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Abstract 

In multiagent environments, agents need to choose their actions. To achieve this, 

Gmytrasiewicz and Durfee propose the Recursive Modeling Method (RMM). This 

thesis improves the probabilistic approximation approach in the original design 

with Recursive Formulas, which enables agents to predict other agents' actions and 

choose their own actions more accurately. 

In multiagent semi-competitive environments, agents have another type of ac-

tions that they need to choose. In such environments, competitions and coopera-

tions can both exist. As agents compete with one another, they have incentives to 

lie. Sometimes, however agents can increase their utilities by cooperating with each 

other, then they have incentives to tell the truth. Therefore, being a receiver of mes-

sages, an agent needs to choose whether or not to believe the received message(s). 

To help agents make this decision, this thesis introduces a Trust Model. In the trust 

model, receiver's impression on the sender, sender's reputation, and receiver's at-

titude towards risk are used to derive the receiver's trustworthiness on the sender. 

This thesis proposes that in making decisions on whether to believe a message and 

change the action based on the message, an agent should compare the persuasive-

ness of the message, which is calculated from the risk attitude of the receiver, the 

receiver's trustworthiness on the sender, and the utility brought by believing the 

message, with the stubbornness of the receiver. On the other hand, being a sender 

of messages, an agent needs to choose whether or not to be honest. To help agents 

make this decision, this thesis introduces a Honesty Model. In the honesty model, 

a sender uses its impression on the receiver, the receiver's reputation, and sender's 
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attitude towards risk to calculate the deceivability of a receiver. To decide whether 

to tell a lie, a sender compares the temptation of lying, which is derived from the 

sender's risk attitude, the receiver's deceivability, and the utility that will be gained 

by lying, with the sincerity of the sender. These mimic the model in human interac-

tions. 

In addition, we introduce an adaptive strategy to the Trust/Honesty Model, 

which enables agents to leam from and adapt to the environment. With the adap-

tive strategy, a receiver leams to be less risk-seeking and more stubborn after it is 

cheated. On the other hand, it learns to be more risk-seeking and less stubborn if 

it has not believed any messages for a long time or it has believed the right mes-

sages for many times. Similarly, a sender leams to be less risk-seeking and more 

sincere if it cannot gain the target receiver's trust. In contrast, it leams to be more 

risk-seeking and less sincere if it has not sent out any messages for a long time or it 

can successfully gain the receivers' trust for many times. 

Simulations show that agents with the Adaptive Trust/Honesty Model perform 

much better than agents with other existing models or strategies. This is because our 

Adaptive Trust/Honesty Model enables agents to leam from their experiences. An-

other reason for the outstanding performance is that the Trust/Honesty Model makes 

a balance on trustworthiness and utility, while other existing models or strategies 

consider either trustworthiness or utility, but not both, in making the decisions. 
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在多代理人的環境裡，代理人需要選擇它們的行動。要達到這一點，Gmytrasiewicz 

和Duifee提出遞歸塑造法。這份論文透過遞歸公式改進了原來設計的機率略計 

方式，這使代理人能預計其它代理人的行動和更加準確地選擇它們自己的行動。 

在多代理人半競爭環境裡，代理人需要選擇其它類型的行動。在這樣的環境 

裡’競爭和合作是能夠並存的。當代理人互相競爭時，它們有誘因說謊。有些時 

候，代理人能夠透過互相合作來增加它們的利益，它們便會講真相°所以，作爲 

訊息接收者，代理人需要選擇是否相信接收到的訊息。爲幫助代理人做出這決 

策，這份論文介紹了信任模型。信任模型利用接收者對發送者的印象、發送者的 

名聲以及接收者對風險的態度來計算發送者的可信性。這份論文提出代理人在做 

出是否相信收到的訊息和根據收到的訊息更改行動這些決策時，應該計算自己對 

風險的態度、發送者的可信性以及訊息帶來的利益’作爲訊息的說服力’並且根 

據自己的倔強程度作出決策。另一方面，作爲訊息發送者，代理人需要選擇是否 

誠實。爲幫助代理人做出這決策’這份論文還介紹了誠實模型。誠實模型利用發 

送者對接收者的印象、接收者的名聲以及發送者對風險的態度來計算接收者是否 

容易受騙。在決定是否說読，發送者計算自己對風險的態度、接收者的容易受騙 

程度以及說•帶來的利益，作爲說識的誘惑’並且根據自己的真誠度作出決策。 

這些仿造了人類的交往模式。 

在信任/誠實模型上，我們還介紹了一個適應的方法，這使代理人能夠學習 

和適應環境。透過這個適應的方法，接收者學會在被欺詐之後變得較不愛風險和 
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更加倔強。另一方面，接收者學會在長期不相信任何消息或許多次相信了正確的 

消息之後變得較愛風險和較不倔強。同樣，發送者學會在無法獲取目標接收者的 

信任下變得較不愛風險和更加懇切。相反，發送者學會在長期未派出任何消息或 

許多次成功獲取接收者的信任後變得更愛風險和較不懇切。 

試驗顯示，採用可適應的信任/誠實模型的代理人比採用其它現有的設計或 

方法的代理人有更好的表現。這是因爲我們這個可適應的信任/誠實模型使代理 

人能夠從他們的經驗學習。造成這優秀表現的其它原因是信任/誠實模型在可信 

性和利益之間做了一個平衡的考慮，但其它現有的設計或方法在決策中只考慮可 

信性或利益其中一頂。 
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Chapter 1 

Introduction 

Autonomous agents and multiagent systems is one of the fields of specialization in 

artificial intelligence. According to Wooldridge and Jennings [WJ95]: "An agent 

is a computer system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its design objectives". By 

adding flexibility to agents, agents become intelligent agents, also known as au-

tonomous agents. Flexibility means reactivity, pro-activeness, and social ability. 

For agents to be flexible or intelligent, agents need to be able to react to the changes 

in the environment instantly, so as to achieve the design objectives. At the same 

time, intelligent agents need to be able to activate themselves and design their plans 

or choose their actions, in order to meet their goals. Adding to these, intelligent 

agents need to have social ability, which is the ability to cooperate or negotiate with 

other agents. 

Another concept closely related to intelligence is learning. An agent is said to 

have added intelligence if it is able to learn, which means the agent is able to im-

prove its future behaviors based on its past experiences. There are two principal 

categories of learning in multiagent systems [SWOO]. First is centralized learning, 

also known as isolated learning. With this kind of learning, agents leam by itself, 

and independent of other agents. The second category is decentralized learning, 

also known as interactive learning. With interactive learning, agents leam from each 
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Chapter 1 Introduction 2 

other. Agents leam by exchanging information with each other, that is through com-

munication. Agents can leam by simple query-and-answer interactions, or more 

complex interactions, such as negotiation. 

Communications not only enable agents to leam, but also enable agents to co-

ordinate their actions. In multiagent systems, agents may have different objectives, 

actions and behaviors. In order to achieve the design objectives, agents need to co-

ordinate their actions. There are two types of coordination, which are cooperation 

and competition. In cooperative environments, agents need to have distributed or 

centralized planning for their actions. In competitive or non-cooperative environ-

ments, agents need to negotiate to resolve conflicts. In multiagent systems, agent 

coordination has been the subject of continuous interest. Much research has been 

done on protocols and modeling. In different environments, agents have different 

methods or protocols to resolve conflicts. In non-cooperative environments, Zlotkin 

and Rosenschein [ZR90] introduce a theoretical negotiation model, which encom-

passes both cooperative and conflicting situations. Besides, they also use a conflict 

resolution protocol to help agents reach agreement. One the other hand, they use 

another negotiation protocol [ZR89] to help agents share their tasks in cooperative 

environments, so that agents can communicate their respective desires and com-

promise to reach mutually beneficial agreements. At the same time, Rosenschein 

and Genesereth [RG85] use a deal-making mechanism to enable agents to coop-

erate. Through the use of communication and binding promises, agents are able 

to coordinate their actions effectively. This also makes mutually beneficial activi-

ties possible. In contrast to the pre-established protocols mentioned above, Gmy-

trasiewicz and Durfee [GD95, GDOO, GDOl] propose a decision-theoretic approach 

[Bra92, Rai82, GDOO], called the Recursive Modeling Method (RMM), which en-

ables agents to choose an action rationally in the absence of any conventions. 

Trust and reputation is a hot topic in agent coordination. In the literature, there 

are different meanings for "trusting an agent". Some interpret "trusting an agent" to 

be "cooperate with an agent" [Mar94, MMH02, MMA+01, MHM02], while others 
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interpret that as "delegate to an agent" [CF98, FCOl]. At the same time, there are 

various models and definitions for trust and reputation [Mar94, MMH02, MMA+01, 

MHM02, SSOl, RLMOl，YSOl，YS03, CF98, FCOl, GGOO]. Marsh [Mar94] relates 

trust to the risk and importance of a matter, as well as the competence of a particular 

agent on that particular matter. Mui et al [MMH02, MMA+01] define trust as the 

expected probability that an agent will cooperate the next time, given a history of 

encounters. For reputation, various definitions [MHM02, SSOl, RLMOl, YSOl, 

YS03] are similar to a weighted sum of individual experience. 

1.1 Motivations 

For agents to coordinate in cooperative environments, Gmytrasiewicz and Durfee 

[GD95, GDOO, GDOl] propose the Recursive Modeling Method (RMM). RMM 

is a decision-theoretic approach [Bra92, Rai82, GDOO], which enables agents to 

choose an action rationally in the absence of any conventions. In general, rationality 

means the maximization of expected utility [Fis81]. This approach uses RMM to 

represent the information that an agent has about the environment, itself, as well as 

other agents. This information enables agents to predict the actions of other agents, 

which in turn helps agents choose their own actions. However, the authors use a 

probabilistic approximation in their design, which may introduce inaccuracy. 

For trust and honesty, much research has been done on cooperative environ-

ments. In purely cooperative environments, benevolent agents share their utilities 

as social welfare. As agents have a common goal of maximizing the social welfare, 

there is no reason for an agent to be dishonest to its partners. So, there is no reason 

for an agent not to trust its partners. On the other hand, in strictly competitive envi-

ronments (such as zero-sum games), only one agent can be the winner and the others 

must be the losers. As agents are self-interested and cannot increase their utilities 

by cooperating with each other, it is rational for an agent to be dishonest. So, it is 

irrational for an agent to believe information provided by its competitors. Luo et al 
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[LJS+03] define semi-competitive environment to be an environment having both 

cooperations and competitions, in which agents seek to strike a fair deal for both 

parties, and at the same time try to maximize their own payoffs. Therefore, it is 

sometimes rational for an agent to cooperate with some other agents, while agents 

also have incentives to be dishonest. Therefore, being a receiver, an agent needs 

to decide whether or not to trust other agents on receiving information from other 

agents. On the other hand, being a sender, an agent needs to decide whether or not 

to lie to other agents. In such a setting, the issues about trust and honesty among 

agents become more significant and complicated than those in purely cooperative 

or strictly competitive environments. 

1.2 Aims 

There are two aims in this thesis. The first one is to improve the original design of 

Gmytrasiewicz and Durfee's Recursive Modeling Method. To improve their proba-

bilistic approximation, we introduce our Recursive Formulas. This is to help agents 

predict other agents' actions and choose their own actions. 

Another aim is to develop a Trust/Honesty Model, which helps agents choose 

their communication actions. This model helps receivers choose whether to believe 

a received message, and choose which message to believe when several messages 

are received. This model also helps senders choose whether to tell lies. 

1.3 Contributions 

First, we improve the probabilistic approximation in the original RMM by Recur-

sive Formulas. This enables agents to predict other agents' actions and choose their 

own actions more accurately. 

Second, we develop a Trust/Honesty Model, which helps agents choose their 

communication actions. This enables receivers to choose whether or not to trust the 
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received information, and enables senders to choose whether or not to be honest in 

semi-competitive environments. 

In addition, we develop an adaptive strategy for the Trust/Honesty Model. This 

enables agents to leam from their experiences and to adapt to the interacting agents. 

The adaptive agent we built is an intelligent agent, which can react to its opponents, 

maximize its payoff actively, and able to interact with other agents. Simulations 

show that the adaptive agent performs much better than agents with existing models 

or strategies. 

1.4 Thesis Outline 

The rest of the thesis is organized as follows. 

In the next chapter, we describe the improved Recursive Modeling Method. 

First, we introduce the original RMM with an illustrative example. Then, we im-

prove the original design by Recursive Formulas. Last, we compare the original 

RMM with the modified one. 

In Chapter 3，we present our Trust/Honesty Model. We first show the needs for 

such a model. Then we present our model. 

In Chapter 4, we present an adaptive strategy for the Trust/Honesty Model. First, 

we point out the problem with the non-adaptive agents. Then, we introduce the 

adaptive strategy. Last, we compare the adaptive agents with the non-adaptive ones. 

In Chapter 5, we discuss the related work and point out the problems with the 

existing models. 

In Chapter 6’ we analyze the performance of our Trust/Honesty Model and the 

adaptive strategy. Simulations are done to compare performance of agents adopting 

our Trust/Honesty Model with/without the adaptive strategy with agents adopting 

other existing models and strategies. Performance of agents in semi-competitive 

environment and performance of agents when interacting with strategic senders are 

analyzed. 
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Chapter 7 concludes the paper and discusses some possible future work. 



Chapter 2 

Improved Recursive Modeling 

Method (RMM) 

RMM is a method for agents to represent their knowledge and choose their ac-

tions. This chapter introduces the background knowledge about Recursive Model-

ing Method (RMM) with an illustrative example. In section 2.2, we give a brief 

introduction to the original RMM. After that, we give a detailed description on an 

improved RMM in section 2.3. Finally, we compare the original RMM with the 

improved version. 

2.1 An Illustrative Example 

Consider an example of agent interaction. In this example, there are three agents: 

Ri, and R3’ and there are three goals: Gi, G2 and G3. The example scenario is 

depicted in Fig. 2.1. 

For all agents Ri, where i = 1, 2, 3, in the environment, they share the same 

set of possible actions: obtaining Gi, obtaining G^, obtaining G3, or staying still, 

which are denoted as A = {Ri-^Gi, R i - ^ G � , R i ^ G s , R i ^ S } . However, the set 

of actions Ai for agent i may only be a subset of A, depending on the set of goals 

that the agent knows. Knowledge of the agents is shown in Table 2.1. For example, 

R2 does not know G3, so A2 will be {R-^Gi, R 4 G 2 , R ^ S } because obtaining 

7 
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z ^ ^ z  
/ Gi, worth=10 \ Gs, worth=20 \ 
\ Priority: R3>R2>Rl - Priority: R2>R3>Ri J 

� ^ " 

n r ^ ^ ^ T f ^ " " " " " " " R 2 卜2''着 obstacles -, 

G2, worth: 15 \ 
\ Priority: R2>R3>Ri J 

Figure 2.1: Example scenario of interacting agents 

Ri 's knowledge | i?2's knowledge | i?3’s knowledge 

Gi Gi G2 
G2 G2 Gs 
Gs 

R2 does not know G3 
Rs does not know Gi 

Table 2.1: Agents' knowledge in the example 

G3 will not be an option for R2 as it does not know that goal. We assume that if 

an agent knows a certain goal, the agent knows all the relevant information of the 

goal.' 

In each round, agents communicate and choose their actions. After an agent has 

chosen its action, it needs to pay the cost so as to obtain the goal. The costs for 

the agents to obtain the goals are shown in Table 2.2, and the cost for staying still 

(R^S) is zero. The payoff for Ri to obtain Gj is defined to be the worth of the 

goal (if Ri wins the worth of Gj) minus the cost for the agent to obtain the goal. 

In this way, if Ri cannot win the worth of the goal, its payoff will be negative. For 

example, if Ri chooses to obtain Gi and it wins, its payoff will be 10 - 2 = 8. 

However, if it losses, its payoff will be - 2 . 

It is possible that more than one agent may choose to obtain the same goal. In 

lit is possible that an agent knows only some information of a goal while not knowing others. 
We do not consider this as this will much complicate the discussion. . 
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I Obtaining Gi | Obtaining G2 | Obtaining G^ 

Cost of Ri 2 17 15 
Cost of R2 4 13 2 
Cost of/^3 6 10 5 

Table 2.2: Costs for the agents to obtain each goal in the example 

Gi G2 G3 

priority R3 R2 R2 
priority R2 R3 R3 

3rd priority I I I 

Table 2.3: Goal's priority ordering in the example 

this case, the worth of the goal will be completely given to one agent among all 

the full-cost paying agents. To decide which agent can win the worth of a certain 

goal, different systems may apply different mechanisms. For ease of presentation 

and without loss of generality, we assume that for each goal, there is an associated 

priority ordering of agents such that when more than one agent decides to obtain the 

same goal, the worth of the goal will be given to the agent according to the goal's 

priority ordering of agents. The priority ordering of the goals in the example are 

summarized in Table 2.3. For example, if all the three agents decide to obtain Gi, 

R3 will win the worth of Gi. If R3 decides not to obtain Gi , and both R2 as well 
as Ri decide to obtain Gi, R2 will win the worth. If Ri decides to obtain Gi, it can 

win the worth only if both R3 and R2 do not compete with it. 

We define a Single-round Game to be a game consists of only one round. In 

a Single-round Game, agents are free to communicate until all agents openly an-

nounce their choices of actions and pay the costs, then the game ends and the worths 

of the goals are given to the winning agents. Each agent can only take one action. In 

this chapter, we illustrate how an agent chooses its action in a Single-round Game. 
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2.2 Recursive Modeling Method (RMM) 

For agents to represent the above information and take the appropriate action, Gmy-

trasiewicz and Durfee [GDW91, GD92, GD95，GDOO, GDOl] propose the Recur-

sive Modeling Method (RMM). RMM represents the information an agent has about 

the environment, itself, and other agents. This representation is used by an agent 

to predict the actions of other agents, estimate the expected utilities for alternative 

courses of action, and make decisions on what actions or communication acts to 

perform. RMM is recursive as it not only represents an agent's own preferences, 

abilities and beliefs about the world, but also represents the beliefs the agent has 

about other agents, the beliefs it has about other agents' beliefs, and so on. So it 

is basically an infinite hierarchy. However, Gmytrasiewicz and Durfee have made 

an assumption that the belief hierarchy is finite and terminates at the point where 

an agent has no sufficient information to model other agents. At the point of insuf-

ficient information, the infinite belief hierarchy is terminated to a finite one by an 

assumed uniform distribution over the space of all possible actions. 

