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Abstract

Given a source language term, machine transliteration is to automatically
generate the phonetic equivalents in a target language. It is useful in many
cross language applications. Recently, there are increasing concerns about
automatic transliteration, especially with languages with significant distinc-
tions in their phonetic representations, e.g. English and Chinese. Despite
many cross-language applications in English/Chinese, machine translitera-
tion between the two languages has not been studied comprehensively.
Existing English-Chinese transliteration techniques are typically based
on source-channel framework, e.g. IBM SMT model. The accuracy of this
model is rather low. In this thesis, we propose to use a direct approach
for English-to-Chinese transliteration. We propose two direct translitera-
tion models: In the first model, we model the problem as direct phonetic
mapping from English phonemes to a set of rudimentary Chinese phonetic
symbols plus dynamically discovered mapping units from training process.
An effective algorithm for alignment of phoneme chunks is presented. In the
second model, contextual features of each phoneme are taken into consid-
eration by means of Maximum Entropy formalism, and it is further refined
with the precise alignment scheme based on phoneme chunks. We compared
the direct approaches with the source-channel baseline implemented with
the IBM SMT model, and showed that the second approach is significantly

superior.
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Chapter 1

Introduction

1.1 What is Transliteration?

The adoption of a foreign name into one language is usually a process of ad-
justing its original pronunciation to suit the phonological regularities in the
target language. This procedure of phonetically “translating” foreign names
is called transliteration. For instance, English name “Britain” is transliter-
ated into Mandarin Chinese as “ AAFHT ” (/bu lie dian/?), which undergoes
significant transformations to accommodate the phonological characteristics
of Chinese language.

The growing trend of globalization demands effective and efficient world-
wide information access across language barriers. Automatic name transla-
tion mechanisms are recognized as important issues in many cross-language
applications. Cross-lingual information retrieval (CLIR) involves keyword
translation from the source to target language and document translation
in the opposite direction. Proper names are especially frequent targets in
queries. Similar demands are also becoming imminent in machine trans-
lation (MT) and spoken language processing, such as cross-lingual spoken
document retrieval and spoken language translation. Contemporary lexicon-
based translation techniques are ineffective as translation dictionaries can
never be comprehensive for proper names. New names appear almost daily
and they become unregistered vocabulary in the lexicon. This is known as
the Out-Of-Vocabulary (OOV) problem in lexicography [16]. The lack of
translation for OOV names hinders the performance of the underlying appli-
cations. One way to solve this problem is not to rely on a dictionary alone
but to combine it with machine transliteration techniques [19].

1Mandarin pinyin is used as phonetic representations of Chinese characters throughout
this paper. For simplicity, we ignore the four tones in the pinyin system.
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Machine transliteration is classified in two directions: forward and back-
ward. Given a name pair (o, t), where o is the original in one language and
t is the transliterated name of o in another language, forward transliteration
(or transliteration) is converting from o to ¢; and backward transliteration
(or back-transliteration) is retrieving the correct o given ¢. For example,
“Britain— AFIHi ” is a typical forward transliteration pair and the corre-
sponding back-transliteration is “ A"F/ii — Britain”.

Regardless of the directions, machine transliteration can also be classi-
fied in terms of the level of units being transliterated, i.e. phoneme-based
and grapheme-based, which are sometimes referred to as the pivot and di-
rect® methods [21], respectively. Phoneme-based transliteration is done in
steps: (a). convert the words into pronunciation symbols, i.e. phonemes;
(b). transliterate the phonemes of the source language into the counterparts
in the target language; (c). convert the resultant phonemes to the target
words. In grapheme-based method, source words are transcribed to the tar-
get words based on graphematic units directly without making use of their
phonetic representations.

In our research, we concentrate on phoneme-based techniques for auto-
matic transliteration of foreign names in English to their Chinese counter-
parts, i.e. forward transliteration.

1.2 Existing Problems

Unlike other research areas in human language technologies, machine translit-
eration is relatively immature. It suffers from the following problems:

1. Ambiguous Standards: In practice, transliterations are hand-coded
using rules of thumb. Existing rule bases are compiled manually. They
are not easy to expand and are mostly subjective, i.e. they are sub-
jected to the interpretation of individual producers. De facto stan-
dards have been established, but the rules are often inconsistently used.
Dialectical discrepancies may further aggravate the inconsistency of
transliteration standards. Table 1.1 lists some of these examples ap-
pearing in the three major Chinese language communities: mainland
China, Hong Kong and Taiwan®. Due to dialectical differences, each
region uses its respective set of rules for transliteration. However, we

2Note that the direct method here refers to transliteration based on graphemes directly
instead of involving phoneme-level representations. It is not the direct transliteration model
we will propose in this thesis. See later chapters for details.

3The regional transliterations and their usage shown in the table were extracted from
the major news websites of the three regions using a search engine.
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Original Name Chinese Transliterations Mainland | Hong Kong | Taiwan
E /ai ta/ /
BRIE /ai ta/ Vv v
AL Qs o 251k /a gai da/ v v
K /eai da/ Vv 3/ J
R . B /ai ta/ v i
(Mohammed) Att e Y, J v \/
AHE /ben la deng/ Vv Vv /
e RHE /bin la deng/ v 7 Vv
AR F} /ben la dan/ Vi v
R /bin la dan/ Vs
TR /an ran/ i v o
ZW /an long/ v v by
Enron £ /an long/ v v v
B /en long/ o V
B R /en long/ o
RIER /hou sai yin/ v v
Hussein P /hai shan/ Al
e 3 /ha shan/ N
Inter(net) RAF(F)  /yin te (wang)/ v v v
H4F(M)  /ying te (wang)/ A v v
521} /sa si/ Vv v o
SARS s /sha shi/ J ) ")
Wi /sha si/ v J

Table 1.1: Some transliteration confusions found in Chinese websites and
news media.

observe that multiple transliterations of the same original name coexist
even in the same region. Moreover, transliteration initially produced
by one region could sometimes spread over the entire communities. The
transliterated word would then be assimilated as the equivalents of the
local transliteration in other regions. Thus, the established rules and
standards actually have been undermined by the existent translitera-

tion discrepancies.

2. Specific to Applications: Several methodologies for English-Chinese
transliteration have been proposed for specific applications, such as in-
formation retrieval [8, 22, 23, 33|, acquisition or extraction of equiva-
lent word pairs from parallel corpus [14, 20|, and construction of named
entity translation dictionary [13, 34]. Since they are specific to desig-



CHAPTER 1. INTRODUCTION 4

nated applications, comprehensive experiments evaluating translitera-
tion accuracy, e.g. comparing machine-generated transliteration with
the standard counterparts, are usually missing. Beside (23, 33|, which
present syllable errors based on edit distance, others only evaluate the
performance of the underlying application, e.g. precision/recall in in-
formation retrieval. Thus, true transliteration accuracy practically re-
mains unknown.

3. Lack of Comparisons: There is neither a widely recognized bench-
mark nor consistent measurement for machine transliteration, making
it, hard for comparative evaluation. Furthermore, the evaluation process
often requires human judgement. The accuracies of existing transliter-
ation techniques are unsatisfactory. But there is no useful guidelines

to improve them.

1.3 Objectives

Our method is phoneme-based. Grapheme-Phoneme transformation and
Pinyin-to-Hanzi* conversion applied in the phoneme-based methods are ex-
tensively studied in other areas like Text-To-Speech (TTS) in speech synthesis
and Speech-To-Teat in speech recognition. In our research, we focus on the
intermediate processes for transliterating phoneme pairs. Addressing the

aforementioned problems, in this thesis, we propose to:

e Investigate existing approaches for English-Chinese transliteration tasks
and identify their pitfalls;

e Identify the central problems of phonetic transliteration between En-
glish and Chinese phoneme sequences.

e Apply the well-known methodologies as the baseline and propose im-
proved models to overcome the problems identified.

e Compare the transliteration performance between the proposed meth-
ods and the baseline model by experimentations.

1.4 Outline

In this introductory chapter, we have given an overview and definition of the
machine transliteration problem.

41t is also referred to as the process converting generalized initial and final (GIF)
symbols to Chinese characters.
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Chapter 2 presents a survey on the existing transliteration methodologies.
We will highlight the related contributions for English-Chinese translitera-
tion. Our stress will be given to the well-known source-channel model and
an English-to-Chinese transliteration system based on it [33].

Chapter 3 addresses the limitations of the source-channel model for English-
to-Chinese transliteration problem. The phoneme transliteration module de-
scribed in [33] is implemented using IBM Statistical Machine Translation
(SMT) toolkits as the baseline for the comparative experiments with our
proposed approaches in later chapters. The preliminary experimental results
on this baseline is presented.

Chapter 4 proposes a direct transliteration model Direct-1 to partly over-
come the problems faced by the source-channel model. The experiments on
the Direct-1 model are conducted, which include but are not limited to the
comparisons with the baseline system.

Chapter 5 proposes an improved direct transliteration model, which is
referred to as Direct-2, by incorporating flexible contextual features of
neighboring phoneme dependencies. Then the model is further refined by
Direct-2R using a precise alignment scheme. Comparative experiments on
the Direct-2 and the Direct-2R. are conducted. Their improvements on
performance are justified compared to the baseline.

Finally, Chapter 6 summarizes the thesis and discusses future extensions

and applications of the proposed approaches.

O End of chapter.



Chapter 2

Background

Several approaches have been proposed for automatic name transliteration
between various language pairs in both directions. Regardless of languages
and directions, the underlying mathematical models are more or less based
on statistics, where a number of previous works typically employed source-
channel framework as their probabilistic foundation. In the English-Chinese
arena, although approaches varied with applications employing translitera-
tion, statistical strategies also dominated other methods. This chapter will
first retrospect previous works based on source-channel model, and then in-
vestigate the major contributions in English-Chinese arena, in which we will
highlight statistical approaches. Note that there are various other approaches
proposed for transliterating English to Asian languages, such as Korean and
Japanese. Because they were implemented and tested specifically for the tar-
geted language pairs, it would be hard to directly compare these systems with
that for English and Chinese. Thus, we focus our research on comparisons

of methods dealing with our designated languages.

2.1 Source-channel Model

Based on the Bayes’ theorem, [19] described a generative model, in which
they adopted finite state transducers and a decoder to transform transliter-
ated names in Japanese katakana back to their origins in English. Given a
katakana string o observed by an optical character recognition (OCR) pro-
cess, the system aimed to find the English word w that maximizes P(w|o)

(19]:
argmax P(wlo) = argmax {P(w) - P(elw) - P(jle) - P(k|j) - P(olk)} (2.1)

where the five probability distributions denote:
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P(w)— the probability of the generated written English word sequence w;

P(e|w)— the probability of pronounced English word sequence w based on
English sound e;

e)— the probability of converted English sound units e based on Japanese
sound units j;

P(j

P(k|j)— the probability of the Japanese sound units j based on the katakana
writing k;

P(olk)— the probability of katakana writing k based on the observed OCR.
pattern o.

The individual models were implemented in a weighted finite state accep-
tor (WFSA) for P(w) and the four weighted finite state transducers (WFST)
for the other four distributions to map corresponding source sequences to
the targets. The five automatas were created using different data sources:
P(w) was estimated adopting a simple unigram scoring method by using a
262,000-entry frequency list; P(e|w) was built from the on-line CMU pronun-
ciation dictionary without stress marks; P(jle) was approximated using EM
algorithm from 8,000 pairs of English-Japanese sound sequences; P(k|j) was
constructed manually according to Japanese sound to katakana rules; and fi-
nally, P(o|k) was approximated by estimating the symbol-mapping probabil-
ities between the katakana symbols in the 19,500 original katakana words and
the OCR-generated katakana symbols from a printout of those words. Using
a general composition algorithm, an integrated model combining the five sep-
arate automatas was formed. They implemented k-shortest-paths algorithms
for extracting the best transliterations from the large resulting WFSA given
a source katakana word.

In general, the generative model above can be simplified as a maximiza-
tion problem without intermediate steps, assuming that the parameters could
be reliably obtained from the given source and target name pairs:

arg;nax Pr(T)S) = a.rg;na.x {Pr(S|T") x Pr(T)} (2.2)

where we use Pr(.) to denote a general probability distribution, and S and
T are the source and target names, respectively. This fundamental equation
is also referred to as source-channel model.

[19]’s method is the first attempt in applying statistics to the translit-
eration problem. Some steps in the model have to be carried out by hand.
Errors could propagate between generations. Enlightened by their initia-
tives, the source-channel model was extended for different tasks: [32] applied
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source-channel based automatas to Arabic-to-English back-transliteration.
[1] used the same model to combine phoneme-based and grapheme-based ap-
proaches for Arabic-to-English transliteration. A similar model was proposed
by [5] to combine the phoneme and grapheme sources for Japanese-to-English
back-transliteration. It was also applied to English-Korean language pairs:
English-to-Korean transliteration by [21, 28] and Korean-to-English back-
transliteration by [15] used pure statistical estimation rather than partially
hand-coded generative automatas.

2.2 Transliteration for English-Chinese

Previous models for English-Chinese transliteration/back-transliteration vary
with the application domains.

2.2.1 Rule-based Approach

[34] was the first contribution developing a grapheme-based transliteration
mechanism from English proper nouns to Chinese for a multilingual text
generation system. In this approach, they used handcrafted rules. The
algorithm first syllabified English words based on a rule set and instance
learning. The syllabification module identified syllable boundaries based on
consonant clusters and vowels. A sub-syllabification procedure then divided
each identified syllable into the form of consonant-vowel, i.e. conforming to
the mono-syllabic nature of Chinese. The sub-syllables are then mapped to
the pinyin equivalents and consequently to the Chinese characters by means
of two handcrafted mapping tables. This approach is intensively ad-hoc and
dialect dependant. No report on its performance was provided.

2.2.2 Similarity-based Framework

8, 22] proposed a similarity-based method for CLIR to find the best match-
ing words from a set of target candidates in English given a Chinese query
containing foreign proper names. Similarity-based approaches were tested in
the grapheme level as well as phoneme level. Furthermore, [22] addressed
the problem of ad hoc assigned phonetic similarities by developing a learning
algorithm to automatically acquire the similarities from a training corpus.
With the learning algorithm, the labor of assigning phonetic similarities be-
tween two languages could be removed leading to improved transliteration
performance. The accuracy was measured by the average rankings of the
correct candidates found. Compared with the generative model (2, 19, 32|
for other language pairs, the similarity-based framework directly addressed
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the problem of similarity measurements, and could be evaluated without hu-
man judgment [22]. However, this approach assumed that a set of target
candidates could be identified first and could only find the best matching
words from the candidate set. The mechanism would not work if the correct
target was not included in the candidate set. Thus, its application is limited.

2.2.3 Direct Semi-Statistical Approach

[23] presented a learning algorithm for transliteration of OOV names from
English to Chinese in the context of Cross-Language Spoken Document Re-
trieval. For clarity, the process is illustrated by Figure 2.1, which is excerpted
from [23].

They first used a set of handcrafted phonological rules by adding or drop-
ping proper phonemes to normalize English syllables into consonant-vowel
format. This aimed to overcome some of the phonological differences be-
tween the two languages. The process of cross-lingual phonetic mapping
(CLPM) then applied a set of automatically generated one-to-one phonetic
transformation rules to map English phonemes to their Chinese counterparts.
These rules were learned from aligned parallel data using transformation-
based error-driven learning(TEL) [6]. The pinyin syllabic constraints were
then added to the Chinese phoneme sequences generated by CLPM for elimi-
nating the errors in the sequences. A phoneme lattice of pinyin sub-syllables
were generated based on a confusion matrix obtained from the mapping dif-
ferences between reference phonemes and output phonemes. They searched
the phoneme lattice exhaustively for Chinese phonetic sequences that could
constitute legitimate syllables to create a syllable graph. Finally, a syllable
bigram language model was applied together with the probabilities derived
from the confusion matrix to search the graph to find the most probable
syllable sequence. The transliteration performance measured by the syllable
accuracy of was 47.5%.

