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Abstract 
As one of the major manufacturing centers in the world, Hong Kong (including 

the nearby Pearl River Delta Area) has over 50,000 manufacturing companies. However, 
it makes only one kind of manufacturing machinery: plastic machinery. Therefore, 
create able technologies for the plastic machinery industry is of strategically important. 
In this research, many works have been done to verify the excellent performances of 
some monitoring methods: the Design of Experiment which help in finding the optimal 
settings for the injection molding machine; the Radial Basis Function Neural Network 
which has been used to predict the nozzle pressure and part weight; Similarity-based 
monitoring for the short shot; parameters resetting of the injection molding machine 
using the Support Vector Machine and Virtual Search Method. 

With those able technologies, a Remote Monitoring and Diagnosis System 
(RMDS) has been developed in the research. The system can automatically collect data, 
conduct data mining an intelligent diagnosis which can help to maintain the health 
condition of the machines and to assure the part quality. The system consists of an on-
line data collection module and an off-line data mining and diagnosis module. The on-
line data collection module can collect data from the controllers of the machine and 
various other sensors, and send the data to the machine manufacturer through the 
Internet. The off-line data mining and diagnosis module will detect possible 
malfunction and accordingly, schedule prevent maintenance. Upon detecting possible 
malfunctions, it will send the data to the manufacturer through the Internet. Accordingly, 
prevent maintenance can be initiated to minimize the production lost and maintenance 
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cost. Lots of experiments were accomplished to verify the outstanding performance of 
the monitoring methods and the RMDS. 
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摘要 

.作為世界上主要的製造業中心，香港(包括珠江三角區)擁有超過50,000間製造 

業的公司。然而，它們主要使用一種機器：塑膠加工機械。因此，開發先進的技術 

對塑膠機械工業有非常重要的意義。在本研究中，我們完成了很多實驗以驗證一 

些監控方法的傑出表現：正交試驗設計(Design of Experiment)幫助找出注塑機的最 

佳設定；以R B F神經網絡估算射咀壓力和產品的重量；產品不充滿的類似度監控； 

以支持向量機(Support Vector Machine)和虚擬找尋方法(Virtual Search Method)作參 

數重設。 

基於以上的技術，本研究創建了一個遠程監控診斷系統。這系統能自動收集 

數據，進行數據挖掘和智能診斷，從而幫助機器維持良好狀態及保證產品質量。這 

系統包括一個在線數據收集組件及一個離線數據挖掘診斷組件。在線數據收集組 

件能從機器的控制器及不同的傳感器中收集數據，並將數據經由互聯網傳送至機 

器製造商。離線數據挖掘診斷組件會偵測可能的錯誤，從而編制預防維護。一旦 

偵測到可能的錯誤，系統便會將訊息經由互聯網傳送至製造商。由此，預防維護可 

以減低生產的廢品和維護費用。大量的實驗已完成以驗證系統在監測方面的傑出 

表現。 
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Chapter 1: Introduction 
1.1 Background 

According to statistics, the annual production of plastic has surpassed that of the 
steel in volume and weight [1]. In 1950，about 1 million tones of plastics were produced 
while expended to more than 150 million tones at the end of the century [2]. Counting 
varnish, glues, dispersions, and likes products, more than 180 million tones were 
produced in 2000. It is expected that in the year 2020, the production of polymeric 
materials will be about 380 million tons [3]. In other words, plastic is now the most 
widely used material in the world. Among various plastic production technologies, 
injection molding takes up approximately 32% [4]. Plastic injection molding is one of 
the most important and efficient manufacturing techniques for polymeric materials, with 
the capability to manufacture high value added products. It is capable of producing 
complex parts with low cost and high productivity. However, manufacturing has 
become a much tougher, more global field since the 1980s. Due to the fact that the 
product life cycles are reduced and the part quality requirement is continuous increased, 
companies have to develop new and advance technologies in order to survive. Same as 
the plastic injection molding industry, it has faced dramatically changes and challenges 
in the past decades. The only way to make profit and keep survive is to keep quality up, 
expenses down with no doubt. 

Injection molding is a complicated process during which various problems may 
occur. The most notable one is the product quality, especially for high-end products 
such as air-tight containers and automobile instrument panels. In recent years, the 
demand for consistent and enhanced product quality continues to rise. Therefore the 

1 



assurance of the product quality becomes the key to the further advancement of the 
injection molding process. On the other hand, the higher demands on quality of parts 
results a development towards high precision injection molding machine. It is believed 
that one of the toughest components to being competitive in the injection molding 
business is maximizing the usage of the manufacturing facility, i.e. the injection 
molding machine. Injection molding machine plays a crucial role in the injection 
molding industry, therefore, an injection molding machine having outstanding features 
and performances will benefit both the manufacturing side and production side. In fact, 
an excellent injection molding machine can help company to increase its productivity, 
improve the part quality and lower the production cost. On the other hand, an excellent 
injection molding machine will also help the machine making company to expand its 
sale market. To conclude, the two major criteria to survive in injection molding industry 
is to optimize the injection molding process and injection molding machine. 

Optimize the injection molding process aims to improve the product quality, to 
achieve this propose, there are basically two techniques: the manual technique and the 
automatic method. For manual technique, an expert has to carry out the optimization 
procedures according to his experiences and knowledge, which will be time consuming. 
There are thousands of researches about optimization of injection molding process [5-9]. 
Although the relationships between those variables and part quality have been widely 
studied and a few guidelines exist for determining injection molding parameters, there is 
no standard optimization procedure [10]. In fact, the optimization procedures can be 
divided into five main categories: the shot size, injection velocity, injection pressure, 
injection time and pack and holding pressure. As there are too many parameters 
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determines the part quality, optimize the injection molding process manually may not be 
a good choice. For automated method, usually a software-based system is required. 
Those software employ the physical laws to simulate the machine and plastics behavior 
which requires an accurate quantitative, understanding of the material properties and 
behavior [11]. One shortcoming of this method is that, the system is usually very 
expensive, it will increase the production cost. 

Presently, much work is focused on tooling (i.e., the molds) and the use of 
advanced materials. However, as the demand for productivity grows, it is difficult to 
achieve the desired quality level without monitoring and control [12]. The most 
commonly use monitoring method is Statistical Process Control (SPC). In this technique, 
quality control personnel routinely take samples and check them against statistical 
control charts. Should a problem be detected, it is possible to run additional tests to find 
out the causing factors; and accordingly, make adjustment. Unfortunately, this method 
has a number of limitations: (a) it cannot be done on-line, (b) it is rather laborious, and 
(c) it is not precise. Moreover, making statements about the whole production on a basis 
of samples may not be accurate enough, as the declarations can be wrong. The more 
advanced technology will be the neural network. The increasing development of 
artificial intelligence offers the wide field of neural networks for quality prediction, 
monitoring and closed-loop quality control for the injection molding process. Lots of 
researches have been done to prove its outstanding performance [1, 13-19]. However, 
they are usually dependent on learning and optimization. As a result, they may not have 
clear physical meanings and often fail when encountering unseen cases. 
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With the rapid advancement in personal computer networking and Internet, 
people focus on remote monitoring and diagnosis system. Many companies develop 
"Computer Integrated System" which can collect quality information, manage 
production information and monitor remote machines. The system combines advanced 
information technology and traditional condition monitoring system to provide remote 
monitoring and diagnosis of machines [11,20-24]. All the above shown the importance 
and necessity of developing the intelligent monitoring and diagnosis system for 
machines. 

1.2 Objective 
In this research, we aim to develop a totally new and advance system for 

monitoring and diagnosing of the injection molding machine. The system will be a PC 
computer installed next to the plastic injection molding machine on the shop floor. It 
can automatically collect data, conduct data mining and intelligent diagnosis. Upon 
detecting possible malfunctions, it will send the data to the manufacturer through the 
Internet. Accordingly, prevent maintenance can be initiated to minimize the production 
lost and maintenance cost. In addition, the data will help to improve the design and 
manufacture of the plastic injection molding machines. In the research, we decide to 
work out the most effective and outstanding method for optimizing the plastic injection 
molding process, therefore improve the quality of injected part. Moreover, the system 
we design will be aimed to optimize the performance of the injection molding machine. 
The ultimate objective of the research is to bring positive impact to the plastic injection 
molding industry. 
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The structure of the thesis is as follows. In the next session, some literature 
surveys about the plastic injection molding process, monitoring and diagnosis method 
and remote monitoring system will be given, showing the background and recent 
researches in these fields. Then, the monitoring methods used in this research will be 
shown in detail, which includes the Radial Basis Function Neural Network, Similarity 
method, Support Vector Machine and Virtual Search Method. The procedures and 
results of some conducted experiments will also be given as well. After that, the 
developed monitoring system will be described further, with both the hardware and 
software parts. Last but not the least, there will be a conclusion and future working 
direction of the research. 
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Chapter 2: Literature Survey 
2.1 Plastic Injection Molding Process [22] 

The injection molding machine (Figure 2-1) has the function of injecting molten 
plastic material into a tightly closed mold where the shape of a product is formed. The 
mold is kept closed for a specified time, the cure time, during which the fluid material 
becomes solid and rigid. A coolant circulates through passages in the mold, so that heat 
from the fluid plastic is transferred to the mold and from there to the circulating fluid, a 
process that accelerates the curing (solidification of the part). At the end of cure time, 
the mold is opened, and the parts are ejected, ready for packaging or other operations if 
required. At this point, a new cycle begins. 

詹 
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Fig.2-1: An injection molding machine. 

The cavity half of the mold is attached to the stationary platen (stationary mold), 
where it is centered by means of the locating ring. The core half of the mold is mounted 
on the moving platen (moving mold). When the press gate in front of the mold is closed, 
a hydraulic circuit is activated that caused the main ram to move forward at a fast rate. 
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This movement is brought about by supplying a large volume of oil from pumps 
directly into the booster ram. This oil exerts a pressure on the body of the main ram, 
causing it to slide over the booster ram and move forward until at a designated position 
the moving main ram actuates a limit switch that sends a signal to the hydraulic circuit 
ordering the high-volume pump to dump its oil at low pressure in to the prefill tank, 
while at the same time, the low volume pump keeps supplying its oil to the booster ram, 
thus causing slow main ram movement. 

