indicators and compen-
sate the one with fewer indicators by inserting d number of mute e at its 
min {T{E),T{C)} possible positions ahead of its indicators, e is practically 
an indicator defined for alignment. This ensures that both sequences end up 
with the same number of indicators. The t chunks separated by indicators in 
E should align to the corresponding t cl'iunks in C in the same order. They 

( d \ t\ 
are called alignment chunks. There are ||^4|| = = r̂—^ number 

y t y (t - dy.di 
of possible alignments at chunk-level with respect to different positions of e. 

This method can assure that each chunk contains two sound units at 
most. Thus, in a pair of aligned chunks, only three mapping layouts are 
possible for individual phoneme elements, i.e. individual consonants, vowels, 
initials and finals: 

1. e-to-ciC2： The alignment at phoneme level would be kept as e-to-c-iC2, 
where C]C2 is considered as an initial-final cluster] 

2. e\e2-t()-clc2'. The alignment at phoneme level would be extended to 
ei-to-c\ and e2-to-C2. Note that this condition will not generate new 
alignment. Thus, the overall number of alignment remains unchanged. 

3. e\e2-to-c: By adding an additional e at C side, the alignment at 
phoneme level would be extended to e\-to-c and e2-to-e or ei-to-e and 
&2-t()-c. Ill this case, one more new alignment will be produced and we 
update P l l = \\A\\ + 1. 

Figure 4.2 shows an example of the alignment chunks (indicators are 
tagged by between /AE L B AH K ER K lY/ (Albuquerque) and / a er 
bo ke er j i / (阿尔伯克尔基）.Our chunk-based alignment scheme works as 
follows: The English pronunciation should be first compensated by inserting 
one £ as it has one fewer indicator than its Chinese counterpart. There are 6 
possible alignments at chunk level corresponding to the 6 possible positions 
for the inserted e. However, the total possible alignments at phoneme level 
would be 11 because of the existence of /K ER/- to- /er / in the first four 
chunk-level alignments and /K IY/-to-/er/ in the sixth chunk-level align-
ment. 
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|AE |L IBAH IKER • If |AE IL IB AH IK ER IK lY 
la.丨逛 |bo |ke |er |ij |a [er jke |er |Li 1 

lAE 丨上 |L IB AH IK ER IK lY ) 
la |er |b 0 |k e |er |ji ‘ 

lAE |L 丨丄 IB AH IK ER IK lY 
|a |er lb o |k e |er [ji J 

|AE |L IB AH |_L IK ER IK lY 
|a Isr |bj} |ke |er | j j 4 

I M |L IB AH I K E R |_e_ IK lY 
|cr \bo |kc |cr I j j 5 

IM |L IB AH IK ER IK lY 丨丄 

|a |er |bo ILg Iji 6 

Figure 4.2: An example depicting the alignment of phoneme chunks 

4.3 Transliteration Model Training 

4.3.1 EM Training for Symbol-mappings 
We then apply EM algorithm [19] to find the Viterhi alignment (the most 
probable alignment) for each training pair. The training process is described 
in the Algorithm 1. 

Algorithm 1 EM training algorithm for Viterhi alignment and symbol-
rnapping probabilities 
1： Initialization: For each English-Chinese pair, assign equal weights to 

all alignments generated based on phoneme chunks as 
2: Expectation: For each of the 39 English phonemes, count the instances 

of its different mappings from the observations on all alignments pro-
duced. Bach alignment contributes counts in proportion to its own 
weight. Normalize the scores of the mapping units it maps to so that 
the mapping probability sums to 1. 

3： Maximization: Re-compute the alignment scores. Each alignment is 
scored with the product of the scores of the symbol mappings it contains. 
Normalize the alignment scores so that each pair's alignment scores sum 
to 1. 

4: Repeat: Repeat step 2-3 until the symbol-mapping probabilities con-
verge, meaning that the variation of each probability between two itera-
tions becomes less than a specified threshold. 

The direct transliteration model Pr(C\E) is estimated by EM training 
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Foreign Name Chinese Transliteration Viterbi Alignment Found Weight 
1 3 7 ^ m R E H L lY 

Cirelli 奇雷利 . ， . ， . 1.000 
qi I ei 1 1 

r r r z K OW E TY ER 
Colyer 科利尔 ， ， . 1.000 

k e 1 1 er 
ZZTI B R AE G 

Brag 布拉格 L , 1.000 
bu 丨 a ge 

T T Z Z K E R A A M lY Kararni 卡拉米 ， ， . 1.000 k a la m i 
Z T I D EH L E R m S 

Deloris 德洛里 � , 1.000 
d e I uo n e 

n i Z r ^ ^ ^ N W AO L D 
Schoeriwald 舍恩瓦尔德 i 0.993 

sh e en w a er de i W A W S N ER 
Ilausner 奥斯内 . ， 1.000 

ao £ SI ri ei 
T Z T ^ H H ~ A H 5 m C H E H K 

Hudecek 胡德切克 i � . ， 1.000 
n u d e q le ke 

r i T T B R ER € L lY 
Brearlev 布里尔利 , . , . 0.998 

•‘ bu 1 1 er 1 1 
z r m AE N AH T OW L 

Anatole 阿纳托尔 ， 1.000 
a n a t iio er 

Table 4.1: Sample Viterbi alignments learned by EM Training 

01� t he data set Base-0 with 41,674 parallel instances. Compared to the bru-
(,al force alignment computation [19], our EM training based on alignment of 
phoneme chunks produces significantly fewer possible alignments. Thus fewer 
possible symbol-mappings for each English phoneme are involved. Mappings 
crossing chunks are also avoided. Therefore these symbol-mappings tend to 
be more accurate. For each English-Chinese pair, the Viterbi alignment is 
found whose alignment score (weight) approaches to 1 with the increase of 
iteration times. Table 4.1 shows the randomly selected sample Viterbi align-
ments for each name pair through automatic EM training. Table 4.2 shows 
the top-4 piriyin symbol-mapping probabilities for each English phoneme af-
ter EM converging at a predefined threshold of 1.0芯—4. 

The mute e is introduced to both sides of phonetic alphabets during the 
processing of phoneme chunks. It plays an important role for carrying out 
"virtual mapping" with respect to the conditions 3 and 4 (see Section 4.1). 
The EM t,raining initiated with alignment based on phoneme chunks auto-
matically calculates the mapping probabilities from each English phoneme to 
not only individual initials and finals, but also to initial-final dusters. Prom 
the training instances, the algorithm identifies these clusters, e.g. /d-e/ , /k-
e/ , /s- i / , / t -e / , etc. They are dynamically appended in piriyin inventory 
as additional candidates for transcriptions from English phonemes like / D / , 
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e c p{c\e) c p{c\e) c p(c|e) c v{c\e) 
AA a 0.61923 uo 0.09505 e 0.07352 o 0.06314 
AE a 0.86606 ia 0.03544 e 0.02509 ai 0.01867 
AH a 0.39206 e 0.19805 u 0.10216 i 0.07872 
AO uo 0.25501 o 0.17831 ao 0.15931 e 0.15428 
AW ao 0.55706 uo 0.11303 u 0.09228 a 0.08996 
AY ai 0.51124 i 0.22925 ei 0.09985 a 0.06756 
B b 0.75535 bu 0.20321 w 0.00789 bi 0.00786 

CH q 0.42866 qi 0.15122 ch 0.11413 x 0.05970 
D d 0.61585 de 0.29259 e 0.06035 er 0.00629 

DH s 0.46763 t 0.20863 x 0.07914 si 0.07194 
EH ei 0.32765 e 0.22758 ai 0.22453 a 0.05100 
ER e 0.38604 ei 0.14128 a 0.10870 o 0.10745 
EY a 0.38817 ai 0.22236 ei 0.20053 e 0.05488 
F f 0.60277 fu 0.37734 fei 0.00766 p 0.00227 
G g 0.39740 ge 0.29644 j 0.17965 e 0.04828 

HH h 0.65573 x 0.08640 a 0.06690 ai 0.04911 
IH i 0.70619 ei 0.11094 e 0.05979 e 0.03180 
lY i 0.70956 ei 0.11083 ai 0.05104 e 0.03432 
JH j 0.31634 y 0.13153 g 0.10053 qi 0.07931 
K k 0.43570 ke 0.31736 j 0.11575 e 0.02968 
L 1 0.60161 er 0.34286 e 0.01379 le 0.01196 
M rn 0.77637 mu 0.10848 n 0.05647 ng 0.03167 
N n 0.79253 ng 0.16759 nei 0.01292 na 0.00682 

NG ri 0.55059 ng 0.33577 g 0.07692 r 0.01033 
OW uo 0.45049 e 0.19401 o 0.13831 ao 0.08572 
OY 110 0.33626 u 0.21314 o 0.20175 e 0.08224 
P p 0.54823 pu 0.25763 b 0.16020 pei 0.01624 
R 1 0.69558 er 0.14198 e 0.13104 e 0.00816 
S si 0.41800 s 0.26173 x 0.08858 shi 0.07538 

SH shi 0.33762 sh 0.32755 x 0.22805 q 0.01116 
T t 0.38772 te 0.30403 d 0.14454 e 0.11809 

TH si 0.27598 s 0.19066 te 0.18676 t 0.16177 
IJH u 0.71079 i 0.06220 o 0.05288 £ 0.02813 
UW u 0.57044 £ 0.10436 i 0.05350 iu 0.04428 

V w 0.66063 f 0.12757 fu 0.10999 b 0.07295 
W w 0.77548 h 0.06043 k 0.04924 a 0.02539 
Y y 0.37204 £ 0.19440 h 0.05758 w 0.04427 
Z si 0.44383 s 0.08952 z 0.06873 ci 0.06819 

Zl-I r 0.25000 j 0.17391 x 0.11778 y 0.09799 
e er 0.33699 yi 0.13621 n 0.11528 e 0.08478 

Table 4.2: English phonemes with probabilistic mappings to Chinese pinyin 
sound units. 
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/K/，/S/, / T / , etc. This can reduce the error due to zero-fertility symbols 
in the source-channel model. 