One shortcoming of this method is that the manually enumerated rules
initiated for CLPM are unable to balance all the phonological discrepancies
of two names. This may introduce errors to probability estimation in later
stages. For example, the following rules:

[rule 1] Insert a reduced nuclei /ax/ between clustered consonants.
Clinton—/K L IHN T AH N/—/K az L IH N T AH N/— /k e 1 in d

un/

[rule 2] Duplicate nasals whenever they are surrounded by vowels.
Diana—/D AY AE N AH/—/D AY AE N N AH/—/d ai an n a/

could be easily undermined by the following exceptions, respectively:
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Figure 2.1: The transliteration
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process in 23]
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[exception 1] Clint /K L IH N T/—/k e 1l in t e/
[exception 2] Canada—/K AE N AH D AH/—/j ia n a d a/

Unlike the consonant cluster /K L/ obeying rule 1, where an /ax/ should be
inserted between them, such an insertion is not required in the similar cluster
of /N T/ in the example of exception 1. Likewise, the nasal /N/ surrounded
by vowels also need not to be duplicated in the example of exception 2 as

opposed to the stipulation of rule 1.
In summary, this method, which was not presented as a model in [23],

could be generalized using the following equation:

argglax Pr(T|S) = a.rgITnax {Pr(T|S) x Pr(T)} (2.3)

This equation is beyond Beyes’ theorem. Eq.(2.3) is basically a direct translit-
eration model which will be discussed in detail in later chapters.

2.2.4 Source-channel-based Approach

Based on the source-channel framework, [33] described a fully data-driven ap-
proach for English-to-Chinese transliteration using the state-of-the-art sta-
tistical machine translation (IBM SMT) model [7]. We will compare our
work closely with [7] as their system adopts widely recognized model and
their research objectives are similar to ours.

The IBM SMT model is based on the well-known source-channel frame-
work, which was initially tested for French-to-English machine translation.
The model was intensively studied by quite a number of researches in machine
translation [1, 12, 27, 25|. When applied to English-to-Chinese translitera-
tion, the fundamental equation is as follows:

~

C = argmax Pr(C|E) = argmax {Pr(E|C) x Pr(C)}
7 5,

= argmax {po(e)” ") x py(c1”)} (2.4)

€1

where E = el,El denotes a |F|-phoneme English word as the observation on
channel output, and C = cI,CI represents [’s |C|-phoneme Chinese transla-
tion by pinyin as the source of channel input. The channel decoder reverses
the direction, i.e. to find the most probable input pinyin sequence given an
observation £. The posterior probability Pr(C|E) is indirectly maximized by
optimal combination of the transliteration model Pr(E|C) and the language
model Pr(C). We use p(.) to denote model-based probability distributions
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'
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{CMU-Cambridge LM Toolkits) [~

Chinese Transliterations

Figure 2.2: English-to-Chinese transliteration system [33] based on IBM SMT
model

with particular assumptions in contrast to the general probability distribu-
tions Pr(.). @ and 7 are the parameters associated with the two models
respectively.

The transliteration process is illustrated in Figure 2.2. The transliteration
model Pr(E|C) was trained from name pairs represented in International
Phonetic Alphabet (IPA) symbols at the English side and pinyin notations
at the Chinese side. Standard bootstrapping of the IBM translation models
using GIZA++"' [1] was applied in the training process. Specifically, 5 EM
iterations of Model-1 followed by 5 of Model-2, 10 of Model-HMM and 10
of Model-4 were used. The Language model Pr(C) was trained on pinyin
vocabulary using trigram of pinyin symbols with Good- Turing smoothing and
Katz back-off provided by CMU-Cambridge Language modeling toolkits® [9].
Searching was done by using USC-ISI ReWrite Decoder® [12]. These are
standard packages for IBM SMT model training and testing, which will be

Thttp://www.isi.edu/~och/GIZA++ html
2http://mi.eng.cam.ac.uk/~prcl4/tookit.html
Shttp://www.isi.edu/license-sw/rewrite-decoder/


http://www.isi.edu/%e3%80%9coch/GIZA++.html
http://rni.eng.earn.ac.uk/~prcl4/tookit.html
http://www.isi.edu/license-sw/rewrite-decoder/
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System Training Size | Test Size | Pinyin Errors
[23] 2233 1541 52.5%
Small MT [33] 2233 1541 50.8%
Big MT [33] 3625 250 49.1%

Table 2.1: Comparisons presented by [33] on error rates between transliter-
ation systems, namely [23] and [33]

briefly introduced in the next chapter. Note that Festival speech synthesis
system® was employed to convert English names into their corresponding
phonetic representations.

Experimental Study

The method proposed by [23] was compared with this system by [33] using
the same data set. The performance was measured by pinyin error rates
with edit distance. The result is shown in Table 2.1. There are at least three

noticeable observations from the experiment:

1. Small MT and [23] shared the same data set for training and testing.
Source-channel approach showed slightly better results. However, since
the two systems employed different letter-to-phoneme generators, it
was unclear whether they distinguished due to grapheme-to-phoneme
generation, or the phoneme transliteration process or both; another
possible reason might be different language models used, i.e. syllable
bigram by [23] and symbol trigram by [33], but it was not conclusive
since the two language models differed not only from length of grams
n, but also from level of grams considered, i.e. syllable or sub-syllable

(symbol).

2. Better performance was observed in Big MT. Big MT is based on the
same implementation as Small MT, except a different and larger train-
ing set and a smaller testing set. Thus it was evident that a larger train-
ing set could probably yield better results. But this shallow comparison
could not provide useful guidelines for identifying and improving the
intrinsic deficiencies in the underlying model.

3. Edit distance based measurement may be not effective enough to dif-
ferentiate the performance of the two transliteration systems since the
criteria is relatively loose. Even though the edit distance error of the

*http://fife.speech.cs.cmu.edu/festival /
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two systems is close, true performance on accuracy may be even larger.
We will testify this supposition in later chapters.

Other Remarks

Back to the source-channel model, it was initially proposed for backward
transliteration from Japanese to English origins [19], in which the reversed
prior probability Pr(J|E) can naturally coincide with the original direction
in producing transliterations by human translators, i.e. the model still con-
centrates on how to produce J given E origins. When the model is applied
to forward transliteration, however, it should be noted that the conditional
probability Pr(£|C) in Eq.(2.4) is an opposite estimation of actual transliter-
ation. Conditioning on C, one has to consider how probable to produce each
given pinyin symbol from certain English phoneme(s). It is intuitively un-
natural and more seriously, error-prone for forward transliteration due to the
difficulties of identifying mapping relationships conditioning on individual
target symbols (see Section 3.2).

2.3 Chapter Summary

We have summarized the previous techniques for machine transliteration.
We paid much attention to source-channel based and other statistical ap-
proaches, particularly on the contributions of (23| and [33] for English-to-
Chinese transliteration. Statistical approaches have obvious advantages:
They are more extendable as they are data-driven, and can remove ad hoc
procedures in rule-based methods; they can readily tolerate existing translit-
eration discrepancies; they are capable of both producing transliterations and
recognizing transliterations compared to similarity-based approaches. We
highlighted the system applying the IBM SMT model. We will proceed to
use this well-known model as our baseline.

0O End of chapter.



Chapter 3

Transliteration Baseline

Before we proceed to propose a new transliteration model. We will analyze
the widely used IBM statistical machine translation (IBM SMT) system and
identify its limitations in English-to-Chinese name transliteration. In this
chapter, we replicate the system described by [33] using IBM SMT. This
implementation provides the baseline for our research.

3.1 Transliteration Using IBM SMT

3.1.1 Introduction

IBM SMT model is a well-established language-independent probabilistic
framework for translating a sentence from a source to a target language
according to the statistical translation relations acquired from bilingual cor-
pora. SMT views any target language word as a potential translation of any
word in the source language [1]. The probability distribution in Eq.(2.2) is
over all pairs of words. Given S, the model can output 7' which maximizes
Pr(T|S). The priori Pr(S|T) (i.e. the translation model) works for ensuring
that 7' is normally interpreted as S but not others, while P(7") (i.e. the
language model) ensures the output 7" natural and grammatical. Training
algorithms are required to fix two models’ parameters, and a decoding algo-
rithm is needed for searching the most probable 7. The algorithms are imple-
mented in GIZA+-+ for translation model training, CMU-Cambridge toolkits
for language model training and USC-ISI Rewrite Decoder for searching.
Simply and uncritically using the SMT toolkits, [33] didn’t relate the
model with enough information concerning its application to English-to-
Chinese transliteration. It is unclear about its operations over phonemes
and its appropriateness for this yet another different task. We therefore at-
tempt to identify the limitations of the model for this application and provide

15
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useful guidelines for improvements. In this study, S and 7" correspond to En-
glish and Chinese respectively, and sentences for translation are reduced to
phoneme sequences and words in sentences are reduced to phonetic units (see

Eq.(2.4)).

3.1.2 GIZA-++ for Transliteration Modeling

GIZA++ (25, 27] is an extension of the GIZA program [1] (part of the SMT
toolkit EGYPT"'). We applied the toolkit to transliteration model training.
GIZA++ reversely considers how transliteration can be done from target
pinyin symbol sequences back to source English phoneme sequences. Here
source and target, refer to Chinese and English respectively. The toolkit im-
plements the SMT alignment models of Model-1 through Model-4 described
in [7] and Model-HMM in [31], in which the training is typically carried
out as a bootstrapping process starting from a simple model toward more
complex models to iteratively improve alignments between parallel phoneme
sequences until the £M algorithm converges to the Viterbi alignment of all
pairs [1, 18, 33]. These models differ from alignment details and parame-
ters in terms of the correspondence defined between phonetic units in the
pronunciation sequences of given name pairs.

Alignment Scheme

We first exemplify Model-3? to illustrate the typical pairwise alignments and
types of dependencies provided in IBM SMT model. A good alignment over a
pair of phoneme sequences that obtained from GIZA++ training is shown in
Table 3.1%. Conditioning on the pinyin side, each English phoneme is aligned
to only one pinyin symbol. The numbers are the positions of phonetic sym-
bols in the respective sequences. If a pinyin symbol has ¢ English phonemes
aligning to it, it has a fertility of ¢. If it remains unaligned to any English
phoneme, it is known as zero-fertility. Likewise, if an English phoneme is
left unaligned, it is called NULL-generated. For example, /i/ is zero-fertility,
which is aligned to the mute &, /an/ has fertility 2, other pinyin symbols
have fertility 1 and /D/ is NULL-generated, which is aligned to the NULL
symbol. Note that position 0 is reserved for all NULL symbols.

Thttp://www.clsp.jhu.edu/ws99/projects/mt/toolkit/

2 Although Model-3 currently is not supported by GIZA++ any longer, the understand-
ing of this typical model helps know all the others. We hence exemplify it here.

3Lowercase letters denote pinyin symbols. Capitalized letters are English phonemes
represented by computer-readable TPA notations-APRABET.


http://www.clsp.jhu.edu/ws99/projects/rnt/toolkit/
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Stanford
1 23" 4|51 6 7
S|e|T|AE N|F|ER| D
o I an f| u | null
1.]2|3 4 5| 6 0
Wit

Table 3.1: Example of Phoneme Alignment in Model-3

To produce the corresponding English phoneme sequence of a pinyin sym-
bol sequence without knowing the alignment in advance, a stepwise decision-
making process is used. The process assumes a set of model parameters:

C: Chinese pinyin symbol sequence.

E: English phoneme sequence.

¢;: The 7th pinyin symbol.

e;: The jth English phoneme.

I: The number of symbols in the pinyin sequence.

m: The number of phonemes in English phoneme sequence.

A: Alignment between C and E, a vector of integers A = {ay, az, ..., an}
where 0 < a; < I.
Example: A = {1,3,4,4,5,6,0} given the alignment in Table 3.1.

a;: The pinyin position connected to by the jth English phoneme in

alignment A.
Example: a; = 1,a2 = 3,a3 = a4 = 4,a5 = 5,a6 = 6,a7 = 0

Ca;: The actual pinyin symbol connected to by the jth English phoneme
in alignment A.
Example: c¢,, = ¢, = [/an/

¢i: Fertility of pinyin symbol ¢; where 1 < ¢ < [, given the alignment
A.

¢o: Fertility of NULL symbol, also be the number of NULL inserted.

n(¢i|ci): n table—fertility probability of pinyin symbols.
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e p1,po: p table—probability of inserting or NOT inserting NULL after

a pinyin symbol. pp = 1 — p;.

e t(ejlca;): t table — probability of translating the pinyin symbol to the

English phoneme under the alignment A.

e d(jla;,l,m): d table — Distortion probability of English phonemes not

generated by NULL. j is the target phoneme position, a; is the position
in the pinyin sequence of the symbol that generated the jth English
phoneme now being placed, given the alignment A.

The decision-making process proceeds as follows:

L.

Every pinyin symbol ¢; in C' is assigned a fertility ¢; according to prob-
ability table n(¢:|c;). Zﬁ', ¢; = ™.

Example: /s/ < 1,/i/ X0,/t/ X 1,/an/ X 2,/f] 21, /u/ 2 1(“X”
denotes fertility) and 7 = 6, or other possibilities accordingly.

Make a new C sequence by deleting pinyin symbols with fertility zero,
copying symbols with fertility one, and duplicating symbols with fer-
tility two, etc.

Example: /s it anfu/—/st an an f u/ or other possibilities accord-
ingly.

After producing each pinyin symbols in the new sequence, make a de-
cision to insert ¢p number of NULL symbols with probability p; or not
(insert) with probability p. The total number of C' symbols then be-
comes m = m+ ¢o. The NULL symbols will finally be used to produce
NULL-generated English phonemes.

Example: /stananfu/—/stananfunull/. Note that the insertion
is attempted at every possible position accordingly.

Perform replacement of each symbol in C' with an English phoneme
according to the probability table ¢(e;|c,;), including NULL symbols.
Example: /st an an f u null/—/S T AEN F ER D/ or other possi-

bilities accordingly.

Assign English phoneme positions to those phonemes not generated by
NULL according to the probability table d(j|a;,l,m). Note that this
step is for sentence translation and may be ineffective since the order
of phoneme pairs of the two languages are strictly sequential without

distortion.
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6. Assign English phoneme positions for the NULL-generated phonemes.
They should fall into ¢¢ empty positions with equal probability 1/¢!.

7. Output the generated English phoneme sequence.

These steps are modeled as a generative stochastic process. It starts from
a given C' and results in different choices of £ as well as different alignments
A of E with C. The probability p(£|C) is the summation over all possible
alignments A:

p(E|C) = Zp (E,A|C) (3.1)

p(E, A|C) is symbolized as the following probability by Model-3 [1, 7, 18]:

l

l
p(B,A|IC) = []n(#ilc) ]! x

=1 =0

pO oplo
¢0

m
> tejlea;) X

=i

-,

X

L
¢o!
1T dGlas,t,m) (3.2)

J:a;#0

where the factors separated by x denote fertility, NULL-insertion, transla-
tion, distortion of NULL-generated phonemes and distortion of non-NULL
generated phonemes in terms of the generative decisions above. In this re-
gard, Model-3 is a zero-order dependency and many-to-one (from source to
target phonetic units) stochastic alignment model allowing for distortion of
target symbol positions.