The pressure at which this slow movement takes place is controlled by a mold 
protection valve. The pressure of this valve is set at a low figure (around 200 psi), so 
that the pressure exerted on mold halves, if something is caught between them, will be 
low and not cause damage to the mold. The space vacated in the clamp cylinder housing 
is filled with oil by gravity from the prefill tank through the opening of the prefill piston 
in its retracted position. The mold halves make contact at the low speed of the ram 
movement, and at this point, another limit switch closes the prefill piston and activates a 
high pressure pump (2,000 to 3,000 psi), which will apply its full pressure over the main 
ram, holding the mold halves tight and resisting opening when plastic material is 
injected into the mold at pressures up to 20,000 psi. This second limit switch also 
initiates the movement of the injection ram, which injects the plastic into the mold. 
Injection is carried out by the front of the screw, which contains a shutoff valve that 
prevents any possible backflow of the fluid plastic. The screw is firmly attached to the 
injecting ram, whose movement takes place at a fast rate (usually in about 1 to 2 sec for 
the full shot capacity). 
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The injection time is controlled by a timer (the injection high timer), and the 
ability to respond to the timer setting is determined by the pressure of injection and 
fluidity of the material. The speed of injection can be varied by means of a flow control 
valve that can by-pass a desired amount of the pump oil and thereby reduce the speed. 
This valve usually has 10 bypassing positions, thus providing a considerable degree of 
injection-speed variation. Once the shot is completed, the high-volume oil injection 
pump is ordered by a signal from the timer to dump its oil into the prefill tank at low 
pressure; at the same time, a low-volume pump (hold pump) maintains pressure on the 
material in the cavity until the gate through which the material was fed freezes and 
prevents back flow to the cylinder. (Back flow can be caused by the pressure within the 
cavity if the feed gate is open.) The hold-pump duration is set by the injection hold 
timer. At the expiration of this timer, the screw starts rotating, picks up material from 
the throat in the cooled chamber, and moves, compresses, and shears it in the extruder 
chamber, where it absorbs heat and liquefies before entering the measuring portion of 
the injection chamber. 

The extruder barrel is heated by strip heater bands. A group of heaters is divided 
into zones, with each zone having a pyrometer for controlling the temperature. There 
are usually three or four zones on the extruder chamber. The extruder work— 
represented by feeding, compressing, and shearing of the material—partly shows up as 
heat induced in the plastic. The heat needed to fluidize the plastic is derived partly from 
the work of the screw, the balance coming from the strip heaters of the extruder 
chamber. As the material comes off the extruder screw, it creates pressure on the front 
face of the screw, causing it to retract so that a space is created for the incoming 
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material required for the shot. This backward movement of the screw makes it 
necessary to push oil out from behind the injecting ram. 

The displaced oil passes through a controlled valve, which can be adjusted to 
provide varying degrees of resistance for the screw 's backward travel. This resistance, 
known as the back pressure, is utilized to provide good mixing and homogenizing of the 
material in the injection chamber, when a slight temperature adjustment is needed for 
the material that is to be injected, a small increase in the back pressure will accomplish 
this requirement. The duration of screw rotation is determined by a limit switch, which 
is activated by the backward-moving screw at a position where the necessary volume of 
material required for the shot has been reached. The screw limit switch may also start a 
melt decompress timer, which will cause continued limited backward movement of the 
screw. This additional screw movement creates a space in front of the screw that 
permits the built-up pressure to decrease enough that, when the mold opens, no drooling 
of plastic takes place. 

The final stop of the screw movement usually coincides with the expiration of 
the cure time as determined by the corresponding cure timer. On a signal from the cure 
timer, the press starts opening the mold. This is accomplished by feeding oil from a 
small-volume pump into the space behind the ram bushing. This causes the press to start 
opening slowly; then another limit switch is actuated by the ram movement, which 
orders a large volume of oil to be fed into the space so as to shorten the press opening 
time. Since the area between the clamp cylinder and the main ram is small, and this 
area multiplied by the pump pressure gives the force for mold opening, this force is 
small in comparison with the clamping tonnage (usually around 5% of the clamping 

9 



tonnage). Before striping (ejecting) starts, the ram is slowed down by actuating still 
another limit switch for gentle action of the knockout pins, to prevent the pins from 
punching through the parts while pushing them off the cores. With hydraulic ejection, 
the slowdown can be so delayed that no banging takes place when the ram returns to the 
starting position. After ejection, the parts are removed from the press, and the cycle 
starts all over again. All limit switches have numbers that tie them to specific actions. 

2.2 Monitoring and Diagnosis Methods 
Thousands of researches have been done about monitoring and diagnosis 

method of injection molding machines, follows are some of them. [19] showed that a 
relative assessment of polymer melt viscosity may be achieved using nozzle melt 
pressure or hydraulic injection pressure measurements. It found that hydraulic injection 
pressure measurements have at least equal sensitivity to polymer viscosity variations, 
compare to nozzle melt pressure measurements. This result confirmed that hydraulic 
pressure signal may replace the nozzle pressure signal and use to monitor the injection 
molding process. [13] showed the strategy how to build a reliable process model 
effectively for quality forecast, how to predict the quality of a manufactured part with 
the existing model, the necessity and the mechanism of adaption of the process model. 
The strategy is based on the use of artificial neural networks. Experiments showed that 
the non-linear transmission characteristic of neural networks and their ability to deal 
with interactions correspond well to the characteristics of the injection molding process. 
However, the experimenter narrowed the range of the parameters limits in order to 
optimize the training results of the neural network. This made the trained neural 
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network can only work on a narrow range of data. Data that outside the ranges result as 
inaccurate responses. 

16] presented a method to predict the injected part weight using the Widrow-
Hoff neural network. Input of the network is the hydraulic pressure during plastication, 
while the output is the part weight. Among the 36 testing injected parts, there were 16 in 
total miss the actual part weight as much as 1.8grams (the injected part was about 35 
grams), which is a little bit disappointing. The reason may because Widow-Hoff neural 
network is limited to linearly separable problems, however, the relationships between 
hydraulic pressure and part weight is not the case. [9] proposed a virtual sensing 
approach for on-line monitoring process variables of injection molding process. A 
virtual nozzle pressure sensor is developed. The screw velocity data is used to predict 
the behavior of the nozzle pressure. Experiments confirmed the feasibility and 
effectiveness of the virtual sensor. In the experiment, the machine operated without any 
mold installed, that may affect the results as in real manufacturing, mold should always 
be installed in the injection molding machine. 

5] described an algorithm for initial determination of injection velocity based 
on rheological calculations of the melt flow inside the mold cavity. Use of the algorithm 
for initial setting of process parameters streamlines consecutive computer-assisted 
defect elimination and optimization of injection molding process. However, the 
algorithm only consider the injection pressure, melt temperature, shear rate and shear 
stress as the critical factors for the injection velocity. To get a better result, the melt 
properties should not be omitted. In [6], an expert system aim to assist the setting of 
machines with the help of CAE analysis was presented. The proposed algorithm 
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requires a description of the mold and part features. The performance of the system 
highly depend on the inputs, i.e. the description of part/mold features, which may be 
very complicate and make the suggested machine settings inaccurate. 

[7] presented a Knowledge-Based Tuning (KBT) Method which takes advantage 
of the a priori knowledge of the process, in the form of a qualitative model, to reduce 
the demand for experimentation. This on-line tuning method will continuous estimate 
the process window during tuning, and use the learning to adapt its input-output model 
after each tuning iteration. [8] presented a monitoring strategy for the injection molding 
machines using an ultrasonic transducer. It monitors the conditions inside the cavity 
during processing which suit for use in controlling the transition from injection phase to 
packing phase, as a short shot detector, as feedback for Statistical Process Control and 
for melt temperature monitoring. The main advantage of this method is the ultrasonic 
transducer is inexpensive and sensitive to the conditions inside the mold cavity, 
however, an ultrasonic crystal have to install inside the mold plate in order to obtain 
better result. It is not preferable in manufacturing as this will increase the production 
cost. 

2.3 Remote Monitoring 
For remote monitoring, usually it will be a computer integrated system providing 

data mining and network communication. [22] presented the functions and sample 
applications of the simplified central control system "CAMOT LINK 10" which aims to 
support the production stage of injection molding. The software is actually made up of 
three major functions: 
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1. Measurement data collection 

• Collect, display and print measurement data 
• Process data statistics and display trend graphs 
• Save data on and read from HDD (CSV text format) 

2. Molding conditions management 
• Upload and download the settings 
• Save the settings on and read from HDD 

3. Remote console 
• Display on PC the controller screen of injection molding machine for 

operation 
• Save the screens in image file (BMP format) 

The pros of the software are it can simultaneous collection of measurement data 
from up to 10 injection molding machine that are connected to the network. It also 
provides some smart functions such as report generation and operation management. 
The cons of the software are it is really simple, especially the graphic interface. The 
software is text-based which is not user-friendly enough. Also the software can only 
provides local area network (LAN) communication between the injection molding 
machines and the host computer. Data management is not supported through FTP or 
Internet which limited its usage. Moreover, the quality control method in the software is 
based on simple comparison of the detected signal with the sample signals, which is not 
an advanced method for quality monitoring. 

In [21], a low-cost process monitoring and control system using nozzle-based 
pressure and temperature sensors was presented. Experiments showed that temperature 
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and pressure measurements in the nozzle can provide effective control of melt quality 
and shot size uniformity. With the help of the Lab VIEW, signal can be viewed remotely. 
Although the results showed in the paper is pleased, the system required an add-on 
nozzle pressure sensor mounted in the injection molding machine, which is not 
economic compare with the built-in hydraulic sensor. 

MMS/Production Monitoring [23] of the "Moldflow" is a manufacturing 
execution system that tracks and reports production and machine efficiencies. The 
system can be attached to virtually any piece of cyclic equipment used for discrete 
manufacturing and also provides capabilities for work order management, job 
scheduling, mold and machine maintenance tracking, labeling and SPC/SQC functions. 
MMS/Production Monitoring allows manufacturing managers to measure constraints, 
identify production delays and assess machine capacity, providing critical information 
in real time to maximize the efficiency of shop floor operations. 

