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Abstract

In multiagent environments, agents need to choose their actions. To achieve this,
Gmytrasiewicz and Durfee propose the Recursive Modeling Method (RMM). This
thesis improves the probabilistic approximation approach in the original design
with Recursive Formulas, which enables agents to predict other agents’ actions and
choose their own actions more accurately.

In multiagent semi-competitive environments, agents have another type of ac-
tions that they need to choose. In such environments, competitions and coopera-
tions can both exist. As agents compete with one another, they have incentives to
lie. Sometimes, however agents can increase their utilities by cooperating with each
other, then they have incentives to tell the truth. Therefore, being a receiver of mes-
sages, an agent needs to choose whether or not to believe the received message(s).
To help agents make this decision, this thesis introduces a Trust Model. In the trust
model, receiver’s impression on the sender, sender’s reputation, and receiver’s at-
titude towards risk are used to derive the receiver’s trustworthiness on the sender.
This thesis proposes that in making decisions on whether to believe a message and
change the action based on the message, an agent should compare the persuasive-
ness of the message, which is calculated from the risk attitude of the receiver, the
receiver’s trustworthiness on the sender, and the utility brought by believing the
message, with the stubbornness of the receiver. On the other hand, being a sender
of messages, an agent needs to choose whether or not to be honest. To help agents
make this decision, this thesis introduces a Honesty Model. In the honesty model,

a sender uses its impression on the receiver, the receiver’s reputation, and sender’s



attitude towards risk to calculate the deceivability of a receiver. To decide whether
to tell a lie, a sender compares the temptation of lying, which is derived from the
sender’s risk attitude, the receiver’s deceivability, and the utility that will be gained
by lying, with the sincerity of the sender. These mimic the model in human interac-
tions.

In addition, we introduce an adaptive strategy to the Trust/Honesty Model,
which enables agents to learn from and adapt to the environment. With the adap-
tive strategy, a receiver learns to be less risk-seeking and more stubborn after it is
cheated. On the other hand, it learns to be more risk-seeking and less stubborn if
it has not believed any messages for a long time or it has believed the right mes-
sages for many times. Similarly, a sender learns to be less risk-seeking and more
sincere if it cannot gain the target receiver’s trust. In contrast, it learns to be more
risk-seeking and less sincere if it has not sent out any messages for a long time or it
can successfully gain the receivers’ trust for many times.

Simulations show that agents with the Adaptive Trust/Honesty Model perform
much better than agents with other existing models or strategies. This is because our
Adaptive Trust/Honesty Model enables agents to learn from their experiences. An-
other reason for the outstanding performance is that the Trust/Honesty Model makes
a balance on trustworthiness and utility, while other existing models or strategies

consider either trustworthiness or utility, but not both, in making the decisions.
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Chapter 1

Introduction

Autonomous agents and multiagent systems is one of the fields of specialization in
artificial intelligence. According to Wooldridge and Jennings [WJ95]: “An agent
is a computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives”. By
adding flexibility to agents, agents become intelligent agents, also known as au-
tonomous agents. Flexibility means reactivity, pro-activeness, and social ability.
For agents to be flexible or intelligent, agents need to be able to react to the changes
in the environment instantly, so as to achieve the design objectives. At the same
time, intelligent agents need to be able to activate themselves and design their plans
or choose their actions, in order to meet their goals. Adding to these, intelligent
agents need to have social ability, which is the ability to cooperate or negotiate with
other agents.

Another concept closely related to intelligence is learning. An agent is said to
have added intelligence if it is able to learn, which means the agent is able to im-
prove its future behaviors based on its past experiences. There are two principal
categories of learning in multiagent systems [SWO0]. First is centralized learning,
also known as isolated learning. With this kind of learning, agents learn by itself,
and independent of other agents. The second category is decentralized learning,

also known as interactive learning. With interactive learning, agents learn from each
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other. Agents learn by exchanging information with each other, that is through com-
munication. Agents can learn by simple query-and-answer interactions, or more
complex interactions, such as negotiation.

Communications not only enable agents to learn, but also enable agents to co-
ordinate their actions. In multiagent systems, agents may have different objectives,
actions and behaviors. In order to achieve the design objectives, agents need to co-
ordinate their actions. There are two types of coordination, which are cooperation
and competition. In cooperative environments, agents need to have distributed or
centralized planning for their actions. In competitive or non-cooperative environ-
ments, agents need to negotiate to resolve conflicts. In multiagent systems, agent
coordination has been the subject of continuous interest. Much research has been
done on protocols and modeling. In different environments, agents have different
methods or protocols to resolve conflicts. In non-cooperative environments, Zlotkin
and Rosenschein [ZR90] introduce a theoretical negotiation model, which encom-
passes both cooperative and conflicting situations. Besides, they also use a conflict
resolution protocol to help agents reach agreement. One the other hand, they use
another negotiation protocol [ZR89] to help agents share their tasks in cooperative
environments, so that agents can communicate their respective desires and com-
promise to reach mutually beneficial agreements. At the same time, Rosenschein
and Genesereth [RG85] use a deal-making mechanism to enable agents to coop-
erate. Through the use of communication and binding promises, agents are able
to coordinate their actions effectively. This also makes mutually beneficial activi-
ties possible. In contrast to the pre-established protocols mentioned above, Gmy-
trasiewicz and Durfee [GD95, GD00, GDO1] propose a decision-theoretic approach
[Bra92, Rai82, GDO00], called the Recursive Modeling Method (RMM), which en-
ables agents to choose an action rationally in the absence of any conventions.

Trust and reputation is a hot topic in agent coordination. In the literature, there
are different meanings for “trusting an agent”. Some interpret “trusting an agent” to

be “cooperate with an agent” [Mar94, MMHO02, MMA*01, MHMO02], while others



Chapter 1 Introduction 3

interpret that as “delegate to an agent” [CF98, FCO1]. At the same time, there are
various models and definitions for trust and reputation [Mar94, MMHO02, MMA*01,
MHMO02, SS01, RLMO01, YSO01, YS03, CF98, FCO1, GG00]. Marsh [Mar94] relates
trust to the risk and importance of a matter, as well as the competence of a particular
agent on that particular matter. Mui et al. [MMHO02, MMA*01] define trust as the
expected probability that an agent will cooperate the next time, given a history of
encounters. For reputation, various definitions [MHMO02, SS01, RLMO1, YSO01,

YS03] are similar to a weighted sum of individual experience.

1.1 Motivations

For agents to coordinate in cooperative environments, Gmytrasiewicz and Durfee
[GD95, GD00, GDO1] propose the Recursive Modeling Method (RMM). RMM
is a decision-theoretic approach [Bra92, Rai82, GD00], which enables agents to
choose an action rationally in the absence of any conventions. In general, rationality
means the maximization of expected utility [Fis81]. This approach uses RMM to
represent the information that an agent has about the environment, itself, as well as
other agents. This information enables agents to predict the actions of other agents,
which in turn helps agents choose their own actions. However, the authors use a
probabilistic approximation in their design, which may introduce inaccuracy.

For trust and honesty, much research has been done on cooperative environ-
ments. In purely cooperative environments, benevolent agents share their utilities
as social welfare. As agents have a common goal of maximizing the social welfare,
there is no reason for an agent to be dishonest to its partners. So, there is no reason
for an agent not to trust its partners. On the other hand, in strictly competitive envi-
ronments (such as zero-sum games), only one agent can be the winner and the others
must be the losers. As agents are self-interested and cannot increase their utilities
by cooperating with each other, it is rational for an agent to be dishonest. So, it is

irrational for an agent to believe information provided by its competitors. Luo e al.
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[LIS*03] define semi-competitive environment to be an environment having both
cooperations and competitions, in which agents seek to strike a fair deal for both
parties, and at the same time try to maximize their own payoffs. Therefore, it is
sometimes rational for an agent to cooperate with some other agents, while agents
also have incentives to be dishonest. Therefore, being a receiver, an agent needs
to decide whether or not to trust other agents on receiving information from other
agents. On the other hand, being a sender, an agent needs to decide whether or not
to lie to other agents. In such a setting, the issues about trust and honesty among
agents become more significant and complicated than those in purely cooperative

or strictly competitive environments.

1.2 Aims

There are two aims in this thesis. The first one is to improve the original design of
Gmytrasiewicz and Durfee’s Recursive Modeling Method. To improve their proba-
bilistic approximation, we introduce our Recursive Formulas. This is to help agents
predict other agents’ actions and choose their own actions.

Another aim is to develop a Trust/Honesty Model, which helps agents choose
their communication actions. This model helps receivers choose whether to believe
a received message, and choose which message to believe when several messages

are received. This model also helps senders choose whether to tell lies.

1.3 Contributions

First, we improve the probabilistic approximation in the original RMM by Recur-
sive Formulas. This enables agents to predict other agents’ actions and choose their
own actions more accurately.

Second, we develop a Trust/Honesty Model, which helps agents choose their

communication actions. This enables receivers to choose whether or not to trust the
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received information, and enables senders to choose whether or not to be honest in
semi-competitive environments.

In addition, we develop an adaptive strategy for the Trust/Honesty Model. This
enables agents to learn from their experiences and to adapt to the interacting agents.
The adaptive agent we built is an intelligent agent, which can react to its opponents,
maximize its payoff actively, and able to interact with other agents. Simulations
show that the adaptive agent performs much better than agents with existing models

or strategies.

1.4 Thesis Outline

The rest of the thesis is organized as follows.

In the next chapter, we describe the improved Recursive Modeling Method.
First, we introduce the original RMM with an illustrative example. Then, we im-
prove the original design by Recursive Formulas. Last, we compare the original
RMM with the modified one.

In Chapter 3, we present our Trust/Honesty Model. We first show the needs for
such a model. Then we present our model.

In Chapter 4, we present an adaptive strategy for the Trust/Honesty Model. First,
we point out the problem with the non-adaptive agents. Then, we introduce the
adaptive strategy. Last, we compare the adaptive agents with the non-adaptive ones.

In Chapter 5, we discuss the related work and point out the problems with the
existing models.

In Chapter 6, we analyze the performance of our Trust/Honesty Model and the
adaptive strategy. Simulations are done to compare performance of agents adopting
our Trust/Honesty Model with/without the adaptive strategy with agents adopting
other existing models and strategies. Performance of agents in semi-competitive
environment and performance of agents when interacting with strategic senders are

analyzed.
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Chapter 7 concludes the paper and discusses some possible future work.



Chapter 2

Improved Recursive Modeling

Method (RMM)

RMM is a method for agents to represent their knowledge and choose their ac-
tions. This chapter introduces the background knowledge about Recursive Model-
ing Method (RMM) with an illustrative example. In section 2.2, we give a brief
introduction to the original RMM. After that, we give a detailed description on an
improved RMM in section 2.3. Finally, we compare the original RMM with the

improved version.

