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ABSTRACT 

With the ever-increasing operating frequency and complexity of microwave circuits and 
systems, three-dimensional EM environment becomes more and more dominant, computer 
simulation of microwave circuits and systems relies greatly on accurate models with both 
physical information and electromagnetic effects. While various advanced accurate but time 
consuming EM models have being developed, the research in this thesis places attention to less 
accurate but super fast EM models, which are also highly demanding in practical circuit initial 
design. Among various effective but less accurate EM simulation techniques, the enhancement of 
the well known coupled EM and circuit simulation approach, Partial Element Equivalent Circuit 
(PEEC) is fully studied in this thesis. It is an effective method to convert three-dimensional multi-
conductor structures to circuit domain descriptions. 

Based on the traditional PEEC algorithm, some enhancements are proposed in this thesis. 
Firstly, a mixed rectangular and annular meshing scheme based PEEC approach is developed, 
wherein the surfaces of irregularly shaped conducting structures, especially mixed rectangular 
and annular ones, are represented by two basic building blocks, rectangles and annular sectors. A 
coupled EM-circuit formulation is obtained through the separation of the scalar and vector 
potential interactions between a pair of directional pulse basis functions for the derivation of 
equivalent circuit model. Secondly, when the operating frequency of the microwave circuits and 
systems is very high or when the problem under analysis involves radiation loss, a full-wave 
technique is proposed for the PEEC approach to considerablely minimize the simulation error 
brought by quasi-static approximation in the traditional method. Finally, an effective microwave 
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circuit design and optimization approach based on aggressive space mapping (ASM) method and 
the PEEC model developed in this research is demonstrated, where the PEEC model is set as the 
coarse model in ASM because of its efficiency and the resultant equivalent circuit model. 
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摘 要 

隨著微波電路及系統工作頻率以及複雜程度的不斷提高，系統内的三維電磁锅合效應變 

得愈發重要。微波電路及系統的仿真成功與否，在很大程度上取決於一個既含有物理尺寸 

信息又包括電磁稱合效應的模型的建立。儘管各種各樣精確但耗時的電磁模型曾被提出 

過，本論文更傾向於研究不完全精確但非常之快的電磁模型的建立，該模型在實際電路的 

初始設計中是非常重要的。在上述的各種電磁仿真技術中，該論文選取了一種電磁電路混 

合仿真方法，P E E C ,各方面的性能改善，作爲研究課題。該方法可以有效地將三維多導 

體結構的場問題轉變到電路域進行描述進而變成爲一個電路問題。 

基於傳統算法，本論文提出了兩點改進。首先本文提出了一種基於矩形扇形混合剖分機 
I* 

制的PEEC方法，在該方法中，不規則形狀導體，特別是矩形扇形混合的導體，由兩個基 

本構件模塊，矩形和扇形剖分單元，進行剖分逼近。然後從一對變方向性脈衝基函數之間 

相互作用的矢量和標量位函數中可以分離出一套混合電磁電路公式，從而推導出其等效電 

路模型。其次，當微波電路及系統的工作頻率非常之高或者待仿真系統並非一個電小尺寸 

系統又或者待仿真系包含有輻射損耗時，爲了避免由於傳統PEEC方法中採用的準靜態近 

似而引起的計算誤差，全波技術被應用於 P E E C方法。最後，一個有效的基於A S M的微 

波電路設計和優化方法於本論文中被提出。由於PEEC的仿真效率以及其等效電路模型等 

方面的優勢，在該方法中，P E E C模型被作爲粗略模型，進而由A S M方法進行優化。 
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INTRODUCTION 

Q  
INTRODUCTION 

1.1. PEEC Modeling Method 

Microwave circuits are becoming ever more commercially and militarily viable and, coupled 
with large scale production, computer simulation of circuits and systems is an essential part of the 
development process, and accurate component and circuit models are required to ensure that the 
simulations reliably predict real-world performance. 

With the ever-increasing operating frequency and complexity of the circuit, wavelengths 
become smaller and smaller with respect to device and circuit dimensions and the three-
dimensional EM environment becomes more significant. A fundamental problem in designing RF 
circuits is the parasitic effects between closely spaced elements in EM environment, which affect 
the frequency behavior of the circuits. So if reliable, high yielding and optimized designs of 
microwave and millimeter-wave circuits are to be achieved, models with both 
physical/geometrical information and electromagnetic effects become necessary. There are 
several EM simulation techniques, such as Method of Moment (MoM), Boundary Element 
Method (BEM), Finite-Difference Time Domain (FDTD), Finite Difference Method (FDM), 
Finite Element Method (FEM), Transmission Line Matrix (TLM), etc. 
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INTRODUCTION 

With the increase of the complexity of today's electronic system, for radio-frequency (RF) 
design, in particular, there are always both passive structures and nonlinear active components in 
one physical system. The passive structures, such as microwave filters, couplers, can only be 
accurately modeled by electromagnetic (EM) field analysis while the active components, such as 
transistors, require time domain circuit analysis. To understand the performance of the whole 
system, the combination of the two analytical technologies is needed. The Partial Element 
Equivalent Circuit (PEEC) approach, developed by A.E.Ruehli in 1974，is particularly suitable 
for this kind of mixed EM and circuit problem. It can extract an equivalent circuit model from the 
original passive structure. 

1.2. Overview of the work 

However, conventional PEEC approach, originally formulated for modeling thin and long 
interconnect structure, assumes rectangular discretization scheme and filamental current flow, so 
it is not well suited for modeling irregular structures, such as a generally used circular spiral 
inductor. 

In conventional PEEC, quasi-static approximation is made, because the kernels of the quasi-
static integral equations are considerably simpler than full-wave kernels, which will make the 
analysis less cumbersome and clearer. But when the problem under analysis is a radiation one or 
the structure of interest has dimensions comparable to or even larger than the operating 
wavelength, this approximation will be no longer acceptable. 

Aiming at breaking these two limitations, two enhancements of the conventional algorithms are 
proposed in this work. 
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INTRODUCTION 

1.3. Original Contributions 

Following are two original contributions in this work: 

1. Generalization of PEEC to model irregular geometries, especially mixed rectangular and 
circular geometries 

2. Application of full-wave techniques to PEEC modeling method 

1.4. Organization of the thesis 

The thesis begins with the introduction of the fundamentals of the conventional PEEC 
modeling technique. Basic mathematical formulations are provided in this chapter for better 
understanding the theory. Chapter three focuses on the generalization of PEEC to model irregular 
structures. A new meshing scheme is proposed to facilitate PEEC to model both rectangular and 
irregular geometries, and formulas to get partial elements in the new meshing scheme are given 
too. The application of full wave technique in PEEC to replace quasi-static approximation is 
discussed in chapter four. Some design examples are discussed at the end of chapter three and 
four to validate the efficiency and accuracy of the enhanced PEEC, and also give a guideline to 
design and optimize LTCC multi-layer RF circuit with PEEC modeling technique. 
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Classical Partial Element Equivalent Circuit Modeling 

CLASSICAL PARTIAL ELEMENT 
EQUIVALENT CIRCUIT MODELING 

2.1. Introduction 

In early 1970s, based on the study of inductance [1], [5], [6] and capacitance calculation [2] of 
the three dimensional multi-conductor system, and also the electrical analysis of the circuit 
interconnections [3], A. E. Reuhli developed the Partial Element Equivalent Circuit (PEEC) 
modeling method, to model three dimensional multi-layer multi-conductor systems. It is based on 
the conversion of the Mixed Potential Integral Equation (MPIE) to circuit domain, which 
provides us a better understanding of the electrical behavior of mixed EM-circuit problems. 

The PEEC method is developed from an integral equation description of the geometry. Then it 
is interpreted in terms of circuit elements, partial inductances and partial capacitances, the 
resultant equivalent circuit can then be solved with conventional circuit solvers, such as SPICE. 
Since this algorithm can be applied to a wide range of the problems, which include both circuit 
and field theories, and also help us understand the basic electrical performance of these problems 
in both time and frequency domain, it is worthwhile to study the basic concepts to have a general 
understanding of this modeling method. So in this chapter, the basic principles, as well as the 
mathematical formulation for conventional PEEC algorithm will be addressed. 
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Classical Partial Element Equivalent Circuit Modeling 

2.2. Mathematical Formulation in PEEC 

2.2.1 Basic Integral Equation 

We start with Ohm's law in the field form: 

E = - (2-1) cr 

The electric field is broken up into an incident field, E' and a scattered field, E^. 

E = E ' + E ^ (2-2) 

The incident field can also be represented in terms of the retarded potentials: 

(2-3) dt 
* 

Substitute (2-1) and (2-3) into (2-2): 

= + (2-4) G L at 

In (2-4)，J is the current density, a is the conductivity, A is the vector magnetic potential and 
O is the scalar electric potential. 

A(r，如 jG(r，r')J(ry>/v: (2-5) 
⑵双V；! 

H r j ) = ± ^ l G { r y ) q { r V ) d v： (2-6) 
fc?输 V；! 
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Classical Partial Element Equivalent Circuit Modeling 

in which, G(r,r ') is the Green's function, which will be discussed in details later. In time domain, 

the following relationship represents the time delay in free space with propagation speed of c， 

, r - r t ' = t (2-7) c 

Substitute equations (2-5), (2-6) into equation (2-4), it can be represented in an integral form: 

E ' ( r , 0 = _ + X ^ f l " fG(r,rOj(rV'yv： 1 + \G(ry)q(rV)dv： 1 (2-8) 
o- 7：! 471 dt ；I J 

Equation (2-8) is called Mixed Potential Integral Equation (MPIE) [4]. 

There are two unknowns in a multi-conductor or multi-wire system: charge density q on the 

surfaces and current density J within the conductors. Suppose these two unknowns are both 

locally constant functions and apply Galerkin's matching to the MPIE, equation (2-8), an 

equivalent circuit model can be generated for the structure under analysis. Assuming J and q to 

be locally constant variables, the original structure can be discretized into a number of surface 

and volume cells, and these two variables are supposed to be constant over these cells. 

2.2,2 Current and Charge discretization 

Representing the current density J in terms of orthogonal components: 

= + + (2-9) 

A rectangular volume cell is defined by a pulse function: 
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Classical Partial Element Equivalent Circuit Modeling 

, � 1 r e nth volume cell for the J^ component 
"^ ^ [O FG elsewhere (2-10) 

Here, for ease of presentation, y = x,y,z, representing three orthogonal current directions to 

avoid repetition. 

The current density is then expanded as: 

(2-11) 
n=l 

This basis function involved method applied above is called method of subsections. Since the 

basis function only exists over subsections of the domain of each J^(^) of the expansion 

(2-11) affects the approximation of Jy{r,t) only over a subsection of the region of interest. 

Then (2-8) can be rewritten as: 

¥ + 念 [ f G ( r ， r > : j ¥ + J： 士 |^[{G(r，r')妃 = (2-12) 
cr J dt tl^Tredy 

in which, nk represents the nth element on conductor k . 

Furthermore, the charge density q is written as another expansion function of the same type. 
Since free charge is restricted to the outside surfaces of all conductors, a rectangular surface cell 
is defined also by a pulse function: 

fl FG mth surface cell for q p (r) = •< … | o r e elsewhere (2-13) 
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Classical Partial Element Equivalent Circuit Modeling 

The charge density can be expanded: 

如 ) = i > K r ) (2-14) 
m=l 

Then equation (2-12) turns out to be: 

風 H 加 观 1 擎 
cr 冗 V： 而 

� “ "I (2-15) 

L "1* _ 

in which, mk represents the m'^ cell on conductor k . 

2,2.3 Galerkin Matching Method 

After the discretization of MPIE, the next step is to apply Galerkin matching to convert 
equation (2-15) into a set of coupled equations, from which the inductive and capacitive elements 
of the equivalent circuit model can be obtained. 

First, an inner product operation is defined: 

{f.g)=\fgdv (2-16) 
V • 

If f is chosen to be equation (2-15) and g is the volume pulse function defined in (2-10) 

divided by the cross section area, called weighting function or testing function, the integration of 

(2-15) over the cell leads to: 
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Classical Partial Element Equivalent Circuit Modeling 

(2-17) 

t f ⑴ 庇 d“] dr _ \ a, / 

Now there is a set of Nj equations for y components with I = 1,2,..., N^. If the continuity 

equation, equation (2-18), is substituted into equation (2-17), J and q can be easily solved. 

