
«

Finding Top-A: Frequent Balls in
High Dimensional Spaces

Liu Zheng
A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of
Master of Philosophy

in
Systems Engineering and Engineering Management

Supervised by
Prof. Jeffrey Xu Yu

©The Chinese University of Hong Kong
July 2004

The Chinese University of Hong Kong holds the copyright of this thesis. Any per-
son(s) intending to use a part or whole of the materials in the thesis in a proposed
publication must seek copyright release from the Dean of the Graduate School.

A , 统 序) “ i \ A

p f u APR ®) | j
M a ~UNIVERSITY \;<g\LIBRARY SYSTEMy>̂

中文摘要

在股票交易市场中，一个广泛使用的投资策略是参考股票过去的价格

升跌模式。这种过去的价格升跌模式和当前的股票价格走势有很强的

相似性。这种策略的根据是这种标准的价格模式往往会在未来重复出

现。已经有很多学者专注于如何有效的监视，匹配这种价格模式，而

本文则给出了如何在大量的时间序列数据中去识别出这种模式的几

种有效的方法，以帮助用户去发现这些以前未知的价格模式。

本文所阐述的新问题是在大量的高维数据中发现A个有显著区分的

球形簇。而这些球形簇的半径要小于预先给定的 r�我们把这些球形

簇看成是更有意义，真正的频繁模式。

我们基于创新的树结构给出了两种新的搜索剪枝技巧，能够有效的增

加算法的速度。同时，树结构也使得只输出最大球形簇成为可能。本

文中的算法包括一个确定算法和几个启发式的近似算法。

在几个时间序列的数据集上的试验结果显示我们的方法能在高维空

间中有效的，正确的发现真正的频繁模式。

Abstract of thesis entitled:
Finding Top-fc Frequent Balls in High Dimensional Spaces

Submitted by Zheng Liu
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 2004

In stock markets, one of the widely-used investment strategies is
to respond quickly when there is a trend that certain stock price
shows strong similarity to one of the preselected price patterns. This
strategy is based on the observation that similar patterns will repeat
from time to time. While many papers concentrate on how to mon-
itor stock price trends and how to find matches between stock price
trends and preselected price patterns. We present approaches on how
to find the most frequent patterns in large time-series data sets, or
in other words in a high dimensional real-valued space in this dis-
sertation. Our techniques help users identify previously unknown
patterns to use as price patterns in stock price time-series.

The new problem we study attempts to find k distinctive balls that
contain the largest numbers of data points in a given data set S. The
radius of a ball to be found needs to be less than or equal to a given
radius r. These balls are true frequent patterns for their density is
higher than ones generated by other existing algorithms.

We present two new pruning techniques. Novel tree-structures
for indexing are introduced to speed up the computation. The first
one reduces computational cost and the second removes those fre-
quent balls, which are enclosed in other frequent balls. Our proposal
includes an exact solution and two approximate solutions.

We also conducted performance study on several time series data

i

sets. The experiment results show our approach gives true frequent
patterns in a high-dimensional real-value space and can be processed
efficiently.

ii

Acknowledgement
There are thanks to many people, with the great favors of whom can
I finish this dissertation in time.

To my supervisor Prof. Jeffrey Xu Yu, for both the academic
guidance and the living attitude throughout my two-year-long study.
He also confirm my belief to pursue a PhD for my ultimate goal of
an academic career.

To Prof. Xuemin Lin and Prof. Hongjun Lu, for their kindly
direction, support and discussion of what this research should be.
They shared their bright thoughts with me which improved the work
in the dissertation.

To the members of our database group, Fiona Choi and Gabriel
Fung for their encouragement and helps. To Zhiheng Li and Wei
Gao, for sharing their work with me. Special thanks to Jianghua Lv
for the discussion of the work and proposition of some important
issues.

To Many others, who deserve my thanks for various reasons.
They are: Prof. Flip Korn in New York University, Prof. Eamonn
Keogh in University of California at Riverside, Prof. Wei Lam and
Prof. Helen Meng of our department. My friends: Xiaolei Yuan,
Arber Xu, Qi Wang and Bin Zhang. To my parents and Cora finally, who always support what I do.

Zheng Liu
The Chinese University of Hong Kong
July 2004

iii

To my parents and Cora’ for many wonderful things of the world,

iv

Contents

Abstract i
Acknowledgement iii
1 Introduction 1

1.1 Contributions 2
1.2 Dissertation Organization 3

2 Problem Statement and Background Study 4
2.1 Problem Statement 4
2.2 Background Study 6

2.2.1 Overview of Pattern Discovery Methods . . . 7
2.2.2 Applications 9

3 Ball Discovery Algorithms 13
3.1 Brute-force Method for Ball Discovery 13
3.2 Ball Discovery with Small Point Sets 15

3.2.1 Pruning the Search Space Using RP-tree . . . 15
3.2.2 CB-tree - Collection of Balls in a Compact

and Complete Form 22
3.2.3 Algorithm of Finding Balls Using RP-tree

and CB-tree 31
3.3 Ball Discovery in Large Point Sets 31

3.3.1 Candidate Sets of Balls 31
3.3.2 A Divide-and-Conquer Algorithm 35

V

3.4 Heuristic Greedy Algorithms for Ball Discovery . • • 37
3.4.1 A Heuristic Greedy Algorithm 37
3.4.2 Another Heuristic Greedy Algorithm . • • • 38

4 Evaluations 40
5 Discussion 59

5.1 Order and Index the Points 59
5.2 Incremental Points Update 59
5.3 Smallest Enclosed Ball Algorithm 60

6 Conclusion and Future Research 61
A Appendix 63

A.l Fundamental Algorithms 63
A.1.1 Computing Smallest Enclosed Ball of a Point

Set in Euclidean Space 63
A. 1.2 Finding All Cliques of an Undirected Graph • 65

A.2 An Example of a Small Data Set 66
Bibliography 69

vi

List of Figures
2.1 Difference between finding Ball{c) for c G <S and

cG R爪 6

2.2 A motif in a time-series data 10
2.3 Example of balls to be found 12
3.1 Duplicate Computation of the Algorithm 1 16
3.2 A RP-Tree 17
3.3 The Construction Procedure of a RP-tree 19
3.4 Pruning Ability of RP-tree 21
3.5 A CB-Tree 23
3.6 The Construction Procedure of a CB-tree 27
3.7 Adjust CB-tree 28
3.8 An example of the redundancy of a CB-tree 29
3.9 How to do Closeset to remove redundancy 30
3.10 Relationship between a ball and a candidate set . . . 34
3.11 Removing points 39
4.1 Experiment Results of HSBC stock price series (Length

=16) 44
4.2 Experiment Results of HSBC stock price series (Length

=32) 46
4.3 Experiment Results of HSBC stock price series (Length

=48) 47
4.4 Experiment Results of Microsoft stock price series

(Length = 32) 49

vii

4.5 Experiment Results of Microsoft stock price series
(Length = 64) 50

4.6 Experiment Results of Microsoft stock price series
(Length = 128) 51

4.7 Experiment Results of IBM stock price series (Length
=32) 52

4.8 Experiment Results of IBM stock price series (Length
=64) 53

4.9 Experiment Results of IBM stock price series (Length
=128) 54

4.10 The longest, shortest and average CPU time of the
exact algorithm on ten stock price series from Hong
Kong Stock Exchange 57

viii

List of Tables
3.1 An Output List of Balls 22
4.1 Top 7 Balls of the Exact Algorithm 56
4.2 Top 7 Balls of Algorithm HG-Mean 56
4.3 Top 7 Balls of Algorithm HG-Current 56
4.4 Top 7 Balls of Algorithm HG-All 56

ix

List of Algorithms
1 Find-All-Ball-Brute-Force{S, r) 14
2 Mapping-RP-tree{R, root) 21
3 Adjust-CB-tree{root) 29
4 Build-CB-tree-Closeset{root, B) 31
5 Find-All-Ball-Small{S, r) 32
6 Finding-All-Ball{S, r) 36
7 HG-Ball-l{V,r) 37
8 HG-Ball-2\v,r) 39
9 r-center[S, r) 42
10 miniball{Sn, B) 64

X

Chapter 1
Introduction
One of the widely-used investment strategies in stock markets is to
respond quickly when a stock price trend shows a strong similarity
to one of the preselected price patterns. This strategy is based on
the observation that similar patterns repeat from time to time. There
are reported studies concentrating on how to monitor the stock price
trends and how to find matches between stock price trends and prese-
lected price patterns. In this thesis, as general techniques, we present
approaches on how to find the most frequent patterns in large time-
series data sets, or in other words in a high dimensional real-valued
space. Based on our solutions, we can determine real representative
patterns for traders to monitor if they appear again. These patterns
could help traders maximize their profits. In essence, this technique
helps users identify previously unknown patterns.

Data mining is to discover previously unknown yet interesting
patterns. There are three main data mining techniques, namely as-
sociation rule mining, clustering and classification. The key step in
association rule mining is to find frequent itemsets in a given trans-
action database with respect to a given support threshold, r . Recall
a transaction database is a set of transactions and each of them con-
tains a set of items in a domain of items. A set of items is called
an itemset. Clustering is to cluster data objects in a large data set
into clusters such as the distances between objects within a cluster
are as small as possible, whereas the distances between clusters are

1

CHAPTER 1. INTRODUCTION 2

as large as possible. Classification is to build a classifier, based on a
training data set, and to classify unseen data objects into classes.

The problem we study is similar to frequent itemsets mining prob-
lem in the sense that it attempts to find frequent patterns. But, un-
like frequent itemsets mining, the frequent patterns to be found are
patterns in a high-dimensional real-valued space. It is important to
know that an itemset is a set of categorical data objects. A pat-
tern in a real-valued m-dimensional space is a set of m-dimensional
data points. In frequent itemsets mining, it counts itemsets based on
whether they are the same or not. In our problem, two m-dimensional
data points are seldom exactly the same. Data points in an m-
dimensional data points are considered same if they are close to each
other, by a given radius r. This makes the problem unique and chal-
lenging. The problem of finding frequent patterns by a given radius
r is similar to clustering, which considers similarity among data to
clusters. However, the former is to find a maximum space under the
constraint of r with high density, whereas clustering is to partition
data in the whole space into different clusters.

1.1 Contributions
In this dissertation, we study a new problem called top-A: balls, de-
noted fc-ball, in a given data set S, by a user given radius r. The data
set, <S, is a subset of the m-dimensional data space In brief, we
attempt to find k distinctive balls that contain the largest numbers of
data points in S. The radius of a ball to be found needs to be smaller
than or equal to the given radius r. The main contributions of our
work are summarized below.

1. We observe that k is unsatisfactory to identify fc-balls by enu-
merating every data point in S and treating it as a center in
order to count data points in a ball of radius r. We propose
a set of solutions to find such fc-balls by considering possible

CHAPTER L INTRODUCTION 3

data points in the space R饥 as centers. In other words, we will
take a data point which may not be in 5 as a center to find fre-
quent patterns. This would be challenging, as the search space
is much larger.

2. The set of our solutions includes an exact solution and sev-
eral approximate solutions. We present two new pruning tech-
niques. Two novel tree-structures for indexing is introduced for
this purpose. The first one reduces computational cost making
the problem solvable in reasonable time. The second removes
those frequent balls that are enclosed in other frequent balls
making the collection of frequent balls compact and complete.

3. We conducted performance study. Our performance study showed
that our approach gives the true frequent patterns in a high-
dimensional real-value space and can be processed efficiently.

1.2 Dissertation Organization
This dissertation is organized as follows. In Chapter 2, we will give
an overview of the current methods of pattern discovery and analyze
some previous related work also with the formal problem statement.
Chapter 3 presents our ball discovery algorithm step by step from
small data set to large data set, from exact algorithm to approxi-
mate heuristic greedy algorithms. Experiment results are shown in
Chapter 4 and Chapter 5 discusses some important issues. The dis-
sertation ends at Chapter 6 with conclusion and future directions.

• End of chapter.

Chapter 2
Problem Statement and Background
Study

Summary
In this chapter, we first present the formal statement of the
fc-ball problem and give an overview of current methods of
pattern discovery followed by the analysis of some previous
related work.

2.1 Problem Statement
In this paper, we study the problem of finding top-fc frequent balls
in a high dimensional real-valued space S with a user given radius,
r. Here, a frequent ball is a maximal ball which has a radius smaller
than or equal to r and contains as many data points as possible in S.
We call it the problem of top-fc balls, denoted fc-balls.