2.2.1 Payoff Matrices 

With RMM, agents' payoffs are represented in payoff matrices. In this three-

agent environment, we use a three-dimensional payoff matrix in modeling agent's 

decision-making process. Fig. 2.2 shows an example of a cell. The cell is a two-

dimensional payoff matrix describing Ri，s payoffs with respect to its own actions, 

/ V s actions and RsS action to obtain Gi. For example, denotes the 

payoff for Ri to obtain G<i when R2 chooses to obtain G3 and R^ chooses the obtain 

From Table 2.1, Ri knows all the goals, so it has four possible actions. With 

the information in Table 2.3 and Table 2.2’ if both R2 and R] choose to obtain Gi 

and Ri also chooses to obtain Gi, since Ri has the lowest priority to get the worth 

of Gi , it will lose and its payoff will be zero minus its cost to obtain Gi, which is 
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Rs-^Gi 
R2—G1 Ri-^Gi Ri-^Gs Ra-̂ S 

F/?2->G3,/?3->G,厂/?2~>S’尺 3 —G, 

y 

Figure 2.2: An example of a cell in a three-dimensional matrix 

pA-Ri 

R3—G1  
R2今Gi R2—G2 R2—G3 Ri-^S Ri-^G, Rr^G2 尺2今G‘？ R.-^S 
-2 -2 -2 -2 Rj-^Gi -2 8 8 8 

Rr">G2 -2 -17 -2 -2 R1—G2 -17 -17 -17 -17 
R i � G 3 5 5 -15 5 R1—G3 5 5 -15 5 
Ri—S 0 0 0 0 Rr̂ S 0 0 0 0 

Rs—Gj R3—S  
R2—G1 R2—G2 R2—G3 R2-^S R2—G1 R2—G2 R2-^G3 R2-^S 

Ri—Gi -2 8 8 8 Ri—G, -2 8 8 8 
/?/->G2 - 2 -17 -2 -2 -2 -17 -2 - 2 
Ri 奶 3 -15 -15 -15 -15 5 5 -15 5 
Rr̂ S 0 0 0 0 Ri—S 0 0 0 0 

Figure 2.3: i^i's payoff matrix 

0 — 2 = —2. In another situation, if both R2 and R3 choose to obtain G2 and Ri 

chooses to obtain Gi, since Ri has no competitor in this case, its payoff will be 

the worth of Gi minus its cost to obtain Gi, which is 10 — 8 二 2. In this way, Ri 

represents its knowledge in its own payoff matrix, which is shown in Fig. 2.3. 

In addition, Ri can model /^2's payoff matrix and R3S payoff matrix from their 

respective points of view, which are shown in Fig. 2.4 and Fig. 2.5. P场一彻 denotes 

Ri ' s model of R2S payoff matrix, while P 凡一彻 denotes Ri ' s model of R ^ s payoff 

matrix. From Table 2.1, Ri knows that R2 does not know G3 and R3 does not know 

Gi. As Ri knows that R2 does not know G3, there will not be any payoffs associate 

to G3 in /?2’s payoff matrix. Similarly, there will not be any payoffs associate to Gi 
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p尺「尺2 

Ri-^Gj Rr>G2 
Ri—Gi R1—G2 Ri—S Ri—Gi Ri^G2 Ri—S 

R2-̂ GI -4 -4 -4 R2—G1 6 6 6 
R2-^G2 2 2 2 R2—G2 2 2 2 

0 0 0 R2—S 0 0 0 

R3—S  
Ri-^Gi Ri^Gi Rr^S 

R2—G! 6 6 6 
R2—G2 2 2 2 
Ry^S 0 0 0 

Figure 2.4: i?i's model of /?2’s payoff matrix 

— R1 — G2 
/?2->G2 R2—G3 R2—S 

R3—G2 -10 5 5 

R3—G3 -5 15 15 
R3—S 0 0 0 

Ri 今 G3 Ri—S  

R2^G2 R2—G3 R2-^S R2—G2 R2^G3 R2—S 
R3 今 G2 -10 5 5 R 3-^02 -10 5 5 

R3^G3 -5 15 15 R3—G3 -5 15 15 
Rj^S 0 0 0 Ih—S 0 0 0 

Figure 2.5: Ri 's model of Rs's payoff matrix 

in i?3，s payoff matrix. 

2.2.2 Infinite Recursive Hierarchy 

With RMM, for Ri to determine its action, it first models how R2 and R3 determine 

their actions. For Ri to deduce / ^ s action, it has to model how R2 deduce the 

actions of Ri and R3. Similarly, for Ri to deduce R^s action, it has to model how 

R3 deduce the actions of Ri and R2, and so on. This generates an infinite recursive 

hierarchy of payoff matrices as shown in Fig. 2.6. At the first level, there is i?i's 

model of itself, denoted as 风-风 .At the second level, there are i?i's models of 
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R,- R. 

pRi - R2 pRi - R3 

/ \ / \ 
pRi - R2 - Ri pRi - R2 - R3 pRi - R3 - Ri pR i - R3 - R2 

/ \ I \ I \ I \ 
I \ I \ I \ I \ 
I \ I \ I \ I \ 

Figure 2.6: Ri 's infinite recursive hierarchy 

/?2’s and R3S knowledge, denoted as pR广R) and P ^ i r e s p e c t i v e l y . At the third 

level, there are, from Ri 's point of view, i?2’s models of Ri ' s and R ^ s knowledge, 

as well as R ^ s models of Ri 's and R^s knowledge. Similarly, the hierarchy goes 

on infinitely. 

2.2.3 Choosing an Action with RMM 

For Ri to deduce the payoff matrices at the third level, that is to model R2’s models 

of Ri，s and R ^ s knowledge, as well as R3S models of Ri，s and TVs knowledge, Ri 

needs further information. For example, Ri has to know whether R2 knows that Ri 

knows Gi or whether R2 knows that R3 does not know Gi. Since Ri has no further 

information on R2S knowledge of other agents' knowledge, in the original design 

of RMM, Ri,s infinite recursive hierarchy is terminated explicitly to a finite one at 

this level, which is shown in Fig. 2.7. At the first level, it is i^i's model of itself. At 

the second level, there are Ri's models of /?2’s and i^s's payoff matrices. Since Ri 

knows that R2 does not know G3, there are only three possible actions from /?2’s 

point of view, which results in nine combinations of actions for the three agents. So, 

at the third level, the hierarchy on the left is terminated with a uniform probability 

distribution: | for each possible action. The hierarchy on the right terminates in 
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Ri - Ri 

pRi - R2 pRi - R3 

[1/9] [1/9] 

Figure 2.7: i?i's finite recursive hierarchy with original design of RMM 

Action I Expected utilities 

1 V I 1 V — G i I 1 V 丄 

9 X 十 9 X P R i — G 2 ’ R 3 — G 2 卞 9 人 

1 V I 1 w 们R2—G1 , 1 y 
9 X 十 9 X 十 9 X 

= | x - 4 + | x - 4 + i x - 4 + | x 6 + | x 6 + | x 6 + | x 6 + 
| x 6 + | x 6 = f 
I X + I X P R I ^ G I r s ^ G . + I X P R I ^ I ^ ^ G , + 
1 V I 1 V r , ^ 2 - ) - G 2 I 1 ^ n 只 丄 

9 X 十 9 X P R i — G 2 J h — G 2 卞 9 人 十 

1 W I 1 y I 1 y 们R2—G2 

= | x 2 + | x 2 + | x 2 + | x 2 + | x 2 + | x 2 + | x 2 H - | x 2 + 
i x 2 = 2 

R2—S 0 

Table 2.4: i ^ s expected utilities 

a similar way. Here, the authors of the original RMM assume that each possible 

action has an equal probability to be chosen. 

With this hierarchy, from R i S model of i?2，s payoff matrix shown in Fig. 2.4, 

Ri calculates i?2，s expected utilities for each action, which is shown in Table 2.4. 

From this, since the expected utilities for R2 to obtain Gi is the highest, Ri models 

that R2 will choose to obtain Gi. Similarly, Ri models that R3 will choose to 

obtain G3. If R2 chooses to obtain Gi and R3 chooses to obtain G3, from Ri's 

payoff matrix in Fig. 2.3, Ri can only choose to stay still. 
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2.3 Improved RMM 

In the original design of RMM, an infinite recursive hierarchy is terminated ex-

plicitly by a probabilistic approximation to a finite one when there is no further 

information. In making the approximation, the authors made an assumption that 

each possible action has an equal probability to be chosen. However, this is not 

always accurate in real practice. In this section, we present our improved version of 

RMM, which solves the problem. 

2.3.1 Infinite Recursive Hierarchy 

Suppose Ri only has level-1 knowledge, which means that besides the set of goals 

that it knows, the agent does not know other agents' knowledge. In this case, it 

can only assume other agents know the same set of goals as it does. As the whole 

hierarchy is built from Ri 's point of view, the set of actions involved in the payoff 

matrices in the hierarchy will be the set of actions as seen by Ri, which is Ai. 

Ri ' s infinite recursive hierarchy with level-1 knowledge is shown in Fig. 2.8. The 

hierarchy is basically the same as the one shown in Fig. 2.6, but as Ri only has 

level-1 knowledge, all the payoff matrices in this hierarchy are constructed with 

Ri ' s set of actions. Note that pj^厂礼 is the same as However, if Ri does 

not know that R2 does not know G3 and R3 does not know Gi，it is rational for it 

to model their payoff matrices with its own set of possible actions, which is Ai. In 

this case, Ri 's models of R2S and R^s payoff matrices are shown in Fig. 2.9 and 

Fig. 2.10. 

2.3.2 The Sub-matrix Operator 

In the example, Ri has level-2 knowledge in addition to level-1 knowledge, which 

means that in addition to the set of goals that it knows, it also knows the set of goals 

that R2 and R3 know, as well as the set of goals that they don't know. Note that 
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\ 
\ 

\ 

pRI- RI 

/A'~ 
pRI- R2 pRI- R 3 

/ A,,,,,, / A'~ 

\ 
\ 

\ 

\ 
\ 

\ 

\ 
\ 

\ 

Figure 2.8: RI'S infinite recursive hierarchy with level-1 knowledge 

R37 GJ R37G2 

RJ7GJ RJ7G2 RJ7G3 RJ'-7S RJ7GJ RJ7G2 RJ7G3 RI --7S 
R27 GJ -4 -4 -4 -4 R27GJ 6 6 6 6 
R27G2 2 2 2 2 R27 G2 2 2 2 2 
R27G3 18 18 18 18 R27G3 18 18 18 18 
R2--7S 0 0 0 0 R2--7S 0 0 0 0 

R37G3 R37 S 

RJ7GJ RJ7G2 RJ7G.l RI --7S RJ7GJ RJ7G2 RJ7G3 RI --7S 
R27 GJ 6 6 6 6 R27 GJ 6 6 6 6 
R27G2 2 2 2 2 R27 G2 2 2 2 2 
R27G3 18 18 18 18 R27G3 18 18 18 18 
R2--7S 0 0 0 0 R2--7S 0 0 0 0 

Figure 2.9: RI's model of R2 's payoff matrix with set of actions Al 

RJ7GJ RJ7G2 

R27 GJ R27 G2 R27 G3 R2--7S R27 GJ R27G2 R27G3 R2--7S 
R37 GJ 4 4 4 4 R37 GJ 4 4 4 4 
R37G2 5 -10 5 5 R37G2 5 -10 5 5 
R37 G3 15 -5 15 15 R37 G3 15 -5 15 15 
RJ--7S 0 0 0 0 R3--7S 0 0 0 0 

RJ7G] RJ7S 

R27GJ R27G2 R27G3 R2--7S R27GJ R27G2 R27G3 R2--7S 
R37 GJ 4 4 4 4 R37 GJ 4 4 4 4 
R37 G2 5 -10 5 5 R37 G2 5 -10 5 5 
R37G3 15 -5 15 15 R37 G3 15 -5 15 15 
RJ--7S 0 0 0 0 RJ--7S 0 0 0 0 

Figure 2.10: RI's model of R3 's payoff matrix with set of actions Al 

16 



Chapter 2 Improved Recursive Modeling Method (RMM) 17 

it is possible for Ri to have level-2 knowledge on R2 and has a different level of 

knowledge on R3. Furthermore, it is reasonable that if a particular agent does not 

know a particular goal, it will not know that other agents know that goal even if 

other agents do know that goal. So, the set of actions that Ri knows about R2 will 

be the same as Ai or a sub-set of Ai. This means that if Ri has level-2 knowledge 

on R2, the payoff matrix that Ri models R2, will be the same as P �广 

or a sub-matrix of P g -只】. 

Since Ri knows that R2 does not know G3, that is Ri has level-2 knowledge on 

its model of i?2’s payoff matrix 凡-拘，shown in Fig. 2.4, actually is equal to 

a sub-matrix of Pf厂彻’ shown in Fig. 2.9’ with rows and columns associated with 

G3 removed. 

Now, let us define a sub-matrix operator: Qg, such that if P' = PQg, then 

P' will be equal to P, with rows and columns associated with the set of goals Q 

removed. So in the example, Ri 's model of Ri 's payoff matrix with level-2 knowl-

edge will be denoted as PAy^^OiOs}-

This sub-matrix operator will have the following property: 

Peg^eg, 二 /^eafcei = = Peg.ug., 

where PQg^uOb means the resulting sub-matrix will be equal to P, with all rows and 

columns associated with both sets of goals Qa, and Qb removed. 

2.3.3 Finite Recursive Hierarchy 

We introduce another notation Qij, which denotes the set of goals that Ri knows R j 

does not know, and Qijk, which denotes the set of goals that Ri knows R j knows 

Rk does not know, and so on. With the sub-matrix operator, Ri ’s infinite recursive 

hierarchy will become Fig. 2.11. At the second level, since Ri knows R2 does not 

know the set of goals Qu, Ri needs not include this set of goals in model of 

R2S payoff matrix. So,尸风一只2 will be a sub-matrix of P � _ R \ with rows and 

columns associated with set of goals Q12 removed. At the third level, since Ri 
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R卜RI 

^ ^ — ^ 
pR'S pR'd 

Al 口�12 Al 

AlCgliU^llI Al AI Al U^uU^lJZ 
p K i ^ / ^ ^ ^ ^ ? ^ pRi^./'^^'^^Ri^N-

[llUglil Û12l! AlŴ llUgl!) Ugl!l3 AlUgljÛ IS Ugmi Al Wg 121)̂123 Al UglsUglJl 11̂1312 Al fgiaÛ UI ÛI313 AI 1311̂132 Ugl32l Al WguUglJZ Ug 
/ \ / \ / \ I \ I \ I \ I \ I \ 
• \ I \ I \ I \ I \ / \ ； \ / \ 

\ ； \ I \ I \ I \ I \ / \ I \ 

Figure 2.11: i^i's infinite recursive hierarchy with sub-matrix operator 

knows R2 does not know the set of goals Qu, and Ri knows R2 knows Ri does not 

know the set of goals ^121, Ri needs not include these sets of goals in its model of 

R2S models of Ri 's payoff matrix. So, pR^-R^-Ri will be a sub-matrix of P g - R ' , 

with rows and columns associated with sets of goals in Q12 and ^121 removed, and 

so on. 

In the example, Ri has level-2 knowledge on both R2 and R3： “R! knows that 

R2 does not know G3" and knows that R3 does not know Gi". This means that 

Qi2 = {G3}, Qi3 = {Gi}. Since Ri does not have further knowledge, all 仏21’ Qus, 

Ql3l,仏32，仏212,仏213，仏231，仏232’ ^ 1 3 1 2 ,仏 3 1 3，仏 3 2 1 ’ 0 1 3 2 3， a n d SO O H , w i l l b c 

empty sets. In this case, the recursive hierarchy can be further simplified to the one 

shown in Fig. 2.12. At the second level, since Ri knows that R2 does not know G3, 

Ri needs not include G3 in its model of R2S payoff matrix. At the third level, for 

Ri to model R2S model of Ri's payoff matrix, Ri also needs not include G3. At 

the forth level, for Ri to model R2S model of i?i's model of R2S payoff matrix, 

again G3 needs not be included. From the figure, we can see that since level-3 

knowledge is not available for Ri, the payoff matrices at level 4 of the hierarchy 

cannot be reduced anymore, and starts to repeat the patterns at upper levels. For 
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pRi - R. 

A i 口 G 3} A i 1} 

p R ' d p R ' d pR'S' pRi 杏 
A i ^{G 3} A i 口G 3} A i t : 7 { G 1} A i 1} 

p R . ^ . pR.^^ pî i 湾 p…杏 p K ^ A p…杏 
A I t 7 { G 3} A : ^ { G 3} A i ^ { G 3} A i ^ { G 3} A i ^ 7 ( 0 1} A . ^ { G 1} A i 1} A i t 7 { G 1} 

Figure 2.12: Ri 's finite recursive hierarchy with level-2 knowledge 

example, the payoff matrix Pj^厂彻©{G3} at level four repeats that at level two, 

and the payoff matrix at level four repeats that at level three. So, 

the infinite recursive hierarchy can be terminated at this level, and becomes a finite 

hierarchy. 

In general, an infinite recursive hierarchy can be terminated at level (k+1) if 

level-A; knowledge is not available. Same as the original design of RMM, we termi-

nate an infinite hierarchy due to lack of further information, which agents can use 

to model other agents. 

2.3.4 Choosing an Action 

From Fig. 2.12, we can see that the payoff matrices at the forth level repeat those 

at the second level and those at the third level. By method of iteration, an action 

can be chosen. Let's look at the left sub-tree of Fig. 2.12, as shown in Fig. 2.13. 