2.1 An Illustrative Example

Consider an example of agent interaction. In this example, there are three agents:
R,, R, and R3, and there are three goals: (1, (G2 and (G5. The example scenario is
depicted in Fig. 2.1.

For all agents R;, where i = 1, 2, 3, in the environment, they share the same
set of possible actions: obtaining (1, obtaining (v, obtaining (35, or staying still,
which are denoted as A = { R;—G, Ri—G,, Ri—G3, R;i—S}. However, the set
of actions A; for agent « may only be a subset of A, depending on the set of goals
that the agent knows. Knowledge of the agents is shown in Table 2.1. For example,

R, does not know (i3, so A, will be { R—G', R— Gy, R—S} because obtaining
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e
< G,, worth=10 G3, worth=20 >
Priority: Ry>Rp>Ry /*-=--ec _.--¥\ Priority: R,>R3>R,

R e LA

Gy, worth=15 >
Priority: R,>R3>R;
\—/

Figure 2.1: Example scenario of interacting agents

| Ry’sknowledge | Ry’s knowledge | Rs’s knowledge |

Gl Gl G2
G2 G2 GS
G

R, does not know (73
R5 does not know (7

Table 2.1: Agents’ knowledge in the example

('3 will not be an option for R, as it does not know that goal. We assume that if
an agent knows a certain goal, the agent knows all the relevant information of the
goal.!

In each round, agents communicate and choose their actions. After an agent has
chosen its action, it needs to pay the cost so as to obtain the goal. The costs for
the agents to obtain the goals are shown in Table 2.2, and the cost for staying still
(R—S) is zero. The payoff for R; to obtain (; is defined to be the worth of the
goal (if R; wins the worth of ;) minus the cost for the agent to obtain the goal.
In this way, if R; cannot win the worth of the goal, its payoff will be negative. For
example, if R; chooses to obtain (¢; and it wins, its payoff will be 10 — 2 = 8.

However, if it losses, its payoff will be —2.

It is possible that more than one agent may choose to obtain the same goal. In

't is possible that an agent knows only some information of a goal while not knowing others.
We do not consider this as this will much complicate the discussion.
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| | Obtaining (7 | Obtaining G, | Obtaining Gs |

Cost of R, 2 17 15
Cost of R, 4 13 2
Cost of Rj 6 10 5

Table 2.2: Costs for the agents to obtain each goal in the example

| | Gi | G | Gs |
1% priority | R3 | Ry | R,
27 priority | Ry | Rs | R
3 priority | Ry | Ry | Ry

Table 2.3: Goal’s priority ordering in the example

this case, the worth of the goal will be completely given to one agent among all
the full-cost paying agents. To decide which agent can win the worth of a certain
goal, different systems may apply different mechanisms. For ease of presentation
and without loss of generality, we assume that for each goal, there is an associated
priority ordering of agents such that when more than one agent decides to obtain the
same goal, the worth of the goal will be given to the agent according to the goal’s
priority ordering of agents. The priority ordering of the goals in the example are
summarized in Table 2.3. For example, if all the three agents decide to obtain 7y,
Rs will win the worth of Gy. If R3 decides not to obtain (7}, and both R, as well
as R, decide to obtain GG, R, will win the worth. If R, decides to obtain (7, it can
win the worth only if both R3 and R, do not compete with it.

We define a Single-round Game to be a game consists of only one round. In
a Single-round Game, agents are free to communicate until all agents openly an-
nounce their choices of actions and pay the costs, then the game ends and the worths
of the goals are given to the winning agents. Each agent can only take one action. In

this chapter, we illustrate how an agent chooses its action in a Single-round Game.
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2.2 Recursive Modeling Method (RMM)

For agents to represent the above information and take the appropriate action, Gmy-
trasiewicz and Durfee [GDW91, GD92, GD95, GD00, GDO01] propose the Recur-
sive Modeling Method (RMM). RMM represents the information an agent has about
the environment, itself, and other agents. This representation is used by an agent
to predict the actions of other agents, estimate the expected utilities for alternative
courses of action, and make decisions on what actions or communication acts to
perform. RMM is recursive as it not only represents an agent’s own preferences,
abilities and beliefs about the world, but also represents the beliefs the agent has
about other agents, the beliefs it has about other agents’ beliefs, and so on. So it
is basically an infinite hierarchy. However, Gmytrasiewicz and Durfee have made
an assumption that the belief hierarchy is finite and terminates at the point where
an agent has no sufficient information to model other agents. At the point of insuf-
ficient information, the infinite belief hierarchy is terminated to a finite one by an

assumed uniform distribution over the space of all possible actions.

2.2.1 Payoff Matrices

With RMM, agents’ payoffs are represented in payoff matrices. In this three-
agent environment, we use a three-dimensional payoff matrix in modeling agent’s
decision-making process. Fig. 2.2 shows an example of a cell. The cell is a two-
dimensional payoff matrix describing R;’s payoffs with respect to its own actions,
Ry’s actions and R3’s action to obtain (7. For example, pﬁ;jgg Ry—G, denotes the
payoff for R; to obtain G2 when R, chooses to obtain GG3 and R3 chooses the obtain
Gy.

From Table 2.1, R, knows all the goals, so it has four possible actions. With
the information in Table 2.3 and Table 2.2, if both R, and R3 choose to obtain G,

and R, also chooses to obtain (71, since R, has the lowest priority to get the worth

of (¢, it will lose and its payoff will be zero minus its cost to obtain (7, which is
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R:=G;
R:>Gy R>G; Ry>G; R,=2>S
Ri=>G; R,—G, R—G R,—G R,—G
PRy R G, PRi—>GyRy=G, PRy>GyR—G, PRy—5.Ry—G,
Ri2G; R,—G, R,—G, R—G, R,—G,
PR,G,.Ry=G, PR,>G,.R,—G, PR,»G,,Ry=G, PR,>5.R,—G,
Ri>G3 R—G, R—G, R -G, R,—G;
PR, 3G R,-36, PR,~3GyiRi36, PRy>GsiRiGy PRy~5.Ry=G,
RS R—S R—S R—S R—S
PRy5G,.R,»G, PRi—Gy.Ry=G, PRy—Gy.Ry—G, PRymS,Ry—G,
Figure 2.2: An example of a cell in a three-dimensional matrix
PRI"Rl
RiDG, R:DG,
R:®>G; R:™G; R:2G: RS R:2G; R™>G; R:>G; RS
RPOG 2 2 2 2 |RPOG =2 8 8 8
ROG, -2 -17 -2 2 |RPG -17 17 -17 -17
ROG: 5 5 -15 5 |ROG: 5 5 -15 5
RS 0 0 0 0 | RS 0 0 0 0
Ri>G; Ri>S
R:®G; Ri2Gy R2G: RS R:2G; R2G: R>G: RS
Rr‘)G/ -2 8 8 8 Ri=>G,; -2 8 8 8
R=2G; -2 -17 -2 -2 Ri>G; -2 -17 -2 =2
R1™G; -15 -15 -15 -15 Ri™>G; 5 ) -15 5
RS 0 0 0 0 | RS 0 0 0 0
Figure 2.3: R,’s payoff matrix
0 — 2 = —2. In another situation, if both R, and R3 choose to obtain (3 and R,

chooses to obtain (7, since R; has no competitor in this case, its payoff will be

the worth of ; minus its cost to obtain Gy, which is 10 — 8 = 2. In this way, R,

represents its knowledge in its own payoff matrix, which is shown in Fig. 2.3.

In addition, R; can model R,’s payoff matrix and R3’s payoff matrix from their

respective points of view, which are shown in Fig. 2.4 and Fig. 2.5. PR1=R2 denotes

R;’s model of R,’s payoff matrix, while PR1=F denotes R;’s model of Rs’s payoff

matrix. From Table 2.1, R; knows that R, does not know (G5 and R3 does not know

(1. As R, knows that R, does not know (73, there will not be any payoffs associate

to (G5 in R,’s payoff matrix. Similarly, there will not be any payoffs associate to (7,
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PR|'R2
R:=2G; R:>G>
Ri>G; R>G> RS Ri=2G; Ri=>G> RSS
R:2G, -4 -4 -4 R:™G, 6 6 6
R:2G; 2 2 2 RG> 2 2 2
RS 0 0 0 RS 0 0 0
R;>S
Ri>G; Ri>G> RS
R:>G, 6 6 6
RG> 2 2 2
RS 0 0 0
Figure 2.4: R,’s model of R,’s payoff matrix
PRI‘Rs
Ri=>G>
RG> R,>G; R,>S
R:>G, -10 5 5
R;>G; -5 15 15
Ri>S 0 0 0
Ri=>G;3 R=>S
R>>G; R:>>G; RS R:>G; R:;=>G3 RS
R:>G> -10 5 5 R;>G; -10 5 5
R:2G; -5 15 15 R:2G; -5 15 15
R;>S 0 0 0 R;>S 0 0 0

Figure 2.5: R,’s model of R3’s payoff matrix

in R3’s payoff matrix.

2.2.2 Infinite Recursive Hierarchy

With RMM, for R, to determine its action, it first models how R, and R3 determine
their actions. For R, to deduce R,’s action, it has to model how R, deduce the
actions of R; and R3. Similarly, for R, to deduce R3’s action, it has to model how
R3 deduce the actions of R, and R, and so on. This generates an infinite recursive
hierarchy of payoff matrices as shown in Fig. 2.6. At the first level, there is R;’s

model of itself, denoted as P1—F1, At the second level, there are R;’s models of
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Figure 2.6: R,’s infinite recursive hierarchy

Ry’s and Rs’s knowledge, denoted as P™1—#2 and P1—: respectively. At the third
level, there are, from R,’s point of view, Ry’s models of 1,’s and R3’s knowledge,
as well as R3’s models of R;’s and R,’s knowledge. Similarly, the hierarchy goes

on infinitely.