Distance (similarity) measure in the Euclidean space is Euclidean
distance measure. For two points si = (^sa”..sirn), Sj = {sji, Sjm)
in an m-dimensional space R讯• The Euclidean distance between the
two points is defined as follows.

d{Si, Sj) = VlXi(拟 -
4

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 5

Having defined the similarity of two points, we give the definition
of Ball.
Definition 1. (Ball) Given a set of m-dimensional data points S (c
BJ^) and a radius r of real number, A ball’ in terms ofc G R爪’ is
denoted as Ball{c) = {sj | d{c, S j) g r 八 Sj G 5}. Here，c is the
center of Ball (c) and Ball(c) C S for any c G

Let 5 be a ball, we use cent{B), radius(JB) and boundary(B) to
denote its center point c，radius and the set of points on the spherical
surface of the ball respectively. Apparently radius[B) < r, the
given radius.
Definition 2. (k-hsAl) Given a set of m-dimensional data points
S (C R爪、and a range r of real number. The 1st ball in S is
the ball Bi that has the highest count of all belonging points. The
k-th ball in S is the ball that has the highest count of all belonging
points and satisfies d{cent{Bk), cent{Bi)) > 2r’ for all l<i <k.

The problem of top-A; frequent balls (fc-Ball) is to find k balls
Ball{ci), Ball[C2), • • •，Ball�Ck), such that radius{Ball{ci)) < r,
for BaU(ci) ^ Ball(cj) if i ^ j and \Ball{ci)\ > \Ball(cj)\ if
i > j. Here, q G R爪,for I = 1，2，…,k.

It is important to note that Ball{c) is defined for a point c which
may not be in S. The main differences between finding Ball{c) for
c G 5 and finding Ball{c) for c e hut c ^ S are illustrated
below.

Figure 2.1(a) shows an example where S = {si, 52, S3，54}. As-
sume that the distances, d{si, S2), d(幻，53), 54) and ^(54, si),
are the same, r + e, for a very small e > 0. There does not exist a
ball, Ball{si), for any Si G S, which contains more than one point
(itself). Given c ^ 5 as the center of the four points. Obviously,
d(c, Si) < r for Si e S and \Ball{c)\ = 4. Such a Ball{c) is the
most frequent ball to be found.

Figure 2.1(b) illustrates another example on a simple set in R爪
projected into 2-d space. In this example, there are 10 points in the

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 6

�

f \ S , — � � �

广 r � �] \ / , V � � �
/ I I A i V ^ ^ ^ � / \ I � i \ / \
\ 、、…-：/" \ ^ ^ ^ J \ # \ 、、（ \ / 、、、 y�-"-'

�� Z ：：：：：!：

(a) There is no ball found if c in 5 (b) The quality of the most frequent balls

Figure 2.1: Difference between finding Ball{c) for c G <S and c e R爪
set S. If we attempt to find Ball{si) by enumerating points Si G S,
the most frequent ball to be found includes 6 points. The circles of
dotted line are some examples of the above balls. But if we attempt
to find a Ball{c) for a c which is possible not in S, the most frequent
ball to be found includes 9 points as shown of circle of the solid line.
Now we can see that the count of a ball whose center is an exist point
is often smaller than the count of a ball whose center is in BJ\ More
results will be shown in the experiments section.

As mentioned above, the difficulty of finding the frequent balls,
for Ball{c), also comes from the fact that c does not necessarily be
an existing point in the given set of points, S and the search space
could be very large. We will present some efficient algorithms in the
next chapter. 2.2 Background Study
In this section, we will first give an overview on related methods of
pattern discovery, and then analyze in detail several cases of previ-
ous work in different applications.

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 7

2.2.1 Overview of Pattern Discovery Methods
There are two common ways to identify those previously unknown
frequent occurring patterns in a m-dimensional Euclidean space R爪
using either a fc as the number of nearest neighbors or clusters or a
r as a radius of the patterns. Both k and r are previously defined.
Some of the existing works are summarized below. Let be a set of
points in i?爪.

• fc-approaches
Clustering is a widely used method to separate the data into
distinct groups that are often treated as patterns. Following
are some partitioning clustering methods that are based on a
previously defined number k.
1) The fc-Nearest Neighbor (k-NN) clustering problem is to
find the k nearest neighbors, for an existing point, in S, Here,
k is the number of nearest neighbors. The goal of this cluster-
ing method is to simply separate the data based on the assumed
similarities between various clusters. Thus, the clusters can
be differentiated from one another by searching for similarities
between the data provided. fc-NN clustering is a discriminant
clustering method to discover the most distinct clusters in the
given <S.
2) The goal of K-Median clustering, like k-NN clustering, is to
separate the data into distinct groups based on the differences
in the data. Here, k is the number of clusters to be partitioned.
Thus, upon completion, the analyst will be left with fc-distinct
clusters with distinctive characteristics. The metric k-mtdian
problem is to select most k data points in S to be cluster cen-
ters initially, and repeat assign non-selected data points to their
closest cluster centers until no data points will be reassigned
any more.
3) The fc-center clustering problem is the min-max analogue
of the fc-median problem, while fc-median which cannot obtain

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 8

the globe optimal is a greedy solution for the fc-center problem.
k is also the number of clusters, fc-center clustering minimizes
the size of the clusters where the size is defined to be the maxi-
mum distance between the center of a cluster and a point in the
cluster, fc-center is a NP-Complete problem^ and have some
approximation algorithms [1, 8, 16].

• r-approaches:
1) The motif discovery problem for time-series data is to find
previously unknown frequent occurring subsequences. The straight-
forward method is to compute the number of points (subse-
quences) within a radius r of every existing data point (subse-
quences) and choose the subsequence with the largest number
as the first significant pattern [5，19, 22, 24].
2) The dual clustering problem tries to cover each point in R爪
with a unit ball and minimize the total number of balls used [4: •
This is also a NP-Complete problem. [4] give a performance
ratio of the problem.
3)The r-dominating set problem is much like dual clustering
which covers the points in R爪 with balls whose radius is r and
tries to minimize the number of centers to cover all data points.
[2，20] study this problem in a 2d plane.

• fc/r-approaches:
In density-based clustering, both k and r are used to identify
clusters that have a range smaller than or equal to r and more
data points than k [9].

All of the above methods use existing data points in the data set
as a center of clusters to measure the radius or size of a cluster,
except in the dual clustering and r-dominating problems. Based on

^NP-Complete problem is problem the answer of which cannot be computed and validated in
polynomial time.

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 9

the definition of ball, we adopt a generalized r approach where the
center of a cluster called ball may not be in the existing data set.

2.2.2 Applications
Some previous related work of pattern discovery in several different
applications are analyzed here which can be regarded as the motiva-
tion of our work.

• Time-series clustering has been extensively studied. Clustering
time series subsequences is an important subroutine in many
other time series algorithms including association rule discov-
ery, indexing, classification, prediction and anomaly detection
etc.. In [18], Keogh et al. pointed out an important issue that
clustering of time series subsequences is meaningless. Their
claim is based on such fact that a data point, at the relative po-
sition i, a window starting at the same position, and will appear
in i - j-th value in the following j-ih sliding window. The
mean of all such data points will be an approximately constant
vector, which makes any clustering approach meaningless.
Several papers studied motifs [5, 19, 22] which can be treated
as one way to solve the above problem by clustering just the
motifs which assume that a time series is mainly made of mo-
tifs. On the other hand, a motif itself can be considered as a
substitute of sequence clustering method in many time series
algorithms. A motif is a previously unknown frequent occur-
ring subsequence after the continuous adjacent similar subse-
quences, called trivial matches, are removed. Let T] be a sub-
sequence starting at position i, Ti is a trivial match to Tj of a
given radius r, if Ti = Tj or there does not exist Tk such as the
distance between Tk and Tj is greater than r and Tk is in be-
tween Ti and Tj. Figure 2.2 gives an example of a motif, which
only appears 3 times (trivial matches have been removed) in

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 10

the short series. The first motif is the most frequent subse-
quence in a given subset of m-dimensional subspace. Here, a
subsequence of length m is mapped to a data point in an m-
dimensional space. It can be considered as an application of k-
balls that will find balls that include all possible trivial matches
for a given radius r. ^

125 -1 —
100 1 100 100 r

. 1 1 5 9 13 17 21 25 29 33 37 1 5 9 13 17 21 25 29 33 37 1 5 9 13 17 21 25 29 33 37

I 1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476
：

Figure 2.2: A motif in a time-series data

• Identifying preselected time-series (stock prices) patterns is an
important issue, because one important scenario is that there
are needs to respond immediately when the stock price trend
shows a strong similarity to one of the preselected price pat-
terns (a time-series) [11]. The centers of a top-A; balls are good
candidates for the representative price patterns if time-series
data of length m are treated as data points in an m-dimensional
space, though the finial patterns are often decided by domain
experts.

• Allocating network centers in a distributed network such as
mobile stations studied in [2] is a simplified fc-ball problem

2One can always remove trivial-match subsequences by removing the continuous subsequences
but one in the same motif.

CHAPTER 2. PROBLSVf STATEMENT AND BACKGROUND STUDY 11

in a 2d plane with the constrain that the center of radius r has
an upper bound of total clients.

• There are many similar applications in sensor network, spatial
database, etc.

The uniqueness of the fc-ball problem is discussed below. First,
the center of a fc-ball is not necessarily an existing data point in S but
could be any data point in R爪.Therefore, the search space becomes
so huge that any trivial enumeration approach do not work for even a
moderate data size. Note that when existing data points are the can-
didate centers, such enumeration approaches can enumerate all these
existing data points to find patterns. The approach taken in fc-means
clustering could not be used in fc-balls. That is to compute the mean
of data points in a candidate set and use the mean as the center for
iterations. You need to set k as the total number of possible patterns
and choose the initial points very well. It is important to note that
the problem of fc-balls is a problem in a real-valued m-dimensional
space. Second, fc-balls shares similarity with data clustering prob-
lem. But, fc-balls is not a data clustering problem. The data cluster-
ing problem is to cluster S into clusters to minimum the distances
between data points in a cluster and maximize the distances between
clusters. The emphasis of the data clustering problem is to partition
the whole set of data points. But, fc-balls is to find k subsets of the
data points that with largest numbers of data points in a radius slight
smaller than or equal to the given range r. Third, as a r-approach,
it differs from other r-approaches. In the dual clustering problem
[4] and r-dominating set problem [2, 20], the radius r is fixed, the
number of balls needs to be minimized while covering all the points.
In fc-balls, the number of balls is given, the radius r' of a ball needs
to be maximized within the constraint of the given radius r^. Figure
2.3 gives an intuitional example of fc-balls that we are trying to find.

3The exact algorithm of this paper tries to find all possible balls which may share some common
points, but one can easily generate the top-k balls by selecting largest ball and removing the sharing
points in other balls.

CHAPTER 2. PROBLEM STATEMENT AND BACKGROUND STUDY 12

• ••• ： •••

Figure 2.3: Example of balls to be found

• End of chapter.

Chapter 3
Ball Discovery Algorithms

Summary
In this chapter, we will introduce our algorithms for ball
discovery step by step from small data set to large data set,
from exact algorithm to approximate heuristic greedy algo-
rithms.

3.1 Brute-force Method for Ball Discovery
The problem of finding top-fc balls is that given a set of m-dimensional
data points S (c R^) and a range r of real number, finding k balls
Ball{ci), BaU\c2), •••，BaU[Ck), such as radius{Ball{ci)) < r,
for Ball{ci) g Ball{cj) if i # j and > if
i > j. Here, q G R讯,for i = 1,2,…，fc.

Now, we will introduce a brute-force iterative Algorithm 1 for
finding exactly all balls with a given point set S in FT and a ra-
dius r. Once all balls are found, then the iop-k balls can easily be
obtained.

The function miniball here is to compute the smallest enclosed
ball of a given point set. The smallest enclosed ball is the ball that
contains the given point set in m-dimensional Euclidean space when

13

CHAPTER 3. BALL DISCOVERY ALGORITHMS 14

Algorithm 1 Find-All-Ball-Brute-Force{S, r)
1： miniball(S);
2： r' = radius {S)
3： let P = boundary {S) be a set of points on the spherical surface of the small-

est enclosed ball with a radius r,;
4: ifr' <r then
5： output <S;
6： else
7： for each Si G P do
8： S' = S\{si};
9: Find-All-Ball-Brute-Force {S', r)；

10： end for
11： end if

the radius is smallest. The algorithm to compute a smallest enclosed
ball is first introduced by Welzl [26]. Welzl adopts a move-to-front
strategy to speed the computation and Beme Gatner implemented a
slightly modified algorithm in C++ based on his paper [12]. We skip
the detailed procedure of the smallest enclosed ball algorithm here
for brevity which could be found at Appendix A.1.1. miniball re-
turns three values, the center point of the smallest enclosed ball, the
radius of the smallest enclosed ball and the point set P at the spher-
ical surface of the smallest enclosed ball. In Line 1 of Algorithm
1，miniball is called, so we can get the radius r' and the boundary
point set P of 5 at Line 2 and 3 separately.

