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Abstract 
Multiple Comparison Procedures are powerful tools for comparing different treat-

ments in an experiment. It is widely used in medicine, agriculture, etc. In many 

circumstances, it is desirable to include a control in the experiment. Thus we can 

compare whether a certain treatment is better than the control treatment. Cheung 

and Holland (91, Biometrics] 94, Statistics in Medicine) extended the well-known 

Dunnett procedure for simultaneous comparisons of the means of all active treat-

ments with the control to the case where one wishes to conduct such comparisons 

simultaneously in each of several groups. However, their procedures mainly deal 

with particular families of inferences in which all hypotheses are either one-sided or 

two-sided. In this thesis, we seek to develop a procedure, which copes with a more 

general testing environment in which the family of inferences is composed of a mix-

ture of one-sided and two-sided hypotheses. Required critical values are tabulated 

for the implementation of the proposed procedure. A simulation study of average 

power is conducted to show the superiority of the proposed method as compared to 

existing methods. Finally, our proposed procedure is illustrated with a numerical 

example. 



滴 要 

多重比較程序（Multiple Comparison Procedures)是用在實驗中比較不同處理 

( t rea tments )時的有力工具°它被廣泛應用在醫學、農業等範疇上°在很多情況 

下，實驗中會希望包括對照處理。因此，我們可以比較某一處理是否比對照處理 

好�C h e u n g and Holland (91, Biometrics] 94, Statistics in Medicine)把同時比較 

多項處理與對照處理的著名鄧内特程序（Dunnett procedure)擴展至多組情況， 

即是在每一組同時比較多項處理與對照處理。但是，他們的程序主要應用在所 

有檢驗假設是單側（one-sided)或是所有假設是雙側（two-sided)的推論族。本論 

文尋求發展一個可以應用在更概括的測試環境的新程序，這環境是同時包含單 

側（one-sided)和雙側（t,wo-sided)檢驗假設。這個程序中所需要的臨界值（critical 

values)會被列成表。我們會用一個模擬研究（simulation s tudy)來顯示我們建議 

的程序比現存方法優勝。最後，我們會用一個實例來闡明我們的建議方法。 
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1. Introduction 

1.1 Multiple comparison procedures (MCPs) 

In many scientific fields including sociology, psychology, engineering, and medicine, 

precise statistical data analysis is required. A frequent encountered problem that 

arises in research studies is 'extensive' data analysis (Westfall and Young, 1993). 

The advancement of computing equipment and technology enables us to analyze 

data from every possible angle. Recently, with the aid of 'data mining' techniques, 

multiple testing environments become more popular. 'Multiple testing' refers to any 

situation in which a collection of statistical tests is formally or informally evaluated. 

Now, it is less usual that only one test is performed on a dataset. Therefore, an 

original single test of control versus active treatment becomes several tests, such as 

control versus treated for females, for males, for young, for old, for young females, 

for old males, and so on (Westfall and Young, 1993). 

There are many practical situations where multiple testing is required, but the 

most alarming problem related to multiple testing is the multiplicity effect that some 

may not be aware of. Multiplicity effect refers to senerio when a large dataset is 

under extensive data splitting, the probability of false significance is being inflated 

to an unacceptable level. 

To provide an illustration, let us consider the following 'simulated' example given 

by Westfall and Young (1993). Researchers intended to test whether eating oat bran 

can reduce cholesterol level. It was a multicenter study. At each of ten selected 

study centers, a simple control versus treated experiment was performed with 20 
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subjects per group. The data were randomly generated using the same mean for 

treatment and control groups within each center, although the mean values were 

allowed to differ from center to center. Therefore, no significant difference was 

expected between treatment and control groups. However, the results indicated 

that in centers 2 and 3 blood cholesterol for the treatment group was significantly 

[p < 0.05) lower. Although this example is artifical，with simulated data, it is 

straightforward to point to multiplicity as the cause of the small p-values which 

lead to false significance. Consider the case of a single test with a = 0.05, the 

probability of declaring the result significant is 0.05. But, with ten independent 

tests (each tested with q;=0.05), the probability of declaring at least one of the ten 

independent results significant is 1 - (1 - 0.05)^° 二 0.401 which is drastically larger 

than 0.05. 

To tackle the problem of multiplicity, one has to consider multiple comparison 

techniques. Multiple comparison procedures (MCPs) are defined by Hochberg and 

Tamliaiie (1987) as methods 'designed to take into account and properly control the 

multiplicity effect through some combined or joint measures of erroneous inferences'. 

1.2 Multiple comparisons with a control (MCC) 

There are various types of multiple comparison procedures, classified according to 

the mode of the construction of the inferential family. The most common types 

include all-contrast comparisons, pairwise comparisons, multiple comparisons with 

a control, and multiple comparisons with the best. 

In clinical studies, multiple comparisons with a control is very popular. For 

instance, in a medical trial, a control group may represent patients treated with an 

accepted standard therapy or without any therapy (placebo), while other treatment 
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groups consist of patients treated with several alternative therapies. In designing 

an experiment to measure the effects of such treatments, it is desirable to include 

in the experiment a control in the form of either a dummy treatment to measure 

the magnitude of experimental response in the absence of the treatments under 

investigation or some recognized standard treatments. 

Multiple comparisons with a control can be either one-sided or two-sided, de-

pending on the experiment objective and the prior knowledge of the efficacies of the 

treatments. Both one-sided and two-sided testing methods were first given by Dun-

nett (1955). These procedures are single-step procedures. An efficient algorithm to 

compute the required critical values is given in Dunnett (1989). Compared to the 

Dunnett (1955) single-step procedure, a more powerful stepdown procedure com-

paring treatments and a control is provided by Dunnett and Tamhane (1991). The 

step-up version is later derived by Dunnett and Tamhane (1992). Even though step-

wise procedures are normally more powerful, the means to obtain joint confidence 

intervals are in general very complicated. 

1.3 MCC in two-way designs 

The Dunnett (1955) procedure was tailored for single-group situation. However, in 

many experimental settings, often encountered in medical and biological researches, 

treatments have to be compared with a control in each of several existing groups. 

Consider an example given by Cheung and Holland (1994), the study explored 

the intra-erythrocytic cation metabolism in uraemic patients with different dialysis 

treatments. The patients were randomly divided into three groups. The first two 

groups underwent two different treatments, regular haemodialysis and continuous 

ambulatory peritoneal dialysis (CAPD) respectively. And the last group, composed 
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of 67 persons were selected as controls. Besides, the subjects were classified into 

two groups according to their gender. Blood are drawn from each subject and one 

of the responses measured was the haemoglobin content measured in g/I. So, this 

study is a two-way design with treatments as one factor and gender as the second 

factor. 