4.3.2 WFST for Phonetic Transition 
We then build a weighted finite state transducer (WFST) vising AT&T FSM 
library^ based on the symbol-mapping probabilities in Table 4.2 for the tran-
scription of an input English phoneme sequence into its possible pinyin sym-
bol sequences. Each arc carries the transition information from an English 
phoneme to its pinyin counterparts as well as their transition cost, which 
is given by 1 — p{c\e). Figure 4.3 shows part of the transducer, including 
the transitions for several English phonemes. There are about 2,666 arcs 
included in the actual automata. Note that arcs like [/AA/:/uo/|0.904], 
whose output symbol includes multiple characters, are split into multiple 
arcs, i.e. [/AA/:/ii/|0.904] and [/£/:/o/|0.0] jointed by an intermediate nodes 
like nodes 1，2，...，5’.... This is for the following pinyin syllable transducer 
for pinyin syllable segmentation being able to connect with it. 

4.3.3 Issues for Incorrect Syllables 
Many of the pinyin symbol sequences produced by the transliteration model 
WFST cannot be correctly syllabified or include illegitimate pinyin syllables 
as the transducer itself has no knowledge about pinyiri's regulations. Actually 
only 396 of 23 * 25 possible combinations of initials and finials can constitute 
legal pinyin syllables. Legal syllables, regardless of dialects, can be easily col-
lected from Chinese lexicons in corresponding Romanization systems by using 
an automatic scanning program. We automatically collect these legal sylla-
bles from the pinyin part of Base-0. Based on this knowledge, we construct 
a finite state transducer (FST) with about 1,284 arcs. Figure 4.4 presents 
only several syllables of this transducer. The composition between the FST 
and the previous WFST can eliminate illegal pinyin symbol sequences and 
segmenting legal sequences into syllables. 

4.4 Language Model Training 
A syllable-based bigrarn language model of pinyin is trained vising the Chinese 
part of the same 41,674 training instances in Base-0, on which the translit-
eration WFST was built. The model Pr(C) is approximated by counting 

1 http: //www.research.att.com/~moliri/fsrn/ 

http://www.research.att.com/~moliri/fsrn/
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eps:a/0 
sducer.example.fst 

\ V eps:a/0 J k ^ J 

\ \ AH:u/().973 

\ eps:o/() 

Figure 4.3: Part of the WFST based on symbol-mapping probabilities p{c\e). 
eps denotes e 
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P 

vĴ jT n:bnn 

lyllab fXd;cps X Ĵ 

\ n:dan 

Figure 4.4: Part of the FST for pinyin syllabification, eps denotes e 
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U'le frequencies of syllable occurrences in this data set using the following-
equation: 

P r ( q � I J [ 淋 • . 卜 (4.4) 

where q is the pinyin syllable of a Chinese character. 
We then implement the bigrarn model using a weighted finite state accep-

tor (WFSA) with one state for each item in the pinyin syllable vocabulary. 
Between each pair of states, say x/y^ there is a single transition whose label 
is the syllable y and whose probability is p{y\x). We then add a special final 
state with transitions leading to it from every other state labeled by s with 
probability 1.0. Finally, a start state is added with transitions to every state 
y with label y and probability The WFSA is used to re-rank the pinyin 
syllable sequences yielded by the A;-best path algorithm from the composition 
of the previous two transducers. The WFSA is partially shown in Figure 4.5 
where only ten states are presented. The actual automata includes 330 states 
and 12,274 arcs corresponding to the syllables and bigram dependencies in 
training corpus. Since we don't smooth the unobserved syllables in the data, 
the number of states are less than that of all possible pinyin syllables. 

4.5 Search Algorithm 
Given an input English phoneme sequence, it is first built as an input finite 
state acceptor- (FSA). Searching could be conducted by successive composi-
tions of the input, FSA with the three autornatas from training process using 
the composition algorithms provided by AT&T FSM toolkits [24]. However, 
if the language model is applied to the entire space of syllables generated by 
the previous two transducers, we could hardly obtain correct transliterations 
because short hypotheses were ranked high by the A;-shortest path algorithm 
11]. One adjustment is adopted by applying bigram search to only the first 

m candidates produced by the transducers for each given English name, m is 
empirically set as 250 (see Section 4.6.4). The function of the language model 
is to re-rank the m candidates according to bigram dependencies. Although 
this may cause possible loss of optimal hypotheses, it can significantly reduce 
searching errors. Another reason to use only rn candidates is that the search 
space of the syllables generated by the transducers is extremely large, which 
renders the search process very time-consuming. We then output the top-n 
transliterations from those re-ranked m candidates according to their tran-
sition probabilities from the transducers and bigram probabilities from the 
acceptor. Figure 4.6 illustrates the top-10 transliterations given the input 
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C.A. Range(%) [0 � 2 0 ) [20 � 4 0 ) [40 � 6 0 ) [60 � 8 0 ) [80 � 1 0 0 ) [100] 
Close 4.30% 9.22% 27.22% 34.66% 11.24% 13.36% 
Open 4.15% 9.86% 28.05% 33.50% 13.10% 11.34% 

Table 4.3: C.A. distribution results of Experiment I 

name /K EH V IN N/ (Kevin). 

4.6 Experimental Results 
To evaluate the transliteration performance of Direct-1 more comprehen-
sively, the following experiments were conducted on data set Base-0, which 
included but were not limited to the comparisons with the baseline. 

4.6.1 Experiment I: C.A. Distribution 
In this experiment, only top-1 machine transliteration of each name was cho-
sen for comparison with the standard transliteration. A name often has mul-
tiple transliteration alternatives. Hence, we measured how the percentage of 
the number of generated transliterations distributes over different character-
level accuracy ranges, which is referred to as C.A. Distribution: 

# of na/mas with C.A. e [ r l , r 2 ) 

•“ # of tested names ‘ 

where [r.l,r2) is the bound of a C.A. range. We set up six C.A. ranges: 
0% � 2 0 % ) 2 ’ [20% � 4 0 % ) , [40% � 6 0 % ) , [60% � 8 0 % ) ’ [80% � 1 0 0 % ) and 
100%]. We are particularly interested in the names within the C.A. ranges 

of [0% � 2 0 % ) and [80% � 1 0 0 % ) since the former could be considered as 
"completely incorrect" while the latter "acceptable". 

We counted the number of names whose CA. fall in each range. The 
percentages are listed in Table 4.3. 

4.6.2 Experiment II: Top-n Accuracy 
We collected the top-50 transliteration results for each foreign name. We 
counted the number of correct ones in the resulting top-n (n G {10,20，30,40，50}) 
transliterations whose C.A. is 100% for a given name. The percentages are 
listed ill Table 4.4. This experiment evaluated the proportion of instances 
whose correct transliteration could be found in top-n generated results. 

~ 2 ' [ M % - N % ) ' denotes > M%and < N%. 
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3/0.547 J 

wan/2.514 Z 

/Q 
/ yin/2.500 

人 / r\ 
2 J (( 9/0.547 

eps/0 

/ kai/2.335 [ 8 ) 12/0.691 

I W eps/0 ———.yTTN wan/2.513 \[ \ 
丨•丨Î X；；；^ ^ i l 蘭.547 j ) 

\ cps/O ^ ^ f 21/0.579 )) 

\ 2470.665 j 

\ ku/2.528 T ^ 
27/0.579 

\ZJ 

30/0.665 

vZ/ 
Figure 4.6: Sample output of top-10 transliterations given the name “ Kevin" 
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Top ri 1 10 20 30 40 50 
—Close 13.36% 51.13% 57.29% 58.83% 59.35% 59.52% 
—Open 11.34% 46.99% 53.01% 54.55% 54.96% 55.12% 

Table 4.4: The percentage of correct transliterations found in top-n results 

Systems Baseline Direct-1 
Close 6 6 . 3 5 % 6 3 . 1 7 % 

n A 
Open II 65.15% 62.61% 
Close 20.73% 13.36%~ 
Open 18.27% 11.34%-

Table 4.5: Transliteration accuracies compared to the source-channel based 
system 

4.6.3 Experiment III: Comparisons with the Basel ine 
In this experiment, we evaluated our direct transliteration model with C.A. 
and W.A. measurements (see Section 3.3.2) on data set Base-0 for compar-
isons with our implementation of the source-channel baseline. Only top-1 
machine transliteration was used. The results are shown in Table 4.5. 

4.6.4 Experiment IV: Influence of m Candidates 
To examine the suitable rn value of candidates used for searching, we made 
the transliteration transducers generate top-m (rn = 200,250,500，750,1000,10000) 
candidates and apply the bigrarn WFSA to them to find the top-1 translit-
eration in the open test. The C.A. value changed with the different rn values 
and are shown in Figure 4.7. 

4.7 Discussions 
In experiment I (see Table 4.3), the possibility of finding correct trarisliter-
at'ioiis in top-l result candidates was fairly low. Only 13.36% and 11.34% 
test instances were correct. If we considered "acceptable" transliterations as 
C.A. greater than 80%, the accumulative percentages would be 24.60% and 
24.44% for close and open tests respectively. Two pinyin sequences having 
20% edit distance can be exemplified as /ben la derig-/ ( 本拉登 ) a n d /ben 
la dan / (本拉丹）• Because the average length of testing names is generally 
about 5 to 6 phonemes, machine transliterations with C.A. value ranging in 
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Influence of m Candidates 

64.00 

g 62.00 -

I 60.00 - / 

I 58.00 - / X ^ 

I 56.00 - / 

I 54.00 - / 
re ‘ 
I 52.00 -
O 

50.00 -

48.00 -I I 1 1 1 1 

200 250 500 750 1000 10000 

First m Candidates Used for Search 

Figure 4.7: Influence of using the first rn candidates for search 

80% � 1 0 0 % ) basically imply that 1 (or less) of 5 or 6 phonemes are rnis-
iriatched with the standard. Hence they can be considered as phonetically 
equivalent but misspelled, which is a measurement used in human subject 
tests [2, 19. 