This brute-force algorithm iteratively checks whether the radius
of the smallest enclosed ball of the current point set is less than or
equal to r and outputs the current set of points as a ball if it is true.
Otherwise it will remove one of the points at the spherical surface of
the smallest enclosed ball and check again. By removing one point
Si in P, radius(S \ {s^}) must be smaller than radius{S), so the
iteration would stop at the end. Here, radius (S) denotes the radius
of the smallest enclosed ball of S.

Such an algorithm is extremely slow for the function miniball} is
iThe algorithm of computing smallest enclosed ball is based on linear programming, and thus,

CHAPTER 3. BALL DISCOVERY ALGORITHMS 15

repeatedly called for many times and also the search space is large.

3.2 Ball Discovery with Small Point Sets
What we will discuss in this section is to find balls in a given point
set which is small. Here, the small set S means that radius of S
is just slightly larger than the previous defined range r, that is r +
6. Apparently that this assumption is not held for most data sets
of ball discovery problem and we will see in Section 3.3 that once
the problem of finding balls in small sets is solved, the problem of
finding balls in large data set is solved. The radius of a large point
set is much large than the previously defined range r.

One may claim that the brute-force Algorithm 1 could work well
if there are not many points in the data set. But the fact is that the
brute-force algorithm cannot work well even with a few points. In
the next two subsection, we will see how to prune the search space
efficiently and collect the balls found in a compact and complete
form.

3.2.1 Pruning the Search Space Using RP-tree
From Algorithm 1 we find that there are a lot of duplicated computa-
tions in the iterative procedure. Such duplication should be avoided
for miniball is computationally intensive time-consuming.

Figure 3.1 gives an example. Let's simulate how Algorithm 1
works. Suppose we have a small point set of five points S = {1,2,3,
4’ 5} and a range r. At first, we call miniball {S) to find that S is
not a ball and the boundary point set is {1，2，3}. In iteration 1，we
remove point 1 first, and still find the radius of the smallest enclosed
ball of Si = {2,3，4, 5} is larger than r that means 5i is not a ball.
Then come to the next iteration 1.1, we remove point 2. Suppose
S2 = {3,4,5} is a ball, iteration 1.1 stops and the algorithm will
it is not very fast. For details, please refer to Appendix A. 1.1.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 16

S = {1，2，3，4，5}
[teration 1: Iteration 2:

Remove Point 1: Remove Point 2:
Si={2,3，4，5}; S，7=U，3,4，5};
miniball(Si) ； miniball(Si)；
51 is not a ball. S，i is not a ball.

Iteration 1.1: Iteration 2.1:
Remove Point 2: Remove Point 1:

S2={3，4，5}; S，2={3，4，5};
minibaU(S2) ； miniball(S，2)；

52 is a ball. S'2 is a ball.

Figure 3.1: Duplicate Computation of the Algorithm 1

continue to the iteration 1.2,... . When the algorithm comes back to
the top level iteration, it will continue the search in iteration 2. The
algorithm removes point 2，and suppose we find S[= {1，3，4，5} is
not a ball. In the next iteration 2.1，the algorithm removes point 1，
and finds that = {3,4,5} is a ball, so iteration 2.1 stops. Now
we notice that the ball 82 = 82 = {3,4，5} has been found at the
iteration 1.1，and there is no need to compute it again in the iteration
2.1.

Based on this observation, RP-tree (Removed Point Tree) is pro-
posed to prune the unnecessary computation. Figure 3.2 shows a
RP-tree.

RP-Tree is a prefix tree that stores the removed point sets in the
iterations. The node of a RP-tree has two parts: the removed point
at this node and the links to its children. The children are the points
to be removed in the following iterations. A path of a RP-tree is a
sequence of points encountered when going from the root of a RP-
tree to a leaf. Suppose (s i , S n) is a path in the RP-tree from root

CHAPTER 3. BALL DISCOVERY ALGORITHMS 17

0 (R O O T)

3 O O O
Figure 3.2: A RP-Tree

to the leaves, then a path point set P is the set of the points in the
path, that is, P 二 {si,…，5^}. If the given point set is <S and 5 \ P
is a ball, for some P, we link the boundary points of the ball to the
node containing the end point of the path, s^.

With a RP-tree, calling miniball{P), we check the RP-tree first
to see whether the removed point set can form a prefix of a path in
the tree. If so, we know that the point set P have been computed,
then we directly go to the next iteration.

Let's re-visit the example in Figure 3.1. We will explain how to
construct a RP-tree incrementally while searching balls as shown in
Figure 3.3.

There are three point sets in Figure 3.3，point set P, boundary
set B and removed set R, point set P is the current point set to be
computed with miniballQ, boundary set B is the boundary point set
of P and removed set RisS\P,Sis the given point set initially.

In iteration 0，the tree only consists of a root node. Since Pq 二

{1,2, 3,4,5} is not a ball, we call mim6a//(Po) and get 5o 二 {1,2,3}.
In iteration 1，the removed set Ri is {1}, we check the RP-tree to see
whether the Ri can be mapped to a prefix of any path in the RP-tree
before calling the minibaU(PQ). Apparently the answer is negative

CHAPTER 3. BALL DISCOVERY ALGORITHMS 18

Iteration 0: Iteration 1: Iteration 1.1:
Point Set: {1,2 ,3 ,4 ,5} Point Set: {2,3,4,5} Point Set: {3,4,5}
Boundary Set: { 1,2,3} Boundary Set: {2,3} Boundary Set: {3,5}
Removed Set: {} Removed Set: {1} Removed Set: {1,2}

(^ o o) (r o o ^

CDCDCD G 5 C D ® C D C D C D
Link the Boundary Points Set. Iteration 1.2:

Point Set: {2, 4,5}
Boundary Set: {4,5}
Removed Set: {1, 3}

CHAPTER 3. BALL DISCOVERY ALGORITHMS 19

(Too^ (r o ^

0 ® C D …… C D O O
Iteration 2: Iteration 2.1:
Point Set: {1,3,4,5} Point Set: {3,4,5}
Boundary Set: {1,3} Boundary Set: {3,4}
Removed Set: {2} Removed Set: {1,2}

("rootm
Iteration 2.2:

(j ^ (2 ^ PGintSet:{l，3，4，5}
^ - y C ^ Boundary Set: {1,3)

^ . / \ Removed Set: {1,2}

o o ® … …
(r o o ^

S^) ^^^ ……

^ ^ ^ I j r � 丁 � Final RP-tree

……轻……
C^OCD

Figure 3.3: The Construction Procedure of a RP-tree

CHAPTER 3. BALL DISCOVERY ALGORITHMS 20

because RP-tree has only the root. We then add the removed set Ri
to the RP-tree and initiate iteration 1.1. In iteration 1.1，the removed
set Ri,2 is {1,2} and it still cannot be mapped to a prefix of any path
in the RP-tree. We then add the removed set Ri,2 to the tree too. We
do the same in other iterations at this level, i.e. iterations 1.2, 1.3，
etc.. In iteration 2，the removed point set i?2 二 {2}. We add it to the
tree and initiate iteration 2.1, where the removed list i?2.i is {2，1}.

We find that it can be mapped to the prefix of the path (1,2), so we
know that the point set 5 \ {1,2} has been computed. We just skip
this iteration and continue to iteration 2.2. Iterations continue until
finish.

From the above explanation, we can see that RP-tree is built in an
incremental way during the iterations. The algorithm for construc-
tion of a RP-tree is highly integrated with the entire ball discovery
algorithm. We will present it later together with the ball discovery
algorithm.

Now we outline an algorithm for determining whether a removed
point set has already been computed using the RP-tree. The key
idea is whether the current point set P can be mapped to a prefix of
a certain path in the RP-tree. The parameter root in Algorithm 2 is
the root node of the RP-tree initially and R is the current removed
set to be tested. Foundflag is a boolean variable outside Mapping-
RP-tree and the function will set it to true if the removed point set
can be mapped successfully, otherwise/a/^^.

Algorithm 2 directly maps the removed set to the prefix of a path
of the RP-tree.

When the height of the RP-tree is not so low as shown in our
simple example, the pruning will be efficient. Consider the example
in Figure 3.4. A and B are two pointers pointing to some nodes.
Assume in the current iteration, A is pointing to the right side branch
and the current removed set is {3,1}, which is equal to the set of
{1,3} as a prefix from the root to B. With RP-tree, the large search
space starts from B is pruned.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 21

Algorithm 2 Mapping-RP-tree{R, root)
1： if is 0 then
2： Foundflag = true',
3： end if
4： if (rootl 二 NULL) and {Foundflag == false) then
5： for each child Si of root do
6： if Si in R then
7： Mapping-RP-tree{R \ {s^}, root = root si)
8： end if
9： end for

10： end if

(R O O T)

�…

Figure 3.4: Pruning Ability of RP-tree

CHAPTER 3. BALL DISCOVERY ALGORITHMS 22

The Small point set
1,2，3，4，5，6，7，8 —

Order Balls
i 1 3 4
^ 1 7
^ ~ 1 2 7

" " “ ^ 1 2 4

^ 1 2 7 8
^ 1 2 6 7

~ ^ “ 1 4 6

~ ^ 1 2 6 7 8

9 ~ 1 2 5 6 7 8

1 5
~ ~ T l 1 5 6

1 2 5 6

Table 3.1: An Output List of Balls

3.2.2 CB-tree • Collection of Balls in a Compact and Complete
Form

Table 3.1 is a list of balls found in some small point set S by Algo-
rithm 1 with the RP-tree pruning before the computation of miniball.
The small point set is part of a real data set and the detailed coordi-
nates of the points is given in Appendix A.2.

We carefully study the output list of balls, and come up with the
following observations:

1. Point 1 is always at the beginning of a ball. We currently skip
it and will talk about the reason in the next section.

2. If we store all balls found in some compact structure, it would
be easier to determine the top-fc balls.

3. Some balls found in the list are subsets of other balls. The
structure for collecting balls should avoid such redundancy.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 23

Head Table …

s •…〜、、、乂 ，… 少 C p
6 �� ； ^ ^ ...V-'".' ->C 8)
7 � ’ - - -

Q - - - - - - > o

Figure 3.5: A CB-Tree

4. If two ball sets share a common prefix according to the out-
put order, then the share parts can be merged using one prefix
structure.

Recall the definition of ball, what we expect to find is maximal
ball, i.e., every ball found should not be included by other balls. In
the above output list, because the order of removed points is differ-
ent, sometimes we get balls which are not maximal balls.

With these observations, we propose the CB-tree (Collecting Balls
Tree), which is used to store balls in a complete and compact form
as shown in Figure 3.5. CB-tree can also serve as a pruning tree in
the ball discovery algorithm.

CB-Tree is a prefix, bi-direction linked tree which is used to store
the balls. The node of a CB-tree contains three part: the point at this
node, the links to its children and the link to its parent. One node
could have more than one child but only one parent. A path of a CB-
tree is a sequence of points encountered when going from the root
of a CB-tree to a leaf. Suppose (s i , i s a path in the RP-tree

CHAPTER 3. BALL DISCOVERY ALGORITHMS 24

from root to the leaves, then a path point set P is the set of points in
the path, that is, P = { s i , S n } and P is a maximal ball.

Each CB-tree is accompanied with a head table, whose cells are
made of points and each point is associated with a list of links to the
occurring position of the point in the CB-tree.

We will first introduce how to construct a CB-tree from the out-
put list of balls in Table 3.1. There are two important operations
on the CB-tree: adjust and closeset. A step-by-step procedure for
constructing a CB-tree based on Table 3.1 is shown in figure 3.6.

Initially, the CB-tree is NULL. In step 1，the ball Bi is {1，3,4},
since the CB-tree is now empty we simply add ball 1 to the CB-tree
by linking the points one by one then update the head table. Since
point 1 occurs in every ball, we use it as the root of the CB-tree.

In step 2, the ball B2 is {1,7}. We search the tree to see if the
ball is contained in any path point set from root to leaves. If so,
that means the current ball is contained in some other balls which
are already stored in the tree. Then we just skip the current ball and
come to the next one. If not, We try to map the ball to the tree path
to see whether a subset of the ball, assume P2, can be mapped to a
prefix of some path in the tree using depth-first strategy. Apparently
we can see from Table 3.1, that a ball in the table is at least shared
by the root point with any other ball in the tree. Ball 2 can only
be partially mapped to the root point. Thus, we link the remaining
of the ball B2 \ P2 one by one as the right most branch of the last
common point in the prefix, i.e.尸2 = {1} in this example. We do
the same in step 3.