As mentioned by Cheung and Holland (1994), when one wishes to undertake 

the treatment versus control tests in a multi-group situation, it is worth considering 

whether the investigator should control familywise type I error: (a) for active treat-

ments versus control averaged over all groups via the original Dunnett procedure; 

(b) for active treatments versus control separately in each group via the original 

Dunnett procedure; or (c) globally across all groups. 

Approach (a) is appropriate when there is no interaction between treatments and 

groups. When interaction is present, the choice between (b) and (c) depends on the 

experimental setting and goals. Consider the above example, from the perspective of 

a particular patient, the relevant family of hypotheses probably consists only of these 

relating to the patient's gender. But from the perspective of a medical researcher 

who is equally interested in treatment efficacy for both genders, the relevant family 

may consists of all treatments versus control hypotheses within either gender. 

The Dunnett (1955) procedure is a single-step procedure. A stepwise version is 

given by Dunnett and Tamhane (1991). Cheung and Holland (1991,1992) derived a 

single-step extension of the Dunnett (1955) procedure for a two-way design. Later, 

the stepwise procedure was also given by Cheung and Holland (1994). 
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1.4 Directional-mixed families 

The Durinett (1955) procedure is a well-known and widely used approach for con-

ducting multiple comparisons of all active treatments with a control while a desig-

nated familywise type I error rate o； is controlled. But, the procedure only dealt with 

situations that when comparing all active treatments with a control in a particular 

family of inferences, all hypotheses are either one-sided or two-sided. 

In clinical studies, all hypotheses in the family of inferences are usually tested as 

two-sided. However, when appropriate, some hypotheses in the inferential family can 

be justified to be tested one-sided to gain greater overall power. The determination 

of whether a test is one-sided or two-sided depends on a number of possible factors, 

such as the prior knowledge of the efficacy of the drugs and the intended objective 

of the drug sponsor. 

To formulate the idea, let us consider a family of null hypotheses {Hi,..., Hm}-

Let r (where r < m) be the number of one-sided hypotheses and the rest be two-sided 

hypotheses. Hence, a subset {Hi,.... Hr} is tested against one-sided alternatives, 

while the remaining null hypotheses {Hr+i,..., Hm} are tested against two-sided 

alternatives. Such families are hereafter referred to as directional-mixed families. 

Consider a clinical study that was reported by Schwartz et al. (2002). The study 

compared the renal effects of the two selective cyclooxygeiiase (COX) 2 inhibitors 

(rofecoxib and celecoxib) with naproxen (dual COX-1/COX-2 inhibitor) and placebo 

in healthy elderly subjects who received normal-salt diet. The elderly subjects were 

divided into four groups and received four different treatments. They are rofecoxib, 

celecoxib, naproxen (active control) or no treatment (placebo control). 

The response variable is the change from baseline for average daily urinary 
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sodium excretion during the first 72 hours of treatment. Naproxen is a nonsteroidal 

anti-inflammatory drug (NSAID) which is extensive used by elderly subjects. How-

ever, it produces adverse gastrointestinal (GI) effects. COX-2 selective inhibitors, 

such as rofecoxib and celecoxib, have been introduced in recent years as alternatives 

to naproxen for relieving pain or inflammation while reducing adverse GI effects. 

The experiment is to explore whether rofecoxib and celecoxib produce different re-

nal effects when compared with naproxen, so the family of inferences contains the 

tests of rofecoxib versus naproxen and celecoxib versus naproxen. The inclusion of 

the placebo is to ensure a valid study and naproxen is a NSAID which is extensively 

used by elderly subjects. Since the renal effects of naproxen lias a long research 

history, an one-sided test should be conducted for placebo control versus naproxen. 

But, there is no compelling reason for adopting one-sided tests for rofecoxib ver-

sus naproxen and celecoxib versus naproxen. Consequently, the family of inferences 

consists of a mixture of both one-sided and two-sided tests. Cheung et al. (2004) 

extended the Duniiett (1955) procedure to directional-mixed families that both one-

sided and two-sided inferences are present in the given inferential family for one-way 

designs and the details will be reviewed in Chapter 2. 

1.5 Objectives 

The objective of this thesis is to extend the work of Cheung and Holland (1991) 

to directional-mixed families. Thus, we seek to develop a single-step procedure for 

multiple comparisons with a control in a two-way design with directional-mixed 

hypotheses, in which both one-sided and two-sided inferences are present in each of 

several groups. 

Chapter 2 reviews the procedure of Cheung et al. (2004)，comparing treatments 
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with a control in a one-way layout with directional-mixed hypotheses. Chapter 3 

outlines the new procedure which deals with multiple comparisons with a control in 

two-way designs and directional-mixed families. The evaluation and tabulation of 

the required critical values will be provided in Chapter 4. In Chapter 5，a simulation 

study of average power is given to show the superioity of the proposed method. A 

numerical example will be given in Chapter 6 for illustrative purpose. Finally, 

conclusions together with directions for further researches are provided in Chapter 

7. 
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2. MCC with Directional-mixed Fam-
ilies in One-way Designs: A Review 

2.1 The model 

Given an one-way fixed effect model, Cheung et al. (2004) generalised the Dunnett 

(1955) procedure to a more general testing environment in order to accommodate 

directional-mixed families. Suppose there are m active treatments and a control. 

Let Yij denotes the jth observation on the zth treatment for i — 0,1,.... m; j = 

1,.... Hi. Here i = 0 represents the control, while i = 1,.... m represent the m 

active treatments. Also, ni denotes the sample size of ztli treatment. Assume that 

Sij N(0,cr2)，so Yij N(/.ii, a'^) where fii is the mean of zth treatment and cr̂  

is the common variance. Let Yj be the sample mean of zth treatment, and be 

the pooled sample variance which is an unbiased estimator of a^, independent of YJ. 

Without loss of generality, it is also assumed that large value of 内 means a better 

efficacy of zth treatment. 

2.2 The test statistics 

The inference problem under consideration includes estimating the m simultaneous 

confidence intervals for "‘j — f.io for i = 1,..., m or the simultaneous testings of the 

m null hypotheses: 

Hi： [M = " 0 
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for i = 1,.... m against 

Hj： fij > //o 

for j = 1,..., r and 

H'k- l-ik + Mo 

for k = r + 1,..., 772., where H'j are the one-sided alternative hypotheses for j — 1,..., r 

and H’k are the two-sided alternative hypotheses for A: = r + 1,.... m. 