In experiment II (see Table 4.4) where top-50 transliterations were exam-
ined. 51.13% names in close test and 46.99% in open test had their correct 
transliterations within the top-10 results; and 59.52% names in close test 
and 55.12% in open test had correct transliterations within top-50 results. 
We also observed considerable increase in the percentage of correct translit-
erations if we compared top-20 results with only top-1. But no apparent 
improvement, was achieved if we considered more transliteration results, e.g. 
from top-20 to top-50. 

In experiment III (see Table 4.5), our approach demonstrates comparable 
C.A. value to that of the baseline, and is slightly worse by 3.18% on close test 
and 2.54% on open test. However, the W.A. measurement shows that the 
baseline performed about 7.37% and 6.93% better than Direct-1 for close 
and open tests respectively. The lower accuracy of our direct model results 
from two main reasons: 

1. Although the direct model in Eq.(4.1) is mathematically correct under 
the MaxEnt framework, the accuracy of the posterior estimation de-
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pends on fm—the feature functions selected, and the parameters A ,̂. 
Recall that we selected the log function features of the two models 
and set parameters Xm = I for the soundness of Eq.(4.1). This as-
sumes equal contribution of the two models. Hence, the approximation 
is worse than the source-channel model, whose maximization is sup-
f)orl,ed by Bayes' rule. Improvements can be made by manually adjust 
the weight on the two models. 

2. Our search algorithm used a rough approximation, which can be fur-
ther improved. Because the search algorithms provided by automata 
are based on shortest-path, short candidates produced by the first two 
transducers would be ranked high by the bigrarn acceptor. Our method 
makes a comprise by only using a limited number of candidates gen-
erated by the first two transducers. This could reduce the chances for 
shorter candidates in some certain range, but may exclude the correct 
hypotheses that are ranked lower than value rn by the transducers. As 
m increases, it is inevitable that short names are produced and the 
comprise tends to be useless, evidenced as the illustration of Figure 4.7 
in the experiment IV. Improvements could be made by raising the cost 
of the candidates, which are obviously shorter than the given testing 
name, and by increasing the rn value to broaden the search scope at 
the same time. 

We will leave the improvements over thse two shortcomings for future re-
search. The proposed Di rec t -1 model demonstrate the feasibility of a simple 
direct, statistical transliteration method. This simple method is comparable 
to the approach based on sophisticated techniques on C.A. measurement and 
a bit worse on W.A. mainly due to the search techniques used. Also, the di-
rect, approach can overcome P r o b l e m 1 arid P r o b l e m 2 in IBM SMT based 
system. This is achieved by adopting a one-to-many mapping from source to 
target phonetic symbols. More importantly, the advantage of direct method 
lies in its flexibility to further incorporate useful features based on depen-
dencies among surrounding phonemes. The neighboring pronunciation units 
being transcribed can provide significant information for determining their 
mapping probabilities. For example, both /AH P AA L OW/ (Appollo), 
which is translated as / a bo luo/ (阿波罗）’ a n d ^ W AO L AH S/ (Wal-
lace), which is translated into /hua lai shi/ ( 华莱士 ), both contain the 
sound / A H / , but / A H / are mapped to different pinyin sounds, i.e. / a / and 
/ a i / , respectively in different context. 
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4.8 Chapter Summary 
In this chapter, we modeled the statistical transliteration problem as a di-
rect phonetic symbol transcription model plus a language model for post-
adjustment. Although the performance of the proposed direct method is 
lower than the source-channel based system, it overcomes Problem 1 and 
Problem 2 of the baseline. Also, the advantage of direct method is its flex-
ibility for incorporating features based on dependencies among surrounding 
phonemes. In the next chapter, we will further propose a direct translit-
eration model. The enhanced model will make use of contextual feature 
functions within MaxEnt, framework [4 . 

• End of chapter. 



Chapter 5 

Improving Direct 
Transliteration 

The limitation of Problem 3 (see Section 3.2) shows that it is difficult to 
expand IBM SMT to consider flexible context information. And Problem 4 
suggests tha t leveraging separate transliteration model and language model 
1,() achieve the best results out of their combination is difficult. This motivates 
us to propose an improved direct transliteration method to overcome these 
problems. This new model is referred to as Direct-2 in this thesis. 

General Idea: According to Eq.(4.3), we can arbitrarily and flexibly 
choose feature fiinctioris /爪.Thus, the language model can be considered as 
ail optional feature under MaxErit, framework [26]. Unfortunately, there is no 
effective feature selection techniques available that could combine features for 
the language model with that of the direct transliteration model. However, 
the direct transliteration model would work well without the language model 
if other cutt ing edge features were chosen. 

5.1 Improved Direct Model——Direct-2 

5.1.1 Enlightenment from Source-Channel 
We re-examined the transliteration portion source-channel model in Eq.(2.4) 
arid reversed the order of the source and target. According to [4, 7], the 
translation model in source-channel is given by the following formula: 

PiiC\E) = fMC，A\E) ^ p{C, A\E) (5.1) 
/I 

where A denotes the hidden parameter for alignment between E and C, 
and A is assumed to be the Viterbi (the most probable) alignment. The 

47 
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approximation is sound because the translation probability with respect to 
the Viterbi alignment can dominate the summation of the probabilities of all 
the possible alignments. p(C^A\E) can be derived from the "basic translation 
model" in [4]: 

\E\ iq 
p{C,A\E) = x Up^^^jK) x d(AIE,C) (5.2) 

i=l j=l 

In this expression, 

• p(n(ei)lei) is the probability that the English phoneme ê  generates 
n(ei) number of pinyin symbols, i.e. the fertility of e ;̂ 

• p(cj \ea..) is the probability that the English phoneme e ,̂. generates the 
pinyin symbol c.j. For every pinyin symbol position j in C, a", is the 
phoneme position in E of the English phoneme that maps to Cj in the 

/s 

given alignment A. 

• d{A\E, C) is the probability of the particular order of piriyin symbols, 
i.e. the distortion probability when the target symbols are generated. 

We first note that the distortion probability, which is originally a parame-
ter ill machine translation taking care of particular order of the target words, 
is unnecessary in our task since the order of generated pinyin symbols strictly 
follows the order of the source English phonemes. Thus it can be dropped. 

Also, we simplified To reduce parameters, we introduce the 
Chinese pinyin mapping units {emu) of each e.i denoted by crnui, which can 
be individual pinyiri symbols or clusters of initials and finals. In an align-
ment, each English phoneme aligns to only one emu. Thus, the parameter 
p{n(ei)\ei) can also be removed. Then p{C,A\E) is approximated by: 

|E| 
p{C,A\E)^ l [p (c rnUi \e i ) (5.3) 

i=i 

The unknown emus (initials, finals, or clusters) can be discovered "on the 
fly" during EM training for computing the Viterbi alignments and symbol-
mapping probabilities according to Section 4.3. In fact, they can also be 
obtained by the EM algorithm in GIZA++ by reversing the order of E and 
C ill the source-channel transliteration model training. 

5.1 .2 U s i n g Contextual Features 

Eq.(5.3) gives poor approximation as no contextual feature is considered. 
Based on the discussions in the previous chapter (see Section 4.7), we consider 
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transliteration as a classification problem, which is to classify each phoneme 
of a given English name into its most probable crnu according to the frames 
of various constraints including its neighboring phonemes, the targets of its 
neighboring phonemes, or even other individual models like language model 
26]. This leads to better approximation: 

间二 f j 咖瞧抓） (5.4) 
i二 1 

where hi is the history or context of e-i, which can be defined as follows: 

hi = { e i , ei+1, e i + 2， e i _ i， 2 ’ c m u i - 1， c m U i - 2 } (5 .5 ) 

History of an English phoneme is defined as its left-two and right-two neigh-
boring phonemes plus the two emus at pinyin side, to which its left-two 
phonemes align. 

5.1.3 Estimation Based on MaxEnt 
For each e in a given pair of {ei,e2, • •. ,e„} and {crnvq, emu] , . . . ’ 
its conditional transliteration probability to produce crnu with respect to its 
contextual history h can be computed by 

, 1� p("’ crnu) p(cmu h) = — J- fr (5.6) 

where is the set of all emus mapped from e observed in the training 
data, and p(Ji, emu) is the joint probability distribution of observing h and 
crnu simultaneously. p{h, emu) can be trained using maximum likelihood 
estimation, i.e. to find the model p\[h,cmu) that maximizes the likelihood 
of the training data: 

Pa = argrnax L(p) p 

where A is the model parameter. 
By introducing a set of "features" {/i , /2 , . . • ’ /m} and their corresponding 

parameters A = {Ai,入2，. • . , Am} to express observed events, say (h, crnu), in 
the data, this model also can be obtained under the well-established MaxEnt 
formalism, in which the goal of the model is to maximize the entropy of the 
distribution under certain constraints [4]: 

Px = argrnax H{p) p 

where 
/ / ( p ) 三 一 f {p{h, crnu) logp(/i, crnu)} 

h,CTnu 
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and constraints are given by 

E{fi) = E(f,),l<i<m (5.7) 

E{f.i) is the feature expectation of the model defined and approximated as 
30]: 

E(fi) 二 Z) {p(h,cmu)fi{h,cmu)} 
/7,’cmu 
n 

^ {p(hj)P�CMUJ\hj)fi(Jij, cmUj)} 

where p{hj) is the probability of observed history hj in the training data. 
E{fi) is the feature expectation of the empirical distribution obtained from 
training data: 

n 

E{fi) = X {P[hj, cmUj) fi(Jij, crnuj)� 
j=i 

where p{hj, crnuj) denotes the observed probability of (hj, crnuj) in the train-
ing data. 