2.2.3 Choosing an Action with RMM

For R, to deduce the payoff matrices at the third level, that is to model R,’s models
of R,’s and R3’s knowledge, as well as R3’s models of R,’s and R;’s knowledge, R,
needs further information. For example, R; has to know whether 1, knows that R,
knows (&, or whether R, knows that B3 does not know (&,. Since R; has no further
information on R;’s knowledge of other agents’ knowledge, in the original design
of RMM, R,’s infinite recursive hierarchy is terminated explicitly to a finite one at
this level, which is shown in Fig. 2.7. At the first level, it is R, ’s model of itself. At
the second level, there are R;’s models of R,’s and R3’s payoff matrices. Since R,
knows that R, does not know (73, there are only three possible actions from R,’s
point of view, which results in nine combinations of actions for the three agents. So,
at the third level, the hierarchy on the left is terminated with a uniform probability

distribution: § for each possible action. The hierarchy on the right terminates in
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PRI-RI

BT s

PRI-RZ PR]-Ra

[1/9] [1/9]

Figure 2.7: R,’s finite recursive hierarchy with original design of RMM

| Action | Expected utilities

Ry — Gy _l_ Ry—Gy l Ro—G
R2_>G1 X pRl—)Gl,Rs—}Gl + 9 X pRl—)Gz,Rg,—)Gl + 9 X pRl—)S R3—)G1+

Ry —G 1 Ry— Gy 1 Ry— G
X PR Gy, RasGy T 5 X PRi—Ga,Rs=G2 T § X PRi5S,Rs=G, T
2—0 + 1 % Ry—Gy + 1 % Ry =Gy
X PRy—+Gy,R3—+S T g X PRi=G2,Rs=S T g X PRy+5,R3—+S

1
Ix—4+3ix—44+3x—44+5x6+5x6+3%x6+1x6+

1 24
X6+5x6=7%
9 9
Ry— G, 1 Ry—Go 1 Ry—Go
X PRy -G1,Rs—G) & g X PRi—G2,Rs—G; + g X PRi»sS R3—>G1+
Ry —Go +1x Ry—Ga 4+ 1 5 pfa—=Gr
X PR,~Gy,R3—G l9 ngﬁGz,RséGz : 9 Rpﬁl—-rs,R:»,—)Gz"*'
2—G2 1 202 1 2 2
X PRy +Gy,Rs=S T § X PRi5Gy, RS T § X PRi5S,Rs 45

Ix24+ix2+5%x24+5%x2+5%x2+5%x2+5x24+ 1 x2+
XD =2

R'z—)Gz

Qo= || @I=oi=oi=ol= || ©=ol=o=—

Rz—)S

Table 2.4: R,’s expected utilities

a similar way. Here, the authors of the original RMM assume that each possible
action has an equal probability to be chosen.

With this hierarchy, from R,’s model of R;’s payoff matrix shown in Fig. 2.4,
R, calculates R;’s expected utilities for each action, which is shown in Table 2.4.
From this, since the expected utilities for R, to obtain (+; is the highest, R; models
that R, will choose to obtain (7;. Similarly, R, models that R3 will choose to
obtain (3. If R, chooses to obtain (G; and Rj3 chooses to obtain (3, from R;’s

payoff matrix in Fig. 2.3, R, can only choose to stay still.
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2.3 Improved RMM

In the original design of RMM, an infinite recursive hierarchy is terminated ex-
plicitly by a probabilistic approximation to a finite one when there is no further
information. In making the approximation, the authors made an assumption that
each possible action has an equal probability to be chosen. However, this is not
always accurate in real practice. In this section, we present our improved version of

RMM, which solves the problem.

2.3.1 Infinite Recursive Hierarchy

Suppose R; only has level-1 knowledge, which means that besides the set of goals
that it knows, the agent does not know other agents’ knowledge. In this case, it
can only assume other agents know the same set of goals as it does. As the whole
hierarchy is built from R;’s point of view, the set of actions involved in the payoff
matrices in the hierarchy will be the set of actions as seen by R;, which is A;.
Ry’s infinite recursive hierarchy with level-1 knowledge is shown in Fig. 2.8. The
hierarchy is basically the same as the one shown in Fig. 2.6, but as R; only has
level-1 knowledge, all the payoff matrices in this hierarchy are constructed with
R,’s set of actions. Note that Pf}“R‘ is the same as Pf1—f2_ However, if R, does
not know that R, does not know (73 and R3 does not know (71, it is rational for it
to model their payoff matrices with its own set of possible actions, which is A;. In
this case, R;’s models of R,’s and R3’s payoff matrices are shown in Fig. 2.9 and

Fig. 2.10.

2.3.2 The Sub-matrix Operator

In the example, R, has level-2 knowledge in addition to level-1 knowledge, which
means that in addition to the set of goals that it knows, it also knows the set of goals

that R, and R3; know, as well as the set of goals that they don’t know. Note that
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PRI- Ri
AI\
PR:- Rz PRI- R3
/ m\ / AI\
PRl-R:-R| PR|-R:-R:| PR!-R)-RI PRl-RJ-R:
Al Al Al Al
L) 5N f X I X
/ \ 1 \ / \ / \
1 \ ! \ 1 A\ I \

Figure 2.8: R,’s infinite recursive hierarchy with level-1 knowledge

R -R,
Pﬁ
Ri>G; Ri2G:
R,=2G, R2G: R>G; R~S Ri=2G; Ri2G; Ri=>G; RS
R:>G, -4 -4 -4 4 | R22>G;, 6 6 6 6
R:2G; 2 2 2 2 RG> 2 2 2 2
R:2G; 18 18 18 18 | R22G; 18 18 18 18
RS 0 0 0 0 R:=2S 0 0 0 0
Ri=G; RS
Ri=2G; R=2G: Ri2G; R=>S R=G, R2G: R>G; R=S
R:2G, 6 6 6 6 R:G 6 6 6 6
R:2G: 2 2 2 2 RG> 2 2 2 2
R:2G; 18 18 18 18 | R:>G; 18 18 18 18
R:=2S8 0 0 0 0 R:=2S 0 0 0 0

Figure 2.9: R,’s model of R,’s payoff matrix with set of actions A;

R-R,
By
RI2G,; Ri2G;
R:2G; R:2G>; R:2G; R:=S R:2G; R:2G: R>G: RS
Ri2G; 4 4 4 4 | Ry2>G 4 4 4 4
Ri=G; 5 -10 5 5 Ry G 5 -10 5 5
Ri>G; 15 -5 15 15 | Ri2G; 15 -5 15 15
Ri=>S 0 0 0 0 RS 0 0 0 0
Ri=2G; Ri=>S
R:2G; RG> Rz")Gj RS Rz‘)G; R:>G> R:2G; R:>S
Ri>Gy 4 -+ 4 4 R:i=2G, 4 4 4 4
RG> 5 -10 3 5 Ri=2G; 5 -10 5 5
Ri2>G; 15 -5 15 15 | Ri2G; 15 -5 15 15
RS 0 0 0 0 Ri=>§ 0 0 0 0

Figure 2.10: R,’s model of R3’s payoff matrix with set of actions A,
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it is possible for R, to have level-2 knowledge on R, and has a different level of
knowledge on R;. Furthermore, it is reasonable that if a particular agent does not
know a particular goal, it will not know that other agents know that goal even if
other agents do know that goal. So, the set of actions that /2; knows about R, will
be the same as A, or a sub-set of A,. This means that if R, has level-2 knowledge
on R,, the payoff matrix that R, models Ry, P1~F2_ will be the same as Pf}“R?
or a sub-matrix of Pfl“R?.

Since R; knows that R, does not know (3, that is R, has level-2 knowledge on
Ry, its model of R;’s payoff matrix Pf1=2_ shown in Fig. 2.4, actually is equal to
a sub-matrix of Pfl"R?, shown in Fig. 2.9, with rows and columns associated with
(G5 removed.

Now, let us define a sub-matrix operator: Sg, such that if P’ = P&g, then
P’ will be equal to P, with rows and columns associated with the set of goals G
removed. So in the example, R,’s model of R;’s payoff matrix with level-2 knowl-
edge will be denoted as Pﬁ‘_R’e{ca}.

This sub-matrix operator will have the following property:

PeQGGGb = Pegbega = PeGaUGb = Pegbugn,

where PSg, g, means the resulting sub-matrix will be equal to P, with all rows and

columns associated with both sets of goals G,, and G, removed.

2.3.3 Finite Recursive Hierarchy

We introduce another notation G;;, which denotes the set of goals that R; knows i
does not know, and G;;x, which denotes the set of goals that R; knows R; knows
Rj. does not know, and so on. With the sub-matrix operator, R, ’s infinite recursive
hierarchy will become Fig. 2.11. At the second level, since R, knows R, does not
know the set of goals G2, R; needs not include this set of goals in R;’s model of
Ry’s payoff matrix. So, Pf~F2 will be a sub-matrix of Pf,‘"R?, with rows and

columns associated with set of goals G,, removed. At the third level, since R,
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Al 1 Al égu
PRI ‘ l/ * Rl ‘ / \R].
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Figure 2.11: R,’s infinite recursive hierarchy with sub-matrix operator

knows R, does not know the set of goals G;,, and R, knows R, knows R; does not
know the set of goals G,;, R; needs not include these sets of goals in its model of
Ry’s models of R,’s payoff matrix. So, P*1=2=F1 will be a sub-matrix of Pf~
with rows and columns associated with sets of goals in G;, and G,, removed, and
SO on.

In the example, R; has level-2 knowledge on both R; and Rs: “R, knows that
R, does not know (i3 and “R; knows that B3 does not know (&, . This means that
G2 = {Gs}, G1a = {G:}. Since R, does not have further knowledge, all G,21, G123,
Gis1, Giazs Gi212, G121, Gr23t, G132, Gi312, Giais, Giaz1, Giaza, and so on, will be
empty sets. In this case, the recursive hierarchy can be further simplified to the one
shown in Fig. 2.12. At the second level, since R; knows that R, does not know (3,
R, needs not include (73 in its model of R;’s payoff matrix. At the third level, for
R, to model R,’s model of R,’s payoff matrix, R, also needs not include 3. At
the forth level, for R, to model R;’s model of R;’s model of R;’s payoff matrix,
again (&3 needs not be included. From the figure, we can see that since level-3
knowledge is not available for R, the payoff matrices at level 4 of the hierarchy

cannot be reduced anymore, and starts to repeat the patterns at upper levels. For
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Figure 2.12: R,’s finite recursive hierarchy with level-2 knowledge

example, the payoff matrix P{" ™26 g, at level four repeats that at level two,
and the payoff matrix Pfl‘“Rf*e{Gs} at level four repeats that at level three. So,
the infinite recursive hierarchy can be terminated at this level, and becomes a finite
hierarchy.

In general, an infinite recursive hierarchy can be terminated at level (k+1) if
level-k knowledge is not available. Same as the original design of RMM, we termi-
nate an infinite hierarchy due to lack of further information, which agents can use

to model other agents.