Other models are somewhat different from Model-3, which are briefly
introduced as follows:

e Model-1 only uses a ¢ table, and is a zero-order dependency and one-
to-one alignment model, assuming a uniform alignment probability [7]:

m

p(E, A|C) =

t(ejlca;)
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e Model-2 is also zero-order HMM and one-to-one alignment model, which
uses ¢ table and alignment probability d(a;|7,{,m) instead of distortion
probability d(j|a;,l,m) (1, 7]:

p(E, A|C) = Ht ejlca;)alaslg, i, m)

e Model-HMM is a first-order HMM and one-to-one alignment model,
which uses ¢ table and assumes alignment position a; depends only one
its previous alignment position a;_; [31]:

p(E, A|C) = H t(ejlca;)p(ajlaj—1,1,m)

"‘"l

e Model-4 is extended from Model-3, which does not use distortion ta-
ble d, but instead differentiates permuting English phonemes that are
heads, non-head and NULL-generated. The permutation encourages
the adjacent pinyin symbols to translate into adjacent English phonemes.
This is more appropriate than Model-3 which allows for distortions re-
quired in translation but unnecessary in transliteration. However, it is
also a zero-order dependency and many-to-one alignment model. See
[7, 12] for details.

Remarks

The model uses many stochastic parameters, catering for the randomized pre-
sentation and positioning of unaligned words in machine translation. How-
ever, these parameters and operations may be ineffective when the model is
applied to transliteration. We noticed that the following operations tend to
be inaccurate: (a). the zero-fertility pinyin symbols are deleted in step 2,
which should be somehow (actually randomly) reproduced during decoding
stage; (b). ¢o NULL symbols are inserted with the probability po in step
3. The positions for insertion are determined in terms of parameters ¢o, po
and p; by probing every possible position in the source sequence; (c). each
NULL-generated English phoneme in step 4 is assigned one of the ¢, posi-
tions with probability 1/¢e! in step 6. Then we would naturally raise the
question: if the appearances and positions of unaligned pinyin symbols and
English phonemes were not stochastic, where should they practically go? Or
what could be a more precise decision-making process?
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3.1.3 CMU-Cambridge Toolkits for Language Model-
ing

The CMU-Cambridge language modeling toolkit was released for facilitating
the construction and testing of n-gram language models. It is currently used
by many institutions worldwide. Its usage details can be found in [9].

We use the toolkit for training the target language model based on tri-
grams of pinyin sub-syllables (initials and finals, see Section 3.3.1). The
maximum likelihood estimate is biased high for observed grams and biased
low for unobserved ones. To correct this bias, smoothing techniques are used
to redistribute some probability mass from the observed grams to the unseen
ones. Good-Turing discounting and Katz back-off [9, 33] are applied for re-
distribution of probability mass toward unobserved trigrams in the training
data.

3.1.4 ReWrite Decoder for Decoding

Rewrite Decoder includes probabilistic decoding algorithms used to yield the
most likely machine translations according to the previously trained param-
eters of the translation model and language model. Given a new English
phoneme sequence, the decoder searches for the pinyin symbol sequence that
maximizes p(C|F) in terms of Eq.(2.4) where p(£|C) is the summation of
p(F, A|C) over all alignments A shown as Eq.(3.1). Because the sum in-
volves significant computations, it is typically avoided by instead search for
an < O, A > pair that maximizes p(C, A|E) ~ p(E, A|C) - p(C) [12].

The solution was built incrementally by applying operations to each sub-
set, of input phonemes and iteratively testing partial hypotheses generated ac-
cording to the parameters previously learned until optimality/sub-optimality
is reached. There are four possible operations [12]:

e Add adds a new pinyin symbol and aligns a single English phoneme

to it.
Example: /S/—/s/.

e AddZfert adds two new pinyin symbols. The first has fertility zero,
while the second is aligned to a single English phoneme.
Example: /e/—/i/ + [T/—/t/.

e Extend aligns an additional English phoneme to the most recent pinyin

symbol so as to increase its fertility.
Example: /AE + N/—/an/.



CHAPTER 3. TRANSLITERATION BASELINE 22

e AddNull aligns an English phoneme to the pinyin NULL symbol.
Example: /D/—/null/.

AddZfert considers inserting a zero fertility pinyin symbol before each
transliteration of each newly unaligned English phoneme [12]. AddNull
considers each input phoneme as possible NULL-generated phoneme aligned
to the NULL symbol. This is because the model believes that it is impossible
to know the positions in advance where zero-fertility pinyin symbols and
NULL-generated English phonemes should appear. The decision is left for the
optimization process, in which the partial hypotheses incrementally maximize
the posterior probability using a hill-climbing strategy participated by the
transliteration model and the language model.

3.2 Limitations of IBM SMT

IBM SMT model was designed for machine translation. It has several limi-
tations for English-to-Chinese transliteration noticeably:

Problem 1: The model has a tight constraint on mapping relationship be-
tween the source and target words. It allows only one target language
word to be associated with a contiguous group of source language
words, but not vice versa. As such in English-to-Chinese transliter-
ation, one English phoneme can never be converted to a group of Chi-
nese pinyin symbols. The limitation results from the difficulty due to
conditioning on C in the inwverted conditional probability Pr(E|C) as
the transliteration model is unable to detect possible contiguous com-
binations of target phonemes prior to training.

The example in [33] exposes this obvious limitation (see Figure 3.1).
Because of the restriction, /u/ and the second /i/ in the third line have
to be considered as zero-fertility “words”. Typical zero-fertility pinyin
symbols collected by GIZA++ training include {i,e,u,o0,ou,ie,- -},
which are finals that usually form syllables with their previous sylla-
ble initials. In fact, such syllables are initial-final clusters which are
aligned to single English phonemes, such as /F/—/fu/ and /S/—/si/
in the example. Zero-fertility symbols are “deleted” by source-channel
during training and stochastically “reproduced” during decoding. Re-
production is done by the AddZfert operation. It inserts a possible
zero-fertility symbol before each target symbol of each remaining un-
aligned source phoneme and it needs to consider all the possible zero-
fertility symbols. To reduce the cost of AddZfert, two approximations
are adopted [12]:
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English Name FRANCES TAYLOR

English Phonemes R Af NSIHS TEY LER
1 S

Initials and Finals ul ang x1i s !t ai | g

Chinese Pinyin fu lang  xi tai

Chinese Transliteration % 1 (i} 2-4. R fFJJ

Figure 3.1: The English-to-Chinese transliteration example using IBM SMT
model in (33|

1. Only consider certain pinyin symbols as candidates for zero-fertility,
namely symbols which both occur frequently and have high prob-
ability of being assigned fertility zero.

2. Only insert a zero-fertility symbol if it will increase the probability
of a hypothesis.

We observe that zero-fertility symbols are unavoidable in source-channel
since the model does not allow for one-to-many mappings from source
to target symbols, which results from the reversed priori conditional
probability. Because the prediction for zero-fertility position is entirely
stochastic, the model would be less capable of predicting zero-fertility
finals that are very likely sticking to their preceding initials.

Problem 2: Due to smoothing, the language model may not assign zero
probability to an illegal pinyin sequence that is unobserved in the train-
ing data, e.g. one containing two consecutive initials. Such sequences
are required to be corrected by inserting suitable finals between them
until a legitimate pinyin sequence is obtained [33|. Although this could
fix illegitimate pinyin, it would produce wrong transliterations as the
insertion of a final has no probabilistic basis.

We observe that consecutive initials can come from the model stochas-
tically predicting positions for zero-fertility symbols. For instances, for
/K LIH N T IN N/ (Clinton) which should be transliterated into /ke
lin dun/ ( 3&#K%H ), if the model is unable to correctly predict that
there should be a zero-fertility /e/ inserted between /k/ and /1/ in the
transliteration, the consecutive initials /kl/ would result. This would
leave the correction be done by groundless insertion trials since the
language model also accepts it with some probability mass.
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Observations

English Pronunciation:

States /\A
p(Ci-i| €i2)

Chinese Pronunciation: ...

Figure 3.2: Transliteration model is implemented under two assumptions of
Markov model

Problem 3: Transliteration model Pr(FE|C') is approximated by Markov chains
[29]. Markov model is implemented primarily under two assumptions:
Markov assumption (first-order or second-order) on state transition
and conditional independence assumption on observation. This is illus-
trated in Figure 3.2. Markov assumption hypothesizes that transition
probability to a state (i.e. Chinese pinyin symbol), depends only on
its immediate previous one or two states. Conditional independence
assumption assumes that an observation unit (i.e. English phoneme),
depends only on the state (i.e. Chinese pinyin symbol) that generates
it, and not on its neighboring observation units.

With these assumptions, it is hard to extend the model with additional
dependencies [26], such as features of neighboring phonemes on both
sides. Albeit the trigram language model Pr(C) is combined, it can
only make use of a short history in the target language context. One
may consider to use longer distance dependencies in Pr(F|C), and it
is possible to break down the longer history in the conditional prob-
ability into smaller fragmented probability terms in order to alleviate
its vulnerability to data sparseness. However, one has to assume cer-
tain dependencies or independencies for this case in terms of heuristics,
e.g. longer fragments could be substituted by shorter ones as redun-
dant terms exist in longer fragments, or some terms is farther from the
current prediction position than others.

Problem 4: Since the training of the language model is independent of the
transliteration model, their combination sometimes may yield unpre-
dictable results. Empirically, Eq.(2.4) cannot be optimal unless true
probability distribution of the two individual portions are used [26].
Yet the used models and trained methods in machine translation only
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GIZA++ EM ltera. CMU-Camb. LM ReWrite Decoder
Model-1: 5 n-gram: 3 search: fast greedy
Model-2: 5 discounting: Good-Turing

Model-HMM: 10 back-off: Katz

Modle-4: 10 | forced back-off: <s>,</s>

Table 3.2: Experimental settings to the IBM SMT toolkits

P T K B D | G M N

Consonants (24) NG| F V |TH [DH| S Z SH
ZH|CH|JH | L W | R Y | HH
IY | IH | EY | EH | AE | ER | AH | AX
AY | AW | AA[OW | OY | AO | UW | UH

Vowels (16)

Table 3.3: 40 symbols in the ARPABET pronunciation inventory

provided poor approximations of true distributions [26]. This implies
that it is difficult for the transliteration model to achieve optimality.
Therefore, a different combination of language model and translitera-
tion model might be more effective or ineffective.

3.3 Experiments Using IBM SMT

We carried out experiments to evaluate IBM SMT toolkits for transliter-
ation performance. Experimental settings on the model were the same as
[33], which is listed in Table 3.2. But we excluded the letter-to-phoneme
and Pinyin-to-Hanzi modules (see [33]). The omission helps identify errors
produced by the phoneme-based transliteration.

3.3.1 Data Preparation
The Phonetic Representation

Pronunciation sequences of English names are represented by computer-
readable [PA equivalents, ARPABET symbols, for American English. There
are 40 APRPABET symbols in total, in which 24 are consonants and 16 are
vowels as shown in Table 3.3. The vowel phoneme /AX/ is known as nuclei
or schwa, and generally does not appear in real corpus. Thus the number
of symbols actually being used would be 39. The correspondence between
APRABET symbols and IPA symbols is listed in Appendix A.
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Initials (23) b p | m f d t n 1 g k h ]
x | zh | ch | sh r z c S y w
0 e ai ei a0 ou er an | en | ang | eng
Finals (35) i ia | ie | iao | iu ian in | iang | ing | iong u ua
uo | uai | ui | uan | un | uang | ong u te | Gan | Un

Table 3.4: 58 GIF symbols in pinyin Romanization system

Chinese transliteration is phonetically represented by pinyin symbols us-
ing the common Romanization system for Mandarin Chinese. Pinyin are
composed of 23 initials and 35 finals, which are also referred to as general-
ized initial and finals (GIF') in [33]. Table 3.4 shows these symbols. Note that
the symbol “ii” is non-ASCI]I, it is substituted by the symbol “v” internally.

Corpus

We obtained the beta release v.1.0 of LDC’s Chinese-English bi-directional
named entity list* compiled from Xinhua’s database. The entire corpus con-
sists of 9 pairs of lists, from which we chose the English-to-Chinese proper
name list of people as raw data. The list contains 572,213 foreign people’s
names and their Chinese transliterations. Note that although the list is in
English, it contains names originated from different languages, e.g. Russian,
German, Spanish, Arabic, Japanese, Korean, etc. One assumption is that
the Chinese translations were produced based on their English pronuncia-
tions directly. The exceptions are Japanese and Korean names, which are
generally translated in terms of meaning as opposed to pronunciation. We
consider these names as noisy data.

We used CMU’s pronunciation dictionary® and LDC’s Chinese character
table with pinyin to convert name pairs in the list into a parallel corpus of
English phonemes and pinyin symbols. We extracted all the translation name
pairs from the selected named entity list, which also appeared in CMU pro-
nunciation dictionary with deterministic phonetic representations. We then
obtained their English pronunciations and the pronunciations of their Chinese
equivalents by looking up the pronunciation dictionary and the character-
pinyin conversion table. We ended up with 46,305 pairs, which were used
as our experimental data pool. In our experiments, 90% instances (41,674
instances) were randomly selected for training, in which a portion of 4,631
instances were used for close test, and the remaining 10% (4,631 instances)
for open test. The transliteration model and language model were trained on

4Catalog Number by Linguistic Data Consortium: LDC2003E01
Sftp:/ /ftp.cs.cmu.edu/afs /cs.cmu.edu/data/anonftp/project /fgdata/dict/
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C.A. W.A.
Close | Open Close | Open
66.35% | 65.15% || 20.73% | 18.27%

Table 3.5: Experimental results by our implementation of [33]’s translitera-
tlon system

the same 41,674 instances, in which the Chinese part of the parallel corpus
is used to train language model and the entire parallel corpus for transliter-
ation model. This data set is referred to as Base-0, which was used in our
comparative experiments.

3.3.2 Performance Measurement

There is no existing criterion for measuring machine transliteration accuracy.
Some tests require human judgment [1, 19]. The performance was evaluated
with two levels of accuracy, i.e. character-level accuracy (C.A.) and word
level accuracy (W.A.) in [17].

L—(i+d+s)

CA = 7

(3.3)

# of correct names generated
# of tested names

In Eq.(3.3), L is the length of the standard transliteration of a given
foreign name, and %, d, and s are the number of insertion, deletion and sub-
stitution respectively, i.e. edit distance between machine-generated translit-
eration and the standard. If L < (i +d + s), we set C.A. = 0. Eq.(3.4) is
the percentage of the number of transliterations identical to the standards in
all the tested names. Here we prefer to use “identical” rather than “correct”
because the standard transliterations are de facto rather than absolute.

W.A. = (3.4)

3.3.3 Experimental Results

The experimental results of close and open tests on data set Base-0 measured
by C.A. and W.A. is shown in Table 3.5.

We note that the C.A. of our implementation is reasonably higher in our
tests than that reported in [33] where they achieved the pinyin errors in edit
distance by 42.5%~50.8% (see Table 2.1), corresponding to 49.2%~59.5%
if using our C.A. measure. Although the discrepancies are mainly due to
the different data sets, one of the possible reasons leading to their lower
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accuracy is the use of letter-to-phoneme generation system in [33| whereas
we used pronunciation dictionary. We will use the results as the baseline for
comparing with our models.

3.4 Chapter Summary

This chapter first analyzed the application of IBM SMT system to English-to-
Chinese transliteration in order to reveal the limitations the source-channel
model. Before proposing our direct models to overcome such limitations,
we have replicated the phoneme transliteration system described by [33] in
order to compare the performance between our contribution and the source-
channel based approach. This implementation also serves as the baseline for
comparative experiments in later chapters.

