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Abstract of thesis entitled: 

Nonlinear Stability of Viscous Transonic Flow Through a Nozzle 

Submitted by XIE Chunjing 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in June 2004 

After a brief introduction of viscous conservation law and viscous shock profile, 

we study the stability of viscous shock waves by energy method, spectrum analysis 

and contraction principle respectively. Besides initial value problem, we also 

study the propagation of stationary shock waves in bounded domain and half 

space by asymptotic analysis and careful pointwise estimate. Moreover, some 

new results about propagation of stationary shock wave for viscous transonic 

flow through a nozzle are obtained. 



摘要 

在簡單介紹粘性守恆律和粘性激波波陣面之後，我們分別用能量方法，譜分 

析和壓縮原理研究了粘性激波波陣面的穩定性。除了初值問題，我們還通過漸進 

分析和細緻的逐點估計研究了驻定激波在有界區域和半空閒中的傳播。而且，我 

們得到了一些關於驻定的粘性跨音速激波在喷管中的傳播的新結果。 
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Introduction 

It is well-known that long time behavior for convex scalar hyperbolic conser-

vation law 

< … 二 0， （0.0.1) 

U(X, 0) = Uq 
\ 

can be completely described, it depends only on the initial data in the far field [28, 

7, 55]. Even for system of conservation laws, if the system is strictly hyperbolic 

and each characteristic field is either genuinely nonlinear or linearly degenerate 

in the sense of Lax[28], large time behavior is also known quite earlier. The deep 

result was due to Glimm and Lax[14] for 2 x 2 system by Glimm scheme, then it 

was generalized by DiPerna[6] and Lm[29] to general systems. 

However, comparing with inviscid case, it is much more difficult and involved 

to obtain asymptotic stability for viscous conservation laws 
f 

.-…⑷一 - (0.0.2) 
u(x, 0) = uo. 

\ 

Results about stability of viscous shock waves have a long history. Starting with 

the paper of i r in and Oleinik [22], where they proved that viscous shock profile 

in the case of a convex nonlinear term was indeed orbitally stable. They used the 

maximum principle to obtain this result in the supremum norm. An alternative 

proof of i r in and Oleinik's result was due to Feletier[38] by energy method. 

More precisely, if the flux function is convex, when initial perturbation in H^ 

is small enough and has certain decay in the far field, the perturbed solution 

will converge to shock profile when time tends to infinity. If we consider the 

linearized stability of viscous shock wave, we will find that the corresponding 

linearized operator probably has eigenvalue 0 due to translation invariance of the 

equations. Therefore, we can not deduce nonlinear stability from linear stability 

directly[47]. Because of these big difficulties, up to 1976, Sattinger[43] succeeded 
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in handling the problem creatively. Sattinger's idea is to define the linearized 

operator in a weighted space, therefore, the corresponding eigenfunction space 

will become smaller. Subsequently, the eigenvalues of this linearized operator will 

be restricted in a smaller region in complex plane such that except for isolated 

simple eigenvalue 0, real parts of all other eigenvalues have a negative upper 

bound. Under this condition, Sattinger then proved nonlinear stability for general 

travelling waves in this weighed space. Nonlinear stability of viscous shock waves 

becomes an example of Sattinger's general theory, where the convexity condition 

of flux function is relaxed. 

In fact, i r in and Oleinik in [22] also showed that if the initial value ex-

ponentially decayed to the end-states of the profile, then the perturbation of 

waves decayed at a corresponding exponentially rate, an alternative proof by en-

ergy method appeared in [54]. Certainly, Sattinger's result[43] also shows that 

perturbation decays exponentially in time when the initial perturbation decays 

exponentially to the shock profile at the far field for non-convex conservation 

law. Kawashima and Matsumura [24] obtained a very interesting result by en-

ergy method, akin to the exponentially decay result of i r in and Oleinik, which 

says that algebraic decay in space is transferred to algebraic decay of the pertur-

bation in time in the case of a convex nonlinear term. Since they used energy 

method, therefore, the decay obtained in [24] is in a polynomial weighted I? 

space. Through a new technique for estimating the resolvent, Jones, Gardner 

and Kapitula [23] generalize the algebraic decay in [24] to weighted L � space. 

Moreover, as same as the work of Sattinger, they can deal with non-convex scalar 

conservation law. The estimate in [23] depends on estimate for so called Evans 

function. Recently, this technique was successfully applied to system of conser-

vation laws, even for multidimensional system of conservation laws, see [12, 17. 

While, the aforementioned methods can only get asymptotic stability for small 

perturbation of travelling waves, moreover, they can only get the convergence in 
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L⑷，or in certain weighted space. On the other hand, we know, for one-

dimensional conservation law, is indeed a suitable space, where Cauchy prob-

lem is well-posed, and L^ space has physical significance for conservation law. 

Hence, stability is much more important than any other stability. This di-

rection was originated by Osher and Ralston [39], they got asymptotic stability 

for viscous shock wave when the initial data is between two shifted viscous shock 

waves. Along this direction, Serre himself, and joint with Freistuhler, has made 

comprehensive studies and finally obtained a complete result for L^ stability of 

viscous shock profile, they showed that any L^ perturbation will merge into the 

viscous shock wave, it was included in a series of work, [44], [10]. A good sur-

vey for L^-stability of nonlinear waves in scalar conservation law is [46], where 

Serre also studied stability of relaxation shock, radiative shock, discreet shock 

and boundary layers, and so forth. The basic tools for establishing L^ stability 

are some important properties for scalar viscous conservation law, L^ contraction 

principle, comparison principle[26], and dispersion property for viscous conserva-

tion law[l . 

Although in this thesis, we will not consider system of viscous conservation 

laws, we still would like to give some comments on stability of viscous shock 

waves for system of conservation laws here, because not only is it a hot topic 

in the past twenty years, but also many important ideas which were originated 

to deal with scalar equation also succeeded in handling system of conservation 

laws. For the initial data without excess mass, asymptotic stability of viscous 

shock wave was first proved by Goodman[15], Mastumura and Nishihara [36], by 

energy method independently, in certain sense, it can be regarded as a general-

ization of Peletier's idea for scalar equation. However, the method and analysis 

by Goodman are more fundamental and useful in many other situations. When 

initial perturbation has excess mass, I? stability for viscous shock wave for a 

special class of perturbations was obtained by Liu in [29] where he introduced 
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very important diffusion waves. By introducing coupled linear diffusion waves 

and combining the energy estimate with pointwise estimate, Szepessy and Xin 

50] got rid of the restriction in [29] and obtained stability of viscous shock wave 

for general initial perturbation. L^ stability for Lax shock was finally established 

by Liu[30] by an elaborate study of approximate Green's function and detailed 

pointwise estimates. Some developments by studying Evans function have been 

mentioned before. 

When we consider the stability of viscous shock wave in scalar conservation 

law for initial value problem, there is mainly a viscous shock wave in the whole 

space. Although there are some small disturbances, they will merge into the shock 

wave, therefore, viscous shock wave will propagate in the whole space freely, so the 

stationary shock keeps static. For bounded domain and half space, if the shock 

wave is not stationary, Rankine-Hugoniot condition says that the shock wave will 

either be absorbed into boundary or generate a strong boundary layer. While, the 

propagation of stationary viscous shock wave is very subtle when the domain has 

boundary. In general, boundary layer will occur because usually the shock profile 

does not match the boundary condition exactly; moreover, since the speeds of the 

boundary layer and shock layer are comparable, therefore, the resonance of these 

two types of layer will occur. These induce fruitful phenomena for the propaga-

tion of stationary viscous shock wave in bounded domain and half space. When 

the viscous coefficient is small enough, viscous shock wave in bounded domain 

will be drifted by two boundary layers, to balance these boundary layers, the mo-

tion of shock layer will be exponentially slow in exponentially long time, this is so 

called metastable phenomenon. This phenomenon was first observed for Burgers 

equation by Kreiss and Kreiss[25] in numerics, and then studied for general equa-

tion by Laforgue and 0'Malley[27], Reyna and Ward[40] independently. In [27], 

the authors generalized matched asymptotic analysis method. Reyna and Ward 

analyzed linearized problem around the shock wave, with the help of studying 
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certain spectrum problem, and obtained the propagation of viscous shock wave 

in bounded domain. Furthermore, in [40], the authors also derived the motion of 

shock by WKB transformation method. However, up to now, to our knowledge, 

there is no rigorous mathematical proof for these asymptotic analysis results. 

As far as the half space is concerned, Ward and Reyna [52] first studied the 

propagation of a shock by the method they developed in [40]. Since boundary 

layer and shock layer will be resonant, therefore, the shock layer will be drifted 

away from the boundary, thus the influence of boundary layer will be smaller 

and smaller on the shock layer, so the acceleration of shock layer away form 

the boundary will be smaller. Asymptotic analysis shows that shock layer will 

propagate with speed of order 4ogt with respect to time t. Later on, Liu and Yu 

35] gave a justification for the asymptotical analysis result in [52] by detailed 

pointwise estimates, because they almost can write down the solution explicitly 

by Green's function. 

In practice, balance law equation is as important as conservation law equation. 

Several physical situations can be modelled as hyperbolic equation with a source, 

for instance, the geometric effect of a nozzle on the gas flow can be expressed as 

source. The quasi-one-dimensional model of gas flow through a nozzle [53] is 

< 響 + 二 — 鎖 (0.0.3) 

�噪 + BPEU + pu) 二 -榮、pEu + pu), 

where p, u, p, E are the density, velocity, pressure and the total energy of the gas, 

and A{x) is the area of cross section of the nozzle. For uniform nozzle A'{x) = 0， 

the system becomes famous one dimensional compressible Euler equation. Liu 

and his collaborators made comprehensive studies for the system (0.0.3), see 

30，31, 32, 13] and references therein. The main results they obtained are that 

the shape of the nozzle has stabilizing and distabilizing effect, and that there are a 

finite number of asymptotic shapes that can be constructed explicitly. Almost at 
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the same time, Ebid, Goodman and Majda [8] studied steady states of isentropic 

flow through a nozzle. To analyze stability of standing transonic shock as what 

was done by Liu, they proposed a much simpler scalar model 

ut + ( y ) x = a{x)u. (0.0.4) 

analogous to isentropic flow through a nozzle. 

Actually, Liu in [34] also proposed a scalar model similar to (0.0.4) as 

ut + f{u), = a{x)h{u), (0.0.5) 

where he imposed conditions for strong coupling of source, h{u) + 0 and h'{u) ^ 

0. Utilizing his modification of Glimm scheme and wave interaction estimate, 

he obtained a transparent and revealing qualitative understanding of wave be-

havior of (0.0.5), including such as existence, nonlinear stability, instability, and 

changing types of waves. Besides inviscid model, Liu and Hsu [21] also studied 

existence and nonlinear stability of steady states for viscous equation 

ut + f(u)工=eu^：, + a{x)h{u) (0.0.6) 

by a new type of a priori estimate and spectrum analysis. 

In fact, besides steady states, stability of viscous transonic shock wave is of 

great interests. If life span of shock wave is very long, as a casual observer, we will 

observe it easily in experiment. Therefore, we are interested with propagation of 

viscous shock in a nozzle as in the case of conservation law, [40], where the flow 

is passing through a uniform nozzle. Sun and Ward [48] studied the propagation 

of viscous shock waves with constraint that a{x) is exponentially small for the 

model 

Ut + f(u)工 二 + a(x)u, (0.0.7) 

where the leading order approximation by matched asymptotic analysis is as 

same as that in [40] for viscous conservation law, applying projection method in 
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'40] with a little bit generalization, they obtained metastability of viscous shock 

wave in this case again. To relax the artificial constraints in [48], we note that 

it is different from viscous conservation law that the shape of nozzle will help 

determine the location of shock wave for flow in nozzle. Motivated by the study 

for inviscid flow through a nozzle, we may take the leading order ansatz of location 

of shock wave to be static for a divergent nozzle. Then we can solve the next and 

higher order outer solutions, ansatz of location of shock wave and inner solutions 

simultaneously. It shows that the change of the ansatz of location of shock wave is 

very small, therefore, metastability of viscous transonic shock wave in a divergent 

nozzle is obtained. 