2.3.4 Choosing an Action

From Fig. 2.12, we can see that the payoff matrices at the forth level repeat those
at the second level and those at the third level. By method of iteration, an action
can be chosen. Let’s look at the left sub-tree of Fig. 2.12, as shown in Fig. 2.13.
Starting from the payoff matrix on the left bottom corner in Fig. 2.13, which is
Pfl‘ =Ba ©{as}» we can deduce the best action for R; is a;: Ry— Gy, which means R,
can get the highest payoff if it chooses to obtain Gy. We apply a; to Py~ e 4.,

that is if R, chooses to obtain (7;, from Pfl"Rae{Gs}, we can deduce the best

S
{G 1)
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Rné: a7:R 2->G 1
Al (G3) a4:R 2->G

ae

R|- 1 R1 - R3 as:R 3->G 2
a6:R 1->8 P
(G:I Al {G3s} as:R 3->G 2
ai3:R 1->8

A

2 ._» Rné PRlél PRxé:
(G 1) al {G3}) Al (G 3} Al (G 3}

a1:R 2->G 1 a2:R 3->G 2

Figure 2.13: Left sub-tree of Fig. 2.12

action for Rj is ay: R3—G5. Then we move up one level, applying «, and a,
on Pfl“R' ©{a.)» We can deduce from Pfl"R‘e{Ga} that the best action for R, is
az: R;—S. Similarly, we move up one more level and apply a,, which is from
Pfl"R:‘e{Gs}, and a3, which is from Pfl“R‘e{Gs}, to Pfl‘“R’e{Gs}, we can ob-
tain a4. Then we apply a3, which is from Pﬁ’"R‘e{Ga}, and a4, which is from
P/ﬁ‘_m@{cs}, to Rﬁ'—me{ca}, we can obtain as, and so on. After two iterations,
we can see that the solution set [as, a4, as] equals [ag, ar, ag], which means the
solution set no longer change. From this sub-tree, we can deduce that from R;’s
point of view, R, will choose to obtain (; and R, will model that R, will stay still
and Rz will choose to obtain (¢3. Similarly, from the right sub-tree of Fig. 2.12, we
can deduce that from R,’s point of view, R3 will choose to obtain (¢,. So, from

P~ Ry will choose to obtain Gi.
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2.3.5 Recursive Formulas

Now, we are going to formalize the above process into Recursive Formulas. In
the above process, excepts the lowest level, the set of best actions at each level
are deduced given the set of best actions from one lower level. This relationship
between the best actions is shown in Fig. 2.14. From the payoff matrix at the top
level, Pf]"R‘, we can deduce R,’s best action, denoted as a*Rll, given, from R;’s
point of view, the best actions of R, and R3 from the second level, denoted as
a‘,‘fl _R,» and “7221 _R, Tespectively. a*R"’l_ R,» and “;221— R, are deduced from the payoff
matrices at the second level: PZ“Rze{Ga} and Pfl“R“e{G,}, respectively. These
two actions at the second level are deduced given the set of best actions from the
third level. To deduce the set of best actions at the third level, actually we need the
set of best actions from the forth level. From Fig. 2.12, we can see that in order to
deduce the best action from Pfl"R'e{Ga} at level three, we need the best actions
from P/ﬁ"aze{gs} and Pfl‘_Ra@{Gs} from level four. Note that these two matrices
actually repeat at level two and level three, respectively. So, in order to deduce the
best action aj; _ R, at level three, we apply the best action from level 2: a’,‘f}_ s
deduced from Pff’"R’e{Gs}, and the best action from level 3: a}%’;_ Ry deduced

from P/ﬁ'_Rae{Ga}, to Pﬁl_R’@{Gs}.
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Figure 2.14: Hierarchy of best actions

From Fig. 2.14, we can write down a set of recursive formulas:

4
Lo e e Ry — 2
l. aR, = arg max, URl(PA,l Lo a;h—Rz’aRl—Rs)

*2 . Ri—R; *3 *3
2. a}j _p, = argmax, (/1:g2(PAl ©{(Gs}> % URy—R,» CRy—R,)
3. a} _p. = argmax, U, (P P1o a,ap ay _p.)
cYRy—-Ry — g a Y Ry Ay {Gs}r &y Ry—=R2>“Ry—R3
4. q*3 Sy U (PRl—Rse a*2 a3 )
2 aR’z-—Rs = argmaxy URg Ay {Gs}> @ R1=R2) " Ry—R,
5 *2 s A U (PRI—Rse > a*3 at3 )
- AR, _Rp, = argmax, Urs (L4, {G1}1@,@R,—R,» CR3—R,

*3 o Rl—Rl *x2 *3
6' aR3 -Ry — a‘rg maxXg URI (PA1 e{Gl}’a’ aRl—Ra’ aRg—RQ)

. Ri-R 2 3

L 7. R, _p, = argmax, Ur, (P, " 06}, ¢ 4R, _ry» WRy—R, )

where a)}‘l is the best action of R, at level 1, which is the action that gives R,
maximum utility from the payoff matrix PZ"R‘, given ail _p, and a7 _p ; and

‘17?2:— Ry is the best action of R, at level two, from R,’s point of view, which is the
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action that gives R, maximum utility from the payoff matrix Rﬁ'_R’e{Gs}, given
“;232—R1 and a';%_Rs; and so on.

To solve the above set of recursive formulas, we can use method of iteration
as shown in section 2.3.4. Let us look at the left sub-tree in Fig. 2.14. First, we
can deduce from the payoff matrix Pﬁ‘"Rze{Ga} the best action of Ry: aj} _p,
is Ry—Gy. Apply this result to the payoff matrix PZ‘"Rae{Gs}, we can deduce
aj, _p,» Which is R3—G,. Then from formula 3, we can find aj, _g,» which is
Ry—S. From formula 2, we can find a}f _g, is R,—G). From formula 4, we
can find a',‘%_ R, 18 R3;— (. As the solutions do not change anymore, this iteration
stops, and a7?21— s a}f’z_ R,» as well as aj}_p. are found. Similarly, we can find
afh _p, 18 Rs—Gy, ajy _p, is Ri—S, and a},_p, is Ry—Gs. Then from formula
1, we can find a;{‘l, which is R;—(G3. The above process means that at the third
level, R; models how R; models R;’s and R3’s decision-making, as well as how
R3 models R;’s and R,’s decision-making. At the second level, R, models R;’s and
R3’s decision-making. Since at the third level, R, can model that R, calculates that
R, will choose to stay still and R3 will choose to obtain (G2, R, can model at level
two that R, will choose to obtain (7;. Similarly, since at level three, 2; can model
that R calculates that R; will choose to stay still and R, will choose to obtain (+5,
R, can model at level two that R will choose to obtain (¢,. If R, chooses to obtain
(71 and R3 chooses to obtain (75, R, can determine that it can get the highest payoff
by obtaining (73.

In an n-agent environment, we denote the payoff matrix that ; models R;, with
level-m knowledge, as ,f ~R and we denote the best action of R; at level-m from
R;’s point of view as an ™™ The hierarchy of best actions in From Fig. 2.15 can
be formed. In the figure, except for the lowest level, the set of best actions at each
level are determined given the set of best actions from one lower level. The infinite
recursive hierarchy terminates at level k if level-(k-1) knowledge is not available.
At the lowest level, the set of best actions are determined with the set of best action

at the same level and one of the best actions from the previous level.
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Figure 2.15: R;’s Hierarchy of best actions in an n-agent environment
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From Fig. 2.15, RMM can be formulated by the following set of recursive for-

mulas:
A
| T = Ri—R; x2 *2 2 2
ap, = argmax, Ur,(Py" ™™, a,aR,_R,»- -+, QR;~Ri_,» R;~Riy, 2 - » CR.—R,)
axm Sy x U (PR:'—R_, a a*m-{-l a-km-i-l a:-m-l-l ann+1 )
RI—RJ — a;lgn’la/ a RJ m y oy RJ_Rl,..., RJ_RJ—l, R]_Rj-f'l’-", RJ—R" t)
for 1 < m < k, if level-k knowledge is not available
xk — oy Ri_Rl *k xk *k—1 =k *k
AR, _p, = argmax, Ug, (P, 3G, GR _Ry> QR R,y URy—R;» OR,—Ry410 1 OR,~Ry)
<
xk = Ri-R;j— *k xk xk—1 *k =k
AR _R;_, = AargMax, Ur,_, (P y@y AR _Ry> s @R, Ry ORy—R,  CR ~Ry 10+ -+ > OBy Ry
wk it s Ri_R)-H "3 *k xk—1 xk =k
AR _R;,, = argmax, URj. (P 3@y @R _Rys -+ y @Ry—R;_y» YRy—R;» CR =Ry 420 -+ » CR =R
*k Lo bl Ri—Rn xk *k xk—1 xk xk
| @R,-R, = argmax, U, (P,""™,6,aF _R,»-++»@R;=R;_,» ®R.—R;» ®R,~R;417* * +» ®R,~Rn_y)

By solving this set of recursive formulas, R; can choose its best action, it can model
other agents’ best action, it can model how a particular agent model other agents’
best action, and so on. The pseudocode algorithm for solving the recursive formulas

is shown in Fig. 2.16.

2.4 Original RMM vs. Improved RMM

24.1 Terminating the Infinite Hierarchy

In the original design of RMM, the authors made an assumption that each possible
action has an equal probability to be chosen. The reason to make this assumption is
to terminate an infinite recursive hierarchy to a finite one when there is insufficient

information. The problem is that there are errors between this approximation and
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For vi=l, v =< k, v++

For ri=1,r < n, r++

5 PRi_Rr
Generate payoff matrix 17, -

’

Repeat
Obtain best actions from payoff matrices at level-k and level-(k-1);
Apply the best actions to payoff matrices at level-k;

Until solution set is stable

For vi=k-1, v>1, v--
Apply best actions at level-v to payoff matrices at level-(v-1);
Obtain best actions at level-(v-1);

Figure 2.16: Pesudocode algorithm for solving recursive formulas

the real case. To solve the problem, we improve the original design with recursive
formulas. In the improved design, an infinite recursive hierarchy is also terminated
to a finite one when there is no further information. In this case, payoff matrices at
the lowest level repeat those at upper levels. By referencing the repeated payoff ma-
trices at the upper levels, we form the recursive formulas. By solving the recursive

formulas, with no assumption made, agents can determine their best actions.

2.4.2 Resultant Payoff

Using the original RMM, with an assumed probabilistic approximation, we show in
section 2.2.3 that R, can only choose to stay still in the example setting, with zero
payoff. In section 2.3.4, we show that R, can determine that it can choose to obtain
(i3 by solving the recursive formulas, getting a payoff of 5. In this way, R, can

increase its utility compared to making decision with the original RMM.
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2.5 Summary

Agents can use the Recursive Modeling Method (RMM) to represent their knowl-
edge, predict other agents’ actions and then choose their own actions, that is to
choose which goal to obtain or choose whether to stay still. In this chapter, we
present and compare the original design and the modified design of RMM by an
illustrative example. The modified design of RMM improves the probabilistic ap-
proximation of the original one by recursive formulas.

In this thesis, we have not mention how the recursive formulas can be solved in
a computationally tractable way, which is out of the scope of this thesis. As future
work, we are going to design an algorithm for solving the recursive formulas. In
addition, we are going to compare the performance of the original RMM with that

of the improved RMM through simulations.