ERC2 [24] is the Allen-Bradley's patented Expert Response Compensation 
closed-loop control technology. It provides many functions such as automatic tuning of 
the pressure and velocity loops associated with clamp, injection and ejector motion; 
precise temperature control and molding control; network communication for data 
processing. All this functions can help company to optimize the injection molding 
process and increase the productivity. 
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Chapter 3: Monitoring Methods 
This chapter describes the monitoring methods that have been used in the 

research. The first one is the Radial Basis Function Neural Network (RBFNN), which 
has been used in predicting the nozzle pressure and part weight; another one is the 
Similarity that I used to monitor the short shot of injected part; last is the Support 
Vector Machine (SVR) and Virtual Search Method (VSM) which has been used in 
parameter resetting. The experiments conducted will also be described to verify the 
performance of the proposed methods. 

3.1 Predict nozzle pressure and part weight using the Radial Basis 
Function Neural Network 
3.1.1 Motivation 

For monitoring of part quality of injection molding machine, nozzle pressure is 
perhaps the best among various signals. It is however rather expensive to acquire. On 
the other hand, most plastic injection molding machines have a build-in hydraulic 
pressure sensor and a ram position sensor. Therefore we tried to predict the nozzle 
pressures from the hydraulic pressure and the ram position. The new method was based 
on the Radial Basis Function Neural Network (RBFNN). 

3.1.2 Background 
For monitoring of injection molding machine, artificial neural network is 

suitable as it has the ability of learning from experience, i.e. finding out the relationship 
between input and output from large amount of experimental data. Another advantage 
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of ANN is it can use in prediction. After training the ANN, one can get the correct 
predicted value from an untrained input data. Among different types of artificial neural 
network, Back-Propagated Delta Rule Networks (BP) and Radial Basis Function 
Networks (RBF) are two famous neural networks to leam arbitrary mappings or 
classifications. A typical BP network consists of one input layer, one output layer and 
several hidden layers. It uses the delta rule to adjust the weights in order to minimize the 
error function. A typical RBF network consists of 3 layers (input, hidden and output) 
which the error function is minimized by adjusting the distance between the input vector 
and the centre of the network. B.H.M. Sadeghi developed a BP-neural network 
predictor that use to predict the quality of the plastic injected parts [15]. In general, a 
RBF network need a shorter training time than a BP network. W.He et al. developed a 
fuzzy-neuro system to predict the amount to be adjusted for the injection molding 
parameter in order to reduce the observed defects [1]. 

In order to conduct on-line monitoring, the first step is to select appropriate 
sensors. An injection molding machine usually has a number of built-in sensors, which 
can be categorized into one of four types: temperature, pressure, speed and stroke 
(position). Souder et al. [26] investigated the correlation between the peak pressure and 
the product quality. In his study, a number of pressure sensors were used, including the 
hydraulics system pressure, the injection nozzle sensor, and two mold cavity sensors. 
The results showed that the mold cavity sensor is the most sensitive (the correlation 
coefficient r = 0.8), follow by the nozzle pressure sensor (r = 0.7), and the hydraulic 
pressure sensor (r = 0.4). Since the cavity pressure sensor must be reinstalled every time 
a mold is changed, the nozzle pressure sensor is a more practical choice. In [27], the 
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nozzle pressure signal is used to control the packing phase to assure the product quality. 
It also showed that the nozzle pressure signal is even better than the cavity pressure 
signal. Nevertheless, the use of nozzle pressure sensor involves two problems: first, it 
requires additional costly investment (while most plastic injection molding machines 
have built-in hydraulic system sensors). Second, it is not directly correlated to the 
product quality. The first problem motivates us to use the hydraulic system sensor, 
which is readily available for many plastic injection molding machines but has much 
lower signal-and-noise (S/N) ratio. The second problem motivates us to use advanced 
learning method, which is the Radial Basis Function Neural Network (RBFNN). 

3.1.3 Hybrid RBF neural network 
Radial basis function (RBF) neural networks offer some advantages over multi-

layer perceptions (MLP) in some applications, because RBF neural networks are easier 
to train than MLP neural networks (Mark Orr 1995). Meanwhile, RBF neural networks 
can transform the rj-dimensional inputs nonlinearly to an m-dimensional space like the 
MLP neural network, and then estimate a model by using a linear regression. The non-
linear transformation is controlled by a set of m basis functions each characterized by a 
position or center Cj in the input space and a width or radius vector rj, je {l,2,---,m} 
28]. A popular RBF neural network depicts in Figure 3-1. The basis functions are 

typically Gaussian-like functions, such as: 

�= exp — ( 1 ) 
V J 
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Clearly, the output of basis functions respond most strongly to the inputs nearest 
to the center Cj, in the metric determined by the radius Vj. The output of the RBF neural 
network,/(x), which is a model based on linear regression, is expressed as follows: 

m 

= (2) 

——Qjd^—— 

w, \ w. /w i/ 
Fig.3-1: An RBF neural network. 

In brief, to build a RBF neural network often meet four problems, including (1) 
the number of nodes for RBF neural network; (2) the identification of Gaussian center 
Cj； (3) the proper setting of the radius r/, (4) the output-layer weights. For the fourth 
problem, it is relatively simple to determine the output-layer weights wj by using the 
delta rule or some traditional statistical approach such as the pseudoinverse matrix. For 
the first problem, it is involved in the second problem because the identification of 
Gaussion center cj includes its size and its number. Therefore, the more difficult 
problems are the identification of Gaussian center Cj and the proper setting of the radius 
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rj. To overcome the aforementioned problems, various methods have been presented 
[29-33]. However, most of these techniques are computationally expensive. To 
summarize, the design of a successful RBF neural network involves several nontrivial 
problems, and so far there does not seem to exist any simple and general algorithms, or 
heuristic. Reference [34] first suggested combining the decision tree and RBF neural 
network to overcome the drawbacks of the other algorithms. Each terminal node of the 
decision tree contributes one unit to RBF neural network, the center and radius of which 
are determined by the position and size of the corresponding hyper rectangle. The 
decision tree can sets the number, positions and sizes of all RBF centers in the network. 
Because the decision tree nodes are converted into RBF unites, the only level of model 
complexity control is the tree pruning provide by C4.5 software and the choice of RBF 
scale, a. Unfortunately, Kulbat did not present a method to optimize either the degree of 
pruning or the value of the parameter a. Orr [35] presented a new method by 
combining regression tree and RBF networks, and adding an automatic method for the 
control of model complexity through the selection of RBFs. The Orr method consists of 
six steps, as shown in Figure 3-2. 
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1. Generating the regression  
tree  

i z  
2. Transforming tree nodes into 

RBFs  

3. Selecting the subset of  
RBFs  

o  
4. Calculating the weights  

5. Model selection criteria 

o  
6. The best parameter values 

Fig.3-2: Six steps of the Mark Orr method. 

(1) Generating the regression tree. Given the training data, {x Jf^^, the root node of the 

tree, which will be the smallest hyper rectangle, can be obtained by the regression 
tree method. The center values c of these hyper rectangles are calculated. 

(2) Transforming tree nodes into RBFs. To transform a hyper rectangle into a Gaussian 
RBF, the center c of the hyper rectangle is taken as the RBF center, and its size 
(half-width), scaled by a parameter a，as the RBF radius; 
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(3) Selecting the subset of RBFs. If all RBFs from terminal nodes are included in the 
model, the model complexity is very sensitive to the extent tree pruning. To avoid 
the problem, Mark Orr combined the backward elimination and forward selection, 
and used the tree to order the selection process for RBFs. 

(4) Calculating the weights. Given the training set inputs {x. , the RBF centers Cj and 

radius rj, the weights w are w = , where H = {/z^.(x.)} , and 

y = [ŷ  y i ' " yp^^ is the vector of training set output values. 

(5) Model selection criteria. Generalized cross-validation (GCV) and Bayesian 
information criterion (BIC) two criteria are used to evaluate and compare different 
subsets of RBFs. 

(6) The best parameter values. In the Mark Orr method, there are two main parameters 
/?min , which control the depth of the regression tree and a , which determines the 
ratio of hyper rectangle and RBF size. Mark Orr has developed a semi-heuristic 
approach to optimize these parameters. 

3.1.4 Estimation of nozzle pressure 
Base on the methodology mentioned in 3.1.3 and some final adjustments, the 

RBFNN can be built. With the RBFNN, we tried to estimate the nozzle pressure using 
hydraulic pressure and screw position as the inputs of the model. Figure 3-3 shows the 
idea. After training the RBFNN, it is ready to use for predicting the nozzle pressure 
during injection process with the new coming inputs. The method can be expressed by 
following equation: 

y{t) = (3) 
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f(xi(t)) is the modeling function obtained from RBFNN, Xi(t) is the input (i.e. hydraulic 
pressure and ram position), y(t) is the estimated nozzle pressure. Experiments and 
results will be shown later. 

Hydraulic pressure xi(t-l)  
(with delay) Estimated nozzle 

——RBFNN • / � 
ivDrr^ix pressure, y(t) 

Ram position X2(t)——^ 

Fig.3-3: Estimate nozzle pressure using RBFNN. 

3.1.5 Estimation of part weight: The two steps and one step methods 
The idea has been further expanded to predict the part weight using the RBFNN. 

Part weight has been chosen as an indicator of part quality because it has the physical 
significance. Figure 3-4 shows the parts used in this research, which contains two 
rectangular plate joint by the runner. 
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Fig.3-4: The injected part. 

The dimensions of the rectangular plate in normal condition are approximate 
90x70x2 mm. Let's consider one of the rectangular plates, the volume can be calculated: 

Volume = Lenght x Width x Height 

=0.09 X 0.07 x0.002m3 

二 1.26x10—5 m3 

The plastic used to produce the part was Acrylonitrile-Butadine-Styrene (ABS), 
which having a density [p) of llOOkg/rn. Therefore, the mass of the part in normal 
condition can be calculated using the follow equation: 

Mass - Volume x Density 

=:1.26x 10-5 )x (1100) 

-0.01386)^^-14^ 

The actual weight for one rectangular plate in normal condition should be 
between 13g and 15g. The value had small different compared to the one obtained from 
theoretical calculation because density of the ABS may changed due to the high 
injection pressure. This showed that the part weight is a good indicator of the part 
quality, therefore we decided to monitor the injection process by predicting the part 
weight. The proposed method (we called it two steps method) consists of two steps: 
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1) Estimate the nozzle pressure by the RBFANN (detail in 3.1.4). Inputs of the system 
were the hydraulic pressure (with delay, xi{t-\) and xi(0) and ram position feCO), while 
the output was the estimated nozzle pressure (y(0), as shown in Figure 3-5. 

