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Abstract of thesis entitled:

Nonlinear Stability of Viscous Transonic Flow Through a Nozzle
Submitted by XIE Chunjing

for the degree of Master of Philosophy in Mathematics

at The Chinese University of Hong Kong in June 2004

After a brief introduction of viscous conservation law and viscous shock profile,
we study the stability of viscous shock waves by energy method, spectrum analysis
and contraction principle respectively. Besides initial value problem, we also
study the propagation of stationary shock waves in bounded domain and half
space by asymptotic analysis and careful pointwise estimate. Moreover, some
new results about propagation of stationary shock wave for viscous transonic

flow through a nozzle are obtained.
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Introduction

It is well-known that long time behavior for convex scalar hyperbolic conser-

vation law
Ut + f(u)l‘ = O,

U’(x) 0) = U

(0.0.1)

can be completely described, it depends only on the initial data in the far field 28,
7, 55]. Even for system of conservation laws, if the system is strictly hyperbolic
and each characteristic field is either genuinely nonlinear or linearly degenerate
in the sense of Lax[28], large time behavior is also known quite earlier. The deep
result was due to Glimm and Lax[14] for 2 X 2 system by Glimm scheme, then it
was generalized by DiPerna[6] and Liu[29] to general systems.

However, comparing with inviscid case, it is much more difficult and involved

to obtain asymptotic stability for viscous conservation laws

U + f(u):c = Ugz,

U(CE, O) = Uo-.

(0.0.2)

Results about stability of viscous shock waves have a long history. Starting with
the paper of I1“in and Oleinik [22], where they proved that viscous shock profile
in the case of a convex nonlinear term was indeed orbitally stable. They used the
maximum principle to obtain this result in the supremum norm. An alternative
proof of I1in and Oleinik’s result was due to Peletier[38] by energy method.
More precisely, if the flux function is convex, when initial perturbation in H !
is small enough and has certain decay in the far field, the perturbed solution
will converge to shock profile when time tends to infinity. If we consider the
linearized stability of viscous shock wave, we will find that the corresponding
linearized operator probably has eigenvalue 0 due to translation invariance of the
equations. Therefore, we can not deduce nonlinear stability from linear stability

directly[47]. Because of these big difficulties, up to 1976, Sattinger[43] succeeded
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in handling the problem creatively. Sattinger’s idea is to define the linearized
operator in a weighted space, therefore, the corresponding eigenfunction space
will become smaller. Subsequently, the eigenvalues of this linearized operator will
be restricted in a smaller region in complex plane such that except for isolated
simple eigenvalue 0, real parts of all other eigenvalues have a negative upper
bound. Under this condition, Sattinger then proved nonlinear stability for general
travelling waves in this weighed space. Nonlinear stability of viscous shock waves
becomes an example of Sattinger’s general theory, where the convexity condition
of flux function is relaxed.

In fact, I1’in and Oleinik in [22] also showed that if the initial value ex-
ponentially decayed to the end-states of the profile, then the perturbation of
waves decayed at a corresponding exponentially rate, an alternative proof by en-
ergy method appeared in [54]. Certainly, Sattinger’s result[43] also shows that
perturbation decays exponentially in time when the initial perturbation decays
exponentially to the shock profile at the far field for non-convex conservation
law. Kawashima and Matsumura [24] obtained a very interesting result by en-
ergy method, akin to the exponentially decay result of Il“in and Oleinik, which
says that algebraic decay in space is transferred to algebraic decay of the pertur-
bation in time in the case of a convex nonlinear term. Since they used energy
method, therefore, the decay obtained in [24] is in a polynomial weighted L?
space. Through a new technique for estimating the resolvent, Jones, Gardner
and Kapitula [23] generalize the algebraic decay in [24] to weighted L* space.
Moreover, as same as the work of Sattinger, they can deal with non-convex scalar
conservation law. The estimate in [23] depends on estimate for so called Evans
function. Recently, this technique was successfully applied to system of conser-
vation laws, even for multidimensional system of conservation laws, see [12, 17].

While, the aforementioned methods can only get asymptotic stability for small

perturbation of travelling waves, moreover, they can only get the convergence in
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L2, L™, or in certain weighted space. On the other hand, we know, for one-
dimensional conservation law, L! is indeed a suitable space, where Cauchy prob-
lem is well-posed, and L' space has physical significance for conservation law.
Hence, L' stability is much more important than any other stability. This di-
rection was originated by Osher and Ralston [39], they got asymptotic stability
for viscous shock wave when the initial data is between two shifted viscous shock
waves. Along this direction, Serre himself, and joint with Freistuhler, has made
comprehensive studies and finally obtained a complete result for L' stability of
viscous shock profile, they showed that any L' perturbation will merge into the
viscous shock wave, it was included in a series of work, [44], [10]. A good sur-
vey for L'-stability of nonlinear waves in scalar conservation law is [46], where
Serre also studied stability of relaxation shock, radiative shock, discreet shock
and boundary layers, and so forth. The basic tools for establishing L' stability
are some important properties for scalar viscous conservation law, L' contraction
principle, comparison principle[26], and dispersion property for viscous conserva-
tion law[1].

Although in this thesis, we will not consider system of viscous conservation
laws, we still would like to give some comments on stability of viscous shock
waves for system of conservation laws here, because not only is it a hot topic
in the past twenty years, but also many important ideas which were originated
to deal with scalar equation also succeeded in handling system of conservation
laws. For the initial data without excess mass, asymptotic stability of viscous
shock wave was first proved by Goodman([15], Mastumura and Nishihara [36], by
energy method independently, in certain sense, it can be regarded as a general-
ization of Peletier’s idea for scalar equation. However, the method and analysis
by Goodman are more fundamental and useful in many other situations. When
initial perturbation has excess mass, L? stability for viscous shock wave for a

special class of perturbations was obtained by Liu in [29] where he introduced
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very important diffusion waves. By introducing coupled linear diffusion waves
and combining the energy estimate with pointwise estimate, Szepessy and Xin
[50] got rid of the restriction in [29] and obtained stability of viscous shock wave
for general initial perturbation. L' stability for Lax shock was finally established
by Liu[30] by an elaborate study of approximate Green’s function and detailed
pointwise estimates. Some developments by studying Evans function have been
mentioned before.

When we consider the stability of viscous shock wave in scalar conservation
law for initial value problem, there is mainly a viscous shock wave in the whole
space. Although there are some small disturbances, they will merge into the shock
wave, therefore, viscous shock wave will propagate in the whole space freely, so the
stationary shock keeps static. For bounded domain and half space, if the shock
wave is not stationary, Rankine-Hugoniot condition says that the shock wave will
either be absorbed into boundary or generate a strong boundary layer. While, the
propagation of stationary viscous shock wave is very subtle when the domain has
boundary. In general, boundary layer will occur because usually the shock profile
does not match the boundary condition exactly; moreover, since the speeds of the
boundary layer and shock layer are comparable, therefore, the resonance of these
two types of layer will occur. These induce fruitful phenomena for the propaga-
tion of stationary viscous shock wave in bounded domain and half space. When
the viscous coefficient is small enough, viscous shock wave in bounded domain
will be drifted by two boundary layers, to balance these boundary layers, the mo-
tion of shock layer will be exponentially slow in exponentially long time, this is so
called metastable phenomenon. This phenomenon was first observed for Burgers
equation by Kreiss and Kreiss[25] in numerics, and then studied for general equa-
tion by Laforgue and O’Malley[27], Reyna and Ward[40] independently. In [27],
the authors generalized matched asymptotic analysis method. Reyna and Ward

analyzed linearized problem around the shock wave, with the help of studying
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certain spectrum problem, and obtained the propagation of viscous shock wave
in bounded domain. Furthermore, in [40], the authors also derived the motion of
shock by WKB transformation method. However, up to now, to our knowledge,
there is no rigorous mathematical proof for these asymptotic analysis results.

As far as the half space is concerned, Ward and Reyna [52] first studied the
propagation of a shock by the method they developed in [40]. Since boundary
layer and shock layer will be resonant, therefore, the shock layer will be drifted
away from the boundary, thus the influence of boundary layer will be smaller
and smaller on the shock layer, so the acceleration of shock layer away form
the boundary will be smaller. Asymptotic analysis shows that shock layer will
propagate with speed of order-logt with respect to time ¢. Later on, Liu and Yu
[35] gave a justification for the asymptotical analysis result in [52] by detailed
pointwise estimates, because they almost can write down the solution explicitly
by Green’s function.

In practice, balance law equation is as important as conservation law equation.
Several physical situations can be modelled as hyperbolic equation with a source,
for instance, the geometric effect of a nozzle on the gas flow can be expressed as

source. The quasi-one-dimensional model of gas flow through a nozzle (53] is

4

%+ & o) =~ 550
ﬁ 6(P’u) +2 9 (pu? 4 p) = i((:))PU (0.0.3)
! a(pE) - g(pEu + pu) = A (’”) (pEu + pu),

where p, u, p, E are the density, velocity, pressure and the total energy of the gas,
and A(z) is the area of cross section of the nozzle. For uniform nozzle A’(z) =0,
the system becomes famous one dimensional compressible Euler equation. Liu
and his collaborators made comprehensive studies for the system (0.0.3), see
[30, 31, 32, 13] and references therein. The main results they obtained are that
the shape of the nozzle has stabilizing and distabilizing effect, and that there are a

finite number of asymptotic shapes that can be constructed explicitly. Almost at
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the same time, Ebid, Goodman and Majda [8] studied steady states of isentropic
flow through a nozzle. To analyze stability of standing transonic shock as what
was done by Liu, they proposed a much simpler scalar model

2

ug + (%-)z = a(z)u. (0.0.4)

analogous to isentropic flow through a nozzle.

Actually, Liu in [34] also proposed a scalar model similar to (0.0.4) as
u + f(u)e = a(z)h(u), (0.0.5)

where he imposed conditions for strong coupling of source, h(u) # 0 and h'(u) #
0. Utilizing his modification of Glimm scheme and wave interaction estimate,
he obtained a transparent and revealing qualitative understanding of wave be-
havior of (0.0.5), including such as existence, nonlinear stability, instability, and
changing types of waves. Besides inviscid model, Liu and Hsu [21] also studied

existence and nonlinear stability of steady states for viscous equation
u + f(u)y = €Uz + a(z)h(u) (0.0.6)

by a new type of a priori estimate and spectrum analysis.