This t,wo expectations are forced to be equivalent in Eq. (5.9) under the 
restriction that, the inferences from the model should match with observations 
from the real data. This constrained optimization problem is to find the 
model that has the form [10, 30]: 

m 

p ( "，謹 ) = / i fl A f 一 ） (5.8) 

where {//，A�,A2,...,入m} are the model parameters and {/i,/2, • • • , /m} are 
hi nary-valued features functions. Each parameter Xj corresponds to a feature 
fr ’ 

In general, we have the following theorem and its proof can be found in 
10]: 

Theorem 1 Let I he a finite set and p = {pi\i G > Q,I2ieiPi = 1} be a 
probability function on I. Let 

YjbsiPi = = 1,2,…，d, (5.9) 
iei 

he the constraints, where Vs,3z G I such that bsi / 0； and bsi is given, and 
/A, lis are to be found. If there exists a positive probability function of the form 

d 
Pi=/^n /� ' 

S = 1 
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satisfying the constraint of Eq.(5.9), then it maximizes the entropy 

H{p) = Pi log Pi 
i&i 

and is unique in doing so. 

It is shown that if p has the form Eq.(5.8) and satisfied constraint Eq.(5.7), 
it uniquely maximizes the entropy H{p) over distribution p. The model 
parameters for the distribut-ion 认emu, h) can be obtained via the Generalized 
Iterative Scaling (GIS) algorithm [10, 30 . 

5.1.4 Features for Transliteration 
111 Figure 4.1, for example, a binary feature can be identified from training 
corpus taking the following form: 

‘ 1 if e i = / F / and e.i_i=START and e i+ i= /R/ and 
]\(Jii, crriUi) 二 cmui=/hi/ 

0 otherwise 
or, 

‘ 1 if 6^ - /8 / and e.i+i=/T/ and cmUi_i=/IH/ and 
/2 (hi, cmui) = crnui—/si/ 

0 otherwise 
V. 

Take the first feature above for example: if the feature exists in the feature set 
defined in the model, its corresponding model parameter Xi will contribute 
towards the joint probability p(hi, cmui) when ti starts with / F / followed by 
/ R / and its related crnUi is / f u / (see Figure 4.1). 

The feature set can be empirically defined according to specific applica-
tions. Theoretically, a feature can be generated from any possible contex-
tual knowledge without restrictions. However, considering the computational 
complexity, the scope of the history usually greatly reduces to a relatively 
practical range in practice. The general feature set we used in experiments 
are listed in Table 5.1. It acts as the templates used for extracting fea-
tures from training corpus. Z are called instantiations variables, which 
are instantiated automatically by the corresponding English phonemes and 
pinyin emus from the training set. {Vsl and |Vc| are the sizes of English 
phoneme vocabulary and pinyin emu vocabulary, respectively. 

For example, given an aligned pair of phonerne-pinyin sequences in Table 
5.2 and suppose the current English phoneme is e?, the features with respect 
to its context Ht and the prediction crnuj can be extracted form the data, 
which are shown in Table 5.3. 
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Category Contextual Feature Templates # of Possible Features 

1 EI = X a n d ANUI = Z |V£ | . | V c | 

2 CMUI_i = X a n d CRNUI = Z 

3 CMUI-2CMUI-\ = ^Y a n d CMUI = Z 

4 CI-I 二 A" a n d CRNUI = Z IV^I . | V c | 

5 e i _ 2 = ^ a n d CRNUI = Z |V£:| . | V c | 

6 Ci+i = Af and CMUI = Z IV Î . |Vc;| 
7 e.i+2 = ^ and CMUI = Z iVfl . |VC| 

Table 5.1: Contextual feature templates in improved model Direct-2 

Position 1 2 3 4 5 6 7 8 9 1 0 i T " 
English F R AE N S IH S T EY L ER 
Chinese fu 1 ang e x i si t ai 1 e 

Table 5.2: A given alignment in training data 

Feature Contexts Feature Predictions 

feature�: e-i = / S / and crnUi =/si/ 
feature2 ： 二/IH/ and cmui = / s i / 
features : cmui-i 二/i/ and cmUi = / s i / 
feature^ : = / S / and crnUi = / s i / 
features ： crriUi一2 = / x / and crnui-i = / i / and crnUi = / s i / 
featured : Ci+i = / T / and crnUi = / s i / 
feature? : ^ / E Y / and crnuj = / s i / 

Table 5.3: Features extracted from h j = / S / for predicting cr/W7=/si/ 
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Training Size cut-off 廿-of contexts # of emus # of features 
41,674 — 10 ^ 13,171 

Table 5.4: Information obtained from training of model Direct-2 

5.2 Direct-2 Model Training 

5.2.1 Procedure and Results 
Direct-2 was trained using the data set Base-0 in the following two steps: 

1. Using EM iterations in GIZA++ to obtain Viterhi alignment of each 
pair of names in the training set of Base-0. The bootstrapping settings 
were the same as IBM SMT model training in [33]: 5 EM iterations of 
Model-1 followed by 5 of Model-2, 10 of Model-HMM and 10 of Model-
4. Note that the direction of estimation is from E to C directly instead 
of the opposite direction in source-channel training; 

2. Aligned training instances were then passed to GIS algorithm [4, 30] for 
training the MaxEnt model parameters. This fulfilled training the mod-
els considering the contextual features that can transliterate phoneme 
sequences of given English names into pinyin sequences. 

After training, we obtained the outcome in Table 5.4 concerning the niiin-
ber of all the contexts, emus and features identified from the training corpus. 
Cut-off is the manually set threshold for ignoring features that occur very 
few times in the training data since their statistics may not be reliable [30 . 
The cut,-off threshold of 10 means only those features that appear 10 times or 
more were considered to used for training the MaxEnt models. In addition, 
the possible emus corresponding to each English phoneme were randomly 
selected from the output of the EM training process being shown Table 5.5. 

5.2.2 Discussions 

Analysis of Table 5.5 revealed that there were two critical problems in Direct-
2 that can be further improved: 

Deficiency-1 

246 emus were identified (see Table 5.4), in which many were illegal clusters, 
such as / aw/ , /axue/ , /aie/ , /af/,...,etc.. Actually, some were unfavorable 
"final-initial" clusters, which might or might not constitute legitimate pinyin 
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English Phoneme Pinyin crnus 
A A iang ch aw ao an uan ai aa eng ong ie ve ia w u o uo e ue ... 
AE ao an ai ab ie ia o uo ui a e ian ei ang ... 
AH iang axue ou ao an uan aitian ai eng ata aotian ong iu ie ... 
AO ou aw ao an ai aie ong ie ia w u o uo i f e ue a ua iao e ... 
AW uow ou uok uoh uof of aw ao hao an af ab azhsheng ash iu w u ... 
AY iaai jing uoy wei ay ar an hai ai uai ah uaiy aiy aiai aii aih rong ... 
B ch an uan in w u p f c b e ... 

CH henshitin ch zh ie ia z x w t s q k j i h f d c iao e ... 
D ch zh z t n j d c b 

DH ch z X t s q d c e sh ... 
EH ou ao an ai eng ie ia o uo un i ui e ue ... 

Table 5.5: Phoneme-cmn mapping relationships discovered by EM training 
using GIZA++ 

sequences depending on the pinyin symbols followed. There is no means 
to prevent ill-formed emus from happening using GIZA++ training because 
it is completely data-driven. The EM algorithm is unbiased by treating 
each phonetic unit and all possible alignments equally. Unfavorable symbol-
mappings and alignments are unavoidable if such mappings dominate the 
training data, e.g. the first phoneme / F / maps to / f / and the second one 
/ R / maps to /u l / . This results in illegal pinyin sequences and gives rise to a 
large number of uncertain crnus. They turned out adding more uncertainties 
to phoneme mapping in testing. 

Deficiency-2 

Due to compound pinyin finals, two consecutive English phonemes may map 
to a single pinyin symbol, such as mapping from /AE N/ to /arig/ (see Figure 
3.1). This is not allowed in both Direct-1 (see Figure 4.1) and Direct-2. In 
these two models, one of the consecutive English phonemes must be mapped 
to £. In the model Direct-1, they are considered mapping to e in turn within 
the chunk and contribute to one more phoneme-level alignment (see Section 
4.3). In GIZA-I-+ training of Direct-2, they are considered as zero-fertility 
symbols, i.e. "words" with fertility zero in machine translation [1]. Note 
that these zero-fertility symbols become English phonemes as the direction 
of GIZA-H- training is reversed in Direct-2. This approach is inaccurate 
because there are possible rnany-to-one mappings from English to Chinese 
phonemes. 
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English Name FRANCES T A Y L O R 
English Phonemes F R AE N S IH S T BY L ER 

f \ i I I I t • • I 
Initials and Finals f u 1 a ng x i l _ i t ai I e 
Chinese Pinyin fti lang xi si tai le 
Chinese Transliteration 弗 朗 西 丝 泰 勒 

Figure 5.1: Our refined phoneme alignment scheme in direct transliteration 
modeling 

5.3 Refining the Model Direct-2 
These deficiencies motivate us to refine the model Direct -2 by improving 
the alignment scheme and reducing the size of pinyin inventory. 

5.3.1 Refinement Solutions 
Based oii the discussions concerning the deficiencies of Direct -2 , we propose 
two related solutions to refine the model. This refined model is referred to 
as Direct-2R. 

Solution-1 

We replace the EM training of GIZA++ by the EM training initiated by the 
alignment of phoneme chunks for the model Direct-1 (see Section 4.3). This 
aims to reduce the number of ill-formed emus by avoiding mappings across 
phoneme chunks. The alignment scheme based on phoneme chunks can also 
decrease the number of possible emus of each English phoneme, i.e. less and 
more deterministic class labels for each phoneme. 

Solution-2 

The linguistic knowledge about compound finals need not be ad-hoc in Di rec t -
2. We can refine the data by decomposing the set of compound finals into 
multiple basic finals, e.g. from /ang/ into / a / and /ng / , to reduce the size 
of vocabulary in the target language. The original mapping in Figure 3.1 is 
then broken into /AE/ - to - / a / and /N/- to- /ng/ as shown in Figure 5.1. 

We carefully examined the 35 pinyin finals and identified 12 compound 
finals, which are listed in Table 5.6. We then decomposed compound finals 
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ang eng iao ian iang ing 
Compound Finals (12) : 

t long uai uan uang ong uan 

Table 5.6: Compound finals identified by hand 

a o e ai ei ao ou er 
Basic Finals (24) an en n g _ _ i _ _ m _ _ ^ _ _ i u _ _ ^ 

u ua uo ui im ii iie iin 
Table 5.7: 24 basic final symbols in pinyin after refinement 

into smaller units and ended up with a reduced set of final inventory with 24 
basic units presented as Table 5.7. 