Chapter 3

A Trust/Honesty Model

RMM describes a decision making strategy for agents to choose which goal to ob-
tain. In a semi-competitive environment, an agent has motivation to tell the truth
when it wants to invite another agent to cooperate. On the other hand, an agent
has motivation to tell lie when it wants to mislead other agents. As a result, on
receiving a message, the receiver needs to decide whether to believe the message or
not. To help receivers choose such actions, we propose a Trust Model. As receivers
employ a Trust Model, receivers become less easy to cheat. As a result, senders
cannot always tell lies. To help senders determine whether to tell lies, we propose
an Honesty Model. In this chapter, we present the Trust/Honesty Model, which
helps agents choose such actions. We first introduce the needs for the model, and

then we present the model.

3.1 The Need for a Trust Model

The following example shows that agents have motivations to tell the truth and
agents also have motivations to tell lies in a semi-competitive environment. As a
result, receivers need to choose whether to believe the message or which message to
believe. The example also shows that agents cannot make the decision by consider-

ing only the expected payoffs of the messages. To help agents make the decisions,

we need a Trust Model.

28
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3.1.1 Motivation to Tell the Truth: Invitation to Cooperate

Agents are self-interested, and always want to maximize their own respective util-
ities. Therefore, in the semi-competitive environment, it is not always good for an
agent to share all of its information with other agents. Consider the example de-
scribed in section 2.1. From section 2.3.5, by recursive formulas, R; chooses to
obtain (73, getting a payoff of 5. In addition, it models that R, will choose to obtain
(; and R3 will choose to obtain (7. However, from R, ’s payoff matrix in Fig. 2.3,
R; knows that it can increase its payoff by obtaining Gy, getting a payoff of 8, if
R, chooses to obtain (75 instead of ;. To invite R, for cooperation, R; consid-
ers it rational to send R, the information about (¢35, which is unknown to R,. This
message, M, should look like this: “You can obtain the goal (3, with worth 20,
cost(Ry—G3) = 15, cost(Ry,—G'3) = 2, cost( R3—G3) = 5 and G3’s priority list is
< R, R3, Ry >

After communication, if R, believes the message M, the model of R,’s decision

making situation will be changed. The payoff matrix describing R’s decision-
making situation with the new knowledge of the presence of (3 will become the
one in Fig. 2.9. From which, it can be seen that if R, believes the message M, it
will choose to obtain (3. This is because R, can get a payoff of 18 by obtaining (i3,
no matter what actions other agents take. In fact this payoff is also the best payoff it
can get among all its possible actions. If R, believes and follows the message M,
R, can also increase its payoff from 5 to 8 by obtaining (7, instead of obtaining (.
This shows an example in which agents can benefit mutually by cooperation. This

also shows that agents have incentives to tell the truth.

3.1.2 Motivation to Tell a Lie: to Prevent Competition

At the same time, R3 can maximize its payoff by obtaining GG3. However, it has
a lower priority than R,, which means that it needs to compete with R,. So, to

prevent competition with R, R3 considers it rational lying to 1, and directing it to
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Nature
M, is True M, is False
R, Believe 18 -2
Not Believe 6 6

Table 3.1: The payoffs of R, with respect to its trust on M; and the nature of M,

Nature
M, is True M, is False
R, Believe 20 —4
Not Believe 6 6

Table 3.2: The payoffs of R, with respect to its trust on M, and the nature of M,

a fake goal. This message, M, should look like this: “You can obtain the goal Gy,
with worth 24, cost( R, —G4) = 50, cost( Ry—G4) = 4, cost( R3—G4) = 50 and Gy’s

priority listis < R,, Ry, Rz >.” This shows an incentive for an agent to lie.

3.1.3 To Believe, or Not to Believe, that is the Question

Now R, receives two messages: M, from R; and M, from Rs. If R, believe M, it
will choose to obtain (G3. In this way, R, can gain a payoff of 18 if the message M,
is true, and loss the cost of 2 if the message M, is a lie. On the other hand, if R,
does not believe the message M;, it will choose to obtain (¢; and get a payoff of 6
no matter the message M, is true or not. The payoffs of R, with respect to its trust
on M, as well as the nature of M, are summarized in Table 3.1. However, if R,
believes Mj, it will choose to obtain (4. In this way, R, can gain a payoff of 20 if
the message M, is true, and loss the cost of 4 if the message M is a lie. Otherwise,
it will choose to obtain Gy, getting a payoff of 6 no matter the message M, is true
or not. The payoffs of R, with respect to its trust on M, as well as the nature of M,
are summarized in Table 3.2.

Now, R, faces a difficult question. If R, makes the simple assumption that the
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Expected Utility

Believe and follow M; + x (18 —2)=8
Believe and follow M; 5 x (20 —4)=8

Not Believe M, % x (6 + 6)=6
Not Believe M, 3 X (646)=6

Table 3.3: Resulting expected utilities

probability for R, or Rj telling the truth to be %, then the resulting expected utilities
are shown in Table 3.3. From the table, it can be seen that both the expected utilities
of believing and following M, as well as M, are higher than that of believing neither
M, nor M,, so R, will believe either M, or M,, or both. However, believing M,
will lead R; to obtain the goal (i3 and believing M, will lead R, to obtain the goal
(4, which are two different actions. Since each agent can only take one action, R,
has to choose to follow either M, or M,, but not both. As the expected utilities
of believing and following M; and believing and following M, are the same, R,

cannot determine whether to follow M; or M,. !

3.2 The Trust Model

3.2.1 Impression

From Cambridge Dictionaries Online [htta], Impression is “the opinion you form
when you meet someone or see something.”

From Merriam-Webster Online [httb], Impression is “a telling image impressed
on the senses or the mind.”

We suggest that in semi-competitive environments, each receiver should main-

tain an impression on each sender based on its experience. A sender gives a good

'In this paper, we assume that if an agent believes a message, the agent believes all the informa-
tion provided by the message. It is arguable that an agent can, in general, choose to believe only
some parts of the message. However, this is not our scope of discussion.
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impression to a receiver if and only if the former has told truths to the latter, which
has brought the latter benefits. Follow the definitions in the dictionaries [htta, httb],

we define the impression that receiver i has towards sender j to be a real number in

[—1,1]:

imp;; = fi(Y gaingj, Y lossij, p,n)

where ) gain;; is the sum of the utility that agent i has gained by having believed
the truths from agent j, ) loss;; is the sum of the utility that agent i has lost by
having believed the lies from agent j, p is the number of times that agent j has told
the truth, and # is the total number of messages that agent i has received from agent

J. The function f; must satisfy the following axioms:

Axiom f;;:  f; is continuous.

Axiom f;:  f; strictly increases as p increases.

Axiom fi3:  f; increases as ) |, gain;; increases.

Axiom fi:  f; decreases as ) loss;; increases.

Axiom fi5:  fi =0whenn=0.

Axiom fis:  For Y gaing; =Y loss;j, fi=0when p=n — p, f; > 0 when
p>n-—p,and f; <0whenp <n—p.

Axiom fi7z:  fi > 0 when ) gain;; > ) loss;j and p > n — p.

Axiom fiz:  fi < 0when ) gain;; <) loss;jandp <n —p.

Axiom fi9:  f; < 0when ) gain;; > ) loss;jandp <n —p.

Axiom f;10:  fi < 0 when ) gain;; < Y loss;j andp > n — p.
Axiom f;, states that it is rational that impression will increase if the number of

times that the message sender has told the truth to the receiver increases. Axiom
fis means it is rational that impression will increase if the sum of the utility that
the receiver has gained by having believed the messages from the sender increases.
Axiom f;4 describes that it is also rational that impression will decrease if the sum
of the utility that the receiver has lost by having believed the messages from the

sender increases.

Axiom f;s says that impression will be neutral if agent i receives no message
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from agent j. For the gain in utility equals the loss in utility (axiom fs), the impres-
sion will also be neutral if the message sender has told the same number of truths
and lies, the impression will be positive if the sender has told more truths than lies,
and the impression will be negative if the sender has told more lies than truths.

From axiom fi7, if the gain in utility is greater than the loss in utility and the
sender has told more truths than lies (or the same number of truths and lies), this
means that the message sender is good to the receiver, so the receiver will have a
positive impression towards the message sender. On the other hand, from axiom f;s,
if the loss in utility is greater than the gain in utility and the sender has told more
lies than truths (or the same number of truths and lies), this means that the message
sender is doing harm to the receiver, so the receiver will have a negative impression.

Axiom fg is special. If the gain in utility is greater than the loss in utility, but the
sender has told more lies than truths, it is very likely that the sender is performing
some kinds of strategy. For example, at the first encounter, the sender tells a truth,
bringing a utility of 100 to the receiver; but in the following nine encounters, the
sender lies, which makes the receiver loss a utility of 90 in total, it is obvious that
the sender is doing harm to the receiver. So, the impression in this case should be
negative. Axiom f;;o shows the case in which the sender has told more truths than
lies, but the gain in utility is less than loss in utility, this means that the lies bring
more harms to the receiver, so the impression is also negative.

The following is an example function satisfying the above axioms and the intu-

itive meanings:

(

0 n=>0
=n=p) > gaini; = 3 lossi;

= aini;—y_ loss; ’

_(p (n p))(gzainij-*% lo.ssaj) Zgam.'j < Z lOSSij /\P == P
p—=(n—=p)\/ 2 gaini;— loss;

L ( n )( Z gain.j-}-z 1083.: )

impi; = j

otherwise
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3.2.2 Reputation

From Cambridge Dictionaries Online [htta], Reputation is “the opinion that peo-
ple in general have about someone or something, ..., based on past behavior or
character.”

From Merriam-Webster Online [httb], Reputation is the “overall quality or char-
acter as seen or judged by people in general.”

Follow the definitions in the dictionaries [htta, httb], we define the reputation of
an agent to be an averaged impression that the population has towards that agent.
However, the only way for an agent to access other agents’ impressions on a par-
ticular agent is to ask other agents for their impressions on that particular agent. It
is possible that an agent can lie in answering the query, so a weight could be intro-
duced to the answer. In an N agents environment, we define reputation of a sender

J, as seen by a receiver i, as a weighted sum of individual impressions of a subset of

the population:

k=n .
o — ke tmpk X Wik
rep;; = =

where W;; is the weight that agent i attaches to agent k’s impression on agent j
and n < N. We shall sometimes omit the phrase “as seen by agent i” when the
meaning is unambiguous from the context. Note that each receiver can choose
its own subset of population and decide the corresponding weights in calculating
the reputation of a particular sender. Much research has been done on this issue
[MMHO02, RLMOI1, SS01]. In the absence of any knowledge about other agents’

honesty and trustworthiness, the weights can be assumed to be 1.