We conclude this introduction by outlining the rest of this thesis. In chapter 

1, we shall study nonlinear stability of shock profile by energy method, spectrum 

analysis and contraction principle. In chapter 2, we will use projection method 

and WKB transformation method to study the propagation of shock wave in 

bounded domain and half space, then verify the asymptotic result in half space by 

pointwise estimate. In last chapter, chapter 3, we analyze leading order and higher 

order approximations of transonic flow through a nozzle by matched asymptotic 

analysis. 



Chapter 1 

Stability of Shock Waves in 
Viscous Conservation Laws 

In this chapter, we first recall some basic properties of solutions to Cauchy prob-

lems for viscous scalar conservation laws, then define viscous shock profiles and 

give some basic properties of viscous shock profiles. Based on these basic knowl-

edge, we will study the stability of shock profiles by energy method, asymptotic 

stability of a general travelling wave in a weighted space by spectral analysis, L^ 

stability of viscous shock wave by contraction principle and comparison principle 

respectively. 

1.1 Cauchy Problem for Scalar Viscous Conser-

vation Laws and Viscous Shock Profiles 

Consider the following Cauchy problem 

Ut + f{u)工=u篇, (1 丄 1) 

二以oO). (1.1.2) 

From the seminal paper of Kmzkov[26], we have 

10 
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Theorem 1.1.1 For any UQ G L⑷(股丄)，the problem (1.1.1)-(1.1.2) has a unique 

solution in C(0, oo; L�( IRi ) ) and satisfies the following four properties: 

(i) : u e X R\) when f G C � 

(ii) (Comparison principle): Assume two initial data UQ and VQ satisfy UQ < VQ, 

then the corresponding solutions satisfy u{x, t) < v{x, t); 

(ill) (Conservation of mass): Let u, v be two solutions to the Cauchy problem 

(1.1.1)-(1.1.2) corresponding to the initial data UQ, VQ, if UQ - VQ e 

then u{t) — v{t) G and 
POO poo 

/ (1̂0，：̂) - 二 Z {UQ - vo)dx] (1.1.3) 
J —oo J —oo 

(iv) (Contraction principle): Suppose ||uo—孙||li < oo andu，v are two solutions 

to the Cauchy problem (1.1.1)-(1.1.2) associated with initial data UQ, VQ, then 

\u{t) — v{t)\\Li < \\uo 一 ^oIIli- (1.1.4) 

Theorem 1.1.1 is very classical, and its proof can be found in [26, 44. 

Theorem 1.1.1 allows us to construct an operator S{t) which with a given 

initial data UQ associates at the instant t > 0 the solution u{t) to (1.1.1)-(1.1.2). 

It is easy to show the family {S{t))t>o is a semigroup. 

One of the key elements in understanding the theory of viscous conservation 

laws is the inviscid theory. It is well-known that the shock wave 
( 

U— 00 < st, , � 
u{x,t)= (1.1.5) 

U+ X > st, 
\ 

is very important for hyperbolic conservation law 

Ut + f { u ) , = 0. (1.1.6) 

If (1.1.5) is a weak solution to (1.1.6), then Rankine-Hugoniot condition implies 

f�u+) - f[u-) = s�u+- u—). (1.1.7) 
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We will denote the shock wave (1.1.5) which satisfies Rankine-Hugoniot condition 

(1.1.7) by (u-,u+,s). If we interchange u— with u+ in (1.1.5), also 

satisfies Rankine-Hugoniot condition (1.1.7). To get physical solution, we need 

some admissible condition. For general scalar conservation laws, Oleinik condition 

^ ^ 八 I ) > s for all u between u+ and u—, (1.1.8) 
u — u一 

is an necessary condition for admissibility of shock wave (1.1.5) for hyperbolic 

conservation law (1.1.6), see [44]. If the flux function is convex, f'{uJ) + s 

and f'{u^) + 5, then Oleinik condition becomes famous Lax geometric entropy 

condition, u_�u— A natural physical entropy condition is the following viscous 

criteria: 

Vanishing Viscosity Criteria: A weak solution u of (1.1.6) is admissible if 

there exists a sequence of smooth solution û  of 

Ut + f(u)a： = (1.1.9) 

which converges to u in L}��as e ^ 0+. 

Since shock wave (1.1.5) is dilation invariant, therefore, we expect that (1.1.9) 

possesses a travelling wave solution which converges to u in (1.1.5) as 

e — 0 + �O n the other hand, if converges to (1.1.5) as e 0+’ then 

树 0 一収士 as € — ±oo. Therefore, we have 

Definition 1.1.2 (^[x — si) is called a viscous shock profile for the shock wave 

if 

: - s 痛 y “ ' , (1.1.10) 
I 一 士 as i — ±oo, 

where ' = 差 “ 二 x - st. 

Then we have 

Lemma 1.1.3 (1) (p exists if and only if Oleinik condition (1.1.8) holds, and 

is unique up to phase shift; 
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(2) Iff IS convex, then ^ < 0; 

(3) If (j) is a shock profile to the inviscid shock then there exists Xi 

such that f\(l){xi)) = s; 

(4) Suppose f is convex and (j) is a shock profile to the inviscid shock (li—, s)； 

then 

\(l)\x)\ < 0{l)\u_ - q--—u+l如I, (1.1.11) 

where C = min妬[以+，^] f"{u). 

Proof ; (1),(2),(3) are obvious. 
Since f is convex, therefore, < 0. From (1.1.10), we know 

二 / 似 ) - s . (1.1.12) 

It follows from (3) that there exists Xi such that f{(l){xi)) = s. Therefore, if 

X > y > XI, integrating the equation (1.1.12) from x to y gives 

= ^f;if'{cl>{z))-s)dz 

• 

Therefore 

< � | e - -

that is to say, 

丨 " = ： I 彻 ( 1 . 1 . 1 3 ) 

Integrating both sides of (1.1.13) from xi to x with respect to y yields (1.1.11). 

Similarly, we can get (1.1.11) when x < Xi. 口 

The question is whether (f){x — st) is a global attractor for the problem 

‘ ^ I df{u) _ ^ 
^ dx 

< n(x,0) = (1.1.14) 

lim^—±00^0(1) = u士. 
\ 
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The answer in general is not true, if (p{x — st) is a solution, then - st-\-6) is 

also a solution for any 6. 

If we linearize the problem at cj): 

^ dv d'^v p,…dv j< , 
= 瓦 - 际 + / , ⑷ 石 + 

Obviously, Ccj)' = 0, therefore, 0 is an eigenvalue of JC. Hence we can not to 

deduce nonlinear stability for viscous shock wave from linearized stability by a 

standard procedure in [47]. Hence we must give some more ingredients to the 

standard linearized stability analysis, this is what we will do section 1.3. 

For convex flux functions, we can deal with nonlinear stability of viscous shock 

wave by energy method because of ^ ^ ^ < 0 by lemma 1.1.3. 

We digress for a moment and consider that if /股(>o(>)—小{xYjdx 二 m • Q, 

then 
/�u(x, t) — (pix — st))dx = / Oo(x) — (j){x))dx = 

therefore, we do not hope that limt—十⑴ J^i \u{x,t) — (pix - st)\dx 二 0. On the 

other hand, for any 6 G we have 
roo 

/ {(P{x + 5)- (t){x))dx 二 (K以 + - I ) , (1.1.15) 
J —OO 

therefore, if we set d = “二-，then 

[{uo{x) - cPix + 6))dx 二 [ {UQ{X) - + / — + 
Jri JR^ 

= 0 

Therefore, even when initial data has excess mass, for one dimensional viscous 

conservation law, we still expect that we can get asymptotic stability of viscous 

shock waves after a shift. 

Remark 1.1.4 The (1.1.15) only holds for one dimensional case. Therefore, 

high expectation to get asymptotic stability of shock profiles for multidimensional 

viscous conservation law only occurs when the initial perturbation has no excess 

mass [46]. 
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1.2 Stability of Shock Waves by Energy Method 

We first state the main result on asymptotic stability of viscous shock waves by 

i r in and Oleinik [22:. 

Theorem 1.2.1 Let f"{u)�0，以一〉u+ and (t){x 一 st) be the shock profile for 

the shock wave 5 ) . Set 
/ + 0 0 

(>oO) - (l){x))dx, (1.2.1) 
-00 

. (1.2.2) 
u+ — U-

If J股 1 \x\^{uo{x) -(t){x + S)fdx < e and \\uo - (pi- + 6)\\m < e for some small e, 

then 

sup|ii(>,t)_(/)0 —s力十州 as t 0 0 . (1.2.3) 

Proof: We will follow [54 . 

Step 1: For simplicity, let s = 0 and J = 0. Set u{x,t) = (l){x) + w{x,t), 

substituting into the equation, we deduce that 

/ 1 + imm+im小+⑷—/⑷一勵—=祭， （1.2.4) 

w(x,0) = Uo(x) — (/)(x). 
\ 

If we define Q((/), w) 二 / O + w)-麵-f{(l))w, when w is bounded, then it is 

easy to obtain that 

Set v(x,t) = f"^w(y,t)dy, vo(x) 二 /_!�(从— (/)(x))dx, then 

• , 0 ) = ”o � -
\ 

Step 2: Basic energy estimate 

Claim 1: There exists a constant ei > 0 , such that if 

sup \\v{x,t)\\H^R )̂ < ei, 
0<t<T 
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then the estimate 

f f \^fmv 'dxdr<Ci\\vo\\l2 (1.2.6) 
Jo Jo JRi 咖 

holds for 0 < t < r . 

Proof of the claim 1: We multiply both sides of (1.2.5) by v and integrate over 

Ri to get 

II f ( — 1 1 " / � )一 办 + / kPd工 S — / v Q { M d x , 
2 at J^i 2 ox Jri JRi 

Applying Sobolev imbedding theorem, we deduce that 

/ vQ{(t),V:j,)dx\ < ma.x\v{x,t) \ • 0 ( 1 ) / 
jRi 

< I 卜 II 丑 2. (9(1) / I � 

一 JRi 

Combining above estimate with assumption and 羞广⑷ < 0 by Lemma 1.1.3, 

yields estimate (1.2.6). 
Step 3: Higher order estimate 

Claim 2: There exists a constant €2 > 0, such that if 

sup I卜(.,t)||丑2(股 1) S e2, 
0<t<T 

then the estimate 

(1.2.7) 
Jo 

holds for 0 < t < T. 

Proof of the Claim 2: we multiply both sides of (1.2.4) by w and integrate 

over Ri to get 

- — \\w{-,t)\\l2 - / f{(l))ww:,dx - / Q{(j),w)w:^dx - / 
2 dt 7ri JRi 

that is to say, 

I \w\'^dx+ / wldx = / f{(t))ww^dx+ / Q{(j),w)w^dx. 
2 dt J^i jRi JMi 
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Based on Sobolev imbedding theorem and Cauchy inequality, the right hand side 

of above inequality can be estimated by 

[f{(l))ww^dx+ [ Q{(l),w)w^dx\ < + C\\w\\l2 + 6^11^11^2(^1)11^x11^2. 

Then there exists 4 < ei such that if 

sup 力 < 4 , 
[0,T] 

we have the estimate 

Jo 

here we have used the estimate (1.2.6). 

Similarly, we can obtain the second order derivative estimate of v by choosing 

a suitable e? < 4 . Then the proof of the claim 2 is completed. 