In step 4, the ball S4 can only be linked to the root point as the
right most branch. But pay attention that the left most branch and
the newly added branch at right most share some common point 4.
To make the CB-tree as compact as possible, we need an operation
called adjust to compress the CB-tree. The algorithm of operation
adjust will be shown late, we now only give the result at step5.

The remaining process is similar to step 2 to step 5.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 25

Head Table , Head Table , - " > C O

_7_J
Stepl: Step2: Add ball: {1,3,4} Add ball: {1,7}

Head Table _ > 〔 ! ）

. - - - - > 0 0 Steps：
2 Add ball: {1’ 2，7]

丄 一 ;

丄 一 7
H g b l e 一 一 S t e p 4 :

二 ^ ^ ^ A d d b a l l : U，2，4}

丄 • 一 …

Head Table

" 7 1 — S t e p s ：
(f l j Adjust Tree to Keep CB-tree

2 ” C o m p a c t .
丄 ） : O C Z)
丄 一 一 一 - 一 乂

7

Head Table , -

Step6:
C l ^ Add ball: {1,2,7,8}

十 : : : : : : 拉 份 ^ >

— ^

8

CHAPTER 3. BALL DISCOVERY ALGORITHMS 26

Head Table ~n
一二一〉CO CO Step7:

1 广 A d d ball: {1,2 ,6 ,7}
十 : o

8

Head Table

" V I 乂 steps：
Adjust Tree to Keep CB-tree

2 Compact

士……:::::人

丄 一 一 〉 〈
8

Head Table _ -

2 -,-���Add ball: {1,4,6}

丄 ）

- - r � � A Z
丄 一 一 〉

8

CHAPTER 3. BALL DISCOVERY ALGORITHMS 27

Head Table 一-

" 7 1 SteplO:
- 一 C T O Add ball: {1,2,6,7,8}

M CO
Head Table >〔」）

1 [-'^：：：^^：^^、_ Stepll:
“ ~ _ Adjust Tree to Keep CB-tree

! Compact.

4 /

Head Table , 一 > ^ 0

Add ball: {1,2,5,6,7,8}
士〜� < L "--； 6 - - - … � � � ^ ^ — 入一 ：：: - > C o
ID � � � - < £)

Figure 3.6: The Construction Procedure of a CB-tree

CHAPTER 3. BALL DISCOVERY ALGORITHMS 28

^ © ^
ct) &CD O C D ®

Figure 3.7: Adjust CB-tree

Adjust is an important operation to keep the CB-tree compact
and complete. The procedure of adjust is shown in figure 3.7. Take
step 7 in Figure 3.6 as an example. First, we trace towards the root
of the CB-tree from the first point of the newly linked branch to find
the first node su the number of whose children is not 1. Here, si
is the node with label 2^. We then find the first common point on
the other children branches of Si depth-first strategy. We then lift
up the common point of both branches as a child of Si and unite the
children of the common point in both branches. This procedure is
repeated from the right most branch of the common point until there
is no common point shared by the two branches.

The algorithm is shown below. Here the initial input parameter
in this example is Si. The root is assumed to have n children.

In the above adjust algorithm, we choose the first common point
using a depth-first strategy. One may claim that the CB-tree could
be redundant. We discusses this using the example in Figure 3.8.

The current state of the CB-tree is shown at the top graph in the
figure. Suppose the next coming ball is {1, 2,4，7}，the ball will
then be added to the position shown in the middle graph based on
our algorithm. But notice that the right most branches of node 1 is
B\ — {1, 2, 7} which is a subset of the path point set {1,4，2，7: •
Thus B\ should be removed. But the adjust algorithm cannot do
this. We import a new operation called doseset to check if there are
some branches which are the subset of other branches and remove

2We simply use the point contained by the node as the label.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 29

Algorithm 3 Adjust- CB-tree(root)
1： for (each child Sk of root) and {k\ = n) do
2： pos = root Sk\
3： if Branch pos and root Sn have common point p then
4： foundl = pointer of p on branch pos;
5： found2 = pointer of p on branch root Sk\
6： break;
7： end if
8： end for
9: Heighten foundl to be a child of root,

10： Heighten found2 to be a child of root,
11： Link the children of found2 to foundl, if any;
12： delete f ound2;

Head Table

— …一 ‘ ： 二 - K L O C O
-1— •y>C 3 J C 2 J) C 7 J) ^ Add ball: {1,2,4,7}

7 [Head Table

ii……"…:::::::>态

Figure 3.8: An example of the redundancy of a CB-tree

CHAPTER 3. BALL DISCOVERY ALGORITHMS 30

Head Table - > (^ 0

Add ball: { 1,2,4,7} 段：：：：：：：二-^^^^"^^^
to all possible

丄 … ® CD
Head Table ' - • ' " ' ^ C O 4 ~ ~

^ ― 一 一 一 …

丄 … 、 T O C o
4 Head Table ,

Close^J^^ TO

3 : ^ ^
Figure 3.9: How to do Closeset to remove redundancy

them in time.
The reason why such kind of redundancy occur is that the ball

:1，2,4，7} can be partial mapped to the path (1,4,2) or (1,2，7).
But our algorithm simply chooses the first one encountered from
left to right and ignore the other. Figure 3.9 shows the solution to
this problem.

When adding the ball to the tree, instead of just adding the ball
to the first mapping position, we add the ball to all possible posi-
tions and if the paths from root to leaves of the newly added point
branches are the same, then we just keep one and remove the others.
The procedure of building a CB-tree with the operation closeset is
given in Algorithm 4. The parameter root is the root of the CB-tree
and B is the current ball.

CHAPTER 3. BALL DISCOVERY ALGORITHMS 31

Algorithm 4 Build-CB-tree-Closeset{root, B)
1: i = 0; “
2： for each possible mapping of part of prefix of a path do
3: i +
4： Link the remaining part of B to the last point of the prefix;
5： Pi = the bottom point of the newly added branch;
6： end for
7： for A; = 2 to i do
8： if (path set f rom pk to root) == (path set f rom pi to root) then
9： Delete the newly added branch ends at pk ；

10： end if
11： end for
12： Adjust the remain of the newly added branches
13： Repair head table;

3.2.3 Algorithm of Finding Balls Using RP-tree and CB-tree
Following, we present the whole algorithm for finding balls using
RP-tree and CB-tree.

The function search-CB-tree is used to see whether the given data
set is a ball. It is similar to the function Mapping-RP-tree. We skip
it here for brevity.

3.3 Ball Discovery in Large Point Sets
We have developed the ball discovery algorithm for small point sets
in the last section. We transfer our attention to large point sets. The
radius of a large point set is much large than the previously defined
range r. For large point set, the algorithm 5 in the section 3.2.3 will
not work well due to the vary large search space.

3.3.1 Candidate Sets of Balls
In order to find all top-fc frequent balls in large point sets, a better
way is to generate some small candidate sets which are larger than
the final balls then find the frequent balls in them. Such candidate

CHAPTER 3. BALL DISCOVERY ALGORITHMS 32

Algorithm 5 Find-All-Ball-Small{S, r)
1： \f search-CB-tree{S) then
2： return;
3： end if
4: minihall{S)\
5： r' = radius{S);
6： let P 二 boundary {S) be a set of points on the spherical surface of the mini-

mum enclosed ball with a radius r';
7: ifr'<r then
8： Link boundary {S) to RP-tree;
9： Build-CB-tree-Closeset(CBtree -)• root, S);

10： else 11： fo rpePdo
12： if Search-RP-tree{P \ {p}, root) then
13： return;
14： else
15： Link point p to the RP-tree;
16： Find — All - Ball — Small{P \ {p}, r);
17： end if
18： end for
19: end if

CHAPTER 3. BALL DISCOVERY ALGORITHMS 33

must be sufficiently small so that the ball discovery algorithm on
small data set is applicable. In this subsection, we propose a way to
identify the candidate sets. Once the candidate sets are generated,
one can apply Algorithm 5 to find all frequent balls.

By the definition of a ball, if Si and Sj are two points in the same
ball of range r, they must satisfy the condition that d�Si, Sj) < 2r.
Based on that, we define candidate sets as follows:
Definition 3. Candidate Set Given a set of m-dimensional data
points S (C I?爪)and a range r of real number, A candidate set’
Diy is a subset of the given set of m-dimensional data points S such
that for Sj and Sk {j + k) in D，d{sj, Sk) < 2r, where � 1 .
Definition 4. Maximal Candidate Set A candidate set Di is max-
imal if there does not exist another candidate set Dj which contain
Di，i.e. Di C Dj.

We use the symbol Di to refer to both a candidate set and a max-
imal candidate set, and from now on Di is refer to a maximal can-
didate expect for special indication. We will find balls only in such
maximal candidate sets, because if we find all maximal balls of a
maximal candidate set, then maximal balls of any candidate subsets
of the maximal candidate set will also be found. Recall that a maxi-
mal ball is a ball whose radius r' cannot be smaller than or equal to
r if any data point Si e S is added to the ball.

There is a set of maximal candidate sets V = {Di, D2,... } in
some S (C R爪).Note that Di f] Dj ^ 0 is possible. The top-
k frequent balls can only be determined from these candidate sets,
because there does not exist any of top-fc balls that is not in a subset
of certain maximal candidate set Di.
Proof, Ball{c) = {si, ...5^}今 Ball{c) satisfies the condition that
for any sj.sk G Ball{c)J + k,d[Sj,Sk�<2r^ Ball{c) C Di C
Dj, here Di is a candidate set and Dj is a maximal candidate set. •

CHAPTER 3. BALL DISCOVERY ALGORITHMS 34

But, it does not necessarily mean that a ball with a radius r can
enclose all data points in Di which has a diameter of 2r. Figure 3.10
shows an example of 3 points, 51,52 and 53 in the 2-dimensional
plane. The distance between any two of the three points in the figure
is 2r. Since the distance of any Si to the center o of the smallest ball
enclosing all three points is (V3 - l)r which is greater than r, there
is no ball with radius of r which can enclose all the 3 points.

z … � - T -
Z T 1

/ /丨N^ 、巧 • • # I / ： >•
\ / . • 森 /

� � / / “

s；^：：—………、 . 2r .
Figure 3.10: Relationship between a ball and a candidate set

The problem of finding candidate sets can be solved using the A-
priori property. If there is a candidate subset D, in which there exist
d{si, Sj) > 2r for any Sj G A , then any of its superset D” of D'
(i . e . � D ') cannot be a candidate set. The problem here is to find all
maximal candidate sets that are not included in any other candidate
sets. In a similar way, maximum frequent itemsets in data mining
can be found as follows.

First, let's build a transaction file. Each line of the file is a trans-
action Ti including a set of points, {sj | d�Sj, Si) < 2r}, for a given
data point Suppose that there are n data points in S. And n such
transactions in the file. Apparently, if the point Si appears at the line
of Sj, then sj must appear at the line of Si. Second, conduct frequent
itemsets mining on a condition such that the absolute support of a
frequent itemset is equal to the size (i.e. number of points) of the

CHAPTER 3. BALL DISCOVERY ALGORITHMS 35

itemset, in order to ensure that all data points in the set are within 2r
distance with any others. Such frequent items are just the maximal
candidate set we want.

A major drawback of this solution is efficiency, especially when
the set of S is dense. This is equivalent to a transaction containing
too many items (points). All these items could not be pruned as
much as expected in frequent itemsets mining where the support is
large to prune most items.

In this paper, we propose a graph based solution. First, we con-
struct an undirected node-label connected graph, G(V, E), based on
the given set of data points, S, Here, V = S, and E C V x V
such that (vi,vj) e E if d(vi,vj) < 2r. The distance, d(vi,vj), is
the edge label of (vi, vj). Second, the candidate sets can be found
by finding all cliques. Recall a clique in a graph is a maximal com-
plete subgraph. We use the algorithm in Appendix A. 1.2 to find all
cliques of an undirected graph.

3.3.2 A Divide-and-Conquer Algorithm
Usually, we need not generate candidate sets from the complete
point set because the algorithm of finding all cliques requires to con-
struct a connected matrix of all vertices. If the size of the complete
point set is large, such matrix would also be very large. Another
reason is that the size of the candidate sets or the balls to be found
are small though the size of the given point set S in R爪 is large,

For any point Si G S, the possible candidate sets or balls that
include Si must be a subset of the set “ Sj) < 2r}. Based
on this observation, we proposed the divide-and-conquer strategy
(see Algorithm 6). Algorithm 6 presents the entire ball discovery
algorithm.