• • J = -学 (2-18) dt 

But in PEEC, our objective is to solve equation (2-17) in the circuit domain, so the equivalent 
circuit model must be obtained first. Notice that if there is no incident field, 

= 0 (2-19) 

With the assumption of the absence of incident field, equation (2-17) has the same form as: 

^ / f = 0 (2-20) 

in which, V^ represent the resistive, inductive and capacitive voltage drop across the cell 

respectively. 

1 I* / \ 

— " M 办 / (2-21) 

V v v M l � f f w � �] 如 " ) 

G ( r ， r > / v „ 々 ， ( 2 - 2 2 ) 
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Classical Partial Element Equivalent Circuit Modeling 

K M 1 1 产；）「 ， 
dv, (2-23) 

输以“"J 办一 j _ 

2.3. Partial Inductance 

2.3.1 General Formula for partial mutual inductance 

Based on equation (2-22) in section 2.2.3, the current density is written to be the total current 
divided by the cross sectional area perpendicular to the direction of current flow, 

, , + + // 1 � f ( w ' V / �] a / : “ 0 
——G(r，r>/v„�‘(2-24) 

It has the same form as the voltage-current relationship for an inductor: 
f 

V L = t f M ’ . 等 (2-25) 
k=\ n=l 似 

Compare equations (2-24) and (2-25), Lp, can be represented as the integration form of the 

Green's function: 

^PiM = f - — j lG{ry)dv:,dv, (2-26) 

The above equation provides us the way to calculate the partial self-inductance (l = nk) and 
partial mutual inductance (I ^ n k ) between two arbitrarily shaped conductors having same 
current orientation. 
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Classical Partial Element Equivalent Circuit Modeling 

2.5.2 Mutual Inductance between two Thin Rectangular Tapes 

In the general formula (2-26) to calculate the partial inductance, to simplify the calculation, 
free space Green's function is adopted at first: 

G(r,rO = — ^ (2-27) r - r 

However, it is only suitable for conducting cells embedded in a homogeneous substrate of 
infinite extent. It can be used as a basic element of the quasi-static Green's function of a 
microstrip substrate by applying the ray-tracing technique, which will be introduced in section 2.6. 

While calculating the inductance, the current direction on each inductive cell is also an 
important parameter. Since the inductive cells are all rectangles in conventional PEEC, there are 
only two possibilities, parallel or perpendicular, for the relationship between the current 
directions on two inductive cells. It is obvious that the mutual inductance between two 
perpendicular cells is zero. So to get the inductance between two thin strips, we only need to 
consider two parallel filaments located inside a homogeneous region, like the one shown in figure. 
2-3 (a). In such cases, equation (2-26) reduces to the famous Neumann's formula: 

(2-28) 

47r f,^ r - r 

This integration leads to an analytical form: 

LpU = f Z ( - i r k l 4 + V ^ ) - V ^ l (2-29) 

in which, z^ = - Z2 = + - ，Z3 = + “， � =h 
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Classical Partial Element Equivalent Circuit Modeling 

To obtain the mutual inductance Lp^k between two parallel thin strips of zero thickness such 

as the one shown in figure 2-3 (b), Lpj^^ is integrated over all filaments over both strips. 

lpu = f 丄 r [ 华 
4双 '•=丨片 2 (2.30) 

X； - P ^ 1 1 / ， ， ， \ , x^y. + 兄 In J, + p -丄义2 + 2 一 2尸2 ptan"' 
2 ‘ ‘ 口 J pp 

in which, 

and 
=dl-11 y^ = E-Wi 

h=dl + lnk y3=E-\-

=dl y4= E 

y个 

h h 
• — ~ K 

• i 

- p . ,1 ^  
h 

ia i 
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Classical Partial Element Equivalent Circuit Modeling 

z f ^ E • 

M 
m 

Fig. 2-3 (a) Two parallel filaments 
(b) Two parallel thin inductive cells 

Notice that the self-inductance can be calculated by setting = I油，w, = ŵ ,̂  and 

E = P = dl = 0 in equation (2-30). In the derivation, since the free-space Green's function has 
been used, equation (2-30) is applicable only for the case of the cells inside a homogenous region 
of infinite extent. 

2.4. Partial Capacitance 

2.4.1 General Formula for partial mutual capacitance 

Equation (2-23) in section 2.2.3 is related to the capacitive portion in equivalent circuit model. 

13 



Classical Partial Element Equivalent Circuit Modeling 

Firstly, an approximation is made: 

� � m k {r,rV)dv, = a, [F爪,(rf，r'/)- F ,̂ (r「，r'/)] (2-31) 

where i U r，r ' / ) = ‘ “ 0 jG(r，r'>/心； 

+ ( Ax, ^ _ f Ax, n +—,yi,Zij, ri — j , if r = x. 

Similar forms for and r�can be got for y = y,z 

This approximation reveals the relationship between the capacitive cells and the inductive cells 
in the same structure under analysis: the capacitive cells should be shifted by half the size of the 
corresponding inductive cells. 

Substituting (2-31) into (2-23): 

Vc = M r,， r ' k A - H r - y } i s： ] (2-32) 
H 饥=1 哪 L � * ‘ _ 

The charge density is written to be the total charge divided by the cross sectional area: 

Vc = l 0 { r ; y } i s L - \G{r;y}ls：] (2-33) 

It has the same form as the voltage-charge relationship for a capacitor: 
K M r Vc = Z Z a „ “ 0 [ m U - (2-34) 

k=l m=l 
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Classical Partial Element Equivalent Circuit Modeling 

where pp^^ .̂ and are both the coefficients of potential. 

In general, 

P p L = (2-35) 
— �s i 

中士 何r,土’r'Kn* (2-36) 
k=\ m=\ ^Tte 

From the method of subsections, the potential vector is matched to the known potential at the 
center of each cell in the system and q^,^ (厂)is assumed to be of constant density over cell mk . 

Equation (2-36) is integrated over cell mk , the left hand side is then Of5f since all the cells are 

supposed to be equal-potential one [2]: 

Of j Mr,V)/心电土 (2-37) 

Correspondingly, the coefficients of potential are re-defined to be: 

PPU = J fG(if，r')/心电土 ( 2 - 3 8 ) 

/ mk sf'S^ 

in which, Sf represents the capacitive surface cells associating at both ends of the inductive 

volume cell 1. The coefficient of potential matrix PP is constructed by collecting all the 

coefficients. Suppose CS = PP"^, then: 

C i j = f ^ C S “ ” i =�2 , . " ,NT (2-39) 
；=1 
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Classical Partial Element Equivalent Circuit Modeling 

(2-40) 

where C,. ,. is the self capacitance of node i and C"," is the coupling capacitance between node i 

and node j . Nj. is the total number of cells in the multi-conductor system. 

2.4.2 Mutual Capacitance Between Two Thin Rectangular Strips 

Based on equation (2-38), the potential coefficients between two parallel thin tapes of zero 

thickness such as shown in figure 2-4, ppf^，can be written to be the closed-form expression [2]: 

"厂'土 - 广 [ 罕 一 [ 〜 ” ] 

2 T I � ' = 1 )=i (2-41) 
+ ^ ^ ^ I n b ； ) + p]-去(^2 + z — 2C2 _ 义 . C tan-i 今 ] 

L 0 pL 

in which, 

and 

1 一 / 士 _ _ ^mk ^ _ ± ^f ^mk 
一 h,mk — “ — 一 _ — 

义2 二 = 心 + 夸 - I 
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/ T f / 

Fig. 2-4 Two parallel thin capacitive cells 

The ‘ self-capacitance can be calculated by setting /f = w,土 = w^ and C = i f ^ = w广讲灰=0 

in equation (3-41). It has a very similar form as equation (3-30) except that it is calculated by 
dividing the 4-D integration by the areas of the surface cells instead of the cross-section widths. 

2.5. Meshing Scheme 

To present how the inductive and capacitive cells are chosen, an example structure, a thin 
filamental conducting strip, is given in this section to show the discretization principle. The 
equivalent circuit model will also be provided. 

The number of network nodes specified within a conductor determines the size of the cells and, 
ultimately, the complexity of the networks. So the number of the network nodes should not be 
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Classical Partial Element Equivalent Circuit Modeling 

exceedingly large. At the same time, the choice of the inductive cells with locally constant current 
and the capacitive cells with locally constant charge distribution is uniquely given by the nodes, 
so the number of the nodes should not be too small either. 

Figure 2-5 shows a piece of thin filamental conducting strip in free space. In figure 2-6 (a), the 
network nodes, capacitive cells (solid line) and inductive cells (dotted line) are shown. Notice 
that an inductive cell is formed through shifting two adjacent capacitive cells by halves of their 
sizes according to what has been stated in section 2.4.1. The elements of the equivalent circuits, 
shown in fig. 2-6 (b), are fully determined by these cells. For the reason of clarity, in fig. 2-6 (b), 
only the self-inductances and self-capacitances are included. 

I 
Fig. 2-5: A thin filamental conducting strip 
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I — — r ^ r - i 

Capacitive mesh 
Inductive mesh 

“ i r - j I t 

r"r—1 
I I I 
I I 

’ i l H h i — I p I I I I 

ffl I I I • — I I ~~I~~ 
i i H i t r - H I I I I 

I ‘ I 

I I 

im 
Fig. 2-6 (a) Inductive and capacitive cells for the discretization of the conductive strip 

(b) The equivalent circuit model 
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Classical Partial Element Equivalent Circuit Modeling 

The above example of a filamental conductive strip can clearly show how a physical 
conductive structure can be converted to a network of discrete circuit elements, based on the 
conversion from the Mixed Potential Integral Equation into a set of coupled equations, namely 
equation (2-17). 

2.6. Green's function 

2.6.1 Modification of free space Green，s function through Ray-tracing technique 

In section 2.3.2 and 2.4.2，to simplify the calculation of the 4-D integration, the free space 
Green's function is used to get the closed-form mutual inductance and mutual capacitance. 
However, it is only applicable for the case of conducting cells embedded in a homogeneous 
substrate of infinite extent, which is rarely the case. 

A typical microwave circuit always has one ground on the bottom of the substrate or two 
grounds on the top and the bottom. Based on these two structures, the ray-tracing technique, 
shown in figure 2-7, is applied to find the quasi-static Green's function to replace the original 
static Green's function [7]. In the following sections, for clear description, G^ and G^ are used 
to represent the Green's function for current and charge respectively. When the system has a 
single ground plane located at the bottom, z=0: 

Ga (义，W) = I 2 7I �2 — I 2 ！ �2 _ 

yjP +{z-Zo) iP +{z + Zo) 

t k v . Y I 2 1 - 卜 1 (2-43) 
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When the system has two ground planes located at the bottom and the top respectively: 

G “ w ) = G “ w ) = I： 丨 I ,1 、2 - / ,1 �2 (2-44) 

where p = - ^ ( x - x j + { y - y j , 土 = 2 " "士 z。，=一 1 ; 

一1 One ground plane 
卜+1 

- 1 Two ground planes 

and r]̂  are the reflection coefficients for the bottom and top grounds respectively. 

I 

I 1 ： 

h| ”徽 _ 
‘ t i f 7 

2/1-Zo I / 

. y • 

Fig. 2-7 Ray-tracing technique 
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2.6,2 Impact on partial inductance and partial capacitance 

In the previous presentation, equations (2-30) and (2-41) give the formulas to calculate partial 
inductance and partial capacitance respectively when free space Green's function is adopted. But 
it has strict limitation on the application environment. So in last section, quasi-static Green's 
function obtained through the ray-tracing technique is introduced to replace the static Green's 
function, which will also influence the closed-form formulas to calculate partial inductance and 
partial capacitance. How to modify the formulas for the partial elements according to the change 
of the Green's function is the topic of this section. 