3.2.3 Risk Attitude and Trustworthiness

In human interaction, different people have different reactions when they are cheated
by the same lie, and the degree of trust that different people have towards the liar

will be different. For example, one will consider not trusting the liar anymore once
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most neutral most
risk-averse risk-seeking
[ l |
0 0.5 1

Figure 3.1: Risk attitude

he is cheated, while another person may continue trusting the liar even he is cheated.
This is because different people have different attitudes towards risk: some do not
mind taking any risk, some do not want to take any risk, while others are neutral.
To model this, we propose to include the risk attitude of the receiver in calculating
its trustworthiness on the sender. The risk attitude here does not mean the risk un-
dertaken by the agent, but rather an index, which reflects the amount of risk that the
agent is willing to undertake. Here, we define risk attitude, r, of an agent to be a real
number in [0,1], which is shown in Fig. 3.1. Agents with risk attitude being O are the
most risk-averse while agents with risk attitude being 1 are the most risk-seeking. A
risk-averse agent prefers messages from a sender with high trustworthiness, while
a risk-seeking agent prefers messages with high utilities. This risk attitude is deter-

mined by the agent itself, like the personality of human, and can change over time.

In the example shown in section 3.1.3, it can be seen that considering expected
utility alone is not enough for an agent to determine which message(s) to believe
and follow when multiple messages are received. In fact, it is dangerous for an agent
to believe and follow a message just because the expected utility of the message is
attractive: the agent can be cheated easily. We propose that in a multiagent semi-
competitive environment, each receiver should maintain a trustworthiness to every
sender of the messages it receives. In other words, for each ordered pair < R;, R, >
we associate a trustworthiness of R, as seen by R,. We shall sometimes omit the
phrase “as seen by R,” when the meaning is unambiguous from the context.

From Cambridge Dictionaries Online [htta], Trustworthiness is the property of
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being “able to be trusted,” while trusting is “to have belief or confidence in the
honesty, goodness, skill or safety of a person, organization or thing.”

From Merriam-Webster Online [httb], Trustworthiness is the property of being
“worthy of confidence.”

We define trustworthiness, t;;, that receiver i has towards sender j as a func-
tion of the impression that agent i has about agent j, agent i’s calculation on the

reputation of agent j as well as the risk attitude of agent i:
tij = fl(impij,repij, i)

The function f; returns a real number in [—1, 1], and must satisfy the following
axioms:

Axiom f;;: f; is continuous.
Axiom f;5:  f; decreases as imp;; decreases and vice versa.
Axiom fi3:  f; decreases as rep;; decreases and vice versa.

Axiom f;4: f, decreases as r; decreases and vice versa.
Axiom f;, states that it is rational that the trustworthiness of the sender de-

creases if the receiver’s impression on it decreases and vice versa. Similarly, axiom
fia states that it is rational that the trustworthiness of the sender decreases if its
reputation decreases and vice versa. Axiom f4 states that if the risk attitude of the
receiver decreases, which means the receiver becomes more risk-averse and thus
less willing to trust other agents, the evaluated trustworthiness of the sender will
decreases.

An example function satisfying the above axioms and the intuitive meanings
is shown below, which attaches the same degree of importance to impression and

reputation, and is in proportion to the agent’s risk attitude.

tij = tmp.'z-zi—rep.'l % (1 _ Ti)
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3.2.4 Persuasiveness of a Message vs. Stubbornness of the Re-

ceiver

On determining whether to believe and follow a particular message, besides con-
sidering the expected payoffs that the receiver can gain by believing the message,
trustworthiness of the message sender should also be considered. Formally, a re-
ceiver makes use of a persuasiveness function f, to rank the messages and choose
to follow the message that has the highest value of persuasiveness. The persuasive-

ness, pn, of a message M is defined by:

o= Fpris tiss k)

Intuitively, the function f, takes the risk attitude r; of the receiver : as the first
argument, the trustworthiness ¢;; of the message sender j, as seen by receiver ¢,
as the second argument and the expected utility u; of the message k as the last
argument, and returns a real number in [—1, 1] as the rank of the message. The

function f,, must satisfy the following axioms:

Axiom f,: f, is continuous.

Axiom fyo:  (Adventurousness of risk-seeking agents) There exists a
value rg € R such that f,,(r, {2, u1) > f,(r, t1, uz) if and only
if » > ro, t; > ty and uy > us.

Axiom f,3: (Cautiousness of risk-averse agents) There exists a value
ro € R such that f,(r, t2, w1) < f,(r, t1, up) if and only if
r < g, ty > tyand uy > us.

Axiom fpq:  ifuy > ug, f(r, t, uy) > fo(r, t, ug) for r > ro and
Lo, t,uy) < fio(r, t, ug) forr < 7.

Axiom fps: if ty > 1y, fr(r, ty, w) > fo(r, t2, w).

Axiom fpe: if 7y > 1o, fr(ry, t,u) > fi(ra, t, u).
It is obvious that the domains of the inputs of f, are continuous, so f, should

be continuous. Besides, it is reasonable that utility will be more attractive than the

trustworthiness of the message sender to a risk-seeking receiver, and vice versa to a
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risk-averse receiver. These bring about axiom f,; and Axiom f,3. Axiom f,4 states
that if a receiver receives two messages from senders with the same trustworthiness,
but with different payoffs, it is rational that a risk-seeking receiver is more willing
to follow the message with higher payoff. However, it is rational that a risk-averse
receiver is cautious for the message with higher payoff. Axiom f,s states that if a
receiver receives two messages from senders with different trustworthiness, but with
same payoffs, it is rational that the receiver is more willing to follow the message
from sender, which is more trustworthy. Axiom f,s means that the persuasiveness
of the same message from the same sender, with the same trustworthiness, decreases

if the receiver become more risk-averse.
Theorem 1. rq (in axiom f,;) equals r{ (in axiom fy3).

Proof. Assume rq is not equal to 7, this results in the following two cases:

Case 1. ry > ro By axiom [y, if 1 > ro, 81 > t3 and uy > ua, fp(r, t2, uy) >
fo(r, t1, ug). By axiom fys, if 1 < 1), ¢ > ty and uy > uz, f(r, t2, ur) < fo(r, ty,
ug). As aresult, for rg < r < g, fp(r, t2, uy) > fp(r, t1, u2) and fi(r, ta, ug) <
fp(r, t1, uz), which is a contradiction.

Case 2. vy < ro By axiom fpa, fo(r, t2, u1) > fp(r, t1, ug) if and only if » > ro,
ty >ty and uy > ug, so for r < ro, fo(r, ta, u1) < fp(r, t1, uz). By axiom fa, f,(r,
ta, uy) < fp(r, ty1, up) if and only if 7 < rf, t; > t2 and uy > uy, so forr > rg, f(r,
ta, uy) > fo(r, ty, uz). As aresult, for ry < r < ro, fp(r, ta, u1) < fp(r, t1, ug) and
fo(r, ta, uy) > f(r, ty, uz), which is a contradiction.

So rq equals 7. O

A simple example satisfying the above axioms, f, can be defined as follows:?

{e=lutt  forp < 0.5

fp(r’ t, u) — ﬁzi fOI' r = 0-5

ftlutt 00 < 0.5
) :

%In this formula, the utility is assumed to be in the range [0, 1].
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With this function, the more risk-averse the receiver is, the more important the
trustworthiness of the sender is in making decision. The more risk-seeking the
receiver is, the more important the utility of the message is, while receivers with
neutral risk attitude consider trustworthiness of the sender and utility of the message
to be the same important.

If a receiver receives only one message, it should believe and follow the message
only if the persuasiveness of the message is higher than a certain threshold. We
call this the stubbornness of the receiver to the sender, which is a real number in
[—1,1]. We shall sometimes omit the phrase “to the sender” when the meaning
is unambiguous from the context. Each receiver maintains a stubbornness to each
message sender, which can be changed over time, like personality of human. If
more than one message is received at a time, as an agent can only choose one action
in one single round, the receiver should believe and follow the message with the
greatest persuasiveness, among those messages having a persuasiveness greater than
the corresponding stubbornness to the senders.

From the definition of the f, function, it is easy to see that it is possible that two
messages have the same value of persuasiveness. This means that the two messages
apparently are having the same expected utility and both are from sources with the
same degree of reliability. In this case, the effect on believing and following which
message will have no difference, so the agent can simply throw a dice to determine
which message to believe and follow. Another problem is that a message with
an extremely high utility will cause a risk-seeking agent to follow. First, we note
that this actually mimics a real-life phenomenon occurring in human community.
Second, at the end of a round when the worth of the goals are given to the agents, an
agent actually will know whether it has believed and followed a true message or a
lie, and a cheated agent then decrease its impression on the message sender who lied
to it, and thus decrease the trustworthiness of the liar. In Iterated Game described in
the following section, the impression, reputation, trustworthiness, risk attitude, and

stubbornness of agents preserve in the transition from one round to another round,
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an agent will be cheated for only the first few times, and will not believe further

messages from the same message sender.

Theorem 2. If two messages M, and M,, with expected utilities u,, uy and trust-
worthiness of message senders t,, t,, respectively, where u; > uy and t, > t,, are
sent to all receivers with different risk attitudes. Then there exists a constant ro € R
depending only on u,, uy and t,, t,, such that all the receivers with risk attitude
r > 1o will choose to believe and follow M, and all the receivers with risk attitude

r < ro will choose to believe and follow M, if persuasiveness of the messages are

greater than the receivers’ stubbornness.

Proof. Receiver uses a function f, to rank the messages and choose to believe and
follow the message that has the highest value of f,, where f, must satisfy axioms
Jp1 to axioms fue. Since t; > ¢, and u; > uy, by axiom f,, there exists a value 7o
€ R such that f,(r, ty, uy) > f,(r, ta, uy) if and only if » > ro. And by axiom fy3,
there exists a value rj € R such that f,(r, t1, u;) < f,(r, t2, uz) if and only if » < g,
By Theorem 1, » = r{. So, for u; > u, and t, > t,, there exists a value ro € R
such that if » > ro, then f,(r, t1, uy) > f,(r, t2, uz), which means the receiver will
choose to believe and follow message M,, and if r < rg, then f,(r, t1, uy) < fo(r,
t2, uz), which means the receiver will choose to believe and follow message M, if

persuasiveness of the messages are greater than the receivers’ stubbornness. a

Theorem 3. Suppose there are two receivers Ry and Ry, with risk attitudes ry and
ro respectively, where ry > 1y, that is receiver R, is more risk-seeking than receiver
Ry. Then there exist two messages M, and M, with expected utilities u,, uy and
trustworthiness of message senders t,, t,, respectively, where u, > u, and ty > ty,
such that when these two messages are sent to Ry and Ry, Ry will choose to believe
and follow message M; and R, will choose to believe and follow message M if

persuasiveness of the messages are greater than the receivers’ stubbornness.