5.3.2 Direct -2R Model Training 

The training of the Direct-2R model was conducted using the similar pro-
cedure as that, of Direct-2 except that a refined phonerne-pinyin alignment 
scheme based on phoneme chunks and the EM training in Section 4.3.1 were 
applied to the step 1. In the refined alignment scheme a decomposition pro-
cess that decomposed compound finals (see Table 5.6) to basic finals (see 
Table 5.7) was used in training. 

We compared the Di rec t -2R training outcome with the Di rec t -2 model 
training in terms of the number of contexts, emus and features identified. 
The results are shown in Table 5.8. The D i r ec t -2R model identified more 
contexts arid features, but generated fewer possible emus. The possible emus 
corresponding to each English phoneme were randomly selected from the out-
put of EM training process and shown in Table 5.9. We note that the quality 
of the emus identified by D i r ec t -2R model training have been improved as 
all the emus were either individual initial/finals or legal initial-final clus-
ters. This justifies the effectiveness of the D i r ec t -2R refinement over the 
Direct-2. 

Model Training Size cut-off # of contexts # of emus # of features 
Direct-2 41,674 “ 10 1,258 ^ 13,171 

Direct-2R 41,674 10 1,282 195 13,933 _ 

Table 5.8: Information obtained from training of model Direct-2 and 
Direct-2R 
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English Phoneme Pinyin emus 
A A du ou luo yue ao ai ng ini lo le la ya xi sha wo we wa chi ie ... 
AE ao ai ng la ya wa ie ia u o uo lao i ui e a i ao e ei ... 
AH sai da kai pi lie ou luo wei yue qia ao ai ni hai ng na ... 
AO xiao ou luo yue ao ai yu lo la wo we wa ie ia u o uo huo lao i ... 
AW ou luo bi ao ai wu you iu w u hu o uo i e a i ao e ei ... 
AY da ci pa wei yue ba ao ai li yi ye ji iu ie ia v u ho o uo 1 i ... 
B ch bu bo wei bi ba bei ng bai y w s p n 1 g f e b a fu e er ... 

CH du di de ci ch bo nu ng na zh ze yi le ye ke xia ji chu z y hu ... 
D ch xi tai z x t s q h d c te si sh 

DH lie ou wei bi ao ai hai nie lu nuo li yi lei le ye la ya iu ie ia ... 
EH ou wei ao ai lei le ye la ya xi wu qiao wo wa iu ie ve ia y u o ... 

Table 5.9: Phoneme-cw'm mapping relationships discovered by EM training 
based on alignment of phoneme chunks 

5.4 Evaluation 

5.4.1 Search Algorithm 
Given an English phoneme sequence {ei, e2，...，e„}’ the conditional proba-
bility of generating the Chinese phonetic sequence {crnui, cmu2,.. •, cmun} 
is given by: 

n 
p(cmui,cmu2,...,crriUn|ei,e2,... ,e„,) ~ f j p ( c m u i | h i ) (5.10) 

i=i 

where {,/']，//'2,... A J is the predefined context (history) with respect to 
each English phoneme. The transliteration probability p{cmu\h) regarding 
the contextual history h can be estimated by Eq.(5.6), in which p(cmu, h) 
obtains from Eq.(5.8). Eq.(5.8) is computed by using the feature functions 
arid their respective model parameters obtained from the GIS training. 

We applied "beam search" to this testing process [30]. Beam search is 
essentially a breadth-first algorithm, but can avoid the combinatorial explo-
sion problem of breath-first search by expanding only a few most prornising 
candidates at, each level using certain heuristic. For each e.̂  in a testing En-
glish phoneme sequence E = {ei, 62,.. •,e„,}, the algorithm maintains the N 
highest probability transliteration candidates up to and including Ci it sees 
in the sequence, where N is known as the "beam size". The search algorithm 
is shown in Algorithm 2. The beam size N = b was determined empirically 
30] and the top-1 transliteration was finally used. 



C H A P T E R , 5. IMPROVING DIRECT TRANSLITERATION 58 

Algorithm 2 Beam search algorithm finding for best transliteration 
1： Input: ei，62,...，e„ 
2： Output: cmui,cmu2,...，crnun 
3: Candidate Node: bij, the j t h most probable transliteration candidates 

up to e.i, l<i<n,l<j<N. 
4: begin 
5： Generate possible emu! for d by Eq.(5.6). 
6： Find t,op-TV candidates t^ . 
7： for j = 1 to N do 
8： set b-[j = t j 
9： end for 

H)： for ？；二 2 to n do 
11: for j = 1 to N do 
12： Generate possible crnUi for e.̂  by Eq.(5.6) given the transliteration 

context 
13： Append cmUi to b(i-i)j to generate new sequence bij 
14： Add bij to candidate list 
15： end for 
16： Find top-yV candidates t ^ from candidate list 
17： for j 二 1 to TV do 
18： set bij = t j 
19： end for 
20： end for 
21： Return the most probable candidate b^i 
22： end 
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Systems Baseline Direct-1 Direct-2 Direct-2R 
Close 6 6 . 3 5 % 6 3 . 1 7 % 68.18% 76.97% 

广A 
Open 65.15% 62.61% 67.18% 75.08% 
Close 2 0 . 7 ^ 13.16%~ 23.47% 36.19% 

呢人 Open 1 8 . 2 7 ^ 11.34% 21.49% ~ 32.50% 

Table 5.10: Transliteration accuracies of the baseline, Direct-1, Direct-2 
and Direct-2R 

5.4.2 Direct Transliteration Models vs. Baseline 
Accuracy 

We compared the performance of Direct-2, Direct-2R, Direct-1 and the 
source-channel baseline with C.A. and W.A. measurements (see Section 3.3.2). 
Data set Base-0 was used for the comparisons. 

The results are shown in Table 5.10. Direct -2 outperforms the source-
channel baseline by about 2% in C.A. and about 3% in W.A.. It also out-
performs Di rec t -1 by about 6% in C.A. and about 12% in W.A.. This jus-
tifies our expectation on improving transliteration accuracies by considering 
coritextAial dependencies. The model Direct-2R demonstrates significant 
improvement over all the other models in all tests. Recall that in the model 
Direct-2R, we decomposed longer compound finals in pinyin into smaller 
sound units, i.e. basic finals, and aligned chunks of English phonemes with 
the corresponding chunks of pinyin symbols, prohibiting alignments across 
chunk borders. This could produce: 

1. more precise mappings between English phonemes and mapping units 
in pinyin (emus); 

2. less possible emus for each English phoneme, reducing uncertainties; 
and 

3. less cums with illegal pinyin syllables, leading to more legitimate pinyin 
sequences. 

This justifies the effectiveness of (a), the alignment scheme based on phoneme 
chunks and (b). reduced "granularity" of Chinese phonemes, which helps for 
the precise alignment. 

C.A. Distribution 

The C.A. Distribution, i.e. the percentage of the number of transliterations 
distributing over different C.A. ranges (see Section 4.6.1), was measured as 
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Character-level accuracy distribution 
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Figure 5.2: Comparison of baseline, Direct-1, Direct-2 and Direct-2R on 
CA. Distribution. 

well. Figure 5.2 shows the results. For C.A. ranges of 0% to 20%, the base-
line produced more transliterations than the other models; For C.A. ranging 
from 20% to 80%, Direct-1 produced more transliterations throughout the 
three ranges than the others. In the remaining C.A. from 80% to 100%, 
Direct-2R produced more high-quality transliterations (see C.A. > 80%) 
and considerably more correct transliterations (see C.A. = 100%). 

Accuracy vs. Name Length 

We also investigated how the different models differ from average length of 
correctly transliterated names. The length of a given name is represented by 
the number of phonemes it contains. For each model, we calculated the av-
erage length of correctly transliterated names (whose C.A. = 100%) in close 
and open tests. The averaged length of testing names were also calculated. 
The results are listed in Table 5.11. 

We notice that the source-channel baseline somehow discriminates longer 
names, evidenced as the average length of correctly transliterated names 
is obviously shorter than that of all tested names, whereas other models are 
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Close Open 
Baseline 5.02 4.91 
Direct-1 5.28 5.22 
Direct-2 5.27 5.27 
Direct-2R 5.30 5.34 

~Avg. Length 5.36 5.40— 

Table 5.11: The averaged length of testing names vs. the averaged length of 
correctly transliterated names by different models 

basically unbiased for name length as the average length of correctly translit-
erated names approaches to that of all averaged. This implies a good quality 
of our proposed models: we tend to be able to transliterate names of any 
length, not only being suitable for shorter ones. To justify our anticipation, 
we further conducted an experiment to reveal the relationship between W.A. 
arid name length on different models using the results of open tests. The 
comparisons are presented as Figure 5.3. 

We observe that the number of testing names distributed normally accord-
ing to length. Most names have 5 or 6 phonemes. Basically, all the models 
tend to make more mistakes on longer names than shorter ones. However, 
it is evident that the baseline performs well on names with the length of 3, 
and turns out being worse sharply for names longer than 3 phonemes. Other 
models basically can persist their performance with the increase of name 
length from 4 to 7. This indicates that our direct approaches have apparent 
advantages on transliterating names of various lengths. 