Firstly the mutual inductance and capacitance are denoted as the functions of the z coordinate 
of the cells: 

Lp;M=Lp'(z丨，zj (2-45) 

PPtnk = PP�,Zmk) (2-46) 

where z；，ẑ^ represent the z coordinates of the inductive/capacitive cells with index I and nk . 

For a system with just one ground on the bottom of z = 0: 

Lp 二 =Lp'(z �，zJ-Lp'(z��zJ (2-47) 

PPiM = t i^s^a V' [PP" {zi, z：., ) -PP '{z i , )] (2-48) 
n=-oo 

where r]̂，r]̂  and „ have the same definitions as before. 

For a system with two grounds on the top and the bottom: 
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Lp 二 = t [ V (z,，̂：..)- V fc，（、„)] (2-49) 
n=-oo 

P P S = t l p p i ^ n } - p p i z ^ , Z：,,)] (2-50) 
n=-oo 

These four equations, in conjunction with equation (2-30) and (2-41), give the closed-form 
partial inductances and partial capacitances for general microwave circuit, with quasi-static, thin 
film approximations and rectangular meshing scheme. 

2.7. PEEC Modeling of A LTCC 2.4GHz Band Pass Filter 

2.7.1 General Procedures to apply PEEC Modeling Method 

The fundamental principles behind the PEEC algorithm and the mathematical formulation on 
how to convert a field problem into a circuit domain problem have been introduced. Based on the 
understanding of these introductions, the modeling of microwave circuits through PEEC 
technique consists of three major steps in general: 

1. Divide the given structure with network nodes and build inductive and capacitive cells 
based on this division. 

2. Use equation (2-30), (2-41)，(2-47), (2-48), (2-49) and (2-50) to get the partial inductance 
and partial capacitance of the equivalent circuit. 

3. Solve the equivalent circuit by a conventional circuit solver for the desired type of 
solution. 
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During the modeling, quasi-static approximation is made to avoid time-consuming full-wave 
solution. Quasi-static approximation is applicable when the overall dimensions of the circuit are 
much smaller than the operating wavelength, that is, the quasi-static solution is a low-frequency 
approximation to the full-wave solution. Another approximation is the thin film approximation, 
which is applicable for the structures, in which the metal thickness is so small compared with the 
dielectric layer thickness that it can be neglected. 

Under such approximations, in conjunction with rectangular meshing scheme, a set of 
formulation in closed form is available for partial inductance and capacitance calculation. So 
compared with numerical methods that solve Sommerfeld integration in a full-wave solution, 
PEEC modeling method has a significant improvement on the simulation speed. On the other 
hand, equivalent circuit model is another important product of PEEC modeling. With the help of 
an accurate and simplified equivalent circuit model, we can better understand the electrical 
behavior of the original field problem under analysis, thus the efficiency of the design and 
optimization of the circuit layout is greatly improved, which will be introduced in next chapter 
through a design example. 

2.7.2 Numerical Results of a LTCC Band Pass Filter Modeling 

A typical embedded structure, a compact band pass filter, implemented with Low Temperature 
Co-fired Ceramic (LTCC) technology, shown in figure 2-8 (a), is built in this section. The filter is 
built using LTCC substrate with dielectric constant of 7.8. A total of six 3.6mils thick dielectric 
layers are used. The buried conductor thickness is 0.47mils, which is about one eighth of the 
dielectric layer thickness. So the thin film approximation is expected to be well suited for PEEC 
modeling of this band pass filter. 
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Fig. 2-8 :(a) 3-D layout of the LTCC Band Pass Filter 

(b) Schematic Circuit of the Filter 
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As shown in the schematic circuit, figure 2-8 (b), this filter consists of five capacitors and two 
inductors, all of which are built by rectangular strips and patches. So the rectangular 
descretization scheme will be well suited; the filter is designed to be operating at 2.4GHz, and it 
is not a very high frequency for quasi- static approximation being applied. 

At the same time, a commercially available full-wave circuit EM solver, HFSS, is also used to 
do the EM simulation. HFSS is an electromagnetic, finite-element simulation tool for high-
frequency design of Ansoft Corporation, Pittsburgh, PA, which is now being widely used in 
MMIC, RFIC and microwave/millimeter-wave circuit designs. The simulation results got from 
PEEC modeling, HFSS and measurement are compared, as shown in figure 2-9, to quantitatively 
validate the accuracy and efficiency of the PEEC algorithm. Generally speaking, they show a 
good agreement with each other. 

Consider the two transmission zeros at 1.84-GHz and 3.15-GHz respectively, the simulation by 
If 

PEEC is quite accurate since the result got from PEEC is nearly the same as that got from HFSS 
and measurement, while the two frequency responses in the pass band have slight difference, 
which may be caused by different reasons, such as the quasi-static approximation, the substrate 
loss not considered in PEEC, the thin-film approximation and the supposed locally constant 
current and charge, etc. But considering that PEEC is just a coarse model of the original band 
pass filter, its result has been very satisfactory. After all, the basic information of a band pass 
filter, the cut-off frequencies, the insertion loss, has been accurately modeled through PEEC. The 
detailed meshing information and the dimensions of this band pass filter can be found in [7]. 
There are some techniques introduced in [7] to improve the simulation accuracy of PEEC 
approach based on this specified example of band pass filter. 
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Fig,2-9 Numerical Results of the Band Pass Filter from PEEC HFSS and Measurement 

2.8. Summary 
In this chapter, the basic principle and the mathematical formulation for PEEC modeling are 

presented first. Then a LTCC band pass filter is built to validate the algorithm. In this modeling 
method, three approximations are made. The first one is the representation of the conductor by a 
network of rectangular cells. Intuitively it limits the general application of PEEC algorithm to 
non-rectangular geometries. The generalization of PEEC approach to model irregular structures 
will be addressed in the next chapter. The second approximation is quasi-static approximation. A 
simple ray-tracing technique is used to find the quasi-static Green's function for microstrip 
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problems from the static one, which leads to straightforward modifications to the closed-form 
solutions of the partial elements. It agrees well with the full wave solution when the frequency is 
low, for example, lower than 5 GHz. In chapter four, full-wave technique is applied to replace 
quasi-static approximation to model radiation and high-frequency problems. The relationship and 
agreement between quasi-static approximation and the full-wave solution will be given through 
the mathematical derivation. The last one is the thin film approximation. When the metal layer 
thickness cannot be neglected compared to the substrate layer thickness, a modification on the 

PEEC algorithm can be made, the detailed introduction of the modification is given in [7]. 

# 
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Generalized PEEC Modeling For X assive 
Component Of Irregular Shapes 
3.1. Introduction 

Conventional PEEC algorithm, including the principles and mathematical formulation, has 
been presented in details in previous chapter. Due to the approximations made in the conventional 
algorithm, there are some limitations in its application conditions. To generalize the application 
of the algorithm, this and next chapters propose some new methods to break some of its limits. 

One of the approximations introduced in chapter two is to model the structures under analysis 
with rectangular meshes and assume the direction of current flow to be along the length of each 
mesh. This approximation is quite reasonable since this algorithm was originally developed to 
model interconnects and packaging structures for signal integrity analysis purposes. Since most of 
the interconnect structures are always thin and long, the longitudinal filament discretization and 
the filamental current flow are. well suitable. But with the popularity of Systems-on-Chip (SoCs) 
in VLSI, the system achieves more reliability and complexity. As a result, more and more 
irregularly shaped conductors, such as circular spiral inductors, appear. The ability to analyze the 
circuits of non-rectangular shapes that are embedded in a multi-layered medium allows for more 
versatile designs with higher density. But the classical rectangular meshing scheme is no longer 
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suitable since it will cause considerable errors in the representation of a non-rectangular shaped 
conductor, such as a circle or a hexagonal, with rectangular meshes. It is the purpose of this 
chapter to generalize the conventional PEEC approach to model irregular geometries. 

3.2. Triangular meshing scheme in MoM 

3.2.1 Triangular meshing scheme adopted in MoM 

In the Method of Moment (MoM) technique, to solve irregular structure modeling problem, the 
surface of the conductor is modeled in terms of triangular patches and especially designed basis 
function defined on a pair of adjacent triangles is adopted, which will yield a surface current 
representation free of line or point charges at sub-domain boundaries The scheme was originally 
developed by S.M.Rao, Wilton and Glisson [8], [9], [10]. More recently, Schaubert, Wilton and 
Glissan [11] extended this procedure to volume integral equations for penetrable bodies, which 
are modeled in terms of tetrahedral elements. Similar with MoM, this triangular meshing scheme 
was introduced into PEEC in some earlier works [12], [13] to generalize the conventional PEEC 
method to model irregular geometries, mainly non-orthogonal polygons. 

In the generalized approach in [12], [13], triangular meshes are used to represent arbitrarily 
shaped conductors. Common edges between two adjacent triangles are used to define RWG basis 
function, which is given in equation 3-1. It defines current flows from one triangle (+) across the 
common edge to the other (-) one. A piecewise constant basis function, given in equation 3-2, is 
defined for the charge density q. 
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^ K ^ 

Fig. 3-1 Definition of triangle basis function 

^P： When r is in T： 

/ “ ! • ) = 去 A： When r is in r； 

0 Elsewhere (3-1) 

fl r G nth Triangle P (r)— [0 r G Elsewhere (3-2) 

The triangular basis function describes the vector surface current, matches the boundary 
conditions with no normal components along the boundary edges, and has the potential to 
represent non-planar current flow. The unknown current distribution on non-orthogonal polygons 
can be modeled accurately with triangular basis function. An example of such a structure and 
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suggested meshing scheme are shown in figure 3-2. For clarity, only inductive meshes and 
corresponding current flow directions are shown. 

Center of the 
y triangle 

/ I 
Figure 3-2. An example of a structure containing both rectangles and non-orthogonal 

polygons and the mixed rectangular and triangular meshing scheme 

3.2,2 Spiral Inductor 

Besides non-orthogonal polygons, there is another kind of widely used irregular geometries, 
that is, curved structure. One typical example is spiral inductor. There are many kinds of spiral 
inductors, such as square, octagon and circular ones. With loss in the spiral-coil metals and the 
substrate, the capacitive coupling effects to the substrate, spiral inductors always behave quite 
differently with ideal inductor models. Successful design and simulation of the whole system rely 
greatly on accurate characterization of the electrical behavior of spiral inductors. 
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The spirals are usually designed for a maximum quality factor (Q) at the desired operating 
frequency, in combination with the desired inductance value and available substrate floor space. 
It has been shown in [14] that for the same inner dimension, the Q of a circular spiral, as figure 3-
3 (a), will be about 10% higher than that of a square spiral, as figure 3-3 (b), although the 
inductance is significantly less (about 20%). So it is worthwhile to study how to accurately model 
a circular spiral inductor through PEEC approach. 

o o 
(a) ib] 

Fig. 3-3. Two kinds of spiral inductor: 
(a): circular spiral inductor: (b): rectangular spiral inductor 

Conventional rectangular meshing scheme models the circular conductor surface with 
rectangles, and the current flow is assumed to be a uniform longitudinal one; while triangular 
meshing scheme models the circular conductor with pairs of triangular patches, and supposes the 
current on each pair of triangles to be along the direction defined in figure 3-1. So it is intuitive to 
find that neither conventional rectangular meshing scheme nor triangular meshing scheme is 
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suitable for modeling such circular spiral inductors. And also, there is some difference between 
the basic theories of PEEC and MoM. In MoM, the final objective is to get the current and charge 
densities from the full-system matrix. While in PEEC, the current and charge densities are 
supposed to be known, local constant parameters. Instead, partial inductance and partial 
capacitance coefficients are the two unknowns to be solved directly from MPIE. So instead of 
triangular meshing scheme together with RWG basis function and rectangular meshing scheme 
with pulse basis function, in this chapter, a combined rectangular and annular meshing scheme, 
together with a generalized directional pulse basis function, is proposed. 