0 End of chapter.



Chapter 4

Direct Transliteration Modeling

The source-channel based transliteration model fails to correctly handle map-
ping probabilities of zero-fertility symbols in the target names (see Section
3.2). In Figure 3.1, it would be more natural and easier to handle if /f-u/
and /s-i/ were treated as initial-final cluster when they were converted from
the single English phonemes /F/ and /S/, respectively.

Different from the source-channel model, we propose to estimate the pos-
terior probability directly. We adopt a different angle of observation to avoid
the use of the reversed conditional probability, i.e. we propose to condition on
E rather than on C. As such, Figure 4.1 shows the application of the align-
ment scheme of our approach to the previous example in Figure 3.1. Notice
that combination of pinyin symbols are regarded as initial-final clusters, e.g.

/F/ to /fu/ and /S/ to /s/.

English Name FRANCES TAYLOR
English Phonemes F RAEN SIH'S TEY LER
1
1

iy

Initialsand Finals f u lang &€ x i _1_\1 t ai
Chinese Pinyin fu lang xi si tai le
Chinese Transliteration 4 Y % BB

FFigure 4.1: The phoneme alignment scheme in direct transliteration modeling

29
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4.1 Soundness of the Direct Model—Direct-1

We substitute Pr(£|C) by Pr(C|E) in Eq.(2.4) resulting in the following
transliteration method:

~

C = argmaxPr(C|E) = argmax {Pr(C|E) x Pr(C)}
c (5

= argmax {po(cllc||e|1E') X p,y(cllcl)} (4.1)
€1C2...||

Pr(C|E) aims to produce the most likely transcriptions for a given E,
but ill-formed pinyin sequences may result. The language model Pr(C) is
introduced to make correction, e.g. eliminating illegal pinyin strings and
yielding better ranking of the resulting syllables. Although Eq.(4.1) is be-
yond the Bayes’ theorem, it is mathematically sound under the more general
Mazimum Entropy (MaxEnt) framework [4, 26].

MaxEnt is a well-founded framework for directly modeling the posterior
probability, where a set of M feature functions f,(E,C) and their corre-
sponding model parameters A, ( m = 1,..., M) are introduced. According
to [26], direct transliteration probability can be approximated by:

exp {2%=1 )\m i fm(E) C)}
Zyu(E)

Pr(C|E) = pau (C|E) = (42)

where the denominator
Z,\gw (E) = Z €xXp {
CI

is a normalizing constant determined by the requirement that 3¢ pam (C'|E) =
1 for all E. C" denotes all possible Chinese transliterations for the given E.

The computation for the normalizing constant is very time-consuming,
but it is not required for maximization (search) process [26]. We could then
obtain the target sequence C' that maximizes the posterior probability by
omitting the denominator:

M

/\m i fm(Ea Cl)}
1

m=

C= argénax Pr(C|E) = argéna.x {exp [% Am * fm(E, C)]} (4.3)

m=1

We can select two feature functions and their parameters:
Hi(E,C) = logpe(C{*|EY™)

[2(E,C) = logp,(CI)
)\1 = Az:l
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Thus, Eq.(4.1) obtains in combination of direct transliteration model

pg(c']C'IeI,E') and target language model p.,(c',cl) with respect to model pa-

rameters 0 and . The optimal parameters are estimated individually from
the parallel training corpus. This model is referred to as Direct-1.

4.2 Alignment of Phoneme Chunks

There are 4 possible general conditions, in which an English phoneme can
map to items in the pinyin’s vocabulary in the direct model:

1. An English phoneme maps to an initial or a final, which is the most
usual case;

2. An English phoneme maps to an initial-final cluster, e.g. /F/-/fu/ and
/S/-/si/ in the previous example;

3. An English phoneme maps to a mute ¢, e.g. /S T AE N F ER D/
(Stanford) to /si tan fu/ ( #¥E4E ), where /N/ and /D/ are omitted

in translation;

4. Insert additional pinyin syllables, e.g. /F L OY D/ (Floyd) to /fu luo
yi de/ ( f#¥&HE ), where /yi/ is inserted to cater for the sound /OY/

that has already been mapped to /uo/.

We introduce alignment indicators between a pair of sound sequences,
E and C. Within 39 English phonemes (24 consonants, 15 vowels) and 58
pinyin symbols (23 initials and 35 finals), there are always some indicative
elements, i.e. indicators, which facilitate alignment. For E, they are:

e all the consonants;

e vowel at the first position;

e and the second vowel of two contiguous vowels.
Correspondingly in C, they are:

e all the initials;

e final at the first position;

e and the second final of two contiguous finals.

Note that similar indicators can be easily identified in other Chinese Roman-
ization systems. Hence, they are independent of alignment model. Also, we
define the following variables:
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o 7(S) = # of indicators in sequence S, S € {E,C}

e ((F,C)=max{7(F),7(C)}, represents the maximum number of indi-
cators in £ and C.

e d(E,C) = |7(F)— 7(C)|, is the difference of the number of indicators
in F and C.

We chunk F and C by tagging the identified indicators and compen-
sate the one with fewer indicators by inserting d number of mute € at its
min {7(E),7(C)} possible positions ahead of its indicators. € is practically
an indicator defined for alignment. This ensures that both sequences end up
with the same number of indicators. The ¢ chunks separated by indicators in
E should align to the corresponding ¢ chunks in C in the same order. They

I
are called alignment chunks. There are |A| = c: = m number

of possible alignments at chunk-level with respect to different positions of &.

This method can assure that each chunk contains two sound units at
most. Thus, in a pair of aligned chunks, only three mapping layouts are
possible for individual phoneme elements, i.e. individual consonants, vowels,
initials and finals:

1. e-to-cyco: The alignment at phoneme level would be kept as e-to-cica,
where ¢j¢; is considered as an initial-final cluster;

2. ejea-to-cley: The alignment at phoneme level would be extended to
e;-to-c; and es-to-co. Note that this condition will not generate new
alignment. Thus, the overall number of alignment remains unchanged.

3. ejep-to-c: By adding an additional € at C side, the alignment at
phoneme level would be extended to e;-to-c and ey-to-€ or e;-to- and
es-to-c. In this case, one more new alignment will be produced and we
update || A = || A| + 1.

FFigure 4.2 shows an example of the alignment chunks (indicators are
tagged by ‘|’) between /AE L B AH K ER K 1Y/ (Albuquerque) and /a er
bo ke er ji/ ( FT/R{A%E/RE ). Our chunk-based alignment scheme works as
follows: The English pronunciation should be first compensated by inserting
one € as it has one fewer indicator than its Chinese counterpart. There are 6
possible alignments at chunk level corresponding to the 6 possible positions
for the inserted €. However, the total possible alignments at phoneme level
would be 11 because of the existence of /K ER/-to-/er/ in the first four
chunk-level alignments and /K 1Y /-to-/er/ in the sixth chunk-level align-
ment.
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1z
r-—“-
e
2R
A
I’?‘:
<

a ler |bo ke er i i

Lt |AE L BAHKERMLI

AE [+ L BAHKER KIY
e
IAE |L [¢ |BAH KER[KIY
o lrbo ke le i 3

Figure 4.2: An example depicting the alignment of phoneme chunks

4.3 'Transliteration Model Training

4.3.1 EM Training for Symbol-mappings

We then apply EM algorithm [19] to find the Viterbi alignment (the most
probable alignment) for each training pair. The training process is described
in the Algorithm 1.

Algorithm 1 EM training algorithm for Viterbi alignment and symbol-
mapping probabilities

1: Initialization: For each English-Chinese pair, assign equal weights to
all alignments generated based on phoneme chunks as || A||~.

2: Expectation: For each of the 39 English phonemes, count the instances
of its different mappings from the observations on all alignments pro-
duced. Each alignment contributes counts in proportion to its own
weight. Normalize the scores of the mapping units it maps to so that
the mapping probability sums to 1.

3: Maximization: Re-compute the alignment scores. Each alignment is
scored with the product of the scores of the symbol mappings it contains.
Normalize the alignment scores so that each pair’s alignment scores sum
to 1.

4: Repeat: Repeat step 2-3 until the symbol-mapping probabilities con-
verge, meaning that the variation of each probability between two itera-
tions becomes less than a specified threshold.

The direct transliteration model Pr(C|FE) is estimated by EM training
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Foreign Name | Chinese Transliteration Viterbt Alignment Found Weight
SH IH R EH L Y
Cirelli AHA 3 E ! 1.000
qi 1 ei | i
K ow L Y ER
Colyer FHFIZR : 1.000
k e 1 i er
B R AE G
Brag EiEDL (4 1.000
bu | a ge
K ER AA M Y
Karami FHRK : 1.000
k a la m i
D EH L ER IH S
Deloris mER 3 1.000
d e | uo li €
SH OW N W  AO L D
Schoenwald FRR/RE 0.993
sh e en w a er de
HH AW S N ER
Hausner iR 3 2 1.000
ao € si n ei
HH AH D IH CH EH K
Hudecek ST 5 1.000
h u d e q ie ke
B R ER L Y
Brearley 7 4R e . 0.998
bu | i er 1 i
AE N AH T OW L
Anatole PN FE/R 1.000
a n a t uo er

Table 4.1: Sample Viterb: alignments learned by EM Training

on the data set Base-0 with 41,674 parallel instances. Compared to the bru-
tal force alignment computation [19], our EM training based on alignment of
phoneme chunks produces significantly fewer possible alignments. Thus fewer
possible symbol-mappings for each English phoneme are involved. Mappings
crossing chunks are also avoided. Therefore these symbol-mappings tend to
be more accurate. For each English-Chinese pair, the Viterb: alignment is
found whose alignment score (weight) approaches to 1 with the increase of
iteration times. Table 4.1 shows the randomly selected sample Viterbi align-
ments for each name pair through automatic KM training. Table 4.2 shows
the top-4 pinyin symbol-mapping probabilities for each English phoneme af-
ter M converging at a predefined threshold of 1.0E — 4.

The mute ¢ is introduced to both sides of phonetic alphabets during the
processing of phoneme chunks. It plays an important role for carrying out
“virtual mapping” with respect to the conditions 3 and 4 (see Section 4.1).
The EM training initiated with alignment based on phoneme chunks auto-
matically calculates the mapping probabilities from each English phoneme to
not only individual initials and finals, but also to initial-final clusters. From
the training instances, the algorithm identifies these clusters, e.g. /d-e/, /k-
e/, /s-i/, /t-e/, etc. They are dynamically appended in pinyin inventory
as additional candidates for transcriptions from English phonemes like /D/,
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plcle) | ¢ plcle) | ¢ plde) | ¢ p(cle)

AA | a 061923 | uo 0.09505| e 0.07352 | o 0.06314
AE | a 0.86606 | ia 0.03544 | £ 0.02509 | ai 0.01867
AH | a 0.39206 | e 0.19805| u 0.10216 | i 0.07872
AO | uo 025501 | o 0.17831 | a0 0.15931 | e 0.15428
AW | a0 0.55706 | uo 0.11303 | u 0.09228 | a  0.08996
AY | ai 051124 [ i 022925 | ei 0.09985 | a  0.06756

o
o

b 0.75535 | bu 0.20321 | w 0.00789 | bi 0.00786
CH | g 0.42866 | gqi 0.15122 | ch 0.11413 | x 0.05970
d 0.61585 | de 0.29259 | ¢ 0.06035 | er 0.00629
DH | s 0.46763 | t 0.20863 | x 0.07914 | si 0.07194

BH | ei 032765 | e 022758 | ai 0.22453 | a  0.05100
ER | e 0.38604 | ei 0.14128 | a 0.10870 | o 0.10745
BY | a 0.38817 | ai 022236 | ei 0.20053 | e 0.05488
F | f 060277 | fu 037734 | fei 0.00766 | p  0.00227
G | g 039740 | ge 029644 | j 0.17965 | & 0.04828
HH | b 0.65573 | x 008640 | a 0.06690 | ai 0.04911
H | i 070619 | ei 0.11094 | e 0.05979 | e 0.03180
IY | i 070956 | ei 0.11083 | ai 0.05104 | e 0.03432
JH | j 031634| y 013153 | g 0.10053 | qi 0.07931
K | k 043570 | ke 031736 | j 0.11575 | & 0.02968
L [ 1 060161| er 0.34286 | £ 0.01379 | le 0.01196
M 0.77637 | mu 0.10848 | n  0.05647 | ng 0.03167

m
N n 0.79253 | ng 0.16759 | nei 0.01292 | na 0.00682
n 0.55059 | ng 0.33577 0.07692 | r 0.01033
OW [ uo 0.45049 [ e 0.19401 0.13831 | ao  0.08572
OY [ uwo 0.33626 | u 0.21314 0.20175 | e 0.08224
P p 0.54823 | pu 0.25763 0.16020 | pei 0.01624
R 1 0.69558 | er 0.14198 0.13104 | e 0.00816
S si 0.41800 | s  0.26173 | x  0.08858 | shi 0.07538
SH | shi 0.33762 | sh 0.32755 [ x 0.22805 | q 0.01116
T t 0.38772 | te 0.30403 [ d 0.14454 | ¢ 0.11809
TH [ si  0.27598 | s  0.19066 | te 0.18676 [ t 0.16177

T O O R

m

UH | u 071079 | i 0.06220 | o 0.05288 | ¢ 0.02813
UW | u 0.57044 | ¢ 0.10436 | i 0.05350 | iu 0.04428
\Y w  0.66063 [ f 0.12757 | fu 0.10999 | b  0.07295
W | w 0.77548 | h 0.06043 | k 0.04924 | a  0.02539
Y. y 037204 | ¢ 0.19440 | h 0.05758 | w  0.04427
7 si. 044383 | s 0.08952 | z 0.06873 | ci 0.06819

ZH [ r 025000 | j 0.17391 | x 0.11778 | y  0.09799
er 033699 [ yi 0.13621 | n 0.11528 | e 0.08478

m

Table 4.2: English phonemes with probabilistic mappings to Chinese pinyin
sound units.
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/K/, /S/, /T/, etc. This can reduce the error due to zero-fertility symbols
in the source-channel model.

4.3.2 WFST for Phonetic Transition

We then build a weighted finite state transducer (WFST) using AT&T FSM
library! based on the symbol-mapping probabilities in Table 4.2 for the tran-
scription of an input English phoneme sequence into its possible pinyin sym-
bol sequences. Each arc carries the transition information from an English
phoneme to its pinyin counterparts as well as their transition cost, which
is given by 1 — p(cle). Figure 4.3 shows part of the transducer, including
the transitions for several English phonemes. There are about 2,666 arcs
included in the actual automata. Note that arcs like [/AA/:/uo/|0.904],
whose output symbol includes multiple characters, are split into multiple
arcs, i.e. [/AA/:/u/|0.904] and [/e/:/0/|0.0] jointed by an intermediate nodes
like nodes 1,2,...,5,.... This is for the following pinyin syllable transducer
for pinyin syllable segmentation being able to connect with it.

4.3.3 Issues for Incorrect Syllables

Many of the pinyin symbol sequences produced by the transliteration model
WFST cannot be correctly syllabified or include illegitimate pinyin syllables
as the transducer itself has no knowledge about pinyin’s regulations. Actually
only 396 of 23 x 25 possible combinations of initials and finials can constitute
legal pinyin syllables. Legal syllables, regardless of dialects, can be easily col-
lected from Chinese lexicons in corresponding Romanization systems by using
an automatic scanning program. We automatically collect these legal sylla-
bles from the pinyin part of Base-0. Based on this knowledge, we construct
a finite state transducer (FST) with about 1,284 arcs. Figure 4.4 presents
only several syllables of this transducer. The composition between the FST
and the previous WFST can eliminate illegal pinyin symbol sequences and
segmenting legal sequences into syllables.