Proof. By theorem 2, for any two messages M; and M,, with expected utilities u,,

u, and trustworthiness of message senders ¢, t,, respectively, where u; > u, and
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ty > ty, there exists a constant 7y € R depending only on u,, u, and ¢,, ¢, such
that all the receivers with risk attitude » > ry will choose to believe and follow M,
and all the receivers with risk attitude » < ro will choose to believe and follow M,
if persuasiveness of the messages are greater than the receivers’ stubbornness. In
other words, proving theorem 3 is to find the two messages such that r, < rg < 7ry.
We do this by first initialize two messages M; and M,, with expected utilities u,,
uy and trustworthiness of message senders ¢,, ¢, respectively, where u; > u; and ¢,
> t;. When these two messages are sent to the two receivers, one of the following
four cases will result:

Case 1. Both of R, and R, choose to believe and follow message M,. In this
case, generate another two messages M| and M}, with expected utilities u}, w5 and
trustworthiness of message senders ¢}, t}, respectively, where u} > uj, ty > t,
iy >t and 1] < t,.

Case 2. Both of R, and R, choose to believe and follow message M. In this
case, generate another two messages M| and M}, with expected utilities u}, u; and
trustworthiness of message senders ¢}, t, respectively, where u} > uj, 15 > 1,
uy > uy and uf, < u,.

In case 1 and case 2, the process is continued by sending the new messages M|
and M to the agents, replacing the old messages M, and M,. As r is a real number,
as long as r; > ry, there exists 7o € R, such that r; < ro < ry. So, eventually, the
process converge and case 3 will results.

Case 3. R, chooses to believe and follow message M; and R, chooses to believe
and follow message M. In this case, the theorem is proved.

Case 4. R, chooses to believe an follow message M, and R, chooses to believe
and follow message M,. In fact, this case will never happen. Suppose R, and R,
choose to believe and follow different messages, as r; > 73, and by theorem 2,
ry < 1o < 11, which means R; will choose to believe and follow message M, and

R, will choose to believe and follow message M. U
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The following theorem states that it is rational for a risk-seeking receiver to
believe a message with a higher utility and from a more trustworthy source, rather
than a message with a lower utility and from a less trustworthy source. For a risk-
averse receiver, as it will be cautious for the message with a higher utility, which

message it believes depends on the actual values of the trustworthiness, utilities,

risk attitude and stubbornness.

Theorem 4. For risk attitude r > ro, trustworthiness t, and t,, and utilities v, and

ug, where 1y 2> ty and uy > uy, fo(r, ti, wy) > fo(r, ta, ua).

Proof. From axiom fp4, if uy > us, f(r, t1, 1) > fo(r, t1, up) for r > ro. From
aXiom .fp5’ lf tl Z tz’ fp(r) tla 'UQ) 2 fp(ra t2, '11,2)- So’ fp(T) tlr 'Ul) Z fp(r9 tla u2) Z
fp(ry t'Zv u2)' That iS fp(ri tl’ ul) 2 fp(ra t2, Uz). D

Intuitively, if a receiver becomes more risk-averse and lowers the trustworthi-
ness of the message sender after it is being cheated, then when this receiver receives
the same message from the same sender (with trustworthiness lowered), it should be

less willing to follow the message. This phenomenon is confirmed by the following

theorem.

Theorem 5. For risk attitudes ry and r,, trustworthiness t, and ty, and utility u,

where ry > o and ty > s, fo(r1, ty, w) 2> fo(ra, t2, u).

Proof. From axiom fue, if 71 > 72, fo(ry, t1, u) > fi(r2, ty, w). From axiom fps, if
tl 2 t2a fp('r?a tlv ‘U) Z fp(r2’ t2a U) SO, fp(rl: tls 'U) Z fp(7v2’ tly 'LL) Z fp("‘?’ t2, 'lt).
That is fp(7‘1, t1, ‘lL) Z fp(7‘2, to, u) O

3.3 The Need for an Honesty Model

We define an Iterated Game to be a game consists of a series of Single-round games,
in which one round of game proceeds after another. There is a completely new set

of goals in each round of game. The impression, reputation, trustworthiness, risk
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attitude, and stubbornness of agents preserve in the transition from one round to
another round and the values will be updated at the end of each round.

In a Single-round Game, receivers can only discover the truth at the end of the
game. So, senders can always tell lies, because lying can bring utility gain but brings
no penalty in a Single-round Game. However, in Iterated Games, after a receiver
discovers that it is cheated, it will rationally decrease the sender’s trustworthiness,
and in addition it may become more risk-averse and stubborn, so as to prevent itself
from being cheated again. As a result, although lying brings an increase in utility,
lying in Iterated Games also brings a penalty of lost in trustworthiness. In this
section, we show the needs for a sender to decide whether or not to tell lies and we

show how it can do so in the next section.

3.3.1 To Lie, or Not to Lie, that is the Question

For naive receivers that do not employ any trust model, it is rational for a sender to
lie, if it can model that the receiver will believe the message and change its action
accordingly, which brings the sender an increase in utility. In fact, a sender can lie
that the worth of a fake goal is extremely large, so that it can always be sure that
the receiver will believe the message as receivers with no trust model consider only
expected utility. This means that agents will always choose to lie. However, the
receivers become less easy to be cheated after employing a trust model. In addition
to the expected utility, a receiver also takes into account the trustworthiness of the
message sender, when it decides whether to believe the received message. As a
result, a sender also needs to consider if the receiver will actually be cheated before

telling lies. So, whether or not to lie becomes a question.

3.3.2 Problem of Living a Lie

Suppose R, knows that R, has a higher priority than R, in all the goals’ priority

ordering of agents. In order for R, to get any worth, it must direct R; to some fake
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goals. This can be done by sending a message to R;, which looks like: “There is a
goal G, which worths 1000 and only costs you 10.” If R, is risk-seeking enough, or
if the worth of the goal is attractive enough, R;, will believe the message and choose
to obtain the fake goal. In this way, R, can obtain any goal it wants. However, no
agents can live a lie in Iterated Games. It is because whenever an agent discovers
that it is cheated by another agent, its impression on the liar, the liar’s reputation,
as well as the trustworthiness of the liar will be decreased. Eventually, that agent
being cheated will stop believing the lair. In this example, if R, tells a lie to Rj,
which makes R, loss utility, R;’s impression on R, and R,’s reputation will be
decreased and so as the trustworthiness of R,. After several iterations, K, may no
longer believe R, anymore. As a result, agents need to choose whether to tell lies

or not in an Iterated Game.

3.4 The Honesty Model

3.4.1 Impression

In semi-competitive environments, each sender also maintains an impression on
each receiver, based on its past experience. We define the impression that sender i

has towards receiver j to be a real number in [—1, 1]:

impy; = fi(D0 gaingg, > lossij, pyn)

where ) gain;; is the sum of the utility that agent i has gained by successfully
cheating agent j, > loss;; is the sum of the utility that agent i has lost by unsuc-
cessfully cheating agent j, p is the number of times that agent j has been successfully
cheated by agent 7, and n is the total number of times that agent i lie to agent j. This

function follows the same set of axioms as described in section 3.2.1:
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Axiom f;;:  f; is continuous.

Axiom fi;:  f; strictly increases as p increases.

Axiom fi3:  f; increases as ), gain;; increases.

Axiom fiy:  fi decreases as ) loss;; increases.

Axiom fi5:  fi=0whenn=0.

Axiom fig:  For ) gain;j =) loss;;, f; =0 when p =n — p, f; > 0 when
p>n—p,and f; < 0whenp < n—p.

Axiom fiz:  fi > 0 when ) gaini; > > loss;; andp > n — p.

Axiom fig:  fi < 0 when )’ gain;; < > loss;;andp < n — p.

Axiom fig:  fi <0 when ) gain;; > 3 loss;j and p < n — p.

Axiom fi1o:  fi < 0 when Y gain;; < Y loss;; and p > n — p.
Axioms f;; and f state that sender will have a better impression on the receiver

if the number of times that the receiver is cheated by the sender increases, or the
sum of utility that the sender has gained from the receiver increases. On the other
hand, axiom f;; states that impression decreases when the sum of utility that the
sender has lost increases due to the receiver’s distrust on it.

Axioms f;5 and f;s say that impression will be neutral if there is no interaction
between the sender and the receiver, or if the sender gains as much as loses and the
receiver is cheated successfully and unsuccessfully for the same number of times,
while impression will be positive if the number of times that the receiver is cheated
successfully is more than that of unsuccessfully, and vice versa.

From axioms f;7 and f;s, impression is positive if the sender gains more than
loses and the number of times that the receiver is cheated successfully is more than
(or equal to) that of unsuccessfully and vice versa. Axiom f;g state that even if the
sender gains more than loses but the number of times that the receiver is cheated
successfully is less than that of unsuccessfully, the sender should be cautious for
this receiver and the impression is negative. Similarly, impression should also be
negative if the sender loses more than gains even if the number of times that the

receiver is cheated successfully is more than that of unsuccessfully, which is axiom
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fito.
The following is an example function satisfying the above axioms and the intu-

itive meanings:

.
0 n=10
o W Y gaing =Y loss;;
imp;; = _(p-(::—zﬂ)(%zgi:;;%fﬂjjl;) S gaini; < Y lossij Ap<n—p
| (leody(Foimcklenn)  oherwise

3.4.2 Reputation

Similarly, each sender also maintains a reputation on each receiver about ease of
being cheated by asking other agents for their impressions on that particular agent.
It is also possible that an agent can lie in answering the query, so a weight could
be introduced to the answer. In an N agents environment, we define reputation of a

receiver j, as seen by a sender 7, as a weighted sum of individual impressions of a

subset of the population:

k=n . . /.
omy. . — oke) impk; X Wiy
repi; = ! i

where W, is the weight that agent i attaches to agent k’s impression on agent j
and n < N. In the absence of any knowledge about other agents’ honesty and

trustworthiness, the weights can be assumed to be 1.

3.4.3 Risk Attitude and Deceivability

A dual of the trustworthiness in the trust model, a deceivability is maintained by
each sender to each receiver, which shows how easily the receiver can be cheated
as seen by the sender. We define deceivability, c;;, of receiver j from sender i’s
point of view, as a function of the impression that agent i has about agent j, agent i’s

calculation on the reputation of agent j as well as the risk attitude of agent i, which

returns a real number in [—1,1]:
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cij = fe(imps;, repsj, i)

The function f. must satisfy a similar set of axioms for function f; as stated in

section 3.2.3:
Axiom f.: [, is continuous.

Axiom f.,: f. decreases as 1mp;; decreases and vice versa.
Axiom f: f. decreases as rep;; decreases and vice versa.

Axiom f.4: f. decreases as r; decreases and vice versa.
Axioms f.; and f.; state that it is rational that the deceivability of the receiver

decreases if the sender’s impression on it decreases, or the receiver’s reputation
decreases and vice versa. If the risk attitude of the sender decreases, which implies
that the sender becomes more risk-averse and thus less willing to cheat other agents,
then the evaluated deceivability of the receiver will decrease. This is axiom fe4.