2) Predict the part weight using the estimated nozzle pressure. This was done by making 
use of the RBFNN again, however, input of the system changed to the estimated nozzle 
pressure (y(0) and the output was the predicted part weight (z(0), as shown in Figure 3-
6. The method can be expressed by the following equations: 

y{t) = f{x,{t),x,{t-l),x^{t)) (4) 

z(t) = f(y(t)) (5) 

ist step: 
Hydraulic pressure xi(t-l)  

(with delay) Estimated nozzle 
勾 R B F N N • pressure, 

Ram position X2(t)——^ 

Fig.3-5: Step one of two steps method. 
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2nd Step: 

Estimate nozzle Estimated part 
pressure, y(t) RBFNN • weight, z(t) 

Fig.3-6: Step two of two steps method. 

A natural thought is if the two steps can be reduced to just one step. Therefore, 
the part weight was tried to predict directly from the hydraulic pressure and ram 
position using the RBFANN (Figure 3-7), which can be expressed as follow: 

Z(t)^ fix,(tlx,(t-II x^(t)) (6) 

Hydraulic pressure xi(t-l)  
(with delay) Estimated part 

r B F N N ^ • weight, z(t) 
Ram position X2(t)——^ 

Fig.3-7: The one step method. 

Experiments have been conducted to verify the performance of the one step 
method, which will be described later. 

3.2 Short shot Monitoring using Similarity 
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3.2.1 Background 
When there are two sets of data or objects, a common question people wonder is 

“Are they the same?". Even the data or objects look like the same, it cannot be 
concluded as equal unless a scientific measurement is applied. On the other hands, if the 
data or objects look different (or similar), then how "different (similar)" are they? 
Similarity measurement is a scientific method to find out the different between two sets 
of data or objects using mathematical calculations and therefore is reliable and accurate. 
There are lots of methods used to measure the similarity (or dissimilarity) of objects. 
For examples, Roberto Paredes and Enrique Vidal [36] proposed a class-dependent 
weighted (CDW) dissimilarity measure in vector spaces to improve the performance of 
the nearest neighbour (NN) classifier. Dorin Comaniciu, Peter Meer and David Tyler 
[37] showed that the Bhattacharyya distance is a particular case of Jensen-Shannon 
divergence for normally distributed features, which can be used for dissimilarity 
measure. 

3.2.2 The Dissimilarity Approach 
In the study, the dissimilarity approach used was based on correlation function, 

for time series x[ and x/ of length L, dissimilarity y^j is calculated as: 

,,二 (7) 

where correlation Ĉ - between and x/ is : 

(8) 
k 

and A. is average of x[: 
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(9) 
k 

The dissimilarity value y.. will lie between 0 and 1. For uncorrelated pair, C" 二 0 

and y.. - 1, while y.. = 0 for identical x[ andx l . Stronger correlation between x[ and 

xl results a lower value of 厂".By comparing the dissimilarity value of the signal with a 

reference signal, short shot monitoring can be achieved. Experiments and results will be 
shown later. 

3.3 Parameter Resetting using Support Vector Machine (SVM) and 
Virtual Search Method (VSM) 
3.3.1 Background 

Support vector machines (SVM) was first introduced by Vapnik [38] and further 
investigated by many others [39-40]. It is an important new methodology for nonlinear 
system modeling. While classical Artificial Neural Network (ANN) approaches suffer 
from problems like trapping in the local minima and being sensitive to the number of 
hidden units [41], SVM uses convex optimization to determine the parameters of a pre-
determined nonlinear model and is sometime more robust. According to literatures, 
SVMs have been widely adopted for regression analysis [42]. Recently, a new 
algorithm, called the Least Squares SVM (referred to LS-SVM) is proposed [40]. LS-
SVM formulation works with equality instead of inequality constraints and a Sum of 
Squared Error (SSE) cost function similar to the one used in classical ANN. It greatly 
simplifies the problem since its solution can be found by linearization. More precisely, 
it solves the problem by iteration and in each iteration, it solves a Karush-Kuhn-Tucker 
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(KKT) system, which takes a similar form as a linear system. 

3.3.2 Support Vector Regression 
In regression modeling, the goal is to find an unknown function based on a finite 

set of observations: {jc/, yi}, i - 1, 2, where, the input is ^/-dimensional, X/ e R"̂  

and the output is one-dimensional y E R. For SVM regression (referred to as SVR), the 
input, X, is first mapped onto an m-dimensional feature space using a nonlinear mapping 
(m > d), and then a linear model is constructed in the feature space. This procedure is 
shown in Figure 3-8. Using mathematical notation, the linear model in the feature space 
is given by: 

}； = w^cpix) + b (10) 

where, (p{x) denotes a set of nonlinear transformations, which maps the input space into 
the feature space; w is the weighting vector in the primal space; and b is the "bias". 

i i 

t ,.厂... • • —* • 
• • • • 

. \ 严 Feature space • • • • . • 
Input space 
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Fig.3-8: Illustration of the transformation from the input space to the feature space by 
means of a nonlinear transformation ( d = 2 ; m = 3). 

With the Least Square Support Vector Regression (LS-SVR), the transformation 
can be found by solving the optimization problem below: 

1 1 N 
m i n J {w = —w^ w + —CYj^k ( 1 1 ) w 力，e 2 2 k = i 

where, J is the cost function, which consists of a Sum of Square Error (SSE) term and a 
regularization term controlled by a positive real number C; and eu is error defined below: 

ek = y k - + b, k=Y,2，..,,N 

It should be pointed out that the weighting vector, w, can be in very high 
dimension, which makes the calculation of Equation (11) very difficult. To solve this 
problem, one can compute the model in a dual space instead of the primal space. Define 
the Lagrangian: 

L(w,b, e, a) = J(w,e) — [ a众 ) + b + (12) 
k=l 

where, cik e R is the Lagrange multipliers, also called the support vector. Accordingly, 
the necessary conditions for optimality are: 
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dL ^ dL _ dL ^ ^ dL ^ T—= 0; — = 0; — = 0; and — = 0; ow db de da 

Or: 

‘ N 

k=\ 
N 

, k = l , 2 , . . . , N ( 1 3 ) 

(^k = Ce, 
= 0 

Note that this is a set of linear equations. Eliminating w and e, one can then find a = 
{ak] and b. Furthermore, choose a kernel function, K(., •), which meets the Mercer's 
condition: 

K(x,,x,) = (p(x, f (p(x,),k, 1=1, 2 ,…,N (14) 

It results in the LS-SVR model: 

N 

y{x) = + (15) 
k=l 

Comparing (10) and (15), it is seen that LS-SVR changes a primal problem to a dual 
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problem by using support vectors as is shown in Figure 3-9: Figure 3-9(a) shows the 
primal problem, which requires excessive computation and could suffer from problems 
like local minima. Figure 3-9(b) shows the dual problem, in which one only needs to 
solve a set of linear equations to find the support vector, and hence, is much easier. This 
is an important difference to the traditional ANN methods. 

(a) (p,{x) (b) K{x,x,) 

(PrM� 

Fig.3-9: From the primal problem to the dual problem. 

3.3.3 SVM Parameters Resetting using Virtual Search Method (VSM) 
It is no doubt that Support Vector Machine has its own advantages in dueling 

with the parameters selection problem. However, to further improve the system 
performance and efficiency, another technology called Virtual Search Method (VSM) 
was introduced. Virtual Search Method was first introduced by Robert et al. [43], 
which is an iterative method for automatic tuning of the molding process by on-line 
developing a 'virtual' model of the process as the basis of search for the appropriate 
inputs. VSM resorts to the physical process only when it has exhausted the virtual 
search, in our case, the virtual model was the Support Vector Machine. In fact, relying 
on direct process feedback can be costly, as many scraps may be produced before the 
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process is tuned. Therefore, it will be an advantage to use VSM as virtual tuning before 
the best suggested settings are found. 

The system worked as follow: First of all, experimenter chose the settings for 
the injection molding machine based on his/her own judgment. It was not necessary to 
care about those settings so much as the system would tune them into correct region 
later. Then, the weight of the first injected part should be measured and input to the 
system. That's all for the experimenter's part. All the steps after were automatic. Based 
on the measured weight and the target weight (which should be told to the system), the 
parameter selection part of the SVR modeling determined the prospective changes to 
the machine inputs, and suggested a set of new settings. The suggested settings then 
became the inputs of the SVR weight estimation, and a predicted part weight is given 
out as the output. If the predicted part weight was within specification, the suggested 
settings was said to be acceptable and training would be stopped. On the other hand, if 
the predicted part weight was not within the specification, the SVR model would be 
updated such that the new settings provided in the next round would be more accurate. 
This virtual searching was continued until the predicted part weight was within the 
specification. Finally the suggested settings were found. Figure 3-10 shows the block 
diagram of the system. 
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Fig.3-10: Block diagram of the system. 

3.4 Experiments and Results 
The experiments did in the research were based on the results of Design of 

Experiment (DOE), which helped to find out the reasonable parameters of the injection 
molding machine for the experiments conducted. The setups of the experiments were 
the same and will be describe in the following session. 

3.4.1 Introduction to Design of Experiment (DOE) 
Design of experiments (DOE) is basically the use of particular patterns of 

experiments to generate a lot of information about some process while still using an 
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absolute minimum of actual experiments to get the information [44]. Through DOE, 
people can have detail understanding of the factors in the process and the effects on the 
output of the process that result from changing those factors, therefore can diagnose the 
process or provide quality improvement [45-46]. There are many pattern of experiments 
in DOE, and the mostly basic pattern would be to use ever single possible combination 
of control parameters and levels. This is called a "full factorial" experiment. For 
example, if there are 3 factors at two levels each, then there should be which is 8 
experiments for a full factorial experiment. The advantage of the full factorial 
experiment is it consider all the possibility of combination of factors, which means all 
the interactions between factors are analyzed. However, it is sometimes not preferable 
or even not possible to carry full factorial experiment, try to imagine if there are 8 
factors and 3 levels each which will result of 6561 experiments ！ Experimenter usually 
tries to avoid using large full-factorial designs, therefore numerous types of "fractional 
factorials" designs have been development for the DOE. In fractional factorials design, 
only several sets are selected from all possibilities. The drawback of fractional factorials 
design is the confounding of interaction effects with main factor effects. Among the 
fractional factorials designs, the eight-run factorial design is used most. 