4.4 Language Model Training

A syllable-based bigram language model of pinyin is trained using the Chinese
part of the same 41,674 training instances in Base-0, on which the translit-
eration WFST was built. The model Pr(C) is approximated by counting

"http://www.research.att.com/~mohri/fsm/
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AA:1/0.991

AH:()/0.9J °

AA:/0.904

AE:/0.997

AH:1/0.997

AH:u/0.973

eps:0/0

37

Figure 4.3: Part of the WFST based on symbol-mapping probabilities p(c|e).

eps denotes €
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Figure 4.4: Part of the FST for pinyin syllabification. eps denotes &
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the frequencies of syllable occurrences in this data set using the following
equation:

o - ey count(cio1ci)
II(C)—I:IT)(C;IC,_I) "'IZI count(c,) (44)
where ¢; is the pinyin syllable of a Chinese character.

We then implement the bigram model using a weighted finite state accep-
tor (WFSA) with one state for each item in the pinyin syllable vocabulary.
Between each pair of states, say z/y, there is a single transition whose label
is the syllable y and whose probability is p(y|z). We then add a special final
state with transitions leading to it from every other state labeled by & with
probability 1.0. Finally, a start state is added with transitions to every state
y with label ¥ and probability p(y). The WFSA is used to re-rank the pinyin
syllable sequences yielded by the k-best path algorithm from the composition
of the previous two transducers. The WEFSA is partially shown in Figure 4.5
where only ten states are presented. The actual automata includes 330 states
and 12,274 arcs corresponding to the syllables and bigram dependencies in
training corpus. Since we don’t smooth the unobserved syllables in the data,
the number of states are less than that of all possible pinyin syllables.

4.5 Search Algorithm

Given an input English phoneme sequence, it is first built as an input finite
state acceptor (IF'SA). Searching could be conducted by successive composi-
tions of the input FSA with the three automatas from training process using
the composition algorithms provided by AT&T FSM toolkits [24]. However,
if the language model is applied to the entire space of syllables generated by
the previous two transducers, we could hardly obtain correct transliterations
because short hypotheses were ranked high by the k-shortest path algorithm
[11]. One adjustment is adopted by applying bigram search to only the first
m candidates produced by the transducers for each given English name. m is
empirically set as 250 (see Section 4.6.4). The function of the language model
is to re-rank the m candidates according to bigram dependencies. Although
this may cause possible loss of optimal hypotheses, it can significantly reduce
searching errors. Another reason to use only m candidates is that the search
space of the syllables generated by the transducers is extremely large, which
renders the search process very time-consuming. We then output the top-n
transliterations from those re-ranked m candidates according to their tran-
sition probabilities from the transducers and bigram probabilities from the
acceptor. Figure 4.6 illustrates the top-10 transliterations given the input
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C.A. Range(%) [0~20) [20~40) [40~60) [60~80) [80~ 100) [100]
Close 430%  9.22%  27.22%  34.66%  11.24%  13.36%
Open 415%  9.86%  28.05%  33.50%  13.10%  11.34%

Table 4.3: C.A. distribution results of Experiment I

name /K EH V IN N/ (Kevin).

4.6 Experimental Results

To evaluate the transliteration performance of Direct-1 more comprehen-
sively, the following experiments were conducted on data set Base-0, which
included but were not limited to the comparisons with the baseline.

4.6.1 Experiment I: C.A. Distribution

In this experiment, only top-1 machine transliteration of each name was cho-
sen for comparison with the standard transliteration. A name often has mul-
tiple transliteration alternatives. Hence, we measured how the percentage of
the number of generated transliterations distributes over different character-
level accuracy ranges, which is referred to as C.A. Distribution:

# of names with C.A. € [rl,r2)
# of tested names

C.A.Pirl,r2)= (4.5)
where [r1,r2) is the bound of a C.A. range. We set up six C.A. ranges:
(0% ~ 20%)?, [20% ~ 40%), [40% ~ 60%), [60% ~ 80%), [80% ~ 100%) and
[100%)]. We are particularly interested in the names within the C.A. ranges
of [0% ~ 20%) and [80% ~ 100%) since the former could be considered as
“completely incorrect” while the latter “acceptable”.

We counted the number of names whose C.A. fall in each range. The
percentages are listed in Table 4.3.

4.6.2 Experiment II: Top-n Accuracy

We collected the top-50 transliteration results for each foreign name. We
counted the number of correct ones in the resulting top-n (n € {10, 20, 30,40, 50})
transliterations whose C.A. is 100% for a given name. The percentages are
listed in Table 4.4. This experiment evaluated the proportion of instances
whose correct transliteration could be found in top-n generated results.

2\M%~N%)’ denotes > M%and < N%.
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Figure 4.6: Sample output of top-10 transliterations given the name ” Kevin”
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Top n 1 10 20 30 40 50
Close 13.36% 51.13% 57.29% 58.83% 59.35% 59.52%
Open 11.34% 46.99% 53.01% 54.55% 54.96% 55.12%

Table 4.4: The percentage of correct transliterations found in top-n results

Systems Baseline | Direct-1
Close || 66.35% | 63.17%

G Open || 65.15% | 62.61%
Close || 20.73% | 13.36%

e Open || 18.27% | 11.34%

Table 4.5: Transliteration accuracies compared to the source-channel based
system

4.6.3 Experiment III: Comparisons with the Baseline

In this experiment, we evaluated our direct transliteration model with C.A.
and W.A. measurements (see Section 3.3.2) on data set Base-0 for compar-
isons with our implementation of the source-channel baseline. Only top-1
machine transliteration was used. The results are shown in Table 4.5.

4.6.4 Experiment IV: Influence of m Candidates

To examine the suitable m value of candidates used for searching, we made
the transliteration transducers generate top-m (m = 200,250, 500, 750, 1000, 10000)
candidates and apply the bigram WFSA to them to find the top-1 translit-
eration in the open test. The C.A. value changed with the different m values

and are shown in Figure 4.7.

4.7 Discussions

In experiment | (see Table 4.3), the possibility of finding correct transliter-
ations in top-1 result candidates was fairly low. Only 13.36% and 11.34%
test instances were correct. If we considered “acceptable” transliterations as
C.A. greater than 80%, the accumulative percentages would be 24.60% and
24.44% for close and open tests respectively. Two pinyin sequences having
20% edit distance can be exemplified as /ben la deng/ ( Z&$7%& ) and /ben
la dan/ ( &37#} ). Because the average length of testing names is generally
about 5 to 6 phonemes, machine transliterations with C.A. value ranging in
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Influence of m Candidates
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Figure 4.7: Influence of using the first m candidates for search

[80% ~ 100%) basically imply that 1 (or less) of 5 or 6 phonemes are mis-
matched with the standard. Hence they can be considered as phonetically
equivalent but misspelled, which is a measurement used in human subject
tests (2, 19].

In experiment I (see Table 4.4) where top-50 transliterations were exam-
ined. 51.13% names in close test and 46.99% in open test had their correct
transliterations within the top-10 results; and 59.52% names in close test
and 55.12% in open test had correct transliterations within top-50 results.
We also observed considerable increase in the percentage of correct translit-
erations if we compared top-20 results with only top-1. But no apparent
improvement was achieved if we considered more transliteration results, e.g.
from top-20 to top-50.

In experiment I11 (see Table 4.5), our approach demonstrates comparable
C.A. value to that of the baseline, and is slightly worse by 3.18% on close test
and 2.54% on open test. However, the W.A. measurement shows that the
baseline performed about 7.37% and 6.93% better than Direct-1 for close
and open tests respectively. The lower accuracy of our direct model results
from two main reasons:

1. Although the direct model in Eq.(4.1) is mathematically correct under
the MaxEnt framework, the accuracy of the posterior estimation de-
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pends on f,,—the feature functions selected, and the parameters A,,.
Recall that we selected the log function features of the two models
and set parameters A, = 1 for the soundness of Eq.(4.1). This as-
sumes equal contribution of the two models. Hence, the approximation
is worse than the source-channel model, whose maximization is sup-
ported by Bayes’ rule. Improvements can be made by manually adjust
the weight on the two models.

2. Our search algorithm used a rough approximation, which can be fur-
ther improved. Because the search algorithms provided by automata
are based on shortest-path, short candidates produced by the first two
transducers would be ranked high by the bigram acceptor. Our method
makes a comprise by only using a limited number of candidates gen-
erated by the first two transducers. This could reduce the chances for
shorter candidates in some certain range, but may exclude the correct
hypotheses that are ranked lower than value m by the transducers. As
m increases, it is inevitable that short names are produced and the
comprise tends to be useless, evidenced as the illustration of Figure 4.7
in the experiment [V. Improvements could be made by raising the cost
of the candidates, which are obviously shorter than the given testing
name, and by increasing the m value to broaden the search scope at
the same time.

We will leave the improvements over thse two shortcomings for future re-
search. The proposed Direct-1 model demonstrate the feasibility of a simple
direct statistical transliteration method. This simple method is comparable
to the approach based on sophisticated techniques on C.A. measurement and
a bit worse on W.A. mainly due to the search techniques used. Also, the di-
rect approach can overcome Problem 1 and Problem 2 in IBM SMT based
system. This is achieved by adopting a one-to-many mapping from source to
target phonetic symbols. More importantly, the advantage of direct method
lies in its fexibility to further incorporate useful features based on depen-
dencies among surrounding phonemes. The neighboring pronunciation units
being transcribed can provide significant information for determining their
mapping probabilities. For example, both /AH P AA L. OW/ (Appollo),
which is translated as /a bo luo/ ( FT#K%' ), and /W AO L AH S/ (Wal-
lace), which is translated into /hua lai shi/ ( 3+ ), both contain the
sound /AH/, but /AH/ are mapped to different pinyin sounds, i.e. /a/ and
/ai/, respectively in different context.
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4.8 Chapter Summary

In this chapter, we modeled the statistical transliteration problem as a di-
rect, phonetic symbol transcription model plus a language model for post-
adjustment. Although the performance of the proposed direct method is
lower than the source-channel based system, it overcomes Problem 1 and
Problem 2 of the baseline. Also, the advantage of direct method is its flex-
ibility for incorporating features based on dependencies among surrounding
phonemes. In the next chapter, we will further propose a direct translit-
eration model. The enhanced model will make use of contextual feature
functions within MaxEnt framework [4].

0 End of chapter.



Chapter 5

Improving Direct
Transliteration

The limitation of Problem 3 (see Section 3.2) shows that it is difficult to
expand IBM SMT to consider flexible context information. And Problem 4
suggests that leveraging separate transliteration model and language model
to achieve the best results out of their combination is difficult. This motivates
us to propose an improved direct transliteration method to overcome these
problems. This new model is referred to as Direct-2 in this thesis.

General Idea: According to Eq.(4.3), we can arbitrarily and flexibly
choose feature functions f,,. Thus, the language model can be considered as
an optional feature under MaxEnt framework [26]. Unfortunately, there is no
effective feature selection techniques available that could combine features for
the language model with that of the direct transliteration model. However,
the direct transliteration model would work well without the language model
if other cutting edge features were chosen.

5.1 Improved Direct Model—Direct-2

5.1.1 Enlightenment from Source-Channel

We re-examined the transliteration portion source-channel model in Eq.(2.4)
and reversed the order of the source and target. According to [4, 7], the
translation model in source-channel is given by the following formula:

Pr(C|E) = }_ Pr(C, A|E) = p(C, A|E) (5.1)
A

where A denotes the hidden parameter for alignment between F and C,
and A is assumed to be the Viterb: (the most probable) alignment. The

47
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approximation is sound because the translation probability with respect to
the Viterbi alignment can dominate the summation of the probabilities of all
the possible alignments. p(C, A|E) can be derived from the “basic translation
model” in [4]:

p IE| ic|
p(C, A|E) = Hp n(e;)le;) x Hp(c,leaj) X d(A|E Q) (5.2)

J-—
In this expression,

e p(n(e;)|e;) is the probability that the English phoneme e; generates
n(e;) number of pinyin symbols, i.e. the fertility of e;;

e p(cjlea,) is the probability that the English phoneme e, generates the
pinyin symbol ¢;. For every pinyin symbol position j in C, a; is the
phoneme position in £ of the English phoneme that maps to ¢; in the
given alignment A.

e d(A|E,C) is the probability of the particular order of pinyin symbols,
i.e. the distortion probability when the target symbols are generated.

We first note that the distortion probability, which is originally a parame-
ter in machine translation taking care of particular order of the target words,
is unnecessary in our task since the order of generated pinyin symbols strictly
follows the order of the source English phonemes. Thus it can be dropped.

Also, we simplified p(cjle,;). To reduce parameters, we introduce the
Chinese pinyin mapping units (cmu) of each e; denoted by crnu;, which can
be individual pinyin symbols or clusters of initials and finals. In an align-
ment, each English phoneme aligns to only one cmu. Thus, the parameter

(n(e,)lel) can also be removed. Then p(C, A|E) is approximated by:

| ]
p(C, A|E) ~ [] p(cmu;|e;) (5.3)

i=1
The unknown cmus (initials, finals, or clusters) can be discovered “on the
fly” during EM training for computing the Viterbi alignments and symbol-
mapping probabilities according to Section 4.3. In fact, they can also be
obtained by the EM algorithm in GIZA++ by reversing the order of E and

C' in the source-channel transliteration model training.

5.1.2 Using Contextual Features

Eq.(5.3) gives poor approximation as no contextual feature is considered.
Based on the discussions in the previous chapter (see Section 4.7), we consider
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transliteration as a classification problem, which is to classify each phoneme
of a given English name into its most probable cmu according to the frames
of various constraints including its neighboring phonemes, the targets of its
neighboring phonemes, or even other individual models like language model
[26]. This leads to better approximation:

. |E|
p(C, A|E) ~ [[P(Cmuilhi) (5.4)

where h; is the history or context of e;, which can be defined as follows:
hi = {ei, €it1, €it2, €i-1, €im2, CTVU;—1, cma_g} (5.5)

History of an English phoneme is defined as its left-two and right-two neigh-
boring phonemes plus the two crnus at pinyin side, to which its left-two
phonemes align.

5.1.3 Estimation Based on MaxEnt

For each e in a given pair of {e,ez,...,e,} and {cmuy, cmus, ..., cmu,},
its conditional transliteration probability to produce cmu with respect to its
contextual history h can be computed by
p(h, cmu)

zcnm’EQ p(h’ cmu’)
where Q is the set of all cmus mapped from e observed in the training
data, and p(h, cmu) is the joint probability distribution of observing h and
emu simultaneously.  p(h, cmu) can be trained using maximum likelihood
estimation, i.e. to find the model py(h,cmu) that maximizes the likelihood
of the training data:

p(emulh) = (5.6)

px = argmax L(p)
P

where ) is the model parameter.

By introducing a set of “features” { fi, f2, ..., fm} and their corresponding
parameters A = {A1, A2,...,Am} to express observed events, say (h, cru), in
the data, this model also can be obtained under the well-established MazEnt
formalism, in which the goal of the model is to maximize the entropy of the
distribution under certain constraints [4]:

py = argmax H (p)
r

where

H(p)=— Y {p(h,cmu)logp(h,cmu)}

h,cmu
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and constraints are given by
E(f)=E(f),1<i<m (5.7)

E(f:) is the feature expectation of the model defined and approximated as
[30]:

E(fz) 3 Z {p(h,cmu)f,-(h, cmu)}

h,crmu

= i{ﬁ(h'j)p(cmu:iIh’j)fi(hj)Cmuj)}
j=1

where p(h;) is the probability of observed history h; in the training data.
E(f:) is the feature expectation of the empirical distribution obtained from
training data: i
E(f) = Z]{ﬁ(hj,muz')fi(hj,cmw)}
=
where p(h;, crnu;) denotes the observed probability of (h;, cmu;) in the train-
ing data.