The reason is not very conclusive. We can give the intuitions roughly 
as follows: Direct-2 and Direct-2R can capture longer distance depen-
dericies of phonemes. Thus, their performances are less sensitive to length. 
However, this is not the case for Direct-1, which does not incorporate con-
textual features either, but practically performs better on length sensitivity 
Uiai'i the baseline. This may result from the stochastic prediction for the 
positions of unaligned English phonemes and pinyin symbols in the baseline. 
Shorter names tend to have shorter transliterations, and thus tend to have 
fewer phonemes that should have been identified as zero-fertility and NULL-
generated than longer ones. For shorter names, IBM SMT model therefore 
carries out fewer inaccurate operations, such as AddZfert and A d d N u l l 
than for longer ones. This can explain why the baseline is good at shorter 
names. Because other direct models can deal with one-to-many phonetic 
mappings, they don't involve such a stochastic prediction mechanism. Con-
sequently, the influence of name length is lighter. 
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W.A. vs. Name Length 

60 T——— 

g 5 � - 1 Baseline 

ro 40 I •Di rec t -1 

O I « —A—Direct-2 

i：] ^ 
0 — I I I I I I 1 T I i I 
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Name Length (# of phonemes) 

Figure 5.3: W.A. vs. name length under different models. The length of 
testing names is normal distributed. 
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5.4.3 Direct-2 vs. Direct-2R 
We compared the performance of Direct-2 and Direct-2R using C.A. and 
W.A. (see Section 3.3.2 for their learning curves, which is defined as accu-
racy varying with different data sizes. The experiment also enabled us to 
determine the appropriate training data size. 

Data Preparation and Test Procedure 

Experiments were carried out in multiple trials. Instead of directly using 
the data set Base-0, we extracted different instances in each trial of the 
experiments from the data pool which contains 46,305 name pairs. Data 
preparation proceeded as follows: In each trial, individual translation name 
pairs, i.e. instances, were randomly selected from the data pool to build 10 
subsets. Each subset accounted for 10% to 100% (step=10%) of the total 
instances in the entire pool. In each subset, we used 90% of the instances 
for training and the remaining 10% for open test. Also the same number 
of instances (10%) were randomly selected from the training instances for 
close test. To investigate the influence of data sparseness, the procedures 
of training and testing were applied to the 10 subsets with different data 
sizes. And the performance was measured by the averaged accuracy (C.A. 
and W.A.) of 50 trials of the experiments. C.A. Distribution was tested by 
the averaged values of the 50 trials on 100% data size only. These data 
preparation and testing procedures were designed to smoother! certain bias 
that often existed in individual data sets. 

Table 5.12 shows the highest and lowest accuracies of Direct-2 and 
Direct-2R in different trials together with the corresponding data sizes. 
C.A. and W.A. were averaged over the number of testing names. We noted 
that the rnaxirniirn/mininurn of C.A. and W.A. may happen regardless of the 
data size. It implies that the quality of data in certain subsets can affect the 
outcome of each trial. This is the reason why we have to average the accura-
cies on multiple trials to smoothen the discrepancies caused by different data 
quality in individual subsets. 

Learning Curve: Accuracy vs. Data Size 

Figure 5.4 shows the average C.A. and W.A. of Direct-2 and Direct-2R 
over different data sizes. Direct-2R significantly outperforms Direct-2 on 
all tests for different subsets. 

We did not, see serious data sparseness problem. This is likely because 
our data pool was large enough, with 46,305 name pairs. However, light 
data sparseness was observed when less than 40% of the data pool (around 
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Direct-2 Direct-2R, 
Accuracy Close Open Close Open 

Ma^(%) 72.48 69.26 79.23 
^ ^ f e 1 0 % 10%- 20% 

C.A. Mm(%) " 6 6 ^ 63.23 ‘ 72.97 7Q.93~ 
Size 10% —10% 10% . 

Ma^(%) 28.08 24.48 40.24 3 6 A T 
Size— 10% 20% “ 90% 

W.A. Min(%) T i . 1 7 14.47 30.98 24.4厂 

S i z e ~ 10% “ 10% 10% 10% 

Table 5.12: Marginal accuracies achieved by Direc t -2 and D i r e c t - 2 R 

Accuracy vs. Data Size 
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Figure 5.4: Comparisons of Di rec t -2 and D i r e c t - 2 R on C.A. and W.A. over 
different data sizes. D-2 and D - 2 R refer to model Direct-2 and Direct-2R 
respectively 
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18,522 instances) was used for Di rec t -2R training (90% of 18,522 train-
ing instances) and testing (10% of 185,22 test instances). In Direc t -2 , we 
observed similar data sparseness when 30% of the entire data set (around 
13,891 instances) was used. These data sizes, i.e. about 13,891 instances for 
Di rec t -2 and 18,522 instances for Direc t -2R, should be enough for train-
ing the models. However, this indicates that D i rec t -2R is more sensitive to 
sparse data than Direct-2. The reason is that fewer emus of each English 
phoneme are discovered in Di rec t -2R than in Direct-2. Intuitively, when 
small training set were used, not enough emus could be discovered by the 
EM training based on alignment of phoneme chunks. Although the emus 
discovered were finer than those of GIZA++ training, they could not make 
up of "full-scale" class labels for English phonemes, which caused the MaxEnt 
models to wrongly predict yet "unseen" emus by making use of this fewer 
number of "seen" emus during testing. This can explain why Direct-2R 
suffers from data sparseness problem more seriously. 

5.4.4 Experiments on Direct-2R 
Transliteration Quality 

We analyzed Direct-2R to study the quality of transliterations. We ran-
domly chose 100 sample testing names with C.A. < 20% to qualitatively ex-
amine their English pronimciatioris, machine-generated transliterations and 
the standard Chinese translations. These names are partially listed in Ta-
ble 5.13. We recognized 68 foreign names that should not be phonetically 
transliterated but should be translated based on meaning, such as Japanese, 
Korean or other Southeast Asians' names. Most of the remaining ones are "ir-
regularly" transliterated names, such as "Rieth", "Hayer", "Haim", "Flex", 
etc. Since we have no idea concerning their original language, it is difficult 
to judge their human-generated standard transliterations. But the machine-
generated transliterations are evidently closer to their English pronunciations 
than the standard ones. Note that non-English names possibly, but not al-
ways, can be transliterated in terms of their original pronunciations instead 
of English pronunciations. For instance, the transliteration of "John" ( /JH 
AA N/) , “ 约翰 “ ( / y u e I'lan/), is produced from its Hebrew pronunciation 
directly. Hence, it would be better to first classify the training instances 
according to their language origins. This, however, is beyond the scope of 
this thesis. 

We also studied the transliterations of 100 randomly chosen names with 
C.A. of more than 80% but less than 100%. Some sample names are listed 
in Table 5.14. Qualitatively, they all present tiny distance from the standard 
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Original Name Pronunciation Machine Trans. Standard Trans. C.A.(%) 
Voth V AA TH wa si fu te ( 福特） 0.000 

Honcho HH AO N CH OW heng huo ben die ( 本蝶） 16.67 
Pace P EY S pei qie pa cai ( 帕釆） 20.00 
Rieth R AY AH TH li ao si 丨i te (里特） 0.000 

Fujitsu F UW JH IH T S UW fu ji ce ge jiri ( 葛津） 20.00 
Sag S AE G sa ge sa (萨） 0.000 

Tokunaga T OW K UW N A A G AH tuo ke na jia de chang ( 德长） 0.000 

Yoho Y OW HH OW yue huo rong feng ( 蓉峰） 0.000 

Hii-omasa HH IH R OW M AA S AH xi luo ma sa bo ya ( 博 雅 ) 0.000 

Cyusai G Y OW S EY ge luo sa yu cai ( 鱼菜） 0.000 

Bag B AE G ba ge ba (巴） 0.000 

Thyme TH AY M sai mu di mei ( 蒂 梅 ) 20.00 
Upshur AH P SH ER a pu xiao e pu she ( 厄普舍） 16.67 
Hairn HH AY M hai mu an (安） 0.000 

Pet P EH T P EH T bei (贝） 0.000 

Shaefer SH EY F ER sha fe xie fu ( 谢弗） 20.00 
Hayer HH EY ER hai er a ye ( 阿 耶 ) 0.000 

Motyka M AA T AY K AH ma tai xi mo di ka ( 莫蒂卡） 16.67 
plex F L EH K S fu lai ke si fu lai ( 弗 莱 ) 20.00 
Yap Y AE P ya pei m ( 入 ） 0.000 

Table 5.13: Randomly selected sample transliterations with C.A. < 20% 

transliterations. Many of them are even phonetically closer to the corre-
sponding English pronunciations than the standard ones. Without profound 
linguistic knowledge, one could not distinguish the subtle qualitative differ-
ences between transliterations produced by machine and human. However, 
they are not identical to the defacto standards after all. Thus, in human sub-
ject tests, transliterations with similar quality like this could be considered 
"phonetically equivalent but misspelled" [19]. A precise objective judgment 
method for the transliteration quality is still left unexplored. 

Phoneme Accuracy 

We adopted an approximated approach to examine the phoneme conversion 
accuracy and top confusions among mapping units in pinyin: Assuming the 
Viterbi alignments obtained during training were correct, the mapping of 
individual phonemes would also be correct. We used all the 46,305 instances 
in the data pool for training and testing. The C.A. and W.A. achieved were 
76.79% and 36.43% respectively. We then compared the test outputs, i.e. 
transliterations aligning to their English origins, and the alignments pro-
duced by EM algorithm during the training process. Conversion accuracies 
of English phonemes are listed in Table 5.15. 