In each loop from line 2, we attempt to find all balls of the can-
didate set Si smaller than S, where Si C S and Si = {sj\d{si, sj) <
2r}. Since r is a small number, the size of is much smaller than

CHAPTER 3. BALL DISCOVERY ALGORITHMS 36

Algorithm 6 Finding-All-Ball(^S, r)
1： F = 0; “
2： for Sj G <S do
3: Si = {si}\
4: F = F + {si};
5： for Sj e { S \F) do
6: if d{si, Sj) < 2R then
7： Si = Si + {ŝ };
8： end if
9: end for

10： Construct connected graph G of Sf,
11 ： Find all cliques C of graph G;
12： for Ci eC do
13： Find-all-ball-small{ci) ； // Algorithm 5
14： end for
15： end for

the original set S. While each clique will be even smaller than 5-,
we can run our finding algorithm of small set to find the balls.

Note that all cliques q in C contain the point si. That's why in the
output list of balls in Section 3.2.2, each ball contains point 1. We
add the constrain that the balls found must contain si. This constrain
is to ensure that Algorithm 6 does not miss any Ball{c) in the input
point set. Below is the proof.
Proof. Suppose we can order the input points in S as Si, ...Sn,
where n is the size of <S. In each loop from line 2 of Algorithm 6
select point Si, which is the first point in the remaining point set. If
Ball{c) is a ball of <S and Sk is the first point in Bailee), then Ball{c)
will output in the loop which selects Sk. •

One improvement over Algorithm 6 is to construct the RP-tree
and CB-tree for each si before line 12 instead of constructing them
infind-all-ball-small(). This is because the balls around Si may share
many common points. Another improvement is to search not only
the ball tree of Si in find-all-ball-small(), but the ball trees of Sk, Sk G
Si in each loop also. In this way the search space can be better

CHAPTER 3. BALL DISCOVERY ALGORITHMS 37

pruned.

3.4 Heuristic Greedy Algorithms for Ball Discovery
Algorithm 6 is an algorithm, which provide an exact solution set to
our ball discovery problem. It works well when the point set is large
but not huge and the range r is small. We propose two heuristic
greedy algorithms to improve the efficiency of ball finding. Our
goal is to replace find-all-ball-small() in Algorithm 6 in order to
cope with large point sets.

3.4.1 A Heuristic Greedy Algorithm
Algorithm 7 shows the heuristic greedy algorithm. The algorithm
repeatedly removes one point or some points from the boundary set
of the smallest enclosed ball of the current point set until the radius
of the smallest enclosed ball is smaller than or equal to r.
Algorithm 7 HG-Ball-l{V, r)

1: B = 0;
2： for each Di e T> do
3： miniball (Di)',
4： r' = radius{Di)\
5: P = boundary {Dj)\
6： while r' > r do
7： remove one point or some points in P\
8： end while
9: B = B U Di;

10： end for
11： return B \

There are several ways to remove points on the spherical surface
of the smallest enclosed ball:

1. Remove all points on the spherical surface of the ball. This
strategy is fast and will stop after only a few loops. This strat-

CHAPTER 3. BALL DISCOVERY ALGORITHMS 38

egy is fast but shrinks the radius too much. Many points will
be missed while they should be enclosed in the ball.

2. Remove the point on the spherical surface which is the furthest
to the mean vector of A- Removing the furthest point in P to
the mean vector of Di makes sense because since the points in
a ball will cover most points of the small set, the mean vector
of the current set tend to be near to the ball. Thus we could
remove the furthest point to the mean to make the mean vector
nearer to the ball until the radius{Di) < r.

3. Remove the point on the spherical surface which is furthest to
Si when HG-Ball-1() is embedded in Algorithm 6 to substitute
find-all-ball-small(). This strategy works with large point sets
and we will not miss interesting balls that contain Si. Here Si is
the point in algorithm 6 at line 2. Since in each candidate set,
we could only find one ball using Heuristic greedy algorithms.
The strategy guarantee that for any point Si in the large point
set, if there exist a ball{c), si G ball{c), the greedy algorithm
will output a ball{c') and Si G bailee,) and hall{c!) is similar to
hall{c).

Algorithm 7 always tries to remove points on the spherical sur-
face of the ball of a radius r' until r' < r. It may not find the exact
answer as shown below in Figure 3.11. We take strategy 1 as an ex-
ample. Suppose that there is a Di with all data points in Figure 3.11
with a radius r' (> r) which is the largest circle. Suppose that we re-
move the three points, S2 and 53, on the circumference. The ball
to be found with a r ' < r can be the smaller dot circle. But, the true
ball should be the solid circle including 5i on the circumference.

3.4.2 Another Heuristic Greedy Algorithm
Another greedy algorithm is shown in Algorithm 8. The idea of
the heuristic greedy algorithm comes from the fc-mean clustering

CHAPTER 3. BALL DISCOVERY ALGORITHMS 39

\ s • / \ —一，
、、一為-i

Figure 3.11: Removing points

method. At each loop, we find balls by choosing all points whose
distances to the mean of the current point set are smaller than or
equal to r. We then calculate the mean of the new ball and repeat
such procedure until the points in the ball are not changed again.
Algorithm 8 HG-Ball-2{V, r)

1： calculate the mean m o f V ;
2： D = {dk\d{dk,m) <r,dke V}\
3： repeat
4: D' = D\
5: calculate the mean m of D\
6: D = {dk\d{dk, m) <r,dk^ V}\
7： until D = D'\
8： return D\

• End of chapter.

Chapter 4
Evaluations
In this chapter, we study the performance of the proposed algorithms
and evaluate the quality of the balls (patterns) discovered.

All the experiments are performed on a Pentium 2.8GHz PC with
1GB ram, running on Microsoft Windows XP. All the programs are
written in standard C++ and compiled by Microsoft Visual C++.net.

We report our experimental results on time series data sets of dif-
ferent length, which are all stock price series. As mentioned before,
in the stock price series, people are interested in the patterns of the
prices of a stock that is often selected from the frequent occurring
subsequences of the time series. We will see in the following that
the algorithms are trying to find such time series patterns.

We use real price series of three stocks, (a) One small time se-
ries from the daily closed prices of HSBC in the Hong Kong Stock
Exchange from 2001 to 2002. It comprises of about 500 points, (b)
Two large data sets consisting of about 12500 points. They are the
tick by tick prices of IBM and Microsoft in the New York Stock Ex-
change also from 2001 to 2002. All the time series are normalized
before evaluation.

We transform a time series of length n into n — m + 1 sub-
sequences of length m using sliding window. Each subsequence
of length m can be projected to a point in a m-dimensional Eu-
clidean space. We use these time series subsequences to evaluate
the proposed ball discovery algorithms. In the experiments, the sub-

40

CHAPTER 4. EVALUATIONS 41

sequence length m and radius r of the balls are pre-defined. For
data set (a), we conduct experiments when m is set to 16, 32 and
48. For data set (b), m is set to 32，64 and 128. The pre-defined r
is different for different data set and different m. We ran our algo-
rithms in a range of r incrementally and chose the representatives as
shown in the figures. In real applications, the value of r could be
decided by the following strategy. Choose ten sets of similar points
from the given data set S artificially, and use the average radius of
the smallest enclosed ball of these point sets as the proper r for 5.

We investigated the following six algorithms: the exact ball dis-
covery algorithm introduced in Section 3.3.2, HG-Mean, HG-Current,
HG-All, HG-Direct and r-center. HG-Mean, HG-Current and HG-
All are Algorithm 6 embedded with Algorithm 7 by substituting力
all-ball-small() with different point removal strategies (See page37
for detail.). HG-Mean removes the point on the spherical surface
which is the furthest to the mean vector. HG-Current removes the
point on the spherical surface that is furthest to Si which is the se-
lected point at line 2 of Algorithm 6. HG-All removes all points on
the spherical surface of the ball. HG-Direct is Algorithm 6 using
Algorithm 8 as a substitute of find-all-ball-small().

r-center is the algorithm that computes the number of points within
a range of radius r of every existing data point and choose the one
with the largest number as the first ball. Here the center point of
the balls found by r-center is in the given data set. Algorithm 9 is
r-center algorithm for finding the first ball of a given data set S with
a pre-defined radius r.

For each stock price series and every possible value of m, we
measure the following values.

1. The count of the first ball found by the above six algorithms.
Here the count of a ball is the number of points in it. Recall
that balls are previously unknown frequent occurring patterns.
If the count of a ball is large, that means the pattern are more
frequent.

CHAPTER 4. EVALUATIONS 42

Algorithm 9 r-center{S, r)
1： ball = 0;
2： best-ball-count = 0;
3： for each Si e S do
4: count = 0;
5： ball-SO _ far = 0;
6： for Sj gS , Sj + Si do
7： if d{si,sj) < r then
8: count = count + 1;
9: ball _so_ far = Sj\

10： end if
11： end for
12： if count > best ball cOunt then
13： best-ball-count = count;
14： ball 二 ball-SO-far',
15： end if
16： end for

2. The mean vector of a ball is the mean of all point vector in the
ball. Suppose M represents the mean vector of the first ball,
O represents the center point of the first ball and C represents
the count of the first ball. We use the value of the following
equation to measure whether the ball is meaningful. We expect
the count of a ball is as large as possible and the density of
points in a ball is uniform at the mean while. d{M, O) is to
measure whether the density of the points in a ball is uniform.
The distance between M and O would be small, if the density
of a ball is uniform. If most points in a ball are gathered in a
local area of the ball, the distance would be large, which means
the ball is not a real pattern in fact. So a ball of smaller value
of meaning fulness is more meaningful than one of a larger
value.

meaning fulness = d(M, 0)/{C — 1) C > 1.
Here d{M, O) is the Euclidean distance between M and O.

CHAPTER 4. EVALUATIONS 43

3. The CPU time of finding all balls of the exact algorithm and
the five heuristic greedy algorithms with different radius r.

Figure 4.1 to 4.9 shows the experiment results.
Figure 4.1 shows the experiment results of HSBC stock price se-

ries when the length of subsequences is 16 with different radius r
incrementally.

Figure 4.1(a) shows the count of the first ball found by the above
six algorithms. The Y-axis is the count and the X-axis is radius r. We
expect the count to be as large as possible within a given r. As we
can see that the tradition method r-center is not good for the count
of its first ball is much smaller than other algorithms. That means
r-center fails to find some frequent patterns in the data set. HG-
Mean is a good heuristic algorithm for the count of its first ball is
always equal to the count of the exact algorithm. The performance
of other heuristic algorithms are only a little worse than HG-Man
some times. The performance of HG-Direct is worst in heuristic
greedy algorithms, but still better then r-center.

Figure 4.1(b) shows the value of meaning fulness of the first
ball found by the exact algorithm and r-center respectively. The Y-
axis is the value and the X-axis is radius r. In Figure 4.1(b), as we
can see that the value of the exact algorithm is much smaller than
r-center. That means the first ball found by the exact algorithm is
more meaningful than the one found by r-center. There is no points
of r-center when r < 0.18 is because that the algorithm of r-center
cannot find a ball under this condition (The count of its first ball is
equal to 1).

Figure 4.1(c) shows the CPU time of the exact algorithm. The
Y-axis is the CPU time and the X-axis is radius r. The CPU time
increases fast after certain value of radius r. This is because that the
radius r is larger than the radius of real patterns. In such situation,
there are too many balls in the data set, so the computational time is
long.

CHAPTER 4. EVALUATIONS 44

The Count of the First Ball

16 广 -••• I-.".",
Exact jx

14 -令 r-center J ,
— 1 2 - + HG-Mean j t ^ p
§10 --^HG-Current /
5 8 一令 HG-AII /

2 ir 0 ^
0.1 0.12 0.14 0.16 0.18 0.2 0.22 r

(a) The Count of the First Balls
Distance(Mean Vector, Center Point)/(CounM) The CPU Time of the Exact Algorithm

0 . 0 4 5 ^ : : : : : : :…………： ； ^ 7 0

0.04 H - E x a c t \ I 60 - J - E x a c t ； g}0.035 胞ri v- O 二 L g 0.03 g 50 /
1 0 . 0 2 5 思 4 0 / c 0.02 I 30 /
§0.015 — F 20 4 S 0.01 g 10 ^

0.005 ‘ • — > O 0

°0:1 0:;2 0:14 o'lB 0:;8 0:2 0̂22 0••‘ ^ 0.2 0.25
J：

(b) meaning fulness = d(M, 0) / (C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
0.7
0.6 —•HG-Mean ； 1

g 0 5 —令 HG-CurrentI l l
i l ^04 —寺hg-aii i I
！I ？ ^ H G - D i r e c t #

卜 0 1

0.1 0.15 0.2 0.25
r

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 45

Figure 4.1(d) shows the CPU time of the four heuristic greedy al-
gorithms which is dramatically faster than the exact algorithm. The
Y-axis is the CPU time and the X-axis is radius r. But one thing
need to be noticed is that the heuristic greedy algorithm only finds
one ball of each candidate set while the exact algorithm finds all
possible balls. The CPU time of HG-Direct is almost linear but the
count of balls it found is less than other algorithms as can be seen
from Figure 4.1(a).