Step 4: Standard Continuity argument 

Claim 3: There exists a constant e" > 0, as long as 

〃 

Wo < e , 

then 
roo 

sup I 卜 ( . ， 力 / ^ (1-2.8) 
0<t<oo Jo 

which implies 

lim \\w{-,t)\\Loo = 0. (1.2.9) 
t—>oo 

Proof of Claim 3: By fixed point theorem, we can show there exists local 

solution to (1.2.5) in L � ( 0 ,丑 f o r some time < oo, if VQ G 

moreover, if |卜oil(r) < e �t h e n 

sup I卜(.，力)II//2� < €2 and 
sup ||力1/2<,力)| 

[0,Ti] [0,Ti] 

This result and local existence for more general parabolic systems can be found in 

.44]. Hence all the calculations above make sense. Take e" 二 e,/C2. If \\VO\\Ĥ(R) < 

e", then (1.2.7) implies that 
卜（.，Ti)||炉(R) < II孙II股）< e'. 
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By the local existence result, there exists solution on [Ti,2Ti] satisfying 

sup I卜(.,力)||iJ2(股 1) S 62. 
[TI,2TI] 

Thus Claim 2 again shows 

sup I卜(.,力)||丑2(则 < e,， 
[0,2Ti] 

and so, 

Continuing this procedure, ones shows that as long as 

/ / 

询 I丑2(R1) < € , 

then 
roo 

sup I K . , 力 + / < C. 
0<t<oo Jo 

Thus, we finish proving (1.2.8). In the following, C will denote a generic constant, 

which depends only on C in (1.2.8). Multiplying w on both sides of the equation 

(1.2.4), then we get 

/ 画 t = / — 广⑷⑷—^ Q �小,—、虹 

Therefore, we have 

roo ^ 

/ wfdx < C and 工||秘(.，力< C；, 
Jo 汝 

so \\w{-,t)\\l2 一 0 as t — + 0 0 . By Sobolev imbedding theorem, we know 

hence limt^oo 二 0 as 力—oo. 
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Step 5: Since ”oO) = f二(vJjj)— (j)[y))dy, by weighted Poincare inequality[18, 

50], we deduce that 

< (y* \x{uo{x) - (j){x))\^dx^ . 

Thus if \x\'^{uo{x)-(t){x))'^dx < e and \\uo-(l)\\m < e for some e small enough, 

we have 
〃 

SO we complete the proof of the theorem. 口 

Remark 1.2.2 If we assume \ � 1 ， - (l){x + S)fdx < 1 

and Uo{-) — (j){- + 8) e H^ instead of the assumptions in Theorem 1.2.1，we can 

also obtain asymptotic stability for shock profile, see[49]. Under these conditions, 

if each characteristic field of system of conservation laws is either genuinely non-

linear or linearly degenerate, the stability of shock profile for a Lax shock was ob-

tained by Liu[33] for special initial data, and in general by Szepessy and Xin[50] by 

energy method, certainly, there are some important ingredients as we mentioned 

in Introduction to deal with systems. 

Remark 1.2.3 The energy method can succeed in establishing the asymptotic 

stability of shock profile is due to the following two reasons. First, special form 

of equation for conservation law, more precisely, we can integrate the equation 

(1.2.4) once to get a Hamilton-Jacobz equation (1.2.5). Applying the basic energy 

estimate for this Hamilton-Jacobi equation, we can estimate v(x, t) = f^^ w(y, t)dy. 

Then standard higher order estimate help to get the estimate for w. If we han-

dle equation (1.2.4) directly, it is hard to deal with nonlinear term. Second, 

悬/乂(/)) < 0. Since two similar properties holds for a Lax shock for system of 

conservation laws, therefore, we can handle viscous shock wave in system of con-

servation laws by energy method, see [15, 33, 16, 50]. 
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1-3 Nonlinear Stability of Shock Waves by Spec-

trum Analysis 

To use linearization argument to study asymptotic stability for viscous shock 

waves, as a special travelling wave, we go back to section 1.1. First of all, write 

the solution u as u(x, t) = (j){x — st) + v{x, t) and transform (1.1.1) into a moving 

coordinate frame ^ = x — st^ then we obtain 

dv dv 召 … � d^v d p… 
瓦 — s 夾 + 麥 八 於 + = ^ + 麥 八 补 

hence 

叫 = V 这 + { s - rmvi - f m ' v + ( 1 . 3 . 1 ) 

where R{<P,v)= 一 ( 着 + i；)—羞/⑷—fW% — f 響 S o we get 

linearized equation around 小 

Vt = Cv, (1.3.2) 

where 

cv = V 饮+(5- — f i m w i O v - (1.3.3) 

Obviously, 

£4' = 0. 

Therefore, if 0 G and we consider 

C ： — LOO, 

then 0 is an eigenvalue of linear operator C. If, furthermore, 0 belongs to the 

continuous spectrum of we do not expect to get asymptotic stability for nonlin-

ear problem easily just by standard linearization argument, since the asymptotic 

stability for linearized problem is only orbital. The analysis in section 1.2 shows 

that if we choose perturbation which is not only in but also has some de-

cay in the far field as the assumptions in Theorem 1.2.1, the asymptotic stability 
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may hold. This is also basic idea what we will do in this section. We restrict 

£ in some weighted space such that eigenfunction space of restricted operator is 

much smaller than the eigenfunction space of original linear operator L which is 

defined in Vl/̂ 2,00, as a result, we shift spectrum of L. If we can shift the spectrum 

in certain half plane such that 0 is isolated, and real parts of all other eigenvalues 

have a negative upper bound, then we still can show the stability of travelling 

waves in certain sense. The best case is that if all eigenvalues of this restricted 

operator have a negative upper bound, then we can apply standard linearization 

argument directly to get asymptotic stability. To realize the above procedure, we 

first introduce the following weighted space. 

Definition 1.3.1 Let w{x) be a smooth positive weight function，w{x) > 1, and 

denote by || . the norm 

sup \u{x)w{x)\, (1.3.4) 
X 

Define || . by 

(Pu . � 
u 叫,j = u + Ux H ^ 切,0 

and let B^jj be the Banach space of functions on -00 < x < 00 with finite || . 

norm. 

With the help of appropriate weight function, suppose we can shift the spec-

trum of £ , then we have the following important lemma. 

Lemma 1.3.2 Let the operator C given by (1.3.3) satisfy the following hypotheses 

(i) C : 23切’2 — Buj,o； 

(ii) C has an isolated simple eigenvalue at the origin, while the remainder of its 

spectrum lies in the parabolic region Z = {y'^ + a x < 0}(a > 0) in the 

left half-plane; 
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(iii) The resolvent transformation (A — has the following asymptotic behav-

ior. Given a 5 > 0 there is a constant C{S) such that 

IKA — /：)-1如 S 勞 IMko (1.3.6) 
V A 

for all X in | arg A| < tt — 6 and exterior to Z. 

Let Q = I - P, where P is the projection onto the null space of C, and let u 

satisfy the initial value problem 

Ut = Cu + Qh, (1.3.7) 

u(0) = 0 (1.3.8) 

for h(t) G B^fi for t > 0. Then for any 6, 0 < 0 < a, there is a constant c{6) 

such that 
ft p-Os 

< c{0) / -^\\h{t-s)\\^,ods. (1.3.9) 
Jo V<5 

The proof is a direct computation of operator calculus, see [43 . 

To state and prove the main theorem below, we need to introduce some more 

notations. Define the norms on functions on the half-space {—oo < x < oo,t > 

0}: For (3�Q, 

\u\\wj,p = s u p 
t>0 

We denote the corresponding Banach space of continuously differentiable func-

tions by S^j. Since £ has an isolated eigenvalue at the origin, then the projection 

operator P defined in Lemma 1.3.2 can be represented as 

Pu=�e*, • ， （1.3.10) 

where e* is an element of the dual space B^^ Q. Then define spaces: 

QB^j 二 {u : u G B^j, (e*,u) = 0}， 

二 力� e * ,从 ( t ) � = 0 for ^ > 0 } . 
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Similarly, we can define M^ to be the Banach space of continuous functions on 

0 <t < oo with 

IpII卢=sup e^^lp(t). 
t>o 

Based on Lemma 1.3.2, it is easy to show that the solution for the initial value 

problem (1.3.7)-(1.3.8) defines a transformation: K : h ^ u from S^^Q to QS^ ^ 

for any [5 < a. 

After these preparations, we now state the main result in this section. 

Theorem 1.3.3 Let the operator C satisfy the conditions of Lemma 1.3.2，as-

sume that f e C^ and (/>(�)G Let u{x,t) satisfy the initial value problem 

(1.1.1)-(1.1.2) with initial data of the form 

U(X, 0) 二 Uo(x) = + 6Uo(x), (1.3.11) 

where uq G Let (5 < a, then for sufficiently small e there exist a C^ function 

7(e) and a constant N{p) such that 

\Hx, t) - + 7 � )I k i < Ne-曰 t for t>0 (1.3.12) 

and the function 7(e) is of the form 7 = e/i(e)，where h is continuous and tends 

to a finite limit a<s e 一 0，namely 

h{0) = {e\uo). (1.3.13) 

where e* is defined in (1.3.10). 

Proof : We will follow the framework of [43 . 

First, we introduce a moving coordinate frame ^ 二 x — st. Since Uo{x) depends 

on e, therefore, u is also a function of e. Define t, e) = 〔力’(糾)，where h 

is to be determined, then 

vt = Cv + B{v, h, e) + R(v, h, e), (1.3.14) 

= + (1.3.15) 
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where the linear operator £ is defined by (1.3.3), and 

B(v, h, e) = [ f i m w i o — f " m + + 已 “ ) ) ” (e,力） 

Bi] 

h, e) = + 叫 + ⑶ ） 一 I 腿 + A ) ) 

-efm+帅吳—efm+尋'(e+ 

,,、掀+eh) — m —雜h 
9[h,e)= . 

Now we write 
^j[t) = Pv + Q”=p(t)(l/ + (:(t), 

where P and Q are projections introduced in Lemma 1.3.2, p(t) = (e*, v(t)}. 

Then 

Ct = /:c + Q(B(v, K e) + R{v, h, 6)), (1.3.16) 

= + (1.3.17) 

Moreover, 

m = + (1.3.18) 

p{0) = -h+ + 9{K €)). (1.3.19) 

Using the definition of map K and semigroup generated by we can represent 

C as 
C 二 KQ{B{v, h, e) + R{v, h, e)) + eT'^Q (丑• + e)). (1.3.20) 

Integrate (1.3.17) to get 

p � = [( e * , B{v, h, e) + R{v, h, e))ds + p{0). 
Jo 

We intend to construct a solution p{t) which tends to zero as t — oo, using 

(1.3.19), so we set 
poo 

/ {e*, B{v, h, e) + R{v, h, e))ds + (e*, uo) - h + e{e\g{h, e ) �= 0, (1.3.21) 
Jo 
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thus 

Pit) = — ^ " ( e * , Bv + V, e))ds. (1.3.22) 

Since v = pcf/ + therefore, we can define 

J^i(C,p，/i,e) = C-KQ {B{v, h, e) + R{v, h, e)) - e'̂ ^^Q (uq + e)), 

poo 

roo 

= h- (e*, B{v, h, e) + R{v, h, e))ds - {e\uo + g{h, e)), 
Jo 

and set T = (J^i，JS,巧)• Then equations (1.3.20)，（1.3.21), (1.3.22) may be 

written in the compact form 

(1.3.23) 

We wish to construct solutions of (1.3.23), ^(e), p(e), h(e), for small e. Define 

Co 二 e-�Uo, Po = 0, ho = (e*,^o), 

note that B{v, h, e), R{v, h, e) and g(h, e) all tend to zero as e goes to zero, there-

fore 
(1.3.24) 

Furthermore, it is easy to show that is a Frechet differentiable mapping from 

Banach space QS:,! x x M x M to x x M, and that Frechet deriva-

tive is an invertible operator. By implicit function theorem in 

Banach space [42, 47], there exists a vector (C(e),p(e),/i(e)) which is continuous 

differ entiable in e, such that 

⑷ ， � ,e ) = 0. (1.3.25) 

The estimate (1.3.12) is a consequence of (C,p) G Q � i x R". • 

As far as viscous shock wave is concerned, following the detailed general study 

on the resolvent set of linearized operator in [43], we know with appropriate weight 
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function the linearized operator £ defined in (1.3.3) for general flux function f 

satisfies assumptions in Lemma 1.3.2, hence we obtain the orbital stability for 

viscous shock wave by Theorem 1.3.3. 

1.4 Li Stability of Shock Waves in Scalar Vis-

cous Conservation Laws 

In this section, we will show the stability of shock wave with general L^ pertur-

bations. This is motivated by the important physical significance of the L^ norm 

for conservation law and the fact that it is the norm for which the semigroup S{t) 

is non-expansive. We first state the main result in this section. 