In fact, besides steady states, stability of viscous transonic shock wave is of
great interests. If life span of shock wave is very long, as a casual observer, we will
observe it easily in experiment. Therefore, we are interested with propagation of
viscous shock in a nozzle as in the case of conservation law, [40], where the flow
is passing through a uniform nozzle. Sun and Ward [48] studied the propagation
of viscous shock waves with constraint that a(z) is exponentially small for the
model

g + f(u)z = €uze + a(T)vy, (0.0.7)

where the leading order approximation by matched asymptotic analysis is as

same as that in [40] for viscous conservation law, applying projection method in



Nonlinear Stability of Viscous Transonic Flow

[40] with a little bit generalization, they obtained metastability of viscous shock
wave in this case again. To relax the artificial constraints in [48], we note that
it is different from viscous conservation law that the shape of nozzle will help
determine the location of shock wave for flow in nozzle. Motivated by the study
for inviscid flow through a nozzle, we may take the leading order ansatz of location
of shock wave to be static for a divergent nozzle. Then we can solve the next and
higher order outer solutions, ansatz of location of shock wave and inner solutions
simultaneously. It shows that the change of the ansatz of location of shock wave is
very small, therefore, metastability of viscous transonic shock wave in a divergent
nozzle is obtained.

We conclude this introduction by outlining the rest of this thesis. In chapter
1, we shall study nonlinear stability of shock profile by energy method, spectrum
analysis and contraction principle. In chapter 2, we will use projection method
and WKB transformation method to study the propagation of shock wave in
bounded domain and half space, then verify the asymptotic result in half space by
pointwise estimate. In last chapter, chapter 3, we analyze leading order and higher
order approximations of transonic flow through a nozzle by matched asymptotic

analysis.



Chapter 1

Stability of Shock Waves in

Viscous Conservation Laws

In this chapter, we first recall some basic properties of solutions to Cauchy prob-
lems for viscous scalar conservation laws, then define viscous shock profiles and
give some basic properties of viscous shock profiles. Based on these basic knowl-
edge, we will study the stability of shock profiles by energy method, asymptotic
stability of a general travelling wave in a weighted space by spectral analysis, L
stability of viscous shock wave by contraction principle and comparison principle

respectively.

1.1 Cauchy Problem for Scalar Viscous Conser-
vation Laws and Viscous Shock Profiles
Consider the following Cauchy problem

us + f(u)y = Usg, (1.1.1)

u(z,0) = uo(z). (1.1.2)
From the seminal paper of Kruzkov([26], we have

10
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Theorem 1.1.1 For any ug € L®(R"), the problem (1.1.1)-(1.1.2) has a unique
solution in C(0, 00; L°(RY)) and satisfies the following four properties:

(i) : u€ C®(R' x RL) when f € C*;

(i) (Comparison principle): Assume two initial data uy and vy satisfy ug < vo,

then the corresponding solutions satisfy u(z,t) < v(z,t);

(iii) (Conservation of mass): Let u, v be two solutions to the Cauchy problem
(1.1.1)-(1.1.2) corresponding to the initial data ug, vo, if uo — vo € L*(R),
then u(t) — v(t) € L*(R) and

/_:(U(a:, t) —v(z,t))dr = /Oo (uo — vo)dz; (1.1.3)

—00

(w) (Contraction principle): Suppose |[ug—vo||zr < 0o andu, v are two solutions

to the Cauchy problem (1.1.1)-(1.1.2) associated with initial data ug, vo, then

lu(t) — v(t)||zr < ||uo — vollLr- (1.1.4)

Theorem 1.1.1 is very classical, and its proof can be found in [26, 44].
Theorem 1.1.1 allows us to construct an operator S(t) which with a given
initial data uo associates at the instant ¢ > 0 the solution u(t) to (1.1.1)-(1.1.2).

It is easy to show the family (S(t))i>0 is a semigroup.
One of the key elements in understanding the theory of viscous conservation

laws is the inviscid theory. It is well-known that the shock wave

U_ & < .8t
u(m,t) = (1.1.5)
Uy x >3t,

is very important for hyperbolic conservation law
us + f(u), = 0. (1.1.6)
If (1.1.5) is a weak solution to (1.1.6), then Rankine-Hugoniot condition implies

fluy) — flu-) = s(uy —u-). (1.1.7)
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We will denote the shock wave (1.1.5) which satisfies Rankine-Hugoniot condition
(1.1.7) by (u_,uy,s). If we interchange u_ with uy in (1.1.5), (uy,u_,s) also
satisfies Rankine-Hugoniot condition (1.1.7). To get physical solution, we need

some admissible condition. For general scalar conservation laws, Oleinik condition

fu) - fu)

uU—u—

>s forall u between wuy and wu_, (1.1.8)

is an necessary condition for admissibility of shock wave (1.1.5) for hyperbolic
conservation law (1.1.6), see [44]. If the flux function is convex, f'(u_) # s
and f'(uy) # s, then Oleinik condition becomes famous Lax geometric entropy
condition, u_ > u.. A natural physical entropy condition is the following viscous
criteria:

Vanishing Viscosity Criteria: A weak solution u of (1.1.6) is admissible if

there exists a sequence of smooth solution u¢ of

1

Joe 88 € — 0+.

which converges to v in L

Since shock wave (1.1.5) is dilation invariant, therefore, we expect that (1.1.9)
possesses a travelling wave solution ¢(%=%£) which converges to u in (1.1.5) as
¢ — 0+. On the other hand, if ¢(2=*) converges to (1.1.5) as € — 0+, then

#(€) — uy as & — +oo. Therefore, we have

Definition 1.1.2 ¢(x — st) is called a viscous shock profile for the shock wave

(“’—7 Uy, 8): Zf
—3¢I T f(¢)l = ¢”7

(1.1.10)
d(&) — us as § — Foo0,

Fomoll, & o
where ' = & & =z —st.
Then we have

Lemma 1.1.3 (1) ¢ exists if and only if Oleinik condition (1.1.8) holds, and

is unique up to phase shift;
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(2) If f is convez, then % < 0;

(3) If ¢ is a shock profile to the inviscid shock (u—,uy,s), then there exists x
such that f'(¢(x1)) = s;

(4) Suppose f is convex and ¢ is a shock profile to the inviscid shock (u—,u+, 3);

then

¢/ (z)| < O(1)|u — uy |?eClu-—ulel] (1.1.11)
where C' = minyefu, u_] " (u).

Proof: (1),(2),(3) are obvious.

Since f is convex, therefore, ¢’ < 0. From (1.1.10), we know

(In(|¢')) = f'(¢) — s (1.1.12)

It follows from (3) that there exists z; such that f'(¢(z1)) = s. Therefore, if

x >y > x,, integrating the equation (1.1.12) from z to y gives

|¢'(z)] _ JEU @@ -s)dz

|4 (y)]

Therefore
18/(2)| < |¢/(y)|eC@WNu-—usl
that is to say,

¢/(z) e=OM=u = | (y) Ol (1.1.13)

Integrating both sides of (1.1.13) from z; to 2 with respect to y yields (1.1.11).

Similarly, we can get (1.1.11) when z < z;. O

The question is whether ¢(z — st) is a global attractor for the problem

du of(u) _ 9%u

o T o T aat
u(z,0) = up(), (1.1.14)

limg 400 Uo(T) = Us.
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The answer in general is not true, if ¢(z — st) is a solution, then ¢(z — st +9) is
also a solution for any 4.

If we linearize the problem at ¢:

v 0% ov

Lo = i 53;4'10'((/’?)5;'*'/’ (¢)p'v = 0.

Obviously, £¢' = 0, therefore, 0 is an eigenvalue of L. Hence we can not to
deduce nonlinear stability for viscous shock wave from linearized stability by a
standard procedure in [47]. Hence we must give some more ingredients to the
standard linearized stability analysis, this is what we will do section 1.3.

For convex flux functions, we can deal with nonlinear stability of viscous shock
wave by energy method because of %% < 0 by lemma 1.1.3.

We digress for a moment and consider that if [;(uo(z) — ¢(z))dz = m # 0,

then
/ (6(z, ) — d(z — 58))dz = / Gl — e = 20,
R! R1

therefore, we do not hope that lim;—.te0 [z [u(z,t) — ¢(z — st)|dz = 0. On the

other hand, for any 6 € R!, we have

/°o (6(z + 8) — ¢(x))dz = 6(uy — u_), (1.1.15)

-0

m
—u_?

therefore, if we set 6 = o then

/Rl(m(a:)—cb(m—kd))da: - /Rl(uo(x)—qﬁ(x))—l—/ (6(z) — ¢(z + ).
= 0

Therefore, even when initial data has excess mass, for one dimensional viscous
conservation law, we still expect that we can get asymptotic stability of viscous

shock waves after a shift.

Remark 1.1.4 The (1.1.15) only holds for one dimensional case. Therefore,
high expectation to get asymptotic stability of shock profiles for multidimensional

viscous conservation law only occurs when the initial perturbation has no excess

mass [46].
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1.2 Stability of Shock Waves by Energy Method

We first state the main result on asymptotic stability of viscous shock waves by

I1’in and Oleinik [22].

Theorem 1.2.1 Let f"(u) > 0, u_ > uy and ¢(x — st) be the shock profile for

the shock wave (u_,uy,s). Set

my = /_ OO(uo(:t:) — ¢(z))dz, (1.2.1)
6= - Tf"u . (1.2.2)

If fe |22 (uo(z) — ¢z + 6))?dx < € and |jug — ¢(- + 6)|[m: < € for some small e,
then

sup |u(z,t) — ¢(z — st +6)| — 0 as t— oo. (1.2.3)
z€R

Proof: We will follow [54].
Step 1: For simplicity, let s = 0 and § = 0. Set u(z,t) = o(z) + w(z,t),

substituting into the equation, we deduce that

(1.2.4)
w(z,0) = uo(z) — ¢(x).