To undertake these inferences, the test statistics 7\, ...,Tr, | 了 r + i | , a r e pro-

posed by Cheung et al. (2004) for comparing the m treatments with a control, where 

dsJl/iiQ + l/Ui 

for i = l , . . , m , where 二 ：〒“、';〃》。'and " = (EZo ''h) — (m + 1). The 

variates Ti, have a multivariate 力-distribution with v degrees of freedom. The 

covariance matrix of the variates is denoted by = pij for i, j 二 l，...，m, with a 

product-correlation structure such that 

] I 1, ^ = 

where 

k 二 J - ^ ~ . 
V no + Hi 

2.3 The evaluation of critical constants 

To maintain a control over the probability of making any type I error, we need 

to compute critical constants Cî ^ for one-sided inferences and C2,q for two-sided 
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inferences such that 

化’a, j = iTfcl < C2,a, k = r + L,...,m} = l - a . (2.1) 

Since there are infinite pairs C2,q) that satisfy equation (2.1), optimal crit-

ical values (c]^’Q,cl) are chosen such that EAA (expected average allowance) is 

minimum. EAA, which is used by Spurrier and Nizam (1990) to search for the 

optimal allocation of the sample sizes when comparing treatments to a control, is a 

measure of average expected width of the simultaneous confidence intervals. EAA 

is defined as 

EAA = diCî a + d2C2,a (2.2) 

where 
1 r  

爪 i二 1 

and 
2 饥 

= s/^/no + l/rij. 
爪 j=r+l 

To compute the optimal critical values and the procedures are as follows. 

Firstly, for given values of m, r, q,，v and initial guess of Ci’a, compute C2,q by 

using the following equation: 

少 ( 切 广 广 ) ] m 9{u) dy du = l - a (2.3) 
\ / l - b� 

where u = which is a random variable. In addition, and g(-) are stan-

dard normal density and density function of u respectively. And $(•) is the standard 

normal cumulative distribution function. Equation (2.3) involves the computation 
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of a two-dimensional integration. A brief account of the computation procedures is 

provided by Cheung et al. (2004). 

Then, for simplicity, let ^ ^ be 1. Compute EAA according to (2.2) with the 

obtained the values of Ci，。and C2，a. With respect to Equation (2.3), with a given 

Q', Ci’�can be written as a decreasing function of C2’a，say Ci^a=H(c2.a)-

Next, search for minimum EAA by repeating the previous two steps with all 

values of Ci，a in the range of (H(d2,m,a), d2,m,a) where d2,m,a is the upper a-percent age 

point which is obtained by Duniiett two-sided procedure. The search is done by the 

IMSL subroutine UVMIF. The required optimal critical values ( c ^ , are those 

that minimize EAA. 

Tabulation of the optimal critical values (c^ ĉ，。）for different values of m, r, v 

and p are provided by Cheung et al. (2004). 

2.4 Testing and estimation 

For a given a and optimal critical values c*̂ ^ and c;’…each null hypothesis Hi is 

rejected if and only if 

Tj > Cia 

where j = 1, ...,r. Similarly, each null hypothesis Hj is rejected if and only if 

> 4 a 

where A; = r + 1,..., m. 

The corresponding 100(1 - a)% simultaneous confidence intervals for f.ij — /Mh 

where j = 1, ...,r, are 

(^j - � , o - + 1/no, oo) mmm^ 



And 100(1—cv)% simultaneous confidence intervals for —//o，where A: 二 r + 1,..., rn, 

are 

- - + 1/no, Yk -Yo + cl a^^Jl/Ufc + 1/no) 

2.5 An example 

Revisit the clinical study discussed in Section 1.4 for illustrating the above testing 

procedure. The comparisons of renal effects of rofecoxib and celecoxib with naproxen 

were studied. Four groups of elderly subjects receiving four different treatments. 

They are naproxen (active control), placebo, refecoxib and celecoxib. The response 

variable is the average daily urinary sodium excretion during the first 72 hours. By 

the reason mentioned in Section 1.4, naproxen (active control) is compared with the 

placebo with an one-sided test while the 2 remaining hypotheses in the family are 

compared with two-sided tests. 

Denote /zq, and ,元3 be the true mean changes from baseline for daily urinary 

sodium excretion of the four groups: naproxen, placebo, rofecoxib and celecoxib 

respectively. The inference problem is the simultaneous testing of the following 

three null hypotheses: 

Hi： IM = /,o 

for i = 1,2,3 against the one-sided alternative hypothesis 

Hj： f-ij > Mo 

for j = 1, and the two-sided alternative hypotheses 

H'k'. "it + "0 
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for /c = 2,3. 

In this study, (no,ni,n‘2，n3) = (15’14，17，16)’ m = 3，r = 1，" = 58 and a = 0.05, 

the optimal critical values are ĉ  q.os 二 2.318 and ĉ q̂.os = 2.350. The corresponding 

95% joint confidence intervals for (,“ - ("2 — Mo) and (/i3 — /iq) are (8.265, 

oo), (-19.712, 21.912) and (-7.615, 34.615), respectively. As the joint confidence 

intervals for first null hypothesis only does not include the value of zero, the Hi is 

rejected. Therefore, we can conclude that the data support the validity of the study. 

The non-rejection of H2 and H^ indicates that there is not enough evidence that 

rofecoxib and celecoxib are different in renal effects as compared to naproxen. 

On the other hand, if all hypotheses are tested with two-sided tests, then the 

corresponding critical value is 2.41 (Table B.3, Beclihofer and Dunnett (1988)). It 

is clear that ĉ  q qs and ĉ q̂.os are much smaller than 2.41. It indicates that the 

procedure proposed by Cheung et al. (2004) is more powerful in directional-mixed 

families. 
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3. MCC with Directional-mixed Fam-
ilies in Two-way Designs 

3.1 The model 

Our proposed procedure extends Cheung and Holland (1991) to the situation that 

copes with a more general testing environment in which the family of inferences is 

composed of a mixture of one-sided and two-sided hypotheses, while controlling the 

familywise type I error rate at a . We consider the following two-way fixed effect 

model, 

)ijk — f-Hj + ^ijk 

where i 二 j = 0,.... m and k 二 1,...,77力-.Suppose there are two factors A 

and B, with r groups (treatments) in factor A and (m + 1) treatments (m active 

treatments and one control) in factor B. The index j = 0 designates the control . 