Theorem 1.4.1 Let (/) : M R 6e a shock profile for the inviscid shock (u— ,u+,s) 

with u_ + u^. IfuQ-cj) e L\R), then the solution u{t) = S{t)uo to ( 1 . 1 .1 ) - ( 1 .1 .2 ) 

with initial data UQ satisfies 

f�(uo(x) — (j)(x))dx , � 
lim \\u{tr)-^{'-st + 6)\U = 0 with “ � — �� (1.4.1) 
t—oo U-j- 一 U— 

where S{t) is the semigroup defined in section 1.1. 

This theorem is a consequence of long time endeavor of many mathematicians, 

and L^-stability as presented in theorem 1.4.1 was first obtained by Freistuhler 

and Serre [10]. Here we will combine some results appeared in [39，44, 45, 10, 46 

and give a complete proof. The proof depends on several important lemmas. 

Lemma 1.4.2 If there exist a, P e R such that + a) < uo{x) < (/)(x + 

P) almost everywhere. Then the solution u{t) = S{t)uo of the Cauchy problem 

satisfies (1.4.1). 

Proof: We will mainly follow [44 . 
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Using a moving coordinate ^ = x — st, we can assume that the shock is 

stationary: <s 二 0. At the same time, if we take translation to 0，the assumption 

in lemma 1.4.2 will hold with a translation, thus we assume = 0 for simplicity. 

With the help of the comparison principle and assumption of the initial data, 

we have, (/)(x + a) < u(t, x) < (f)(x + /3). Let us write v(t) = u(t) — then 

\v{t)\ < (t){x + (t){x + a) G for Vt > 0. 

In addition, contraction principle (1.1.4) yields 

\v{t,. + ") - v{t)\\i = \\u{t,. + " ) — I X ⑴ 1 1 1 

< IW. + ")—仰111 二 11̂ (0,. + ") - (̂0)||i. 

Since G L\R), therefore 

卜(0,. + /i)— ”(0)||i 0 as h — Q. 

Thus the hypotheses in Kolmogrov compactness theorem [19, 56] are all satisfied, 

so the family {v{t)}t>o is relatively compact in the cj-limit set B 

0 + f \ � o Bs where Bs is the closure in of {v{t)]t > s}. Furthermore, B is 

non-empty since Bs C Bt as s > t and Bs are all non-empty compact sects for all 

5 > 0. The set B is that of all cluster points for the distance d{z, w) = - w\\i 

of subsequences {u{tn)}neN where t几一 oo. 

The cj-limit set B is invariant under the semigroup S{t) since if b e B 

with b 二 then S{t){b) = lim^^oo u{t + tn). For the same reason, 

: B — B is onto as we also have b = S{t)c where c is a cluster point of the 

sequence {束—力)}neN. Therefore, b e C � for \/b e B by Theorem 1.1.1. 

Now, let A: G M, the decreasing function t ^ \\u{t) — (j){- - A:)||i admits a limit 

denoted by c(k) when t — oo. lib e B, we deduce that ||6 — (j){‘ - k)\\i = c{k). 

However, S{t)h 6 B, so it follows that the function t \\S{t)b — (j){‘ — k)\\i is 

constant. Let us write w{t) = S{f)b and z{t) = w{t) — /c), then 

0 = ^||2:(t)||i = I Zt • sgnzdx. (1.4.2) 
dt JE 
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From the equation (1.1.1) and the definition of shock profile we know 

Zt + (/O) - / ( * — = x̂x-

Multiplying this equation both sides by sgnz, we deduce that 

z\t + ( ( / O ) - / ( 0 ( . - k)))sgnz)：, = Zn . sgnz. (1.4.3) 

Integrating over R gives 

—f \z\dx 二 j Zxx ‘ sgnzdx. 
dt Jk Jr 

Thus 

0 = / • sgnzdx. (1-4.4) 
Jr 

However, since the initial data b is the sum of a BV function (j) and a function 

6 - a priori estimate shows that w^x is integrable over M [44] and hence also is 

z^ .̂ Therefore, using dominated convergence theorem, we have 

0 = lim / z工工 fXz)dx, 

where je{r) 二 \lG + r^. Integrating by parts, we have 

0 = lim I zl£{z)dx. (1.4.5) 0 J^ 

Let XQ be a point where z vanishes. Suppose \ZX{XQ)\ = 7 > 0, then there 

exists 6 > 0 such that 

^ < \Z:,{y)\ < 27 My e {XQ-5, XQ + 5). 
Zj 

Choosing e � 0 sufficiently small such that 卖 < 5，we have |2：| < e on (xq — 

卖,xo + 卖）by mean value theorem. On the other hand, j':(j�二 e—Vl^/e) with 

J(r) = (1 + T2)-3/2. Thus 

[zlj:iz)d. > I 厂 + * j(l)抽 > �( i ) 2 =举〉0. 
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This contradicts with (1.4.5)，therefore, Zx(xo) = 0. Finally, we have proved that 

VbeBykeR S(t)b(x) = (/)(x - k ) ^ {S{t)b{x))^ = (j)'{x - k). 

Since S{t) is from B onto B, therefore, 

V6 G B,\/k G R b{x) == (t){x - k ) ^ b\x) = (j)'{x 一 k). (1.4.6) 

To complete the proof of lemma, we note first of all that b lies between (j){x+a) 

and (t){x + P) as limit of such functions, hence b takes its values strictly between 

u- and Thus the function x k(x) = x - (/)-\b(x)) is well defined and 

smooth. By construction b(x) = (p^x — k{x)), the differentiation gives b'{x) 二 

^'{x - k{x)){l — k\x)). Using (1.4.6) we find that 

(l)'{x-k{x))k'{x) = 0 

and hence that k'{x) = 0. Finally, k is a constant and b = </)(- - k). Thank for 

the property of conservation of mass (1.1.3), we have 

/ (6 — UQ)dx = 0. 
Jr 

Thus, we have k = 0 because of our assumption at the beginning of the proof. 

Hence, we have proved that the cj-limit set is reduced to a single element 

(j). Since the family {v{t)}t>o is relatively compact in L\R) and as it has only a 

single limiting value when t oo, it is convergent, that is 

lim \\u{t,.) — (j){- - st + S)\\i = 0. 
t—oo 

• 

To prove the theorem, we first extend the initial data in Lemma 1.4.2 to a 

larger class. Define 

Ui = {t^o[there exist a, f5 such that 4>{x + a) < uq[x) < + 

U2 = {uo\uo{x) e [inf (/),sup(/)],for all x G M, uq - (j) e L^}. 
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Corollary 1.4.3 ( 1 . 4 . 1 ) holds for u{t) 二 ⑷I^O with UQ G U2. 

Proof: It is clear that Ui is a dense subset of U2 with the distance d{z, w)= 

|z — w\\i. Therefore, Muq G there exists {un} C Ui such that \\un —以o||i — • 

as n — 00. V e � 0 , there exist N eN such that Vn > TV, \\un — < e/3, then 

\S{t)uo - (Koc - St + (5)||i < \\S{t)uo — 

+ \\S{t)Un — - St + Sn)\\l + \\(p{x - St + Sn) _ - St + 

< \\Un — t^olll + \\Sit)Un - (t){x - st + ||i + —…._ [ I , 

where = ⑷二⑷ )， h e n c e | ‘ - < -以o||i/|以 + — 
TX-L ‘U — 

Taking t —> 00 and applying Lemma 1.4.2, we get \\S{t)uo-(l){x-st+S)\\i < Ce 

for a fixed constant C. Since e is arbitrary, we finish the proof of corollary. • 

In fact, we will reduce the proof of Theorem 1.4.1 to the following L^ stability 

of constant states. 

Lemma 1.4.4 For every c G M and any function UQ e c + with 

r { u o { x ) - c ) d x ^ O , (1.4.7) 
J 一 00 

the solution u =S{t)uo to (1.1.1)-(1.1.2) with initial data UQ satisfies 

lim \\u{t)-c\\i = 0. (1.4.8) 
t—>00 

Proof: The original proof of this lemma was due to Freistuhler and Serre [10 . 

Here we will follow the framework of [46 . 

Define lo{v) = limt_oo \\S{t)v — c||i, by contraction principle (1.1.4), Iq is 

continuous on c + L^ Up to the choice of a moving frame, we may always assume 

that / ( c ) 二 / ( c ) 二 0, after a translation, we can also assume c 二 0. Denote 

Ll = {v e L\R)\ J^^v{x)dx 二 0}，then the set Us 二 {v'\v G VF^'^W} is 

dense in Lj. Due to continuity of IQ on we only need to prove the lemma 
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for uo e Z ^ N I � .G i v e n uq e Us n L⑷，uq 二 u/ and w G then 

\u\\oo 二: ll'̂ olloo and 

\f{u)\<Nf{\\uo\\oo)\u\'^ (1.4.9) 

where 仰||oo)=臺 sup[_|HI�,11 仰H�]\f'\u). 

The standard energy estimate for equation (1.1.1), and the fact that uf'{u) 二 

g\u) yield 

Using one dimensional Nash inequality[37 

hll^ < C\\u^\\2\\u\\l (1.4.10) 

and decreasing property of 力一 \\u{t)\\i, we obtain 

+ 1̂1̂ 112 < 0 -

This differential inequality obviously implies the following dispersion relation[l 

I M I 2 < (1-4.11) 

Write u as mild solution 

u{t) = K(t) * no - [ {d^K{t - s) * f{u{s)))ds, 
Jo 

then by (1.4.9) and (1.4.11), 

\\u{t)\\i < [ \\da:K{t - s)\\i\\f{u{s))\\ids 
Jo 

, \ 9 ft ds 
< ||i^(t)*M�||i + CW/(||ti�||oo)||no||f/ - 7 = = -

Jo \/s[t s) 

Since 

� = \\dxK(t) < \\da^K{t)\\i\\w\\i 
C 
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and 
ft ds 
/ - = tt, 

JQ ^Jsit - s) 
therefore 

/ o M <c3A /̂(IÎ o1Ioo)||^o1I?- (1.4.12) 

On the other hand, Iq{uq) = lo(u(t)), we may apply (1.4.12) to u(t), instead to 

get 

lo(uo) < C3AMII 狗 ||oo)||m � II?. 

Taking t —> 00, we get 

lo(uo) < C3A^/(||^o|1oo)GoM)'. (1.4.13) 

Fix a real number R > 0 and consider the ball Br defined by ||ixo||oo < R 

in Lj n L � .I n the connected set Br, (1.4.13) tells either ZoOo) = 0 01 Iq > 

l / {c3Nf{R)). Since IQ is continuous and take the value zero for UQ = 0, this 

implies Zo 三 0 on BR, hence on the union Lj 门 L � of these balls. This ends the 

proof of the lemma. 口 

After these plenty of preparations, we can prove the theorem easily. 

Proof of theorem 1.4.1; We will follow [10 • 

Denote sup(/) and inf 4> by c+ and c—, respectively. Set 

POO 广 

m+ / (uo �—c+)+dx and m— = (c——询 
J-00 J-00 

These are well-defined since 0 g m± g H'̂ o - (j)\\i- As 

0(±oo) 二以士 and UQ - ^ e L\R), 

therefore the Lebesgue measures of two sets = {x|i^�(:r) < and Z—= 

{x\uo{x) > are infinite. Thus there exist sets M+ C and M一 C Z— of 
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Lebesgue measure 2m+/(c+ — c—) and 2m—/(c+ — c_). Set 
• 

mdix{uo{x), c^} X eR \ M+, 
aiO)= 

[ ( c — + c+)/2 

min{i/oO),c_} x G R \ M _ , 
a2{x)= 

[ ( c _ + c+)/2 X e M—, 

then 

asO) < Uo{x) < ai{x) Vx G M. 

Clearly 
poo 

ai-c+e and / (ai(x) - c+)dx = 0. 
J — O O 

Set ui{t) 二 S{t)ai, U2{t) 二 S (̂t)a2，then Lemma 1.4.4 implies 

lim \\{ui{t,.) - c+)+||i = 0. 
i—oo 

Similarly, we can prove that 

lim ||(以2(力,.）—c_)—||i = 0. (1.4.14) oo 

By comparison principle, the solution u{t) —- S{t)uQ satisfies 

U2{t, x) < u(t, x) < Ui(t, x) Vx G R. 

Fix an arbitrary e > 0, then there exists a > 0 such that 

||(水.）-C+)+||i < 6/2, ||(水.）- c_)_||i < 6/2. 