3.3. Generalized Meshing Scheme 

Since the enhancement of PEEC algorithm is aimed at generalizing its application to the 
modeling of irregular structures, especially those mixed rectangular and curved geometries, two 
fundamental blocks, rectangle and annular sector, are adopted for discretizing the conductor 
instead of just rectangular meshes in conventional algorithm. Figure 3-4 shows two exemplary 
capacitive meshes. There can be many other forms of capacitive meshes in practical applications, 
for example, the rectangle can be y-directional and the annular sector can vary from 90° to 270° 
etc. Since inductive meshes are formed through shifting two adjacent capacitive cells by halves of 
their sizes, there are three possibilities for an inductive mesh, as shown in figure 3-5. Case (a) is 
generated from two rectangular capacitive meshes; case (b) corresponds to a rectangular 
capacitive mesh and an annular one, and case (c) is formed when the two adjacent capacitive 
meshes are both annular sectors. After the discussion of the mesh shapes, we will focus on the 
definition of the current flow direction on the inductive mesh. 
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Figure 3-4 Two Types of Capacitive Meshes: 
A rectangle and an annular sector 

M (bl icl 

Figure 3-5 Three Types of inductive meshes 
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It is instinctive to define the current flow direction to be +x/+y on a rectangle, and the 

anticlockwise direction, + ^ on an annular sector, respectively. But for the inductive mesh of 

case (b) in figure 3-5, there are four exceptions, listed in figure 3-6. To keep consistency with the 

current directions on the other rectangular meshes, the current direction on the rectangular part 
must be +x or +y. But this definition will conflict with that defined on the annular part of the 

same mesh. To solve this problem, the direction of the annular part of such an inductive mesh 

must be modified to be the opposite, -0. The solid and dotted lines represent the current 

directions before and after modification respectively. 

I 
《 I 

Fig. 3-6: Four Special case for current direction definition 
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Following is a very simple mixed rectangular and annular example, U-shaped conductor, to 
show the new meshing scheme. Figure 3-4 shows a piece of thin U-shaped conductor in free 
space. Figure 3-5 (a) shows a set of network nodes, capacitive cells (solid line) and inductive 
cells (dotted line). The elements of the equivalent circuits are given in figure 3-5 (b). For clarity, 
in figure 3-5 (b), only the self-inductances and self-capacitances are included. The detailed 
introduction on how to generate the inductive and capacitive meshes and how to define the 
current flow directions on the inductive meshes in irregular geometries will be given in more 
details in next section. 

u 
Fig. 3-4: A thin U-shaped conductor 
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Fig. 3-5 (a) Inductive and capacitive cells for the discretization of the conductor 
(b) The equivalent circuit model 
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3.4. Mathematical Formulation for Enhanced PEEC 

3.4.1 Current and Charge discretization 

In enhanced PEEC, the starting point of the derivation is still MPIE, equation (2-8). A circular 
volume cell is defined by an anticlockwise directional pulse function: 

戶<& (r) _ 运 re nth volume circular cell for J 
[0 re elsewhere (3-3) 

Using the new basis function, equation 3-3，together with the pulse function defined in chapter 
two, equation 2-10, the current density is then expanded as: 

Z Jn W^/ r G the inductive cell of rectangle 
J M = : : — 

• 2 Jn (0戶/ (r) r G the inductive cell of annular sector (3-4) 

in which, N^ and N^ are the total number of rectangular and annular inductive meshes 

respectively. 

On the other hand, the pulse function for the charge density, has the same form as that 

defined in chapter 2. So the charge density in the enhanced algorithm still has the same form as 
equation 2-14. The only difference is that the capacitive cells include both rectangles and annular 
sectors now while the conventional ones are all rectangles. 

Based on the generalized meshing scheme, MPIE turns to be a different form for modeling 
irregular structures compared with the conventional counterpart, equation 2-15: 
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O^ k=l n=l 二 d t 

� "I When rG a surface rectangular cell 
尉 " - ( O j N r ， r X 小 

宇 加 ， r ' K 赠 
^ k=l n=l d t 

厂 "I When r e a surface annular sector cell 
KM 1 ^ 

L � 

( 3 - 5 ) 

Apply Galerkin matching: 

I \ r a, / 

when rG a rectangular cell and r ' e a rectangular cell too 

丄 一 和 i t ：会丄 [ n G ( r ， r > ; > , ] ^ f . ^ 
^/^v, Ui J^J dt 

K M ^ -i ；) 1 I \ 

^=1 m=x^7te ai f d r _ \ a J 

when re a cell of rectangle and r ' e a cell of annular sector, and vice versa. 
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V, k=l n=l di ot 

+ (r’ •小'—也+(r’吟〉 

when r e a cell of annular sector and r'e a cell of annular sector 

(3-6) 

3.4.2 Enhanced Formulation for partial mutual inductance and capacitance 

The second terms in all of the three equations of (3-6)，are related with the inductive portion of 
the final circuit model. 

Take the two rectangular cells as an example: 

LP�,nk = 念 士 I JT^《為 (3-7) 

Since the thin film approximation is made in PEEC, the dimension of the edge in the rectangle, 

along which the current flows, can be cancelled. The cell volumes v；， turn to be cell surface 

areas 5,，众 and the cross-sectional areas ’ â ,̂  change into the cross-sectional lengths w,, 

众 .Equa t ion (3-7) changes into: 

Corresponding to the three possibilities of inductive meshes, three sets of formulation to 
calculate the partial inductance in newly enhanced PEEC are given below: 
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. fi 1 f f 1 , , ^ 
^Pi,nk = TT 丸 kdSi 

4 双 — r - r | _ 

when r e a cell of rectangle and r ' e a cell of rectangle 

n 1 f c 1 
LPl,nk =— V<KkdSi f*0 

[sM r-r � 
when r e a cell of rectangle and r e a cell of annular sector, and vice versa. 
r ju 1 r r f 1 . , , . . 
LPl’nk = — AnlA 约• 

when re a cell of annular sector and re a cell of annular sector (3-9) 

in which, w, and are the cross sectional lengths of the two edges, perpendicular to the 

direction of current flow, on the cells with the index I and nk respectively. 

The third term in equation (3-6) has similar form as the counterpart in chapter two except for 

the factor，I 式• a . . Here, the parameters are defined as 
dUi 

^ . X [y when {nk'^) cell is a rectangle fl, [a^j^ j = < ^ . 
when 严 ink"') cell is an annular sector (3_10) 

If some mathematical transformation are made to this factor: 
a . . a a • = = ̂ r— (3-11) 

如 I Ank 
A A. • ^nk 
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in which, = ，representing the projection of a. to the direction of a , . To get the 

coefficient of potential, similar transformation as that in section 2.4.1 is made, just to change y 

into • Similarly, a closed-form set of formulation can be got. It has the same form as the 

conventional one, equation (2-38)，but in the generalized approach, and S础 may represent the 

areas of both rectangles and annular sectors. 

Free-space Green's function is also adopted here, so this analysis is also applicable only for the 
case of the cells inside a homogenous region of infinite extent. 

3.4.3 Four-Dimensional Integration 

Equations (3-9) and (2-38) are the kernels to be solved in calculating the partial inductance and 
the coefficient of potential in enhanced PEEC algorithm. The key step in the calculation is to 
solve the four-dimensional integrations: 

A 八 

[Js^Jf , 
(3-12) 

SfS，1 r 

f f 1 
JTIT^*^;� (3-13) 
Expression (3-12) and (3-13) are the kernel integrations in the inductance and capacitance 

calculation respectively. Ŝ  and S^ represent the areas of the inductive/capacitive cells on which 

the source and field point exist;人 and J^ represent the unit vectors to indicate the current 

directions on the source and field inductive cells. 
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In conventional PEEC, solving these 4-dimensional integrations is relatively simple. Firstly, 

the integration areas are all rectangles. Secondly, since the current f low direction on any 

A A 

inductive cell is either x or y, J^ • J , only has two values: 1 or 0. So analytical results can be got 

for the two 4-dimensional integrations in conventional PEEC. But with the increasing complexity 

of mesh shape and current flow direction, analytical forms of the two kernel integrations may be 

impossible or infeasible. Then it is necessary to f ind a relatively efficient and still accurate 

numerical algorithm to solve the 4-D integrations. 

3.4.4 Gauss Numerical Integration 

There are many numerical methods to solve an integration, duringwhich, Gauss-Legendre 

method is a simple, efficient and accurate choice for solving non-adaptive numerical integration 

of arbitrary function. Gauss integration method is explained in detail in [15]. The basic idea is to 
t* 

compute the rate at positions in the total integration interval area as representative as possible. 

The formula for Gauss numerical integration is given : 

\j b-a \ fb-a J, ^ b + a^,^ b - a ^ b-a ^ b + a^ 
f(x)dx = — f — ^ + ― 超 三 ~ ^ 1 > ( 么 ) / ——^ + ―— (3-14) 

a ^ - 1 V ^ 丄 J ^ k=\ V ^ 2 乂 

in which w众=w(么)is the weight, x � + the abscissa. The table of abscissas 2 
and weights up to n =96 can be found in [16]. 

To validate the accuracy of the numerical method applied to solve the 4-D integrations, (3-12) 
and (3-13), an example of a simple 4-D integration, given in equation (3-15)，is verified. Its 
integration area is a rectangle, shown in figure 3-6, so that this 4-D integration can be solved 
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analytically as a reference. And also it is solved by Gauss numerical integration method. Since 
the integrand of this 4-D integration is the same as the integrand in equation (3-13), the 
comparison of the two results can reflect the accuracy of the Gauss method in solving the 4-D 
integrations in the enhanced PEEC approach. 

3； = \-dsds (3-15) 
J J r 

SSSF' . 

in which r = ^[x^ - Xj.)^ + - y^J' , which is the distance between the source and field points. 

(x^, ) and [x,，y,) have the same definition as the last section. 

Since the integration area is a rectangle, the integration can be solved analytically: 

• j^sd/ = j^j^iyUf • • logWO + ^|x(i)' + y { j f ) / 2 + 
S.s / '=1 (3-16) 

• yU) • ^og(yU) + V 4 0 ' + > ' O y ) / 2 ) - 如 ” + 力竹 / 6 ) 

: 一 ^ ^ 

0 1 T ^ X 

(义 / ， / ) 

Figure 3-6: 4-D Integration area: an example geometry of a rectangle 
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On the other hand, Gauss numerical method is used. But at first, x and x are regarded to be 
the integration variables, the integration is solved analytically in these two dimensions. The 
closed-form formula is given: 

\ 油 ' = t t i i - r f V f e � -
'="=1� (3-17) 

(、 i j) - (0) • 10g�“2 {j)-义 1 (0) + >/(义2(力-义1«)2+(力”丨)2)丫 

Then apply Gauss-Legendre method to solve the integration over the remained two dimensions 
of y and y . These two parameters both vary from 0 to 1. Since this is a 2-D numerical 
integration, there should be two numbers of points for Gauss numerical integration over y and y' 
respectively to be chosen, M and N. In our program, to simplify the problem, M = N-3 is 
supposed. Based on the number of weights and abscissas available in [16], M is set to be a 
parameter varying from 1 to 30. The integration error function can be defined as equation (3-18), 
which is plotted as figure 3-7. 

y Gauss y analytic _ error = — (3-18) 
y analytic 

From this figure, we can know when N = 6 (M=3), the absolute error will be approximately 
0.02(2%), which has been quite accurate for our use to solve the 4-D kernel integrations. Since 
this integrand in equation (3-15) is the same as that in the two 4-D integrations, (3-9) and (2-38), 
in PEEC, the four numbers of points in Gauss numerical integration are chosen to be 6，6，3 and 3 

I at first. But this combination will cause the integrand - to be singular, so the set of four numbers r 
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is adjusted to be 6’ 6’ 4 and 4. With the increase of the sampling number, the accuracy should be 
still a little lower than 2%. 
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0.08 j- j- i i i -
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Figure 3-7 Error function of the Gausian numerical integration method 

3.4.5 Mixed Numerical and Analytical Technique 

After the introduction of the Gauss numerical integration method, the 4-D integrations for 

partial inductance and capacitance calculation wi l l be solved in different ways for different cases. 