Let Yijk denotes the A;th observation on the jtli treatment in group i. Furthermore, 

l_Lij and Uij represents the sample mean and sample size of jth treatment in group i 

respectively, while £啡 is a random error component. Without loss of generality, we 

assume that a smaller value of f^ij means a better efficacy. It is also assumed that 

Yijfc (j2). Define ？ 小 which equals to ：“""', as the sample mean of jth 

treatment in group i and it is an unbiased estimator of "力_. Let be the pooled 

sample variance. It is an unbiased estimator of and also independent of Yij. 
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3.2 The test statistics 

The inference problem is the simultaneous confidence intervals for i^j - fiio for i = 

1,.... r and j 二 1,…，m or the simultaneous testings of the following null hypotheses: 

Hij: iMj = IMQ 

for i = 1,.... r and j = 1,..., m against one-sided alternative hypotheses 

flu > IMQ 

for i = 1,.... r and I = 1,.... a, and two-sided alternative hypotheses 

H'ik'.叫k丰叫Q 

for i = 1，...，r and k = a I,.... m. 

To test the null hypotheses simultaneously in the directional-mixed families, we 

propose the use of the statistics Tn, ...,Tia, \Tia+i\..... \Tirn\ for i = 1, ...,r, where 

Tij = 尸 j “ � (3.1) 
a y i / n i o + 1/ny 

and 二 二 1 ^ ; i o � i ( n / / -̂ T h e degrees of freedom f is E L i ZJLo(几ij — 1) 

and fa^/a'^ �z Y � . For 1 < z < r and I < j i < j ) < m, the correlation between 

(fi力—lio) and {Yij, — Vm) is p iUuja) = hjMh^ where 

V m + nij 

for i 二 1,..., r and j = 1,..., m. 

To control the family wise type I error rate at cv, critical constants Ci’a and C2,q, 

which are required for one-sided and two-sided inferences respectively, in the two-

way directional-mixed families are the solutions of the following equation: 
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P{Tii < c^a, i = 1, ...,r, I = L. . . ,a; ir^-l < C2,a, i = 1, k = a-\- l , . . . ,m} 

= 1 — a, (3.2) 

3.3 Testing and estimation 

For a given a and critical values Ci’a and C2’a，each null hypothesis Hu for i = 1,..., r 

and I = 1,..., a is rejected if and only if the corresponding 

Til > Cl,a-

And each null hypothesis Hik for i = 1,..., r and k = a + I,.... m is rejected if and 

only if the corresponding 

\Tik\ > C2,a-

In accordance, the one-sided 100(1 - «)% simultaneous confidence intervals for 

l_Lii — "io for i = 1,..., r and I = 1,..., a are 

(Yii - Yio - ci^a^^l/iiii + l/uio, oo). (3.3) 

And the two-sided 100(1 — a)% simultaneous confidence intervals for iMk — fMo for 

i = 1,..., r and k = a + ..., m are 

(Yik — Vio — C2,a^\/l/nik + 1/nio, Yik —— Yio + C2,a^\/l/nik + l/riio )• (3.4) 

Notice that when a = 0 and a = m, it is reduced to two-sided and one-sided 

procedures respectively given in Cheung and Holland (1991). 
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4. Evaluation and Tabulation of 
Critical Values 

4.1 Evaluation of critical values 

We need to find the values of Ci’̂  and C2,q satisfy the following equation in order to 

ensure the family wise type I error rate is controlled at a . 

P{Tij < ci，《, i = 1,.... r, j = 1,.... a; |了认-| < C2’a, i = 1 , r , A; = a + 1，.... m} 

二 1 一cv. (4.1) 

But for a given q', there are infinite number of pairs of (cî q, C2,a) satisfy equation 

(4.1). The method for finding the optimal critical values used by Cheung et al. 

(2004) required complex computation which involves search for miriirmim expected 

average allowance (EAA). And the power increase of the method is mainly due to 

the rechiction of the value of critical constant Ci’^，not C2,a. So, for the sake of 

computation, we simply take C2，a as 6,2.a which is the two-sided critical constant in 

Cheung and Holland (1991). Then, Ci,q can be computed by Equation (4.2) with 

given r, m, a, cv, / and C2’a. The two different methods for computing Cî ^ and C2,a 

are compared by using a simulation study which is given by Section 4.2. Equation 

(4.1) can be rewritten as 

Jo i = l " � = l - hi k=a+l 

少 树 彻 ⑷ 办 血 二 1 — a ( 4 . 2 ) 

\/1 -略 
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where u =which is a y / x / / / random variable, and y is standard normal random 

variable. Here and g(-) are density function of y and u, respectively. And $(•) 

is the cumulative distribution function of standard normal. 

Equation (4.2) involves the computation of a two-dimensional integration. Here 

is a brief account of the computation procedures. 

The outer integral in Equation (4.2) related to the density function g(u) is evalu-

ated using subroutine QPROB of Copenhaver (1987) with 16-point Gauss-Legendre 

composite quadrature. The range (0, oo) of the outermost integral of Equation (4.2) 

was divided into subintervals of length of L and Equation (4.2) is approximated by 

d=Q"L yjl - bji 

^ T^/biky + UC2,a�不 fbiky — UC2,a\uf�j ( 
11 /——^ -巾（/——- • ) ] ( t > { y ) d y g ( u ) c l u . 

A:=a+1 VI - bff̂  - b̂ k 

Then, the limits of integration were rescaled from (dL, dL + L) to (—1,1) so that 

Gauss-Legendre quadrature could be employed. The accuracy of this algorithm was 

compared with that of a 24-point quadrature using intervals of length L/2, with little 

difference in results in the sixth decimal places, refer to Copenhaver and Holland 

(1988). 

The inner integrals in (4.2) is evaluated using Dunnett's (1989) algorithm with 

predetermined error bound 0.00001. The computational times and accuracy were 

as stated by Dunnett. This algorithm provides very accurate numerical results with 

small computing times which remain fairly stable even for large values of m, the 

number of active treatments. 

The secant method is used to solve Equation (4.2) for when a and C2,a are 

given. The program terminates if the difference between successive iterates is less 

than 0.00001. 
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4.2 Comparisons of computational methods 

As indicated earlier, our method to compute Cî ^ and C2,a deviates from the one 

given in Cheung et al. (2004). For simplicity, our proposed method and method 

used by Cheung et al. (2004) are denoted as PM and CG respectively. 

In this section, we seek to demonstrate that by employing the new computation 

strategy, the gain in straight forwardness affects insignificantly the power of the 

proposed testing procedure. 

For comparative purpose, we restrict the power study for the method PM to r=l 

since the CG method is only given for an one-way layout. 