Starting from the payoff matrix on the left bottom comer in Fig. 2.13, which is 

we can deduce the best action for R2 is ai： Ri—Gi, which means R2 

can get the highest payoff if it chooses to obtain Gi. We apply ai to P公—私 ©{G3}， 

that is if R2 chooses to obtain Gi, from 尸彻e{c?3}，we can deduce the best 
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pR 1 a 7 : R 2 -> G I 
Ai W{G 3 ) a 4:R 2->G 1 

a 8 : R 3 -> G 2 
P C ^ a6:R i->S P 

Ai W { G 3 } Ai 0 { G 3 } a 5 : R 3->G 2 a 3: R I ->S 
a 4 严 a 5 a 6 r ^ a 7 

/ / \ \ / l \ 
A丨 ^ { G 3 ) al Ai W { G 3 } A丨 C7{G 3 } A丨 3 } 

a I : R 2 -> G I a 2: R 3 -> G 2 

Figure 2.13: Left sub-tree of Fig. 2.12 

action for Rs is a?: Then we move up one level, applying ai and «2 

on 尸力-"ie{G3}’ we can deduce from Pg—R力{g^�that the best action for Ri is 

as： R i ^ S . Similarly, we move up one more level and apply a), which is from 

PAr^ 'QiG,} , and as, which is from to we can ob-

tain €14. Then we apply as, which is from 户义广只16{G3}，and a4, which is from 

^^/"^^©{Gs}, to we can obtain a^, and so on. After two iterations, 

we can see that the solution set [as, «4, <25] equals [ae, a-j, as], which means the 

solution set no longer change. From this sub-tree, we can deduce that from R i ^ 

point of view, R2 will choose to obtain Gi and R2 will model that Ri will stay still 

and R3 will choose to obtain G2. Similarly, from the right sub-tree of Fig. 2.12, we 

can deduce that from Ri% point of view, R3 will choose to obtain G2. So, from 

，Ri will choose to obtain G3. 
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2.3.5 Recursive Formulas 

Now, we are going to formalize the above process into Recursive Formulas. In 

the above process, excepts the lowest level, the set of best actions at each level 

are deduced given the set of best actions from one lower level. This relationship 

between the best actions is shown in Fig. 2.14. From the payoff matrix at the top 

level, P � � R \ we can deduce Ri 's best action, denoted as a兹” given, from i?i's 

point of view, the best actions of R) and R^ from the second level, denoted as 

and a*是 respec t ive ly . and are deduced from the payoff 

matrices at the second level: and respectively. These 

two actions at the second level are deduced given the set of best actions from the 

third level. To deduce the set of best actions at the third level, actually we need the 

set of best actions from the forth level. From Fig. 2.12, we can see that in order to 

deduce the best action from 尸一机 ©{G3} at level three, we need the best actions 

from and p ^ i - ^ s q ^ ^ ^ ^ from level four. Note that these two matrices 

actually repeat at level two and level three, respectively. So, in order to deduce the 

best action at level three, we apply the best action from level 2: 

deduced from and the best action from level 3: deduced 

from P^-^^e^Ga}, to 而 
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- Ri *1 
Pa丨 

^ ^ ^ I ； 

J V Ri - Ri RI • R3 J . / \ / \ 
a” 务 < ； & a^ a” ^P：； & 

^ ^ Ri - RI R! - R3 . R3 • Ri R3 ^ ^ 十 

^ Apply the action a to the payoff matrix P 

^ Deduce the action a from the payoff matrix P 

Figure 2.14: Hierarchy of best actions 

From Fig. 2.14, we can write down a set of recursive formulas: 
f 

1. = arg max , Ur, , a, a^^ , 

2 . � - R 2 = argmaxa ^t-R, ‘ ^^t-Rs) 

3. = arg max, Ur, ( P a ^ ^ ' 0 { 0 3 } , , 

� 4 . = arg max, 0 ( 0 3 } , , ^ t - R , ) 

� 7 . = arg max, aJ^.^^J 

where is the best action of Ri at level 1, which is the action that gives Ri 

maximum utility from the payoff matrix given a*是一r�and and 

cir^-r^ is the best action of R2 at level two, from i^i's point of view, which is the 
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action that gives R2 maximum utility from the payoff matrix given 

and and so on. 

To solve the above set of recursive formulas, we can use method of iteration 

as shown in section 2.3.4. Let us look at the left sub-tree in Fig. 2.14. First, we 

can deduce from the payoff matrix P�_R2Q{g“ the best action of R2： cir^-r^ 

is R2-^Gi. Apply this result to the payoff matrix 尸一私e{G3}, we can deduce 

cir^-r^, which is R3—G2. Then from formula 3, we can find which is 

R i -^S . From formula 2，we can find is From formula 4, we 

can find ajf^-Ha As the solutions do not change anymore, this iteration 

stops, and 广 拘 ， a s well as aĴ ^̂ -Ha are found. Similarly, we can find 

is R34G2, clr^-r, is R i ^ S , and is R24G3. Then from formula 

1, we can find a試，which is Ri—Gs. The above process means that at the third 

level, Ri models how R2 models R iS and R^s decision-making, as well as how 

R3 models Ri 's and ’s decision-making. At the second level, Ri models i?2’s and 

R3S decision-making. Since at the third level, Ri can model that R2 calculates that 

Ri will choose to stay still and R3 will choose to obtain G2, Ri can model at level 

two that R2 will choose to obtain Gi. Similarly, since at level three, Ri can model 

that R3 calculates that Ri will choose to stay still and R2 will choose to obtain G3, 

Ri can model at level two that R3 will choose to obtain G2. If R2 chooses to obtain 

Gi and R3 chooses to obtain G2, Ri can determine that it can get the highest payoff 

by obtaining G3. 

In an n-agent environment, we denote the payoff matrix that Ri models Rj, with 

level-m knowledge, as and we denote the best action of Rj at level-m from 

Ri，s point of view as . The hierarchy of best actions in From Fig. 2.15 can 

be formed. In the figure, except for the lowest level, the set of best actions at each 

level are determined given the set of best actions from one lower level. The infinite 

recursive hierarchy terminates at level k if level-(/:-7) knowledge is not available. 

At the lowest level, the set of best actions are determined with the set of best action 

at the same level and one of the best actions from the previous level. 
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a” 
1 ^ Ri 

i - Ri a*2 pB丨-R“i 产-Ri+' 产-R" 
^ R I - R I 2 ^ Ri - Ri.i 2 ^ Ri - Rw 2 Ri - R„ 

a a a a 
Ri-I- R I Ri-I- Ri-2 Ri-I- Ri Ri-I- Rn 

I rt^i - Rj 
i __p>. a  k-l Rx - Rj 

a*k / 产-R” a ' 
|Rj - Ri Rj - Rj-2 . k. . . ‘ Rj - Rj-i Rj - Rj+i Rj - R" 

I ^午八』斗 I  

• Apply the action a to the payoff matrix P ^ Deduce the action a from the payoff matrix P 

Figure 2.15: Ri's Hierarchy of best actions in an n-agent environment 
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From Fig. 2.15, RMM can be formulated by the following set of recursive for-

mulas: 

= arg maxa Ur^P^'只‘,a, ， . . . ， , a绪-尺，• • •， 

n * f n — aro- m a v TJ^ ( p R i - R ] *Tn+l \ 
^Rx-Rj _ a i g maXa Ur�\rm , , . • . , , ^Rj-Rj+i , . ••， “ r 广 r J , 

for 1 < m < /c, if level-众 knowledge is not available 

= arg niaxa Ur^ (P^ ' ^^, a, o-'r^-r^ , . . . ’ , a*占二r] ’ a 装 ’ … ’ ^^R j - rJ 

< 

^Rj-Rj-I = arg maXa (P / / ” ’ , ...，^Rj-Rj_2 ’ ^Ro^-Rj , ̂ Rj-Rj+i , . . . , ^Rj-Rn 

^Rj-Rj^i = arg maXa Ur^^^ {P^' , , . . •,以J?人广, , , . . . , ^Rj-Rn. 

�̂*Rj-Rn — arg m a x � U r J P � * 队，^R^-R^ ’ … ， ， , ^*Rj-Rj+i ’...，'̂ Rj-Rn-i) 

By solving this set of recursive formulas, Ri can choose its best action, it can model 

other agents' best action, it can model how a particular agent model other agents' 

best action, and so on. The pseudocode algorithm for solving the recursive formulas 

is shown in Fig. 2.16. 

2.4 Original RMM vs. Improved RMM 

2.4.1 Terminating the Infinite Hierarchy 

In the original design of RMM, the authors made an assumption that each possible 

action has an equal probability to be chosen. The reason to make this assumption is 

to terminate an infinite recursive hierarchy to a finite one when there is insufficient 

information. The problem is that there are errors between this approximation and 
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For v :=l , V ^ k, V + + 

For 广 = 1 ， ^ n, r++ 

n R i - R r 
Generate payoff matrix % ； 

Repeat 

Obtain best actions from payoff matrices at level-/: and level-(/:-l); 

Apply the best actions to payoff matrices at level-/:; 

Until solution set is stable 

For v:=k-l, v>l, v~ 
Apply best actions at level-v to payoff matrices at level-(v-l); 

Obtain best actions at level-(v-l); 

Figure 2.16: Pesudocode algorithm for solving recursive formulas 

the real case. To solve the problem, we improve the original design with recursive 

formulas. In the improved design, an infinite recursive hierarchy is also terminated 

to a finite one when there is no further information. In this case, payoff matrices at 

the lowest level repeat those at upper levels. By referencing the repeated payoff ma-

trices at the upper levels, we form the recursive formulas. By solving the recursive 

formulas, with no assumption made, agents can determine their best actions. 

2.4.2 Resultant Payoff 

Using the original RMM, with an assumed probabilistic approximation, we show in 

section 2.2.3 that Ri can only choose to stay still in the example setting, with zero 

payoff. In section 2.3.4，we show that Ri can determine that it can choose to obtain 

Ga by solving the recursive formulas, getting a payoff of 5. In this way, Ri can 

increase its utility compared to making decision with the original RMM. 
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2.5 Summary 

Agents can use the Recursive Modeling Method (RMM) to represent their knowl-

edge, predict other agents' actions and then choose their own actions, that is to 

choose which goal to obtain or choose whether to stay still. In this chapter, we 

present and compare the original design and the modified design of RMM by an 

illustrative example. The modified design of RMM improves the probabilistic ap-

proximation of the original one by recursive formulas. 

In this thesis, we have not mention how the recursive formulas can be solved in 

a computationally tractable way, which is out of the scope of this thesis. As future 

work, we are going to design an algorithm for solving the recursive formulas. In 

addition, we are going to compare the performance of the original RMM with that 

of the improved RMM through simulations. 



Chapter 3 

A Trust/Honesty Model 

RMM describes a decision making strategy for agents to choose which goal to ob-

tain. In a semi-competitive environment, an agent has motivation to tell the truth 

when it wants to invite another agent to cooperate. On the other hand, an agent 

has motivation to tell lie when it wants to mislead other agents. As a result, on 

receiving a message, the receiver needs to decide whether to believe the message or 

not. To help receivers choose such actions, we propose a Trust Model. As receivers 

employ a Trust Model, receivers become less easy to cheat. As a result, senders 

cannot always tell lies. To help senders determine whether to tell lies, we propose 

an Honesty Model. In this chapter, we present the Trust/Honesty Model, which 

helps agents choose such actions. We first introduce the needs for the model, and 

then we present the model. 

3.1 The Need for a Trust Model 

The following example shows that agents have motivations to tell the truth and 

agents also have motivations to tell lies in a semi-competitive environment. As a 

result, receivers need to choose whether to believe the message or which message to 

believe. The example also shows that agents cannot make the decision by consider-

ing only the expected payoffs of the messages. To help agents make the decisions, 

we need a Trust Model. 

28 
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3.1.1 Motivation to Tell the Truth: Invitation to Cooperate 

Agents are self-interested, and always want to maximize their own respective util-

ities. Therefore, in the semi-competitive environment, it is not always good for an 

agent to share all of its information with other agents. Consider the example de-

scribed in section 2.1. From section 2.3.5, by recursive formulas, Ri chooses to 

obtain Gs, getting a payoff of 5. In addition, it models that R2 will choose to obtain 

Gi and R3 will choose to obtain G<i. However, from Ri’s payoff matrix in Fig. 2.3, 

Ri knows that it can increase its payoff by obtaining Gi, getting a payoff of 8，if 

R2 chooses to obtain G3 instead of Gi. To invite R2 for cooperation, Ri consid-

ers it rational to send R2 the information about G3, which is unknown to R2. This 

message, Mi , should look like this: "You can obtain the goal G3, with worth 20’ 

cost iRi-^Gz) = 15，cost(R2^G3) = 2，costiR^-^G^) = 5 and Ga's priority list is 

< R2, R3, Ri >.’’ 

After communication, if R2 believes the message Mi，the model of i?2’s decision-

making situation will be changed. The payoff matrix describing R ^ s decision-

making situation with the new knowledge of the presence of G3 will become the 

one in Fig. 2.9. From which, it can be seen that if R2 believes the message Mi, it 

will choose to obtain G3. This is because R2 can get a payoff of 18 by obtaining G3, 

no matter what actions other agents take. In fact this payoff is also the best payoff it 

can get among all its possible actions. If R2 believes and follows the message Mi, 

Ri can also increase its payoff from 5 to 8 by obtaining Gi instead of obtaining G3. 

This shows an example in which agents can benefit mutually by cooperation. This 

also shows that agents have incentives to tell the truth. 

3.1.2 Motivation to Tell a Lie: to Prevent Competition 

At the same time, R^ can maximize its payoff by obtaining G3. However, it has 

a lower priority than R2, which means that it needs to compete with R2. So, to 

prevent competition with R2, R3 considers it rational lying to R2 and directing it to 
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Nature 

Ml is True Mi is False 
R2 Believe 18 - 2 

Not Believe 6 6 

Table 3.1: The payoffs of R2 with respect to its trust on Mi and the nature of Mi 

Nature 

M2 is True M2 is False 
R2 Believe 20 - 4  

Not Believe 6 6 

Table 3.2: The payoffs of R2 with respect to its trust on M2 and the nature of M2 

a fake goal. This message, M2, should look like this: "You can obtain the goal G4, 

with worth 24, cos t (Ri^G4) = 50, cost(R2^G4) = 4, cost(R3—G4) = 50 and GVs 

priority list is < 尺1, R s � . ” This shows an incentive for an agent to lie. 

3.1.3 To Believe, or Not to Believe, that is the Question 

Now R2 receives two messages: Mi from Ri and M2 from R3. If R2 believe Mi, it 

will choose to obtain G3. In this way, R2 can gain a payoff of 18 if the message Mi 

is true, and loss the cost of 2 if the message Mi is a lie. On the other hand, if R2 

does not believe the message Mi, it will choose to obtain Gi and get a payoff of 6 

no matter the message Mi is true or not. The payoffs of R2 with respect to its trust 

on Ml as well as the nature of Mi are summarized in Table 3.1. However, if R2 

believes M2, it will choose to obtain G4. In this way, R2 can gain a payoff of 20 if 

the message M2 is true, and loss the cost of 4 if the message M2 is a lie. Otherwise, 

it will choose to obtain Gi, getting a payoff of 6 no matter the message M2 is true 

or not. The payoffs of R2 with respect to its trust on M2 as well as the nature of M2 

are summarized in Table 3.2. 

Now, R2 faces a difficult question. If R2 makes the simple assumption that the 
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Expected Utility 

Believe and follow Mi | x (18 - 2)=8 
Believe and follow M2 | x (20 - 4)=8 

Not Believe Mi | x (6 + 6)=6 
Not Believe M2 | x (6 + 6)=6 

Table 3.3: Resulting expected utilities 

probability for Ri or R3 telling the truth to be then the resulting expected utilities 

are shown in Table 3.3. From the table, it can be seen that both the expected utilities 

of believing and following Mi as well as M2 are higher than that of believing neither 

Ml nor M2, so R2 will believe either Mi or M2, or both. However, believing Mi 

will lead R2 to obtain the goal G3 and believing M2 will lead R2 to obtain the goal 

G4, which are two different actions. Since each agent can only take one action, R) 

has to choose to follow either Mi or M2, but not both. As the expected utilities 

of believing and following Mi and believing and following M2 are the same, R2 

cannot determine whether to follow Mi or M2. ^ 

3.2 The Trust Model 

3.2.1 Impression 

From Cambridge Dictionaries Online [htta], Impression is "the opinion you form 

when you meet someone or see something." 

From Merriam-Webster Online [httb], Impression is "a telling image impressed 

on the senses or the mind." 

We suggest that in semi-competitive environments, each receiver should main-

tain an impression on each sender based on its experience. A sender gives a good 

'in this paper, we assume that if an agent believes a message, the agent believes all the informa-
tion provided by the message. It is arguable that an agent can, in general, choose to believe only 
some parts of the message. However, this is not our scope of discussion. 
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impression to a receiver if and only if the former has told truths to the latter, which 

has brought the latter benefits. Follow the definitions in the dictionaries [htta, httb], 

we define the impression that receiver i has towards sender j to be a real number in 

[-1,1]： 

impij = fi{J2 gaiuij, ^ossij.p, n) 

where ^ ga iu i j is the sum of the utility that agent i has gained by having believed 

the truths from agent j, lossij is the sum of the utility that agent i has lost by 

having believed the lies from agent j, p is the number of times that agent j has told 

the truth, and n is the total number of messages that agent i has received from agent 

j. The function fi must satisfy the following axioms: 

Axiom fii： f i is continuous. 

Axiom fi2: f i strictly increases a sp increases. 

Axiom fi3: fi increases as ^ g a i r i i j increases. 

Axiom fi4： f i decreases as lossij increases. 

Axiom /i5： fi = 0 when n = 0. 

Axiom fie： For ^ gairiij - Yj lossij, fi = 0 when p = n — p, fi > 0 when 

p > n — p, and fi < 0 when p < n — p. 

Axiom fiY： fi > 0 when ^ gairiij > lossij and p > n — p. 

Axiom fi8: fi<Q when ^ gairiij < lossij andp <n — p. 

Axiom fiQ： fi < 0 when ^ gairiij�X/ lossij and p <i n — p. 

Axiom fiio： f i < 0 when ^ gairiij < lossij mdp > n — p. 
Axiom fi2 states that it is rational that impression will increase if the number of 

times that the message sender has told the truth to the receiver increases. Axiom 

fis means it is rational that impression will increase if the sum of the utility that 

the receiver has gained by having believed the messages from the sender increases. 

Axiom fi4 describes that it is also rational that impression will decrease if the sum 

of the utility that the receiver has lost by having believed the messages from the 

sender increases. 