Let Ue{t) S{t - te)uo for t > U with 

C— if u{te, x) < C_, 

权0 = x) if c— < 水 x) < c+, (1.4.15) 

C+ if C+ < u{te,x). 
V 

While 

1̂ 0 一 u{te, .)||l < € 
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and 

1 ^ 0 - ( K . — s t J I l l < I I 权 0 — 束 . ) | | + Mt,, .) 一 — < OO, 

SO Corollary 1.4.3 implies that 

lim \\ue{t) - (f){‘ — St, — s{t - Q + 111 = 0 
t—oo 

with appropriate By contraction property 

lim sup \\u{t, •) - (j){‘ - st + < e. 
t—oo 

As 工 + Si) — (/)(x + S2))dx = (Si — (^2)0+ — u—), therefore 

— (5̂ 21 . \u+ — 2 lim sup \\u{t,.) 一 - st + ^JUi 
t—oo 

+ lim sup \\u{t,.) — — st (̂ £2) 111 

Thus Se converges, as e 丄 0，to some limit S and limt_̂ oo ||収(力，•）一(/>(. — s 力 二 0. 

Therefore “ r 〒 ： 释 . • 
iX-l- LL 一 



Chapter 2 

Propagation of a Viscous Shock 

in Bounded Domain and Half 

Space 

After studying the stability of viscous shock wave for initial value problem, we 

consider propagation of viscous stationary shock waves in bounded domain and 

half space. For bounded domain case, we will use two asymptotic analysis meth-

ods, projection method and WKB transformation method, to study the location 

of shock layer and study the effect of boundary conditions for the propagation of 

shock layer. In the case of propagation of stationary shock wave in half space, 

we first study the problem by asymptotic analysis, then verify this asymptotic 

analysis results by careful pointwise estimate. 

35 
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2.1 Slow Motion of a Viscous Shock in Bounded 

Domain 

In this section we will study the internal layer behavior associated with the fol-

lowing viscous shock problem in the limit 6 - ^ 0 

ut +(腳 cc 二 eu 工工,0<x<L, t > 0 , ^ g M , (2.1.1) 

= u{L,t) = a+, (2.1.2) 

where > 0, < 0, and the smooth nonlinearity f {u) has the following 

properties: 

/(O) = no) = 0, /(a—) 二 / K ) = / ( a ) , f\u) > 0. (2.1.3) 

Two important examples for the flux function are: f{u)=专，this is well-known 

Burgers equation; / ( n ) =以— 1 + 击 which arises the study of one dimensional 

transonic gas in a straight channel[20 . 

To get some insights of the problem, we first focus on the steady problem. 

2.1.1 Steady Problem and Projection Method 

For problem (2.1.1)-(2.1.2), the corresponding steady problem is 

{f{u)), = en,,, 0 < X < L, (2.1.4) 

从(0) 二 I , u(L) 二 a+, (2.1.5) 

where > 0, < 0, and (2.1.3) hold, the problem (2.1.4)-(2.1.5) has a unique 

solution with a shock type internal layer. 

For e 0, the leading order matched asymptotic expansion solution for 

(2.1.4)-(2.1.5) is given by ix �（^((x — xo)/e), [9], where 姻 is the shock pro-
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file satisfying 

彻 = / ( 0 ( 么 ) ） 一 f(a), -oo<z<oo, (/)(0) = 0, (2.1.6) 

� — �z - o o , (2.1.7) 

( / ^ z ) �+ a + e — z — oo, (2.1.8) 

where 

"士 二 干广(cdz), (2.1.9) 

l o g ( T — ) = 士“士 / , “ , 士 一( 向 . ( 2 . 1 . 1 0 ) 
呂、a士 " Jo /(") — / 0 士） 

Since f{u) is convex, direct computation shows a士 > 干 N o t i c e that for 

any Xq G (0，1)，with 0 ( e ) �X O � 1 — 0(e), the matched asymptotic expansion 

solution satisfies the equation exactly and it satisfies (2.1.5) to with exponentially 

small terms. Therefore the location XQ of the shock layer can not be determined 

only by matched asymptotic expansions. 

The deviation w = u-(l){z) between the steady state and internal layer should 

satisfy a nonlinear differential equation 

f{w + 一 飄 z ) �工 二 ew：,：,. 

Since we expect that the deviation is small enough, therefore, at least we need 

that the solution to the corresponding linearized problem is small enough. Thus 

we will consider the following linearized problem. 

ew,, - ( r 綱 cc = 0， 0 < x < L , (2.1.11) 

—0) 二 a - — ^ i - x o / e ) � ( 2 . 1 . 1 2 ) 

w{L) = — 雜 - X o ) / e ) 〜 夠 （ 2 . 1 . 1 3 ) 

To solve the problem (2.1.11)-(2.1.13), we first transform the differential equa-

tion (2.1.11) into a self-adjoint form. Introducing a new variable 

w = w{x) exp(—pO)), g{z) = ^ l o g(^^)， where 2; 二 (2.1.14) 
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After a simple calculation, we find that w satisfies 

- = 0, (2.1.15) 

训 0 ) 〜 （ / ( ⑷ 二 ( 2 . 1 . 1 6 ) 

w{L)�—(/�a+)i�;"2e-"+(“�)/⑷， （2.1.17) 

where the potential V{z) is defined by 

� =\ u \ m ) ? + (2.1.18) 

Define 

C沙 二 e l — (2.1.19) 

Therefore we can represent w as linear combination of eigenfunctions of self-

adjoint linear operator 二 and a correction term which is induced by inhomoge-

neous boundary conditions (2.1.16)-(2.1.17). Hence we consider associated eigen-

value problem 

: 冰 (2.1.20) 
\ m = 0, ^{L) = 0 ,(也 vo 二 1. 

It is obvious that A is real. Suppose A is an eigenvalue, then 

X = -e^ J 麵-J 

Since 

1 广 劃 綱 彻 = \ \ I eif{^{z))Wdx\ 

=I j en魏他dx\ 

< Je'ijldx+lJificPizWi^'dx, 

thus A g o . 

Suppose {Xj}j>o and {ipj}j>o are eigenvalues and corresponding eigenfunc-

tions to We now give an asymptotic estimate for the principal eigenvalue A� 
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and for the corresponding eigenfunction Define 似x) = (t)\z) . exp(-^(z)) , 

then Ce'ipo = 0. Then Green's identity shows 

= (2.1.21) 

To estimate Aq from (2.1.21) we construct 秘x) asymptotically and then calculate 

7/;ox(0) and V^ox(^)- Since 如 satisfies = 0, is exponentially small at 二 0 and 

X = L, and is of one sign, then 如�A^o^o, except possibly near the endpoints. 

Here NQ is a normalization constant, thus we must add a boundary layer term to 

No;o[x) near each endpoint to approximate Ĵq. 

We first consider the region near a; = 0. Since V ( z ) �f o r z — —oo, 

then for x ^ 0, we have 

M x ) �N o i M x ) + 6 厂 u / � ) . （2.1.22) 

Using M x ) �— ( 工 - 工 。 ) / � for � 0 and enforcing M 购 = 

we find 
�= ( a 一 / ( a ) ) i / 2 e - u � /� . 

Therefore 

功 O c c ( O ) �— A ^ a - �) i � — "j � Z� . (2-1-23) 

A similar calculation for the region near x = L gives 

^ o A L ) � �) i / 2 e - " + ( “ � ) /� （2.1.24) 

Now to evaluate the left hand side of (2.1.21), we use the estimate � 

where 
poo 

(^0,如）〜e / ((//�)2 exp{-2g{z))dz = 2e(a— - a+)f{a). (2.1.25) 
J —oo 

Hence, we obtain the following estimate for Aq - Xo{xo): 

A o ( x o ) � — — -̂( a + z ^ e — " + ( “ � ) / € + a_vte一小Y (2-1-26) 
\ a— — a+ 
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Motivated by analysis for Burgers equation in [25], we assume that {Xj}j>i 

are away from 0. Now we project w to subspace which is spanned by V̂ j, then 

= + (2.1.27) 

where 

B, = 一 w ^ J M ) ' (2丄28) 

Then by previous asymptotic analysis BQ = 0(l)e(e-"+(L-�/芒 + e—"—帅,”.On 

the other hand, to satisfy well-posedness for the linearized problem, there will be 

|u;||loo < 0(1) max{|iD(0)|,\w{L)\}. Using asymptotic analysis for Aq in (2.1.26), 

to balance two terms in right hand side of (2.1.27) for j = 0，BQ must be 0. Thus 

e - " - 卯 " = a + " + e - 帅 ( 2 . 1 . 2 9 ) 

The solution to (2.1.29) is xq = Xe where 

= ^ l o g ( ^ ) . (2.1.30) 
"一 + jy- + 

Summarizing, we have 

Proposition 2.1.1 The shock layer solution for (2.1.4), (2.1.5) is given asymp-

totically by u �w h e r e Xe is defined by (2.1.30). 

This proposition and several propositions below were obtained in [40] for a 

special case a一 二 L = 1, and some results about more general case where 

a— may not equal to — h a d appeared in [41], [52]，[51] diversely either without 

derivation or by different treatment. Here we present analysis and results all 

for more general case where may not equal to — and L is arbitrary by a 

uniform treatment. 

2.1.2 Projection Method for Time-Dependent Problem 

For time dependent problem 

Ut + = 0 < a; < L, t > 0 , (2.1.31) 

二 a—, u�L,t) = a+, (2.1.32) 
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we will track the propagation of the shock wave by the method developed in the 

previous subsection. 

Starting from initial data a shock layer is formed on an 0 (1 ) time scale. To 

describe the subsequent slow motion of the shock layer we look for a solution 

to (2.1.31)-(2.1.32) of the form u ( x , t ) � — where (t){z) is the 

shock profile defined in (2.1.6)-(2.1.8) and a; = xo{t) is the unknown location 

of the shock layer. Since 0(0) 二 0, then Xo{t) is an approximation to zero of 

u{x,t) during the slow evolutionary period. In a strict sense, labelled by xg, 

corresponding to the location of the zero of u for the shock layer initial data of the 

form u{x, 0 ) � 0 0 — � For more general initial data, however, we will interpret 

xg as the location of the shock layer at the onset of the slow evolution. Although 

a precise definition of xg is not needed for our purposes, one possible definition is 

that x^Q is the location of the zero of u at the time when the inviscid problem(e 二 0) 

first forms a shock. Since the slow evolution occurs on an exponentially long time 

scale, we only incur an 0 (1 ) error in the total elapsed time by assuming that the 

slow motion begins at t = 0, that is to say, a;o(0) 二 

For t � 0 ( 1 ) , we look for a solution to (2.1.31)-(2.1.32) of the form u{x,t)� 

(f){z) + w{x,t), where z = {x - Xo{t))/e, w�小.Linearize the problem at (/)(z)， 

then 

e^ . . — 二 - e — 1 ± � ( / /� + wu (2.1.33) 

力 ） 〜 ⑶ / 、 （2.1.34) 

一 〜 ( L - 帅 ) 八 . (2.1.35) 

As same as before, to get an adjoint linear operator, we use the transformation 

w{x,t) = ex^{-g{z))w{x,t), 
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then we can convert the boundary value problem (2.1.33)-(2.1.35) to 

e'w,, - V(z)w = —:^� ( / / ( z )e - "� + ah — �K (2.1.36) 

w { 0 , t ) �（ a — 卯 / ⑷ ， （2.1.37) 

训L,t)�（a+/(a))i�;"2e-"+(“�)/�. （2.1.38) 

Suppose {ipj{x)}j>o are eigenfunctions for the eigenvalue problem (2.1.20), then 

—±o((//e-",也•）+ e(办，也•）— - A 乂也也•） = -嚇 ( 2 . 1 . 3 9 ) 

where 钩⑷=e2(训L，力地.JL) - ^(0, 

Since i p o i x ) �e x p ( — 乂 之 ) ） i s exponentially small outside a narrow 

region of width 0(e) centered at x = Xq, thus the dominant contribution to the 

inner product integrals in (2.1.39) for j = 0 arise from the region near x : â o-

In this region, we assume W t �t h u s we neglect the second term on the 

left side of (2.1.39). Moreover, since � 1 and 勵 ^ 0 when x is in a small 

neighborhood of xq, the third term on the left side of (2.1.39) is asymptotically 

smaller than the first term. Noting that A q � 0 , then letting e — 0 in (2.1.39), 

we obtain the following approximate equation of motion for xq： 

= (2.1.40) 

Proposition 2.1.2 For e — 0, the exponentially slow evolution of the shock 

layer for (2.1.31)-(2丄32) is described by u �王 w h e r e xo{t) satisfies the 

ordinary differential equation 

±0 == -(a—v—e-u 小—a+"+e—卯)/”， （2.1.41) 
a— — a+ 

here (/)(z) is defined by (2.1.6) — {2.1.S)and a± are defined in (2.1.9)，(2.1.10). 