When there is only one hypothesis, the usual definition of power is the proba-

bility of rejecting the null hypothesis given that it is false. For multiple comparison 

procedures, it is more complicated to define the power as more than one hypothesis 

are tested simultaneously. There are various definitions of power in MCP, such as 

the probability of rejection of at least one false null hypothesis, and the probability 

of rejection of all false null hypotheses. In this Chapter, we adopt a popular defini-

tion of power, average power, which is the proportion of false hypotheses that are 

rejected. The average power is denoted as: 

A P = 锋 Pt (4.3) 

where N is the number of simulations in a certain MCP and Pi is the proportion 

of false hypotheses being rejected in zth simulation. Then, the required estimated 

percentage gain in average power of PM as compared to CG is defined as: 

GAP = 必 A , : 严 ( 4 . 4 ) 
AFcg 

where APPM and APCG are the average power of PM and CG, respectively. 
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In our simulation study, average power is calculated based on simulations with 

100,000 replications, ie. N = 100,000. Without loss of generality, we assume equal 

sample sizes for all treatments, ie. riij 二 n for i = 1,..., r; j = 0,1,.... m. In 

addition, a is chosen as 0.05. 

= -只。） (4.5) 
^Sj^lriij + l/iiiQ 

where K'n ~ iV(0, a''In) and 把 N{Sc7/^,., a^n) for i =1 , . . . , r and j = 1,...’ m, 

also Sa/yjn is the noncentrality parameter of Yij. 

As Uij 二 n is assumed, Equation (4.5) can be written as 

=繁 (4.6) 

Here are the steps of simulation: 

1. Simulate ^ ^ from iV(0，1) and ^ ^ from N(a, 1) for i = 1, ...,r and j = 

1,...’ m. 

2. Simulate fa'^/a'^ from X/, which is independent of Yij. 

3. For PM, calculate T^ for i = 1,..., r; j = 1,.... a and |Tjj| for i = 1,.... r; j = 

a + 1，..., m by Equation (4.6). 

For CG, calculate \Tij\ for i = 1, ...,r; j = 1，...，m by Equation (4.6). 

4. Perform PM and CG. Then, compute the proportion of rejecting false hy-

potheses for each simulation, Pj for z = 1,..., 100，000. 

5. Compute the average powers, APPM and APCG by Equation (4.3). Finally, 

calculate the percentage gain in average power of PM as compared to CG 

(GAP) by Equation (4.4). 
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In the simulation, the number of groups, r, is set to be 1. And the number of 

non-control treatment for each group, m, and the sample size for each treatment, n, 

are set to be 10. Also the number of one-sided inferences for each group a=l,5，9. 

Figures 4.1 to 4.3 show the percentage power gain of PM when compared to CG 

for different values of a (no. of one-sided inferences for each group) and (5 {6 a / y/n is 

noncentrality parameter), where rn (total no. of active treatments for each group) is 

10. Figure 4.1 shows the average power gain for each group of one-sided inferences, 

that means Pi in Equation (4.3) is the proportion of one-sided false hypotheses being 

rcjectod in itli simulation. Figure 4.2 shows the average power gain for the group of 

two-sided inferences, that in cans Pi is the proportion of two-sided false hypotheses 

being rejected in ith simulation. Finally, the average power gain for the entire family 

of inferences are considered and is shown on Figure 4.3, and in this case, Pj is the 

proportion of both one-sided and two-sided false hypotheses being rejected in ith 

simulation. 
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Figure 4.1: Average power gain as compared to CG for one-sided inferences 
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From Figure 4.1, PM is more powerful than CG when only one-sided inferences 

are counted. The average power gain increases for small a and small 6, where the 

gain can be up to above 50%. From Figure 4.2, PM is less powerful than CG 

when only two-sided inferences are counted. The power loss becomes smaller as a 

decreases and S increases, where the maximum loss is bound by 30%. Figure 4.3 

shows that the difference between average power of PM and CG is not large, but 

PM is still slightly more powerful than CG (the power gain is within 10%), when 

both one-sided and two-sided inferences are counted. From the simulation study, it 

is shown that PM is slightly more powerful than CG. So, for practical purpose, the 

proposed method for computing Ci，q and C2’a can be adopted. 
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Figure 4.2: Average power gain as compared to CG for two-sided inferences 
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Figure 4.3: Average power gain as compared to CG for the entire family of inferences 
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4.3 Tabulation of critical values 

Recall that we simply take C2,q as 而’。which is the two-sided critical constant tab-

ulated in Cheung and Holland (1991). The numerical methods described in Section 

4.1 are used to compute the critical value Ci，̂  with given C2,a- Selected critical values 

ci，a for p 二 0.5, a = 0.05 and different values of r, m, a and f are tabulated in 

Tables 4.1 to 4.5. 

For the values of f which are not tabulated, one can use linear interpolation to 

find the required critical values. 

From Tables 4.1 to 4.5, all critical values Ci ,�are smaller than the correspond-

ing d2,a. This demonstrates that our proposed procedure is more powerful when 

compared to Cheung and Holland (1991). And the reduction becomes larger as a 

increases. That means the power gain increases as the number of one-sided hypothe-

ses within each group increases. 
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Table 4.1 

Critical values of Ci’a for r (number of groups)— 1 
^  

m a - f = 20 40 60 100 oo 
i 2 . 0 6 2 9 2.0006 1.9806 1.9650 1.9419 

3 1 2.2447 2.1694 2.1452 2.1263 2.0977 
2 2.2220 2.1501 2.1270 2.1089 2.0821 

4 1 2.3678 2.2830 2.2559 2.2346 2.2038 
2 2.3509 2.2686 2.2423 2.2217 2.1910 
3 2.3306 2.2517 2.2264 2.2066 2.1774 

5 1 2.4603 2.3681 2.3385 2.3156 2.2818 
2 2.4468 2.3565 2.3277 2.3052 2.2724 
3 2.4311 2.3435 2.3154 2.2934 2.2610 
4 2.4125 2.3282 2.3012 2.2801 2.2488 

6 1 2.5340 2.4353 2.4042 2.3795 2.3436 
2 2.5227 2.4250 2.3952 2.3711 2.3357 
3 2.5099 2.4153 2.3851 2.3615 2.3272 
4 2.4953 2.4031 2.3738 2.3507 2.3167 
5 2.4779 2.3892 2.3608 2.3385 2.3057 

7 1 2.5949 2.4915 2.4582 2.4326 2.3962 
2 2.5853 2.4831 2.4506 2.4252 2.3894 
3 2.5744 2.4741 2.4422 2.4172 2.3821 
4 2.5624 2.4641 2.4328 2.4083 2.3737 
5 2.5485 2.4528 2.4222 2.3983 2.3643 
6 2.5323 2.4398 2.4102 2.3870 2.3541 