Axiom /i5 says that impression will be neutral if agent i receives no message 
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from agent j. For the gain in utility equals the loss in utility (axiom fie), the impres-

sion will also be neutral if the message sender has told the same number of truths 

and lies, the impression will be positive if the sender has told more truths than lies, 

and the impression will be negative if the sender has told more lies than truths. 

From axiom /^了，if the gain in utility is greater than the loss in utility and the 

sender has told more truths than lies (or the same number of truths and lies), this 

means that the message sender is good to the receiver, so the receiver will have a 

positive impression towards the message sender. On the other hand, from axiom fig, 

if the loss in utility is greater than the gain in utility and the sender has told more 

lies than truths (or the same number of truths and lies), this means that the message 

sender is doing harm to the receiver, so the receiver will have a negative impression. 

Axiom fiQ is special. If the gain in utility is greater than the loss in utility, but the 

sender has told more lies than truths, it is very likely that the sender is performing 

some kinds of strategy. For example, at the first encounter, the sender tells a truth, 

bringing a utility of 100 to the receiver; but in the following nine encounters, the 

sender lies, which makes the receiver loss a utility of 90 in total, it is obvious that 

the sender is doing harm to the receiver. So, the impression in this case should be 

negative. Axiom fno shows the case in which the sender has told more truths than 

lies, but the gain in utility is less than loss in utility, this means that the lies bring 

more harms to the receiver, so the impression is also negative. 

The following is an example function satisfying the above axioms and the intu-

itive meanings: 

0 n = 0 

. p-ir^-p) E gainij = Yj lossij 
impij = 

- ( ¥ ) ( i � = ;達 = : ; ) E 押 〜 < E 丨 。 

Qtherwise 
^ n /V 2^gamij+2^ lossij > 
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3.2.2 Reputation 

From Cambridge Dictionaries Online [htta], Reputation is "the opinion that peo-

ple in general have about someone or something, . . . , based on past behavior or 

character." 

From Merriam-Webster Online [httb], Reputation is the "overall quality or char-

acter as seen or judged by people in general." 

Follow the definitions in the dictionaries [htta, httb], we define the reputation of 

an agent to be an averaged impression that the population has towards that agent. 

However, the only way for an agent to access other agents' impressions on a par-

ticular agent is to ask other agents for their impressions on that particular agent. It 

is possible that an agent can lie in answering the query, so a weight could be intro-

duced to the answer. In an N agents environment, we define reputation of a sender 

j, as seen by a receiver i, as a weighted sum of individual impressions of a subset of 

the population: 

‘匕P” 一 n 

where Wik is the weight that agent i attaches to agent k's impression on agent j 

and n < N. We shall sometimes omit the phrase "as seen by agent i,, when the 

meaning is unambiguous from the context. Note that each receiver can choose 

its own subset of population and decide the corresponding weights in calculating 

the reputation of a particular sender. Much research has been done on this issue 

[MMH02, RLMOl, SSOl]. In the absence of any knowledge about other agents' 

honesty and trustworthiness, the weights can be assumed to be 1. 

3.2.3 Risk Attitude and Trustworthiness 

In human interaction, different people have different reactions when they are cheated 

by the same lie, and the degree of trust that different people have towards the liar 

will be different. For example, one will consider not trusting the liar anymore once 
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most neutral most 

risk-averse risk-seeking 

| _ I I 

0 0.5 1 

Figure 3.1: Risk attitude 

he is cheated, while another person may continue trusting the liar even he is cheated. 

This is because different people have different attitudes towards risk: some do not 

mind taking any risk, some do not want to take any risk, while others are neutral. 

To model this, we propose to include the risk attitude of the receiver in calculating 

its trustworthiness on the sender. The risk attitude here does not mean the risk un-

dertaken by the agent, but rather an index, which reflects the amount of risk that the 

agent is willing to undertake. Here, we define risk attitude, r, of an agent to be a real 

number in [0,1], which is shown in Fig. 3.1. Agents with risk attitude being 0 are the 

most risk-averse while agents with risk attitude being 1 are the most risk-seeking. A 

risk-averse agent prefers messages from a sender with high trustworthiness, while 

a risk-seeking agent prefers messages with high utilities. This risk attitude is deter-

mined by the agent itself, like the personality of human, and can change over time. 

In the example shown in section 3.1.3, it can be seen that considering expected 

utility alone is not enough for an agent to determine which message(s) to believe 

and follow when multiple messages are received. In fact, it is dangerous for an agent 

to believe and follow a message just because the expected utility of the message is 

attractive: the agent can be cheated easily. We propose that in a multiagent semi-

competitive environment, each receiver should maintain a trustworthiness to every 

sender of the messages it receives. In other words, for each ordered pair < Ri, R) > 

we associate a trustworthiness of R2 as seen by Ri. We shall sometimes omit the 

phrase "as seen by when the meaning is unambiguous from the context. 

From Cambridge Dictionaries Online [htta], Trustworthiness is the property of 
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being "able to be trusted," while trusting is "to have belief or confidence in the 

honesty, goodness, skill or safety of a person, organization or thing." 

From Merri am-Webster Online [httb], Trustworthiness is the property of being 

"worthy of confidence." 

We define trustworthiness, tij, that receiver i has towards sender j as a func-

tion of the impression that agent i has about agent j, agent f s calculation on the 

reputation of agent j as well as the risk attitude of agent i: 

Uj = ft{impij,repij,ri) 

The function f t returns a real number in [ - 1 , 1 ] , and must satisfy the following 

axioms: 
Axiom fti： f t is continuous. 

Axiom ft2: ft decreases as impij decreases and vice versa. 

Axiom ft3: f t decreases as repij decreases and vice versa. 

Axiom ft4： ft decreases as ri decreases and vice versa. 

Axiom ft2 states that it is rational that the trustworthiness of the sender de-

creases if the receiver's impression on it decreases and vice versa. Similarly, axiom 

ft3 states that it is rational that the trustworthiness of the sender decreases if its 

reputation decreases and vice versa. Axiom states that if the risk attitude of the 

receiver decreases, which means the receiver becomes more risk-averse and thus 

less willing to trust other agents, the evaluated trustworthiness of the sender will 

decreases. 

An example function satisfying the above axioms and the intuitive meanings 

is shown below, which attaches the same degree of importance to impression and 

reputation, and is in proportion to the agent's risk attitude. 

tij = 一•卩广ep., X 
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3.2.4 Persuasiveness of a Message vs. Stubbornness of the Re-

ceiver 

On determining whether to believe and follow a particular message, besides con-

sidering the expected payoffs that the receiver can gain by believing the message, 

trustworthiness of the message sender should also be considered. Formally, a re-

ceiver makes use of a persuasiveness function fp to rank the messages and choose 

to follow the message that has the highest value of persuasiveness. The persuasive-

ness, pm, of a message M is defined by: 

Pm = f p ( n , t i j , U k ) 

Intuitively, the function fp takes the risk attitude n of the receiver i as the first 

argument, the trustworthiness tij of the message sender j’ as seen by receiver i, 

as the second argument and the expected utility Uk of the message k as the last 

argument, and returns a real number in [ - 1 , 1 ] as the rank of the message. The 

function fp must satisfy the following axioms: 

Axiom /pi： fp is continuous. 

Axiom fp2: {Adventurousness of risk-seeking agents) There exists a 

value ro e 况 such that /p(r, t), tii) > fp(r, ti, U2) if and only 

if r > ro, ti > 亡2 and ui > U2. 

Axiom /p3： {Cautiousness of risk-averse agents) There exists a value 

rj) € such that /p(r, ui) < fp(r, ti, U2) if and only if 

r < rg, ti > t2 and ui > 112. 

Axiom fp4： if ui > U2, /p(r, t, ui) > /p(r’ t, U2) for r > r�and 

fp(r, t,ui) < fp{r, t, U2) for r < r'�. 

Axiom /p5： if h >�2’ fp(r, ti, u) > /p(r, t2, u). 

A x i o m /p6： if n > r2, fpin，t, u) > /p(r2, t, u). 

It is obvious that the domains of the inputs of fp are continuous, so fp should 

be continuous. Besides, it is reasonable that utility will be more attractive than the 

trustworthiness of the message sender to a risk-seeking receiver, and vice versa to a 
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risk-averse receiver. These bring about axiom fp2 and Axiom /p3. Axiom /p4 states 

that if a receiver receives two messages from senders with the same trustworthiness, 

but with different payoffs, it is rational that a risk-seeking receiver is more willing 

to follow the message with higher payoff. However, it is rational that a risk-averse 

receiver is cautious for the message with higher payoff. Axiom fps states that if a 

receiver receives two messages from senders with different trustworthiness, but with 

same payoffs, it is rational that the receiver is more willing to follow the message 

from sender, which is more trustworthy. Axiom fpe means that the persuasiveness 

of the same message from the same sender, with the same trustworthiness, decreases 

if the receiver become more risk-averse. 

Theorem 1. ro (in axiom fp2) equals r^ (in axiom fp3). 

Proof. Assume ro is not equal to rfj, this results in the following two cases: 

Case 1. Vq > ro By axiom /p2, if r > r � ’ ti > 艺2 and ui > U2, fp(r,力2’ •"i) > 

fp{r, ti, U2). By axiom fp3, if r < r'。，ti > t) and ui > U2, fp(r,力2，ui) < /p(r, ti, 

"2). As a result, for r �< r < r^, /p(r,之2’ ui) > fp(r, t!, U2) and fp(r,力2’ ui) < 

fp(r , i i , U2), which is a contradiction. 

Case 2. rj, < r � B y axiom fp2, fp(r, t2, ui) > /p(r, t i , U2) if and only if r �r。， 

h > t2 and ui > U2, so for r < r。，fp{r, t], «i) < fp(r, h, U2). By axiom /ps, /pO, 

艺2’ wi) < fpir, h, U2) if and only if r < r^, ti > t) and ui > U2, so f o r r > r'�, fp(r, 

h, ui) > fp(r, ti, U2). As a result, for r'�< r < ro, fp(r,�2, < fp(x, ti，112) and 

fp(r, t2, ui) > fp(r, ti, U2), which is a contradiction. 

So ro equals r '�. • 

A simple example satisfying the above axioms, fp can be defined as follows:^ 

‘ f o r r < 0 . 5 

fp{r,t,u) = H±i f o r r = 0.5 

f o r r < 0 . 5 \ ^ 

^In this formula, the utility is assumed to be in the range [0,1]. 
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With this function, the more risk-averse the receiver is, the more important the 

trustworthiness of the sender is in making decision. The more risk-seeking the 

receiver is, the more important the utility of the message is, while receivers with 

neutral risk attitude consider trustworthiness of the sender and utility of the message 

to be the same important. 

If a receiver receives only one message, it should believe and follow the message 

only if the persuasiveness of the message is higher than a certain threshold. We 

call this the stubbornness of the receiver to the sender, which is a real number in 

[ - 1 , 1 ] . We shall sometimes omit the phrase "to the sender" when the meaning 

is unambiguous from the context. Each receiver maintains a stubbornness to each 

message sender, which can be changed over time, like personality of human. If 

more than one message is received at a time, as an agent can only choose one action 

in one single round, the receiver should believe and follow the message with the 

greatest persuasiveness, among those messages having a persuasiveness greater than 

the corresponding stubbornness to the senders. 

From the definition of the /p function, it is easy to see that it is possible that two 

messages have the same value of persuasiveness. This means that the two messages 

apparently are having the same expected utility and both are from sources with the 

same degree of reliability. In this case, the effect on believing and following which 

message will have no difference, so the agent can simply throw a dice to determine 

which message to believe and follow. Another problem is that a message with 

an extremely high utility will cause a risk-seeking agent to follow. First, we note 

that this actually mimics a real-life phenomenon occurring in human community. 

Second, at the end of a round when the worth of the goals are given to the agents, an 

agent actually will know whether it has believed and followed a true message or a 

lie, and a cheated agent then decrease its impression on the message sender who lied 

to it, and thus decrease the trustworthiness of the liar. In Iterated Game described in 

the following section, the impression, reputation, trustworthiness, risk attitude, and 

stubbornness of agents preserve in the transition from one round to another round, 
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an agent will be cheated for only the first few times, and will not believe further 

messages from the same message sender. 

Theorem 2. If two messages Mi and M2, with expected utilities ui, 112 and trust-

worthiness of message senders ti,力 2, respectively, where ui > U2 and h > h，are 

sent to all receivers with different risk attitudes. Then there exists a constant r�G 况 

depending only on ui, U2 and ti,力2，such that all the receivers with risk attitude 

r > ro will choose to believe and follow Mi and all the receivers with risk attitude 

r < ro will choose to believe and follow M2 if persuasiveness of the messages are 

greater than the receivers' stubbornness. 

Proof. Receiver uses a function fp to rank the messages and choose to believe and 

follow the message that has the highest value of fp, where fp must satisfy axioms 

/pi to axioms fpQ. Since t ? �h and ui > U2, by axiom fp2, there exists a value r � 

€ 况 such that fp(r, ti, ui) > fp{r, t], U2) if and only if r > r � . And by axiom fp3’ 

there exists a value rfj e 况 such that /p(r, ti, ui) < /p(r, t2, U2) if and only if r < r'^. 

By Theorem 1, r = r'^. So, for ui > U2 and tq > h , there exists a value ro G 

such that if r > r � ’ then /p(r, ti, iii) > fp{r,艺2’ “2), which means the receiver will 

choose to believe and follow message Mi, and if r < r。，then fp(r, ti, ui) < fp(r, 

�2’ U2), which means the receiver will choose to believe and follow message M2 if 

persuasiveness of the messages are greater than the receivers' stubbornness. • 

Theorem 3. Suppose there are two receivers Ri and R2, with risk attitudes n and 

T2 respectively, where ri > 7^2, that is receiver Ri is more risk-seeking than receiver 

R2. Then there exist two messages Mi and M�’ with expected utilities Ui, U2 and 

trustworthiness of message senders ti, ^2, respectively, where ui > U2 and t2 > ti, 

such that when these two messages are sent to Ri and R2, Ri will choose to believe 

and follow message Mi and R2 will choose to believe and follow message M2 if 

persuasiveness of the messages are greater than the receivers ‘ stubbornness. 

Proof. By theorem 2，for any two messages Mi and M2, with expected utilities ui, 

U2 and trustworthiness of message senders ti,力2’ respectively, where ui > U2 and 
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t2 > t i , there exists a constant r �€ 况 depending only on u i , U2 and ti,艺2，such 

that all the receivers with risk attitude r > ro will choose to believe and follow Mi 

and all the receivers with risk attitude r < ro will choose to believe and follow M2 

if persuasiveness of the messages are greater than the receivers' stubbornness. In 

other words, proving theorem 3 is to find the two messages such that r2 < vq < r i . 

We do this by first initialize two messages Mi and M2, with expected utilities ui , 

U2 and trustworthiness of message senders t i , � 2 ’ respectively, where ui > 112 and 艺2 

�t i . When these two messages are sent to the two receivers, one of the following 

four cases will result: 

Case 1. Both of Ri and R2 choose to believe and follow message Mi. In this 

case, generate another two messages M[ and M'), with expected utilities u[, u'2 and 

trustworthiness of message senders i'�respectively, where > u'^, t') > t[, 

厂2 >t2 and t\ < ti. 

Case 2. Both of Ri and R2 choose to believe and follow message M2. In this 

case, generate another two messages M[ and M^，with expected utilities u'2 and 

trustworthiness of message senders respectively, where u[ > ?4’ i'^ > 

u\ > III and U2 < U2. 

In case 1 and case 2，the process is continued by sending the new messages M[ 

and M'2 to the agents, replacing the old messages Mi and M2. As r is a real number, 

as long as n �r 2 , there exists ro € , such that r2 < tq < r i . So, eventually, the 

process converge and case 3 will results. 

Case 3. Ri chooses to believe and follow message Mi and R2 chooses to believe 

and follow message M2. In this case, the theorem is proved. 

Case 4. Ri chooses to believe an follow message M2 and R2 chooses to believe 

and follow message Mi . In fact, this case will never happen. Suppose Ri and R2 

choose to believe and follow different messages, as n > r?，and by theorem 2， 

r2 < To < vi, which means Ri will choose to believe and follow message Mi and 

R2 will choose to believe and follow message M2. • 
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The following theorem states that it is rational for a risk-seeking receiver to 

believe a message with a higher utility and from a more trustworthy source, rather 

than a message with a lower utility and from a less trustworthy source. For a risk-

averse receiver, as it will be cautious for the message with a higher utility, which 

message it believes depends on the actual values of the trustworthiness, utilities, 

risk attitude and stubbornness. 

Theorem 4. For risk attitude r > ro, trustworthiness ti and 力2, and utilities ui and 

U2, where ti > t) andui > U2, fp(r, ti, ui) > fp(r, U2). 

Proof. From axiom /p4, if ui > U2, /p(r, t i , Ui) > /p(r, ti, U2) for r > vq. From 

axiom fp5, if > � 2， f p ( r , tu ^2) > fp{r,力2’ So, /p(r, h, ui) > fp(r, h, U2) > 

fp(r, t2, U2). That is fp(r, tu ui) > fp{r, t], U2). 口 

Intuitively, if a receiver becomes more risk-averse and lowers the trustworthi-

ness of the message sender after it is being cheated, then when this receiver receives 

the same message from the same sender (with trustworthiness lowered), it should be 

less willing to follow the message. This phenomenon is confirmed by the following 

theorem. 

Theorem 5. For risk attitudes ri and r�’ trustworthiness ti and 力2, and utility u, 

where n > 7,2 andti > 九2，fp(ri，h, u) > /p(r2, u). 

Proof. From axiom /ps, if n > r2, /p (n ’ h, u) > /p(r2’ ti , u). From axiom fps, if 

ti > t2, /p(r2, h, u) > /p(r2，h, u). So, /p(ri , ti, u) > fp{r2, h, u) > fpir-2,�2’ u). 

That is /p(r i , h, u) > /p(r2,之2’ ti). • 

3.3 The Need for an Honesty Model 

We define an Iterated Game to be a game consists of a series of Single-round games, 

in which one round of game proceeds after another. There is a completely new set 

of goals in each round of game. The impression, reputation, trustworthiness, risk 
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attitude, and stubbornness of agents preserve in the transition from one round to 

another round and the values will be updated at the end of each round. 