If we define Q(¢,w) = f(¢ +w) — f(¢) — f'(¢)w, when w is bounded, then it is
easy to obtain that

{ % 1 0 (f(gh) + (9 +w) - [(9) — F (@) = 2,
(

1Q(¢,w)| < O(1)|w]”

Set v(z,t) = [*_w(y,t)dy, vo(z) = [ ( — ¢(z))dz, then

1( A\ Ov 0%y
{ & 1 F(BE+Qo,v:) = T, (1.2:5)

v(z,0) = vo(z).
Step 2: Basic energy estimate

Claim 1: There exists a constant €; > 0, such that if

sup [[v(z, t)||m2@1) < €1,
0<t<T
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then the estimate

t t

0 .
o0l + [ sl Dlade + [ [ 17 @) dadr < Gllwls - (1.26)
0 0 JR? T

holds for 0 <t < T.
Proof of the claim 1: We multiply both sides of (1.2.5) by v and integrate over
R! to get

1d 10
Lo 0 I+ [y @idat [ e <= [ 00060

Applying Sobolev imbedding theorem, we deduce that
| [ vQ(¢,v:)dz] < max|v(z,t)- 0(1)/ |vg|da
R! R! R1

< folle-0Q) [ funPde
Rl

Combining above estimate with assumption and 5"’5 f'(¢) < 0 by Lemma 1.1.3,
yields estimate (1.2.6).
Step 3: Higher order estimate

Claim 2: There exists a constant €3 > 0, such that if

sup [[v(-,?)[| 2wy < €2,
0<t<T

then the estimate

t
oG, )3 + /0 102, P [Eaddr < CallvollZe (1.27)

holds for 0 <t < T.
Proof of the Claim 2: we multiply both sides of (1.2.4) by w and integrate

over R! to get

1d ,
L0l — [ F@wuds = [ Q@ wpwde =~ | jufa

that is to say,

d
CL |wl2dac+/ widz = f’(¢)wwmdm+/ Q(¢, w)wydx.
2dt Jp R! R1 R!
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Based on Sobolev imbedding theorem and Cauchy inequality, the right hand side

of above inequality can be estimated by

1
| . f'(@wwedz + | Qb wywedz| < 7 [lwe72 + Cllwl|Fe + Cllvll g lwslZ2-

Rl

Then there exists €5 < €, such that if

sup [|v(:, )| 72y < €,
[0,7)

we have the estimate

t
(-, )l g +/0 [v(, )l @eydr < Cllvollzn @y,
here we have used the estimate (1.2.6).
Similarly, we can obtain the second order derivative estimate of v by choosing
a suitable €; < €,. Then the proof of the claim 2 is completed.
Step 4: Standard Continuity argument

Claim 3: There exists a constant € > 0, as long as

[voll g2y < €,
then

0
sup ”U('at)“%{?(ﬂk‘) +/0 ”vw('?T)“%{?(Rl)dT < C, (1.2.8)

0<t<oo

which implies
Jim [fu(-, 1) = = 0. (1.29)
Proof of Claim 3: By fixed point theorem, we can show there exists local
solution to (1.2.5) in L*=(0,T}; H*(R')), for some time T} < oo, if vy € H?(RY);

moreover, if ||vo| gzw) < €, then

sup ||v(-,t)||m2@m) < €2 and  sup ||t1/2v(-,t)||H3(R) < 00.
[0,71] [0,T4]

This result and local existence for more general parabolic systems can be found in
[44]. Hence all the calculations above make sense. Take € =¢/Cy. If ||vollm2r) <

¢ , then (1.2.7) implies that

(-, Ty) | m2@®) < Collvollm2y < €.
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By the local existence result, there exists solution on [T7, 271] satisfying
sup |lv(:, )|l 2@y < €2
[T1,2T]
Thus Claim 2 again shows
sup [[o(-, &)l < €
[0,‘2T1]
and so,

lv(:, 2T0) || g2y < €

Continuing this procedure, ones shows that as long as

| voll2@ry < €

then

o0
sup i ey / low(,7) Bz dr < C.

0<t<oo

Thus, we finish proving (1.2.8). In the following, C' will denote a generic constant,
which depends only on C in (1.2.8). Multiplying w on both sides of the equation
(1.2.4), then we get

/ WwWt

Pw 9, 5,
[0S - 500w - 5a@ v

< Cllwlla + Cllwlzellwll
< Clvllae
Therefore, we have
(o) 3 d \
[Tl <c and Ghel.oliks<C
0

so ||lw(-,t)||2, — 0 as t — +o00. By Sobolev imbedding theorem, we know
]|z = Cllwllzzllwllm < Cllwllzz{|v]l2,

hence limy_oo ||w(,t)||ze = 0 as t — 0.
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Step 5: Since vo(z) = [ (uo(y) — ¢(y))dy, by weighted Poincare inequality[18,
50], we deduce that

1/2
follzs < ( | lotua(a) — o(el)Fds)
Thus if [, |z|*(uo(z) — ¢(2))*dz < € and |lug—||g < € for some € small enough,
we have
lvoll r2my < €

so we complete the proof of the theorem. O

Remark 1.2.2 If we assume |uy —u_| < 1, [o(142%)(uo(x) —p(z+9))*dr < 1
and uo(-) — (- + 8) € H' instead of the assumptions in Theorem 1.2.1, we can
also obtain asymptotic stability for shock profile, see[49]. Under these conditions,
if each characteristic field of system of conservation laws is either genuinely non-
linear or linearly degenerate, the stability of shock profile for a Laz shock was ob-
tained by Liu[33] for special initial data, and in general by Szepessy and Xin[50] by
energy method, certainly, there are some important ingredients as we mentioned

in Introduction to deal with systems.

Remark 1.2.3 The energy method can succeed in establishing the asymptotic
stability of shock profile is due to the following two reasons. First, special form
of equation for conservation law, more precisely, we can integrate the equation
(1.2.4) once to get a Hamilton-Jacobi equation (1.2.5). Applying the basic energy
estimate for this Hamilton-Jacobi equation, we can estimate v(z,t) = [Z wiy, t)dy.
Then standard higher order estimate help to get the estimate for w. If we han-
dle equation (1.2.4) directly, it is hard to deal with nonlinear term. Second,
% f'(¢) < 0. Since two similar properties holds for a Laz shock for system of
conservation laws, therefore, we can handle viscous shock wave in system of con-

servation laws by energy method, see [15, 33, 16, 50].

19
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1.3 Nonlinear Stability of Shock Waves by Spec-

trum Analysis

To use linearization argument to study asymptotic stability for viscous shock
waves, as a special travelling wave, we go back to section 1.1. First of all, write
the solution u as u(z,t) = ¢(z — st) +v(z,t) and transform (1.1.1) into a moving

coordinate frame £ = x — st, then we obtain

v v 0 v 0
a—sa—g+5§‘f(¢+v) = 0_§2+8_§f(¢)’
hence
v = vge + (s — f'(9))ve — [ (¢)¢'v + R(¢,v), (1.3.1)

where R(¢,v) = —(2(6+v) = &f(8) = F(#)% — 1" (@))lco- So we get

linearized equation around ¢

v = Lv, (1.3.2)
where
Lo = vge + (s — f'($(€)))ve — [ ($(€))9' (€)v. (1.3.3)
Obviously,
Ly = 0.

Therefore, if ¢ € W>*(R) and we consider
L s Woey [®

then 0 is an eigenvalue of linear operator L. If, furthermore, 0 belongs to the
continuous spectrum of £, we do not expect to get asymptotic stability for nonlin-
ear problem easily just by standard linearization argument, since the asymptotic
stability for linearized problem is only orbital. The analysis in section 1.2 shows
that if we choose perturbation which is not only in W%, but also has some de-

cay in the far field as the assumptions in Theorem 1.2.1, the asymptotic stability
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may hold. This is also basic idea what we will do in this section. We restrict
L in some weighted space such that eigenfunction space of restricted operator is
much smaller than the eigenfunction space of original linear operator £ which is
defined in W2 as a result, we shift spectrum of £. If we can shift the spectrum
in certain half plane such that 0 is isolated, and real parts of all other eigenvalues
have a negative upper bound, then we still can show the stability of travelling
waves in certain sense. The best case is that if all eigenvalues of this restricted
operator have a negative upper bound, then we can apply standard linearization
argument directly to get asymptotic stability. To realize the above procedure, we

first introduce the following weighted space.

Definition 1.3.1 Let w(x) be a smooth positive weight function, w(zx) > 1, and

denote by || - ||w0 the norm
|u]lwo = sup |u(z)w(z)|. (1.3.4)
Define || g by
= L 1.3.5
ellw; = wllwo + |tsllwo + - - -+ “Ex_J”wO (1.3.5)
and let By, ; be the Banach space of functions on —oo < x < oo with finite || - |-

norm.

With the help of appropriate weight function, suppose we can shift the spec-

trum of £, then we have the following important lemma.

Lemma 1.3.2 Let the operator L given by (1.3.3) satisfy the following hypotheses

(i) £ i Biso— Bupi

(i) L has an isolated simple eigenvalue at the origin, while the remainder of its
spectrum lies in the parabolic region £ = {y* + a +x < 0}(a > 0) in the
left half-plane;
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(iii) The resolvent transformation (\— L)™' has the following asymptotic behav-

ior. Given a § > 0 there is a constant C(J) such that

1A = L) uflws < (1.3.6)

C(9)
[]|w,0

VIA

for all X in |arg \| < m — § and exterior to Z.

Let Q = I — P, where P is the projection onto the null space of L, and let u

satisfy the initial value problem

u = Lu+ Qh, (1.3:7)
u(0) =0 (1.3.8)

for h(t) € Byo fort > 0. Then for any 0, 0 < 0 < a, there is a constant c(6)

such that

t 6—93

= 17

The proof is a direct computation of operator calculus, see [43].

(t — 8)||w,0ds. (1.3.9)

1a(®) loa < c(6) /

To state and prove the main theorem below, we need to introduce some more
notations. Define the norms on functions on the half-space {—oo0 < z < oo, >
0}: For 8 > 0,

[ullaw g6 = sup €[, ) lus
t>0
We denote the corresponding Banach space of continuously differentiable func-
tions by 55,3.. Since £ has an isolated eigenvalue at the origin, then the projection

operator P defined in Lemma 1.3.2 can be represented as
Pu = (e*,u)¢', (1.3.10)
where e* is an element of the dual space By, ;. Then define spaces:

@B,; = {u 1 u € By, (e, u) =0},
B _ ; B * =
QE,; ={u:u€é&, (e u(t)) =0 for t>0}

w
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Similarly, we can define R? to be the Banach space of continuous functions on

0 <t < oo with
Iplls = sup e”|p(t)].
>0

Based on Lemma 1.3.2, it is easy to show that the solution for the initial value
problem (1.3.7)-(1.3.8) defines a transformation: K : h + u from 55,0 to ngj,l

for any 3 < a.

After these preparations, we now state the main result in this section.

Theorem 1.3.3 Let the operator L satisfy the conditions of Lemma 1.3.2, as-
sume that f € C® and ¢(€) € By 4. Let u(z,t) satisfy the initial value problem
(1.1.1)-(1.1.2) with initial data of the form

u(z,0) = up(z) = ¢(z) + €tig(), (1.3.11)

where @y € By1. Let § < a, then for sufficiently small € there ezist a C! function

v(€) and a constant N(B) such that
lu(z,t) — ¢(€ + () llws < Ne™™  for t20 (1.3.12)

and the function y(€) is of the form y = eh(e), where h is continuous and tends

to a finite limit as € — 0, namely
h(0) = (€", to), (1.3.13)
where e* is defined in (1.3.10).

Proof: We will follow the framework of [43].