Consider equation (3-9) first, the solution is divided into three cases: 

1. Both the source and field meshes are rectangles: 

This case is in fact the same as that considered in conventional PEEC, the formulation is given 

in (2-30), (2-47) and (2-49). 
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2. The source and field meshes are respectively, a rectangle and an annular sector, or vise versa: 

The 4-D integration is integrated analytically on the rectangle, that is, in x̂  and 乂 dimensions, 

the closed-form result is shown in equation (3-19). The next step is to solve the integration over 

the annular sector part. Change equation (3-19) into cylindrical coordinate system first, then 

utilizing the limits of p ! and ，this 2-D integration is solved numerically through Gauss 

numerical method. 

2 " 2 + ( 义 1 — I h J 
/ \ 

-/uan-i 丨 2 ( ’ - 义 1 — , 2 ) � 2 + “ ” 2 +料丨一义 2 ) 2丨” 2 ) 2 ) (3-19) 

\ y 
in which, Xj = p^ cos(^2) ‘ 3̂2 = " 2 sin⑷，（A’ 没2) is the source / field point on the annular 

sector in cylindrical coordinate system. 

3. Both the source mesh and field mesh are annular sectors: 

Cylindrical coordinate system is built first, the 4-D integration can be integrated analytically in 

Px direction, as shown in equation (3-20). Then the remained 3-D integration problem 

(，没1，没2) can be solved numerically by Gaussian integration method. 

—1 —办1 = V var + 
r；- 丫 1 
尸2 •(广0 COS (没。-) + COS (6>1 -e^ ) ) • (3-20) 
log( f] - ( r � c o s (i9o - )+ cos (6>i - ) )+ V ^ ) 
in which, var = + r^ + rĵ  + r\ 
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After analyzing the solution to equation (3-9) to calculate the partial coefficient of potential, 
following is how to solve equation (2-38) to get the partial inductance. There are three kinds of 
inductive mesh, as shown in figure 3-5，so there are totally 6 cases to consider: a&a，a&b，a&c’ 
b&b，b&c, c&c. 

1. The two inductive meshes are both of type a: 

This has been considered in conventional PEEC. Please refer to equation (2-30). 

2. The other five cases: 

The principle for the other five cases is the same, so only one of them, the two inductive 

meshes are of type a and type b respectively, shown in figure 3-8, is analyzed here as an example 

to avoid repetition. 1出 and nk"" inductive meshes are both divided into two parts: ， a n d nk” 

nk!, called sub-meshes. Since the integration is in fact a summation, the total partial inductance 

Lpi nk can be written to be the summation of the four partial inductances between each two sub-

meshes: 

LPl,nk = ^Pllnkl + LPnM2 + ^Pl2,nkl + ^Pl2,nk2 (3-21) 

Consider one of the four terms in the above equation, when the two sub-meshes are rectangle 

and annular sector respectively, such as Lp“,nk2，the result for 2-D integration of the rectangle, is 

given in equation (3-19); when the two sub-meshes are both annular sectors, such as Lpn^inki, the 

analytical result for 1-D integration of the partial inductance, is given in equation (3-20). Then 
Gauss numerical method is applied to solve the integrations in the remained two or three 
dimensions. 
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Inductive mesh of 
/ index 1 r M 

^ ^ H Inductive mesh of 
^ ^ ^ H index nk 

Figure 3-8; The calculation of the inductance between 
the two inductive meshes of type (a) and (b) 

After discussing each possible case in the calculation of the partial inductance Lp and the 

coefficient of potential pp in enhanced PEEC algorithm, since the free space Green's function is 

still adopted, equations (2-47)，（2-48)，(2-49) and (2-50) are also needed to modify the results. 
The inverse of the potential coefficient natrix is the matrix of the partial capacitance. 

3.5. Numerical Results from Enhanced PEEC Modeling Method 

3.5.1 Spiral Inductor 

In section 3.2.2, the introduction of the spiral inductor has been given in details. To validate the 
accuracy and efficiency of enhanced PEEC algorithm, a two-layer circular spiral inductor with 
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just one ground is built. The inductor is buried in a 440jLtm substrate with the dielectric constant 
of 9.1. It has two layers with the height of 239 fim and 317.5 /xm respectively, connected with 
each other through a via-hole. Each dielectric layer has a thickness of 79 jLtm. On each layer, the 
inductor is realized by a 1.5-tum circular spiral structure, as shown in figure 3-9 (a), the outer 
radius is 850 jLim, the turn width is 150 jLim and the turn space is 100 jLtm. The buried conductor 
thickness is 8 jLtm, which is about one tenth of the dielectric layer thickness, which assures the 
accuracy of the application of the thin-film approximation. 

A large number of meshes are needed if classical rectangular meshing scheme is used to 
accurately model such a spiral inductor, which will definitely have much influence on both the 
simulation efficiency and accuracy. Figure 3-9 (b) gives a possible rectangular meshing scheme 
of the two-layer circular spiral inductor, in which, totally up to 34 rectangular meshes are needed 
to model it and each of the meshes is labeled in the figure by its index number. In fact, after 
rectangular discretizaiton, it turns out to be a square spiral inductor instead of a circular one from 
figure 3-9 (b). So when the conventional rectangular meshing scheme is used to model irregular 
geometries, there may be great difference between the structure surfaces before and after the 
discretization. While in enhanced PEEC, this is a different case. To assure the accuracy, the 
number of meshes per wavelength is set to be 20，which is the same as the setting in chapter two. 
For this two-layer spiral inductor example: 

乂 = 7 " ^ ( 3 - 2 2 ) 

f如r ‘ 

in which, c is the speed of light, f is the frequency under consideration, which is set to be lower 
than 5GHz, so the wavelength calculated is greater than 19.9mm. While the perimeter of the two 
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1.5-tum spirals is less than 0.008mm, which is much less than the wavelength, hence only four 
meshes are needed in the equivalent circuit. The detailed information of both the conventional 
and the newly proposed meshing schemes of the two layers of the spiral inductor will be given in 
appendix A. 

The simulation time using enhanced PEEC, conventional PEEC and HFSS is 6 seconds, 1 
second, 436 seconds respectively, so either conventional PEEC or enhanced PEEC algorithm is 
much faster than the full-wave EM solver, HFSS. The improvement on the simulation speed due 
to the adoption of the quasi-static approximation can be embodied. Enhanced PEEC is slower 
than the conventional PEEC in the simulation of this example structure since the numerical 
integration is very time-consuming, comparing with the analytical method. But efficiency is only 
one factor, and another more important factor is the accuracy of the algorithm. 

Because of the existence of the parasitic effect, the spiral inductor may resonate with parasitic 
capacitances. Since thin-film approximation is used in PEEC model, the distance of the parasitic 
capacitor is larger, hence the capacitance is smaller, that is, the resonant frequency simulated by 
PEEC should be a little higher than that got from HFSS. As shown in figure 3-9(c), the 
simulation result got from conventional PEEC algorithm does have some difference with that got 
from HFSS but its resonant frequency is lower than the one simulated by HFSS, which is not in 
coincidence with the analysis from the physical aspect. This is mainly because of the 
inappropriate representation of the circular structure by rectangular meshes. While enhanced 
PEEC algorithm overcomes this error by perfectly representing the spiral with two circular 
meshes and two rectangular meshes. The S-parameter in figure 3-9 (c) shows that the resonant 
frequency got from enhanced PEEC and HFSS is about 2.71GHz and 2.64GHz respectively, 
which satisfies the analysis of the resonant frequency from the thin-film approximation. 
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Considering the parasitic effects and the approximation, the simulation result of the enhanced 
PEEC agrees well with that of HFSS. Compared with the conventional algorithm, the accuracy of 
the enhanced PEEC algorithm can be improved especially for the mixed rectangular and annular 
structure modeling. 

Figure 3-9 (d) is the simplified equivalent circuit derived from the PEEC model. Node 1 and 2 
are the two nodes standing for the spirals while node 3 and 4 are the two nodes representing the 
two ports. The values for different partial inductances and partial capacitances are given in table 
3-1. L,2 is the largest, which represents the self-inductance of the inductive mesh generated by 
halves of the two spirals on different layers. L̂ ^ and L̂ ^ represent the self-inductance of the 
inductive mesh generated by just one half of the spiral and one half of the rectangular mesh, 
which explains why L,3 and L丛 are much less than L^ .̂ All the capacitances are generated by 

parasitic effect, including the capacitance between each capacitive mesh and the ground, such as 
Cp Cj , C3 and C4，and the capacitance between the partly overlapping capacitive meshes. 

The ui^er layer (N=1.5) I ^ 
^ Ground 

ial 
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--C3 — q 12 - - Q C4--

a^B mmmm mmmm 

(dl 
Figure 3-9; Two-layer Spiral Inductor Simulated by Enhanced PEEC algorithm 

(a) Layout of 2-laver circular spiral; 

(b) Discretized spiral by rectangular meshing sheme; 

(c) Comparison of S-parameter got from DDL and HFSS; 

(d) Simplified Equivalent Circuit Model 

C"i2 �14 Cj C22 C*2 C34 C^ C4 
0.6010 p 0 . 0 5 2 0 p 0 . 4 7 4 5 p 0 . 0 3 1 2 p 0 . 2 2 6 0 p 0 . 0 6 2 9 p 0 . 1 8 2 4 p 0 . 2 2 7 4 p 

^ M Z^ L^ M 

0.8159 n 1.6130 n 0.0983 n 0.8159 n 4.7775 n 0.4905 n 

Table 3-1; Partial Inductances and Partial Capacitance for figure 3-9 (c) 
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3.5.2 High Pass Filter 

A LTCC high-pass filter is built in this section to verify the generalized algorithm in modeling 
the two-ground system. The filter is built using the same LTCC substrate as that in the last 
example with dielectric constant of 9.1. A total of twenty-five 40 /xm thick dielectric layers are 
used. Fig. 3-10(a) shows the physical 3D layout. This high-pass filter will be used in the design 
example of a LTCC diplexer in the next section, so the detailed information of the layout will be 
given in the description of the layout of the diplexer in appendix B. 

Figure 3-10 (b) gives the schematic model of the high-pass filter. C! and Lj are the 

fundamental block of a high pass filter; L ! � i s used to resonate with Cj to decrease Ŝ ^ in the 

pass band. C^ is used to resonate with L, to decrease in the stop band. Q j is used to control 

the parasitic capacitance in the whole system. Each element is labeled in the layout figure (a). 

Fig. 3-10 (c) shows the frequency responses got from enhanced PEEC and HFSS. In HFSS, 
conductor thickness is not considered either. It is shown that the frequency responses are quite 
similar except for some slight differences in both the pass band and the stop band. So even in the 
enhanced PEEC, due to some approximations, such as quasi-static approximation and numerical 
integration, there will still be some errors introduced. But considering that PEEC is just a coarse 
model to the structure under analysis, this simulation accuracy has been quite satisfactory since it 
successfully predicts the performance, even the parasitic effects of the structure. 

What's more important, the simulation time of PEEC is only 41s, while it needs 17,290s for 
HFSS, that is, generalized PEEC model is more than 400 times faster than HFSS for this high-
pass filter structure, which is a dramatic improvement on the simulation speed. 
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Figure 3-10 (d) shows the simplified equivalent circuit model got from PEEC. Compared with 
(b), the simplified circuit model got from PEEC is more complex than the schematic design since 
the former contains many parasitic elements. The values for partial capacitances and partial 
inductances are shown in table 3-2 (a) and (b) respectively. In the table, L35，C34，L位，Ĉ  and C^ 
have relatively larger values compared with other elements because they are the counterparts of 
L,2, Cp Lj, C,i and Q j in figure 3-10 (b). The remained terms in table (3-2) are all parasitic 
elements, which won't be contained in figure 3-10 (b). 

Generally speaking, PEEC is much faster than full-wave EM solvers since quasi-static 
approximation avoids time-consuming numerical integration. Secondly, equivalent circuit model 
can be derived from PEEC method, which can clearly explain the electrical performance of the 
structure under analysis from circuit domain and easily take the lumped element into 
consideration too. These two characters of PEEC make it very suitable to be an initial model in 
the design and optimization of RF passive design, which will be presented in details soon. 