The initial position of the shock layer x^ = Xo{0) is determined by the transient 

process describing the formation of the shock layer from the initial data. 
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Remark 2.1.3 Ifx^ > Xe； then XQ < 0，therefore the shock layer will move to Xe 

at last; Conversely, if X^q < Xe, then XQ > 0，therefore the shock layer will move 

to Xe after exponentially long time. So we can see that the location x^ of shock 

for the steady problem (2.1.4)-(2.1.5) is stable. 

2.1.3 Super-Sensitivity of Boundary Conditions 

Now we look at the problem we solved again. The problem can be written in an 

abstract form as: 

Ix = y, 

where I is an abstract operator, in our case, it relates to the differential operator; 

y represents the effect of boundary conditions; x is what we want to solve, the 

location of shock layer. The differential operator has small eigenvalues, that is 

to say, the norm of the operator I is very small, on the other hand, we know 

that boundary condition is also quite small, therefore, y can be viewed as a small 

quantity. So, as a matter of fact, we are solving an ill-conditioned problem. To 

verify this ill-condition, we perturb y a little bit and solve some problems with a 

little bit different boundary conditions . 

First, we study the steady problem (2.1.4) with boundary conditions 

以(0) 二 a — - 為 e — c " �u { L ) = a+ + A ^ e — ( 2 . 1 . 4 2 ) 

here 為，A" q , Cr > 0. As same as in section 2.1.1, studying the new boundary 

layer terms and then we have 

Proposition 2.1.4 The shock layer solution for (2.1.4), (2.1.42) is given asymp-

totically by u �(K^^)，where x^ is solution of following equation: 

When f is even, then z/— = 二 v, a_ 二 —a+ = a，a_ = a+ = a，and Xe can be 
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explicitly represented by 

二会 + �g ( 7 + ( 7 2 + 1)1/2), (2.1.43) 
2 V 

where 
Are�,�、卜-為e(導 

7 = Ya . 

If we choose ci = Cr = i^L/2 and Ai ^ Ar, this example shows that the 

exponentially small changes in the boundary conditions induce on 0(e) changes 

in the location of the shock layer. 

The second example is the steady problem (2.1.4) with boundary conditions 

eu,{0) - ki{u{0) — 二 0, eu,(L) + kr(u(L) — 二 0, (2.1.44) 

here k , K > 0. As same as in section 2.1.1, we study certain eigenvalue problem, 

give an asymptotic estimate for the principal eigenvalue, and apply solvability 

condition for associated linearized problem, then we have 

Proposition 2.1.5 When 0+ - /cJO— — k) > 0, the shock layer solution for 

(2.1.4)，(2.1.44) IS given asymptotically by u �(/>(〒)，—ere Xe is defined by 

xe 二 ^ log ( . (2.1.45) 

+ z/一 Z/+ + u- \a-U-kr V- - R J 

Alternatively, when ("+ — — k) < 0，there is no shock layer solution for 

(2.1.4), (2.1.44). 

We find that if we perturb the boundary conditions (2.1.5) a little bit to 

(2.1.44), the shock layer may disappear. This again implies that the problem is 

very sensitive to its boundary conditions. 
While, for time dependent problem (2.1.31) with boundary conditions similar 

to (2.1.44) 

eu工(0, t) — ki{u{0, t) — a_) = 0, €u^(L, t) + krML, t) — a+) = 0, (2.1.46) 

parallel to section 2.1.2, we have 
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Proposition 2.1.6 For e — 0，the exponentially slow evolution of the shock 

layer for (2.1.33)，(2.1.44) is described by u �(^^^？^)，—ere Xo{t) satisfies the 

ordinary differential equation 

±0 = - ( a + i / + (， — l)e-"+(【-帅— aj—C�—l)e一一巧，（2.1.47) 

here (piz) is defined by (2.1.6) and a士are defined in (2.1.9)，(2.1.10). The 

initial position of the shock layer X^q 二 xo{0) is determined by the transient process 

describing the formation of the shock layer from the initial data. 

Remark 2.1.7 / / < h and < K, for any G (0,L)，the solution xo{t) 

tends to Xe in the equilibrium location. When > k and > K, the equilib-

rium location is unstable; more precisely, when xg > Xe{x^o < Xe), the shock will 

eventually hit the boundary = LO 二 0). Finally，if ("+ — — h) < 0，the 

shock layer will hit the boundary at x = L{x = 0) when > kr{i^+ < K). 

Remark 2.1.8 If we take h, kr ^ oo in the boundary condition (2.1.44), (2.1.46)， 

formally, we get the boundary condiUon{2.1.5), (2.1.32) respectively. Meanwhile, 

when ki, K — oo, the location of shock layer Xe in (2.1.45) will tend to (2.1.30)， 

similarly, the propagation of shock layer Xo{t) defined by (2.1.47) will go to (2.1.41). 

Thus we can regard (2.1.4)- (2.1.5) as a special case of (2.1.4)- (2.1.44) and 

(2.1.31)- (2.1.32) as a special case of (2.1.31)- (2.1.46) for k = kr = oo. 

2.1.4 W K B Transformation Method 

In previous several subsections, we derive the propagation of shock waves, but 

we do not give rigorous mathematical proof. Therefore, we give an alternative 

method to verify this derivation. From Remark 2.1.8, we know the boundary 

conditions (2.1.46) are more general, therefore, in this subsection, we consider 

the problem (2.1.31) with boundary conditions (2.1.46). 

The method we give in this subsection is based on introducing the new vari-

able v{x,t) defined by WKB(Wentzel-Kramers-Brillomn)-type nonlinear change 
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of variables u = (/)(v/e), where (p is the shock profile. Since (/)(0) = 0，the slowly 

evolving shock layer is centered at the zero of v, that is, v{xo{t),t) = 0, and we 

have that v > 0 for x > Xo{t) and r < 0 for x < xo{t). Substituting u = 则 e ) 

into (2.1.31)-(2.1.46), we obtain 

Vt = ev：,：, + b{v/eyv 工{v：̂  — 1), (2.1.48) 

v ^ i ) 〜 知 ” 从 t ) 〜 ( 2 . 1 . 4 9 ) 

where 

b{z)=舰zY), b { z ) � 干a s ± 0 0， （2.1.50) 

we have assumed that xo{t) is not within 0(e) neighborhood oi x = 0 or of x = L. 

To get some insight into the behavior of the solution to (2.1.48)-(2.1.49), we 

first discuss the quasi-steady problem 叫二 0 for e 一 0. Since the slowly evolving 

shock layer is given by �( / ) ( ( x - Xo{t))/e), the approximate outer solution for 

(2.1.48) is V r-. X - xo(t), where 0 < Xo{t) < L. Now to satisfy the boundary 

conditions, we must insert boundary layers for v near 二 0 and x = L. Since 

b{z), given in (2.1.50), has the appropriate sign, it follows that the far field forms 

of the boundary layer solutions tend to 二 1 in the outer region. To determine 

xo(t), however, we must analyze the effect of the exponentially tails of these 

solutions on the region near x 二 x �� where v = 0(e). This observation is the 

motivation for introducing below a new variable p, which is related to � _ 1 and 

actually represent the effect of the boundary layers. 

Case (i): hjv— < 1 and < 1 

Introduce a new variable t) defined by v：, 二 (l+e—"")—i, this is a standard 

WKB transformation for the problem (2.1.48)-(2.1.49). More details about WKB 

transformation method is referred to [3], then 

4 c o s h ' ( ' - ^ ) v t = p . - b ( - ) , (2.1.51) 

= �— — 1 ) , (2.1.52) 

p(L,t) = epr �- 6 l o g ( ^ — 1). (2.1.53) 
FVJ-
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For the steady problem we have p工=b{v/e) and v：, = {1 + e—"”—� . Away from 

X = 0 and x = 1, where p = 0(e) , we have that ” �X — A:。for some X q G (0,1). 

Then, using (2.1.51), it follows that p is piecewise linear for — Xo\�0(e) and 

the shock layer will induce a corner layer of p near x = XQ where it attains its 

maximum value. Now by imposing the required condition that the outer piecewise 

linear solutions for p are continuous at 二：Tq, we obtain that a :��“+丄/ ( "—+"+) , 

which agrees with the leading term for x^ given in (2.1.45). 

Now we consider the time dependent problem. Substituting the outer solution 

v{x,t) - X - Xo(t) into (2.1.51), the equation for p becomes 

4 e o s h ^ ( ^ ) i : o 二 Â  - hC-^^^) (2.1.54) 

with boundary conditions (2.1.52)-(2.1.53). 

Let p*(t) be the maximum value of p at a given time t. Then p typically has a 

plateau near p* in the sense that p — p * � =0 ( e ) for an 0(1) interval in This 

is motivated by numerical experiments, see [40]. Since Px - 0 there, therefore, 

the right hand side of (2.1.54) is an 0(1) quantity, thus we have XQ 0(e—广⑴八）， 

which gives an estimate for the speed of the layer at time t. 

In the regions where p < p*, since 

4 c o s h ^ ( ^ ) x o 二 O ⑴ ⑴A ̂  0’ 

therefore the motion is quasi-steady and p^ �6 ( 0 — XQ{t))le). Since b has only 

one sign alteration, the quasi-steady solution can have Pa： changing sign only 

once. Using (2.1.54), we obtain that p 工 �f o r x < Xo{t) and Ar �f o r 

X > xo{t). In particular, since p 二 0(e) near = 0 and ri: 二 L, the motion must 

be quasi-steady near endpoints and thus for some unknown functions, Xi = Xi{t) 

and Xr 二 Tr (t) we have 

, \ ly-x + epi 0<x<xi, 
p{x,t) - (2.1.55) 

"+(!/ — x) + epr Xr < X < L. 
V 
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Let us assume for the moment that 二：zv 二 ：ro (力),so that p does not have 

a plateau for an 0 (1 ) interval in x. Under this assumption, p* = max(z/_a:o + 

epi, - xo) + epr) and, for most p will have an 0 (1 ) jump discontinuity 

at rr = xo(t). Since p < p* on one side of x - however, we would then be 

forced to use quasi-steady solution to smooth out this 0 (1 ) jump in p. 

It is only when Xo(t) is within an 0(e) neighborhood of Xe, that is \xo{t) —x已= 

0(e) , that p has a tent like structure of the form with 工i = Xr 二 工 o ( 力 ) . F o r 

xo{t)-Xe\ > 0(e) , we must insert a plateau for p in which the left side of (2.1.54) 

is balanced by the second term on the right side of for some 0 (1 ) interval in x. 

The precise form for p depends on whether xo{t) > Xe or xo{t) < r̂ e. Specifically, 

when Xo{t) > Xe we have 

+ epi 0 <x < xi, 

pO , 力）〜 p * = - xo) + 0{e) xi<x< xo, (2.1.56) 

- x ) + epr XQ <x < L, 

where xi = — XQ)/U- + 0 ( e ) . 

Alternatively, when xo{t) < Xe we have 
f 

v_x + epi {) <x 

p{x,力)〜ff = ly^XQ + 0 ( e ) xo <x < oc” (2.1.57) 

"+(L - x) + epr Xr < X < L, 
V 

where Xr = L - + 0(e). To determine an equation of motion for Xo{t) 

we then must construct a layer for p near x 二 cco(t) in which the three terms in 
(2.1.54) are balanced. 