First, we introduce a moving coordinate frame £ = z—st. Since ug(x) depends

on ¢, therefore, u is also a function of e. Define v(&,t,¢€) = ”(g’t’e)_ed’(“eh), where h

is to be determined, then

vy = Lv + B(v, h,€) + R(v, h,€), (1.3.14)

v(€,0,€) = (&) — he' + g(h, €), (1.3.15)
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where the linear operator £ is defined by (1.3.3), and

B(v,h,6) = (1" ($(€)4(€) — /(B¢ + er)g/ (€ + eh) ) (&, )

F(F(E) = FIBE +eh)) %5
R(w,h ) = ~ (2 66 + ) + ) = S B(E+h)
—ef(G(6 + eh) 2L~ ef" (B(€ + ) (€ + b)),

%
e+ eh) = 4O — F(eh

€

g(h,€) =
Now we write
v(t) = Pv+ Qu = p(t)¢’ +((),

where P and Q are projections introduced in Lemma 1.3.2, p(t) = (e*,v(t)).

Then

G = LC+ Q(B(v, hy€) + R(v, h, €)), (1.3.16)
p; = (e*, B(v, h,€) + R(v, h,€)). (1:3:17)
Moreover,
¢€(0) = Q(uo + g(h, €)), (1.3.18)
p(0) = —h + (e*,ap + g(h,€)). (1.3.19)

Using the definition of map K and semigroup generated by L, we can represent
¢ as

¢ = KQ(B(v,h,€) + R(v, h,€)) + eQ (uo + g(h, €)) - (1.3.20)
Integrate (1.3.17) to get
p(t) = /t(e*, B(v, h,€) + R(v, h, €))ds + p(0).
0

We intend to construct a solution p(t) which tends to zero as t — oo, using

(1.3.19), so we set

/oo(e*, B(v,h,€) + R(v, h,€))ds + (€*,To) — h + €(e*, g(h,e)) =0, (1.3.21)
0

24
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thus
p(t) = —/ (e*, Bv+ R(&,v,¢€))ds. (1:3:22)
t
Since v = p¢’ + (, therefore, we can define
Fi(C,p he) = (—KQ(B(v,h,€) + R(v, h,€)) — e™“Q (@ + g(h, €)) ,
FaGnhe) = p+ [ (€ B0k + R, b O)ds,
t
Fs(¢,p,h,e) = h-— / (e*, B(v, h,€) + R(v, h,€))ds — (", uo + g(h, €)),
0

and set F = (Fy,F2, F3). Then equations (1.3.20), (1.3.21), (1.3.22) may be

written in the compact form
F(¢,p, hye€) =0. (1.3.23)
We wish to construct solutions of (1.3.23), £(e€), p(€), h(e), for small €. Define

CO = e—tﬁQ’L—l’Oa Po = 0) h’O = (6*,’(10),

note that B(v, h,€), R(v, h,€) and g(h, €) all tend to zero as € goes to zero, there-
fore

f(CO)pO)hﬂ)O) = 0 (1324)

Furthermore, it is easy to show that F is a Frechet differentiable mapping from
Banach space ng,l x R x R x R to Qé’g,l x R? x R, and that Frechet deriva-
tive %I(Commho,o) is an invertible operator. By implicit function theorem in
Banach space [42, 47], there exists a vector (((e€), p(€), h(€)) which is continuous

differentiable in ¢, such that

F(¢(€), p(e), h(e), €) = 0. (1.3.25)

The estimate (1.3.12) is a consequence of (,p) € QES,I x R, O

As far as viscous shock wave is concerned, following the detailed general study

on the resolvent set of linearized operator in [43], we know with appropriate weight
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function the linearized operator £ defined in (1.3.3) for general flux function f
satisfies assumptions in Lemma 1.3.2, hence we obtain the orbital stability for

viscous shock wave by Theorem 1.3.3.

1.4 L' Stability of Shock Waves in Scalar Vis-
cous Conservation Laws

In this section, we will show the stability of shock wave with general L' pertur-
bations. This is motivated by the important physical significance of the L' norm
for conservation law and the fact that it is the norm for which the semigroup S(t)

is non-expansive. We first state the main result in this section.

Theorem 1.4.1 Let ¢ : R — R be a shock profile for the inviscid shock (u_,uy, s)
withu_ # uy. Ifug—¢ € LY(R), then the solution u(t) = S(t)ug to (1.1.1)-(1.1.2)

with initial data ug satisfies

lim [[u(t,) — ¢(- — st + 8)1 =0 with &= Jooo(uo(@) —¢adz ) )

t—o0 Uy — U

where S(t) is the semigroup defined in section 1.1.

This theorem is a consequence of long time endeavor of many mathematicians,
and L!-stability as presented in theorem 1.4.1 was first obtained by Freistuhler
and Serre [10]. Here we will combine some results appeared in 39, 44, 45, 10, 46]

and give a complete proof. The proof depends on several important lemmas.

Lemma 1.4.2 If there exist a, B € R such that ¢p(z + o) < up(z) < ¢z +
B) almost everywhere. Then the solution u(t) = S(t)uo of the Cauchy problem
satisfies (1.4.1).

Proof: We will mainly follow [44].
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Using a moving coordinate £ = x — st, we can assume that the shock is
stationary: s = 0. At the same time, if we take translation to ¢, the assumption
in lemma 1.4.2 will hold with a translation, thus we assume 6 = 0 for simplicity.

With the help of the comparison principle and assumption of the initial data,

we have, ¢(z + a) < u(t,z) < ¢(z + 3). Let us write v(t) = u(t) — ¢, then
lv(t)| < ¢(z + B) — ¢(z +a) € L'(R) for Vt>0.
In addition, contraction principle (1.1.4) yields
lot, -+ h) —v(®)llr = lu(t, - + h) —u(@®)]
< Jluo(- + h) = woll = [[v(0, - + h) —v(0)]1.
Since v(0) € L*(R), therefore
|lv(0,-+h) —v(0)|y =0 as h—0.

Thus the hypotheses in Kolmogrov compactness theorem [19, 56] are all satisfied,
so the family {v(t)}s>o is relatively compact in L'(R). the w—limit set B =
¢ +Ns»0 Bs where B is the closure in LY(R) of {v(t);t > s}. Furthermore, B is
non-empty since B, C B; as s > t and B, are all non-empty compact sects for all
s > 0. The set B is that of all cluster points for the distance d(z,w) = ||z — w||
of subsequences {u(t,)}nen Where t, — o0.

The w—limit set B is invariant under the semigroup S(t) since if b € B
with b = lim,_eo u(t,), then S(t)(b) = lim,_.c u(t + t,). For the same reason,
S(t) : B — B is onto as we also have b = S(t)c where c is a cluster point of the
sequence {u(t, — t)}nen. Therefore, b € C* for Vb € B by Theorem 1.1.1.

Now, let k € R, the decreasing function ¢ — ||u(t) — ¢(- — k)| admits a limit
denoted by c(k) when t — oco. If b € B, we deduce that [|b — ¢(- — k)|l = c(k).
However, S(t)b € B, so it follows that the function ¢t — |[S(¢)b — ¢(- — k)||1 is
constant. Let us write w(t) = S(t)b and z(t) = w(t) — ¢(- — k), then

d
0= = / S (14.2)
it g
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From the equation (1.1.1) and the definition of shock profile we know

2+ (f(w) = FB( = F))a = 2o

Multiplying this equation both sides by sgnz, we deduce that

|2l + ((f(w) = f(@(- = k)))sgn2)e = 2 - sgnz. (1.4.3)

Integrating over R gives

d
—/|z|dx=/zm-sgnzd:c.

0= / Zyz - SENZAT. (1.4.4)
R

Thus

However, since the initial data b is the sum of a BV function ¢ and a L' function
b— ¢, a priori estimate shows that w,, is integrable over R [44] and hence also is
2... Therefore, using dominated convergence theorem, we have

0=1lim [ 2z4J.(2)dz,
e—0 Jp

where j.(7) = V€% + 72. Integrating by parts, we have

0 =lim [ 22j. (2)dz. (1.4.5)

e—0 R

Let zo be a point where z vanishes. Suppose |z,(zo)| = 7 > 0, then there

exists & > 0 such that

L <lal<2y  Vye(@o—b,30+0).
Choosing € > 0 sufficiently small such that 5= < ¢, we have |z2| < € on (x —

L6

57> o + 5) by mean value theorem. On the other hand, j, (1) = e"1J(7/€) with
J(r) = (1 4 72)~%/2. Thus

2

7 1 x0+2i'7- 1e J(].)'Y
2 d->—/ J)2dz > ==J(1)(=2)? = —=— > 0.
[z [T e LG = T3 >0

28
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This contradicts with (1.4.5), therefore, z,(zo) = 0. Finally, we have proved that
Vbe B,YkeR  S(t)b(z) = d(z — k) = (St)b(z))s = ¢'(z — k).
Since S(t) is from B onto B, therefore,
Voe B,YkeR  bz)=¢(x—k)=b(z)=4¢x—k). (1.4.6)

To complete the proof of lemma, we note first of all that b lies between ¢(z+a)
and ¢(z 4+ 3) as limit of such functions, hence b takes its values strictly between
u_ and uy. Thus the function z — k(z) = z — ¢~'(b(z)) is well defined and
smooth. By construction b(z) = ¢(z — k(z)), the differentiation gives b'(z) =
¢'(z — k(x))(1 — k'(z)). Using (1.4.6) we find that

¢'(z — k(z))k'(z) =0

and hence that k'(z) = 0. Finally, k is a constant and b = ¢(- — k). Thank for

the property of conservation of mass (1.1.3), we have

/R(b — up)dz = 0.

Thus, we have k = 0 because of our assumption at the beginning of the proof.
Hence, we have proved that the w—limit set is reduced to a single element
¢. Since the family {v(t)}:>0 is relatively compact in L'(R) and as it has only a

single limiting value when ¢ — oo, it is convergent, that is

lim ||u(t, ) — ¢(- — st + 6)||1 = 0.

t—oo

To prove the theorem, we first extend the initial data in Lemma 1.4.2 to a

larger class. Define

U = {ug|there exist «,3 such that ¢(z+a)<wug(z) < d(z+ B)},

Uy, = {uoluo(z) € [inf p,supg],forallz €R, wug—¢ € L'}.
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Corollary 1.4.3 (1.4.1) holds for u(t) = S(t)up with ug € Us.

Proof: It is clear that U, is a dense subset of U, with the distance d(z,w) =
|z — wl||;. Therefore, Yug € Us, there exists {u,} C Us such that ||u, —uolls — 0

as n — 00. Ve > 0, there exist N € N such that Vn > N, ||u, — ugll1 < €/3, then

1S (t)uo — ¢z — st +8) [l < 1S()uo — S(t)unlls
+|St)un — ¢(@ — st + 6n) 1 + [|$(z — 5t + 8n) — Bz — st +9)[x

< lun = wolly + [IS(t)un — bz — st + 6)ll1 + 62 — 0] - [us —u-],

where 6, = i%wl—;‘f@, hence |6, — 0| < ||un — woll1/|u+ — u—|.