This two expectations are forced to be equivalent in Eq. (5.9) under the
restriction that the inferences from the model should match with observations
from the real data. This constrained optimization problem is to find the
model that has the form [10, 30]:

m
p(h,emu) = p || )\Jf-j(h’c’"") (5.8)

j=1
where {jt, A1, A2, - .., Am} are the model parameters and {f1, f2,..., fm} are
binary-valued features functions. Each parameter A; corresponds to a feature

I3

In general, we have the following theorem and its proof can be found in
[10]:

Theorem 1 Let I be a finite set and p = {pi;1 € I,p; > 0, ic;pi = 1} be a
probability function on I. Lel

stipi = ks, S = 1,2, e ,d, (59)

i€l

be the constraints, where Vs, 3i € I such that bs; # 0, and by is given, and
14, 1s are to be found. If there exists a positive probability function of the form

d
pi = p [ pe
=1
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satisfying the constraint of Eq.(5.9), then it mazimizes the entropy

H(p) = —_ pilogp:

i€l
and is unique in doing so.

It is shown that if p has the form Eq.(5.8) and satisfied constraint Eq.(5.7),
it uniquely maximizes the entropy H(p) over distribution p. The model
parameters for the distribution p(cmu, h) can be obtained via the Generalized
Iterative Scaling (GIS) algorithm [10, 30].

5.1.4 Features for Transliteration

In Figure 4.1, for example, a binary feature can be identified from training
corpus taking the following form:

(1 if e;=/F/ and ¢;_;=START and e;4,=/R/ and
fi(hi, emu;) = < emui=/fu/

0 otherwise

or,
1 if e;=/S/ and e;41=/T/ and emu;—1=/IH/ and
fa(hiy cmu;) = < ermu;=/si/

0 otherwise

\

Take the first feature above for example: if the feature exists in the feature set
defined in the model, its corresponding model parameter A; will contribute
towards the joint probability p(h:, cmu;) when e; starts with /F/ followed by
/R/ and its related cmu; is /fu/ (see Figure 4.1).

The feature set can be empirically defined according to specific applica-
tions. Theoretically, a feature can be generated from any possible contex-
tual knowledge without restrictions. However, considering the computational
complexity, the scope of the history usually greatly reduces to a relatively
practical range in practice. The general feature set we used in experiments
are listed in Table 5.1. It acts as the templates used for extracting fea-
tures from training corpus. X,Y, Z are called instantiations variables, which
are instantiated automatically by the corresponding English phonemes and
pinyin cmus from the training set. |Ve| and [Ve| are the sizes of English
phoneme vocabulary and pinyin crmu vocabulary, respectively.

For example, given an aligned pair of phoneme-pinyin sequences in Table
5.2 and suppose the current English phoneme is e7, the features with respect
to its context hs and the prediction cmus can be extracted form the data,
which are shown in Table 5.3.
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Category || Contextual Feature Templates # of Possible Features

1 e; =X and cru; = 2 [Ve| - [Vel
2 cmui—, = X and cmu; = 2 [Vel|?

3 cmui_semui—y = XY and cmu; = 2 [Vel?

4 ei-1 = X and cmu; = Z Vel - [ Vel
5 ei—o = X and cmu; = 2 Vel - Vel
6 eiy1 = X and cmu; = 2 [Ve| - Vel
7 eiyo = X and cmu; = 2 [Vel - [Vel

Table 5.1: Contextual feature templates in improved model Direct-2

Position |41 2 .3 .4,.56 6. '7,:8 9 10 11
English- |.F .R.AE, N S.IH §. T EY L .ER
Ghinese: | fuy lé 18ngs & % i 8t &l ] e

Table 5.2: A given alignment in training data

Feature Contexts Feature Predictions
feature, : e; =/S/ and crmu; =/si/
featurey :  e;—y =/IH/ and crmu; =/si/
features :  cmu—y =/i/ and cmu; =/si/
features :  ej_g =[S/ and cmu; =/si/
features :  cmui—p =/x/ and cmui—y =/i/ and cmu; =/si/
features :  eip =/T/ and crmu; =/si/
feature; :  ei2 =/EY/ and crmu; =/si/

Table 5.3: Features extracted from h; =/S/ for predicting cru,=/si/
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Training Size | cut-off | # of contexts | # of cmus | # of features
41,674 10 1,258 246 13,171

Table 5.4: Information obtained from training of model Direct-2

5.2 Direct-2 Model Training

5.2.1 Procedure and I.{esults

Direct-2 was trained using the data set Base-0 in the following two steps:

1. Using EM iterations in GIZA++ to obtain Viterbi alignment of each
pair of names in the training set of Base-0. The bootstrapping settings
were the same as IBM SMT model training in [33]: 5 EM iterations of
Model-1 followed by 5 of Model-2, 10 of Model-HMM and 10 of Model-
4. Note that the direction of estimation is from E to C directly instead
of the opposite direction in source-channel training;

2. Aligned training instances were then passed to G1S algorithm [4, 30] for
training the MaxEnt model parameters. This fulfilled training the mod-
els considering the contextual features that can transliterate phoneme
sequences of given English names into pinyin sequences.

After training, we obtained the outcome in Table 5.4 concerning the num-
ber of all the contexts, cmus and features identified from the training corpus.
Cut-off is the manually set threshold for ignoring features that occur very
few times in the training data since their statistics may not be reliable [30].
The cut-off threshold of 10 means only those features that appear 10 times or
more were considered to used for training the MaxEnt models. In addition,
the possible crus corresponding to each English phoneme were randomly
selected from the output of the EM training process being shown Table 5.5.

5.2.2 Discussions

Analysis of Table 5.5 revealed that there were two critical problems in Direct-
2 that can be further improved:

Deficiency-1

246 cmus were identified (see Table 5.4), in which many were illegal clusters,
such as /aw/, /axue/, /aie/, /af/,...,etc.. Actually, some were unfavorable
“final-initial” clusters, which might or might not constitute legitimate pinyin



CHAPTER 5. IMPROVING DIRECT TRANSLITERATION 54

English Phoneme | Pinyin cmus

AA iang ch aw ao an uan ai aa eng ong ie ve ia w u o uo e ue ...

AE ao an ai ab ie ia o uo ui a € ian ei ang ...

AH iang axue ou ao an uan aitian ai eng ata aotian ong iu ie ...

AO ou aw ao an ai aie ong iec ia wuouoifeueauaiaoe ...

AW uow ou uok uoh uof of aw ao hao an af ab azhsheng ash iu w u ...
AY iaai jing uoy wei ay ar an hai ai uai ah uaiy aiy aiai aii aih rong ...
B chanuaninwupfche..

CH henshitin ch zhieiazxwtsqgkjihfdciaoe ..

D chzhztnjdeh

DH chzxtsqdcesh..

EH ou ao an ai eng ie iao uo uniuie ue ...

Table 5.5: Phoneme-cum mapping relationships discovered by EM training
using GIZA++

sequences depending on the pinyin symbols followed. There is no means
to prevent ill-formed crmus from happening using GIZA++ training because
it is completely data-driven. The EM algorithm is unbiased by treating
each phonetic unit and all possible alignments equally. Unfavorable symbol-
mappings and alignments are unavoidable if such mappings dominate the
training data, e.g. the first phoneme /F/ maps to /f/ and the second one
/R/ maps to /ul/. This results in illegal pinyin sequences and gives rise to a
large number of uncertain crmus. They turned out adding more uncertainties
to phoneme mapping in testing.

Deficiency-2

Due to compound pinyin finals, two consecutive English phonemes may map
to a single pinyin symbol, such as mapping from /AE N/ to /ang/ (see Figure
3.1). This is not allowed in both Direct-1 (see Figure 4.1) and Direct-2. In
these two models, one of the consecutive English phonemes must be mapped
to . In the model Direct-1, they are considered mapping to € in turn within
the chunk and contribute to one more phoneme-level alignment (see Section
4.3). In GIZA++ training of Direct-2, they are considered as zero-fertility
symbols, i.e. “words” with fertility zero in machine translation [1]. Note
that these zero-fertility symbols become English phonemes as the direction
of GIZA++ training is reversed in Direct-2. This approach is inaccurate
because there are possible many-to-one mappings from English to Chinese
phonemes.
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English Name FRANCES TAYLOR
English Phonemes F RAEN SIHS TEY LER

o MM

Chinese Pinyin fu lang xi si tai le
Chinese Transliteration 9 ¥ o2 ®

Figure 5.1: Our refined phoneme alignment scheme in direct transliteration
modeling

5.3 Refining the Model Direct-2

These deficiencies motivate us to refine the model Direct-2 by improving
the alignment scheme and reducing the size of pinyin inventory.

5.3.1 Refinement Solutions

Based on the discussions concerning the deficiencies of Direct-2, we propose
two related solutions to refine the model. This refined model is referred to

as Direct-2R.

Solution-1

We replace the EM training of GIZA++ by the EM training initiated by the
alignment of phoneme chunks for the model Direct-1 (see Section 4.3). This
aims to reduce the number of ill-formed emus by avoiding mappings across
phoneme chunks. The alignment scheme based on phoneme chunks can also
decrease the number of possible crmus of each English phoneme, i.e. less and
more deterministic class labels for each phoneme.

Solution-2

The linguistic knowledge about compound finals need not be ad-hoc in Direct-
2. We can refine the data by decomposing the set of compound finals into
multiple basic finals, e.g. from /ang/ into /a/ and /ng/, to reduce the size
of vocabulary in the target language. The original mapping in Figure 3.1 is
then broken into /AE/-to-/a/ and /N/-to-/ng/ as shown in Figure 5.1.

We carefully examined the 35 pinyin finals and identified 12 compound
finals, which are listed in Table 5.6. We then decomposed compound finals
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ang | eng [ iao | ian | iang | ing

Compound Finals (12) Sone?|Fidt | i ['uang)| ong’ | tan

Table 5.6: Compound finals identified by hand

a|lo| e |ai| e |ao|ou] er

Basic Finals (24) | an | en | ng i|ia|ie | iu | in
u |ualuo|ui|lun| 0 | e | iin

Table 5.7: 24 basic final symbols in pinyin after refinement

into smaller units and ended up with a reduced set of final inventory with 24
basic units presented as Table 5.7.

5.3.2 Direct-2R Model Training

The training of the Direct-2R model was conducted using the similar pro-
cedure as that of Direct-2 except that a refined phoneme-pinyin alignment
scheme based on phoneme chunks and the £M training in Section 4.3.1 were
applied to the step 1. In the refined alignment scheme a decomposition pro-
cess that decomposed compound finals (see Table 5.6) to basic finals (see
Table 5.7) was used in training.

We compared the Direct-2R. training outcome with the Direct-2 model
fraining in terms of the number of contexts, cmus and features identified.
The results are shown in Table 5.8. The Direct-2R model identified more
contexts and features, but generated fewer possible crnus. The possible cmus
corresponding to each English phoneme were randomly selected from the out-
put of EM training process and shown in Table 5.9. We note that the quality
of the emus identified by Direct-2R model training have been improved as
all the crmus were either individual initial/finals or legal initial-final clus-
ters. This justifies the effectiveness of the Direct-2R refinement over the

Direct-2.

Model Training Size | cut-off | # of contexts | # of crnus | # of features
Direct-2 41,674 10 1,258 246 13,171
Direct-2R 41,674 10 1,282 195 13,933

Table 5.8: Information obtained from training of model Direct-2 and
Direct-2R
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English Phoneme | Pinyin cmus
AA du ou luo yue ao ai ng mi lo le la ya xi sha wo we wa chi ie ...
AL ao ai ngla ya waieiauouolaciuieaiaocei..
AH sai da kai pi lie ou luo wei yue qgia ao ai ni hai ng na ...
AO xiao ou luo yue ao ai yu lo la wo we wa ie ia u o uo huo lao i ...
AW ou luo bi ao ai wu youiuwuhuouoieaiaocei..
AY da ci pa wei yue ba ao ai li yi ye jiiuieiavuhoouoli ..
B ch bu bo wei bi ba being baiywspnlgfebafueer...
CH du di de ci ch bo nu ng na zh ze yi le ye ke xia ji chuz y hu ...
D chxitaizxtsqhdctesish
DH lie ou wei bi ao ai hai nie lu nuo li yi lei le ye la ya iu ie ia ...
EH ou wei ao ai lei le ye la ya xi wu giao wo wa iuie veia y uo ...

Table 5.9: Phoneme-cumn mapping relationships discovered by EM training
based on alignment of phoneme chunks

5.4 Evaluation

5.4.1 Search Algorithm

Given an English phoneme sequence {ey, ez, ...,¢,}, the conditional proba-
bility of generating the Chinese phonetic sequence {crnu,, cmus, ..., cmu,}
is given by:

n

pleman, emusg, . . ., cmagle, e, . . ., €n) = 1 p(emaus|hi) (5.10)

=1

where {hy,hg,...,ha} is the predefined context (history) with respect to
each English phoneme. The transliteration probability p(cmulh) regarding
the contextual history h can be estimated by Eq.(5.6), in which p(cmu, h)
obtains from Eq.(5.8). Eq.(5.8) is computed by using the feature functions
and their respective model parameters obtained from the GIS training.

We applied “beam search” to this testing process [30]. Beam search is
essentially a breadth-first algorithm, but can avoid the combinatorial explo-
sion problem of breath-first search by expanding only a few most promising
candidates at each level using certain heuristic. For each e; in a testing En-
glish phoneme sequence E = {ej,es,...,€,}, the algorithm maintains the N
highest probability transliteration candidates up to and including e; it sees
in the sequence, where N is known as the “beam size”. The search algorithm
is shown in Algorithm 2. The beam size N = 5 was determined empirically
[30] and the top-1 transliteration was finally used.
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Algorithm 2 Beam search algorithm finding for best transliteration
1: Input: e;,€2,...:6n
2: Qutput: cmuy, cmug, ... ,CMU,
3. Candidate Node: b;;, the jth most probable transliteration candidates
uptoe,1<i<n1<j<N.
begin
Generate possible crmu; for e; by Eq.(5.6).
Find top-N candidates ¢}’ .
for j=1to N do
set, I)]j = tj
end for
10: for i =2 to n do
11: forj=1to N do

12: Generate possible cmu; for e; by Eq.(5.6) given the transliteration
context bi-1);

13: Append cmau; to bu-1); to generate new sequence b;;

14: Add b;; to candidate list

15: end for
16:  Find top-N candidates ¢} from candidate list

172 for j=1to N do

18: sef, l)‘,;j — tj
19: end for
20: end for

21: Return the most probable candidate by;
22: end
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Systems Baseline | Direct-1 | Direct-2 | Direct-2R.

Close || 66.35% | 63.17% | 68.18% | 76.97%
4 Open || 65.15% | 62.61% | 67.18% | 75.08%
Close || 20.73% | 13.16% | 23.47% | 36.19%
KV Open || 18.27% | 11.34% | 21.49% | 32.50%

Table 5.10: Transliteration accuracies of the baseline, Direct-1, Direct-2
and Direct-2R

5.4.2 Direct Transliteration Models vs. Baseline

Accuracy

We compared the performance of Direct-2, Direct-2R, Direct-1 and the
source-channel baseline with C.A. and W.A. measurements (see Section 3.3.2).
Data set Base-0 was used for the comparisons.