We first consider the near equilibrium case \xo{t) - Xe\ = 0(e) for which p 

has the form given in with xi = Xr = xo{t). Introducing the stretching variable: 

y 二 £ z ^， s e t p{y) 二 p O o � + ey), then py = ep^. since b{y) = f{(p{y))= 

therefore the equation (2.1.54) reduces to 

= (2.1.58) 
2e' e � 
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Note that 臺一 oo uniformly for y e “。 (： )— f r o m the definition of 

p in (2.1.55), when e 0. Using cosh^ z �e ��a s z — oo, from (2.1.58) we 

obtain 

io 幅 = ( 2 . 1 . 5 9 ) 

for y G ( ” o �, L - x o { t ) - y r e ^ ^ then we integrate (2.1.59) with respect to y from 

V t j ^ to L - 工 卞 { e , and use the properties of shock profile (2.1.6):(2.1.8), we 

have 
L-xn(t)-Ve . 

±0 / ^ cp'{y)dy = 一+(“。—…八 + 仏 一 ” — 已 … 如 孙 , 

J ̂ -XQjt) 
‘ (2.1.60) 

since 
L-XQ{t)-^/e 

[ ‘ 小 ‘ ⑷ d y = — + 卯�—^/芒 + le—"-(卯�-旧/芒. 
e 

Because xo{t) ^ Xe, therefore, (2.1.60) asymptotically agrees with the ordinary 

differential equation (2.1.47) derived by projection method. 

When xo(t) > Xe and xo{t) < Xe, we can follow above procedure to derive the 

propagation of shock layer which is in asymptotic agreement with (2.1.47), where 

we should choose different interval other than “。(，-v^] to integrate such 

that substitution of cosh f by exponential function makes sense. 

Case(ii): k / iy- > 1 and > 1 
We introduce p(x,t) by WKB transformation v：, = {1 - then 

二 -Px + 
� 6 

p(0,t) = epi �— e l o g ( l - p{L,t) = epr � —e l o g ( l — 

Then as same as in case (i), we can derive the ordinary differential equation which 

describe the propagation of shock layer. 

Remark 2.1.9 When we compare projection method with WKB transformation 

method, we can see that projection method is very elegant in mathematics; more-

over, it can be used in more general cases, different boundary conditions, deal 
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with other type equations, such as Allen-Cahn equation, viscous transonic flows 

through a nozzle, and so forth，see [40, 52]. A good survey for this method 

is [51], where various applications of projection method are included. While, the 

boundary conditions have a lot of influence on WKB transformation method, we 

need introduce different WKB transformation for different boundary conditions, 

see [52]. Comparing with the projection method, WKB transformation method 

do not need to do difficult small eigenvalue analysis where we did not give analy-

sis except for principal eigenvalue, just need to do some algebraic manipulations. 

Thus, WKB transformation method is very good in numerics, see [40, 52]. Fur-

thermore, when we use WKB transformation method, we only need continuity of 

transformation variable p, it does not seem a strict constrain, when we can only 

do some asymptotic analysis. 

2.2 Propagation of a Stationary Shock in Half 

Space 

In chapter 1, we know that if there is no excess mass, for Cauchy problem, the 

location of shock can be regarded as static. While in Section 2.1, we find that the 

location of shock will move slowly due to the effect of boundary layer. Since there 

are two boundary layers, in certain sense, as a result of balance of two boundary 

layers, the shock will not move a lot. In this section, we will see that when there 

is only one boundary, the shock still moves slowly, but they will move away from 

the boundary farther and farther. 

2.2.1 Asymptotic Analysis 

First of all, we will use projection method developed in section 2.1 to give the 

propagation of shocks in half space. 
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Consider the problem 

Ut + / H x = eu^x, 0 < X < oo, t > 0 , 以 O ， 0 ) =以 o O ) , (2.2.1) 

u(0,t) = u(x,t) -> q:+ as x oo. {2.2.2) 

Starting from Uo{x), we assume that a shock layer is formed in an 0(1) time 

interval with the shock layer location an 0(1) distance away form = 0. 

If we take A：/ — oo, L 一 oo in the boundary conditions (2.1.46), then we 

get the boundary conditions (2.2.2); at the same time, the location of shock layer 

(2.1.47) will become the propagation of shock layer for the problem (2.2.1)-(2.2.2). 

Thus we have 

Proposition 2.2.1 [52] For t � 0 ( 1 ) and e — 0，the slow shock layer motion 

for (2.2.1)，(2.2.2) is given by u �w h e r e xo{t) satisfies 

_� � 4 +�丄 log(l + f ) , ts�三 • ，� （2.2.3) 
jy 一 Is Ll—L/_ 

here "一 and a— are defined in (2.1.9) and (2.1.10). 

2.2.2 Pointwise Estimate 

In section 2.2.1, we only give the propagation of shock waves as (2.2.3) by asymp-

totic analysis, but it is not rigorous mathematical proof. In this subsection, we 

will justify the above asymptotic result by careful pointwise estimate. 

More precisely, after a scaling, we consider the following initial boundary value 
problem 

Ut + UUa^ = Uxx, 

< u{0,t) = 1, u(oo’ 力)二-1， （2.2.4) 

u{x, 0) = 'Uo(̂ )-
Since we know for Burgers equation, the inviscid shock (1, - 1 , 0 ) has a shock 

profile 
00^) = —tanhg. (2.2.5) 
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In this section, we will consider the initial value uo(x) which is a perturbation of 

the stationary wave solution (/)(x-Xo) with a location :z:o 二全 for e � 0 sufficiently 

small with the following two properties: 

Hiuoix) 一 (t){x - Xo))dx = 0, (2.2.6) 
Jo 
\uo{x) — (Pix - Xo) 一 - - xo))| < H{x, Xq), (2.2.7) 

where H{x,y) is a function of x and y defined as 

f 工el义 for 0 < X < 1, 

\ Ly for X > 1. 
�cosh ^ 

In order to trace the asymptotic behavior of the solution u(x, t), we define the 

wave front X(t) of the solution u(x, t) in terms of the stationary wave (/)(x). X(t) 

is given by the implicit relation 

r(u(x, t) - 伞{x - X{t)))dx 二 0. (2.2.9) 
Jo 

It is easy to see that for each t > 0, X{t) is unique, we will explain later that for 

each t > 0, X{t) exists, with the help of X{t), we have 

Theorem 2.2.2 [35] Suppose the initial data uo{x) satisfies (2.2.6)-(2.2.7), then 

the solution u{x, t) of the initial boundary value problem (2.2.4) has the properties: 

, � , x - X ( t ) e-聊 + 
剛 +tanh •^丨 < ^ ^ ^ ^ 二 - cosh 华，(2.2.10) 

X(t) = : r �+ log(l + te-帅）+ e⑷， （2.2.11) 

where e{t) is a function satisfying 

lim e � 二 0. 
t—^oo 

Remark 2.2.3 We can see the location of wave front in (2.2.11) coincides with 

what we have got in (2.2.3) hy asymptotic analysis. 
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To prove the theorem, we need introduce some notations. 

For any a G we define a sequence {Xn}n>o-

Xo = xo = 1/e > 0, (2.2.12) 

Xn = Xn—1 + ̂ —1 for n > l , (2.2.13) 

where is any constant with ^e—�知 < ̂  < This induces a sequence 

{Tn}n>o given implicitly by X{Tn) = Xn, we will show the existence and unique-

ness of Tn later. 

Lemma 2.2.4 If the solution u{x, t) to the initial boundary value problem (2.2.4) 

satisfies 

7；) - cKx — X J — (1 — 0(—Xn))e-1 < 讯工,^n) (2.2.14) 

for some n>0, then the following initial boundary value problem 

dtv + d抓X - Xn)v) 一 d^^xv = 

< v{0,t) = 1 — c^—Xnh 4 ⑴ ， 力 ） 二 0， (2-2-15) 

v[x, 0) 二 u(x, Tn) — - Xn)， 
V 

has a solution Vn{x,t) 二 v{x,t) for 0 < t < XJneM^n), furthermore, the 

following boundary gradient estimate 

= + eX-丨“、 (2.2.16) 

holds for any t G [0, 乂人 exp(Xn).. 

This lemma is a summary of several lemmas in [35]. The proof is quite long, 

but the idea is very clear. Here we only sketch some basic ideas of proof for 

lemma 2.2.4, the details can be found in [35]. The local existence for this nonlinear 

differential equation is proved by fixed point theorem. We first study the iterative 

initial boundary value problem for the linear partial differential equation 

‘ d 此 + d播—X^H) — ^xx^n = —I 財 

< 4 ( 0 , t) 二 1 — X几 )， ⑵,力）二 0， （2.2.17) 

= u{x,Tn) - (l){x - Xn), V 
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for /e > 1 and v^ = 0. We represent the solution for (2.2.17) by its Green's 

function which can be explicitly written down. Then a detailed pointwise estimate 

yields convergence of iterative approximate solution at least on [0, Xn^n exp(Xn). 

As far as the boundary gradient estimate (2.2.16) is concerned, first, we can 

represent the solution by Green's function, therefore, when we take the derivative 

to solution, the derivative will transfer to the derivative of Green's function, thus, 

we need only to estimate the derivative of Green's function and a sharper estimate 

for solution itself, essentially, a sharper estimate for the solution to the linear 

equation. 

Now we apply Lemma 2.2.4 to prove Theorem 2.2.2. 

P r o o f o f theorem 2.2.2: Define Xnit) - then T^+i-T^ is the time 

the wave front X(t) drifts from Xn to Xn+i. Actually, u{x,t) = Vn{x,t - 7；) + 

cl){x — Xn) on [Tn, Tn + XJn exp(X,)], therefore, we use translation t ^ t + Tn, 

and define Un{x,t) 二 以 + for 0 < t < X J u ^ M ^ n ) - We know that Xnit) 

exist locally. From the definition of we differentiate (2.2.6) with respect to 

t, then 

0 二 j 卜 ( x , t ) — (P\x — 糊 ) 之 ⑴ ) d x 

= j dtVnix, t)dx - Xn{t) j Ct>'{x — X捕dx. 

Using the equation (2.2.15) and boundary gradient estimate (2.2.16), then we 

have for t < we first assume Xn{t) > 0，then 

�I < + + Xn知)）’ 

thus we find + > X . + Ce-卿 > X j f ) � — Ce輝 > 0 for some 

constant C, when t < Xn- Do above computation again for t > Xn： then 

之(t) > 0. 

Therefore, Xjt) are well-defined for t < XJnexp{Xn) and e—^“亡）=0(1)6一义、 
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moreover, we have 

for t < XnSn exp(X^). Thus 
roo 

0 二 / {u{x,t) - (l){x - Xn{t)))dx 
Jo 

= r { u { x , t ) - (/)(x — Xn)) + {(p{x - Xn) 一 ( / > ( 工 一 M ^ W ^ 

Jo 
pt 广oo „ 

二 / / 汰 〜 — ( X n ⑴ — + 
Jo Jo 

= f \ - d 德 s) - U-Xn))ds — {XM - + 0 ( l ) e -知)， 
Jo 

where we use the equation and - - t a n h f . Then using the boundary 

gradient estimate and M — X n ) 二 — 2 e — + 0(l)e—知)，we have 

X 几⑴—Xn 二 + Xn)y\ — ̂ ^;n(0，s)—(/a—Xn))^ 

二 te-x- + + (2-2.18) 

Suppose that both t < XJncX- and � 1 . Since 

二 X . + i —X 几二 (T .+ i — T》]n + O ⑴ + ( X几。2 ) 

and = e—�知�e-议几丨、we have that 

Tn+i —Tn 二（1 + 0 �X X K e 义〜 （2.2.19) 

therefore Xn < —Tn< hence is uniquely determined. 

At the same time, by a delicate pointwise estimate, we can get 

Tn+l - Tn) — (1 一 小{X 一 < H{X, Xr,). 

Since at initial time, T �= 0, (2.2.7) holds, therefore, by induction, for the solution 

u{x,t) to (2.2.4) defined globally in time, similar to (2.2.7), we have 

Tn)—小{x - X J 一（ 1 一 — < n i x , X r , ) ( 2 . 2 . 2 0 ) 
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for n > 0. 