In a Single-round Game, receivers can only discover the truth at the end of the 

game. So, senders can always tell lies, because lying can bring utility gain but brings 

no penalty in a Single-round Game. However, in Iterated Games, after a receiver 

discovers that it is cheated, it will rationally decrease the sender's trustworthiness, 

and in addition it may become more risk-averse and stubborn, so as to prevent itself 

from being cheated again. As a result, although lying brings an increase in utility, 

lying in Iterated Games also brings a penalty of lost in trustworthiness. In this 

section, we show the needs for a sender to decide whether or not to tell lies and we 

show how it can do so in the next section. 

3.3.1 To Lie, or Not to Lie, that is the Question 

For naive receivers that do not employ any trust model, it is rational for a sender to 

lie, if it can model that the receiver will believe the message and change its action 

accordingly, which brings the sender an increase in utility. In fact, a sender can lie 

that the worth of a fake goal is extremely large, so that it can always be sure that 

the receiver will believe the message as receivers with no trust model consider only 

expected utility. This means that agents will always choose to lie. However, the 

receivers become less easy to be cheated after employing a trust model. In addition 

to the expected utility, a receiver also takes into account the trustworthiness of the 

message sender, when it decides whether to believe the received message. As a 

result, a sender also needs to consider if the receiver will actually be cheated before 

telling lies. So, whether or not to lie becomes a question. 

3.3.2 Problem of Living a Lie 

Suppose Ra knows that R^ has a higher priority than Ra in all the goals' priority 

ordering of agents. In order for Ra to get any worth, it must direct Rh to some fake 
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goals. This can be done by sending a message to Rb, which looks like: "There is a 

goal G, which worths 1000 and only costs you 10." If R^ is risk-seeking enough, or 

if the worth of the goal is attractive enough, R^ will believe the message and choose 

to obtain the fake goal. In this way, Ra can obtain any goal it wants. However, no 

agents can live a lie in Iterated Games. It is because whenever an agent discovers 

that it is cheated by another agent, its impression on the liar, the liar's reputation, 

as well as the trustworthiness of the liar will be decreased. Eventually, that agent 

being cheated will stop believing the lair. In this example, if Ra tells a lie to Rb, 

which makes Rb loss utility, Rb,s impression on Ra and RaS reputation will be 

decreased and so as the trustworthiness of Ra. After several iterations, Rb may no 

longer believe Ra anymore. As a result, agents need to choose whether to tell lies 

or not in an Iterated Game. 

3.4 The Honesty Model 

3.4.1 Impression 

In semi-competitive environments, each sender also maintains an impression on 

each receiver, based on its past experience. We define the impression that sender i 

has towards receiver j to be a real number in [—1，1]: 

i 爪 Pij = fi{Y^gainij,Y^lossij,p,n) 

where ^ gaiiiij is the sum of the utility that agent i has gained by successfully 

cheating agent j, lossij is the sum of the utility that agent i has lost by unsuc-

cessfully cheating agent j, p is the number of times that agent j has been successfully 

cheated by agent i, and n is the total number of times that agent i lie to agent j. This 

function follows the same set of axioms as described in section 3.2.1: 
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Axiom f i i : f i is continuous. 

Axiom fi2： fi strictly increases a s p increases. 

Axiom fi3: fi increases as ^ gairiij increases. 

Axiom fi4: f i decreases as ^ lossij increases. 

Axiom fi5： f i = 0 when n = 0. 

Axiom fie： For ^ gairiij = ^ lossij, fi = 0 when p = n — p, fi > 0 when 

p > n _ p, and / i < 0 when p < n — p. 

Axiom fi7： fi > 0 when ^ gairiij > ^ lossij and p > n — p. 

Axiom fis： fi < 0 when ^ gairiij < lossij and p < n — p. 

Axiom fi9: fi < 0 when gciiriij > X) lossij andp < n — p. 

Axiom fiio： fi<0 when ^ gairiij < XI lossij and p > n — p. 

Axioms fi2 and fis state that sender will have a better impression on the receiver 

if the number of times that the receiver is cheated by the sender increases, or the 

sum of utility that the sender has gained from the receiver increases. On the other 

hand, axiom /,-4 states that impression decreases when the sum of utility that the 

sender has lost increases due to the receiver's distrust on it. 

Axioms /i5 and fiQ say that impression will be neutral if there is no interaction 

between the sender and the receiver, or if the sender gains as much as loses and the 

receiver is cheated successfully and unsuccessfully for the same number of times, 

while impression will be positive if the number of times that the receiver is cheated 

successfully is more than that of unsuccessfully, and vice versa. 

From axioms /j-y and fis, impression is positive if the sender gains more than 

loses and the number of times that the receiver is cheated successfully is more than 

(or equal to) that of unsuccessfully and vice versa. Axiom fiQ state that even if the 

sender gains more than loses but the number of times that the receiver is cheated 

successfully is less than that of unsuccessfully, the sender should be cautious for 

this receiver and the impression is negative. Similarly, impression should also be 

negative if the sender loses more than gains even if the number of times that the 

receiver is cheated successfully is more than that of unsuccessfully, which is axiom 



Chapter 3 A Trust/Honesty Model 46 

fiio. 

The following is an example function satisfying the above axioms and the intu-

itive meanings: 

( 

0 n = 0 

. E gainij = J ] lossij 
impij = 

� ( ¥ ) (台 o t h e r w i s e 

3.4.2 Reputation 

Similarly, each sender also maintains a reputation on each receiver about ease of 

being cheated by asking other agents for their impressions on that particular agent. 

It is also possible that an agent can lie in answering the query, so a weight could 

be introduced to the answer. In an N agents environment, we define reputation of a 

receiver j, as seen by a sender i, as a weighted sum of individual impressions of a 

subset of the population: 

rep “ = 口 

where Wik is the weight that agent i attaches to agent k's impression on agent j 

and n < N. In the absence of any knowledge about other agents' honesty and 

trustworthiness, the weights can be assumed to be 1. 

3.4.3 Risk Attitude and Deceivability 

A dual of the trustworthiness in the trust model, a deceivability is maintained by 

each sender to each receiver, which shows how easily the receiver can be cheated 

as seen by the sender. We define deceivability, Cij, of receiver j from sender f s 

point of view, as a function of the impression that agent i has about agent j, agent f s 

calculation on the reputation of agent j as well as the risk attitude of agent i, which 

returns a real number in [—1,1]: 
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Cij = fc(impij,repij,ri) 

The function fc must satisfy a similar set of axioms for function f t as stated in 

section 3.2.3: 
Axiom fci: fc is continuous. 

Axiom /c2： fc decreases as impij decreases and vice versa. 

Axiom /c3： fc decreases as repij decreases and vice versa. 

Axiom /c4： fc decreases as 7�decreases and vice versa. 

Axioms fc2 and fcs state that it is rational that the deceivability of the receiver 

decreases if the sender's impression on it decreases, or the receiver's reputation 

decreases and vice versa. If the risk attitude of the sender decreases, which implies 

that the sender becomes more risk-averse and thus less willing to cheat other agents, 

then the evaluated deceivability of the receiver will decrease. This is axiom 

An example function satisfying the above axioms and the intuitive meanings 

is shown below, which attaches the same degree of importance to impression and 

reputation, and is in proportion to the agent's risk attitude. 

3.4.4 Temptation of Lying vs. Sincerity of the Sender 

For a sender to decide whether to tell a lie, besides considering the expected payoffs 

that the agent can gain by lying, it should also consider the deceivability of the 

receiver. Formally, a sender makes use of a temptation function ftp to calculate the 

temptation of lying. The temptation, ti, of a lie L is defined by: 

th = ftp{ri,Cij,Uk) 

Intuitively, the function ftp takes the risk attitude ri of sender i as the first argument, 

the deceivability Cij of receiver j as seen by agent i as the second argument and the 

expected increase in utility Uk as the last argument, and returns a real number in 

[—1,1] as the temptation of lying. The function ftp must satisfy a similar set of 
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axioms for function fp as stated in section 3.2.4: 

Axiom ftpi： ftp is continuous. 

Axiom ftp2： {Adventurousness of risk-seeking agents) There exists a 

value ro G such that ftp(j, C2, ui) > ftpir, ci, ui) if and only 

if r > r � ’ ci > C2 and ui > U2. 

Axiom ftp3: (Cautiousness of risk-averse agents) There exists a value 

rQ G such that ftpir, C2, iii) < ftp(r, ci, W2) if and only if 

r < r'o, ci > C2 and ui > U2. 

Axiom ftp4: if Ui > U2, ftp(r, c, Ui) > ftpir, c, U2) for r > r � a n d 

ftpir, c, ui) < ftpir, c, U2) f o r r < r'^. 

Axiom ftp5: if ci > C2, ftpir, ci, u) > ftpir, C2，u). 

Axiom ftps' if n > 1��/印(n’ c, u) > /印(厂2’ c, u). 

Axiom ftp2 and /印3 state that it is rational for a risk-seeking sender to consider 

expected gain in utility to be more important than deceivability of the receiver, and 

vice versa to a risk-averse sender. At the same time, temptation of lies that bring 

more utility should be higher for a risk-seeking sender, but lower for a risk-averse 

sender, as it is rational for a risk-averse sender to be hesitate to tell a lie with higher 

utility. This brings about axiom ftp4. In addition, the temptation of lying a more 

deceivable receiver should be higher, which is axiom /作5. However, the temptation 

of lying decreases if the sender becomes more risk-averse, which is axiom ftpQ. 

A simple example satisfying the above axioms, ftp can be defined as follows:^ 

‘ ^ ^ ^ ^ ^ f o r r < 0.5 

f t p { r , c , i L ) = 宁 f o r r = 0.5 

f o r r < 0.5 

With this function, the more risk-averse the sender is, the more important the de-

ceivability of the receiver is in making decision. The more risk-seeking the sender 

^In this formula, the utility is assumed to be in the range [0,1]. 
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is, the more important the utility of the lie is, while senders with neutral risk attitude 

consider deceivability of the receiver and utility of the lie to be the same important. 

A sender should decide to tell a lie only if the temptation of lying is greater 

than a certain threshold. We call this the threshold the sincerity of the sender to 

the receiver, which is a real number in [—1,1]. Each sender maintains a sincerity 

to each receiver, which can change over time. If more than one lie can be chosen 

from, the sender should send the lie with the greatest temptation, among those lies 

having a temptation higher than the corresponding sincerity to the receivers. Since 

agents can only choose one action in each round, and the aim of lying is to change 

the competitor's action so as to make its own action compatible, agents will only 

choose at most one lie to send. 

The function ftp also have a set of theorems similar to that stated in section 3.2.4: 

Theorem 6. r � ( i n axiom ftp2) equals r'�(in axiom /作3). 

Proof. Assume ro is not equal to r'�, this results in the following two cases: 

Case 1. v'Q > ro By axiom ftp2, if r > ro, ci > C2 and ui > U2, ftp{r, C2, wi) > 

ftpir, cu U2). By axiom ftps, if r < r'^, ci > C2 and > 112’ ftp{r, C2, wi) < ftp(r, 

ci, U2). As a result, for ro < r < Vg, ftp(r, c� ’ Ui) > ftpir, ci, 112) and ftpir, ui) 

< ftpir, ci, "2)，which is a contradiction. 

Case 2. v'Q < ro By axiom ftp2’ ftpir, C2, ui) > /印(r, ci, 112) if and only if 

r > ro, ci > C2 and ui > U2, so for r < ro, ftp(r, C2, ui) < /印(r, ci, 112). By axiom 

/印3, ftpir, C2, III) < ftpir, ci, U2) if and only if r < r'�, ci > C2 and ui > U2, so for 

r > r'o，ftpir, C2, ui) > ftp(r, ci, U2). As a result, for r'�< r < r。，Upir, Oi, ui) < 

ftpir, ci, U2) and ftpir, c� ’ ui) > ftpir, ci, ^2), which is a contradiction. 

So ro equals 7-Q. • 

Theorem 7. If two lies Mi and M2 are available to all senders with different risk 

attitudes, while Mi and M2 have expected utilities ui, U2 and deceivability of re-

ceivers Ci, C2, respectively, where ui > 112 and C2 > ci. Then there exists a constant 
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ro G 况 depending only on ui, U2 and ci, c^, such that all the senders with risk atti-

tude r > ro will choose to send out Mi and all the senders with risk attitude r < r � 

will choose to send out M2 if temptation of the lies are greater than the senders， 

sincerity. 

Proof. Sender uses a function /印 to rank the lies and choose to tell the lie that has 

the highest value of ftp, where ftp must satisfy axioms /印 1 to axioms ftp6- Since 

> ci and III > "2’ by axiom ftp2, there exists a value ? � �G 况 such that ftp(r, ci, ui) 

> f tpir , C2, U2) if and only if r > tq. And by axiom /印3’ there exists a value r^ e 况 

such that f tp i r , ci, u i ) < /作(r’ C2, u^) if and only if r < r '�. By Theorem 6, r = r'^. 

So, for ui > 112 and C2 > ci, there exists a value ro G 况 such that if r > r。，then 

ftp(r, ci, III) > ftp{r, C2,112), which means the sender will choose to tell lie Mi, and 

if r < ro, then f tpir , ci, < /印(r, C2, U2), which means the sender will choose to 

tell lie M2 if temptation of the lies are greater than the senders' sincerity. • 

Theorem 8. Suppose there are two senders Ri and R2, with risk attitudes ri and 7^2 

respectively, where n > r?, that is sender Ri is more risk-seeking than sender R). 

Then there exist two lies Mi and M2, with expected utilities ui, 112 and deceivability 

of receivers ci, C2, respectively, where ui > 112 and c^ > c\, such that when these 

two messages are available to Ri and R2, R\ will choose to send message Mi and 

R2 will choose to send message M2 if temptation of the lies are greater than the 

senders' sincerity. 

Proof. By theorem 7，for any two lies Mi and M2, with expected utilities ui, 112 

and deceivability of receivers ci, C2, respectively, where ui > 112 and C2 > ci, there 

exists a constant ro G 况 depending only on ui , u � a n d ci, C2, such that all the 

senders with risk attitude r > ro will choose to tell lie Mi and all the senders with 

risk attitude r < ro will choose to tell lie M2 if temptation of the lies are greater than 

the senders' sincerity. In other words, proving theorem 8 is to find the two lies such 

that r2 < ro < n . We do this by first initialize two lies Mi and M2, with expected 

utilities u i , 112 and deceivability of receivers ci, c�，respectively, where ui > u � a n d 
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C 2 �c i . When these two lies are available to the senders, one of the following four 

cases will result: 

Case 1. Both of Ri and R2 choose to tell lie Mi. In this case, generate an-

other two messages M[ and MJ, with expected utilities u\, u'2 and deceivability of 

receivers c'” respectively, where > u^, 4 > c\, c'^ >C2 and c\ < ci. 

Case 2. Both of Ri and R2 choose to tell lie M2. In this case, generate an-

other two messages M{ and MJ, with expected utilities u[, u'̂  and deceivability of 

receivers respectively, where u \ �u ^ , c'2 > u\ > ui and 112 < U2. 

In case 1 and case 2，the process is continued by replacing the old lies Mi and 

M2. As r is a real number, as long as r i > r�，there exists vq E ^ , such that 

< < So, eventually, the process converge and case 3 will results. 

Case 3. Ri chooses to tell lie Mi and R2 chooses to tell lie M2. In this case, the 

theorem is proved. 

Case 4. Ri chooses to tell lie M2 and R2 chooses to tell lie Mi. In fact, this 

case will never happen. Suppose Ri and R2 choose to tell different lies, as 7 � > 7̂ 2, 

and by theorem 2，7,2 < ro < which means Ri will choose to tell lie Mi and R2 

will choose to tell lie M2. • 

It is rational for a risk-seeking sender to send out a lie with a higher utility to a 

more deceivable receiver, rather than a lie with a lower utility and to a less deceiv-

able receiver. For a risk-averse sender, as it will be hesitate to tell a lie with a higher 

utility, which lie it chooses to send depends on the actual values of the deceivability, 

utilities, risk attitude and sincerity. This is represented by the following theorem. 

Theorem 9. For risk attitude r > ro, deceivability ci and C2, and utilities ui and 

U2, where Ci > C2 and u! > U2, ftp(r, ci, Ui) > ftp(r’ C2, 112)-

Proof. From axiom ftjA, if ui > U2, ftp{r, ci, Ui) > /印(r, ci, 112) for r > t q . From 

axiom /印5，if ci > C2, /印(r，ci, 1̂ 2) > ftp{r, C2, U2). So, ftp{r, ci, ui) > ftpir, ci, 

U2) > ftpir, C2, W2). That is /印(r’ ci, ui) > ftpir, C2, W2). • 
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The following theorem confirms that if a sender becomes more risk-averse and 

lowers the deceivability of the receiver after it fails to cheat the receiver, then it 

should be less willing for the sender to tell the same lie to the same receiver (with 

deceivability lowered). 

Theorem 10. For risk attitudes 7�i and 7’2, deceivability ci and C2, and utility u, 

where n > r] and ci > C2, /<p(Vi, Q, u) > ftp(r2, C2, u). 

Proof. From axiom ftps, if n > ？》，ftpiri, ci, u) > /作(r?’ ci, u). From axiom ftps, 

if Ci > C2, ftp(T2, Ci, u) > ftp(r2, C2, u). So, ftpivi, Ci, u) > ftpiv:, Ci, u) > ftp{r2, 

C2，u). That is ftpO�, ci, u) > ftp(r2, oi, u). • 

3.5 Duality of the Trust/Honesty Model 

The Trust Model enables receivers to decide whether or not to believe the received 

message(s), while the Honesty Model enables senders to decide whether or not to 

lie. In fact, the Honesty Model for the senders is a dual of the Trust Model for the 

receivers. In both models, receivers and senders maintain impression and reputa-

tion of senders and receivers respectively. In the Trust Model, receivers maintain 

trustworthiness of the senders, while senders maintain deceivability of the receivers 

in the Honesty Model. For a receiver to determine whether to believe the received 

message(s) with the Trust Model, persuasiveness of the messages are compared 

with stubbornness of the receiver. For a sender to determine whether to lie with the 

Honesty Model, temptation of lying is compared with sincerity of the sender. As 

deceivability is a dual of trustworthiness, and persuasiveness is a dual of temptation, 

the functions share similar sets of axioms and theorems. 