Figure 4.2 shows the experiment results of HK0005 stock price
series when the length of subsequences is 32 with different radius r
incrementally.

As we can see, r-center is still not good for the count of its first
ball is much smaller than ones of other algorithms and the value of
meaning fulness of its first ball is larger than the exact algorithm.

Figure 4.3 shows the experiment results of HK0005 stock price
series when the length of subsequences is 48.

In Figure 4.3(a), the count of first is not changed when radius r
larger than 0.45. We can treat 0.45 as a good choice of r in this data
set when length is 48.

CHAPTER 4. EVALUATIONS 46

The Count of the First Ball
16 ~ ； ：

Exact •\A _ i
r-center —12 -̂HG-Mean

5 8 -HG-AII '
® g .HG-Direct •^^^：：：：：：：^^^

2 ^^____一
0 ••一
0.2 0.25 0.3 0.35 0.4 r

(a) The Count of the First Balls
Distance(Mean Vector, Center Point)/(CounM) The CPU Time of the Exact Algorithm

0.08 100
0 . 0 7 . E x a c t I c o n 十E x a c t /

8 0.06 ~ — r-center i 8 /
10.05 -N：- I 60 j |>0.04 I 40 /
10 03 i=�„ /
10.02 —^ � 2 0 -f
0.01 ； 一 ' • …一 g 0 1 ° … „>. 0.2 0.25 0.3 0.35 0.4

0.2 0.25 0.3 0.35 0.4 ^
_r [

(b) meaningfulness = d{M,0)/{C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
0.6 I —
0.5 —-^HG-Mean 1 ^

g •HG-Cuirent }
p :g0.4 — ^ HG-AII I ^
p £ n-? _*HG-Di rec t I l i 7 7 OS0.2 f ^

、：b：：： , . . x �
0.2 0.25 0.3 0.35 0.4 r

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 47

The Count of the First Ball
10 r

9 • 赢 赢 塞 赢

8 Exact
—7 ^ -»-r-center
I 6 -^HG-Mean
。 5 ^ ^ ^ • • • M 麗 寺 HG-Current
I 4 < ^ ^ 今 HG-AII 3 ^ ^ -^HG-Direct 2 _ y Z

1 0
0.3 0.35 0.4 0.45 0.5 0.55 r

(a) The Count of the First Balls
Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0 . 0 7 ^ 1 0 0 - -• —1

0.06—.Exact 7 I -Exact f 1 10 -s»-r-center / g 80 1
8 0 . 0 5 … * 乂 8

10.04 呈 60 l°.03 , E 40 |0.02 V； ^ 20 1——
0.01 Q. J 0 - � 0 ——^—— ^

0 . 3 0 . 3 5 0 . 4 0 . 4 5 0.5 0.55 0 . 3 0 . 3 5 0 . 4 0 , 4 5 0 . 5 0 . 5 5 r [
(b) meaning fulness = d{M,0)/{C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
1.2 …厂‘"I "I I

• HG-Mean *
0 1 ~~>*" HG-Current /
1 ^ 0.8 —-HG-AII #
Ll "g -»^HG-Direct I

兰-0.4 份

卜 J
0 ：)(
0.3 0.35 0.4 ^ 0.45 0.5 0.55

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 48

Figure 4.4 to Figure 4.6 shows the experiment results of Mi-
crosoft stock price series when the length of subsequences is 32,
64 and 128 respectively with different radius r incrementally. The
results are similar to ones of the HK0005 stock price series.

As we can see in Figure 4.4(b), at r 二 0.03，the value of mean-
ingfulness of r-center is only a little smaller than the one of the exact
algorithm. It means in few circumstance that the quality of the first
ball of r-center could be as good as one of the exact algorithm.

Figure 4.7 to Figure 4.9 shows the experiment results of IBM
stock price series when the length of subsequences is 32, 64 and 128
respectively with different radius r incrementally. Once again we
see the similar results to the above two stock price series.

CHAPTER 4. EVALUATIONS 49

The Count of the First Ball
14 I —-1
12 ŷ ——

Exact
c l O y / ^ T-«Hr-center
o 8 y ^ ^ ^ HG-Mean ^ 6 -»̂ HG-Current
£ J^ -*-HG-AII

4 • " ^ • H G - D i r e c t
2
0 ：
0.02 0.025 0.03 0.035 0.04 0.045

r

(a) The Count of the First Balls
Dlstance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0 . 0 1 2 -j ；:::...: 丨 i 5 0 0

8 001 t ^ e r h 1 400 —Exact 广
I 0 厕 ^ ^ 31 3 0 0 1 /

I�厕 \ ： ： ^ ~ 1 200 1—

0.002 -̂―“ � g 0 , I
A
0 . 0 2 0 . 0 2 5 0 . 0 3 0 . 0 3 5 0 . 0 4 0 . 0 4 5 0 - 0 2 0 . 0 2 5 0 . 0 3 0 . 0 3 5 0 . 0 4 0 . 0 4 5 r

(b) meaning fulness = d{M, 0)/{C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms 2 "I
1.8 1

① 1.6 ——.HG-Mean 1——
E ^ 1 . 4 ——-«~HG-Current f -81.2 — — HG-AII f
g § 1 ——普 HG-Direct f
� 8 0 . 8 /
- 0 . 4 — # — — 0.2 ,

0 III sssssssssm. n 补）'I
0.02 0.025 0.03 ^ 0.035 0.04 0.045

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.4: Experiment Results of Microsoft stock price series (Length = 32)

CHAPTER 4. EVALUATIONS 50

The Count of the First Ball
18
16 ^
14 ——Exact

c 12 r-center
o 10 j t H G - M e a n
^ 8 -^HG-Current
jE 6 ^ ^ ^ ^ ^ ^^寺HG-A丨丨

4 ^ ！ -^HG-Direct

0 二
0.04 0.06 0.08 0.1 r

(a) The Count of the First Balls

Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0 . 0 1 4 -| ；••.：：：：；：：：；：：：：； — 6 0 0 -]

0.012 -.-Exact I \ 500 一 - E x a c t ! 1
« • r-centerj 一 、 ^
8 0.01 . 、 • ^ ^ ^ ^ E 名 4 0 0 j
i 。 _ 、 ^ o 300 1

I 。 厕 g \ 200 i
I 0.004 o 一— i
=0.002 ^ ^ — — 1 � � - y

0 L : : - 1 ^ 」 0 •
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.04 0.06 _ 0.08 0.1 r \

(b) meaning fulness = d{M,0)/{C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
2.5 I

HG-Mean
g 2 -i^HG-Current •
j | J + HG-A"
3 c"*-^ "^HG-Direct i

0 "酬誦丨|丨丨|丨I丨丨,丨⑴丨丨|I•丨丨|____丨__丨丨丨丨丨丨丨丨丨丨丨丨丨丨丨 “ 一 一 •

0.04 0.05 0.06 0.07 0.08 0.09 0.1

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.5: Experiment Results of Microsoft stock price series (Length = 64)

CHAPTER 4. EVALUATIONS 51

The Count of the First Ball 16 I "I
14 7 12 jfT -»- Eyact

Cin hb-r-center g " Z y HG-Mean
。 8 X ^ ^ -^HG-Current
jC 6 皿 運 雅 H G - A l l

4 ——^^；；：；：：：：：：：^；；；；；]^ 令 HG-Direct

0 ^ ^ ^ — ：

0.06 0.11 0.16 0.21 r
(a) The Count of the First Balls

Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0.03 i 500 t—
i ^ F v a r t 丨 "2 Exact

„0.025 ~ E x a c t g 400 — f
« i-w-r-center g / I 0.02 - I 300 f 10.015 ^ ^ i 200 1
I-： I 100 J

0 U 0
0.06 0.11 0.16 0.21 0.06 0.11 0.16 0.21 r [

(b) meaningfulness 二 d(i\^，0)/(C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
6 r ： 1 -̂ HG-Mean .

① 5 HG-Current t
I 它4 . - H G - A l l 1
^ -^HG-Direct / //
艺 3 2 / /

卜 1 ——
0 * 丨 ir****^ 0.06 0.11 0.16 0.21 r

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 52

The Count of the First Ball
14 12 k̂hk——

十 Exact
•£lO ^ ^ ^ 令 r-center
g 8 i-^HG-Mean
O fi I-̂ HG-Current £ -̂ HG-aii
卜 4 i-^HG-Dlrect 2

0 i ^
0.01 0.015 0.02 0.025 r

(a) The Count of the First Balls

Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0.0018 ！ i 250

. 卜 u � . = 1 1 - f 1 : f 15� j — — f 0.0008 t = = � 1 E 100 f
i 0.0006 卞 Exact i i t： 50 I i S 0.0004 Hn-r-centeri 1 = / 1 0.0002 - ‘ i o 0 ： f i

二 — — ^ 0:— 0:2 0.01 0.015 0.02 0.025 V [
(b) meaning fulness 二 d (M ’ 0) / (C - 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
1.2 I ::

1 -̂ HG-Mean
0) 令 HG-Current ^
I -<^0.8 — ^ HG-All fe
3 c 普 HG-Direct / & 8 0.6 j ^
0 lo.4 — ^

0.01 0.012 0.014 0.016 0.018 0.02 0.022

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.7: Experiment Results of IBM stock price series (Length = 32)

CHAPTER 4. EVALUATIONS 53

The Count of the First Ball
16
14 Z /
12 ^ ^ •Exac t

/ r-center §1� ^^^^^^^^.HG-Mean I
。 8 -*-HG-Current：
I 6 二寺H G - A I I

4 -•-HG-Direct
2 """"""""" 0 I
0.02 0.03 0.04 0.05 0.06 r

(a) The Count of the First Balls

Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0.012 2 0 0 r~
8 001 FExact j 0) - S T 150 —-Exact
I 0.008 i:«-r-centeri—— E -o

！0.006 ^ ^ ^ ^ I i 鄉 i

。•： ^ ^ ^ 圓 ： | 0 ^
0.02 0.03 0.04 0 . 0 5 0.06 0.02 0.03 0.p4 0.05 0.06

(b) meaning fulness 二 d(M,0�/(JJ 一 1) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms 1.2 p ； -1
；g -^HG-Mean f
g 1 —令 HG-Current̂ 7 § 0.8 ^
- -^HG-Direct / /
言 0.6 .. i ； 待

i o . j 产 =

i - L — — - ： ： ^ 1
0.02 0.03 0.04 0.05 0.06 r

(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 54

The Count of the First Ball
14 I

c ^ ^ +r-center
0 8 • HG-Mean
^ 6 *HG-Current
H a 寺 HG-AII

^ / -^HG-Direct

0 ：

0.04 0.05 0.06 0.07 0.08 r
(a) The Count of the First Balls

Distance(Mean Vector, Center Point)/(Count-1) The CPU Time of the Exact Algorithm

0.014 p- 140
0.012 ~ E x a c t] g ^ c 120 1 • Exact ̂

« 0 . 0 1 」 . r - c e n t e r j 1 § 100

I 0.008 ^ 8 0 f 0.006 I 60 -—-—Z^ZZZtZ
g jz 40 1 I 讀4 - 一 ~ ^ = 20 J 0.002 & 0 ^

° „ „ „ - nn 0.04 0.05 0.06 0.07 0.08
0.04 0.05 0.06 0.07 0.08 .

r I

(b) meaning fulness 二 d (M , 0) / (C - l) (c) The CPU Time of The Exact Algorithm
C > 1

The CPU Time of Heuristic Greedy Algoirthms
1.4
12」 " • " HG-Mean »

0) • HG-Cu rrent T 1 它 1 "l+HG-A" t
3 c 0.8 —^HG-Direct |

O §0.6 书 I - . 4
0 系 ” ”……」

0.04 0.05 0.06 0.07 0.08 r
(d) The CPU Time of Heuristic Greedy Algorithms

Figure 4.6: Experiment Results of Microsoft stock price series (Length = 128)

CHAPTER 4. EVALUATIONS 55

Below is an analysis of the top-k balls found by the following
four algorithms: Exact algorithm, HG-Mean, HG-Current and HG-
All Since it's obvious that the count of balls found by HG-Direct is
much smaller than other algorithms, we skipped it here. We choose
the stock of HSBC in Hong Kong Stock Market as an example. Here
length 二 16 and r 二 0.2. In the experiment, we found that the count
of the top seven balls found by the exact algorithm is 12 and from
the eighth ball, the count is smaller than 12，so we choose k = 7 for
the analysis.