The results are shown in Table 5.10. Direct-2 outperforms the source-
channel baseline by about 2% in C.A. and about 3% in W.A.. It also out-
performs Direct-1 by about 6% in C.A. and about 12% in W.A.. This jus-
tifies our expectation on improving transliteration accuracies by considering
contextual dependencies. The model Direct-2R demonstrates significant
improvement over all the other models in all tests. Recall that in the model
Direct-2R, we decomposed longer compound finals in pinyin into smaller
sound units, i.e. basic finals, and aligned chunks of English phonemes with

the corresponding chunks of pinyin symbols, prohibiting alignments across
chunk borders. This could produce:
1. more precise mappings between English phonemes and mapping units
in pinyin (cmus);
2. less possible cmus for each English phoneme, reducing uncertainties;
and
3. less cums with illegal pinyin syllables, leading to more legitimate pinyin
sequences.

This justifies the effectiveness of (a). the alignment scheme based on phoneme
chunks and (b). reduced “granularity” of Chinese phonemes, which helps for

the precise alignment.

C.A. Distribution

The C.A. Distribution, i.e. the percentage of the number of transliterations
distributing over different C.A. ranges (see Section 4.6.1), was measured as
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Figure 5.2: Comparison of baseline, Direct-1, Direct-2 and Direct-2R on
C.A. Distribution.

well. Figure 5.2 shows the results. For C.A. ranges of 0% to 20%, the base-
line produced more transliterations than the other models; For C.A. ranging
from 20% to 80%, Direct-1 produced more transliterations throughout the
three ranges than the others. In the remaining C.A. from 80% to 100%,
Direct-2R produced more high-quality transliterations (see C.A. > 80%)
and considerably more correct transliterations (see C.A. = 100%).

Accuracy vs. Name Length

We also investigated how the different models differ from average length of
correctly transliterated names. The length of a given name is represented by
the number of phonemes it contains. For each model, we calculated the av-
erage length of correctly transliterated names (whose C.A. = 100%) in close
and open tests. The averaged length of testing names were also calculated.
The results are listed in Table 5.11.

We notice that the source-channel baseline somehow discriminates longer
names, evidenced as the average length of correctly transliterated names
is obviously shorter than that of all tested names, whereas other models are
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Close Open

Baseline 502 491
Direct-1 528 5:22
Direct-2 592¢ 827

Direct-2R. 530 5.34
Avg. Length 536  5.40

Table 5.11: The averaged length of testing names vs. the averaged length of
correctly transliterated names by different models

basically unbiased for name length as the average length of correctly translit-
erated names approaches to that of all averaged. This implies a good quality
of our proposed models: we tend to be able to transliterate names of any
length, not only being suitable for shorter ones. To justify our anticipation,
we further conducted an experiment to reveal the relationship between W.A.
and name length on different models using the results of open tests. The
comparisons are presented as Figure 5.3.

We observe that the number of testing names distributed normally accord-
ing to length. Most names have 5 or 6 phonemes. Basically, all the models
tend to make more mistakes on longer names than shorter ones. However,
it is evident that the baseline performs well on names with the length of 3,
and turns out being worse sharply for names longer than 3 phonemes. Other
models basically can persist their performance with the increase of name
length from 4 to 7. This indicates that our direct approaches have apparent
advantages on transliterating names of various lengths.

The reason is not very conclusive. We can give the intuitions roughly
as follows: Direct-2 and Direct-2R can capture longer distance depen-
dencies of phonemes. Thus, their performances are less sensitive to length.
However, this is not the case for Direct-1, which does not incorporate con-
textual features either, but practically performs better on length sensitivity
than the baseline. This may result from the stochastic prediction for the
positions of unaligned English phonemes and pinyin symbols in the baseline.
Shorter names tend to have shorter transliterations, and thus tend to have
fewer phonemes that should have been identified as zero-fertility and NULL-
generated than longer ones. For shorter names, IBM SMT model therefore
carries out fewer inaccurate operations, such as AddZfert and AddNull
than for longer ones. This can explain why the baseline is good at shorter
names. Because other direct models can deal with one-to-many phonetic
mappings, they don’t involve such a stochastic prediction mechanism. Con-
sequently, the influence of name length is lighter.
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W.A. vs. Name Length

(o))
o

—}¥—Baseline

——Direct-1

H
o

—a— Direct-2
—a— Direct-2R

------ Length-Dist

N
o
L

Word-level Accuracy(%)
W
o

10 -

1 2 3456 78 9101112131415
Name Length (# of phonemes)

Figure 5.3: W.A. vs. name length under different models. The length of
testing names is normal distributed.
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5.4.3 Direct-2 vs. Direct-2R

We compared the performance of Direct-2 and Direct-2R using C.A. and
W.A. (see Section 3.3.2 for their learning curves, which is defined as accu-
racy varying with different data sizes. The experiment also enabled us to
determine the appropriate training data size.

Data Preparation and Test Procedure

Experiments were carried out in multiple trials. Instead of directly using
the data set Base-0, we extracted different instances in each trial of the
experiments from the data pool which contains 46,305 name pairs. Data
preparation proceeded as follows: In each trial, individual translation name
pairs, i.e. instances, were randomly selected from the data pool to build 10
subsets. Each subset accounted for 10% to 100% (step=10%) of the total
instances in the entire pool. In each subset, we used 90% of the instances
for training and the remaining 10% for open test. Also the same number
of instances (10%) were randomly selected from the training instances for
close test. To investigate the influence of data sparseness, the procedures
of training and testing were applied to the 10 subsets with different data
sizes. And the performance was measured by the averaged accuracy (C.A.
and W.A.) of 50 trials of the experiments. C.A. Distribution was tested by
the averaged values of the 50 trials on 100% data size only. These data
preparation and testing procedures were designed to smoothen certain bias
that often existed in individual data sets.

Table 5.12 shows the highest and lowest accuracies of Direct-2 and
Direct-2R. in different trials together with the corresponding data sizes.
C.A. and W.A. were averaged over the number of testing names. We noted
that the maximum/mininum of C.A. and W.A. may happen regardless of the
data size. It implies that the quality of data in certain subsets can affect the
outcome of each trial. This is the reason why we have to average the accura-
cies on multiple trials to smoothen the discrepancies caused by different data

quality in individual subsets.

Learning Curve: Accuracy vs. Data Size

Figure 5.4 shows the average C.A. and W.A. of Direct-2 and Direct-2R
over different data sizes. Direct-2R significantly outperforms Direct-2 on
all tests for different subsets.

We did not see serious data sparseness problem. This is likely because
our data pool was large enough, with 46,305 name pairs. However, light
data sparseness was observed when less than 40% of the data pool (around
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Direct-2 Direct-2R.
Close | Open | Close | Open

Accuracy

Max(%) || 72.48 | 69.26 | 79.23 | 76.83
Size 10% | 10% || 20% | 90%

C.A- MVin(%) | 66.51 | 63.23 || 72.97 | 70.93
Size || 60% | 10% || 10% | 10%
Max(%) || 28.08 | 24.48 || 40.24 | 36.11
Size | 10% | 50% || 20% | 90%

W.A.

Min(%) || 21.17 | 14.47 || 30.98 | 24.41
Size 10% | 10% 10% | 10%

Table 5.12: Marginal accuracies achieved by Direct-2 and Direct-2R

Accuracy vs. Data Size
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Figure 5.4: Comparisons of Direct-2 and Direct-2R on C.A. and W.A. over
different data sizes. D-2 and D-2R refer to model Direct-2 and Direct-2R.
respectively
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18,522 instances) was used for Direct-2R training (90% of 18,522 train-
ing instances) and testing (10% of 185,22 test instances). In Direct-2, we
observed similar data sparseness when 30% of the entire data set (around
13,891 instances) was used. These data sizes, i.e. about 13,891 instances for
Direct-2 and 18,522 instances for Direct-2R, should be enough for train-
ing the models. However, this indicates that Direct-2R. is more sensitive to
sparse data than Direct-2. The reason is that fewer crus of each English
phoneme are discovered in Direct-2R than in Direct-2. Intuitively, when
small training set were used, not enough cmus could be discovered by the
EM training based on alignment of phoneme chunks. Although the cmus
discovered were finer than those of GIZA++ training, they could not make
up of “full-scale” class labels for English phonemes, which caused the MazEnt
models to wrongly predict yet “unseen” cmus by making use of this fewer
number of “seen” cmus during testing. This can explain why Direct-2R

suffers from data sparseness problem more seriously.

5.4.4 Experiments on Direct-2R

Transliteration Quality

We analyzed Direct-2R to study the quality of transliterations. We ran-
domly chose 100 sample testing names with C.A. < 20% to qualitatively ex-
amine their English pronunciations, machine-generated transliterations and
the standard Chinese translations. These names are partially listed in Ta-
ble 5.13. We recognized 68 foreign names that should not be phonetically
transliterated but should be translated based on meaning, such as Japanese,
Korean or other Southeast Asians’ names. Most of the remaining ones are “ir-
regularly” transliterated names, such as “Rieth”, “Hayer”, “Haim”, “Flex”,
ete. Since we have no idea concerning their original language, it is difficult
to judge their human-generated standard transliterations. But the machine-
generated transliterations are evidently closer to their English pronunciations
than the standard ones. Note that non-English names possibly, but not al-
ways, can be transliterated in terms of their original pronunciations instead
of English pronunciations. For instance, the transliteration of “John” (/JH
AA N/), “ 298] » (/yue han/), is produced from its Hebrew pronunciation
directly. Hence, it would be better to first classify the training instances
according to their language origins. This, however, is beyond the scope of
this thesis.

We also studied the transliterations of 100 randomly chosen names with
C.A. of more than 80% but less than 100%. Some sample names are listed
in Table 5.14. Qualitatively, they all present tiny distance from the standard
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Original Name | Pronunciation Machine Trans. | Standard Trans. C.A.(%)
Voth V AA TH wa si fu te ( #8457 ) 0.000
Honcho HH AO N CH OW heng huo ben die ( 48% ) 16.67
Pace P EY S pei gie pa cai ( DA% ) 20.00
Rieth R AY AH TH li ao si li te (5% ) 0.000
Fujitsu FUWJHIHTS UW fu ji ce ge jin ( B ) 20.00
Sag S AE G sa ge sa (%) 0.000
Tokunaga T OW K UW N AA G AH | tuo ke na jia de chang ( #1%) 0.000
Yoho Y OW HH OW yue huo rong feng ( 7 ) 0.000
Hiromasa HH ITH R OW M AA S AH | xi luo ma sa bo ya ( 145 ) 0.000
Gyosai GYOWSEY ge luo sa yu cai ( A3 ) 0.000
Bag B AE G ba ge ba (B) 0.000
Thyme TH AY M sai mu di mei ( g ) 20.00
Upshur AH P SH ER a pu xiao e pu she (JE¥& ) | 16.67
Haim HH AY M hai mu an (&) 0.000
Pet PEHT PEHT bei ( M) 0.000
Shaefer SH EY F ER sha fe xie fu ( iH3 ) 20.00
Hayer HH EY ER hai er a ye ( FTHE ) 0.000
Motyka M AA T AY K AH ma tai xi mo di ka ( B ) | 16.67
Flex FLEHKS fu lai ke si fu lai ( T3 ) 20.00
Yap Y AE P ya pei ru(A) 0.000

Table 5.13: Randomly selected sample transliterations with C.A. < 20%

transliterations. Many of them are even phonetically closer to the corre-
sponding English pronunciations than the standard ones. Without profound
linguistic knowledge, one could not distinguish the subtle qualitative differ-
ences between transliterations produced by machine and human. However,
they are not identical to the defacto standards after all. Thus, in human sub-
ject tests, transliterations with similar quality like this could be considered
“phonetically equivalent but misspelled” [19]. A precise objective judgment
method for the transliteration quality is still left unexplored.

Phoneme Accuracy

We adopted an approximated approach to examine the phoneme conversion
accuracy and top confusions among mapping units in pinyin: Assuming the
Viterbi alignments obtained during training were correct, the mapping of
individual phonemes would also be correct. We used all the 46,305 instances
in the data pool for training and testing. The C.A. and W.A. achieved were
76.79% and 36.43% respectively. We then compared the test outputs, i.e.
transliterations aligning to their English origins, and the alignments pro-
duced by EM algorithm during the training process. Conversion accuracies
of English phonemes are listed in Table 5.15.

We found that 2/3 of 24 consonants and 1/4 of 16 vowels are among top-
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Original Name | Pronunciation Machine Trans. | Standard Trans. C.A.(%)
Cotroneo KOW TR OW NIY OW ke te luo ni ao ke te luo nei ao ( FHFF AR ) | 91.67
Schmaus SH M AW Z shi ma si shi mao si ( FEEHT ) 87.50
Krzeminski KRAHMIHNSKIY ke la ming si ji | ke re ming si ji ( THABEUTE ) 83.33
Bergfeld BERGFEHLD bo ge fei er de | bei ge fei er de ( MAFIE/RE ) 83.33
Priscilla PR AHSIHL AH pu lu xi la pu li xi la ( HAAAE ) 87.50
Silverthorn SIHLVERTHAORN xi er wo suo en | xi er fu suo en ( FE/RIHRE ) 81.82
Klages K L EY JH AH Z ke la re si ke la ge si ( AT ) 87.50
Cullins KAHLIHN Z ke lin si ka lin si ( FHRHT ) 85.71
Pellett PEHLAHT pei la te pei li te ( fRUFIFF ) 85.71
Hayworth HH EY W ER TH ai wo si hai wo si ( XS ) 85.71
Putting P AH T IH NG pa ting pi ting ( K ) 83.33
Drees DRIY Z de li si de lei si ( BT ) 85.71
Garnett GAARNEHT jia nei te jia ni te ( BBAF ) 85.71
Cronquist KRAANKWIHST ke lan kui si te | ke long kui si te ( TEHEEWERF ) | 84.62
Cusumano K UWSUWM AA N OW | ku zu ma nuo ku su ma nuo ( FEH5iF ) 88.89
Perkovic P ER K AH V TH CH pei ke wei qi pei er ke wei qi ( R/RAHEZ ) | 83.33
Lagardere LAAGAARDIHR la jia di er la jia dai er 90.00
Valley VAELIY wa li wa lai ( L3 ) 80.00
Delmonico DEHLMAANIY K OW | deermanike | deer mo nike (#8/REEH ) 90.00
Steward ST UW ER D shi tu er de si tu er de ( JFEI/REE ) 87.50

Table 5.14: Randomly selected sample transliterations with 80% < C.A. <
100%

20 of phoneme accuracies. This indicates that transliterations of consonants
are more accurate than vowels. We obtained average accuracies of consonants
and vowels with 76.36% and 67.78% respectively from Table 5.15. The rea-
son is straightforward: consonants are all monophonic while vowels vary from
monophthongs, diphthongs to even triphthongs. Vowels complicate the map-
ping relationships with pinyin symbols and may lead to more possible crmus
than consonants do. A possible solution for future work can be to somehow
decrease the “granularity” of phonetic representations on both languages to
yield finer mapping correspondences between phonemes or phoneme chunks.