Taking ¢ — oo and applying Lemma 1.4.2, we get ||S(t)uo—¢(z—st+0)|1 < Ce

for a fixed constant C. Since € is arbitrary, we finish the proof of corollary. O

In fact, we will reduce the proof of Theorem 1.4.1 to the following L' stability

of constant states.

Lemma 1.4.4 For every ¢ € R and any function ug € ¢+ L'(R) with
/ (uo(z) — ¢)dz = 0, (1.4.7)

the solution uw = S(t)ug to (1.1.1)-(1.1.2) with initial data ug satisfies
lim ||u(t) —¢|ly = 0. (1.4.8)
t—oo

Proof: The original proof of this lemma was due to Freistuhler and Serre [10].
Here we will follow the framework of [46].

Define lo(v) = limy .o ||S(£)v — ¢||1, by contraction principle (1.1.4), lo is
continuous on ¢+ L. Up to the choice of a moving frame, we may always assume
that f(c) = f'(c) = 0, after a translation, we can also assume ¢ = 0. Denote
L} = {v € L'R)| [ v(z)de = 0}, then the set Us = {v'lv € WH(R)} is

dense in L). Due to continuity of o on L', we only need to prove the lemma
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for ug € Us(NL*®. Given uy € Us N L*®, up = w' and w € WH(R), then
[ulloo = lluolle and

()] < Ne(lluolloo)ul?, (1.4.9)

where N¢(|[uolloo) = %SUP[_||u0||oo,||uo||m] |f’/(u)|-
The standard energy estimate for equation (1.1.1), and the fact that uf'(u) =
g'(u) yield
d
EEHuIl% + 2||ugll3 = 0.

Using one dimensional Nash inequality|[37]

lull3 < Cllusl2llulls, (1.4.10)

and decreasing property of t — ||u(t)||1, we obtain

4

{ = llulld + Cllull < 0.

[[uoll
This differential inequality obviously implies the following dispersion relation|[1]

lull2 < Clluollyt™*. (1.4.11)

Write u as mild solution

then by (1.4.9) and (1.4.11),

@l < 1K) * ol + / 10K (¢ — $)lI1l1 (u(s)) s

< K (E) *uoll + ONp(luollo)luolf [ 7%

Since

1K) xuoll = 10K () xwlly < [[0K@)]1]|wlx

IA

C
\75”10”1
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/t ds
—————— =7T,
0 v/s(t—s)

lo(uo) < calN([[uolloo) luoll3- (1.4.12)

and
therefore

On the other hand, lo(ug) = lo(u(t)), we may apply (1.4.12) to u(t), instead to
get

lo(uo) < 3N (lluolloo) lu(®)]13-

Taking t — oo, we get

lo(uo) < caNs([|uolloo) (To(uo))*. (1.4.13)

Fix a real number B > 0 and consider the ball Bg defined by ||ugllec < R
in L{ N L*®. In the connected set Bp, (1.4.13) tells either lo(ug) = 0 or o >
1/(csN¢(R)). Since [y is continuous and take the value zero for up = 0, this
implies /o = 0 on Bpg, hence on the union L{ N L™ of these balls. This ends the

proof of the lemma. |

After these plenty of preparations, we can prove the theorem easily.
Proof of theorem 1.4.1: We will follow [10].
Denote sup ¢ and inf ¢ by ¢, and c_, respectively. Set
00 00
My = / (up(z) —cy)+dr  and  m_ = / (c— — up(x))+du.

—00 —00

These are well-defined since 0 < my < ||ug — @[|1. As
d(£00) = us and  u— ¢ € L'(R),

therefore the Lebesgue measures of two sets Z, = {z|ug(z) < =3} and Z_ =

{z|uo(x) > =3} are infinite. Thus there exist sets M, C Z, and M_ C Z_ of
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Lebesgue measure 2m., /(c; —c¢_) and 2m_/(cy —c—). Set

max{ug(z), cy} z € R\ M,
a1(z) =
(C_+C+)/2 .'EEM.H
min{ug(x),c_} zeR\M_,
0,2(113) =
(c-+c4)/2 z € M_,
then
az(z) <w(z) <ai(z) VzekR
Clearly

ay —cy € L'(R)  and /00 (a1(x) — ¢4 )dz = 0.
Set uy (t) = S(t)ay, ua(t) = S(t)az, then Lemma 1.4.4 implies
tim (a4, = ¢4)s = .
Similarly, we can prove that
Jim (ua(t, ) = e-)- = . (1419
By comparison principle, the solution u(t) = S(t)uo satisfies
us(t, ) < ult,z) < ui(t, ) Vz € R.
Fix an arbitrary € > 0, then there exists a t. > 0 such that
l(ulte,) —ce)+li <e/2,  N(ulte,)) —c-)-lh <e€/2-

Let @ .(t) = S(t — to)uo for t > t. with

e if u(te, z) < C—,
Uo =4 u(te, ) i 6 S ullez) < By (1.4.15)
Cy lf C+ < U(te,x).

While

a0 — u(te, )|l < €
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and

170 — ¢(- = st < o — ulte, ) + [[ulte, -) — &(- = ste)llr < oo,
so Corollary 1.4.3 implies that
Jim [5(8) = 6(- = ste — s(t ~ t) + 8] = 0
with appropriate d.. By contraction property

limsup [lu(t,-) — ¢(- — st +0)|1 < €.

t—o0

As [Z (¢(z 4 01) — ¢(x + b2))dz = (61 — 82)(u4 — u—), therefore

|66, — 8ey| - [ug —u_| < limsup [Ju(t,-) — ¢(- = st + de,) s

t—o0

+limsup [lu(t,-) — ¢(- — st + d¢,) |11

t—oo

< 6 te.

Thus §, converges, as € | 0, to some limit ¢ and lim;_.., [|u(t, )—¢(-—st+9)|[, = 0.

Therefore § = [ oo (uo(z) (e O

Uy —U-




Chapter 2

Propagation of a Viscous Shock
in Bounded Domain and Half

Space

After studying the stability of viscous shock wave for initial value problem, we
consider propagation of viscous stationary shock waves in bounded domain and
half space. For bounded domain case, we will use two asymptotic analysis meth-
ods, projection method and WKB transformation method, to study the location
of shock layer and study the effect of boundary conditions for the propagation of
shock layer. In the case of propagation of stationary shock wave in half space,
we first study the problem by asymptotic analysis, then verify this asymptotic

analysis results by careful pointwise estimate.

35
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2.1 Slow Motion of a Viscous Shock in Bounded

Domain

In this section we will study the internal layer behavior associated with the fol-

lowing viscous shock problem in the limit € — 0

u+ (f(u))z = €Uze, 0<z <L, t>0, u € R, (2.1.1)

u(z,0) = up(x), u(0,t) = a_, u(L,t)=ay, (2.1.2)

where a_ > 0, ay < 0, and the smooth nonlinearity f(u) has the following

properties:

1

£0)=f(0)=0, fla-)=flay)=Ff(a), f(u)>0. (2.1.3)

Two important examples for the flux function are: f(u) = “—22, this is well-known
Burgers equation; f(u) =u—1+ u—l—l which arises the study of one dimensional
transonic gas in a straight channel[20].

To get some insights of the problem, we first focus on the steady problem.

2.1.1 Steady Problem and Projection Method

For problem (2.1.1)-(2.1.2), the corresponding steady problem is

(flu))s =¢sss 02, (2.1.4)
u(0) =a-, u(l)=oay, (2.1.5)

where a_ > 0, ay < 0, and (2.1.3) hold, the problem (2.1.4)-(2.1.5) has a unique
solution with a shock type internal layer.
For ¢ — 0, the leading order matched asymptotic expansion solution for

(2.1.4)-(2.1.5) is given by u ~ ¢((x — mo)/e), [9], where ¢(z) is the shock pro-
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file satisfying

#(2) = f(#(2)) — fl@), —o0<z<o00,  ¢(0)=0, (21.6)

M) st —a 2, g —go, (2.1.7)

B(2) ~ ay +age™, 2 o0, (2.1.8)
where

vy = (), (2.1.9)

oa(t) = [ (= ey ey G110

Since f(u) is convex, direct computation shows a+ > Fa.. Notice that for
any o € (0,1), with O(e) < 79 < 1 — O(€), the matched asymptotic expansion
solution satisfies the equation exactly and it satisfies (2.1.5) to with exponentially
small terms. Therefore the location z, of the shock layer can not be determined
only by matched asymptotic expansions.

The deviation @ = u—¢(z) between the steady state and internal layer should

satisfy a nonlinear differential equation

f@+¢(2))s — [(#(2))e = €Waz

Since we expect that the deviation is small enough, therefore, at least we need
that the solution to the corresponding linearized problem is small enough. Thus

we will consider the following linearized problem.

Wy — (f'(P)w), =0, 0<z< L, (2.1.11)
w(0) = a_ — ¢(—xzo/€) ~ g Ve, (2.1.12)
w(L) = ay — ¢((L — xo)/€) ~ — g E—T0)fe, (2.1.13)

To solve the problem (2.1.11)-(2.1.13), we first transform the differential equa-

tion (2.1.11) into a self-adjoint form. Introducing a new variable

W = w(z) exp(—g(2)), gl#) = %log(z:gg;), where 7z =2 —65130.

(2.1.14)

37
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After a simple calculation, we find that @ satisfies
iy — V(E—2)ih = 0, (2.1.15)
@(0) ~ (fa)a_) 2y M Pev-20/(2), (2.1.16)
D(L) ~ —(f(e)ay) vy PemrEm)/@, (2.1.17)
where the potential V(z) is defined by
]. 2 1 " /
V(2) = 7(f'(¢(2))" + 5 (#(2))¢(2). (2.1.18)
Define
Lap =y — V(2 —Exo)z/). (2.1.19)
Therefore we can represent w as linear combination of eigenfunctions of self-
adjoint linear operator £, and a correction term which is induced by inhomoge-
neous boundary conditions (2.1.16)-(2.1.17). Hence we consider associated eigen-
value problem
Lap=M, 0<z<lL
v v (2.1.20)
$(0) =0, ¥(L)=0, (¥,¥)=1

It is obvious that )\ is real. Suppose A is an eigenvalue, then

A= —¢€ / Yidr — / V(2)¢2dx
= e [as- [ e [ 168
Since
_|/f )ida| = —|/ ))at*dz|
= | [ er@@)piadal
< [ vz g / (F/(6(2)) 2 d,
thus A < 0.