The upper ground 

• 

i ̂  \. 
‘ L丨2 

12 c 111 The lower ground 

(a) LTCC layout of the multi-layer high pass filter 
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(b) Schematics of the high pass filter 
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(c) S-parameter figures got from Enhanced HFSS and HFSS 
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(d) Equivalent Circuit derived in Enhanced PEEC model 
Figure 3-10 High Pass Filter Simulated in Enhanced PEEC and HFSS 

Cl4 ^16 C 丨 C24 �26 Ci 

0.0159 p 0.0180 p 0.8597 p 0.0297 p 0.1087 p 4.1490 p ^ 

‘ � 3 4 C*35 C3 C4 C^ Q 

^ 1 . 2 0 0 2 p 0.0993 p 0.0789 p 1.1449 p 0.0736 p 0.1893 p ^ 

(al 
乙 35 4̂6 2̂6 Al 4̂6 ^ 46,12 ^ 46,26 似 12.26 

5.2232 n 0 . 4 9 6 7 n 5 . 3 2 8 7 n 0 . 5 4 5 2 n 0 . 4 9 6 7 n 0 . 0 2 0 1 n 0 . 0 4 8 0 n 0 . 0 2 6 4 n 

(bl 
Table 3-2(a) Partial Capacitance In the Simplified Equivalent Circuit 

(b) Partial Inductance In the Simplified Equivalent Circuit 
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3.5.3 Design and Optimization of LTCC Diplexer 

A general flowchart of LTCC multi-layer RF circuit design and optimization method for given 
specifications is given in figure 3-11. In this figure, Aggressive space mapping (ASM) algorithm, 
four steps included, developed by Handler et al. in 1995 [17], is adopted as an optimization 
scheme to get an accurate but time-consuming fine EM model from a less accurate but more 
efficient coarse PEEC model. 

First of all, an ideal schematic circuit is designed and optimized to meet with the desired 

specifications. The model after this optimization is called jc*，which is also the initial fine model 

. Realize each inductor and capacitor in 义：by calculating its dimensions through empirical 

formulas [18] then the whole layout is constructed. Full-wave EM solver, such as HFSS, is used 

to simulate this layout, and the result must be different with the PEEC simulation result since 

PEEC is just a coarse model. If the HFSS simulation result doesn't satisfy the specifications, 

curve fit this simulation result by another schematic model, called By Broyden's formula, the 

second fine model can be got, called x]. These processes are repeated until the fine model 

satisfies the specifications finally. 

In previous section, it has been declared that, compared with full-wave solver, PEEC has two 
mentionable features, one is. its simulation efficiency, which is much higher than HFSS, and the 
other is the resultant equivalent circuit model, which helps us understand the electrical 
performance of the structure under analysis more intuitively. It is these two features that serve 
PEEC well suited to be the coarse model in applying ASM optimization. Next a design example 
will be given to show how to design and optimize LTCC RF circuit using ASM. 
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Ideal Schematic Circuit Design 

] r  
Layout Realization ^  

^ r  
EM Simulation by PEEC Revision on schematic design 

(Include some parasitic effects) 
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specification? 
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Y  

EM Simulation of xl by full-
wave solver, such as HFSS 

• I YES  
Satisfy the requirements of ^ Design Completion 

specification?  
NO 2 
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m i • � 一 外 : � 

5 
Update schematic model by 
Broyden's formula, xl = xl 

Figure 3-11 Flowchart of LTCC Multi-laver RF Circuit Design 
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The design example is a LTCC diplexer. Figure 3-12 gives the ideal schematic circuit for the 
diplexer. It is composed of a low-pass filter (GSM 850/900) and a high-pass filter (GSM 
1800/1900). The specifications of the diplexer are: 

< IA2I > -O.SdB for low pass filter; (3-21) 
\S,^\<-20dB . 

< I^ijI < -25dB for high pass filter. (3-22) 
|5"I3|>-1 層 

port 1 o 

I surface mount | | i 
I inductorL, | 丨 | I prvv̂ j j prvv̂  ？2 j 

port 2 i L2 i I L , I 丨 ° port 3 

I I I 
I i 丨 2̂4 丁 I I i I C3+ i 
丨 对 丨 丨 i 
j • j j 1 I I 
L T J ！ ！ 

‘ L o w Pass Filter High Pass Filter 

Figure 3-12 Ideal Schematic Circuit for Diplexer 
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The LTCC layout of the diplexer is given in figure 3-13. The detailed information about each 
component in the diplexer is given in appendix B. Based on the design flowchart, figure 3-11, 
only two iterations are needed in the application of ASM before the HFSS simulation result of the 
model can also satisfy the specification. Table 3-3 gives five sets of values of parameters to be 
optimized. The unit is micron. The parameters to be optimized are labeled on figure 3-13. xl 
represents the coarse PEEC model, the PEEC simulation result of which satisfies the 
specifications, x̂j： is the same as x^ and it also represents the initial fine model in HFSS 

simulation, x j and x j represent the second and third fine models in HFSS simulation 

respectively, xl and x^ are the two models whose PEEC simulation results are curve-fitted as 

close as the HFSS simulations results of jc} and jcJ. 

^C24 yc2 ^in_L2 

^ 10^ m ^ m m 
^ 918.3000 1215.500 735.9630 266.5160 281.7800 515.3480 
^ 710 ^ 149 507 
^ 848.6380 1231.490 573.9850 301.3110 250.0000 518.3600 
^ m m 401 m ^ 

y^ ^ ^ yij  / � 315 m m m 800 c \ / / 
^ 4 4 7 . 3 2 5 0 ‘ 762.7160 612.2160 1049.670 857.3050 1045.210 ^ ^ i m ^ E6 ^ ^ 
^ 500.0000 814.0990 658.1450 ^ m 800 
^ m ^ ¥J2 800 

Table 3-3 Optimized Parameters of the Diplexer 
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Fi2ure 3-13 (a) Layout of Low Pass Filter in LTCC Diplexer 

(b) Layout of High Pass Filter in LTCC Diolexer 
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To illustrate the effect of the application of ASM algorithm on LTCC diplexer design, the 
comparison of the frequency responses from PEEC and HFSS and also the specifications is 
shown in figure 3-14. From figure 3-14 (a), it can be observed that the coarse PEEC model can 
reflect the basic capacitive and inductive coupling, for example the low-pass and high-pass 
characters, the cut-off frequencies and so on, but there still be some difference between the 
simulation results from PEEC and HFSS due to different approximations adopted in PEEC 
algorithm. Sometimes, these differences are critical, such as this example of LTCC diplexer, 
because PEEC simulation result of x* meets with all the specifications while HFSS simulation 
result of this initial fine model doesn't meet them. So ASM optimization is needed. In figure (d), 
after two iterations of ASM optimization, HFSS simulation result of x^ has met with all the 
specifications on both frequency bands. 
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3.6. Summary 

In this chapter, a new mixed rectangular and annular meshing scheme, together with a 0 
directional pulse function is proposed to generalize conventional PEEC algorithm to model 
irregular geometries, especially those mixed rectangular and annular structures. This 
enhancement helps improve the accuracy of the simulation of the irregular structures greatly since 
it will be more instinctive and reasonable to represent the irregular geometries with both 
rectangular and annular cells instead of just rectangular cells. Two examples, a circular spiral 
inductor and a high-pass filter, are built to validate the accuracy and efficiency of the enhanced 
PEEC algorithm. By comparing the simulation results got from the conventional, enhanced PEEC 
and full-wave solver, HFSS, the improvements of the enhanced PEEC algorithm over the 
conventional one can be shown clearly. Because of the adoption of various approximations, 
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PEEC is much faster than the full-wave EM solver, HFSS. Equivalent circuit can be got from 
PEEC modeling, which helps describe the electrical performance of the original field problem 
intuitively. 

Based on the various advantages of PEEC approach, together ASM algorithm, an effective 
LTCC multi-layer RF circuit design and optimization method is developed. A LTCC diplexer, 
designed and optimized by this method, is given as and example to describe the procedures 
mentioned above step by step. 
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High-Frequency PEEC 

4.1. Introduction 

In the previous chapter, one of the approximations in conventional PEEC algorithm, 
rectangular meshing together with longitudinal current direction assumption, is modified. There is 
still another approximation, quasi-static assumption, in the conventional algorithm, which greatly 
simplifies the 4-D kernel integration computation of the partial elements and yields accurate 
results especially when the overall dimension of the system under consideration is much smaller 

r 

than the operating wavelength. In other words, quasi-static analysis can be regarded as a low-
frequency approximation of full-wave analysis and well suited for electric small size problem. 
But with the ever-increasing operating frequency, this approximation begins to break down 
because the structure has been a significant fraction of a wavelength. It is the purpose of this 
chapter to introduce full-wave technique, aiming at solving the modeling of high frequency or 
radiation problems. 

High frequency PEEC approach requires the computation of full-wave Green's function for a 
multi-layer structure. It was traditionally represented by Sommerfeld integrals, which is very 
time-consuming. In this chapter, complex image method is applied instead of it, which only 
requires only three or four images with complex locations. 
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4.2. Spatial Domain Green's Functions 

The spatial domain Green's function of multi-layer media is the object of the derivation in the 
full-wave technique. To get the spatial domain Green's function, the spectral domain counterpart 
is derived first, then inverse Fourier transform or inverse Hankel transform is applied. 

4.2.1 Full-wave Spectral Domain Green，s Functions 

Apply the theories of wave matrix and multi-section transmission line model [19], [20], to a 
typical structure in LTCC microwave circuit shown in figure 4-1. The x-directed electric dipole is 
regarded as the source. Since the potential functions generated by either x or y directed electric 
dipole have similar forms, except that parameter x in all the expressions is replaced by y, for 
clarity, only x-directed electric dipole is discussed here. 

Sq z 

A Medium 2 

^-JEield z 

d 

^o^r Medium 0 

""""•一 Source Z 

f""" 
Ground 

Figure 4-1: Electric dipole inside the substrate 
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There are detailed derivations about the spectral domain potential functions in [19] and [20]. 

Only the results are given in this thesis for the simplicity of the presentation. 

Quasi-static spectral Green's functions can be written as: 

^guasi _ ^-jkz(z-z) 
义 j狄J 

态—- 1 \ L-J^Az-Z) 
‘ M^O^r 风 1 (4_2) 

I ^ L-jkA2d+z+z') 一 _ + ^-jkA^d-z-z')] 

1 + Ke-j��d L J 

Full-wave Green's functions can be written as: 

足=々一.+ J f ^ r / A (4-3) 
* 

$ = + ！ —(t;+ T； ^-wtV (4-4) 
q q y•赃。风丨�1 2 1 + • -叫 

in which 

p7"£ . 
+ (4-6) 

r -
2 — ( 〜 + 仏 。 ) ( i + r … l i - r � ;〜 為 2 � 

The definitions of all of the parameters in the above equations can be found in [19] and [20]. 
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4.2.2 Full-wave Spatial Domain Green，s Functions 

Based on the spectral Green's functions given in the last section, inverse Hankel Transform in 
Cylindrical coordinate system and Sommerfeld Identity are applied to get the spatial counterparts. 
But in the transformation, the integrands, spectral Green's functions, tend to be highly oscillatory 
and low decaying, hence, computationally expensive to evaluate. Fortunately, the solution 
developed in [21] and improved in [22] breaks the spatial function into three contributions: 

G = A + 5 + C (4-8) 

in which 

A represents the contribution from quasi-static term, which dominates in the near field region: 

A r - " " - ^ (4-9) 
4 双 L � 广0」 

$ 1 1 f^-A'b -̂î i'b (J)释'=_- _ J £  
q j舰,r 4双 1 广 0 K 

��r^/V: "V: .-jk/n] (4-10) 
-YI-kY + - > ^ \ ) / n m ‘ tm 

n=l L ^n h ^n ^n�> 

in which, r �= 如 ^ 八z-z':)，r； = + 

r;,=^Jp'+{2nd + z + zf 
< 

C=ylp'+{2nd-z + zy 
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Two approximations are made to quasi-static Green's functions. If electric small problem is 
considered, that is, the distance between the source and field points are very small, r can be 
approximated by zero. Another approximation is to suppose the frequency to be very low, that is, 
approximate the frequency m，or the wave-number k to be zero. After these two assumptions, the 
term will approach 1，then the quasi-static Green's functions will finally be simplified to be 
of the following forms: 

(4-11) 

去 I 丄 - " V l ^ / O f W 丄 ( 4 - 1 2 ) 

The above two equations are just the Green's functions adopted in quasi-static PEEC 
modeling method, so from the derivation, we can prove that the conventional PEEC algorithm is 
only suitable for modeling electric small and low frequency problems. 