Top-20 crmus in pinyin that are most frequently confused with others are
shown in Table 5.16. Their corresponding English phonemes and confusion
frequencies are also shown. The confusions are partly resulted from the fact
that people did not abide by consistent regulations, especially on sounds
with high transliteration ambiguities. For example, pinyin sound /p/ is of-
ten confused by /b/ for the given English phoneme /P/. There were 579
transliteration mistakes on phoneme /P/, where 347 of them wrongly con-
verted /P/ to /p/ instead of to /b/, which ought to be the correct target,
and the confusion rate is 58.12%.
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Phoneme | Top-20 Accuracy || Phoneme | Lower-19 Accuracy
F 97.73% UH 73.36%
B 96.02% HH 72.04%
L 94.59% EH 70.92%
D 92.94% AA 68.62%
M 92.62% 7 64.78%

AE 89.95% Uw 64.66%
R 88.91% AO 64.31%
P 86.96% DH 63.64%
K 86.81% ER 63.12%
[H 84.89% (004 62.24%
T 83.55% CH 60.18%
N 81.82% AW 60.06%
%% 81.51% TH 58.86%
\% 81.04% AH 57.76%

oW 80.76% AY 57.05%
G 80.48% Y 56.71%
S 80.46% JH 43.36%
1Y 78.26% EY 40.77%

NG 77.95% ZH 35.35%

SH 74.21%

Table 5.15: Phonemes accuracy rankings

68
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Pinyin Confusion | English Phoneme | Confusion Frequency | Confusion Rate
b—p P 347/597 58.12%
ng — n N 1719/3398 50.59%
£ = 8 DH 24/56 42.86%
ng — n NG 180/460 39.13%
£ —er R 589/1622 36.31%
b —w \Y 197/563 34.99%
x — sh SH 179/517 34.62%
i — ai AY 390/1170 33.33%
shi — si S 795/2473 32.15%
e — de D 191/599 31.88%
te — si TH 96/353 27.20%
Joig G 266/1050 25.33%
u — uo (0)4 36/148 24.32%
d—t E 431/1892 22.78%
£ —er L 203/902 22.51%
i—u UH 42/191 21.99%
ei — i IY 551/2510 21.95%
a—h HH 221/1022 21.62%

fei — fu F 19/89 21.35%
w— b B 65/313 20.77%

Table 5.16: Pinyin mapping units with top confusions and their correspond-
ing English phonemes
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Accuracy vs. Data Size
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Figure 5.5: The learning curve of Direct-2R on trimmed data set Base-1

Performance on Trimmed Data and Remarks

Before we conclude this chapter, we demonstrate the system’s performance
of model Direct-2R with “friendly” data. The data set we used contains a
large number noisy data like irregularly transliterated names from a variety
of languages. It’s been testified that these “unfriendly” names contributed
significant errors to transliterations [33], evidenced as the decrease of errors
after the names with low alignment scores were wiped off from the training
set. We propose to learn how well our direct approach can achieve with
regular names, such as how its learning curve is like when not disturbed by
noises.

We refined the data pool by eliminating all the incorrectly transliterated
names. This was done by training and testing Direct-2R. on all the 46,305
instances. We obtained 16,948 very regular instances, which is called Base-
1 hereafter. We then partitioned Base-1 into 10 subsets according to the
method we processed Base-0 in Section 5.4.3 during each of the 50 trials for
training and testing. The resulting C.A. and W.A. were averaged over all the
trials. Figure 5.5 presents the learning curve of Direct-2R on Base-1.

The model achieves remarkably higher accuracies on the trimmed data
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set. On 100% data size, the C.A. reaches 97.08% and 95.90% in close test

and open test respectively, and the W.A. are 89.53% and 85.32%. However,
we should emphasize several remarks as follows:

1. From these tests, we can notice evident data sparseness problem as the
data size is smaller than 50% of 16,948 instances. Usually, it would
be hard to have about 8,500 name pairs for training the model. Thus,

techniques addressing data sparseness should be incorporated into the
model.

9. Under this ideal data set, we can see the maximal potential of the
model. There are still rooms to improve the model possibly by intro-
ducing additional dependencies, such as longer contextual histories or
the language model. This is up to the further study concerning the
influence of different features on the transliteration effectiveness.

3. It is necessary to improve the model’s performance under the richness
of noisy data.

5.5 Chapter Summary

We have addressed several critical problems suffered by the source-channel
based English-to-Chinese transliteration model. We then proposed the im-
proved direct transliteration model Direct-2, which supported one-to-many
alignment mappings. The model is simplified by using mapping units to re-
duce the number of model parameters. That finally will lead to one-to-one
alignments.

The implementation of Direct-2 did not make use of information em-
bedded in the target language model. This was balanced by using the con-
textual information of a specific English phoneme and the corresponding
aligned Chinese pinyin symbols. Maximum entropy modeling was employed
for this purpose and GIS training algorithm was used. Experiments showed
its superiority over the source-channel baseline and Direct-1.

Further refinement by Direct-2R was achieved by precise alignment of
phoneme chunks and by decomposition of larger phonetic units, i.e. com-
pound finals of pinyin, into basic finals with smaller “granularity”. The
experimental results strongly supported our expectations.

O End of chapter.



Chapter 6

Conclusions

This chapter summarizes the contributions of this thesis. It outlines possi-
ble applications of machine transliteration and gives an outlook for future

research on this interesting topic.

6.1 Thesis Summary

We have proposed to use unsupervised machine learning techniques for mod-
eling phoneme-based English-to-Chinese transliteration problem. Statistical
transliteration modeling has a strong basis in information theory. It can re-
move many ad hoc procedures from traditional rule-based machine translit-
eration techniques. In addition, we have shown that the proposed direct
transliteration approaches have obvious advantages over IBM SMT model,
which is based on the state-of-the-art source-channel framework. We have
evaluated and compared both the direct and source-channel based models
and obtained strong evidences to support our hypotheses. There are three
main contributions in our research:

e We have identified major deficiencies of the source-channel based model
for English-to-Chinese transliteration by reproducing the implementa-
tion described in [33]. The source-channel based model, which uses
reversed prior conditional probability, is unable to realize one-to-many
symbol mappings between phonetic units from source to target lan-
guage. Transliteration is modeled as a stochastic process with random-
ized parameters, such as zero-fertility and NULL-generated symbols, to
represent unaligned phonetic units. The mechanism is error-prone as
random reproduction of zero-fertility symbols in target sequence and
insertion of NULL-generated symbols in source sequence could not ef-
fectively predict the frequent un-transliterated English phonemes and
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the mappings from single English phonemes to initial-final clusters.
This restriction has been overcomed by the proposed direct transliter-
ation model, i.e. the direction of prior probability estimation coincides
with the transliteration direction.

e We proposed the Direct-1 model to cope with one-to-many symbolic
mapping with a direct prior and alignment scheme of phoneme chunks.
Initial-final clusters were introduced as mapping units in the Chinese
side. They could be dynamically identified and appended to the target
phonetic vocabulary during training. The direct method was imple-
mented using a weighted finite state transducer for the transliteration
model plus a finite state acceptor based on the bigram language model
of the target syllables. Compared with the source-channel baseline, the
performance of Direct-1 was slightly worse. Nonetheless, Direct-1 is
more simple and flexible for extension.

e We also proposed an enhanced direct transliteration model, namely
Direct-2. Maximum entropy formalism was adopted to incorporate
longer contextual dependencies among phonetic symbols. Although
Direct-2 excluded the language model, it still achieved higher accura-
cies than other approaches. We refined the Direct-2 by using align-
ment based on phoneme chunks with finer pinyin mapping units. The
refined model, i.e. Direct-2R, performed best. Direct-2 did not only
cater for one-to-many symbol mapping, but also approximated many-
to-one mappings by reducing the granularity of target phonemes. This
led to more precise symbolic alignment.

English-to-Chinese transliteration involves both one-to-many as well as
many-to-one symbolic mapping between English and Chinese. Experiments
have shown that the one-to-many alignment scheme plus contextual depen-
dencies using direct models is better than the many-to-one by source-channel.
It can be anticipated that the combination of the both would be more supe-

rior.

6.2 Cross Language Applications

The use of machine transliteration in cross language applications is imminent
and promising. Currently, English-Chinese machine transliteration methods
are almost all proposed for specific applications, such as information retrieval
8, 22, 23, 33|, acquisition or extraction of equivalent word pairs from parallel
corpus [14, 20|, and construction of named entity translation dictionary [13,
34].
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Not only that, automatic transliteration can be directly applied to machine-
aided translation on names to alleviate human labors. It could also be ap-
plied to adaptation of empirically sound data to provide best suggestions to
human translators on given names. In addition, although we were mainly
concerned with Mandarin, dialect-specific knowledge is independent of our
model. As such, our method will be applicable to other Chinese dialects,
such English-Cantonese pairs. It could be trained using regional “cultural
settings” to handle transliterations of specific Chinese dialects and help find
transliteration equivalents of the same foreign name. In principle, our ap-
proach can also be applied to any language pairs that are composed of regular
consonants and vowels, except for Semitic languages, e.g. Arabic, which lack
“short vowels” in their written forms [2, 3].

6.3 Future Work and Directions

As far as we concern, machine transliteration for English-Chinese language
pair is an undeveloped research area. There are still many unresolved prob-
lems and much work is left unexplored. As with our research, we outline the
future work as follows:

1. Although direct approaches are advantageous over source-channel based
methods on using one-to-many mapping from source to target and on
accomodating contextual features, it may suffer from the hardship con-
sidering many-to-one mapping. For superior performance, it needs to
approximate many-to-one mapping by means of decomposing the map-
ping to multiple one-to-one mappings, which was achieved by reducing
the granularity of target symbols in Direct-2R. However, this may be
ineffective for other target languages, in which there are not so many
compound phonetic symbols as Chinese Romanization systems. Thus,
a more general and effective model for many-to-many symbolic align-
ment should be developed.

2. Due to the decomposition of compound pinyin symbols, fewer and finer
emus are identified in Direct-2R model. The model becomes more
vulnerable to the paucity of data. Thus, effective smoothing techniques
are required for the Direct-2R model to overcome data sparseness

problem.

3. The use of different contextual dependencies has not been carefully
studied and compared. It is unclear how well the features defined in the
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improved direct models could suit for transliteration problems. There-
fore, it would be interesting to explore the influence of different sets of
features selected for Direct-2 and Direct-2R.

4. There are many rooms to improve the Direct-1 model by means of
amendments on language modeling and search algorithm. There are
constant, arguments that the mathematical foundation of Direct-1 re-
sults in its worse accuracy than the source-channel model supported
by Bayes’ theorem. However, it is not conclusive unless optimal so-
lutions of the both models could be found and compared. Also, an
experiment, in machine translation showed that the form of Direct-
1 used for search did not affect the quality of translation results in
source-channel based model [27].

5. No consent has been achieved in machine translation community whether
the source-channel based IBM SMT model could obtain the optimality
by the combination of translation model and language model. Per-
plexity is often adopted to measure the goodness of translation model
in training and testing. However, it is unclear if perplexity could re-
ally reflect the effectiveness of translation [1]. Thus, it is an ongoing
research to explore different combinations and iteration schedules of
the sub-models (Model-1 to Model-5) in IBM SMT to find the optimal
hypotheses. In direct transliteration modeling, MaxEnt theorem can
guarantee that the learning algorithm always robustly converges to the
maximum entropy probability distribution and provides better fit of
the data. It would be useful to learn the optimal characteristics of the
direct models and compare with that of the baseline model.

6. We can readily apply the proposed direct transliteration models to
Chinese-to-English back-transliteration. Although we currently haven’t
conducted experiments to verify its effectiveness on the backward di-
rection application, we believe that it is simply a matter of revers-
ing the order of source and target without significant modification
of the model. The source-channel model has intrinsic advantage for
back-transliteration since its reversed priori probability estimation co-
incides with the original direction in producing transliterations by hu-
man translators (see remarks in Section 2.2.4). It would be interesting
to make comparisons with the direct models for the effectiveness.

Finally, we would like to prospect the future direction on this research.
One of the most exciting directions of machine transliteration is to propose a
language independent model that can universally fulfill transliterating names
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given any language pairs. The premise of its realization depends not only on a
model, but also on effective schemes on universal phonemic representation for
all human languages. International Phonetic Alphabet (IPA) is widely used
as such a representation for human speakers, but the universal computer-
readable phonetic alphabet has just been developed in recent several years,
which is known as SAMPA (Speech Assessment Methods Phonetic Alphabet).
A SAMPA transcription is designed to be uniquely parsable. As with the
ordinary IPA, a string of SAMPA symbols does not require space between
successive symbols. Unlike other proposals for mapping the IPA to ASCII,
SAMPA represents the outcome of collaboration and consultation among
speech researchers in many different countries. The SAMPA transcription
symbols have been developed by or in consultation with native speakers of
every language to which they have been applied. Currently, it has been
applied to 24 major human languages including Chinese, and the scope is
continuing to enlarge. A number of research on speech technologies has been
conducted based on this set of alphabets as internal phonetic representations.
SAMPA will be a powerful tool for machine transliteration as well.

0O End of chapter.



Appendix A

IPA-ARPABET Symbol
Mapping Table

IPA ARPAbet IPA ARPAbet

Symbol Symbol ~ Word Transcription — Transcription

] liy] lily ['li] [ihliy]

1 [ih] lily ('] [1ih1iy]

[e1] [ey] daisy ['derzi] [deyzi]

€] [eh] poinsgttia  [pom'seria] [p oy n s eh dx iy ax]
] [ae] aster [@stay [ae s t axr]

[a] [aa] poppy 'papi] [paapil

[o] [a0] orchid ['orkid] [ao rkix d]

(v] [uh] woodruff  ['wudraf] [wuhdr ah f]

[ov] [ow] lotus ['louras] [1 ow dx ax s]

[u] [uw] tulip [‘tulip] [tuw 1 ix p]

(a] [uh] buttercup  ['bara kap] [b uh dx axr k uh p]
(3] [er] bird ['bad] [berd]

[a1] [ay] iris [‘amis] [ay rix s]

[au] [aw] sunflower  [‘sanflavay [s ah n f1aw axr]
[o1] [oy] poinsettia  [pom'seria] [p oy n s eh dx iy ax]
[ju] [yuw]  feverfew [fivefjul [fiy vaxrfyu]

[0] [ax] woodruff  [‘wudraf] [wuhdrax f]

(i] [ix] tulip [‘tulip] [tuw lix p]

3 [axr] heather ['heda] [h eh dh axr]

(4] [ux] dude’ [dud] [dux d]

Figure A.1: The correspondence between IPA symbols and ARPABET sym-
bols (vowels)
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IPA ARPAbet IPA ARPAbet
Symbol Symbol  Word Transcription  Transcription

[pl [p] parsley ['parsli] [paarsliy]

[t] [t] tarragon ['teeragan] [taerax gaan]

(k] [k] catnip ['kaetnip] [k ae tn ix p]

[b] [b] bay [ber] [beyl]

[d] [d] dill [dn]] [dih]]

[g] [g] garlic ['garlik] [gaarlix k]

[m] [m] mint (mmt] [mihnt]

[n] [n] nutmeg [‘natmeg] [nahtmehg

(1] [ng] ginseng ['dzmnsiy) [jhihnsix ng]

[f] [f] fennel ['fenl] [fehnel]

[v] [v] clove [klouv] [k1ow v]

[6] [th] thistle (‘0] [thihsel]

(8] [dh] heather ['heda] [h eh dh axr]

[s] [s] sage [serd3] [s ey jh]

[z] |z] hazelnut ['herzlnat] [heyzelnaht]

(/1 [sh] squash [skwa] [s k w a sh]

[3] |zh] ambrosia [aem'brouga] [ae m b r ow zh ax]
(] [ch] chicory ['t[rkeri] [chih k axr iy ]
[d3] [jh] sage [serds] [s ey jh]

(1 (1] licorice ['lika[] [1ih k axr ix sh]
[w] [w] kiwi [kiwi] [k iy w iy]

[r] [r] parsley ['parsli] [paarsliy]

1] lyl yew [yu] [y uw]

[h] [h] horseradish ~ ['horsraedif]  [haorsraedihsh]
[?] [ql uh-oh [?a?0u] [q ah q ow]

[£] [dx] butter [‘bara] [b ah dx axr ]

[F] [nx] wintergreen  [wiragrin] [wihnxaxrgrin]
(1 [el] thistle ['Brs]] [thihsel]
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Figure A.2: The correspondence between IPA symbols and ARPABET sym-
bols (consonants)
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