Suppose {);};>0 and {t;};>0 are eigenvalues and corresponding eigenfunc-

tions to £.. We now give an asymptotic estimate for the principal eigenvalue Ao
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and for the corresponding eigenfunction 1. Define ¥y(z) = ¢/(z) - exp(—g(2)),
then [,61% = (0. Then Green’s identity shows

Mo(%o, %o) = € (Po(L)toz(L) — P0(0)th0z(0))- (2.1.21)

To estimate Ao from (2.1.21) we construct 1o(z) asymptotically and then calculate
oz (0) and 9o (L). Since 1o satisfies L = 0, is exponentially small at z = 0 and
z = L, and is of one sign, then 1y ~ Noto, except possibly near the endpoints.
Here N, is a normalization constant, thus we must add a boundary layer term to
Notho() near each endpoint to approximate .

We first consider the region near = = 0. Since V(z) ~ v2/4 for z — —o0,

then for  ~ 0, we have
Yo(z) ~ No(vho(x) + bre™-/9). (2.1.22)

Using vo(z) ~ —(a_v_f(a))/?ev-@=20)/() for z ~ 0 and enforcing 1(0) = 0,
we find

by = (a_z/_f(a))l/?e‘"‘“/(Q‘).

Therefore

Yoz (0) ~ —e_lV_No(a_u_f(a))l/Qe_"“xO/@e). (2.1.23)

A similar calculation for the region near x = L gives
Yoz (L) ~ 6“11/+N0(a+1/+f(a))1/26“’+(L"’°)/(26). (2.1.24)

Now to evaluate the left hand side of (2.1.21), we use the estimate (1o, Yo) ~
No(to, o) where

(o, o) ~ 6/ (¢(2))? exp(—29(2))dz = 2¢(a- — ay) f(e). (2.1.25)
Hence, we obtain the following estimate for Ao = Ao(zo):
1
Ao(zg) ~ ——(agple IR0l a_pre v-oe), (2.1.26)

Qi — 03
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Motivated by analysis for Burgers equation in [25], we assume that {Ai}ix

are away from 0. Now we project @ to subspace which is spanned by %;, then
0 = (Lab, ;) = B; + Aj(w, ¥5), (2.1.27)
where
B; = *(w(L)yje(L) — 0(0)1;2(0))- (2.1.28)
Then by previous asymptotic analysis By = O(1)e(e~v+(L—20)/e 4 g=v-20/¢). On
the other hand, to satisfy well-posedness for the linearized problem, there will be
]| o < O(1) max{|w(0)|, |@(L)|}. Using asymptotic analysis for Ao in (2.1.26),
to balance two terms in right hand side of (2.1.27) for j = 0, By must be 0. Thus

a_v_e V- = gy e7v+ETm0)/E (2.1.29)

The solution to (2.1.29) is xy = z. where

vyl € ayv
Te = - log( -
Vo + Ve V—+Vg (7 2% £ AR

). (2.1.30)
Summarizing, we have
Proposition 2.1.1 The shock layer solution for (2.1.4), (2.1.5) is given asymp-

totically by u ~ ¢(2=2=), where x. is defined by (2.1.30).

€

This proposition and several propositions below were obtained in [40] for a
special case a_ = —a., L = 1, and some results about more general case where
a_ may not equal to —a; had appeared in [41], [52], [51] diversely either without
derivation or by different treatment. Here we present analysis and results all
for more general case where a_ may not equal to —ay and L is arbitrary by a

uniform treatment.

2.1.2 Projection Method for Time-Dependent Problem

For time dependent problem

wg + (f(u))z = €Ugg, O<z<L, t>0, (2.1.31)

u(0,t) = a_, u(L,t) = ay, (2.1.32)
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we will track the propagation of the shock wave by the method developed in the
previous subsection.

Starting from initial data a shock layer is formed on an O(1) time scale. To
describe the subsequent slow motion of the shock layer we look for a solution
to (2.1.31)-(2.1.32) of the form u(z,t) ~ ¢((z — zo(t))/€), where ¢(z) is the
shock profile defined in (2.1.6)-(2.1.8) and = = zo(t) is the unknown location
of the shock layer. Since ¢(0) = 0, then z,(t) is an approximation to zero of
u(z,t) during the slow evolutionary period. In a strict sense, labelled by z{,
corresponding to the location of the zero of u for the shock layer initial data of the
form u(z,0) ~ ¢(x—x). For more general initial data, however, we will interpret
xJ as the location of the shock layer at the onset of the slow evolution. Although
a precise definition of z{ is not needed for our purposes, one possible definition is
that z9 is the location of the zero of u at the time when the inviscid problem(e = 0)
first forms a shock. Since the slow evolution occurs on an exponentially long time
scale, we only incur an O(1) error in the total elapsed time by assuming that the
slow motion begins at t = 0, that is to say, zo(0) = 9.

For ¢ > O(1), we look for a solution to (2.1.31)-(2.1.32) of the form u(z, t) ~
¢(2) + w(z, t), where z = (x — zo(t)) /€, w K ¢. Linearize the problem at ¢(2),

then
€EWgy — (f/(¢(z))w)x = —E—lj:0¢l(z) + Wy, (2133)
w(0,t) ~ a_v_e~-*0/, (2.1.34)
w(L,t) ~ apvye v-{L20/e, (2.1.35)

As same as before, to get an adjoint linear operator, we use the transformation

w(z,t) = exp(—g(2))w(z,1),
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then we can convert the boundary value problem (2.1.33)-(2.1.35) to

gy — V()i = —diod (2)e™9? + ety — % F(o(2)d,  (2.1.36)
(0, 1) ~ (a_f(a)) 2w 2ev-o0/ ) (2.1.37)

DL, 8) ~ (. o)) 2y 2o rml/ B, (2.1.38)

Suppose {1;(x)};>o are eigenfunctions for the eigenvalue problem (2.1.20), then
) _ < & . .

—$0(¢,e 9,¢j) + e(wt, d’]) - 70(f1(¢)w>¢3) - Aj(w7wj) = —Bj(t)’ (2'1'39)

where B;(t) = €2(W(L, t)1hjo(L) — @(0,t)1;z(0))-

Since 1o(z) ~ No¢'(2)exp(—g(z)) is exponentially small outside a narrow
region of width O(e) centered at & = o, thus the dominant contribution to the
inner product integrals in (2.1.39) for j = 0 arise from the region near z = Zo.
In this region, we assume w; < e9¢', thus we neglect the second term on the
left side of (2.1.39). Moreover, since @ < 1 and f'(¢) ~ 0 when z is in a small
neighborhood of o, the third term on the left side of (2.1.39) is asymptotically
smaller than the first term. Noting that \g < 0, then letting € — 0 in (2.1.39),

we obtain the following approximate equation of motion for zo:

io(¢'e™, o) = Bo(t)- (2.1.40)

Proposition 2.1.2 For ¢ — 0, the ezponentially slow evolution of the shock
layer for (2.1.31)-(2.1.32) is described by u ~ qﬁ(fft‘)—(t)), where xo(t) satisfies the

ordinary differential equation

To = —-———(a_y_e""—““’/e — a+1/+e—”+(L_x°)/e), (2.1.41)

i~

here ¢(2) is defined by (2.1.6) —(2.1.8)and v, ax are defined in (2.1.9), (2.1.10).
The initial position of the shock layer x) = xo(0) is determined by the transient

process describing the formation of the shock layer from the initial data.
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Remark 2.1.3 If 23 > z., then @y < 0, therefore the shock layer will move to x.
at last; Conversely, if 3 < ., then io > 0, therefore the shock layer will move
to z. after exponentially long time. So we can see that the location z. of shock

for the steady problem (2.1.4)-(2.1.5) is stable.

2.1.3 Super-Sensitivity of Boundary Conditions

Now we look at the problem we solved again. The problem can be written in an
abstract form as:

lx =y,

where [ is an abstract operator, in our case, it relates to the differential operator;
y represents the effect of boundary conditions; z is what we want to solve, the
location of shock layer. The differential operator has small eigenvalues, that is
to say, the norm of the operator | is very small, on the other hand, we know
that boundary condition is also quite small, therefore, y can be viewed as a small
quantity. So, as a matter of fact, we are solving an ill-conditioned problem. To
verify this ill-condition, we perturb y a little bit and solve some problems with a
little bit different boundary conditions .
First, we study the steady problem (2.1.4) with boundary conditions

w(0) = a_ — Ae=¢,  u(L) = oy + A", (2.1.42)

here A;, A,, ¢;, ¢, > 0. As same as in section 2.1.1, studying the new boundary

layer terms and then we have

Proposition 2.1.4 The shock layer solution for (2.1.4), (2.1.42) is given asymp-

totically by u ~ ¢(£==2=), where z, is solution of following equation:
a_v_e -7l — g v e HITEN = Ay T — Avpeole,

When f is even, then v_ = vy =V, @_ = —Q4 = @, G_ = 04 =, and z. can be
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explicitly represented by
L
ze =5 + log(y + (7" + /%), (2.1.43)
where

AeliE—enle _ A etz —ele
= 5 :

v

If we choose ¢, = ¢, = vL/2 and A; # A,, this example shows that the
exponentially small changes in the boundary conditions induce on O(e) changes
in the location of the shock layer.

The second example is the steady problem (2.1.4) with boundary conditions
eug(0) — ky(u(0) —a-) =0, eug(L) + kr(u(L) — ay) =0, (2.1.44)

here k;, k. > 0. As same as in section 2.1.1, we study certain eigenvalue problem,
give an asymptotic estimate for the principal eigenvalue, and apply solvability

condition for associated linearized problem, then we have

Proposition 2.1.5 When (v4 — k,)(v— — ki) > 0, the shock layer solution for
(2.1.4), (2.1.44) is given asymptotically by u ~ ¢(*=*¢), where z. is defined by

B Bids € log <a+1/+kl (1/+ — kr)) : (2.1.45)

0 S VR VN SV a_v_k. v_— ki

Alternatively, when (v — k.)(v— — k) < 0, there is no shock layer solution for

(2.1.4), (2.1.44).

We find that if we perturb the boundary conditions (2.1.5) a little bit to
(2.1.44), the shock layer may disappear. This again implies that the problem is
very sensitive to its boundary conditions.

While, for time dependent problem (2.1.31) with boundary conditions similar
to (2.1.44)

euy(0,t) — ki(u(0,t) —a_) =0, €ug(L,t) + k. (u(L,t) — ay) =0, (2.1.46)

parallel to section 2.1.2, we have
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Proposition 2.1.6 For ¢ — 0, the ezponentially slow evolution of the shock
layer for (2.1.33), (2.1.44) is described by u ~ gb(?%"(t)), where xo(t) satisfies the

ordinary differential equation

1 3
e — <a+u+(”—+ — 1) v+ Emmo)/e G e 1)6—"“”0/6) . (2.1.47)
O =0y

here ¢(z) is defined by (2.1.6) and vy, arare defined in (2.1.9), (2.1,10): The
initial position of the shock layer ) = x¢(0) is determined by the transient process

describing the formation of the shock layer from the initial data.