3.4.2 Set-points selection based on Design of Experiment (DOE) 
The injection molding machine used in this study (model no. PYI-50PCIII) was 

manufactured by PO YUEN (TO'S) MACHINE FTY. LTD. The machine was equipped 
with PYI-PC(28) control system. This European Design Control System is based on two 
16-Bits 80C186 micro-processors. All relevant information can be easily read on the 
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class IP65 oil resistant membrane type Man Machine Interface (MMI). Besides, 30 sets 
of mould data including 'temperature', 'time', ‘speed, and 'pressure' can be stored and 
retrieved from either RAM memory of from floppy diskette. In the DOE, several signals 
have been collected from the injection molding machine, they were: Nozzle pressure, 
Hydraulic pressure, Mold open time, Mold closed time, Injection time and Ram position. 
For nozzle pressure, it was collected using the Kistler sensor (4083A); hydraulic 
pressure signal was collected using the Kistler sensor (RAG25A200BV1H)； the other 
signals were collected from the controller of the injection molding machine directly. All 
the signals collected were passed to the Hioki Memory Hicorder first, then through the 
LAN to transfer to the computer, sampling frequency was 1 kHz. The plastic material 
used in this experiment was transparent ABS and the part was two rectangular plates 
with runners. The experiment set-up is shown in Figure 3-11. In the research, the four 
factors, nozzle temperature, injection pressure, injection speed and holding pressure 
were concerned. A standard DOE was accomplished and the results are listed in Table 
3-1 and Table 3-2. 

Table.3-1: Experiment factors and their ranges. 
Variable [ a [ b f c Fd 
Name Nozzle Injection Injection Holding 

temp. pressure speed pressure 
High level (+) 2 0 5 � C 98 bar 40 
Low level ( - ) 1 9 5 ^C 80 bar ^ 5 
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Mold Runner ( 1 Hopper J 
\ / / / Injection Ram \ / Barrel Screw ^ / / \ 

- 200 200 195 1 9 0 1 9 5 C | ^ ^ 

/ \ Servovalve 
—— 

p:t 陽 捕 / n ^ X „ (Nozzle Pressure) (Ram position) / I A \ I t y M__U 

y / ^ ^ ^ ^ ^ (Hydraulic pressure) Hydraulic System 

Fig.3-11: The experiment set-up. 
Table.3-2: Experimental matrix and the results. 

Variables A [ b AxB FC AxC BxC pD Results 
Run (yd 

~1 + + + + + + + 35.5675 
"2 + + + - - - - 36.1950 
"3 + - - + + - - 27.4925 

+ - - - - + + 26.5225 
~5 - + - + - + - 37.0425 
~6 - + - - + —- + 37.8625 

- - + + - - + 30.8825 
~8 - - + - + + - 28.1400 
1 314444 36.6669 32.6963 32.7463 32.2656 31.8181 32.7088 
"n 33.4819 28.2594 32.2300 32.1800 32.6606 33.1081 32.2175 
Effect - 2 . 0 3 7 5 8 . 4 0 7 5 0 . 4 6 6 3 0 . 5 6 6 2 ~ - 0 . 3 9 5 0 -1.2900 0.4913 
E f f e c t / 2 - 1 . 0 1 8 8 4 .20380.2331~~~0.2831-0 .1975 -0.6450 0.2456 
I: mean of high level ； II: mean of low level 
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Fig.3-12: Pareto Chart for \Ejfectl2\ values of Half Effects. 

From the Figure 3-12, it was found that factors A, B and interaction of BC were 
more important than the other factors or interactions. Thus, a prediction equation was 
constructed using A, B and BC as inputs. The prediction equation is given: 

(/\ \ f \ \ ( � J = ^ A+ ^ ^ (16) 
V 2 y V 2 y V 2 y 

where, y - the predicted value; y - the average of all results got from the experiment; 

half effect for factor A; — = half effect for factor B; ^ ^ = half effect for 2 2 2 
BC interaction. Notes: (a) Only the important effects were included in the prediction 
equation; (b) The equation can only apply to orthogonally-coded factor settings for 2-
level designs. 

Based on the experiments, the prediction equation can be written as: 
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j) = 32.4631- (1.0188)A + (4.2038)B 一 (0.6450)5C (17) 

Compare the estimated values with the actual results from experiments, as 
shown in Table 3-3, the performance of the prediction equation was acceptable. 

Table.3-3: Compare predict value with experiment value. 
Predict value Experiment value Percent error (%) 

Run.l 35.0031 35.5675 1.5868 
Run.2 36.2931 36.195 0.2710 
Run.3 27.8855 27.4925 1.4295 
Run.4 26.5955 26.5225 0.2752 
Run.5 37.0407 37.0425 0.0049 
Run.6 38.3307 37.8625 1.2366 
Run.7 29.9231 30.8825 3.1066 
Run.8 28.6331 28.1400 1.7523 

Part weight can be predicted using the above prediction equation with the 
settings other than those in the experiments; the only restriction is that the settings 
should be within the range of the settings in the experiment. For example, the nozzle 
temperature can be used at any value between 195 to 205 in the prediction equation, 
but not outside this range. 

Several experiments have been done using the predicted values from the 
equation, however, the results was not good. To improve the results, another DOE was 
done and this time with a smaller ranges for the factors. The DOE settings and results 
are shown in Table 3-4 and Table 3-5 respectively. 
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Table.3-4: Experiment factors and their ranges. 
Variable [ a [ b [ c [ d 
Name Nozzle Injection Injection Holding 

temp. pressure speed pressure 
High level ( + ) 2 0 2 ^C 90 bar ^ 
Low level (-) 198�C 82 bar ^ 15 

Table.3-5: Experimental matrix and the results. 
Variables A FB AXB FC AxC BxC FD Results 
Trail (yO 
1 + + + + + + + 35.4 

+ + + - - - - 35.5975 
"3 + - - + + - - 33.4125 
"4 + - - - : + + 33.26 
"5 - + - + - + - 35.0075 
~6 - + - - + - + 34.7775 
~7 - - + + - - + 33.33 
"8 - - + - + + - 3 2 . 6 4 ^ 
1 34.4175 35.1956 34.2419 34.2875 34.0575 34.0769 34.1919 
"n 33.9387 33.1606 34.1144 34.0688 34.2987 34.2794 34.1644 
Effect 0 . 4 7 8 7 2 . 0 3 5 0 0 . 1 2 7 5 ~ 0 . 2 1 8 7 - 0 . 2 4 1 2 -0.2025~~0.0275 
E f f e c t / 2 0 . 2 3 9 4 1 . 0 1 7 5 0 . 0 6 3 7 0 . 1 0 9 4 - 0 . 1 2 0 6 ~ ~ - 0 . 1 0 1 3 0 . 0 1 3 7 
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Fig.3-13: Pareto Chart for \Effectl2\ values of Half Effects. 

The effect factors analysis is plotted in Figure 3-13. From Figure 3-13, factors A, 
B were found to be more important to the part weight than the other factors or 
interactions. Thus, the prediction equation can be written as: 

y 二 34.1781 + (0.2394)A + (1.0175)5 (18) 

Several experiments have been done to test the performance of the prediction 
equation and the results have been improved. Therefore, the prediction equation was 
used to determine the set-points for the production of part. 

3.4.3 Nozzle pressure estimation 
50 parts were produced using the experiment setups described in the last session. 

The machine set-points were chosen based on the DOE results (Appendix A). 50 sets of 
data (included the hydraulic pressure, nozzle pressure, ram position and part weight) 
were recorded using the sensors in the injection molding machine. The data were used 
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to train and test the RBFNN. First, only hydraulic pressure was employed to estimate 
the nozzle pressure, the input of the hybrid RBFNN contained p{t) and its delay 
the out was Pn{t)- One set of data (i.e. hydraulic pressure and nozzle) from the 
experiment was used as the training data of the network. After training the RBF neural 
network, the result was shown in Figure 3-14. 

1500 I I I I , 
Estimated nozzle pies sure 
Measured nozzle pressure 

f 1 -
i 

I 
N 卩 -
N O 

o' ‘ ‘ ‘ ‘ 
0 1 2 3 4 5 Time(sec.) 

Fig.3-14: Estimated nozzle pressure using RBF (exp.ll). 

The result was pleased as the estimated nozzle pressure could follow the original 
nozzle pressure signal well except the part at the later portion. Therefore, the hybrid 
RBFNN was developed and could be used to estimate the nozzle pressure of the 
injection molding machine using the hydraulic pressure signal obtained from the 
experiment. It has been mentioned that the parameters of the injection molding machine 
were kept the same during the experiments; however, it didn't mean that all the 
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experiment results were conformed or very similar. Actually the results were quite 
different to each others, thus, the neural network must be checked to verify whether it 
could work well or not. Some typical results were chosen and shown in the Figures 3-15 
and 3-16. 
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Fig.3-15: Estimated nozzle pressure using RBF (exp.18). 
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Fig.3-16: Estimated nozzle pressure using RBF (exp.22). 

In Figure 3-15, the estimated nozzle pressure could follow the measured nozzle 
pressure, however, it was not smooth enough. Moreover, the peak value in the measured 
nozzle pressure curve could not be reflected accurately. Also, the estimated nozzle 
pressure curve was flat at the later portion, where it should be increased. In Figure 3-16, 
the peak value of the measured nozzle pressure still could not be reflected accurately, 
and the starting point of the estimated nozzle pressure was failed to match with the 
actual value. The later portion was increasing but still could not follow the measured 
nozzle pressure. From the figures, all the estimated nozzle pressures could follow the 
original nozzle pressures well except at the later portion. The major features of the 
original curve were saved and could be reflected from the estimated nozzle pressure. 
The RBFNN could estimate the nozzle pressure well except the part at the later portion. 
This might because the hydraulic pressure was not sensitive enough to estimate the later 
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portion of the nozzle pressure. A comparison of the nozzle pressure and hydraulic 
pressure was shown in Figure 3-17, as the signal of the hydraulic pressure at the later 
portion was nearly horizontal, it was difficult for the hydraulic pressure to reflect the 
incline part of the nozzle pressure. To solve this problem, ram position was introduced 
to train the network together with the hydraulic pressure in order to improve the result. 
It is easy to imagine that ram position (or ram velocity) is highly related to the nozzle 
pressure. During the injection period, melt is injected into the mold through the nozzle, 
the faster the advance of the ram, the faster the melt go into the mold and thus the 
higher the nozzle pressure. On the other hand, if the ram moves with a slower speed, the 
melt will go into the mold at a slower speed and results a lower nozzle pressure. 
Therefore, using ram position and hydraulic pressure as standard to estimate nozzle 
pressure is better than using hydraulic pressure alone. The new improved network was 
used to test with the same set of data, the result was shown in Figure 3-18 and 3-19. 
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Fig.3-18: Estimated nozzle pressure using improved RBF (exp.18). 
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Fig.3-19: Estimated nozzle pressure using improved RBF (exp.22). 