8 1 2.6469 2.5389 2.5042 2.4776 2.4379 
2 2.6384 2.5318 2.4975 2.4711 2.4320 
3 2.6290 2.5239 2.4903 2.4642 2.4257 
4 2.6188 2.5153 2.4823 2.4566 2.4188 
5 2.6072 2.5058 2.4734 2.4481 2.4107 
6 2.5940 2.4951 2.4635 2.4387 2.4022 
7 2.5786 2.4829 2.4523 2.4283 2.3929 
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Table 4.1 

Critical values of Ci’a for r (number of groups) = 2 

m a f = 20 40 60 100 oo 
" 2 i 2 . 3 9 4 2 2.3067 2.2788 2.2570 2.2246 

3 1 2.5683 2.4654 2.4326 2.4069 2.3691 
2 2.5506 2.4513 2.4196 2.3948 2.3581 

4 1 2.6867 2.5730 2.5372 2.5084 2.4667 
2 2.6735 2.5624 2.5270 2.4992 2.4583 
3 2.6579 2.5501 2.5157 2.4887 2.4489 

5 1 2.7766 2.6545 2.6152 2.5851 2.5399 
2 2.7657 2.6456 2.6074 2.5773 2.5331 
3 2.7534 2.6359 2.5982 2.5689 2.5256 
4 2.7390 2.6247 2.5881 2.5596 2.5173 

6 1 2.8481 2.7189 2.6781 2.6455 2.5982 
2 2.8391 2.7118 2.6711 2.6394 2.5924 
3 2.8289 2.7036 2.6636 2.6323 2.5862 
4 2.8173 2.6946 2.6553 2.6246 2.5794 
5 2.8040 2.6844 2.6461 2.6162 2.5719 

7 1 2.9074 2.7704 2.7295 2.6964 2.6430 
2 2.8997 2.7665 2.7239 2.6906 2.6400 
3 2.8912 2.7595 2.7174 2.6847 2.6353 
4 2.8815 2.7519 2.7105 2.6780 2.6298 
5 2.8706 2.7434 2.7028 2.6709 2.6238 
6 2.8581 2.7340 2.6942 2.6631 2.6171 

8 1 2.9587 2.8187 2.7742 2.7389 2.6885 
2 2.9515 2.8132 2.7687 2.7342 2.6816 
3 2.9439 2.8069 2.7632 2.7289 2.6775 
4 2.9358 2.8004 2.7571 2.7232 2.6728 
5 2.9265 2.7932 2.7505 2.7171 2.6676 
6 2.9161 2.7852 2.7433 2.7105 2.6619 
7 2.9043 2.7763 2.7353 2.7032 2.6557 

26 



Table 4.1 

Critical values of Ci’�for r (number of groups) = 3 

m a f = 20 40 60 100 oo 
飞 1 2 . 5 8 0 1 2 . 4 7 6 1 2.4430 2.4171 2.3789 

3 1 2.7508 2.6298 2.5918 2.5615 2.5173 

2 2.7353 2.6181 2.5808 2.5515 2.5085 
4 1 2.8671 2.7350 2.6929 2.6600 2.6113 

2 2.8555 2.7258 2.6845 2.6522 2.6044 

3 2.8418 2.7154 2.6751 2.6435 2.5969 

5 1 2.9555 2.8145 2.7694 2.7337 2.6819 

2 2.9459 2.8069 2.7624 2.7276 2.6763 

3 2.9350 2.7984 2.7548 2.7206 2.6702 

4 2.9226 2.7890 2.7464 2.7129 2.6636 

6 1 3.0262 2.8778 2.8305 2.7933 2.7383 

2 3.0182 2.8715 2.8244 2.7876 2.7335 

3 3.0091 2.8644 2.8179 2.7819 2.7284 

4 2.9989 2.8566 2.8111 2.7755 2.7229 

5 2.9874 2.8479 2.8034 2.7684 2.7169 

7 1 3.0844 2.9306 2.8811 2.8416 2.7850 

2 3.0777 2.9246 2.8761 2.8373 2.7808 

3 3.0702 2.9188 2.8702 2.8322 2.7764 

4 3.0617 2.9123 2.8643 2.8269 2.7717 

5 3.0521 2.9050 2.8580 2.8210 2.7666 

6 3.0413 2.8969 2.8508 2.8146 2.7612 

8 1 3.1353 2.9755 2.9243 2.8843 2.8249 

2 3.1287 2.9706 2.9198 2.8796 2.8211 

3 3.1222 2.9650 2.9151 2.8754 2.8172 

4 3.1149 2.9595 2.9096 2.8705 2.8131 

5 3.1068 2.9532 2.9040 2.8655 2.8087 

6 3.0977 2.9464 2.8980 2.8600 2.8040 

7 3.0874 2.9388 2.8913 2.8540 2.7989 
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Table 4.1 

Critical values of Ci’�for r (number of groups) = 4 
^  

m a —f = 20 40 60 100 oo 
飞 1 2 . 7 0 9 3”2 . 5 9 2 6 2.5553 2.5265 2.4841 

3 1 2.8772 2.7433 2.7011 2.6675 2.6186 

2 2.8634 2.7328 2.6912 2.6587 2.6111 

4 1 2.9929 2.8471 2.8004 2.7639 2.7162 

2 2.9820 2.8385 2.7930 2.7569 2.7102 

3 2.9695 2.8291 2.7843 2.7493 2.7037 

5 1 3.0794 2.9250 2.8748 2.8366 2.7791 

2 3.0712 2.9183 2.8689 2.8309 2.7742 

3 3.0613 2.9110 2.8624 2.8246 2.7690 

4 3.0500 2.9020 2.8547 2.8178 2.7634 

6 1 3.1503 2.9876 2.9355 2.8945 2.8342 

2 3.1423 2.9815 2.9299 2.8897 2.8300 

3 3.1344 2.9754 2.9242 2.8845 2.8256 

4 3.1252 2.9683 2.9182 2.8788 2.8208 

5 3.1146 2.9605 2.9111 2.8726 2.8158 

7 1 3.2087 3.0395 2.9852 2.9428 2.8799 

2 3.2022 3.0345 2.9807 2.9382 2.8762 

3 3.1947 3.0288 2.9754 2.9339 2.8724 

4 3.1870 3.0230 2.9702 2.9291 2.8683 

5 3.1784 3.0164 2.9646 2.9239 2.8640 

6 3.1684 3.0091 2.9580 2.9181 2.8593 

8 1 3.2584 3.0837 3.0269 2.9839 2.9189 

2 3.2527 3.0793 3.0234 2.9802 2.9156 

3 3.2465 3.0746 3.0193 2.9760 2.9122 

4 3.2394 3.0693 3.0143 2.9719 2.9086 

5 3.2321 3.0635 3.0095 2.9674 2.9048 

6 3.2238 3.0575 3.0042 2.9624 2.9008 

7 3.2144 3.0507 2.9981 2.9571 2.8965 

28 



Table 4.1 

Critical values of Ci’�for r (number of groups)二 5 

m a f = 20 40 60 100 oo 
1 2 . 8 0 7 9 2 . 6 8 1 1 2.6406 2.6089 2.5636 

3 1 2.9741 2.8302 2.7842 2.7476 2.6952 
2 2.9613 2.8201 2.7750 2.7395 2.6885 

4 1 3.0890 2.9320 2.8813 2.8428 2.7850 
2 3.0786 2.9243 2.8749 2.8362 2.7797 
3 3.0670 2.9155 2.8671 2.8293 2.7741 