Remark 2.1.7 Ifv_ < k; and vy < k,, for any z € (0, L), the solution xo(t)
tends to z, in the equilibrium location. When v_ > ki and vy > k;, the equilib-
rium location is unstable; more precisely, when z3 > z.(z) < x.), the shock will
eventually hit the boundary x = L(z = 0). Finally, if (v4 — k) (v—- — ki) <0, the
shock layer will hit the boundary at x = L(x = 0) when vy > ki < Ko

Remark 2.1.8 Ifwe take ky, k, — 0o in the boundary condition (2.1.44),(2.1.46),
formally, we get the boundary condition(2.1.5), (2.1.32) respectively. Meanwhile,
when ky, k, — oo, the location of shock layer x. in (2.1.45) will tend to (2.1.30),
similarly, the propagation of shock layer zo(t) defined by (2.1.47) will go to (2.1.41).
Thus we can regard (2.1.4)- (2.1.5) as a special case of (2.1.4)- (2.1.44) and
(2.1.31)- (2.1.32) as a special case of (2.1.31)- (2.1.46) for ky = k, = 00.

2.1.4 WKB Transformation Method

In previous several subsections, we derive the propagation of shock waves, but
we do not give rigorous mathematical proof. Therefore, we give an alternative
method to verify this derivation. From Remark 2.1.8, we know the boundary
conditions (2.1.46) are more general, therefore, in this subsection, we consider
the problem (2.1.31) with boundary conditions (2.1.46).

The method we give in this subsection is based on introducing the new vari-

able v(z,t) defined by WKB(Wentzel-Kramers-Brillouin)-type nonlinear change
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of variables u = ¢(v/e€), where ¢ is the shock profile. Since ¢(0) = 0, the slowly
evolving shock layer is centered at the zero of v, that is, v(2o(t),?) = 0, and we
have that v > 0 for z > zo(t) and v < 0 for z < zo(t). Substituting u = ¢(v/€)
into (2.1.31)-(2.1.46), we obtain

vy = €Vgg + b(v/€)ve(vg — 1), (2.1.48)
02(0,8) ~ ki fv—, V(L t) ~ ke/vy, (2.1.49)

where
bz) = F(6(2)),  b(z) ~Fre, 8s z— 0o, (2.1.50)

we have assumed that z(t) is not within O(e) neighborhood of z = 0 or of z = L.

To get some insight into the behavior of the solution to (2.1.48)-(2.1.49), we
first discuss the quasi-steady problem v; = 0 for € — 0. Since the slowly evolving
shock layer is given by u ~ ¢((z — zo(t))/€), the approximate outer solution for
(2.1.48) is v ~ & — x(t), where 0 < zo(t) < L. Now to satisfy the boundary
conditions, we must insert boundary layers for v near x = 0 and = = L. Since
b(z), given in (2.1.50), has the appropriate sign, it follows that the far field forms
of the boundary layer solutions tend to v, = 1 in the outer region. To determine
zo(t), however, we must analyze the effect of the exponentially tails of these
solutions on the region near = = zo(t) where v = O(e). This observation is the
motivation for introducing below a new variable p, which is related to vz —1 and
actually represent the effect of the boundary layers.

Case (i): ki/v- <1 and k. /vy <1

Introduce a new variable p(z,t) defined by v, = (1-+e~#/¢)~!, this is a standard
WKB transformation for the problem (2.1.48)-(2.1.49). More details about WKB

transformation method is referred to (3], then
=

4 cosh?(* Qp)vt e s b(g), (2.1.51)

p(0,t) = €epy ~ —elog(%: - 1), (2.1.52)
l

o(L,t) = epy ~ —elog(=+ — 1). (2.1.53)



Nonlinear Stability of Viscous Transonic Flow

For the steady problem we have p, = b(v/€) and v, = (1 +e=*/¢)~. Away from
2 =0 and z = 1, where p = O(¢), we have that v ~ z — x, for some zo € (0, 1).
Then, using (2.1.51), it follows that p is piecewise linear for |z — x| > O(¢) and
the shock layer will induce a corner layer of p near x = zo where it attains its
maximum value. Now by imposing the required condition that the outer piecewise
linear solutions for p are continuous at z = xp, we obtain that zo ~ v, L/(v_+vy),
which agrees with the leading term for zo given in (2.1.45).

Now we consider the time dependent problem. Substituting the outer solution
v(z,t) ~ 2 — zo(t) into (2.1.51), the equation for p becomes

z — xo(t)

ep
4 cosh?(—=)ag = pz — b
cosh”( 9 )Ty = p ( 2

) (2.1.54)

with boundary conditions (2.1.52)-(2.1.53).

Let p*(t) be the maximum value of p at a given time ¢. Then p typically has a
plateau near p* in the sense that p — p*(t) = O(e) for an O(1) interval in z. This
is motivated by numerical experiments, see [40]. Since p, =~ 0 there, therefore,
the right hand side of (2.1.54) is an O(1) quantity, thus we have &y = O(e""®/e),
which gives an estimate for the speed of the layer at time .

In the regions where p < p*, since

E_l

2

-1
P\io = O(1) cosh?(S=L)e=7" O/ = 0,

h2
4 cosh”( 5

therefore the motion is quasi-steady and p, ~ b((z — zo(t))/€). Since b has only
one sign alteration, the quasi-steady solution can have p, changing sign only
once. Using (2.1.54), we obtain that p, ~ v_ for z < zo(t) and p, ~ —vy for
x> zo(t). In particular, since p = O(€) near z = 0 and « = L, the motion must
be quasi-steady near endpoints and thus for some unknown functions, z; = x(t)

and z, = z,(t) we have

V_x + €p 0<z<a,
p(x,t) ~ (2.1.55)
vy(L — )+ €pr #y& < L
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Let us assume for the moment that z; = z, = zo(¢), so that p does not have
a plateau for an O(1) interval in z. Under this assumption, p* = max(v_zo +
ep1, v+ (L — xo) + €p,) and, for most zo(t), p will have an O(1) jump discontinuity
at T = zo(t). Since p < p* on one side of z = zo(t), however, we would then be
forced to use quasi-steady solution to smooth out this O(1) jump in p.

It is only when zo(t) is within an O(€) neighborhood of ., that is |2o(t) —ze| =
O(€), that p has a tent like structure of the form with z; = z, = xo(t). For
|Zo(t) — | > O(€), we must insert a plateau for p in which the left side of (2.1.54)
is balanced by the second term on the right side of for some O(1) interval in z.
The precise form for p depends on whether z(t) > xe or zo(t) < xe. Specifically,

when z¢(t) > . we have

;

V_T + €py 0Lz <a,
p(x,t) ~ 8 p* = v (L —x0) + O(e) gy < <D, (2.1.56)
\u+(L—:c)+epT zo <z <L,

where z; = v, (L — xo)/v- + O(e).

Alternatively, when z,(t) < z. we have

;
V_T + €py 0 <z < x,

p(z,t) ~ ﬁ p* =v_zo+ O(€) 22 B< B, (2.1.57)
LI/+(L-—IL‘)+6,07- << L

where z, = L — v_zo/vy4 + O(¢). To determine an equation of motion for xo(t)
we then must construct a layer for p near x = zo(t) in which the three terms in
(2.1.54) are balanced.

We first consider the near equilibrium case |zo(t) — .| = O(€) for which p
has the form given in with 2; = 2, = zo(t). Introducing the stretching variable:
y = =50 ot jy) = plaolt) + ev), then §, = eps. since b(y) = ['(B(y)) =

¢" (y)/#'(y), therefore the equation (2.1.54) reduces to
oL yig =B 80 i
cos (26)x0 e "W (2.1.58)
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Note that % — oo uniformly for y € (\/E_Z“’(t), & _“’0(:)_‘/2) from the definition of
p in (2.1.55), when € — 0. Using cosh?z ~ ¥ /4 as z — oo, from (2.1.58) we

obtain
w0 (y) = 0y (¢ (y)e ™) (2.1.59)

for y € (‘/g_fo(t), L_‘t"(et)_‘/z), then we integrate (2.1.59) with respect to y from

—eif"i)- to L—_ﬂ(ei)_—‘/z, and use the properties of shock profile (2.1.6)-(2.1.8), we

have
L—zq(t)—VE .
é € ! I —pr—u+(L—1:0—\/E)/e _.pl_,/_(mo_\/g)/6
0 | meeim ¢ (y)dy = —arvie +a-v_e ’
(2.1.60)
since
L—zg(t)—VeE
6 ¢'(y)dy = ay —a— + e v+E—zo=vele o 0 e—V-@o®—Ve/e,
c—aq(t)

€

Because zo(t) = z., therefore, (2.1.60) asymptotically agrees with the ordinary
differential equation (2.1.47) derived by projection method.

When zo(t) > . and zo(t) < z., we can follow above procedure to derive the
propagation of shock layer which is in asymptotic agreement with (2.1.47), where

we should choose different interval other than [\/Ee_“, = _”"’(:)"/E] to integrate such

that substitution of cosh g by exponential function makes sense.
Case(ii): k;/v— > 1 and k./vq > 1
We introduce p(z,t) by WKB transformation v, = (1 — e~P/€)~1 then
=
4sinh2(-6—2—p)vt — b(g),

V_ 14
p(0,t) = ep ~ —elog(1 — E)’ p(L,t) = ep, ~ —€log(l — 7;:).

Then as same as in case (i), we can derive the ordinary differential equation which

describe the propagation of shock layer.

Remark 2.1.9 When we compare projection method with WKB transformation
method, we can see that projection method is very elegant in mathematics; more-

over, it can be used in more general cases, different boundary conditions, deal
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with other type equations, such as Allen-Cahn equation, viscous transonic flows
through a nozzle, and so forth, see [40, 48, 52]. A good survey for this method
is [51], where various applications of projection method are included. While, the
boundary conditions have a lot of influence on WKB transformation method, we
need introduce different WKB transformation for different boundary conditions,
see [52]. Comparing with the projection method, WKB transformation method
do not need to do difficult small eigenvalue analysis where we did not give analy-
sis except for principal eigenvalue, just need to do some algebraic manipulations.
Thus, WKB transformation method is very good in numerics, see [40, 52]. Fur-
thermore, when we use WKB transformation method, we only need continuity of
transformation variable p, it does not seem a strict constrain, when we can only

do some asymptotic analysis.