In Figure 3-18, the estimated nozzle pressure followed the measured nozzle 
pressure very well, all the turning points of the measured nozzle pressure curve were 
correctly reflected in the estimated nozzle pressure curve. In Figure 3-19, although the 
starting point was still not matched with the measured nozzle pressure, it was closer 
than in Figure 3-16. Furthermore, the later portion of the estimated nozzle pressure 
curve was increasing as the measured nozzle pressure. Comparing with the previous 
result, estimate nozzle pressure using ram position and hydraulic pressure as inputs gave 
a better result. Especially for the turning points and the later portion of the nozzle 
pressure curve, the result was greatly improved. Before using the estimated nozzle 
pressure, it was important to verify the estimated nozzle pressure was reasonable and 
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acceptable to be used. This can be done by finding out the mean squared error between 
the estimated and actual nozzle pressure. The results were shown in Figure 3-20. 
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Fig.3-20: Compare MSE of two RBF networks. 

The mean squared error for the improved results was smaller than the non-
improved results. From Figure 3-20, it can be seen that most of the estimated nozzle 
pressure had a mean squared error smaller than 100 bar, which was less than 8% of the 
actual nozzle pressure (about 1300 bar). The errors were small enough for the estimated 
nozzle pressure of the RBF system to be used without any confuses. 

3.4.4 Part weight prediction using the One Step Method 
In order to test the performance of the one step methods, an experiment was 

accomplished. In the experiment, a sample of 60 parts were produced (using the 
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machine settings obtained from DOE, results are shown in Appendix B) and examined 
in details, among which 30 of them were used as the training inputs for the RBFANN 
and the other 30 were used to test the performance. Figure 3-21 compares the measured 
part weight and the predicted part weight by the one step method while Figure 3-22 
shows the root mean squared error of the predicted part weight. 
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Fig.3-21: Compare measured part weights and predicted part weights by one step 
method. 

48 



6 “ i 1 1 1 1 1— 

I 5- -

I 

I： _ 
0 3 - -r 1 t 2 -H s 

昼 � J • • ^ • L I I - L - • • • i i i I I IL L 
0 5 10 15 20 25 30 Parts 

Fig.3-22: Root mean squared errors of predicted part weight by one step method. 

From the figures, it can be shown that most of the predicted part weights were 
closed to the measured part weights and hading an average root mean squared error of 
0.64. The greatest error happened in part 14. It was expectable because experiment 14 
corresponded to an abnormal part which means it exceeded the nominal value, thus the 
predicted weight would have a larger root mean squared error. 

3.4.5 Similarity Monitoring using estimated nozzle pressure 
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To test the performance of the similarity monitoring method, an experiment was 
conducted. In this experiment, the injection molding machine was set based on the DOE 
results. It is well known that injection pressure and holding pressure is highly related to 
the quality of part. Nozzle pressure is an excellent reflector for the injection and holding 
pressure thus can be used to control the quality of part. In the experiment, nozzle 
pressure during the injection phase was estimated using hydraulic pressure and ram 
position. With the estimated nozzle pressure, a monitoring system was built for the 
injection molding machine. 50 parts were produced with the same machine conditions, 
however, they were not identical (Results are shown in Appendix C). Some were bad in 
quality and some were good. A simple way to determine the quality of part is the part 
weight. The lighter the part is, the worse the part quality maybe. Weight can simply find 
out using an electronic compact balance. As the weights of the 50 parts were different, 
the nozzle pressures signals were therefore not the same. Once a reference nozzle 
pressure was found (i.e. typical result that corresponded to good quality), different of 
nozzle pressure can be found using similarity and as a result, quality of parts can be 
estimated. 

In the similarity method, a reference should be given in order to calculate the 
dissimilarity and this is the trickiest point of the method. The result is very depended on 
the reference chosen. If the reference chose is an abnormal result, the dissimilarity 
results may reflect the normal results and vase verus. Figures 3-23�27 show the 
different. 
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Fig.3-23: Dissimilarity results using exp.8 as reference. 
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Fig.3-24: Dissimilarity results using exp.lO as reference. 
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Fig.3-26: Dissimilarity results using exp.32 as reference. 
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Fig.3-27: Dissimilarity results using exp.ll as reference. 

The lines with larger dissimilarity values were considered as bad products. From 
Figure 3-27, they were part 3, 8, 9, 15，16, 17, 21, 23, 27, 29, 31, 41 and 49. Compare 
with the experiment results, part 3, 8, 9, 16, 17, 23, 31, 41 and 49 are diagnosed as bad 
products correctly. Thus part 15, 21 27 and 29 are diagnosed wrongly. Part 10 was a bad 
product that hasn't been diagnosed by the system. For experiments 4, 6, 24, 43, 44, 49 
and 50, they were all corresponding to the same kind of problem which only half of the 
part was filled incomplete and the system was failed to diagnose (only experiments 31 
and 49 were right). Except for the problem of "half of the part had short shot”，the 

monitoring method functioned correctly for 7 cases out of 8 cases plus 4 false diagnosed. 
For comparison purpose, dissimilarity was done once using the actual nozzle pressure 
got from the experiments; the result showed that the different between estimate and 
actual nozzle pressure was small. Therefore the proposed monitoring method satisfies 
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the requirement. In the above testing, the diagnosis system gave out bad results for the 
parts that were Half. Half means that one side of the part is short shot while the other 
side are normal (Figure 3-28). With this kind of problem, the short shot is usually very 
small, this small different is very difficult to reflect from the estimated nozzle pressure. 
That is why the monitoring method failed to diagnose this kind of problem. 

Short shot 

Fig.3-28: Problem of Half 'm part. 

3.4.6 Similarity Monitoring using ram position 
Similar to nozzle pressure, ram position is sensitive to the quality of part. In 

Figure 3-29, the ram positions curves with dash-dot lines corresponding to bad parts, 
where the blue curves corresponding to good parts. The curve of dot line is the 
"separating curve" that separating the region of bad and good parts. Therefore, if a 
suitable reference is chosen to act as the "separating curve", ram position can be used to 
monitoring the quality of parts. As the curve of good part should be under the 
"separating curve", and vice versa, monitoring can be done by considering the area 
under the curve of screw position. 
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Fig.3-29: Compare ram position curves. 
The area under screw position curve, A{X) , can be calculated by: 

A{x)=]f{x)dx (19) 
* 

0 

where f{x) is the function of ram position; p is the number of data points. 

The similarity equation is given by (20): 

彻= AXx)-Ar“x) (20) 
where ^. (x) is the similarity value of the iih ram position; 

為(jc) is the area of the ith ram position; 

A对(X) is the area of the reference ram position. 

55 



If s. {x) < 0，the part is considered as good; if ^ . ( j c ) � 0 , the part is considered as bad. 

To compare the result between monitoring using ram position and nozzle 
pressure, test was done for the ram position system using the same sets of data as the 
nozzle pressure system. As the conditions of the injection molding machine changed 
continuously, the 50 experiment data were separated into two groups and two different 
references were chosen to obtain better results. Figure 3-30 and 3-31 show the similarity 
values got from the ram position monitoring method. 
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Fig.3-30: Similarity results for first 25 data. 
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Fig.3-31: Similarity results for next 25 data. 

For the value of area different greater than zero, the part considered as bad 
product. From Figure 3-30 and 3-31, they were part 3, 4, 6，8, 9, 10，15, 16, 17, 21, 23, 
24, 27, 29, 31, 41，43, 44, 49, 50. From table 3-6, both monitoring methods had 4 wrong 
results, however, nearly all (6 out of 8) of the parts with the problem “Half，was missed 
by monitoring using nozzle pressure. 

Table.3-6: Compare monitoring results using nozzle pressure and screw position 
Exp. Problem of part Mon by nozzle pressure Mon by screw position  
3 Small short shot OK OK 

~4 Half Miss OK 
—6 Half 一 Miss — OK 
8 "Very large short shot OK OK  
9 Large short shot OK OK  
10 Small short shot Miss OK  
1 5 Normal Wrong Wrong  
16 Very large short shot OK | OK — 
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17 Targe short shot | OK OK 
21 Normal Wrong Wrong  
23 T^rge short shot "OK OK 

~24 Half — Miss — OK 
27 Normal Wrong Wrong  
29 Normal Wrong Wrong 

T l Half ~ OK OK — 
41 Large short shot ~0K OK 

"43 Half — Miss OK 
~44 Half Miss OK 
"49 Half OK OK 
—50 Half Miss OK 

The results in Table 3-6 shows clearly that monitoring part quality using ram 
position is more reliable than using nozzle pressure. It is believed that different 
monitoring strategies give different results and will have their own pos and cons, 
therefore a new methodology was proposed based on statistic which combined different 
monitoring strategies for part quality monitoring. Suppose there are n monitoring 
systems, they will have their own monitoring result ；y (which is 1 for part having an 

abnormal condition and 0 for a normal part), the overall monitoring result Y is given by: 

Y = (21) 

y. is the monitoring result of system i ； 

a. is the performance coefficient of system i calculated by: 

C 
^ (22) 
l A i=l 

where C. is the correct percentage of system i. 
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Y should be a value between 0 and 1.Thresholds (also between 0 and 1) are 
defined to check the quality of part, i.e.: 

Y < threshold\: normal; 
threshold Y <Y < threshold ^ ： suspect case; 
threshold2 < Y : abnormal; 

For the monitoring method using estimate nozzle pressure, 13 parts were 
reported as abnormal and 9 of them were right, thus: 

C叩:(^^jx 100% = 69.23%{or0.6923) 

For the monitoring system using ram position, 20 parts were reported as 
abnormal and 16 of them were right, thus: 

Moreover, 
0.6923 ^…八 」 

a抓= =0.4639，and 
"尸 0.6923 + 0 . 8 

a腿 二—————=0.5361， 腿 0.6923 + 0.8 
So the monitoring equation was: 

r =�[ynp)+ a腿(y_) = 0 . 4 6 3 9 ( � ) + 0.5361()；_) 
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In this study, we set two thresholds, 0.4 and 0.55, such that: 
Y < 0.4 means the part was normal; 
0.4 < 7 < 0.55 means the part was a suspect case; 

0.55 < Y means the part was abnormal; 

Table 3-7 shows the test results of the new monitoring system using the same 
experiment data as nozzle pressure monitoring system: 

Table.3-7: Monitoring results by the new method. 