3.6 Performance of the Trust/Honesty Model 

Simulations are done to compare performance of agents employing our Trust/Honesty 

Model with performance of agents adopting other models or strategies. The setting 
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of the simulation is as follows. We include receivers and senders adopting our 

Trust/Honesty Model. In addition, we include receivers and senders adopting other 

models or strategies. For receivers adopting our Trust/Honesty Model, a negative 

stubbornness and a risk attitude of 0.2 are used. For receivers adopting Sabater 

and Sierra's REGRET Model [SSOl] and Mui et al.,s Computational Model of trust 

and reputation [MMH02], reputation and trust are calculated with the parameters 

suggested in these papers. These two receivers choose to believe the message from 

a sender with the maximum reputation when several messages are received at a 

time. If only one message is received, receiver adopting Mui et a/.'s Computational 

Model chooses to believe the message if the sender's reputation is greater than 0.5, 

as suggested in the paper [MHM02]. Since Sabater and Sierra have not suggest any 

threshold and 0.5 is general enough to be a threshold, receiver adopting Sabater and 

Sierra's REGRET Model also chooses to believe the message if the sender's repu-

tation is greater than 0.5 when only one message is received. Receivers adopting 

the "Choose Maximum Reputation" strategy chooses to believe the message from a 

sender with the maximum reputation when several messages are received at a time, 

where the reputation is calculated as suggested in this chapter. Using this calcula-

tion, an agent may have negative reputation. So, if only one message is received, 

this receiver chooses to believe the message if and only if the reputation of the mes-

sage sender is positive. Similarly, receiver adopting the "Choose Maximum Utility" 

strategy choose the message with maximum utility to believe when several mes-

sages are received at a time, and chooses to believe the message if the utility of the 

message is greater than 0.5, where the utility is normalized to 1. Finally, receivers 

adopting the Random strategy randomly choose to believe a message when several 

messages are received at a time, and randomly choose to believe or not to believe 

the message when only one message is received. 

In each round, a random semi-competitive scenario is virtually generated. Each 

sender decides whether to tell a lie to a receiver according to its adopted strategy. 

Therefore, it is possible that a receiver receives more than one message at a time. 
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Models/strategies | Utility gain 

Maximum possible utility 1980 
Trust/Honesty Model 1502 
Sabater and Sierra's REGRET Model [SSOl] 521 
Choose Maximum reputation 508 
Mui et al ’s Computational Model [MMH02] 499 
Random -724 
Choose Maximum Utility -812 

Table 3.4: Average utility gain of receivers 

Each receiver then chooses whether to believe the message according to its adopted 

strategy. Note that a receiver adopting the Trust/Honesty Model may believe no 

message at all if the persuasiveness of the messages it receives are all less than its 

stubbornness. At the end of each round, a receiver gains if it has believed a true 

message, or loses if it has believed a lie. On the other hand, a sender gains if the 

receiver has believed its message, or loses if the receiver has not. Then all agents 

update the impressions, reputations, trustworthiness, and deceivability accordingly. 

In these simulations, all agents' risk attitudes, stubbornness values, and sincerity 

values do not change throughout the game. Each game contains 5,000 rounds, and 

the average results of 1,000 games are shown in Table 3.4 and Table 3.5. 

Table 3.4 shows the average utility gain* of receivers. In the table, maximum 

possible utility means the maximum utility a receiver can possibly gain if it is so 

smart as to always choose the right message to believe, and has never been cheated. 

Note that this just serves as a benchmark for the comparison. Experiments show that 

receivers adopting our Trust/Honesty Model significantly outperform the others by 

at least 3 times. This is because the REGRET Model and Mui et al.’s Computa-

tional Model do not take utility into account in making decisions. Utility of the 

receiver adopting the "Choose Maximum Reputation" strategy is similar to those of 

"^Rounded up to the nearest integer. 
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Models/strategies | Utility gain 

Maximum possible utility 1868 
Trust/Honesty Model 1230 
100% Truth 616 
Mui et al. ’s Computational Model [MMH02] 540 
Sabater and Sierra's REGRET Model [SSOl] 501 
Random 50% Truth -678 
Always Lie -1769 

Table 3.5: Average utility gain of senders 

the receivers adopting Sabater and Sierra's REGRET Model and Mui et aL,s Com-

putational Model. The receivers adopting the Choose Maximum Utility strategy and 

the Random strategy end up with negative utilities, because they are easily cheated. 

Table 3.5 shows the average utility gain of senders. Again in the table, maximum 

possible utility means the maximum utility that a sender can possibly get if it can 

always gain receivers' trust. Again, this serves only as a benchmark for comparison. 

Among all senders, sender adopting our Trust/Honesty Model with risk attitude 

0.4 and sincerity 0.8 has the highest utility. The sender adopting the 100% Truth 

strategy always tells the truth. However, receivers may not believe it if the utility 

brought by the messages is not attractive, so its performance is not the best. Senders 

adopting the REGRET Model and Mui et a/.'s model choose to tell lies if the target 

receiver has good reputation of being deceivable,. Their results are similar but not 

very good as they only take reputation into account, but do not consider utility in 

making decision. The sender adopting the Random 50% Truth strategy randomly 

tells 50% of truth and the one adopting the Always Lie strategy always tells lies. 

As a result, their utilities are negative, as their reputations are low and no receiver 

believe them. 

These experiments show that our Trust/Honesty Model significantly outper-

forms other trust models. It helps agents to achieve a utility that is about two to 

three times better than that achieved by agents adopting other trust models reported 
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in the literature. Experiments also show that considering only reputation or only 

expected utility cannot achieve high utility. 

3.7 Summary 

In semi-competitive environments, agents have intentions to be honest and have in-

tentions to lie. This chapter introduces a Trust/Honesty Model for agents to choose 

another type of actions, which is whether to believe a received message, and whether 

to be honest. Simulations shown that agents with our Trust/Honesty Model signifi-

cantly outperform agents with other existing models or strategies. 



Chapter 4 

Adaptive Strategies 

In this chapter, we improve the Trust/Honesty Model to an adaptive one. We first 

introduce the problem of non-adaptive agents. Then we design the adaptive strategy. 

Finally, we compare the performance of adaptive agents with the non-adaptive ones. 

4.1 Problem of Non-adaptive Agents 

In receivers' trust model, there are two parameters that can be varied, which are risk 

attitude and stubbornness, like the personality of human beings. As symmetry, risk 

attitude and sincerity can also be varied in senders' honesty model. Non-adaptive 

agents means their risk attitude, stubbornness, and sincerity do not change through-

out the game. 

Simulation is done to compare performance of non-adaptive agents with dif-

ferent parameters. In the simulation, there are 66 receivers, with risk attitude 0, 

0.2,…’ 1 and stubbornness -1，-0.8’ ...’ 1，interact with 66 senders, with risk 

attitude 0, 0.2, 1 and sincerity - 1 , -0.8，...，1. In each round, a random semi-

competitive scenario is virtually generated. Each sender calculates the temptation 

of lying and decides whether to tell a lie to a receiver. Each receiver then calculates 

the persuasiveness of each message and chooses to believe the message with the 

highest persuasiveness among those persuasiveness higher than its stubbornness. A 

receiver may believe no message if the persuasiveness of the messages are all lower 
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Figure 4.1: Average utility gain of non-adaptive receivers when interact with non-
adaptive senders 

than its stubbornness. At the end of each round, a receiver gains if it believed a true 

message, or loses if it has believed a lie. On the other hand, a sender gains if the 

receiver has believed its message, or loses if the receiver has not. Then all agents up-

date the impressions, reputations, trustworthiness, and deceivability accordingly. In 

this simulation, all agents' risk attitude, stubbornness, and sincerity do not change 

throughout the game. Each game contains 5000 rounds, and the average results of 

100 games are shown in Fig. 4.1 and Fig. 4.2. 

Fig. 4.1 shows the average utility gain of non-adaptive receivers when interact 

with non-adaptive senders. From the figure, we see that receivers with negative stub-

bornness and risk attitude 0.2 perform the best. However, performance decreases 

for more risk-seeking receivers. On the other hand, for receivers with positive stub-

bornness, they cannot gain anything if they are risk-averse. 

Fig. 4.2 shows the average utility gain of non-adaptive senders when interact 

with non-adaptive receivers. From the figure, less sincere senders have negative 

utility gain. This is because these senders always lie, so receivers' impressions on 

them and their trustworthiness are very low, which means receivers seldom believe 
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Figure 4.2: Average utility gain of non-adaptive senders when interact with non-
adaptive receivers 

them. On the other hand, sincere senders have the best performance. Also, perfor-

mance decreases for more risk-seeking senders. 

From Fig. 4.1 and Fig. 4.2, we can see that the performance of non-adaptive 

agents depends very much on their risk attitudes, stubbornness and sincerity. In 

addition, choices of parameters depend on the type of interacting agents. For ex-

ample, if a sender knows the receiver, that it is interacting with, is very stubborn, 

then the sender needs to be more sincere. In contrast, if a sender knows the re-

ceiver, that it is interacting with, is very risk-seeking and not stubborn at all, which 

means the receiver can be cheated very easily, then the sender can be less sincere 

and more risk-seeking. However, in real practice, receivers(senders) can hardly find 

out the type of senders(receivers) that they are interacting with. So, agents need to 

be adaptive. 
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4.2 The Adaptive Strategies 

From Fig. 4.1’ we can see that stubborn receivers in general perform better than less 

stubborn receivers, and risk neutral receivers perform better than risk-seeking re-

ceivers. Intuitively, when a person discovers that he is cheated, it is rational for him 

to become more risk-averse and more stubborn. In addition, the more the receiver 

loses, the more risk-averse and the more stubborn it will become. On the other 

hand, if an agent is too stubborn and too risk-averse, it may believe no message 

and cannot gain anything. As a result, we derive the following adaptive strategy 

for a receiver: if a receiver is cheated, it lowers its risk attitude and increases its 

stubbornness by p%. This is to prevent the receiver from being cheated again. At 

the same time, if it has not believed any message for more than m rounds, than 

it increases its risk attitude and lowers its stubbornness by This is to prevent 

a receiver from being too risk-averse and too stubborn so as to prevent a receiver 

from believing no message and gain nothing. Note that m cannot be too large, oth-

erwise the function will be lose. Also, m cannot be too small. This is because a 

receiver can choose not to believe the received message if the message is not per-

suasive enough, in this way, it needs not change its risk attitude or stubbornness. 

In addition, it is rational that an agent becomes more risk-seeking and less stub-

bom if it has believed the true messages for some rounds. So if a receiver has 

believed the true messages for more than k rounds, it increases its risk attitude and 

lowers its stubbornness by However, k cannot be too small, otherwise, the 

agent will become too risk-seeking. In the following simulations, each game con-

sists of 5000 rounds, we use m = k = 10. The adaptive percentage p = 二 二 ： • 

acclossn = ax acclossn-i + (1 — a ) X lossn, which is a weighted sum of the utility 

loss in the past and the utility loss in the latest round. It is rational that the latest 

loss will have the most influence and the oldest loss will have the least influence, so 

0 < < I- Similarly, accgain孔=a x accgain^_^ + (1 — a ) x gain^. lossn is 

the amount that the agent loses in the latest round and gain^ is the amount that the 
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combination risk attitude stubbornness/sincerity 
1 kept constant kept constant 
2 kept constant changes over time 
3 changes over time kept constant 
4 changes over time changes over time 

Table 4.1: Combinations on variations of parameters of the Trust/Honesty Model 

agent gains in the latest round. In particular, p = 1 if accgain^ = acclossn = 0, 

p = 100 if accgain^ — 0 but acclossn 0，and p = ^ if acclossn = 0 but 

accgain^ + 0. 

From Fig. 4.2, we can see that less sincere senders have negative utility gain and 

sincere senders perform much better. For sincere senders, performance depends less 

on the risk attitude. However, for less sincere senders, performance decrease as risk 

attitude increase. Intuitively, when a person discovers that he is less trusted by 

others, it is rational for him to become more risk-averse and more sincere. As a 

result, we derive the following adaptive strategy for a sender: if no receiver believes 

the sender in the latest round, the sender lowers its risk attitude and increases its 

sincerity by p%. This is to prevent the sender from telling too many lies. At the 

same time, if it does not send out any message for more than m rounds or it has 

gained the receiver's trust for more than k rounds, it increases its risk attitude and 

lowers its sincerity by This is to prevent the sender from being too risk-averse 

to send out any message and gain nothing. 

4.3 Variations of Parameters 

In the Trust/Honesty Model, there are three parameters which can be varied: risk 

attitude, stubbornness and sincerity. In fact, there are four combinations that the 

parameters can be varied, which is shown in Table 4.1. Let us look at the intuitive 

meaning of the four combinations of variations. Consider a sender, which sends the 
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same lie to the same receiver in every round. Every time the receiver is cheated, it 

lowers the trustworthiness of the sender, adjusts its own risk attitude and stubborn-

ness accordingly. 

For the first combination, receiver is non-adaptive, and its risk attitude and stub-

bornness are kept constant even it is cheated. Every time the receiver keeps receiv-

ing the same lie, as utility brought by the message is the same and its risk attitude 

is constant, persuasiveness of the message will be lowered as trustworthiness of the 

sender is lowered. Eventually, persuasiveness of this message will fall below the 

stubbornness, and the receiver will stop being cheated. In this way, the rate that 

the receiver leams from its experience is proportional to the rate that the trustwor-

thiness of the sender is decreased. For the second combination, where risk attitude 

is kept constant and stubbornness is increased as a reaction to the lie, the rate that 

the receiver leams its experience is proportional to the rate that the trustworthiness 

of the sender is decreased plus the rate that the stubbornness is increased. For the 

third combination, where risk attitude changes over time and stubbornness is kept 

constant, the rate that the receiver leams its experience is proportional to the rate 

that the trustworthiness of the sender is decreased plus the rate that the risk attitude 

is decreased. 

The last combination, where both risk attitude and stubbornness changes over 

time, is the adaptive strategy. After the first time the receiver is cheated, it lowers 

the trustworthiness of the sender. The second time the receiver receives the same 

lie, as utility of the message is the same and both its risk attitude and trustworthi-

ness of the sender are lowered, by Theorem 5，persuasiveness of the message will 

be lowered. At the same time, stubbornness is increased as a reaction to the lie. 

Eventually, this persuasiveness will fall below the stubbornness, and the receiver 

will stop being cheated. In this way, the rate that the receiver leams its experience 

is proportional to the rate that the trustworthiness of the sender is decreased plus the 

rate that the risk attitude is decreased plus the rate that the stubbornness is increased. 

Note that if the receiver, which has become more risk-averse, receives a message 
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Figure 4.3: Average utility gain of adaptive receivers when interact with non-
adaptive senders 

with higher payoff, from the same sender with lower trustworthiness, we cannot 

determine whether the persuasiveness of this message is higher than the previous 

one, as that depends on the how high the payoff is. 

To conclude, keeping both risk attitude and stubbornness unchanged (non-adaptive) 

have the slowest rate of learning and varying both (adaptive) have the fastest rate of 

learning the experience. 

4.4 Adaptive Agents vs. Non-adaptive Agents 

Simulations are done to compare the performance of adaptive agents with that of 

non-adaptive agents. In these simulations, both the adaptive agents and the non-

adaptive agents adopt the Trust/Honesty Model. Simulation settings are the same 

as section 4.1. In Chapter 6，we will compare the performance agents adopting 

different models and strategies. 

Fig. 4.3 shows the average utility gain of adaptive receivers when interact with 

non-adaptive senders. From the figure, we can see that all receivers can attain a 
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Figure 4.4: Average utility gain of adaptive senders when interact with non-adaptive 
receivers 

utility, which is very close to the maximum utility in Fig. 4.1. Also, utility gain be-

comes independent of the initial choices of risk attitude and stubbornness. Fig. 4.4 

shows the average utility gain of adaptive senders when interact with non-adaptive 

receivers. From the figure, we can see that all senders can attain a utility, which is 

very close to the maximum utility in Fig. 4.2. Also, utility gain becomes indepen-

dent of the initial choices of risk attitude and sincerity. In this way, the problem 

described in section 4.1 is solved. 

Fig. 4.5 shows the average utility gain of non-adaptive receivers when interact 

with adaptive senders. Compare the figure with Fig. 4.1, we can see that when 

senders become adaptive, which means senders learn to tell less lies when they 

discover that they are less trusted by the receivers, receivers' utility gain increase 

in general. Only the utility gain of less stubborn receivers decrease a little bit, that 

is because senders adapt to these receivers and tell more lies to them. Fig. 4.6 

shows the average utility gain of non-adaptive senders when interact with adaptive 

receivers. Compare the figure with Fig. 4.2, we can see that when receivers become 

adaptive, which means receivers leam to be more risk-averse and more stubborn 
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Figure 4.5: Average utility gain of non-adaptive receivers when interact with adap-
tive senders 
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Figure 4.6: Average utility gain of non-adaptive senders when interact with adaptive 
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Figure 4.7: Average utility gain of adaptive receivers when interact with adaptive 
senders 

when they are cheated, so senders' utility gain decrease in general. 

Fig, 4.7 shows the average utility gain of adaptive receivers when interact with 

adaptive senders. From the figure, we can see that all receivers can attain a utility, 

which is higher than the maximum utility in Fig. 4.7 and the utility gain is indepen-

dent of the initial choice of risk attitude and stubbornness of the receivers. Fig. 4.8 

shows the average utility gain of adaptive senders when interact with adaptive re-

ceivers. From the figure, we can see that all senders can attain a utility, which is 

higher than the maximum utility in Fig. 4.8 and the utility gain is also independent 

of the initial choice of risk attitude and sincerity of the senders. 

From the above simulation results, adaptive agents can attain a utility close to 

the maximum possible utility, no matter the opponents are adaptive or non-adaptive. 

In addition, adaptive agents do not need initial choices on parameters. However, 

performance of non-adaptive agents depends on the type of interacting agents. Also, 

performance of non-adaptive agents depends very much on the initial choices of 

parameters. So, we can conclude that adaptive agents perform better than the non-

adaptive agents. 
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Figure 4.8: Average utility gain of adaptive senders when interact with adaptive 
receivers 

4.5 Summary 

This chapter presents an adaptive strategy in addition to the Trust/Honesty Model, 

which allows agents to adapt to the environment and improves the problem of the 

non-adaptive models. Simulations show that adaptive agents perform better than 

the non-adaptive ones. 