2.2 Propagation of a Stationary Shock in Half
Space

In chapter 1, we know that if there is no excess mass, for Cauchy problem, the
location of shock can be regarded as static. While in Section 2.1, we find that the
location of shock will move slowly due to the effect of boundary layer. Since there
are two boundary layers, in certain sense, as a result of balance of two boundary
layers, the shock will not move a lot. In this section, we will see that when there
is only one boundary, the shock still moves slowly, but they will move away from

the boundary farther and farther.

2.2.1 Asymptotic Analysis

First of all, we will use projection method developed in section 2.1 to give the

propagation of shocks in half space.
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Consider the problem

U+ f(u)y = €uge, 0<z <00, t>0, u(z,0)=u(z), (2.21)

uw(0,t) =a_, wu(z,t) > ay as T — 0. (2.2.2)

Starting from ug(x), we assume that a shock layer is formed in an O(1) time
interval with the shock layer location an O(1) distance away form = = 0.

If we take k; — 0o, L — oo in the boundary conditions (2.1.46), then we
get the boundary conditions (2.2.2); at the same time, the location of shock layer
(2.1.47) will become the propagation of shock layer for the problem (2.2.1)-(2.2.2).

Thus we have

Proposition 2.2.1 [52] Fort > O(1) and ¢ — 0, the slow shock layer motion
for (2.2.1), (2.2.2) is gien by u ~ d)(m_—i‘)(t—)), where xo(t) satisfies

0 € t e(a_ B a+) v_zd /e
zo(t) ~ g + = log(1 + E)’ ts Q7 o/e, (2.2.3)

here v_ and a_ are defined in (2.1.9) and (2.1.10).

2.2.2 Pointwise Estimate

In section 2.2.1, we only give the propagation of shock waves as (2.2.3) by asymp-
totic analysis, but it is not rigorous mathematical proof. In this subsection, we
will justify the above asymptotic result by careful pointwise estimate.

More precisely, after a scaling, we consider the following initial boundary value

problem

Up + UUy = Ugy,
u(0,t) =1, wu(oo,t)=—1, (2.2.4)
u(z,0) = up(x).

Since we know for Burgers equation, the inviscid shock (1,—1,0) has a shock

profile

¢(z) = —tanh % (2.2.5)
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In this section, we will consider the initial value uo(z) which is a perturbation of
the stationary wave solution ¢(z —z) with a location zo = % for € > 0 sufficiently

small with the following two properties:

/Ooo(uo(a:) — ¢z — xp))dz =0, (2.2.6)
luo(z) — ¢(x — zo) — (1 — ¢(z — 0))| < H(, Zo), (2:2.7)

where H(z,y) is a function of z and y defined as

ae B for 0<z<l,
H(z,y)={ “% 7 f p (2.2.8)
cosh Z5¥ oL & ’

In order to trace the asymptotic behavior of the solution u(z,t), we define the
wave front X (t) of the solution u(z,t) in terms of the stationary wave (). X(t)

is given by the implicit relation

/0 " (ulz,t) — d(z — X(8)))dz = 0. (2.2.9)

It is easy to see that for each t > 0, X (t) is unique. we will explain later that for

each t > 0, X (t) exists. with the help of X (¢), we have

Theorem 2.2.2 [35] Suppose the initial data uo(z) satisfies (2.2.6)-(2.2.7), then
the solution u(z,t) of the initial boundary value problem (2.2.4) has the properties:

z—X(t) e~ X0/3 (e + O(1)t)~1/3

u(z,t) + tanh < = , (2.2.10
i) 2 | cosh 20 cosh 20 ( )
X(t) = mo + log(1 +te™) + e(t), (2.2.11)
where e(t) is a function satisfying
tlim e(t) = 0.

Remark 2.2.3 We can see the location of wave front in (2.2.11) coincides with

what we have got in (2.2.3) by asymptotic analysis.
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To prove the theorem, we need introduce some notations.
For any a € (%, ) we define a sequence {Xn}n>o:
Xo = zo=1/e>0, (2:2:12)
Xn = Xn—l +4 . for n > ]., (2213)

where &, is any constant with 1e=¢%» < §, < 2e7**». This induces a sequence
{T,}n>0 given implicitly by X (T5,) = Xn, we will show the existence and unique-

ness of T, later.

Lemma 2.2.4 If the solution u(z,t) to the initial boundary value problem (2.2.4)

satisfies
lu(z, T,) — ¢(x — Xn) — (1 — ¢(—Xn))e™*| < H(z, Xn) (2.2.14)

for some n > 0, then the following initial boundary value problem

([ Oy + 0u(A(z — X)v) — Bt = —28,02,

3 v(0,t) =1—¢(—Xy), v(o00,t) =0, (2.2.15)
L ’U(:L‘,O) = u(‘T’Tn) - ¢($ - Xn)a
has a solution vn(z,t) = v(z,t) for 0 < t < Xndy exp(X,), furthermore, the

following boundary gradient estimate
10,0,(0,£)] = O(1)e™ X (X, + Xn/67H4) (2.2.16)
holds for any t € [0, X0, exp(Xn)]-

This lemma is a summary of several lemmas in [35]. The proof is quite long,
but the idea is very clear. Here we only sketch some basic ideas of proof for
lemma 2.2.4, the details can be found in [35]. The local existence for this nonlinear
differential equation is proved by fixed point theorem. We first study the iterative
initial boundary value problem for the linear partial differential equation

Byl + Os(d( — Xn)VR) — Buov = —30:(vn )%,
v5(0,t) =1 — ¢(—Xn), v¥(00,t) =0, (2:2.17)
vE(z,0) = u(z, Tn) — d(z — Xy),
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for k > 1 and v2 = 0. We represent the solution for (2.2.17) by its Green’s
function which can be explicitly written down. Then a detailed pointwise estimate
yields convergence of iterative approximate solution at least on [0, X,.6, exp(Xn)]-
As far as the boundary gradient estimate (2.2.16) is concerned, first, we can
represent the solution by Green’s function, therefore, when we take the derivative
to solution, the derivative will transfer to the derivative of Green’s function, thus,
we need only to estimate the derivative of Green’s function and a sharper estimate
for solution itself, essentially, a sharper estimate for the solution to the linear
equation.

Now we apply Lemma 2.2.4 to prove Theorem 2.2.2.

Proof of theorem 2.2.2: Define X,,(t) = X (t+71,), then T,,;1—T), is the time
the wave front X (¢) drifts from X, to Xn41. Actually, u(z,t) = vp(z,t — Tp) +
d(x — X,) on [T, T + Xndn exp(X,)], therefore, we use translation ¢ — ¢ + Tiis
and define un,(z,t) = u(z,t+T,,) for 0 <t < X;0n exp(X,). We know that X,(t)
exist locally. From the definition of X (t), we differentiate (2.2.6) with respect to
t, then

0 = / (B2, 1) — (& = Xalt) Xa(8)) do
= /at’un(:c,t)d:c ~ X0 /gb’(a: — X,(t))dx.

Using the equation (2.2.15) and boundary gradient estimate (2.2.16), then we

have for t < X,,, we first assume X, (t) > 0, then
1X,a(8)] < e X (1+O01) (e + Xu6n)),

thivis wie Bnd X, 48, > X, Q&8 3 Xalt) > Xn — Ce?Xn/3 > ( for some

constant C, when ¢t < X,,. Do above computation again for t > X, then
X, (t) > 0.

Therefore, X,(t) are well-defined for t < X0, exp(X,) and e~ Xnt) = O(1)e~*~,



Nonlinear Stability of Viscous Transonic Flow

moreover, we have
X ()] < e X0 (1 4+ O(1) (4510 4 X,6,))
for t < X0, exp(X,). Thus
o - [ s~ 4= Ko
= [ () — 8o = X) + (6o~ Xa) = 6la = Xult))e
= /0 t /0 ™ Bovnlao)duds— (Xl — XajG+ D))
= [ 00,9 = (X)) = (Kalt) = Xa)2 + O,

where we use the equation and ¢(z) = —tanhF. Then using the boundary

gradient estimate and ¢,(—X,) = —2¢ (1 + O(1)e=*n), we have

t
Xo(t)— X, = (% + O(l)e‘X")/ (—02vn (0, 8) — ¢po(—Xr))ds
0
= teXn + O(1)(e7/H X0 4 K Jte™ (2.2.18)

Suppose that both t < X,8,eX and X, > 1. Since
5 = Xpa1 — Xn = (Tns1 — T)e™ X + O(1)(e7/% + (X08n)°)
and 8, = e~¢Xn > ¢~5%/6 we have that
Tors — T = (1 + O(1) X26,) 0", (2.2.19)

therefore X, < Tht1 — In < X,.0,eX" hence T, is uniquely determined.

At the same time, by a delicate pointwise estimate, we can get
|0n (@, Tap1 — Tn) — (1 = ¢(z — Xa))| < H(z, Xa)-

Since at initial time, Tp = 0, (2.2.7) holds, therefore, by induction, for the solution

u(z,t) to (2.2.4) defined globally in time, similar to (2.2.7), we have

|u(z, Tn) — ¢(x — X,) — (1—¢(z— X)) < H(z, Xi) (2.2.20)

%)
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for n > 0.
From the estimate (2.2.19), it follows that

Xn 1 = Xn 511 _ »
T ::1 T, (14 O(1)X26,)0,eXn e Xn (14 0(1)X2e™ ). (2:2.21)

This is discretization of the ordinary differential equation

aX _ _xq
dt

with initial value X (0) = X,, we have
X (t) = log(e™ +t), (2.2.22)
then there exists a constant C' > 0 such that

Mgy =T, = (&t — )| L0 nfeg™+ — ™) (2.2.23)

holds with a — @ > 0 sufficiently small. When X, is sufficiently large, we have

%(Tnﬂ —T,) <& —eX <2(Th41 —Tp) forall n=1 (2.2.24)

According to (2.2.23) and (2.2.24), we have

Tni1 — I X X Toyr — T
= o gt — gt g - 2.2.25
14+ C(5Tn +%0)™% — ¢ ol 1 —C(53Th41 +e%0) ( )
and
4C 1 KNI g s G a1 Xo)1-a
- - ¢ Letn — g0 T+ ——(=1y 0)~—4, (2.2.2
T 1_a(2Tn+e ) BRE "9 & +1—&(2T + e”?) ( 6)
then
X,, = log(eX® + T,(1+ O(1) (T + €*°)™%)). (2.2.27)
Thus
X, = log(T, +1) + E,, (2.2.28)
Here E,, satisfies
eXo

E, = log(1+ O(1)((e* + T,)™* +

7)) (2.2.29)
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From (2.2.20), we conclude that

(X +O()T,) 3

cosh ”—’{&L

lu(z, Tn) — ¢z — Xn)| < (2.2.30)

From (2.2.19), we know T,, — oo as n — 0o, then by (2.2.28), X, — 00 as
n — oo. 