Exp. No. Y Meaning Exp. No. Y Meaning  
J 0 Normal 26 “ 0 Normal 
~2 —0 —Normal 27 1 Abnormal 
' 3 1 “ Abnormal 28 ~Q~ Normal — 
4 0.5631 Suspect case 29 1 Abnormal 

—5 —0 "Normal 30 0 Normal 
_6 0.5631 Suspect case ^ 1 Abnormal  
~7 0 "Normal 32 0 Normal 
_8 1 Abnormal 33 ~0~ " ^ r m a l — 
_9 1 Abnormal M 0 Normal  
—10 ~Q.5631 Suspect case 35 0 Normal 

11 0 Normal 36 ~Q~ Normal 一 
12 0 l ^ r m a l 37 “ 0 Normal 
13 0 "Normal 一 38 0 — Normal 
14 0 "Normal 39 0 Normal 
1 5 1 Abnormal ^ 0 Normal  
1 6 1 Abnormal ^ 1 Abnormal  
1 7 1 Abnormal ^ 0 Normal  

"l8 0 Normal 43 0.5631 Suspect case 
19 0 Normal ^ 0.5631 Suspect case 

“20 0 Normal 45 ~0~ Normal 
2 1 1 Abnormal ^ 0 Normal  
22 0 Normal 47 ~0~ Normal 一 
23 1 — Abnormal ^ 0 Normal 
2 4 0.5631 Suspect case 49 1 Abnormal  

-25 I 0 Normal 50 0.5631 Suspect case 
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The new method was more reliable than the methods before as it could not only 
show the normal or abnormal conditions of parts, but also gave judgments to some 
marginal cases. 

3.4.7 Parameter Resetting using SVM and VSM 
An experiment was accomplished to verify the performance of the proposed 

parameters resetting method. The experiment began when experimenter inputs first set 
of parameters to the injection molding machine and ran the process, then experimenter 
measured the weight of the injected part and inputed to the system. The system then 
suggested new set of machine parameters. Finally, experimenter followed the 
suggestion of the system and ran the process continuously, until the target weight wais 
achieved. Table 3-8 and 3-9 show the results of the experiment (Details results include 
in Appendix D): 

Table 3-8: Training data sets for the SVR model. 
Nozzle pressure Injection pressure Injection Speed Holding pressure Weight 

rC), Xi (bar), JC2 (%),X3 (bar), (g),y 
^ ^ 70 ^ 3 7 . 3 9 ^ 
^ ^ ^ 40 35.57 

^ ^ 5 28.14 
m ^ ^ 15 32.64 
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Table 3-9: Results of the tuning process {Target weight: 33.5g±0.3). 
Iteration Nozzle Injection Injection Holding Weight 

pressure fC), pressure (bar), Speed (%)， pressure (bar), (g), j 
Xl X2 X3 X4 

1 ^ ^ ^ 5 ^ 
2 % 49 ^ 30.46 
3 ^ ^ M ^ 32.78 
4 ^ ^ M ^ 33.37 

From the above results, it was shown that the product requirement {33.5g±0.3) is 
reached at the iteration (i.e. 33.37g) and have an average standard deviation of 
0.1527 (shown in Appendix D). 
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Chapter 4: The Remote Monitoring and Diagnosis System 
(RMDS) 

This chapter describes the remote monitoring and diagnosis system developed in 
the research, which included both the hardware and software part. Reader can have a 
clear understanding to the system after reading this chapter. 

4.1 Introduction to the Remote Monitoring and Diagnosis System 
With all the essential technologies and components, it was ready to build the 

RMDS. The RMDS was used to monitoring the injection molding machine during the 
injection process and it should include two main parts: 1) Network communication, 
which provided communication between the injection molding machine and the host 
computer; 2) Monitoring software, which provided a user friendly interface for the user, 
conducted data mining, analyzed and provided alert functions in order to monitor the 
injection molding machine. Figure 4-1 shows the overview of the remote monitoring 
and diagnosis system. 
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For network communication between the injection molding machine and the 
target computer, a commercial product called FieldPoint system was chosen (Figure 4-2, 
model no。： NI FP-AI-110). The National Instruments FP-AI-100 Series consists of 
versatile analog input modules for the FieldPoint I/O system. One can used the module 
to monitor voltage or current loop inputs from a variety of sensors and transmitters. The 
NI FP-AI-110 features 16-bit, filtered, low-noise inputs. With the FieldPoint system, we 
can collect the analog sensor signals from those sensors, convert to digital format and 
pass to the network. 
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Fig.4-2: Network module (left) and I/O module (right) of FieldPoint system. 

The monitoring software was written by Lab VIEW, it can easily cooperate with 
the FieldPoint system to achieve on-line or off-line monitoring and diagnosis. The 
major functions of the software were: data mining, properties settings, data analysis, 
statistic process control and network communication, which will be covered in the 
following sessions one by one. 

4.2 Starting Use of the Software 
After starting the software, there were three choices: “Start，’’ “Exit” and 

“Offline Running“ (Figure 4-3). 
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Start: Start running the software. 
•:• Exit: Exit the software. 
•:• Offline Running: Run the software in an offline state, this mode is for offline 

analysis and simulation. A data file has to load in offline 
running. Details will be discussed in later session. 

4.3 Properties and Channel Settings 
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Clicking the "Start" button, a pop up window would appear which 
corresponding to a settings page for the company profile and channels setup (Figure 4-
4). In this page, user had to input some basic information of the company: 

'' /• "‘ � . . • ” . . •• j io lk^j 
User information: 
Company Name: Factory no.: Machine ID: I.P. address 
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- ‘ ‘ ‘ ‘ Fig.4-4: Setup page for the company profile and channels. 

After setting all the channels and company profile, clicked the “OK” button to 
save the information. If the settings were the same as some previous process, user could 
load the settings from a saved file instead of setting them again. This was done by 
clicking the button “Loadfile..: (Figure4-5). 
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Fig.4-5: Load previous settings from file. 

After defining the channels, the software was ready to use. Figure 4-6 shows the 
interface of the software. There were several buttons in the interface providing specific 
functions for the software, and will be introduced one by one. 
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Fig.4-6: Interface of the monitoring software. 
There was a control panel in the interface. The control panel was used to control 

the functions of the software, which included the channel selection, on and off of the 
system, filter selection for the signal, settings of channel, machine, saving options and 
the SPC. Below are some of the features: 

4.3.1 Statistic Process Control (SPC) 
Since the 1940s the industry has been using statistical methods to ensure the 

quality of both products and services at their place of origin in order to reduce errors, 
costs, and time to market. The aim of SPC is the systematic selection of crucial 
parameters from the total of all parameters involved in the process in order to control 
the manufacturing process with decisive parameters and appropriate measures. 
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The SPC of the software included a process capability analysis for the part 
weight. The process capability described the long-term behavior of the process in order 
to assess performance trends over time and provides a measure of the quality of the 
process. Capturing the mean values of the measured values (i.e. part weight) by way of 
many single spot checked and applied them as Gaussian distribution would determine 
the quality of the process. Capability process calculations such as Cp (capability process, 
i.e., admissible tolerance versus process distribution ratio) and Cpk (considers 
additionally the conformance of the process versus the tolerance limits) indicated both 
the capability for quality and repetitive accuracy of a process. (23) shows the formula of 
Cp. 

U.S.L-L.S.L 
Cp = (23) STxP.S 

where U.S.L: Upper Spec. Limit; L.S.L: Lower Spec. Limit; 
S.T: Sigma Tolerance; P.T: Process Sigma. 

The higher the Cpk value, the more capable the process was in relation to 
distribution and compliance. In industrial mass production, a Cpk value >1.33 will show 
that all systematic influences are eliminated and is therefore considered the desirable 
characteristic. Processes that meet these requirements are classified as controlled. Alert 
will be given to warn the user if there are any malfunctions encountered. In the system, 
the part weight was predicted using the methodology described in 3.1.5. Figure 4-7 
shows the SPC display window. 
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Fig.4-7: SPC display window. 

4.3.2 Settings 
User can view the settings of the machines, FieldPoint and company profile 

using the "Settings" button (Figure 4-8). They were read-only files, user had to return to 
the settings page if he/she wanted to change the settings. 
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Fig.4=8: Channels settings can be viewed from the "Settings" button. 

4.3.3 Viewing the signals 
This was one of the major functions of the software. User could view any of the 

signals from the display window by choosing the corresponding channel name under the 
“Channel Selection" pull down menu (Figure 4-9). The channels were the same as those 
set by the user before in the settings page, and the signal was shown in the right scale 
and unit according to the sensitivity and unit name saved in the settings file. The signals 
were shown in real time. User could choose a filter to filter the incoming signal, they 
were the “FIR filter”，"Chebyshev Filter” and ''Butterworth Filter". User could view 
any of the signals immediately so that real time adjustment could be made to the 
machine if there were any malfunctions checked. 
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4.3.4 Short shot monitoring 
With the similarity monitoring methods described in 3.2, the RMDS would 

monitor the injection molding machine to see if short shot was occurred in the injected 
part. In case the RMDS detected a short shot occurred in the injected part, alert would 
be given to notice the user and the corresponding signal would be recorded. 

4.3.5 Data management 
User could save the signals for later used by choosing the "Save properties". A 

pup up window would appear (Figure 4-10). User could set the date and time of saving, 
trigger method and sample rate. After saving the signals, another pop up window 
appeared to ask if the user wanted to send the saved file to the remote server, this was 
optional for the user (Figure 4-11). In fact, the software was supposed to be used by the 
technician in factory, the saved file could help the company in data management, offline 
analysis could also be conducted later with the file. On the other hand, user could ask 
for professional opinions from the expert. That's why the software provided the upload 
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function for the user, so that the machine making company (e.g. The Po Yuen (TO'S) 
Machine FTY. LTD) could provide after-sales services to their client. In case the 
client's injection molding machine had some problems, for example, machine failure, 
bad quality of injected part, etc., he/she could log several set of machine signals using 
the RMDS, and then upload to the machine making company to request for help. 