5 1 3.1752 3.0092 2.9560 2.9140 2.8527 
2 3.1673 3.0029 2.9499 2.9090 2.8483 
3 3.1579 2.9958 2.9440 2.9032 2.8437 
4 3.1473 2.9879 2.9369 2.8970 2.8387 

6 1 3.2451 3.0710 3.0147 2.9706 2.9068 
2 3.2379 3.0657 3.0102 2.9666 2.9030 
3 3.2304 3.0598 3.0048 2.9621 2.8991 
4 3.2216 3.0533 2.9993 2.9569 2.8949 
5 3.2118 3.0460 2.9928 2.9513 2.8940 

7 1 3.3023 3.1216 3.0645 3.0191 2.9517 
2 3.2967 3.1174 3.0600 3.0147 2.9485 
3 3.2900 3.1125 3.0557 3.0107 2.9450 
4 3.2828 3.1068 3.0505 3.0065 2.9413 
5 3.2747 3.1011 3.0454 3.0016 2.9375 
6 3.2655 3.0943 3.0394 2.9964 2.9334 

8 1 3.3528 3.1664 3.1065 3.0596 2.9901 
2 3.3467 3.1618 3.1028 3.0562 2.9872 
3 3.3412 3.1575 3.0986 3.0522 2.9841 
4 3.3348 3.1529 3.0945 3.0484 2.9809 
5 3.3279 3.1475 3.0896 3.0444 2.9775 
6 3.3201 3.1420 3.0849 3.0398 2.9739 
7 3.3114 3.1356 3.0792 3.0350 2.9702 
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5. Power study 

5.1 Objectives 

To investigate the performance of our proposed procedure as compared to Cheung 

and Holland (1991), a simulation study is performed to study the power. For sim-

plicity, the new procedure and Cheung and Holland (1991) are denoted as follow 

respectively: 

P M MCC in two-way designs with directional-mixed families (The new procedure 

proposed in this thesis) 

CH MCC in two-way designs with two-sided inferences (Cheung and Holland (1991)) 

The objective of the simulation study is to evaluate the gain in power of the new 

procedure PM as compared to CH. The simulation procedures are similar to section 

4.2 and we compare our proposed procedure to CH in this section. 

5.2 Simulation results 

Figures 5.1, 5.2 and 5.3 show the percentage increase in average power of PM as 

compared to CH when m = 10，= 0.5, a = 0.05 and r 二 2，5 and 10. 

Similar patterns are obtained for different values of r, and hence only r = 2, 

5 and 10 are reported. From the figures, GAP is positive for different values of 8, 

a and r. That means our proposed procedure is more powerful than Cheung and 

Holland (1991). Also, when the number of one-sided inferences for each group, a, 

increases, the percentage gain in power increases dramatically. It is because greater 
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Figure 5.1: Average power gain as compared to CH when r (no. of groups) =2 
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a represents allowing more prior directional information in the testing procedure. 

On the other hand, the percentage gain in power declines as 6 increases. It is 

reasonable since both PM and CH are expected to reject most of the hypotheses for 

large 6 and so the difference between the two average powers {APcii and APPM) is 

much less. 

In conclusion, it can be shown that our proposed method is more powerful than 

Cheung and Holland (1991). And the average power gain becomes larger when a 

(number of one-sided hypotheses for each group) is larger and 6 (the noncentrality 

parameter component of Yij) is smaller. 
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Figure 5.2: Average power gain as compared to CH when r (no. of groups) =5 
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Figure 5.3: Average power gain as compared to CH when r (no. of groups) =10 
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6. Numerical example 

To illustrate the proposed procedure, let us consider the following example. It 

is a portion of a study extracted from Philip et al. (2003). The example studied 

the effects of peroxisome proliferator-activated receptors (PPARs) on body weight 

in obesity-prone male rats. The body weight changes during the clinical study 

and is measured on day 16 and day 44 (measured in grams). At the beginning of 

the experiment, 64 diet-induced obese male rats were selected and randomized to 

be fed either a low-fat diet or a high-fat diet. Therefore, the experiment consists 

of two groups, rats fed with a low-fat diet and a high-fat diet. On day 15, each 

rat received on of the four treatments: pioglitazone (PPAR7 activator), fenofibmte 

(PPAR-a activator), ragaglitazar (dual PPARcv/7 activator) and control treatment. 

Therefore, there are two groups and four treatments for each group. The sample 

size for each treatment-group combination is eight (rzi尸8). The data are shown in 

Table 6.1. 

Table 6.1 

Mean of body weight changes during treatment 

Mean body weight changes (g)  
Group i Control Pioglitazone Feiiofibrate Ragalitazar 

U ^ ( i - 2 ) ( j=3) 
Low fat fed 54.8 102.9 46.9 77.8 

(2 二 1) 
High fat fed 65.9 104.0 27.3 99.3 

(广 2) 

The homogeneity of the error variance of each subgroup is verified by the Bartlett's 

test at a二0.05. No significant difference among the variances of all subgroups is ob-
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served. (p-value=0.5970). 

Since P P A R 7 agonists are associated with weight increase from clinical expe-

rience (Akazawa et al. (2000)), one-sided tests can be conducted on pioglitazone 

versus control treatment. For fenofibrate versus control treatment and ragalitazar 

versus control treatment, no compelling reason for adopting one-sided tests is found. 

Thus, two-sided tests are used. 

Denote /.iij be the true mean body weight change of treatment j in group i. 

Conduct the simultaneous testing of the following null hypotheses. 

Hij : iMj = 

for i=i,2 and j=l，2,3 against 

H'u : IMi > Mio 

for z=l,2, and 1=1, 

H'ik : IMk * f-Ho 

for z=l,2 and A;=2,3. 