B represents the contribution from the complex images, which are related to radiated waves and 
dominate in the intermediate field region. It is expanded into a series of exponentials, which are 
interpreted as images with complex displacements, called complex images, [22], [23]: 

n JV ( -jk,r； -jk,r： 

• 一 『 、 尝 、 一 、 q (‘13) 

4 双/=i I n n n n J 
1 1 JV �p-yv«' -̂J/̂ ir： -̂Ar： ^-jk/r 

O 一 - Y a . + -—— (4-14) 
q q . „ ^ A^ ' • H m V tm V^ 上 

in which 
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a, and are complex coefficients got through Prony's method, which is given in [7]. 
C represents the contribution from surface waves. It comes from poles in the spectral Green's 
functions, which are removed and evaluated using residue calculus. However, since surface wave 
dominates in far field region and the calculations of the residues are very time-consuming, in this 
thesis, the poles for the surface wave aren't extracted. Numerical examples given soon will show 
that the neglect of the surface wave won't have much influence on the simulation accuracy. 

4.3. Frequency-dependent Complex Partial Elements 

With the application of full-wave techniques, the partial elements in high-frequency PEEC 

modeling method now have two new properties. As shown in the previous section, because of the 

existence of e—加,the full-wave spatial domain Green's functions, equations (4-9) to (4-10)，are 

complex functions of r now instead of real ones. Substitute them into MPIE, an equivalent 

circuit model can be obtained, the partial inductors and capacitors of which, are all of complex 

values instead of real ones. 
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The impedance of a complex inductor, L = L! - jlf and the reactance of a complex capacitor, 

C = C' 一 jC"，can be written as: 

Z^ = jmL = jm{L' - jL") = jmL, + ml" (4-15) 

Yc = j(uC-= jm{C-jC")= jwC' + tuC" (4-16) 

So a complex inductor is equivalent to an inductor L'，in series with a resistor mlf，as 

shown in figure 4-2 (a), while a complex capacitor C' is equivalent to a capacitor C' , in parallel 

with a resistor ，as shown in figure 4-2 (b). tuC 

L 二 L � j l f L, 

o 1 I o M • O 1 I 1 I o 

(al 

C = C'-jC� C 
o o M • o 1 1 o 

wC^ 

im 
‘F igure 4-2 (a) Complex Inductor (b) Complex Capacitor 
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The above analysis of the complex partial elements shows the imaginary part in a partial 
element, L" or C"，represents the radiation loss in the circuit or system under analysis, which is 
represented by term B in equation (4-8) in the previous section. 

To show the frequency dependence of partial elements in high frequency PEEC, consider an 
example structure of a microstrip filter. The substrate used to build the microstrip filter has a 
dielectric constant of 2.2 and a height of 0.794mm, which is the same as what is discussed in the 
previous section. The low pass filter is a symmetrical structure and the dimension of every 
section of the microstrip lines is labeled in figure 4-3 (a). The maximum distance of the source 
and field points in this filter is about 22.5mm. The maximum frequency under consideration is 
13GHz, so from equation (3-22), the wavelength can be calculated to be 15.56mm, which is 
smaller than the structure dimension. So in this structure, quasi-static approximation cannot be 
made. 

Consider the near field points, since r is small, the electromagnetic coupling between such 
source and field points is dominant in the whole coupling matrix. While the frequency 
dependence of the coupling in such cases is not evident, because when r is small, it is an electric 
small problem, the electromagnetic coupling tends to be independent on frequency, the same as 
the case in conventional quasi-static approximation. And it is just the opposite case for far field 
points. In the partial elements, the inductance matrix is directly got from the calculation of the 4-
D integration, which can reflect the changes introduced to the integration due to the application of 
full-wave techniques to PEEC modeling method. On the other hand, the capacitance matrix is got 
from the inverse of the matrix of potential coefficient. So in the discussion of the frequency 
dependence of the partial elements, only partial inductance is considered. What's more, since 
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compared with the real part, the imaginary part of the partial element is much smaller,, only the 
real part of the partial element is analyzed. 

In this example of microstrip filter, a pair of inductive meshes, one shifted by and 
capacitive meshes and the other got from 9出 and capacitive meshes, are chosen. The distance 
between these two meshes is 3.6201mm, which is about 1/4 of the wavelength so both the value 
and the frequency dependence of their mutual inductance are neither too large nor too small, 
which is shown in figure 4-3 (b). For each frequency point, there is a different output equivalent 
circuit, hence a different electrical performance. So sweeping the frequency band to get the full-
time frequency response is necessary for full-wave modeling. 

As shown in figure 4-3 (b), in the frequency band under analysis, 7GHz to 9GHz, the partial 
mutual inductance is a slow-varying function of frequency m . If the center frequency, 
切-^GHz，is set as reference, that is, to represent the partial inductance between these two 
meshes over the whole frequency band with the inductance on 8GHz. The approximation error of 
the partial mutual inductance on the three typical frequency ponits, 7GHz, 8GHz and 9GHz, are 
5.38%，0% and 4.21% respectively, so it will be a very good approximation to use the frequency 
response at C7 = SGHz to represent that on the whole frequency band. In fact, in the quasi-static 
approximation, this is a similar case except that m = OGHz is set as the reference, we can also see 
that the approximation errors on the same three frequency points are 26.2%, 29.9% and 32.9% 
respectively if m = OGHz is set to be the reference, which are much larger than those in the above 
case. So similar with the conventional algorithm, the performance over the whole frequency band 
can still be represented by that at a single frequency point, the only difference is that this 
reference frequency point must be set as the center frequency in the operating frequency band 
instead of zero frequency. 
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Figure 4-3 (a) 3-D structure of a microstrip low pass filter 
(b) frequency dependence of partial mutual inductance 
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4.4. Numerical Results of High Frequency PEEC Modeling 

4.4.1 Numerical Discussion of Complex Image Method 

During the full-wave analysis of PEEC, one of the key steps is to approximate the full-wave 
spectral Green's functions by the summation of series of exponential terms, which is also called 
complex image method. Since the accuracy of this approximation will have great influence on the 
spatial Green's functions then affect the partial elements simulation accuracy finally, in this 
section, the approximation error of the complex image method in the spectral domain will be 
studied numerically through a simple spectral function. 

There are three spectral functions to be approximated by complex image method. A substrate 
with a dielectric constant of 2.2 and height of 0.794mm is used to verify the approximation 
accuracy of the complex image method. The same substrate will be adopted in the following 
example structures, microstrip low-pass filter and patch antenna. Three spectral functions are: 

/ , = 轰 （4-17) 

^ - T ^ ( 桃 ) 

f -l)uf  

” 2 + fe+«oX«i+M�)(i+rw;Xi - r v j J (4-19) 

in which 
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The other parameters in the above questions, (4-17) to (4-19), all have the same definitions as 

[19] and [20]. With given t, the functions, / , , and ，can be calculated theoretically. At the 

same time, they can also be approximated by the sum of exponential terms via complex image 
method. The results are compared to verify the approximation accuracy in the spectral domain. 

In the simulation, the choice of the truncation point T�wi l l also affect the accuracy. When T̂  

is large, the integration path is far away from the real axis of complex k^ plane, which is 

relatively smooth, so it is easier to get higher approximation accuracy. But with the increase of T̂， 

the spectral functions contain more information about larger /：̂, as a result, the information about 

small kp will become less. So considerable simulation error may occur if the field point is far 

away from the source point. 

On the other hand, if TQ is too small, the integration path is very near to the real axis of 

complex kp plane, then the complexity of the spectral function along the integration path is 

increased, which decreases the approximation accuracy of the complex images. At the same time, 

since k^ is always small in this case, there may be large simulation error when the field is very 
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near to the source. It is given in [20] that, based on the numerical experiments, r� shou ld be 

chosen like this: 

(4-20) 

Table 4-1 (a), (b), (c) give the complex coefficients a. and b̂  for the three spectral functions 

respectively. 

Complex a . a , = 0.0371+ /0.0356 a^ =0.1854-/0.1213 = 0.1766-/0.1021 

Complex b̂  b, = -1.3098 + /0.4600 =-2.0268+ / 0 . 9 3 5 1 = - 3 . 1 6 2 6 + /2.0976 

Complex a . a , =-0.1208-/0.3815 = 0.1745-/0.0387 =-0.0228 +/0.0299 

Complex b. b, = -1.2827 + /0.3805 � = -2.5515 + /0.7645 =-3.8722+ /0.6953 

im 
Complex a . a , = 0.0842+ /0.0180 Ẑj = 0.2307 -/0.2859 a^ =-0.3166-/0.1978 

Complex b. =-1.5614+ /0.2125 =-2.2937 + / 0 . 5 3 8 7 " 3 =-3.8202+ /1.4189 

(ci 
Table 4-1 Complex Coefficients for three different spectral functions 

(a): function (4-57); (b) function (4-58): (c) function (4-59) 
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Figure 4-4 (a), (b), (c) give the comparison of the theoretical and approximated results of three 

spectral domain functions. They meet very well. In above three different cases, TQ is chosen to be 

5.0，5.0，20.0 respectively and the three numbers of complex images are all chosen to be 3, that is, 
each of the three spectral functions is finally approximated by the sum of three exponential terms. 
So through proper choice of T̂  and the number of complex images, the spectral domain 

functions j \ , f^ and can be very accurately approximated by the sum of the exponential terms. 

The substrates are chosen to be the same as the example in this section, they all have the 

same e^. To assure enough approximation accuracy, same as this sections，r�are also chosen to 

be 5.0，5.0 and 20.0 for the three different spectral functions and the number of the complex 
images is chosen to be three. 
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Error of CIM in spectral domain 
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Figure 4-4 Comparison of the theoretical and approximated spectral functions 

(a): function (4-57): (b) function (4-58); (c) function (4-59) 
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4.4.2 Microstrip Filter 

Consider the microstrip filter mentioned in the previous section, the layout and the detailed 
dimensions have been given in figure 4-5 (a). 

This filter is modeled by three simulators. The first one is IE3D, from Zeland Software, Inc. It 
is electromagnetic simulation and optimization software useful for circuit and antenna design, 
which uses a field solver, based on a full-wave, MoM to solve current distribution on 3D and 
multi-layer structures of general shape. The other two are conventional and generalized PEEC 
respectively. Figure 4-5 gives the comparison of the three simulation results. From the 
comparison, we can obviously see the improvement of the simulation accuracy from conventional 
quasi-static PEEC to high-frequency PEEC to solve such high frequency problems. 

0        

• ： — — …—一―T —— 

— — — - -U3E X -- - . . 

- 5 0 - I E 3 D W l  
o u - ^ S 1 2 - I E 3 D \ J 
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— - S l l - c o n v e n t i o n a l P E E C V l | j 
S 1 2 - c o n v e n t i o n a l P E E C 丨 丨 
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Figure 4-5 Simulation results from IE3D, conventional and eeneralized PEEC 

4.4.3 Patch Antenna 

Another example is a patch antenna fed by a microstrip line. The substrate is also the same as that 
in section 4,4.1. 
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Figure 4-6 (a): 3-D layout of a patch antenna 
(b) Simulation Results from IE3D. High Frequency PEEC and Full-wave PEEC 
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According to the theory of patch antenna, the resonant frequency should be: 

in which, c is the speed of light, a is the length of the radiating edge of the rectangular patch, 
which is 12.45mm in this example, so the resonant frequency should be 8.12GHz. 

Firstly, the patch antenna is simulated by IE3D. From its simulation results, we can see that the 
resonant frequency is about 7.5GHz. This result is regarded as the reference to validate the 
accuracy of PEEC modeling. Set 7.5 GHz to be the reference frequency, that is, the partial 
elements over the whole frequency band from IGHz to 1 IGHz are approximated by those on the 
frequency 7.5GHz. The simulation result from high-frequency PEEC is given in figure 4-6 (b). 
From the comparison with that got from IE3D, the simulation below 8GHz is quite accurate. For 
the frequency band over 8GHz, the farer away from the reference frequency 7.5GHz, the worse 
the simulation is. 