脅 ' # f ii I r f ； 
辨穿_：缚齊！^:贊麥. ； • ‘ •‘ ‘ ‘ ‘ ‘ “''' “ .:.. _ ？. \ ./. • ：,• ''''•'.'： • ：, • 

S^ive |>roperUc& 
S’V<-• tf^pf PteW ,̂ ff'i--'； I::.Vc 

\ . ；- 柳 T'i ： m. . r i 如 ‘‘ 
‘ - i i i _ 聊 ? : .:•「訂_一iipiii:�,,.藝 

‘ 劝 i 書///mm •今 * isi^ ；编“/！̂“知多-鄉 rnmmm ‘ “ ‘ ^ , ：fi � ， “ ‘ i “�"美 M ！ ， - , , 

T;m« StciciTir e 
, 卜 , i .._..‘；顧j 、：：！,。".…,‘‘1 j^i I ：-••. I 

Fig.4-10: Options of saving the data. 
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Fig.4-11: Send file to the remote server. 

These were the main features of the RMDS. The software could provide basic 
receiving, displaying, monitoring and transferring functions well for the user. Tests 
have been done to confirm the fluency and workability of the software. 
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Chapter 5: Conclusions and Future Works 
From the results of the previous chapters, we have accomplished many 

experiments and their results are great. In Chapter 1 and 2, a brief introduction was 
given to clarify objective of the research. The problems and possible solutions were 
stated clearly, some related works were also given to show the importance of the 
research. 

In Chapter 3, the methods that were being used in the research were described in 
details, the performances were verified by experiments as well: 

1. Design of Experiment (DOE) was accomplished to find out optimal 
settings of injection molding machine. Experiments did in the research 
afterwards were based on the results obtained in the DOE. 

2. Radial Basis Function Neural Network (RBFNN) was used to estimate 
the nozzle pressure and part weight. The set-points of the training data 
in the RBFNN obtained through the design of experiment. It was 
found that the later portion of the hydraulic pressure was not sensitive 
for estimating the nozzle pressure. To solve the problem, ram position 
was introduced as input of the RBFNN. Experiments showed that 
using hydraulic pressure and ram position as inputs of the network 
was more effective. The estimated nozzle pressure hading an average 
root mean squared error of less than 8%, while the predicted part 
weight hading an average root mean squared error of 0.64g. 

3. Similarity monitoring was done to monitor the short shot of injected 
part. Results showed that monitoring part quality using nozzle 
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pressure encounters problem in the case of “half’ while monitoring 
using ram position doesn't. A new statistic-based monitoring 
methodology was proposed, which used both nozzle pressure and ram 
position as indicators for monitoring the part quality and the results is 
excellent. Results showed that the new proposed method could 
correctly monitor the normal and abnormal conditions of parts. 
Moreover, it could give judgments to some marginal cases. 

4. A parameters resetting model based on Support Vector Machine 
(SVM) and Virtual Search Method (VSM) was built. The model 
would suggest new machine parameters according to the target output 
(weight). The VSM model would search for the appropriate inputs 
continuously, and to the physical process only when it has exhausted 
the virtual search. The support vector regression model would be 
updated afterwards. Experiments showed that the proposed parameters 
resetting model could provided machine settings reaching the target 
weight within 5 iterations. 

In chapter 4，a Remote Monitoring and Diagnosis System was developed 
providing monitoring and diagnosis function for the injection molding machine. It was 
combined of the FieldPoint system and Lab VIEW program. The FieldPoint system was 
a commercial product, which was reliable and was ready to use in the industry; the 
Lab VIEW monitoring software was completed, providing an easy to use environment 
for handling the monitoring tasks. These two major parts combined to form a reliable 
and effective monitoring system. With the monitoring system, user could deeply 
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understand and analyze the inside of the injection molding machine in an easy and 
effective way. Besides handling the monitoring tasks, the system could also help in 
data management and network communication, which would bring commercial benefit 
to the company. 

The objectives of the research were achieved. A remote monitoring and 
diagnosis system was developed. The monitoring function of the system was effective 
and better than any past researches. Experiments were conducted to ensure its reliability 
and workability. In the coming future, the system will be used in the real industry to test 
its performance. We will try to install the system into different injection molding 
machine, therefore the functions of it can be verified clearly. On the other hand, 
feedbacks can be obtained from different companies and we can further improve the 
system. We believed that our system will bring positive impact to the plastic injection 
molding industry. 
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Appendix A: Machine settings in the experiment 
Mold Close  

Open Close 
Pressure (bar) ^ 70 ^ 140 

Speed (%) m 80 ^ ^ 
Position (mm) ^ ^ 10 ^ 0 . 2 

Mold Open  
Open Close 

Pressure (bar) ^ 10 
Speed (%) 40 ^ 8 0 15 

Position (mm) 230 % 8 0 

Injection  
Pressure (bar) ^  

Injection delay (s) ^  
Injection time (s) 5 

— S p e e d (%) 68 “ 
Holding  

Pressure (bar) ^  
- Speed (%) 60 

Holding time (s) 4 
Actual injection stroke (mm) 60.9 

Plasticizing  
Auto Position (mm) Speed (%) Pressure (bar) 

1. Decompression 0 ^ ^  
1. Plasticizing 一 14 65 — 60 
2. Plasticizing 28 ~ ~ 65 60 
3. Plasticizing 42 65 — 60 
4. Plasticizing 56 65 ^  
5. Plasticizing 70 一 65 60 

2. Decompression 3 50 ^  
Total stroke 73 mm  

Plasticizing Delay 2 sec.  
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E jector Select  
Backward Forward  

Pressure (bar) ^ ^  
Speed (%) I 40 I 40 

Temperature  
Production Pre-temp Alarm Level (AL)- Alarm Level (AL)+ 

—Nozzle Tip — 200 — 100 20 — 20 
Barrel 1 — 200 — 100 20 — 20 

— B a r r e l 2 — 195 100 20 20 
_ Barrel 3 一 190 100 20 20 
一 Barrel 4 | 195 | 100 20 20 
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Appendix B: Measured part weight in the part weight 
prediction experiment 
Exp. No. Weight (g) Runner(g) Exp. No. Weight (g) Runner(g) 
1 33.45 31 "34.52 4.08 
2 "33.73 4.06 ~32 34.35 4.06 — 
3 14 .05 —4.06 ~33 35.51 4.23 “ 

"4 " ^ . 3 5 "^.04 34 " ^ 8 4 X l 4 
^ 34.19 4 m 35 “ 32.45 4.02 — 
—6 "34.32 "4.08 一36 34.81 4.12 “ 

~1 34.39 - 4.07 37 35.04 — 4.12 一 

~8 34.36 4.08 38 "34.88 4.11 — 
~9 34.56 4.08 39 "34.96 4.13 

"To 34.91 4.12 "40 ~34.81 4.09 
T i 34.61 - 4.09 41 34.76 4.10 “ 

12 "34.19 4.07 ~42 —34.66 4.10 “ 
"TS 34.76 4.10 '43 34.44 4.07 — 

14 1 . 0 6 44 34.22 XQ7 
"T5 34.94 4.11 "45 33.63 4.05 
1 6 35.35 4.2 46 33.32 4.03 _ 

17 "M.71 "4.08 32.33 XQ2 
T S 34.76 - 4.07 48 33.49 4.04 “ 
—19 34.78 4.10 "49 ~33.77 4.06 — 

34.45 — 4.07 “ 50 34.23 4.07 — 
~Yl 34.31 4.07 51 33.54 4.04 ~ ~ 

34.02 4.06 "52 33.62 4.03 — 
33.77 - 4.04 “ 53 33.66 “ 4.04 — 
33.50 _ 4.04 “ 54 33.58 _ 4.02 
31.12 - 4.02 “ 55 33.61 _ 4.03 
33.15 “ 4.03 56 33.74 "4.05 

~ r j 30.95 4.01 "57 32.74 4.02 _ 
29.73 _ 4 “ 58 33.29 — 4.03 — 
^ 4.01 59 32.93 “ 4.01 
34.78 4.11 60 33.37 4.04 — 
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Appendix C: Measured part weight in the similarity 
monitoring experiment 
Exp. No. Weight (g) Description Exp. No. Weight (g) Description 

~1 "30.15 Normal 26 30.26 Normal 
2 30.22 "Normal 27 29.47 — Normal 
3 "28.10 Abnormal(S)— 28 — 29.29 一 Normal 
4 "28.22 Abnormal(H)— 29 29.54 — Normal 

"5 "29.65 "Normal — 30 30.17 — Normal 
—6 "28.46 Abnormal(H)— 31 — 28.39 一 Abnormal(H) 
~7 30.57 "Normal 32 — 29.31 Normal 
8 —14.11 Abnormal(VL) 33 29.44 Normal 
9 —24.13 - Abnormal(L) 34 29.55 Normal 
10 "28.66 “ Abnormal(S) 35 29.57 Normal 

" l l "29.57 "Normal 36 29.80 — Normal 
12 —30.28 - Normal 37 29.64 Normal 
13 —30.27 “ Normal 38 29.81 Normal 
14 ~3Q.44 - Normal 39 29.41 Normal 
15 29.39 _ Normal 40 29.87 Normal 
16 —7.02 - Abnormal(VL) 41 26.13 Abnormal(L) 
17 24.32 一 Abnonnal(L) 42 29.25 Normal 
18 "29.45 Normal 43 28.30 Abnormal(H) 
19 —30.11 Normal 44 25.95 Abnormal(H) 
20 30.51 Normal 45 29.44 Normal  
21 "28.94 Normal 46 29.67 Normal 
22 29.65 Normal 47 30.00 Normal 
23 — 一 2 2 . 9 2 - Abnormal(L) 48 29.76 Normal 
24 28.74 — Abnormal(H) 49 28.12 Abnormal(H) 
25 29.92 Normal 50 27.78 Abnormal(H) 
S二small short shot 
L=large short shot 
VL=very large short shot 
H二one side of the part has short shot 

87 



Appendix D: Results of Parameters Resetting Experiment 
1st t̂ ^ai 2加 trial trial Mean (g) S.D. 
"37.62 37.21 37.34 37.39 0.1711 
—35.30 — 35.61 35.80 "35.57 — 0.2061 
28.09 一 28.03 28.30 28.14 一 0.1158 

"32.52 32.80 32.60 32.64 0.1178 

Average standard deviation: 0.1527 
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