In this study, r=2’ m=3, a=l, n;尸8 for i=l,2 and j=l ,2,3, p=O.D, the degrees 

of freedom f=56 and a,=0.05. 

Table 6.2 

Values of ci’a for interpolation (extracted from Table 4.2) with r=l, m=3 and a=l 

f ci,a 
40 2.4654 
60 2.4326 
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We interpolate on / as follow: 

Ci,a=2.4654-(|§)(2.4654-2.4326)-2.4392 

For C2’a, we simply take the value of d'ẑ a (the two-sided critical constant given 

by Cheung and Holland (1991)) as C2,q, which approximately equals to 2.688. So, 

the critical values (Ci々 ，C2,a) are (2.4392, 2.6880). The estimated cr is 7.3058. 

According to (3.3) and (3.4)，the 95% simultaneous confidence interval for jiij-fiio, 

where i=l,2 and j=l，2,3’ are: 

Table 6.3 

95% confidence interval for iMj-IMo 

只 ！F2 J ^ 

(39.1898, o o ) ( - 1 7 . 7 1 9 0 , 1 .9190)(13.1810, 32.8190) 
i=2 (29.1898, oo) (-48.4190, -28.7810) (23.5810, 43.2190) 

Therefore, only the null hypothesis corresponding to fenofibrate for low-fat diet 

group is not rejected, as zero is contained in this confidence interval. 
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7. Conclusions 

In this thesis, we have developed testing procedure for simultaneous hypoth-

esis testing of multiple comparisons with a control in two-factor situations and 

directional-mixed families. 

The outlines of the proposed procedure and the numerical methods of com-

putation of the required critical values have been discussed in Chapter 3 and 4, 

respectively. In Chapter 5, the proposed procedure is proved to be more powerful 

than Cheung and Holland (1991) by simulation study. 

Throughout this thesis, the proposed procedure has been developed under the 

assumptions of normality and homogeneity of error variances. But, in reality, these 

assumptions may be violated. For further research, methods are needed to generalize 

our procedure to situation when the above assumptions do not seem to be reasonable. 

Also, it should be useful to derive the explicit expression of the power function 

which can be used to estimate required sample sizes of an experiment. So, investi-

gation of the power function of the proposed procedure is a potential direction of 

future studies. 

mmm^ 



Bibliography 
1. Akazawa, S., Sun, F., Ito, M., Kawasaki, E. and Eguchi, K. (2000). Efficacy 

of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care, 23, 

1067-1071. 

2. Bechhofer, R. E. and Dunnett, C. W. (1988). Percentage Points of Multi-

variate Student t Distributions. Volume 11 of Selected Tables in Mathematical 

Statistics. American Mathematical Society, Providence, RI. 

3. Cheung, S. H. and Holland, B. (1991). Extension of Dunnett's multiple com-

parison procedure to the case of several groups. Biometrics, 47, 21-32. 

4. Cheung, S. H. and Holland, B. (1992). Extension of Dunnett's multiple com-

parison procedure with different sample sizes to the case of several groups. 

Computational Statistics and Data Analysis, 14, 165-182. 

5. Cheung, S. H. and Holland, B. (1994). A step-down procedure for multi-

ple tests of treatment versus control in each of several groups. Statistics in 

Medicine, 13, 2261-2267. 

6. Cheung, S. H.’ Kwong, K. S.，Chan, W. S. and Leung, S. P. (2004). Multi-

ple comparisons with a control in families with both one-sided and two-sided 

hypotheses. Statistics in Medicine (To Appear). 

7. Copenhaver, M. D. and Holland, B. (1987). Calculation of the true experimen-

twise error rates for mulptiple comparisons procedures in a two-way factorial 

design. Proceedings, 1 沪 Symposium on the Interface of Computer Science 

and Statistics, Philadelphia, Pennsylvania. 

mmm^ 



8. Copenhaver, M. D. and Holland, B. (1988). Computation of the distribu-

tion of the maximum studentized range statistic with application to multiple 

significance testing of simple effects. Journal of Statistical Computation and 

SimulatioTi, 30, 1-15. 

9. Dunnett, C. W. (1955). A multiple comparison procedure for comparing sev-

eral treatments with a control. Journal of the American Statistical Associa-

tion, 50, 1096-1121. 

10. Dunnett, C. W. (1964). New tables for multiple comparisons with a control. 

Biometrics, 20, 482-491. 

11. Dunnett, C. W. (1989). Multivariate normal probability integrals with product 

correlation structure. Applied Statistics, 38’ 564-579. 

12. Dunnett, C. W. and Tamhane, A. C. (1991). Step-down multiple tests for 

comparing treatments with a control in unbalanced one-way layouts. Statistics 

in Medicine, 10，939-947. 

13. Dunnett, C. W. and Tamhane, A. C. (1992). A step-up multiple test proce-

dure. Journal of American Statistical Association, 87, 162-170. 

14. Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. 

New York: Wiley. 

15. Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. London: 

Chapman and Hall. 

mmm^ 



16. Philip, J. L.，Per，B. J., Rikke, V. S., Leif, K. L., Niels, V., Erik, M. W. and 

Karsteii, W. (2003). Differential Influences of Peroxisome Proliferator and 

Energy Homeostasis. Diabetes, 52, 2249-2259. 

17. Quek, A. L. (1999). Multiple comparison procedures for a two-way design. 

Honours thesis. Department of Statistics and Applied Probability, National 

University of Singapore. 

18. Schmartz, J. I., Vanclorrnael, K.，Malice, M. P., Kalyani, R. N., Lasseter, K. 

C.’ Holmes, G. B.，Gertz, B. J., Gottesdiener, K.M., Laurenzi, M., Redfern, 

K. J. and Bruiie, K. (2002). Comparison of rofecoxib, celecoxib, and naproxen 

oil renal function in elderly subjects receiving a normal-salt diet. Clinical 

Pharmacology and Therapeutics, 72, 50-61. 

19. Spurrier, J. D. and Nizam, A. (1990). Sample size allocation for simultaneous 

inference in comparison with control experiments. Journal of the American 

Statistical Association, 85，181-186. 

20. Tukey, J. W. (1953). The problem of multiple comparisons. Unpublished 

Manuscript. 

21. Westfall, P. H. and Young, S. S. (1993). Resampling-based Multiple Testing: 

Examples and Methods for P-value Adjustment. New York: Wiley. 

mmm^ 



》
、
藥
•
爹
5

 ,

 V
:

 •、：,’業悬會
 



：M 
. ' ' M 

M 

P竭 

. . . _ 

• ., • zj 
fX, 

• :::、:：：海!_ 

. ： 。 ' . m ^ 

mmm^ 