To improve the simulation accuracy, for each frequency point, the reference frequency is set to 
be itself. This is in fact the basic theory of full-wave PEEC. After applying this technique, the 
simulation accuracy has been greatly improved, as given in figure 4-6 (b). From the comparison, 
if the frequency band under analysis is small enough, high-frequency PEEC can provide high 
simulation accuracy. While if the problem under analysis is a relatively broad band one, full-
wave PEEC must be applied to model it. 

What's mentionable is that this antenna problem cannot be solved by conventional PEEC 
because in the quasi-static approximation of the conventional algorithm, since the full-wave terms 
related with radiation are totally omitted, no radiation loss is included. While in generalized 
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PEEC, as stated in equation (4-41)，B is the term related to the radiated waves. So by applying 
full-wave techniques, PEEC has been generalized to solve such problems including radiation loss 
with satisfactory accuracy. 

4.5. Summary 

Due to the quasi-static approximation made in the conventional PEEC algorithm, it is well 
suited to model low frequency or electric small problems. To generalize the algorithm to solve 
high frequency problems or problems including radiation loss, full-wave technique is introduced 
into PEEC to replace quasi-static approximation. The key step in the application of the full-wave 
technique is the replacement of the quasi-static Green's functions by the full-wave counterparts. 
The calculation of the partial elements from the spatial Green's functions is carried out through 
Gauss numerical methods instead of closed-form analytical expressions in the conventional 
algorithm because of the increasing complexity of the integrands due to the application of the 
full-wave Green's functions. 

From some numerical examples, it is obvious that after the application of the full-wave 
technique, the simulation accuracy of PEEC algorithm has been greatly improved and also it can 
be used to model problems with radiation loss, which cannot be modeled in the conventional 
algorithm. • 
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Concluding Remarks 

5.1. Two Enhancements in PEEC Modeling 

With the ever-increasing complexity of the RF circuits nowadays, there are always both 
passive and active components in one physical system. To understand the performance of the 
whole system, the combination of EM simulation and circuit domain analysis becomes more and 
more important. PEEC modeling method is particularly suitable for solving this kind of mixed 
EM and circuit problems. It can extract an equivalent circuit model from the original passive 
structure and solve it, together with the active components in the same RF system, through 
conventional circuit solvers, such as SPICE. 

While in conventional PEEC modeling, to simplify the analysis process and accelerate the 
simulation speed, many approximations are supposed, somehow limiting the application of this 
modeling method to some special cases. In [7], an efficient generalized PEEC algorithm is 
proposed to model the LTCC circuits with finite metal strip thickness. It breaks the limitation of 
the thin-film approximation supposed in conventional PEEC. In this thesis, some other 
enhancements of conventional algorithm are proposed to generalize the application of this 
modeling method. 
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In conventional PEEC, the basic building element for modeling a passive structure is a 
rectangle. Almost all of the most commonly used structures in passive circuit design are 
rectangular ones, such as interconnects, which are always thin and long, so PEEC is well suitable 
to model such geometries. But when the structure under analysis is irregular, it is intuitive to be 
unsuitable to model a non-rectangular structure with rectangular meshes. A mixed rectangular 
and annular meshing scheme is proposed in this thesis to solve this problem. By applying this 
new meshing scheme in PEEC, the simulation accuracy of the irregular structures, especially 
those mixed rectangular and annular ones, is greatly improved. 

Another approximation in conventional PEEC is the quasi-static approximation, which makes 
it possible to get closed-form partial inductances and partial capacitances, hence greatly shortens 
the simulation time, compared with time-consuming numerical techniques adopted in full-wave 
analysis. But this approximation will bring considerable error when the structure dimensions 
become comparable to or even larger than the operating wavelength because of the neglect of the 
surface and leaky wave effects in the quasi-static approximation. Furthermore, since leaky wave 
effects are not included in conventional PEEC, it cannot be used to model radiation problems, 
such as antennas. To facilitate the PEEC modeling method to model such problems, full-wave 
techniques are applied to replace the quasi-static approximation. 

Compared with other EM modeling software, such as HFSS and IE3D, if quasi-static 
approximation is used in PEEC, the simulation speed will be much faster because it avoids the 
time-consuming numerical integrations in some dimensions and also neglects the leaky wave and 
surface wave effects. Furthermore, PEEC can derive simplified equivalent circuit model, from 
which the electrical performance of the passive structure can be understood from circuit domain, 
which is much more intuitively than from field domain. Based on these features of PEEC, also 

89 



Concluding Remarks 

with the help of aggressive space-mapping techniques, a new design and optimization method for 
RF passive circuit design and optimization applying PEEC is introduced in this thesis. 

5.2. Limitations of Enhanced PEEC Modeling 

Although some enhancements have been introduced to generalize the application of PEEC 
modeling method, there are still some limitations remained in the current algorithm. Firstly, in 
full-wave analysis, the complex image method is used to approximate the spectral Green's 
functions with the sum of several exponential terms. During the implementation, it is found that 
Prony's method adopted in the complex image is very noise-sensitive, which will influence the 
simulation accuracy. Secondly, although full-wave technique has been applied to PEEC, only 
single layer substrate case is considered in the current algorithm. But due to the ever-increasing 
application of multi-layer geometries, such as multi-layer microstrip antennas, the generalization 
of PEEC to model multi-layer substrate problem is becoming more and more necessary. 

5.3. Future Work 

Aiming at the limitations mentioned in the previous section, more work could be done to 
further generalize the PEEC modeling method. 

1. Least-square Prony's method or generalized pencil of function (GPOF) [24] can be tried 
to replace the Prony's method adopted in the current version of complex image method. 
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2. Multi-layered media Green's functions for integral equations are developed in [25], the 
results of which can be used in PEEC to replace the current single layered substrate full-
wave Green's functions. 

3. Many other techniques can be applied to further accelerate the PEEC. 

Since PEEC modeling method does show a promising potential in microwave circuit design 
and optimization, it is worthwhile to carry on the study on it further. 
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APPENDIX A 

Filter Dimensions for the circular spiral inductor shown in figure 3-9 in P. 53 

The first layer with z = 238.76 microns: 
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Figure A-1 

The coordinates for labeled points: 
A: (850,0), B: (850,150), C: (850, 250), D: (850，400), E: (850, 1300)，F: (850, 1450), G: (850, 
1550), H: (850, 1700), I: (1300, 850)，J: (1450, 850), K: (1550, 850), L: (1700’ 850), M: (125, 
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975), N: (275’ 975), O: (700, 1300), P: (700, 1450)，Q: (700, 0), R: (700’ 150), S: (1700, 0), T: 
(1700, 1700), U: (125, 1700), V: (125, 250), W: (1450，250), X: (1450’ 1450) 

The second layer with z = 317.5 microns: 
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Figure A-2 

A: (850，0)，B: (850, 150), C: (850, 250), D: (850，400), E: (850，1300), F: (850，1450)，G: (850, 

1550)，H: (850, 1700), I: (400，850)，J: (250, 850)，K: (150, 850), L: (0, 850), M: (1550, 975), N: 

(1700，975)，O: (1000，150), P: (1000, 0)，Q: (1000,-150), R: (850，-150), S: (0，0)，T: (0, 1700), 
U: (1550,1700), V: (1550, 150), W: (250,150), X: (250,1450) 
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Appendix 

APPENDIX B 

LTCC Diplexer in Figure 3-13 in P. 64 

Some variables are defined for the simplification of presentation. 

义CI，•̂C24 ’ yc2，义C3 ’ 义 C 5 ， ’ K_L3，>^£4，Yls，>'l6，Yu ’ >̂18 已比 the variablcs to be 

optimized, whose values have been given in table 3-3 and labeled in figure B-1. 

L = 4500，L = 3200，via R = 50 
A 少 一 

W = 1 5 0 , 5 = 100, via — strip = 200，xO^^ = 400，L ,̂ = 1460，C卿=100 

Rin_L4 = K _ L 5 = Rin_L6 = = = 50 

Kut_Li = Rin_Li ,in which, i = 2,3，…，8 

>'C1 = > V 3 = J C 4 = = 

xOc5 = m o - X c 5 

义Oc32 = + + S + + 评 + * _ Strip，义�2 = 一 (^0^32 + C莒叩) 

Jc0c24 = -^0^32 一 {Xc24 + Via — StHp)，xOc,, = x0c24 — (-^CS + �g a p ) 

xOc 丨=义 Oc3i-(Xci+C卿） 

+ = 2,3,... 
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Low Pass Filter: 

⑶ 。 ， 0 ) ^ ^ X 
义CI 

Figure B-1; C\ in the low pass filter 

• y , 

：雾F F E ^ ^ 
( A 3 + / C _ , 3 ’ / W 3 + 罕 ） 

4 • X 

Figure B-2; L, in the low pass filter 
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A 

y 尺 … 2 ’ 尺 。 Z = h 5 
( W + 5 � 

气 A 2 +尺一 ’尺…2 + ^ ^ 

. 

• s 

Figure B-3; the lower layer of L̂  in the low pass filter 

Via-hole connection 
with the lower layer 

^ ^ " r i ^ J ^ H L _____ 

^ ^ ^ 

Figure B-4; the upper layer of L̂  in the low pass filter 

96 



Appendix 

High Pass Filter: 

y个 

f ^ • 
^ • layer h, 

D 义 C32 

Figure B-5; C, in the high pass filter 

y -̂ 024 < > 

E J I ^ ^ H L ^ 
• 

Figure B-6; in the high-pass filter 

个 
y via-hole to layer ĥ  I ^ h ̂  J W 

• • • • i n r 

^ V 
入 C24 X 

• 

Figure B-7; C” in the high-pass filter 
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^ B f l ^ H m ^ t�layer  ^ ^ 
W ^ ^ ^ ^ 2尺,„」5 

/ia-hole to layer h� 

一 • I . . 
，�via-hole to layer /ij 

也-hole to layer ĥ  WjM 
w j j 2R。“t_L5 X 一 

G:ix„0) 
Figure B-8 (a) f t layer of L 

A 
小 : “ ， 八 l ^ K ^ p 

- f…潘W " 
3S • • via-hole to ayer ĥ  ^ H 

via-hole to la> er h, ^ T E H ^ ^ V R�",乙5 
t l M i ^ ^ ~ t  h—• 
^out_L5 

Figure B-8 (b) layer of L, 
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via-hole to layer S • ‘ 

I w I 
via-hole to layer " ^ " B j ^ H 乙 

、“1I_H| 
• 一 一 • 

i ^ y 个 X 
F • 

Figure B-8 (c) 3rd layer of L 

个—wrt 
y via-hole to layer ĥ  

W 
• 

via-hole to le yer ĥ  � ‘ 

u 
^ 

Figure B-8 (d) layer of L 
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in w h i c h , = 2(7?卯“5 + 卯 , “ 彳 + )+ S+W + xO,, + via strip 

= +S+W + via_strip + + yj = + Ku,_l5 

Following is the inductor L̂  in the high-pass filter. 

Like the case of L̂，some parameters are defined for the simplicity of presentation: 

•^4 = A 2 + + W + 5，>；4 = + Rou,_L4 

= 义 4 + 恢 + 尺,.„_L4’ 3̂ 5 = KU,_L4 

I f f • 

I ^ Y 个 _ X 

~ ~ — 7 3 — • ‘ 厂 • 

Figure B-9 (a) layer of L� 
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V • z = "5 r ^ 

: l f t 
__ ffi I 

H K H 

L ^ Y 个 - 、 

Figure B-9 (b) layer of L, 

A 

l . L s 3S I 
via-hole to ayer ĥ  _X-HH ^ H 

^ - 厂 層 “ via-holetola>er/i3 w T ^ ^ ^ ^ ^ ^ Rcm_L5 
x l H I ^ B I I ^ _ i X _ ^ h—• 
R(ml_L5 

Figure B-9 (c) 3'''* layer of L̂  
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