Chapter 5 

Related Work 

Besides choosing an action of which goal to obtain or choose whether to stay still, 

other types of actions that agents many need to choose are whether to trust other 

agents, and whether to be honest. In choosing these types of actions, agents need 

additional information, like impression, reputation, and trust. In the literature, there 

have been various definitions and representations of impression, reputation, and 

trust. In this chapter, we give a review of this topic. In addition, we give a review 

on the theory of honesty. 

5.1 Impression, Reputation and Trust 

Marsh [Mar94] is among the first researchers to introduce a computational model 

for trust. He defines General Trust, the amount of trust that agent x has in agent }；, 

which is independent of the situation, as a real number between —1 and +1，where 

—1 means complete distrust and + 1 means absolute trust. Marsh uses an estima-

tion of the general trust, an agent-subjective measure about the importance of the 

situation, as well as utility to estimate the Situational Trust, which is the amount of 

trust that agent x has in agent y in a particular situation. However, he does not men-

tion anything about reputation. Marsh mentions that an agent decides to cooperate 

with a particular agent in a particular matter, if the trust it has on that particular 

68 
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agent in that particular matter is greater than a cooperation threshold, which is cal-

culated from the risk and importance of the matter, as well as the competence of 

that particular agent on that particular matter. The problem is that risk of a matter 

and competence of an agent on a particular matter are difficult to estimate in real 

practice. In addition, the framework is incomplete, as the way in which trust can be 

modified is not defined. 

Mui et al [MMH02, MMA+01] use a Bayesian approach in the computational 

model of trust and reputation, in which they estimate the reputation of agent •x in 

the eye's of agent y as the probability that agent x cooperates with agent that is 

the number of cooperation that agent a： has made toward agent y out of the previous 

encounters. The reputation defined there is an opinion that a single agent has about 

a particular agent, rather than the opinion that a group of agents have about a par-

ticular agent. This deviate from the definitions in the dictionaries [htta, hub]. In the 

computational model, they define trust as the expected probability that agent x will 

cooperate the next time, given a history of encounters. There is a problem with this 

approach. Agents adopting this model can be cheated easily. For example, out of 

10 encounters, agent x cooperates with agent ；y in 9 rounds bringing a utility gain of 

10，but it does not cooperate in 1 round bringing a utility loss of 100, the expected 

probability that agent ；c will cooperate the next time is 0.9, so agent y will still trust 

agent x. However, agent jc actually brings much more harm than gain to agent y, 

that is agent 夕 is trusting a harmful agent. The reason for this is that this model only 

calculates the expected probability for cooperation, but does not include the utility 

that the interacting agent brings. 

Mui et al [MHM02] use the reputation model, called Reputation Tic-for-tat, 

to simulate the Prisoner's Dilemma game [Axe84]. Agent adopting traditional Tic-

for-tat strategy, will cooperate initially, and then does what the other agent did (co-

operate or defect) in the previous round. Agent adopting the Reputation Tic-for-tat 

strategy, will cooperate initially depending on the reputation of the other agent, 

and then does whatever the other agent did in the previous round. However, the 
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Reputation Tic-for-tat strategy is not much different from the traditional Tic-for-tat 

strategy. Note that this Reputation Tic-for-tat will be the same as the traditional tic-

for-tat strategy if the reputation of agents is assumed to be high at the very beginning 

of the game when there is insufficient information. They define different types of 

reputation for the Reputation Tic-for-tat strategy. Among which, propagated repu-

tation perform the best. Propagated reputation means when an agent encounter an 

unknown agent, it will ask other agents for the reputation of the unknown agent. In 

the experiment, there are only two types of agents. One of which always defect, 

named AllD agents. Another type use the Reputation Tic-for-tat strategy. When a 

Reputation Tic-for-tat agent encounter an unknown agent, what it need to do is just 

to identify whether the unknown agent is an AllD agent or a Reputation Tic-for-tat 

agent. Then defects the AllD agent and cooperates with the Reputation Tic-for-tat 

agent. In this way, it will always defect the AllD agents and always cooperate with 

the Reputation Tic-for-tat agents, and a maximum utility can be obtained. In fact, 

it is easy to make the identification because there are only two types of agents in 

the environment. Also, the AllD agents must have a very low reputation as they 

always defect and the Reputation Tic-for-tat agents must have a high reputation as 

they always cooperate with agents of the same type. 

Sabater and Sierra [SSOl] propose another reputation model. There they de-

fine impression that an agent has on another agent as the subjective evaluations 

made by an agent on certain aspects of the agent being evaluated, and they calcu-

late individual-experienced reputation that an agent has on another agent, directly 

from an agent's impression database. For example, to evaluate the reputation of 

being a trustworthy sender, agent will consider the reputation of telling the truth. In 

this model, there is a group-experienced reputation that a group of agents have on 

a particular agent being evaluated. This is calculated by the weighted sum of the 

individual-experienced reputation that the member agents in the group has, on the 

agent being evaluated. This matches the definition from the dictionary [htta]. How-

ever, this work mainly concentrates on the calculation of impression and reputation, 
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rather than showing how to use these information to make decisions. 

Rubiera et al [RLMOl] also define reputation as the past experience of individ-

ual agent together with references from other agents. In addition, an agent will only 

choose some of the agents to ask references for and it will determine how much the 

received reference will count for. This is similar to a weighted sum of individual 

experience. 

Yu and Singh [YSOl, YS03] define reputation based on a probabilistic approach. 

For agent x to evaluate the trustworthiness of agent y, they calculate the reputation 

of agent y, which is done by combining the reputation of y as seen by a group of 

witness agents, as well as the reputation of the witness agents are integrated. These 

papers also concentrate on the calculation of impression and reputation as well as a 

network of trust information. 

Castelfranchi and Falcone [CF98, FCOl] describe the importance of trust and 

explain what trust is, though in a rather qualitative way. They also define under 

what situation should an agent delegate to other agents. In addition, they propose 

that risk should be taken into account when deciding whether to delegate, and agent 

should have a risk policy, which means agent should refuse a choice of decision if 

the hazard of that choice is greater than a certain threshold. This similar to our risk 

attitude. In addition, they have implemented their model to analyze the different 

nature of the belief sources and their trustworthiness [CFP03]. 

Glass and Grosz [GGOO] use Brownie Points to represent an agent's historical 

reputation. The value of brownie points of an agent will be increased if the agent 

makes a socially conscious decision, and the value will be decreased otherwise. 

This representation measures the opinion that a group of agents in general have 

about a particular agent. This can help agents prevent lying, but in a passive way. 

In our proposed model, agents choose whether to lie and it can prevent itself from 

lying by the adaptive strategy. 

Furthermore, Griffiths and Luck [GL03] apply the concept of trust in coalition 
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formation, in which agents can benefit mutually. They define trust as a representa-

tion of an agent's estimation of how likely another agent is to fulfill its cooperative 

environment, which is inferred based on agents' experience over time. They also 

mention that the trust values can be updated according to the agents' personality: 

optimistic or pessimistic. However, they do not have a quantitative definition. 

5.2 Theory of Honesty 

The issues of honesty have also been addressed by Gmytrasiewicz and Durfee 

[GD93]. For an agent to decide whether to lie, they first model the respective actions 

that the receiver will take on believing and not believing the lie. Then they calculate 

the expected utilities on telling and not telling lie. To calculate the expected utility 

on telling lie, they consider the resulting utility if the receiver believes the lie and 

the resulting utility if the receiver does not believe the lie. An agent decides to lie 

only if the expected utility of lying is greater than that of being honest. In their 

model, only expected utility is considered in deciding whether to believe a message 

and deciding whether to lie. The problem is obvious, agents are easily cheated by 

those lies, which claim to bring high expected utilities. 

5.3 Summary 

In this chapter, we review previous research done on the calculation of trust, impres-

sion, reputation and honesty. Definitions on reputation [MHM02, SSOl, RLMOl, 

YSOl, YS03] are similar. In addition to calculation and definition, these research 

also apply the trust information to decide whether to cooperate with other agents. 

Another type of decision-making is to decide whether to lie or whether to believe 

a message. In choosing such an action, some of the previous work consider only 

trust and/or reputation, while some only consider expected utility, but little consider 

both. 



Chapter 6 

Performance Analysis 

In this chapter, simulation is done to compare performance of agents adopting vari-

ous models or strategies. In the literature, there is no similar decision-making model 

for comparison. So, we choose two of the existing reputation models: Sabater and 

Sierra's REGRET Model [SSOl] and Mui et al.,s Computational Model of trust and 

reputation [MMH02] for comparison. We have not implemented Marsh's model 

[Mar94] because agents' competence is irrelevant in our model, and the way trust 

should be modified is not defined, as discussed in Chapter 5. Also, Mui et al.,s 

Reputation Tic-for-tat [MHM02] is not implemented, either. This is because it can-

not handle the case when a receiver receives more than one message at a time. 

Mui et al.'s another model [MMH02] is used for comparison instead. 

6.1 Simulation Settings 

Simulations are done to compare performance of agents employing our Trust/Honesty 

Model with performance of agents adopting other models or strategies. The set-

ting of the simulation is as follows. We include receivers and senders adopting 

our Trust/Honesty Model. In addition, we include receivers and senders adopting 

other models or strategies. For non-adaptive receiver adopting our Trust/Honesty 

Model, a negative stubbornness and a risk attitude of 0.2 are used. For adaptive 

receiver adopting our Trust/Honesty Model, randomly generated stubbornness and 
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risk attitude are used. For receivers adopting Sabater and Sierra's REGRET Model 

[SSOl] and Mui et aUs Computational Model of trust and reputation [MMH02], 

reputation and trust are calculated with the parameters suggested in these papers. 

These two receivers choose to believe the message from a sender with the maxi-

mum reputation when several messages are received at a time. If only one message 

is received, receiver adopting Mui et a/.'s Computational Model chooses to believe 

the message if the sender's reputation is greater than 0.5, as suggested in the pa-

per [MHM02]. Since Sabater and Sierra have not suggest any threshold and 0.5 is 

general enough to be a threshold, receiver adopting Sabater and Sierra's REGRET 

Model also chooses to believe the message if the sender's reputation is greater than 

0.5 when only one message is received. Receivers adopting the "Choose Maximum 

Reputation" strategy chooses to believe the message from a sender with the maxi-

mum reputation when several messages are received at a time, where the reputation 

is calculated as suggested in Chapter 3. Using this calculation, an agent may have 

negative reputation. So, if only one message is received, this receiver chooses to 

believe the message if and only if the reputation of the message sender is positive. 

Similarly, receiver adopting the "Choose Maximum Utility" strategy choose the 

message with maximum utility to believe when several messages are received at a 

time, and chooses to believe the message if the utility of the message is greater than 

0.5，where the utility is normalized to 1. Finally, receivers adopting the Random 

strategy randomly choose to believe a message when several messages are received 

at a time, and randomly choose to believe or not to believe the message when only 

one message is received. 

For non-adaptive sender adopting our Trust/Honesty Model, a risk attitude of 

0.4 and sincerity of 0.8 are used. Again, sincerity and risk attitude are randomly 

generated. Senders adopting the REGRET Model and Mui et aL’s model choose to 

tell lies if the target receiver has good reputation of being deceivable. The sender 

adopting the 100% Truth strategy always tells the truth. The sender adopting the 

Random 50% Truth strategy randomly tells 50% of truth and the one adopting the 
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Always Lie strategy always tells lies. 

In each round, a random semi-competitive scenario is virtually generated. Each 

sender decides whether to tell a lie to a receiver according to its adopted strategy. 

Therefore, it is possible that a receiver receives more than one message at a time. 

Each receiver then chooses whether to believe the message according to its adopted 

strategy. Note that a receiver adopting the Trust/Honesty Model may believe no 

message at all if the persuasiveness of the messages it receives are all less than its 

stubbornness. At the end of each round, a receiver gains if it has believed a true 

message, or loses if it has believed a lie. On the other hand, a sender gains if the 

receiver has believed its message, or loses if the receiver has not. Then all agents 

update the impressions, reputations, trustworthiness, and deceivability accordingly. 

1,000 games are simulated and each game contains 5,000 rounds. 

6.2 Performance in Semi-competitive Environment 

6.2.1 Performance of Receivers 

Fig. 6.1 shows the average utility gain� of receivers adopting various models or 

strategies when interact with a specific type of senders, where mixed population 

means the population of senders contains senders with different models and strate-

gies. In the figure, maximum possible utility means the maximum utility a receiver 

can possibly gain if it is so smart as to always choose the right message to believe, 

and has never been cheated. Note that this just serves as a benchmark for the com-

parison. 

From the simulation results, adaptive receiver adopting our Trust/Honesty Model 

have the best performance in general. In particular, when interact with adaptive 

senders adopting our Trust/Honesty Model, the adaptive receiver obtains 84% of the 

maximum possible utility and outperforms receivers adopting other existing models 

1 Rounded up to the nearest integer. 
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Receiver's Average utility gain of receivers when interact with senders adopting 

models/strategies Non-adaptive Adaptive Sabater & Sierra's Mui et al.'s 100% Truth 50% Truth Always Lie Mixed 

Trust/IIonesty Trust/Honesty REGRET Model Computational strategy strategy strategy population 

Model Model [SSOl] Model [MMH02] 

Maximum iggQ 1980 1980 1980 1980 1980 1980 1980 
possible utility 

Non-adaptive . 1092 848 8 0 3 817 1347 4 8 9 - 3 4 9 0 2 
Trust/Honesty Model 

Adaptive 1089 1662 1001 1017 1357 6 3 3 - 4 1499 
Trust/Honesty Model 

Sabater and Sierra's 

REGRET Model 5 5 8 2 5 6 9 8 4 9 6 2 1346 4 4 8 - 2 9 5 0 6 
[SSOl]  

Mui et al.'s 

Computational Model 5 4 8 315 9 5 6 9 9 9 1354 4 8 6 - 3 2 4 7 2 
[MMH02]  

Choose Maximum 875 9 4 4 1254 4 8 7 -28 4 9 3 
Reputation  

Choose Maximum 一 , … _ „ - 9 0 9 - 8 3 5 - 6 2 7 - 7 5 3 6 2 4 - 1 0 3 6 - 5 8 3 - 8 3 4 
Utility  

Random - 8 5 1 - 7 3 5 - 9 4 6 - 8 3 4 5 5 7 - 8 7 8 - 8 6 2 - 7 2 7 

Figure 6.1: Performance of receivers in semi-competitive environment 

or strategies by 2 to 5 times. In another case when interact with senders adopting 

Always Lie strategy, the adaptive receiver outperforms other receivers by at least 

7 times. When interact with a mixed population of all types of senders, the adap-

tive receiver obtains 76% of the maximum possible utility and outperforms others 

by about 3 times. Although when interact with non-adaptive senders adopting our 

Trust/Honesty Model, utility of the adaptive receiver is only comparable to that of 

the non-adaptive receiver adopting our Trust/Honesty Model, it outperforms other 

receivers by at least 2 times. 

There are several reasons for the outstanding performance of the adaptive re-

ceiver adopting our Trust/Honesty Model. First, the adaptive receiver can learn to 

become more risk-seeking and less stubborn when the sender brings benefits to it, 

and it can leam to become more risk-averse and stubborn when the sender lies, 

while other receivers cannot. The adaptive receiver outperforms other receivers es-

pecially when interact with the adaptive senders. When the adaptive senders tell a 
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certain number of truths, their reputation increase and receivers will believe them. 

Then the adaptive senders will become more risk-seeking and less sincere and tell 

more lies, but the adaptive receiver will be more risk-averse and stubborn after it 

is cheated and stop believing the adaptive sender if it continues to lie. However, 

as the senders' reputation are still high, receivers with other reputation models or 

reputation-related strategies will still believe them. Although the reputation of the 

adaptive senders will drop and these receivers will not believe the adaptive senders 

for some rounds, the adaptive senders will learn to be more risk-averse and more 

sincere and tell more truth to increase their reputation again. When their reputation 

are high, these receivers are cheated again. However, as the adaptive receiver will 

be more risk-averse and stubborn after it is cheated and stop believing the adap-

tive sender if it continues to lie, the adaptive senders will leam to be honest to the 

adaptive receiver. As a result, the adaptive receiver outperforms receivers adopting 

Sabater and Sierra's REGRET Model, Mui et al.,s Computational Model and the 

Choose Maximum Reputation strategy very significantly. In an extreme case when 

interact with senders adopting Always Lie strategy, the adaptive receiver does not 

lose much as it can leam to stop believing such lair very quickly. Although the 

adaptive receiver will increase its risk attitude and stubbornness when it has not be-

lieve any message for a number of rounds, as the receiver has not gain any utility, 

the percentage increase will be too small to be significant. 

Second, receivers adopting Sabater and Sierra's REGRET Model, Mui et aVs 

Computational Model and the Choose Maximum Reputation strategy only consider 

reputation in making decisions, but do not take into account the utility that will 

be brought by the messages. As a result, these receivers choose to believe those 

messages from senders with good reputation but the messages may bring a very low 

utility. Also, they miss some chances to earn from the less reputed senders. On 

the other hand, the adaptive and the non-adaptive receivers with our Trust/Honesty 

Model make a balance on trustworthiness of senders and utility of the messages, 

so these two receivers earn more in general. In addition, the adaptive percentage is 
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proportional to the utility loss. This means that the more an adaptive receiver has 

lost, the faster it adapts and the faster it stops believing the lies. 

When interact with senders adopting 100% Truth strategy, receivers adopting 

models or strategies related to reputation have high utilities and their performance 

are similar. This is because the senders always tell the truth and have high reputa-

tion, which always gain receivers' trust. However, the utilities of receivers adopting 

the Choose Maximum Utility strategy and Random strategy are not as good as the 

others'. This is because they do not believe all the messages they received. In 

other cases, receivers adopting the Choose Maximum Utility strategy and the Ran-

dom strategy end up with negative utilities, because they are easily cheated. In 

all cases, performance of receivers adopting Sabater and Sierra's REGRET Model, 

Mui et al/s Computational Model, and the Choose Maximum Reputation strategy 

are similar. This is because all of the three strategies choose the sender with maxi-

mum reputation to believe, only the ways they calculate the reputation are different. 