We found that 2/3 of 24 consonants and 1/4 of 16 vowels are among top-
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Original Name Pronunciation Machine Trans. Standard Trans. C.A.(%) 
Cotroneo K OW T R OW N lY OW ke te luo ni ao ke te luo nei ao (科特罗内奥） 91.67 
Schinaus SH M AW Z shi rna si shi rnao si ( 施 毛 斯 ) 87.50 
Ki zeminski K R AH M IH N S K lY ke la ming si ji ke re rning si ji (克热明斯基） 83.33 
Bergfeld B BR. G F EH L D bo ge fei er de bei ge fei er de (贝格菲尔德） 83.33 
PrisciJla P R, AH S IH L AH pu lu xi la pu li xi la ( 普丽西拉） 87.50 
Si lver thorn S IH L V E R T H AO R N xi er wo suo en xi ei. fu suo en (西尔弗索恩） 81.82 
Klages K L E Y JH AH Z ke la re si ke la ge si ( 克拉格斯） 87.50 
Cullins K AH L IH N Z ke lin si ka lin si ( 卡 林 斯 ) 85.71 
Pel le t t P EH L AH T pei la t e pei Ii t e ( 佩利特） 85.71 
Haywor th HH E Y W E R T H ai wo si hai wo si ( 海沃思） 85.71 
P u t t i n g P AH T IH NG p a t ing pi t i n g ( 皮廷） 83.33 
Drees D R l Y Z de li si de lei si ( 德雷斯 ) 85.71 
G a r n e t t G AA R N EH T j ia nei t e j ia ni t e ( 加尼特） 85.71 
Cronquist K R AA N K W IH S T ke Ian kui si te ke long kui si te ( 克龙奎斯特） 8 4 . 6 2 
Cusuinano K UW S UW M AA N OW kii zu ma nuo ku su ma riuo ( 库苏马诺 ) 88.89 
Perkovic P ER K AH V IH CH pei ke wei qi pei er ke wei qi (佩尔科维奇） 83.33 
Lagardere L AA G AA R D IH R la jia di er la jia dai er 90.00 
Valley V AE L lY wa li wa lai ( 瓦莱） 80.00 
Delmonico D EH L M AA N lY K OW de er ma ni ke de er rno ni ke (德尔莫尼科） 90.00 
Steward S T UW ER D shi tu er de si tu er de ( 斯图尔德 ) 87.50 
• •• . . . * * * * * * ,, * * * 

Table 5.14: Randomly selected sample transliterations with 80% < C.A. < 
100% 

20 of phoneme accuracies. This indicates that transliterations of consonants 
are more accurate than vowels. We obtained average accuracies of consonants 
and vowels with 76.36% and 67.78% respectively from Table 5.15. The rea-
son is straightforward: consonants are all monophonic while vowels vary from 
monophthongs, diphthongs to even triphthongs. Vowels complicate the map-
ping relationships with pinyin symbols and may lead to more possible emus 
than consonants do. A possible solution for future work can be to somehow 
decrease the "granularity" of phonetic representations on both languages to 
yield finer mapping correspondences between phonemes or phoneme chunks. 

Top-20 anus in pinyin that are most frequently confused with others are 
shown in Table 5.16. Their corresponding English phonemes and confusion 
frequencies are also shown. The confusions are partly resulted from the fact 
that people did not abide by consistent regulations, especially on sounds 
with high transliteration ambiguities. For example, pinyin sound / p / is of-
ten confused by / b / for the given English phoneme / P / . There were 579 
transliteration mistakes on phoneme / P / , where 347 of them wrongly con-
verted / ? / to / p / instead of to / b / , which ought to be the correct target, 
and the confusion rate is 58.12%. 
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Phoneme Top-20 Accuracy Phoneme Lower-19 Accuracy 

F 97.73% UH 73.36% 
B 96.02% HH 72.04% 
L 94.59% EH 70.92% 
D 92.94% AA 68.62% 
M 92.62% Z 64.78% 

AE 89.95% UW 64.66% 
R 88.91% AO 64.31% 
p 86.96% DH 63.64% 
K 86.81% ER 63.12% 
IH 84.89% OY 62.24% 
T 83.55% CH 60.18% 
N 81.82% AW 60.06% 
W 81.51% TH 58.86% 
V 81.04% AH 57.76% 

OW 80.76% AY 57.05% 
G 80.48% Y 56.71% 
S 80.46% JH 43.36% 

lY 78.26% EY 40.77% 
NG 77.95% ZH 35.35% 
SH 74.21% 

Table 5.15: Phonemes accuracy rankings 
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Pinyin Confusion English Phoneme Confusion Frequency Confusion Rate 
b — p P 347/597 58.12% 

ng ^ ri N 1719/3398 50.59% 
t s DH 24/56 42.86% 

ng 4 ri NG 180/460 39.13% 
£ — er R, 589/1622 36.31% 
b — w V 197/563 34.99% 

X — sh SH 179/517 34.62% 
i — ai AY 390/1170 33.33% 

shi — si S 795/2473 32.15% 
£ (ie D 191/599 31.88% 

te — si TH 96/353 27.20% 
j ^ g G 2 6 6 / 1 0 5 0 2 5 . 3 3 % 

u — uo OY 36/148 24.32% 
(1 t T 431/1892 22.78% 

5 er L 203/902 22.51% 
i 4 u UH 42/191 21.99% 
ei i lY 551/2510 21.95% 

a ^ h HH 221/1022 21.62% 

fei _> fu F 19/89 21.35% 

w - b B 65 /313 20.77% 

Table 5.16: Pinyin mapping units with top confusions and their correspond-
ing English phonemes 
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Accuracy vs. Data Size 

80.00% - 一 ; J 一 -

70.00% - y ^ 
^ 60.00% -
§ 50.00% -
< 40.00% -

30.00% 
20.00% -
10.00% 

0.00% 1 1 1 1 1 1 1 1 1 
>^\�4\�存\。4\�<#。、炉 4 � � / 。 

Data Size 

— X - - CA-Qose A~CA-Open 

— + - - WA-Close ^ ~ WA-Open 

Figure 5.5: The learning curve of Direct-2R on trimmed data set Base-1 

Performance on Trimmed Data and Remarks 

Before we conclude this chapter, we demonstrate the system's performance 
of model Direct-2R with "friendly" data. The data set we used contains a 
large number noisy data like irregularly transliterated names from a variety 
of languages. It's been testified that these "unfriendly" names contributed 
significant errors to transliterations [33], evidenced as the decrease of errors 
after the names with low alignment scores were wiped off from the training 
set. We propose to learn how well our direct approach can achieve with 
regular names, such as how its learning curve is like when not disturbed by 
noises. 

We refined the data pool by eliminating all the incorrectly transliterated 
names. This was done by training and testing Direct-2R on all the 46,305 
instances. We obtained 16,948 very regular instances, which is called Base-
1 hereafter. We then partitioned Base-1 into 10 subsets according to the 
method we processed Base-0 in Section 5.4.3 during each of the 50 trials for 
training and testing. The resulting C.A. and 儿 were averaged over all the 
trials. Figure 5.5 presents the learning curve of Direct-2R on Base-1. 

The model achieves remarkably higher accuracies on the trimmed data 
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set. On 100% data size, the C.A. reaches 97.08% and 95.90% in close test 
and open test respectively, and the W.A. are 89.53% and 85.32%. However, 
we should emphasize several remarks as follows: 

1. From these tests, we can notice evident data sparseness problem as the 
data size is smaller than 50% of 16,948 instances. Usually, it would 
be hard to have about 8,500 name pairs for training the model. Thus, 
techniques addressing data sparseness should be incorporated into the 
model. 

2. Under this ideal data set, we can see the maximal potential of the 
model. There are still rooms to improve the model possibly by intro-
ducing additional dependencies, such as longer contextual histories or 
the language model. This is up to the further study concerning the 
influence of different features on the transliteration effectiveness. 

3. It, is necessary to improve the model's performance under the richness 
of noisy data. 

5.5 Chapter Summary 
We have addressed several critical problems suffered by the source-channel 
based English-to-Chinese transliteration model. We then proposed the im-
proved direct transliteration model Direct-2, which supported one-to-many 
alignment mappings. The model is simplified by using mapping units to re-
duce the number of model parameters. That finally will lead to one-to-one 
alignments. 

The implementation of Direct-2 did not make use of information em-
bedded in the target language model. This was balanced by using the con-
textual information of a specific English phoneme and the corresponding 
aligned Chinese pinyin symbols. Maximum entropy modeling was employed 
for this purpose and GIS training algorithm was used. Experiments showed 
its superiority over the source-channel baseline and Direct-1. 

Further refinement by Direct-2R was achieved by precise alignment of 
phoneme chunks and by decomposition of larger phonetic units, i.e. com-
pound finals of pinyin, into basic finals with smaller "granularity". The 
experimental results strongly supported our expectations. 

• End of chapter. 



Chapter 6 

Conclusions 

This chapter summarizes the contributions of this thesis. It outlines possi-
ble applicaUoi'is of machine transliteration and gives an outlook for future 
research on this interesting topic. 

6.1 Thesis Summary 
We have proposed to use unsupervised machine learning techniques for mod-
eling phoneme-based English-to-Chinese transliteration problem. Statistical 
transliteration modeling has a strong basis in information theory. It can re-
move many ad hoc procedures from traditional rule-based machine translit-
eration techniques. In addition, we have shown that the proposed direct 
transliteration approaches have obvious advantages over IBM SMT model, 
which is based on the state-of-the-art source-channel framework. We have 
evaluated and compared both the direct and source-channel based models 
and obtained s1;rorig evidences to support our hypotheses. There are three 
main contributions in our research: 

• We have identified major deficiencies of the source-channel based model 
for Engiish-to-Chinese transliteration by reproducing the implementa-
tion described in [33]. The source-channel based model, which uses 
reversed prior conditional probability, is unable to realize one-to-many 
symbol mappings between phonetic units from source to target lan-
guage. TransliteraUon is modeled as a stochastic process with random-
ized parameters, such as zero-fertility and NULL-generated symbols, to 
represent unaligned phonetic units. The mechanism is error-prone as 
random reproduction of zero-fertility symbols in target sequence and 
insertion of NULL-generated symbols in source sequence could not ef-
fectively predict the frequent un-transliterated English phonemes and 
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the mappings from single English phonemes to initial-final clusters. 
This restriction has been overcoined by the proposed direct transliter-
ation model, i.e. the direction of prior probability estimation coincides 
with the transliteration direction. 

• We proposed the Direct-1 model to cope with one-to-many symbolic 
mapping with a direct prior and alignment scheme of phoneme chunks. 
Initial-final clusters were introduced as mapping units in the Chinese 
side. They could be dynamically identified and appended to the target 
phonetic vocabulary during training. The direct method was imple-
mented using a weighted finite state transducer for the transliteration 
model plus a finite state acceptor based on the bigram language model 
of the target syllables. Compared with the source-channel baseline, the 
performance of Direct-1 was slightly worse. Nonetheless, Direct-1 is 
more simple and flexible for extension. 