Each table from Table 4.1 to Table 4.4 contains six columns:
Content of balls, C, r, Min., Max. and Avg.. The content of a ball
is the sequence number of all points in the ball where the sequence
number of a point is the start position of the subsequence in the orig-
inal time series. C is the total number of points in a ball, in other
words, the count of a ball, r is the actual radius of the ball. Min, is
the minimum distance between a point in a ball and the center point.
Max. is the maximum distance between them. It's obvious that r
is equal to Max., Avg. is the average distance between a point in
a ball and the center point. Smaller average distance means that the
points in a ball are closer to the center point.

Table 4.2 to Table 4.4 have two extra columns: recall and precision.
Each row in Table 4.2 to Table 4.4 is aligned to a row in Table 4.1
according their first column: Content of Balls. Suppose CBExact
is the column Content of Balls of a row A in Table 4.2 to Table 4.4
and CBHeuristic is the one of a row B in Table 4.1. A and B is
aligned if \CBExact 门 CBHeuristic\ is maximum. Then

„ CBExact n CBHeuristic] .. _ recall = (4.1) CBExact
CBExact n CBHeuristic\

厂 — = \CBHeurisUc\ � ^)
As we can see from the table 4.1, the count of the top seven balls

is 12 and they share part of their points.

CHAPTER 4. EVALUATIONS 56

Content of Balls _C r Min. Max. Avg.
147 148 149 150 320 321 322 374 375 470 471 4 7 2 1 2 0 . 1 9 9 5 2 1 0 . 1 7 3 1 8 7 0.199521 0.192137
147 148 149 319 320 321 322 323 373 374 470 471 12 0.199115 0.169821 0.199115 0.190499
148 149 150 151 320 321 322 323 374 375 471 472 12 0.199863 0.177048 0.199863 0.193953
148 149 150 320 321 322 323 374 375 470 471 472 12 0.199722 0.157453 0.199722 0.189658
148 149 150 320 321 322 323 373 374 375 470 471 12 0.198925 0.162921 0.198925 0.192065
148 149 150 319 320 321 322 323 373 374 470 471 12 0.198454 0.17453 0.198454 0.194198
148 149 150 151 321 322 323 375 376 471 472 473 12 0.19701 0.173611 0.19701 0.194915

Table 4.1: Top 7 Balls of the Exact Algorithm
Content of Balls C r ~ Min. Max. Avg. recall precision

147148149 319 320 321322 323 373 374 470 471 12 0.199115 0.169821 0.199115 0.190499 1 0
148 149 150 320 321 322 323 373 374 375 470 471 12 0.198925 0.162921 0.198925 0.19206 1 0

147 148 149150 320 321 322 323 374 470 471 11 0.196627 0.155546 0.196913 0.188528 0.83 0.91
147 148 319 320 321 322 373 374 375 470 471 11 0.196913 0.155546 0.196913 0.188528 0.83 0.91
148 149 150151 321 322 323 324 374 471472 11 0.198894 0.163601 0.198894 0.187942 0.83 0.91
148 149 319 320 321 322 323 373 374 470 471 11 0.19373 0.17065 0.19373 0.189872 0.92 1
148 319 320 321 322 372 373 374 375 470 471 11 0.198187 0.166973 0.198187 0.191099 0.83 0.91

Table 4.2: Top 7 Balls of Algorithm HG-Mean

Table 4.2 is the experiment result of HG-Mean algorithm. As we
can see that only the first two balls are in the top seven balls found
by the exact algorithm. The count of other balls is smaller than 12.

Table 4.3 and Table 4.4 shows the experiment results of HG-
Current and HG-All separately. Both of them fail to find a ball
whose count is equal to 12.

Content of Balls C r Min. Max. Avg. recall precision
148149150151 321 322 323 324 375 471472 U 0.199229 0.153394 0.199229 0.18873 083 091
148 319 320 321 322 372 373 374 375 470 471 11 0.198187 0.166973 0.198187 0.191099 0.83 0.91
149150151 152153 322 323 324 325 473 474 11 0.197976 0.159178 0.197976 0.188273 0.5 0.55
149150151 321 322 323 375 376 471472 473 11 0.196214 0.173435 0.196214 0.193242 0.92 0
150151 321 322 323 374 375 376 471472 473 11 0.199121 0.179541 0.199121 0.194328 0.83 0.91

141 142 143 267 268 269 270 315 316 317 10 0.198025 0.177274 0.198025 0.194415 0 0
146147 148 319 320 321 322 373 470 471 10 0.199938 0.170469 0.199938 0.191933 0.67 0.8

Table 4.3: Top 7 Balls of Algorithm HG-Current

Content of Balls C r Min. Max. Avg. recall precision
148 149150 320 321322 323 373 374 375 471 11 0.197434 0.159057 0.197434 0.189461 0.92 1
148 149150151 321 322 323 374 375 471472 11 0.197398 0.173511 0.197398 0.191148 0.92 1

141 142 143 267 268 269 270 315 316 317 10 0.198025 0.177274 0.198025 0.194415 0 0
147 148 319 320 321 322 373 374 470 471 10 0.190199 0.164218 0.190199 0.185061 0.83 1
147148 319 320 321 322 372 373 374 471 10 0.197762 0.170676 0.197762 0.19064 0.75 0.9
148 149 150151 321322 323 375 471473 10 0.194101 0.176548 0.194101 0.192092 0.83 1
149150151 321 322 323 374 375 471472 10 0.19453 0.177295 0.19453 0.18955 0.83 1

Table 4.4: Top 7 Balls of Algorithm HG-All

CHAPTER 4. EVALUATIONS 57

Longest, shortest and average time
70 "I 1

g 60 ~ Longest Time 1 |

§ 50 ——Shortest Time - 4 1
V 4 0 明 ? ： . 卫 ! I ! ， .) - i

岩 3 0 I p
3 20 i
Q.
。 1 0 i

0 一丨 • + i t + + 1j
5 7 9 1 1 1 2 1 4

Count

(a) Length = 1 6

Longest, shortest and average time
40 ； — 1 I

丨 i " 3 5 门 Longest Time | 1
o 30 - H Shortest Time i
o 25 h - Average Time — :: |

; 一 on ： _ — i « ^^ j| 15 ： 1
： 3 1 0 — 1 I Q. i i

o 5 - J 1 i

0 •• 餐 — r
3 7 9 10 11 I

Count (b) Length = 32

Longest, shortest and average time
2 5 ： — ；

«• Longest Time •a 20 ：~ Z. —
c Shortest Time
§ 15 -Average Time ； “ _ _ : S 0)
E 10

丨 h • 丨
:Q, 5 O +

+ T
0 :. 一..“.....•..”............串......+..””..—了 ^

5 7 9 1 0 1 2 1 4 ；

Count

(c) Length 二 48

Figure 4.10: The longest, shortest and average CPU time of the exact algorithm
on ten stock price series from Hong Kong Stock Exchange

CHAPTER 4. EVALUATIONS 58

Now, we choose ten stock price series from Hong Kong Stock
Exchange to evaluate the average CPU time of the exact algorithm.
Figure 4.10 shows the longest, shortest and average CPU time of
the exact algorithm of ten stock price series from Hong Kong Stock
Exchange. The Y-axis is the CPU time and the X-axis the count
of the first ball. For each value of the count, the figure shows the
longest and shortest CPU time of the exact algorithm at the two ends
of the vertical line separately. And the short horizontal line between
the two ends of the vertical line is the average CPU time of the exact
algorithm on the ten stock price series.

In general, we find that the count of balls found by the exact algo-
rithm is always larger than one found by r-center at the same length
m and radius r. The value of meaning fulness of the first ball
found by the exact algorithm is much smaller than the one found by
r-center, which means balls found by the exact algorithm are more
meaningful than ones found by r-center. The CPU time of the exact
algorithm will increase fast after certain value of radius r and this
value is the proper radius of the data set. The CPU time of heuristic
greedy algorithms is much smaller than one of the exact algorithm.
Among them, HG-Direct is almost linear though the count of its
balls is not as large as other heuristic greedy algorithms (still better
than r-center).

Top- k ball analysis shows that the first few balls found by HG-
Mean is in the top-A; balls found by the exact algorithm. But HG-
Mean fails to find all possible top-fc balls as the exact algorithm does.
Other heuristic algorithms HG-Current and HG-All fail to find even
one top-fc ball found by the exact algorithm.

• End of chapter.

Chapter 5
Discussion
In this section, we discuss several issues related to further improve-
ments of the performance of our ball discovery algorithms.

5.1 Order and Index the Points
In Section 3.3.2, for ensuring algorithm 6 not to miss any ball, we
assumed that we could order the input points. We now propose a
method to order the points based on the density of the points. At line
7 of Algorithm 6，we compute the neighbors of Si within a range R.
We can based on the number of neighbors to order the points from
large to small. This idea is based on the observation that balls are
more likely to be generated from high density neighborhood.

5.2 Incremental Points Update
Point set may be changed for time to time, and our divide-and-
conquer algorithm is stable for the update of data points. If a point
Si is removed from the data set, just remove it from the CB-tree and
link the children of Si to its parent then do the operation adjust and
closeset to keep the CB-tree compact and complete. If a point sj is
added to the data set, what we need to do is just recalculate point Sk
if d{sj, Sk) < r and update the CB-tree.

59

CHAPTER 5. DISCUSSION 60

5.3 Smallest Enclosed Ball Algorithm
We have mentioned in the dissertation that the algorithm of smallest
enclosed ball works well in low dimensions. In fact, there is some
other algorithms that can compute the smallest enclosed ball fast
almost in the arbitrary dimensions. If one really needs to calculate
the top-fc balls in a very high dimensional space, he could refer to
the high dimensional miniball algorithm.

• End of chapter.

Chapter 6
Conclusion and Future Research
The problem we study in this dissertation is to find frequent occur-
ring previously unknown patterns which are sets of high-dimensional
data points in a Euclidean space. We attempt to find k distinctive
balls that contain the largest numbers of data points in a given data
set.

We proposed several solutions for the ball discovery problem in-
cluding an exact solution and several approximate solutions. Two
new pruning techniques implemented in novel tree-structures with
help of indexing are also presented to speed up the exact solution.
This ensures that our exact algorithm could finish in a reasonable
time.

From the experiments, as we can see that the balls found by our
exact algorithm is more dense than the one found by the traditional
method r-center. Sometimes, the traditional method even cannot
find a single ball of a given data set with a pre-defined r. Heuris-
tic Greedy algorithms give good approximate answers which are
still better then r-center. Thus in really large data set, the heuris-
tic greedy algorithms are good choices, among which, HG-Mean
performs best.

There are several directions in which we intend to extend this
work.

• Our ball discovery algorithm is a top-down algorithm because it

61

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 62

repeats removing points on the boundary set. Could a bottom-
up algorithm solve this problem better?

• We only considered the problem of speeding up main memory
search. If the data set are really huge, disk-based techniques
are highly desirable.

• Our ball discovery algorithm utilizes the Euclidean metric and
may be modified to use the Minkowski metric. However, there
are some other similarity measures proposed this year. This
encourages us to generalize our work.

• End of chapter.

Appendix A
Appendix
A.l Fundamental Algorithms
In this section, we will briefly review two basic building tool for
our ifc-ball discovery algorithm in high dimensions: the algorithm of
computing smallest enclosed ball of a point set in Euclidean space
and the algorithm of finding all cliques in an undirected graph. Our
algorithm uses these two algorithms to solve the fc-ball problem.
The aim to introduce these two algorithms here is to make the A>ball
discovery algorithm completed in detail.

A.1.1 Computing Smallest Enclosed Ball of a Point Set in Eu-
clidean Space

The smallest enclosed ball is the ball that contain the give point
set m-dimensional Euclidean space when the radius of such ball is
smallest. The algorithm to computing smallest enclosed ball is first
introduced at [26] which adopt a move-to-front strategy to speed the
algorithm. Beme Gatner implement a slightly modified algorithm in
C++ based on his paper [12].

Let S = 5i, is a point set of size n in R爪 Euclidean space
and MB{S) denote the ball of the smallest radius that contain S.
MB{S) is unique. For 5, S C i?^ and 5 H 5 二，let MD{S, B)
be the smallest ball that contains S and has all points of B on its

63

APPENDIX A. APPENDIX 64

boundary. Then we have MB{S) = MD{S, 0), and if MD{S, B)
exists, it is unique, too. Finally, define CB{B) = MD((D, B) to be
the smallest ball wit all points of B on the boundary^. Algorithm 10
is procedure of computing a smallest enclosed ball of point set 5.
Algorithm 10 miniball{Sn, B)

1： compute a random permutation of Sn = { s i , S n) of
2： mb = CB{B)
3： if 二 m + 1 then
4： return;
5： end if
6： for z = 1 to n do
7： if Pi ^ mb then
8： mb = miniballijSi一 1, B U { s j }) ;
9: move Si to the front of Sn\

10： end if
11： end for

The algorithm miniball compute the smallest enclosed ball in
following a strategy: if a point Si is not in the current ball mb, then
it must line on the boundary of the point set {si} U mb. By iterating
such process from an empty set, we finally got the boundary point
set B of the input point set S, then CB{B) is the smallest enclosed
ball of S.

miniball is a randomized algorithm because at the beginning,
we first randomized the point list Sn. At line 7，the worst case is
that in pi is not a boundary point of MB(JS), in this case, we will
call CB{B) many times while the procedure CB{B) is a linear pro-
gramming algorithm^.