6.2.2 Performance of Senders 

Fig. 6.2 shows the average utility gain^ of senders adopting various models or 

strategies when interact with a specific type of receiver, as well as a mixed popu-

lation of receivers with different models and strategies. Again, maximum possible 

utility means the maximum utility that a sender can possibly get if it can always 

gain receivers' trust. Again, this serves only as a benchmark for comparison. 

From the simulation results, the adaptive sender adopting our Trust/Honesty 

Model outperforms other senders in general. Only the sender using 100% Truth 

strategy has a comparable performance. However, sender adopting the 100% truth 

strategy cannot get the highest utility because the receivers with our Trust/Honesty 

Model may not believe its message if the utility is low. In particular, the adaptive 

sender outperforms other senders by 2 to 5 times when interacting with adaptive 

^Rounded up to the nearest integer. 
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Sender's Average utility gain of senders when interact with receivers adopting 

models/strategies Non-adaptive Adaptive Sabater & Sierra's Mui et al.'s Choose Maximum Choose Maximum Random Mixed 

Trust/Honesty Trust/Honesty REGRET Model Computational Reputation Utility population 

— Model Model [SSOl] Model [MMH02]  

Maximum 
1868 1868 1868 1868 1868 1868 1868 1868 

possible utility  

Non-adaptive 9 9 8 7 6 8 111 7 8 6 854 9 5 6 7 1 2 9 2 3 
Trust/Honesty Model 

/Adaptive 9 9 6 1620 1010 1003 9 8 2 9 7 6 7 1 3 1485 
Trust/IIoncsty Model 
Sabater and Sierra's 

REGRET Model 6 9 6 3 2 8 9 2 2 968 9 1 3 967 7 0 9 4 7 5 
[SSOl]  

Mui ct al.'s 
Computational Model 7 0 9 397 9 0 4 9 8 3 9 3 3 9 4 9 711 4 8 2 

[MMH02]  

100% Truth strategy 7 1 4 1068 9 5 6 ^ ^ ^ 7 1 3 7 2 6 
50% IVuth strategy - 6 0 9 - 1 3 6 0 - 1 1 2 3 - 1 2 6 8 - 1 3 7 3 ^ 7 1 0 - 6 2 0 
Always Lie strategy - 1 8 1 5 - 2 3 8 7 - 1 7 9 9 -1747 - 1 8 4 8 9 8 0 711 - 1 9 0 3 

Figure 6.2: Performance of senders in semi-competitive environment 

receivers adopting our Trust/Honesty Model. Also, the adaptive sender outperforms 

other senders by about 3 times when interacting with a mixed population of all types 

of receivers. 

When interacting with receivers adopting Choose Maximum Utility and Ran-

dom strategies, all senders have similar performance and senders with Random 50% 

Truth and Always Lie strategies have positive utility gain because these two strate-

gies are independent of reputation. In other cases, senders using Random 50% Truth 

strategy and Always Lie strategy have negative utilities because they are hardly be-

lieved by the receivers as they have low reputation. In all cases, senders adopting 

Sabater and Sierra's REGRET Model and Mui et aUs Computational Model have 

similar performance. This is because both of the two senders choose to cheat the 

receiver with maximum reputation of deceivable, only the ways they calculate the 

reputation are different. The performance of these two senders are not as good as 

that of the senders adopting our Trust/Honesty Model. This is because these agents 

only consider reputation in making decisions, but do not take into account the utility, 
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which means they tell lies if the receiver has good reputation of being deceivable, 

even if utility gain is small. As a result, these senders tell more lies than senders 

with our Trust/Honesty Model, which make a balance on deceivability of receivers 

and utility of lying. So, if the utility of lying is not good enough, senders with our 

Trust/Honesty Model will choose not to lie, which maintain their reputation. 

Another reason for the outstanding performance of the adaptive sender adopting 

our Trust/Honesty Model is that it can leam to be more risk-seeking and less sincere 

when the receiver believes its messages and leam to be more risk-averse and sincere 

when it lose the receiver's trust, while other senders cannot adapt. In particular, 

when interact with the adaptive receivers, utilities of senders adopting Sabater and 

Sierra's REGRET Model and Mui et al.,s Computational Model are only one-forth 

of that of the adaptive sender. This is because when the adaptive receivers believe 

their messages, the receivers have good reputation of deceivable, then they cheat the 

receivers. However, the receivers adapt and do not believe their messages. These 

senders tell the truth again only when the receivers' reputation drop. On the other 

hand, the adaptive sender learns quickly as the adaptive percentage is proportional 

to utility lost. As described in section 6.2.1’ the adaptive sender leams to be honest 

to the adaptive receivers and gains the receivers' trust. 

6.3 Performance when Interact with Strategic Senders 

In this section, simulations are done to compare the performance of agents adopting 

various models or strategies when interact with strategic senders. The first strategic 

sender tells a lie bringing a loss of 1 in every ten rounds, and tells the truth but 

brings only a utility gain of 0.01 in the rest of the time. The second strategic sender 

tells a lie bringing a loss of 0.01 in every ten rounds, and tells the truth but brings a 

utility gain of 1 in the rest of the time. The third strategic sender tells a lie bringing 

a loss of 0.01 in every ten rounds, and tells the truth but brings a utility gain of 0.01 

in the rest of the time. Strategic sender 4 tells a lie bringing a loss of 1 in every 
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Receiver's Average utility gain of receivers when interact with 

models/strategies Strategic Sender 1 Strategic Sender 2 Strategic Sender 3 Strategic Sender 4 Strategic Sender 5 

Maximum 
45 4500 45 4500 500 

possible utility 

Non-adaptive 
_ -24 4494 39 3999 349 

TVust/Honesty Model 

Adaptive 
41 4495 40 4000 497 

TVust/IIonesty Model 

Sabater and Sierra's 

REGRET Model -454 4493 39 3998 0 

[SSOl]  

Mui et al.'s 

Computational Model -455 4494 38 3998 0 

[MMH02] 

Choose Maximum 
-452 4492 37 3996 0 

Reputation 

Choose Maximum 
-500 4495 0 4000 500 

Utility  
Random -228 2245 20 2000 228 

Figure 6.3: Performance of receivers when interact with strategic senders 

ten rounds, and tells the truth but brings a utility gain of 1 in the rest of the time. 

Strategic sender 5 tells a truth bringing a gain of 1 in every ten rounds, and tell 

lies bringing a utility loss of 0.01 in the rest of the time. The results are shown in 

Fig. 6.3. 

6.3.1 Senders Telling More Truths than Lies 

When interacting with the first strategic sender, which tells a lie bringing a loss of 

1 in every ten rounds, and tells the truth but brings only a utility gain of 0.01 in 

the rest of the time, adaptive receiver adopting our Trust/Honesty Model has the 

best performance. When this receiver is cheated by the sender, it becomes more 

risk-averse. This means that it is more cautious for messages with high utilities. 

As a result, after being cheated for a few times, it does not believe the messages 

with high utilities anymore. On the other hand, it chooses to believe the messages 
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with low utilities when the persuasiveness of the message is higher than its stub-

bornness. Although, it increases its risk attitude and lowers its stubbornness when 

it has believed the right messages for a number of rounds, the adaptive percentage 

is not significant as utility gain is little and utility lost is relatively large in com-

parison. In this way, adaptive receiver adopting our Trust/Honesty Model obtains 

a very outstanding performance approaching the maximum possible utility. For the 

non-adaptive receiver adopting our Trust/Honesty Model, as its risk attitude and 

stubbornness do not change during the game, it only stops believing the lie when 

the trustworthiness of the lair becomes low. So, its utility is negative. However, 

its performance is much better than performance of agents adopting other models 

or strategies. Agents adopting Sabater and Sierra's REGRET Model, Mui et aL’s 

Computational Model and the Choose Maximum Reputation strategy have similar 

results. All of these three agents do not take utility into account in making decision. 

In addition, agents adopting Sabater and Sierra's REGRET Model and Mui et al.,s 

Computational Model consider a sender to have good reputation only because the 

sender tell more truths than lies. As the strategic sender tells much more truth than 

lies, these two agents will always believe this strategic sender. Since the lies bring 

great loss in utility, the performance of these agents are very low. Agent adopting 

the Choose Maximum Utility strategy believes all the lies but not any truth as the 

utilities of the truths are very low and the utilities of the lies are very high, so this 

agent also has very bad performance. Agent adopting a Random strategy randomly 

believes about half of the message, it also has a negative utility gain. 

When interacting with strategic senders 2 to 4，all agents with reputation-related 

models and strategies obtain very high utilities approaching the maximum possi-

ble utility. This is because these senders tell the truths most of the time and the 

total lost brought by the lies are low in comparison. As a result, agents with our 

Trust/Honesty Model always believe this sender due to its high trustworthiness. 

Although the adaptive agent lowers its risk attitude and increases its stubbornness 

when it is cheated, it still always believe these senders. This is because utility gain 
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is much more than lost, which makes this adaptive percentage too low to be signifi-

cant. Agents with Sabater and Sierra's REGRET Model, Mui et al. ’s Computational 

Model and the Choose Maximum Reputation strategy always believe these senders 

since the senders tell the truths most of the time. Agent using the Choose Maximum 

Utility strategy always believes the truths if the truths bring high utilities, believes 

no messages if all messages bring very low utilities, and believes all messages if all 

messages bring high utilities. Agent using the Random strategy only chooses about 

half of the message to believe, so it misses some chances to earn which makes it has 

a relatively low utility gain. 

6.3.2 Senders Telling More Lies than Truths 

It is easy to understand that if the sender tells much more lies than truths, receivers 

with reputation-related models or strategies will not believe the sender because of 

the low reputation of the sender. Let us consider strategic sender 5, which tells a 

truth bringing a gain of 1 in every ten rounds, and tell lies bringing a utility loss of 

0.01 in the rest of the time. Receiver using Choose Maximum Utility strategy can 

get a maximum utility because it only chooses to believe the messages with high 

utilities, which are the truths. It does not believe any lies as the utilities of the lies 

are too small. This is just a special case in which receiver using the Choose Max-

imum Utility strategy performs well. In other simulations shown before, receiver 

using this strategy generally perform not very well. Adaptive receiver with our 

Trust/Honesty Model can get a utility very close to the maximum utility. This re-

ceiver and the non-adaptive one outperform receivers with other reputation-related 

models and strategies. This is because reputation of the liar is low and utilities of 

the lies are also low, which make the adaptive receiver do not believe the lies. As 

the adaptive receiver has not believed any message for a number of rounds, it will 

increase its risk attitude. As it become risk-seeking enough, it will believe messages 

with high utilities, which are the truths. Although the non-adaptive receiver does 
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not perform as good as the adaptive one, its utility gain is much better than other 

receivers with reputation-related models or strategies. This is because it also con-

sider utility in making decisions. On the other hand, receivers adopting Sabater and 

Sierra's REGRET Model, Mui et al.,s Computational Model and Choose Maximum 

Reputation strategy consider only reputation in decision making. As this sender tell 

lies most of the time, it has a very low reputation in view of these three receivers, 

so these receivers do not believe this sender at all and thus cannot gain anything. 

Again, receiver using Random strategy gets about half of the maximum possible 

utility. 

6.4 Summary 

These experiments show that our Adaptive Trust/Honesty Model significantly out-

performs other trust models. This is because the adaptive strategies enable agents 

to leam from their experiences and change their parameters accordingly. Another 

reason is that the Trust/Honesty Model makes a balance on reputation and expected 

utility in making decisions, while models or strategies considering only reputation 

or only expected utility cannot achieve high utility. 



Chapter 7 

Conclusion and Future Work 

7.1 Conclusions 

This thesis describes methods for agents to choose their actions and communica-

tion actions in semi-competitive environments. Semi-competitive environment is 

an environment in which cooperation and competition can both exist. 

For agents to represent their knowledge, predict other agents' actions and choose 

their own actions. Gmytrasiewicz and Durfee propose the Recursive Modeling 

Method (RMM). RMM is recursive as it not only represents an agent's own prefer-

ences, abilities and beliefs about the world, but also represents the beliefs the agent 

has about other agents, the beliefs it has about other agents' beliefs, and so on, form-

ing an infinite hierarchy. However, the authors have made an assumption that the 

belief hierarchy is finite and terminates the hierarchy explicitly by a probabilistic 

approximation at the point where an agent has no sufficient information to model 

other agents. We improve the original design of RMM by Recursive Formulas, with 

which no assumption and approximation are made. 

For agents to choose their communication actions, we introduce our Trust/Honesty 

Model. In semi-competitive environments, agents have incentives to be honest as 

well as dishonest. So, being a sender, agent needs to choose whether to tell lies or 

to tell the truth. On the other hand, being a receiver, agent needs to choose whether 

to believe the received message or which message to believe. From a receiver's 

85 
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point of view, we introduce a Trust Model, which enables the receiver to determine 

whether to trust the received messages. In the Trust Model, we first differentiate 

and define the terms impression, reputation and trustworthiness. We introduce how 

a receiver decides on which message to believe and follow by comparing the persua-

siveness of the message with its stubbornness to the sender, where persuasiveness 

of a message is calculated from the trustworthiness of the message sender, utility 

brought by the message and risk attitude of the receiver. From a sender agent's 

point of view, we introduce an Honesty Model, which enables the sender to deter-

mine whether to be honest. To do so, we propose to calculate the temptation of lying 

from deceivability of the receiver, utility of lying and risk attitude of the sender, and 

compare it with the sender's sincerity to the receiver. 

Furthermore, we improve our Trust/Honesty Model by an adaptive strategy. 

With the adaptive strategy, receiver can leam to be more risk-averse and stubborn 

after it is cheated and leam to be more risk-seeking and less stubborn to senders who 

bring benefits. As symmetry, an adaptive sender can leam to be more risk-averse 

and sincere after it lost the receiver's trust and leam to be more risk-seeking and 

less sincere to deceivable receivers. We relate the adaptive percentage to the utility 

that an agent has gained and has lost. This is because the more the receiver lose, 

the more risk-aver and the more stubborn it will become. This mimics the model in 

human interaction. 

Simulations shown that agents with our Adaptive Trust/Honesty Model perform 

much better than agents with other existing models or strategies. This is because ex-

isting models only take reputation into account in making decision, but agents with 

our Trust/Honesty Model consider both trustworthiness/deceivability of the oppo-

nents and utility brought by the messages. In addition, agents with the adaptive 

strategy can adapt to the environment, leam from experiences and prevent them-

selves from being cheated or leam to be more honest. 
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RI J R2 R3 

Figure 7.1: Example of agent manipulation 

7.2 Future Work 

7.2.1 Agent Manipulation 

There is another approach to perform cheating. Let us consider the following ex-

ample. There are two goals Gi and G2, both with worth 10. Gi 's priority ordering 

of agents is R2 > Ri > R3 and GVs priority ordering of agents is R2 > R3 > Ri. 

The cost for Ri to obtain Gi is 1, the costs for R2 to obtain Gi and G2 are 8 and 9 

respectively, and the cost for R3 to obtain G2 is 1. Ri is inaccessible to G2 and R3 

is inaccessible to Gi. Initially, Ri and R2 know the presence of Gi and G2 but R3 

knows nothing. The example setting is shown in Fig. 7.1. By applying RMM, it can 

be seen that Ri can get maximum payoff by obtaining Gi, provided that R2 does 

not obtain Gi • As R2 has the highest priority in Gi ’s priority ordering of agents 

and R2 can get maximum payoff by obtaining Gi, the only way for Ri to prevent 

R2 from obtaining Gi is to lie to R2 that there is another goal, which gives R2 a 

higher payoff than Gi does. As Ri knows that telling a lie to R2 will decrease its 

trustworthiness, so instead of telling the lie by itself, Ri tells R3 the information 

about G2 and manipulate R^ to tell the lie. If R3 believe the information provided 

by Ri，it will know that it can get a maximum payoff by obtaining G2, provided that 

R2 does not obtain G2. From R3S point of view, it knows only about G2, R2 has the 

highest priority in GVs priority ordering of agents and R2 can get maximum pay-

off by obtaining G2, so R3 thinks the only way for it to prevent R2 from obtaining 

the worth of G2 is to tell R2 that there is another goal, which can give R2 a higher 

payoff than G2 does. As R3 has no other information, the only way for it to get any 
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worth is to cheat R2. Follow the utility-maximizing behavior, Rs will do so, and if 

it succeeds, R2 will be directed to obtain the fake goal, which is what Ri wants to 

achieve. As future work, agent manipulation can be investigated. 

7.2.2 Algorithm for Solving Recursive Formulas 

We have not mentioned how the recursive formulas can be solved in a computa-

tionally tractable way, as it is out of the scope of this thesis. As future work, an 

algorithm for solving the recursive formulas can be designed. In addition, one can 

do simulations and compare the performance of the original RMM with that of the 

improved RMM. 

7.2.3 Fuzzy Trust/Honesty Model 

The concepts in the Trust/Honesty Model are rather fuzzy. An agent can have a 

good impression on one agent, or have a bad impression on another agent, where 

good and bad are fuzzy terms. Also, risk averse, sincere, neutral stubborn,…’ are 

all fuzzy terms. So, as future work, a fuzzy Trust/Honesty Model can be developed. 

7.2.4 Opinion from the Mass 

In the proposed Trust/Honesty Model, agents make rational decision by using im-

pression, reputation, risk attitude, and expected payoff. An agent chooses to believe 

a message if persuassiveness of the message is greater than the agent's stubbornness. 

However, in human communication model, opinion from the mass can also affect 

the decision. For example, a person receives a message saying the stock market 

will rise and this person chooses to believe the message because of the trustworthy 

source and high expected payoff. However, ten other people, who also receive the 

same message, choose not to believe the message. Then the person who chooses 

to believe the message before may consider not believing the message due to other 
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people's decision. As future work, elements can be added to the model to handle 

this case. 

7.2.5 Network Application 

There is a fundamental assumption in the current generation of ad hoc networks, 

which is that the nodes will cooperate and will not cheat [DD03]. However, such 

assumption may no longer be valid if the nodes in the network do not have a com-

mon goal. The environment will then become semi-competitive. As future work, 

our Trust/Honesty Model can be applied in an ad hoc network. 
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