From the estimate (2.2.19), it follows that 

知 1 — X几= ^ 二 + aX-). (2.2.21) 
T . + i - T n (1 + O ⑴聊‘eXn 、 

This is discretization of the ordinary differential equation 

dt 

with initial value X(0) 二 J ô, we have 

糊 二 l o g ( e ” t ) , (2.2.22) 

then there exists a constant C > 0 such that 

一 7； — (eXn+i - < Ce—议卞叉糾—e^-) (2.2.23) 

holds with a - a > 0 sufficiently small. When Xq is sufficiently large, we have 

- (T .+i - Tn) < e^- - < - To) for all n > 1. (2.2.24) 
2 

According to (2.2.23) and (2.2.24), we have 

Tn+l - Tn Xn+i _ gXn < Tn+1 - ^n (2.2.25) 
1 + + 一 e - 1 - + e^o) -a 

and 

T. — + e X � ) " < e^- — e ^ �< T. + + ^^。广〜（2.2.26) 

In 1 _ 一 1- a 2 

then 
= l og (eX�+ TM + + eX�)—勺). （2.2.27) 

Thus 
= + + (2.2.28) 

Here En satisfies 

Er. = log(l + O �( ( e X Q + T.)-^ + ； ( 2 . 2 . 2 9 ) 
J-n+l 
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From (2.2.20), we conclude that 

(2.2.30) 

2 

From (2.2.19), we know Tn oo as n oo, then by (2.2.28), oo as 

n — oo. Moreover, from the definition of {Xn}n in (2.2.12) and (2.2.13), it 

follows that for any y > Xq + e—“义。we can construct a sequence {Xnjn such 

that y 二 Xm for a G { X j . Thus for any t > ed—a)� there is a sequence 

{Xn}n satisfying such that X � =X j {Xn} . Therefore, we have that when 

t > e(i-…叉0， 

圆 < ^ ^ ^ ^ - —cosh 毕 . ( ) 

So we complete the proof of the theorem. 口 



Chapter 3 

Nonlinear Stability of Viscous 
Transonic Flow Through a Nozzle 

In this chapter, we shall study the propagation of a viscous shock wave in nozzle 

by matched asymptotic analysis. Furthermore, some problems which are still 

unsolved are mentioned at last. 

3.1 Matched Asymptotic Analysis 
The model we consider is a simplified scalar model related to the model proposed 

in [8]. More precisely, consider the following initial boundary value problem 

‘ 费 + 警 = + 孙 ， 

< u{x,(}) = u{x), (3 丄 1) 

u(0,t) = Ui, n( l , t ) 二 Ur, 

where 

f"{u) > 0 , 广 ( 0 ) 二 / (O) 二 0. (3.1.2) 

Motivated by the study for inviscid flow, we first study the divergent nozzle case, 

that is a(x) < 0, where standing shock in the inviscid flow is stable. 

58 
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First of all, we generalize the study of Ebid, Goodman and Majda [8]. Suppose 

ui and Ur satisfy that there exist x, such that 

— Q{ui) = A{x), Q{ur) — Q{u+) 二 — A � （3.1.3) 

and 

二 / ( [ ) ， / ' ⑷ <,(以—)’ （3.1.4) 

where Q(u) = /；呼 d y , Q(0) = 0, and A � =/ ； a{s)ds, A^ = a(s)ds, then 

there is a standing transonic shock (u-,u+) at x in the steady flow 

麵 = 勢 (3.1.5) 
dx 

with boundary condition u{0) 二 ui and � =U r . When f{u)=譬，(3.1.3) and 

(3.1.4) will reduce to the results in [8 

Ui + U r - A i . 二 0 for some x G [0,1] and u i �U r - Ai. (3.1.6) 
2 

Suppose ui, Ur in (3.1.1) satisfy (3.1.3) and (3.1.4), then a transonic shock 

layer will be generated in bounded domain [0,1] when e is sufficiently small. As 

same as stability or instability of standing shock for inviscid flow, the stability and 

instability of stationary viscous shock wave are of great interest and importance. 

To reach this goal, we first study the propagation of viscous transonic shock wave 

in a bounded nozzle. 
First of all, we use matched asymptotic analysis to study the internal shock 

layer and the solution in outer region. Although this process is known in principle 

9], we would like to carry it out in detail here so that we can explain the problem 

easily later. 

We start with the outer expansion. In the region away from the shock layer, 

the solution may be approximated by truncation of the formal series 

u{x, t)�uq{x, t) + eui{x, t) + e^u^ix,力）+ ... . (3.1.7) 
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Substituting this into (3.1.1) and equating coefficients of powers of e, we get 

0(1) : uot + f(uoh - ^ W ^ o 二 0, (3丄8) 

0(e) ： uit + (f(uo)ui)a； — a(x)ui 二 ̂ oxx, (3丄9) 

0(e2 ) : U2t + ( f ( u o ) u 2 ) , 一 a(x)u2 二 ^ixx — (3.1.10) 

In the shock layer region, u should be represented by an inner expansion: 

u ( x , t ) �现 i) + eU此 t) + e"现 t) + ...， （3.1.11) 

where ^ is the stretched variable given by 

e 二 . 卜 ， ⑷ + ( 5 � � + 成 ⑴ + 一如⑴+ ... . (3丄12) 

This time we substitute (3.1.11) into (3.1.1) and obtain 

: f/o纹 + xoUo^ - f{Uo)^ = 0, (3丄 13) 

o �： U银 + xoU,^ — U\UoWik =知⑴仏€ + Um 

—a(XQ ⑴)Uo, (3.1.14) 

0(6) : Ih这 + xoU2^ — =⑷"。€ + “ 狐 + Uu 

2 

On the other hand, in a zone somewhat farther from the shock layer, the 

matching zone, for example, < x - Xo{t) + e 如⑷ + . . . S for some 0 < fi < 

17 < 1, we expect both the inner and the outer expansions to be valid. Therefore, 

the two expansions must agree there. As explained in [9], we can express the 

outer solutions in terms of ^ and use Taylor series to find the following matching 

conditions as ^ —> oo: 

[7o(e,t) 二 力）+ o(l), (3.1.16) 

现 t) 二 + —如)a^no(狗⑴ ± 0 , t ) + o(l)，（3.1.17) 

崎 , t ) 二 ⑷士 0，力）+ (《一如)氏以i(狗⑴士 0,力） 

-6Auo{xo{t) 士 M + & — Sofdluo{xo{t) 士 0 , t ) 

+0(1). (3.1.18) 
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Now let us look at the leading order outer solution, it is described by (3.1.8), 

which is a quasi-linear hyperbolic differential equation and can be viewed as 

equation for inviscid flow through a divergent nozzle. Since for inviscid flow, the 

shape of divergent nozzle has stabilizing effect, therefore, the leading order term 

in the ansatz for the location of shock wave will not move a lot. Suppose it is 

generated at some time t = i, Xq = x, and the change of location of shock layer is 

a quantity 0(e), thus we may assume XQ 二 0. Since our interest is the propagation 

of this shock layer after its generation, and usually the time of generating a shock 

layer is quite short, so we can assume i= 0 without loss of generality. Thus the 

leading order term UQ for the inner solution satisfies 

u败 -KUok 二〜 (3.1.19) 

and the equation for leading order expansion UQ for the outer solution reads 

Uot + f(uo)x = a(x)uo. (3.1.20) 

Since up to the leading order, the speed and location of shock wave does not 

change as time goes on, therefore, combining with our assumption (3.1.3) and 

(31.4), we deduce that UQ will be the steady state of (3.1.20), that is UQ satisfies 

^ ^ = a(x)uo (3.1.21) 
ax 

on [0, x] and [x, 1] respectively, and has a jump ( i , at x. Using the matching 

condition (3.1.16), Uq will be the shock profile (p for the standing shock ( i ,以+ ) 

at X in the steady flow (3.1.21) for all time t. In the following we choose 0 such 

that f (0(0)) 二 0, for example, for f{u) 二 苦，we have c^O 二 u+ t a n h ^ . 

To get more accurate propagation of the shock layer, we must analyze the 

next order approximations. First, we solve the first order outer solution, Ui, from 

the linear hyperbolic equation (3.1.9). Since UQ, the solution of (3.1.21) satisfies 

the boundary condition in the initial boundary value problem (3.1.1), therefore, 

we impose the boundary condition 附(0’t) = 0 and Ui(l,t) 二 0 when we solve 
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(3.1.9) in the domain [0,x] x R+ and [x, 1] x R+ respectively. Since uo(x) > 0 

when X G [0,到 and Uo(x) < 0 for x G [x, 1], therefore, the initial boundary value 

problems 

Uit + (f(uo)ui)a： 一 a(x)ui 二 仰 ; ^ ^ [0,^], t > 0, 

< ui(x,0) = X G [0,x], (3.1.22) 

ui(0,t) = 0, t > 0, 
、 

and 

uit + (f(uo)ui)工—a(x)ui = t̂ oxx, ^ ^ t � 0 , 

< ui(x,0) = ut(x), X e [x,l], (3.1.23) 

、附（l，t) 二 0 , t > 0 , 

are both well-posed. Moreover, since UQ does not depend on t and f{uo) > / ' ( i ) , 

for X G [0,x] and f'{uo) < f{u+), for x G [x, 1], by characteristic method it is 

easy to see that Ui is independent of time when t is sufficiently large. 

Now we go back to the first order approximation of inner solution, with the 

help of knowledge of xq, UO, UQ and a 二 a{x), we can rewrite (3.1.14) as 

^ 纹 - ( / ' � …k 二 》 0 � — . 

If we define a smooth function satisfies 

ZMO = I 拟 for e > 1, (3.1.24) 
[P-i for e < - 1 , 

where (3士 == ̂/。(：̂士)，and set 二 U 此 t ) -认⑷， t h e n 

t) — ( /⑷巧 )C —D低 + + “ t W - a4>. (3.1.25) 

Thank for the nice property (1.1.11) of shock profile and f'(u±)(3丄=au±, we 

know that ^ ( 0 二 纹+ ⑷认)广— s a t i s f i e s / — : �M C < oo. Therefore, 

if we integrate equation (3.1.25) from 0 to we have 

— 力)+ C � = + (3.1.26) 



Nonlinear Stability of Viscous Transonic Flow 63 

where G(^) = f^ and c(t) is related to Vi{0,t) and Solve this 

ordinary differential equation, we get the one of solutions 

= j : 咖 偏 — G � —c ( t ) ) e x p ( J : f 酬(K�df]. (3.1.27) 

After a simple analysis, we will get 

—」o⑷“士八二一 c ⑷ - € —士⑴，（ 3 . 1測 

where G+ 二 linv— dzOO 
On the other hand, for t > t sufficient large, ui is independent of time, then 

using the matching condition (3.1.17), we have 

— as € — ± o o , (3.1.29) 

here 7士 = Ui{x±). Combing (3.1.28) with (3.1.29), we have 

… + � r T " " � —  

7_ — • ⑴ = = 雨 

—So{t)u_ — G_ — ((7+ — P+So{t))f{u+) + 6o{t)u+ - G+) 
二 觀 , 

hence 

如⑷ + ^IT^ 如 � 一 U_ — U+ . 

Using f{u±)P丄 cm±, then 

似 t ) - a 秘 ( 3 . 1 . 3 0 ) 

where 
h 二 G — - G 十 + 7 十 湘 - 7 - f ( i ) . ( 3 . 1 . 3 1 ) 

U- — u+ 

Thus 

So(t) 二 如⑷ + — l)/a. (3.1.32) 

Similarly, we can solve outer solution U2 and derive 

6i{t)-a6i{t) 二 (3.1.33) 
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where h = 刺/>+)-以2(无-)/>—) some M— and M+. Thus 
U— — 

6,{t) = e冲-〜+ — !)/«• (3-1.34) 

Using 6i{t)，we can solve inner solution U2. 

For divergent nozzle, a < 0, therefore, we find that the location of shock wave 

will not be drifted far away from the original location from above asymptotic 

analysis. Moreover, the time that shock wave exists is very long, this is nothing 

but metastability of viscous shock wave. 

The main difference between equation (3.1.1) and viscous conservation law is 

that the shape of nozzle helps determine the location of the shock wave. There-

fore, the propagation of viscous shock wave in a nozzle can be determined only 

by matched asymptotic analysis. 

For the rigorous mathematical proof for this asymptotic analysis result, we 

leave for the future. 

Moreover, to our knowledge, the propagation and dynamic stabmty or insta-

bility of viscous shock wave in a convergent nozzle are all unknown. 
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