• We also proposed an enhanced direct transliteration model, namely 
Direct-2. Maximum entropy formalism was adopted to incorporate 
longer contextual dependencies among phonetic symbols. Although 
Direct-2 excluded the language model, it still achieved higher accura-
cies than otlier approaches. We refined the Direct-2 by using align-
ment based on phoneme chunks with finer pinyin mapping units. The 
refined model, i.e. Direct-2R, performed best. Direct-2 did not only 
cater for one-to-many symbol mapping, but also approximated rnany-
to-orie mappings by reducing the granularity of target phonemes. This 
led to more precise symbolic alignment. 

English-to-Chinese transliteration involves both one-to-rnany as well as 
rnany-to-one symbolic mapping between English and Chinese. Experiments 
have shown that the orie-to-many alignment scheme plus contextual depen-
dencies using direct models is better than the many-to-one by source-channel. 
It can be anticipated that the combination of the both would be more supe-
rior. 

6.2 Cross Language Applications 
The use of machine transliteration in cross language applications is imminent 
and promising. CiuTently, English-Chinese machine transliteration methods 
are almost all proposed for specific applications, such as information retrieval 
8, 22, 23，33], acquisition or extraction of equivalent word pairs from parallel 

corpus [14’ 20], and construction of named entity translation dictionary [13， 

34]. 
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Not only that, automatic transliteration can be directly applied to machine-
aided translation on names to alleviate human labors. It could also be ap-
plied to adaptation of empirically sound data to provide best suggestions to 
human translators on given names. In addition, although we were mainly 
concerned with Mandarin, dialect-specific knowledge is independent of our 
model. As such, our method will be applicable to other Chinese dialects, 
such English-Cantonese pairs. It could be trained using regional "cultural 
settings" to handle transliterations of specific Chinese dialects and help find 
transliteration equivalents of the same foreign name. In principle, our ap-
proach can also be applied to any language pairs that are composed of regular 
consonants and vowels, except for Semitic languages, e.g. Arabic, which lack 
"short vowels" in their written forms [2, 3 . 

6.3 Future Work and Directions 
As far as we concern, machine transliteration for English-Chinese language 
pair is an undeveloped research area. There are still many unresolved prob-
lems and much work is left unexplored. As with our research, we outline the 
future work as follows: 

1. Although direct approaches are advantageous over source-channel based 
methods on using one-to-many mapping from source to target and on 
accomodating contextual features, it may suffer from the hardship con-
sidering rriany-to-one mapping. For superior performance, it needs to 
approximate rnany-to-one mapping by means of decomposing the map-
ping to multiple one-to-one mappings, which was achieved by reducing 
the granularity of target symbols in Direct-2R. However, this may be 
ineffective for other target languages, in which there are not so many 
compound phonetic symbols as Chinese Rornanization systems. Thus, 
a more general and effective model for many-to-many symbolic align-
ment should be developed. 

2. Due to the decomposition of compound pinyin symbols, fewer and finer 
crnus are identified in Direct-2R model. The model becomes more 
vulnerable to the paucity of data. Thus, effective smoothing techniques 
are required for the Direct-2R model to overcome data sparseness 
problem. 

3. The use of different contextual dependencies has not been carefully 
studied and compared. It is unclear how well the features defined in the 
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improved direct models could suit for transliteration problems. There-
fore, it would be interesting to explore the influence of different sets of 
features selected for Direct-2 and Direct-2R. 

4. There are many rooms to improve the Direct-1 model by means of 
amendments on language modeling and search algorithm. There are 
constant arguments that the mathematical foundation of Direct-1 re-
sults in its worse accuracy than the source-channel model supported 
by Bayes' theorem. However, it, is not conclusive unless optimal so-
lutions of the both models could be found and compared. Also, an 
experiment in machine translation showed that the form of Direct-
1 used for search did not affect the quality of translation results in 
source-channel based model [27 . 

5. No consent has been achieved in machine translation community whether 
the source-channel based IBM SMT model could obtain the optimality 
by the combination of translation model and language model. Per-
plexity is often adopted to measure the goodness of translation model 
in training and testing. However, it is unclear if perplexity could re-
ally reflect the effectiveness of translation [1]. Thus, it is an ongoing 
research to explore different combinations and iteration schedules of 
the sub-models (Model-1 to Model-5) in IBM SMT to find the optimal 
hypotheses. In direct transliteration modeling, MaxEnt theorem can 
guarantee that the learning algorithm always robustly converges to the 
maximum entropy probability distribution and provides better fit of 
the data. It would be useful to learn the optimal characteristics of the 
direct models and compare with that of the baseline model. 

6. We can readily apply the proposed direct transliteration models to 
CIiinese-1,0-English back-transliteration. Although we currently haven't 
conducted experiments to verify its effectiveness on the backward di-
rection application, we believe that it is simply a matter of revers-
ing the order of source and target without significant modification 
of the model. The source-channel model has intrinsic advantage for 
back-transliteration since its reversed priori probability estimation co-
incides with the original direction in producing transliterations by hu-
man translators (see remarks in Section 2.2.4). It would be interesting 
to make comparisons with the direct models for the effectiveness. 

Finally, we would like to prospect the future direction on this research. 
One of the most exciting directions of machine transliteration is to propose a 
language independent model that can universally fulfill transliterating names 
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given any language pairs. The premise of its realization depends not only on a 
model, but also on effective schemes on universal phonemic representation for 
all human languages. International Phonetic Alphabet (IPA) is widely used 
as such a representation for human speakers, but the universal computer-
readable phonetic alphabet has just been developed in recent several years, 
which is known as SAM PA (Speech Assessment Methods Phonetic Alphabet). 
A SAM PA transcription is designed to be uniquely parsable. As with the 
ordinary IPA, a string of SAMPA symbols does not require space between 
successive symbols. Unlike other proposals for mapping the IPA to ASCII, 
SAMPA represents the outcome of collaboration and consultation among 
speech researchers in many different countries. The SAMPA transcription 
symbols have been developed by or in consultation with native speakers of 
every language to which they have been applied. Currently, it has been 
applied to 24 major human languages including Chinese, and the scope is 
continuing to enlarge. A number of research on speech technologies has been 
conducted based on this set of alphabets as internal phonetic representations. 
SAMPA will be a powerful tool for machine transliteration as well. 

• End of chapter. 



Appendix A 

IPA-ARPABET Symbol 
Mapping Table 

l i ^ ARPAbet ARPAbet 
Symbol Symbol Word Transcription Transcription 

J ] [i^i % P i f r n r n ^ 
[i] [ih] lily I'lili] [1 ih 1 iy] 
[ei] [ey] dmsy ['deizi] [d ey z i] 
[e] [eh| poinsettia [poin'serb] [p oy n s eh dx iy ax] 
[ae] |ae] aster ['aesta^] [ae s t axr] 
[a] [aaj poppy ['papi] [ p a a p i ] 
[0] [ao] orchid ['orkid] [ a o r k k d ] 
[u] [uh] woodruff [VudiAf] [w uh d r ah f j 
[ou] Low] lotus ['lour9s] [1 ow dx ax s] 
[u] [UW] tulip ['tulip] [ t u w l i x p ] 
[A] [uh] buttercup ['bAr9-,kAp] [b uh dx axr k uh p] 
[y] [er] bird ['b3^d] [b er d] 
[ai] [ay] iris ['arris] [ a y r i x s ] 
[au] [aw] sunflower ['SArifla叫 [s ah n f 1 aw axr] 
[01] [oy] poinsettia [pom'seria] [p oy n s eh dx iy ax] 
[ju] l y u w ] f e v e r l ^ [fiva^fju] [f iy v axr f y u] 
[a] [ax] woodruff ['wudraf] [w uh d r ax fl 
[i] [ix] tulip ['tulip] [ t u w l i x p ] 
[叫 [axr] heath红 [h eh dh axr] 

[ux] dude^ [dad] [d ux d] 

Figure A.l : The correspondence between IPA symbols and ARPABET sym-
bols (vowels) 
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"IpA ARPAbet I M ARPAbet 
Symbol Symbol Word Transcription Transcription 

" I p j \V\ parsley ['parsli] [p a a r s l i y ] 
|t] 丨 t] tarragon j'taersgan] [t ae r ax g aa n] 
[k] [k] catnip ['kaetnip] [k ae t n ix p] 
[b] [b] bay [bei] [b ey] 
[d] [d] dill [dil] [d ih 1] 
[g] [g] garlic i'garlik] [g aa r 1 ix k] 
[ml [m] mint 丨 mint] [ m i h n t ] 
[n] [n] nutmeg ['iiAtmeg] [n ah t m eh g 
[ij] [ng] g i n s e ^ ['dsinsig] [jh ih n s ix ng] 
[t] [t] f e n n e T ['feril] [f eh n el] 
| v] |v] clove [klouv] [k 1 ow v] 
[e] [th] thistle ['Oisl] [th ih s el] 
[5] [dh] heather [htbdi^] [h eh dh axr] 
[s] Ls] sage [seids] [ s e y j h ] 
[z] | z] hazelnut ['lieizlriAt] [h ey z el n ah t] 
[Jj [sh] s q u a ^ [skwaj] [s k w a sh] 
[3] [zhj ambrosia [aern'brouss] [ae m b r ow zh ax] 
[tf] [ch] 边 icory ['tjika^i] [ch h k axr iy ] 
[d3] 丨 jh] s a ^ [seid3] [ s e y j h ] 
[1] [1] l i c ^ c e ['lika4J] [1 ih k axr ix sh] 
[w] [w] kiwi ['kiwi] [k iy w iy] 
[r] |r] parsley ['parsli] [p a a r s l i y ] 
[j] [y| yew [yu] [y uw] 
[h] |h] horseradish j'horsraedij] [h ao r s r ae d ih sh] 
[？ 1 [qj uh-oh j?A?ou] [q ah q ow] 
[r] [clx] butter ['bAra^] [b ah dx axr ] 
[f] I nx] wimergreen [wira^rin] [w ih nx axr g r i n ] 
[|] [el] thistje ['eis|] [th ih s el] 

Figure A.2: The correspondence between IPA symbols and ARPABET sym-
bols (consonants) 
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