One simple but important technique to speed the algorithm is to
select the 'important' point to test instead of the straight forward at
line 6. We want to end the iteration as soon as possible, so we expect
the boundary points of MB{Sn) come as early as possible to reduce
the times of calling CB{B), Such important points is the furthest

^CB{B) may not exists for some B
2The procedure to computer CB{B) is omitted here for brief. One can refer to [26] for details.

APPENDIX A. APPENDIX 65

point to the center of MB(jSn).
In our experiment part, we slightly modify Gatner's implemen-

tation code for the smallest enclosed ball algorithm which is writ-
ten in C++ to make fit for our algorithm. The author claim that
it only works well at dimension d < 20 and will expect a severe
performance dropoff when come to higher dimension. From our ex-
periments, we found it's true for random large point set. But one
interesting finding from both theory and experiments is that when
the number of input points is not very large, the algorithm is fast
enough to calculation the smallest enclosed ball of the small point
set in time. In fc-ball problem, the previous given range r is a small
number compared to the diameter of the whole input point set, so
the number points in each of the final top-fc ball could not be very
large.

A.1.2 Finding All Cliques of an Undirected Graph
A clique in a graph is a complete subgraph in which any two of
vertices are connected by an edge. A maximal clique is a clique
that is not contained in any other clique. In our fc-ball discovery
algorithm, we adopt the cliques finding algorithm in [3]. Almost all
the newer algorithms are a modified version of the origin algorithm
in [3] with some optimal techniques.

The algorithm in [3] is mainly dealing three sets of vertices. One
is the set compsub which is the set to be extended by a new point
or shrunk by one point on traveling along a branch of the backtrack-
ing tree. Another is the set candidates is the set of all points that
will in due time serve as an extension to the present configuration of
compsub. The last is the set not is the set of all points that have at
an earlier stage already served as an extension of the present config-
uration of compsub and are now explicitly excluded. The the basic
idea of the algorithm is show below:
1) Select a candidate;

APPENDIX A. APPENDIX 66

2) Adding the selected candidate to compsub;
3) Creating new sets candidates and not from the old sets by re-
moving all points not connected to the selected candidate (to retain
consistent with the definition), keeping the old sets in tact;
4) Calling the extension operator to operate on the sets just formed;
5) Upon return, removal of the selected candidate from compsub
and its addition to the old set not.

Some technique another fast version algorithm by slightly modi-
fying the above algorithm. At the first step of selecting a candidate,
instead of selecting a random vertex, they select the vertex whose
count is lowest. Here count is the number of candidates that this
vertex is not connected to.

This is an old algorithm but still works well in small data set and
the use of it in our algorithm will come clear in Section 3.3.

A.2 An Example of a Small Data Set
The data used in the construction example of CB-tree in section 3.2.3
is a real world data from a time series. Each point is a 32 dimen-
sional vector in the Euclidean space. We list the data point below
one by one for references.

Point 1: (0.0566, 0，0.0283，-0.1274, -0.1274, -0.0991，-0.2406,-
0.3113，-0.2123, -0.2547，-0.1698，-0.2406, -0.1698，-0.1415，-0.1698，
-0.2972, -0.1981，-0.184，-0.1981，-0.0566，0.0142，-0.1274, -0.0566，
0.1981，0.2406，0.1132，0.184,0.1557,0.1557，0.2264，0.3396，0.1132)

Point 2: (0，0.0283, -0.1274，-0.1274, -0.0991，-0.2406, -0.3113，-
0.2123, -0.2547, -0.1698，-0.2406, -0.1698, -0.1415，-0.1698，-0.2972,
-0.1981，-0.184，-0.1981，-0.0566，0.0142, -0.1274, -0.0566,0.1981，
0.2406，0.1132，0.184，0.1557,0.1557，0.2264,0.3396，0.1132,0.0283)

Point 3: (0.0283，-0.1274, -0.1274，-0.0991, -0.2406，-0.3113，-

APPENDIX A. APPENDIX 67

0.2123, -0.2547，-0.1698，-0.2406，-0.1698, -0.1415, -0.1698，-0.2972，

-0.1981，-0.184，-0.1981’ -0.0566，0.0142，-0.1274, -0.0566，0.1981，

0.2406,0.1132,0.184，0.1557，0.1557，0.2264，0.3396，0.1132，0.0283，

0.184)
Point 4: (-0.1274，-0.1274, -0.0991, -0.2406, -0.3113, -0.2123，-

0.2547，-0.1698，-0.2406，-0.1698，-0.1415’ -0.1698，-0.2972, -0.1981，

-0.184，-0.1981，-0.0566，0.0142, -0.1274，-0.0566，0.1981，0.2406，

0.1132,0.184，0.1557，0.1557，0.2264，0.3396，0.1132，0.0283,0.184，

0.1274)
Point 5: (0.0283, -0.1274, -0.1274, -0.0991，-0.2406, -0.3113，-

0.2123, -0.2547, -0.1698，-0.2406, -0.1698, -0.1415，-0.1698, -0.2972,

-0.1981, -0.184, -0.1981, -0.0566, 0.0142, -0.1274, -0.0566，0.1981,

0.2406,0.1132,0.184，0.1557,0.1557，0.2264,0.3396，0.1132,0.0283,
0.184)

Point 6: (-0.1274, -0.1274, -0.0991，-0.2406，-0.3113, -0.2123,-
0.2547, -0.1698，-0.2406, -0.1698，-0.1415, -0.1698，-0.2972, -0.1981，

-0.184，-0.1981，-0.0566，0.0142, -0.1274, -0.0566，0.1981, 0.2406,

0.1132,0.184，0.1557，0.1557,0.2264,0.3396，0.1132,0.0283,0.184，

0.1274)
Point 7: (-0.1274, -0.0991, -0.2406，-0.3113, -0.2123, -0.2547,-

0.1698，-0.2406，-0.1698，-0.1415，-0.1698，-0.2972，-0.1981，-0.184，

-0.1981，-0.0566，0.0142, -0.1274，-0.0566，0.1981，0.2406，0.1132，

0.184，0.1557，0.1557,0.2264,0.3396，0.1132,0.0283,0.184，0.1274，

0.1557)
Point 8: (-0.0991, -0.2406，-0.3113，-0.2123, -0.2547, -0.1698,-

0.2406，-0.1698，-0.1415，-0.1698，-0.2972, -0.1981, -0.184，-0.1981,
-0.0566，0.0142，-0.1274, -0.0566，0.1981, 0.2406, 0.1132，0.184，
0.1557，0.1557,0.2264,0.3396，0.1132,0.0283，0.184，0.1274,0.1557，

APPENDIX A. APPENDIX 68

0.1415)

• End of chapter.

Bibliography
[1] p. K. Agarwal and C. M. Procopiuc. Exact and approximation

algorithms for clustering (extended abstract). In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 658-667, San Francisco, California, USA, 1998.

[2] J. Bar-Ilan, G. Kortzars，and D. Peleg. How to allocate network
centers. Journal of Algorithms, 15(3):385-415, 1993.

[3] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of
an undirected graph. Communications of the ACM, 16(9):575-
577, September 1973.

[4] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incre-
mental clustering and dynamic information retrieval. In Pro-
ceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 626-635, El Paso, Texas, 1997.

[5] B. Chiu, E. Keogh，and S. Lonardi. Probabilistic discovery
of time series motifs. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining, (KDD’03), pages
493-498, Washington DC, USA, 2003.

[6] E. Cohen and H. Kaplan. Spatially-decaying aggregation over
a network: Model and algorithms. In Proceedings of the
2004 ACM SIGMOD Intl. Conf, on Management of Data (SIG-
MOD，04j, pages 707-718，Paris, France, 2004.

[7] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth.
Rule discovery from time series. In Proceeding of Knowledge

69

BIBLIOGRAPHY 70

Discovery and Data Mining, pages 16—22，New York City,
New York, USA，，，1998.

[8] M. Dyer and A. Frieze. A simple heuristic for the p-center
problem. Operations Research Letter, 3:285-288, 1985.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. Density-
connected sets and their application for trend detection in spa-
tial databases. In Proceedings of the 3rd Intl Conf. on Knowl-
edge Discovery and Data Mining (KDD，97), pages 10-15，
Newport Beach, California, USA, 1997.

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast sub-
sequence matching in time-series databases. In Proceedings of
the 1994 ACM SIGMOD international conference on Manage-
ment of data，pages 419429，Minneapolis, Minnesota, United
States, 1994.

[11] L. Gao and X. S. Wang. Continually evaluating similarity-
based pattern queries on a streaming time series. In Proceed-
ings of the 2002 ACM SIGMOD Intl Conf, on Management
of Data (SIGMOD'02), pages 370-381，Madison, Wisconsin,
USA, 2002.

[12] B. Gartner. Fast and robust smallest enclosing balls. In Pro-
ceedings ofESA ,99, pages 325-338, Prague, Czech Republic,
1999.

[13] V. Guralnik and J. Srivastava. Event detection from time series
data. In Proceedings of the 5th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
33-42, San Diego, California, United States, 1999.

[14] J. Han and Y. Yin. Efficient mining of partial periodic patterns
in time series database. In Proceedings of the 15th Interna-
tional Conference on Data Engineering, pages 106-115, Syd-
ney, Australia, 1999.

BIBLIOGRAPHY 71

[15] D. J. Hand. Pattern detection and discovery. In ESF Ex-
ploratory Workshop, volume 2447 / 2002 of Lecture Notes in
Computer Science, pages 16-19, London, UK, September 16-
19 2002. Springer-Verlag Heidelberg.

[16] D. Hochbaum and D. shmoys. A best possible approxmation
algorithm for the fc-center problem. Mathematics of Operation
Research, 10:180-184，1985.

[17] E. Keogh and S. Kasetty. On the need for time series data min-
ing benchmarks: A survey and empirical demonstration. In
Proceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 102-
111, Edmonton, Alberta, Canada, 2002.

[18] E. Keogh, J. Lin, and W. Truppel. Clustering of time series
subsequences is meaningless: Implications for past and future
research. In Proceedings of the 3rd IEEE International Confer-
ence on Data Mining, pages 115-122, Melbourne, FL., 2003.

[19] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in
time series. In Proceedings of the 2nd Workshop on Temporal
Data Mining’ at the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada, 2002.

[20] L. Lovasz. On the ratio of optimal integral and factional covers.
Discrete Mathematics, 13:383-390，1975.

[21] S. Muthukrishnan. Efficient algorithms for document retrieval
problems. In Proceedings of the 13th annual ACM-SIAM sym-
posium on Discrete algorithms, pages 657-666, San Francisco,
California, 2002.

[22] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs
in massive time series database. In Proceedings of the 2002

BIBLIOGRAPHY 72

IEEE International Conference on Data Mining, pages 370-
377’ Maebashi City, Japan, 2002.

[23] P. A. Pevzner and S.-H. Sze. Combinatorial approaches to find-
ing subtle signals in dna sequences. In Proceedings of the In-
ternational Conference on Intelligent Systems for Molecular
Biology (ISMB), pages 269-278, UC San Diego, La Jolla，Cal-
ifornia, USA, 2000.

[24] Y. Tanaka and K. Uehara. Discover motifs in multi-
dimensional time-series using the principal component anal-
ysis and the mdl principle. In Proceedings of the Third Inter-
national Conference, MLDM 2003, pages 252-265, Leipzig,
Germany, 2003.

[25] A. Udechukwu，K. Barker, and R. Alhajj. Discovering all fre-
quent trends in time series. In Proceedings of the 2004 Win-
ter International Symposium on Information and Communica-
tion Technologies (WISICT2004), pages 1-6，Cancun，Mexico,
2004.

[26] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In
H. Maurer, editor, New Results and New Trends in Computer
Science, volume 555 of Lecture Notes in Computer Science,
pages 359-370. Springer-Verlag，1991.

[27] J. X. Yu, M. K. Ng，and J. Z. Huang. Patterns discovery
based on time-series decomposition. In Proceedings of the 5th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 336-347, Hong Kong, China, 2001.

CUHK L i b r a r i e s

_ _ _ _ 1 00mMb2Tfi I