An example function satisfying the above axioms and the intuitive meanings
is shown below, which attaches the same degree of importance to impression and

reputation, and is in proportion to the agent’s risk attitude.

cij = PPy o (] )

3.4.4 Temptation of Lying vs. Sincerity of the Sender

For a sender to decide whether to tell a lie, besides considering the expected payoffs
that the agent can gain by lying, it should also consider the deceivability of the
receiver. Formally, a sender makes use of a temptation function f,, to calculate the

temptation of lying. The temptation, ty,, of a lie L is defined by:
tr = fip(7is Cijy )

Intuitively, the function f;, takes the risk attitude r; of sender ¢ as the first argument,
the deceivability ¢;; of receiver j as seen by agent  as the second argument and the
expected increase in utility u; as the last argument, and returns a real number in

[—1,1] as the temptation of lying. The function f;, must satisfy a similar set of



Chapter 3 A Trust/Honesty Model 48

axioms for function f, as stated in section 3.2.4:

Axiom fi,1:  f, is continuous.

Axiom fy,:  (Adventurousness of risk-seeking agents) There exists a
value 79 € R such that fi,,(r, c2, u1) > fi,(r, 1, u2) if and only
if r > rg, ¢y > ¢ and uy > us.

Axiom fy,3:  (Cautiousness of risk-averse agents) There exists a value
ro € R such that f,,(r, ¢z, u1) < fip(r, ¢1, u2) if and only if
r <1 €1 > cpand up > us.

Axiom fi,q:  if uy > ug, fio(r, ¢, wy) > fip(r, ¢, ug) for r > rg and
feo(rs €, u1) < fep(r, ¢, ug) forr < rh.

Axiom fys:  if ¢1 > e, fip(r, €1, u) > fi(7, c2, w).

Axiom fe:  if 1y 2> 7o, fip(r1, €, u) > fip(re, ¢, ).
Axiom fy,; and f,3 state that it is rational for a risk-seeking sender to consider

expected gain in utility to be more important than deceivability of the receiver, and
vice versa to a risk-averse sender. At the same time, temptation of lies that bring
more utility should be higher for a risk-seeking sender, but lower for a risk-averse
sender, as it is rational for a risk-averse sender to be hesitate to tell a lie with higher
utility. This brings about axiom f;,4. In addition, the temptation of lying a more
deceivable receiver should be higher, which is axiom f;,;. However, the temptation
of lying decreases if the sender becomes more risk-averse, which is axiom f,¢.

A simple example satisfying the above axioms, f,, can be defined as follows:?

elute forp < 0.5
fw(rye,u) = ¢ e forr = 0.5

{etlute forp < 0.5

With this function, the more risk-averse the sender is, the more important the de-

ceivability of the receiver is in making decision. The more risk-seeking the sender

31n this formula, the utility is assumed to be in the range [0, 1].



Chapter 3 A Trust/Honesty Model 49

is, the more important the utility of the lie is, while senders with neutral risk attitude
consider deceivability of the receiver and utility of the lie to be the same important.

A sender should decide to tell a lie only if the temptation of lying is greater
than a certain threshold. We call this the threshold the sincerity of the sender to
the receiver, which is a real number in [—1, 1]. Each sender maintains a sincerity
to each receiver, which can change over time. If more than one lie can be chosen
from, the sender should send the lie with the greatest temptation, among those lies
having a temptation higher than the corresponding sincerity to the receivers. Since
agents can only choose one action in each round, and the aim of lying is to change
the competitor’s action so as to make its own action compatible, agents will only

choose at most one lie to send.

The function f;, also have a set of theorems similar to that stated in section 3.2.4:
Theorem 6. 7 (in axiom f,2) equals rg (in axiom fi,3).

Proof. Assume rq is not equal to r(, this results in the following two cases:

Case 1. vy > 1o By axiom fy, if 7 > 19, €1 > ¢ and uy > ua, fip(r, c2, u1) >
fip(r, c1, ug). By axiom fi,3, if r < g, ¢1 > ¢ ana wuy > Uz, fip(r, c2, u1) < fip(r,
c1, ug). As aresult, for rg < r < 14, fip(r, c2, w1) > fip(r, €1, uz) and fi,(r, c2, uy)
< fip(r, €1, uz), which is a contradiction.

Case 2. r{ < ro By axiom fy2, fip(r, c2, 1) > fip(r, €1, ug) if and only if
r > To, 1 > ¢ and uy > ug, 5o forr < ro, fip(r, c2, u1) < fip(r, 1, uz). By axiom
Jipas fip(ry €2, u1) < fip(r, €1, w2) if and only if » < rg, ¢; > ¢; and uy > ug, so for
r > 14, fip(r, €2, w1) > fip(r, €1, uz). As aresult, for 7y < r < 7o, fip(r, €2, 1) <
fip(r, 1, ug) and fi,(r, 2, uy) > fip(r, c1, uz), which is a contradiction.

So rg equals 7. a

Theorem 7. Iftwo lies M, and M, are available to all senders with different risk
attitudes, while M, and M, have expected utilities u,, u, and deceivability of re-

ceivers ¢, ¢y, respectively, where u; > uy and ¢y > cy. Then there exists a constant
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ro € R depending only on uy, uy and ¢y, ¢y, such that all the senders with risk atti-
tude v > ro will choose to send out M, and all the senders with risk attitude r < rq

will choose to send out M, if temptation of the lies are greater than the senders’

sincerity.

Proof. Sender uses a function f;, to rank the lies and choose to tell the lie that has
the highest value of f;,, where f;, must satisfy axioms fi,; to axioms fi,6. Since c;
> ¢y and u; > uy, by axiom fi,,, there exists a value ro € R such that f,,(r, ¢1, uy)
> fip(r, €2, uy) if and only if r > 7. And by axiom f;,3, there exists a value 5 € R
such that fi,(r, ¢1, uy) < fip(r, ¢z, u2) if and only if r < r{. By Theorem 6, r = .
So, for u; > u, and ¢ > ¢, there exists a value rq € R such that if » > rg, then
Jep(ry €1, u1) > fip(r, ¢a, us), which means the sender will choose to tell lie M, and
if 7 < 7o, then f,,(r, ¢1, wy) < fi(r, c2, uz), which means the sender will choose to

tell lie M, if temptation of the lies are greater than the senders’ sincerity. O

Theorem 8. Suppose there are two senders R, and R, with risk attitudes ry and
respectively, where ry > ry, that is sender R, is more risk-seeking than sender R;.
Then there exist two lies M, and My, with expected utilities u,, us and deceivability
of receivers c,, c,, respectively, where u; > uy and ¢, > ¢y, such that when these
two messages are available to Ry and Ry, R, will choose to send message M, and

Ry will choose to send message M, if temptation of the lies are greater than the

senders’ sincerity.

Proof. By theorem 7, for any two lies M, and M,, with expected utilities w;,
and deceivability of receivers ¢;, ¢;, respectively, where u; > u; and ¢; > ¢y, there
exists a constant 7o € R depending only on u;, u; and ¢y, ¢z, such that all the
senders with risk attitude » > r¢ will choose to tell lie M, and all the senders with
risk attitude » < ro will choose to tell lie M, if temptation of the lies are greater than
the senders’ sincerity. In other words, proving theorem 8 is to find the two lies such
that ro < ro < r;. We do this by first initialize two lies M; and M, with expected

utilities u;, u, and deceivability of receivers ¢y, ¢, respectively, where u, > u, and
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¢z > ¢;1. When these two lies are available to the senders, one of the following four
cases will result:

Case 1. Both of R, and R, choose to tell lie M;. In this case, generate an-
other two messages M| and M}, with expected utilities u}, u5, and deceivability of
receivers ¢}, c,, respectively, where u} > u}, ¢, > ¢}, ¢ >¢; and ¢} < ¢;.

Case 2. Both of R, and R, choose to tell lie M,. In this case, generate an-
other two messages M| and M, with expected utilities /|, ), and deceivability of
receivers c}, ¢, respectively, where | > uj, ¢, > ¢}, v} > uy and uy < us.

In case 1 and case 2, the process is continued by replacing the old lies M; and
M;. As r is a real number, as long as r; > 7y, there exists ro € R , such that
re < ro < r1. So, eventually, the process converge and case 3 will results.

Case 3. R, chooses to tell lie M, and R, chooses to tell lie M. In this case, the
theorem is proved.

Case 4. R, chooses to tell lie M, and R, chooses to tell lie M;. In fact, this
case will never happen. Suppose R, and R, choose to tell different lies, as ry > r,

and by theorem 2, r, < ry < ry, which means R, will choose to tell lie M, and R,

will choose to tell lie M,. O

It is rational for a risk-seeking sender to send out a lie with a higher utility to a
more deceivable receiver, rather than a lie with a lower utility and to a less deceiv-
able receiver. For a risk-averse sender, as it will be hesitate to tell a lie with a higher
utility, which lie it chooses to send depends on the actual values of the deceivability,

utilities, risk attitude and sincerity. This is represented by the following theorem.

Theorem 9. For risk attitude r > rg, deceivability ¢, and c,, and utilities w, and

Uy, where ¢y 2> ¢y and uy > uy, fi,(7, €1, w1) > fip(r, c2, U2).

Proof. From axiom fi,4, if uy > us, fi,(r, c1, w1) > fip(r, c1, ug) for r > ro. From
axiom fips, if €1 > ¢, fio(r, 1, u2) > fip(r, 2, u2). S0, fi(r, 1, ur) > fip(r, c1,

ug) 2 fip(r, ez, up). Thatis fi,(r, c1, u1) 2> fip(r, ca, ua). O



Chapter 3 A Trust/Honesty Model 52

The following theorem confirms that if a sender becomes more risk-averse and
lowers the deceivability of the receiver after it fails to cheat the receiver, then it

should be less willing for the sender to tell the same lie to the same receiver (with

deceivability lowered).

Theorem 10. For risk attitudes ry and r,, deceivability ¢, and c,, and utility u,

where vy > 1y and ¢y 2> ¢, fip(T1, €1, ) 2 fip(T2, C2, u).

Proof. From axiom fie, if 71 > 72, fi,(r1, ¢1, u) > fip(re, €1, ). From axiom f,s,
if ¢; > ¢, fep(7‘2, cr,u) > frp(7‘2, ¢, u). So, ftp(Tl, c1, u) 2 ftp(7‘2, c1, u) 2> ftp(7‘2,
cg, w). Thatis fi,(r1, c1, u) 2 fip(ra, ca, ). u

3.5 Duality of the Trust/Honesty Model

The Trust Model enables receivers to decide whether or not to believe the received
message(s), while the Honesty Model enables senders to decide whether or not to
lie. In fact, the Honesty Model for the senders is a dual of the Trust Model for the
receivers. In both models, receivers and senders maintain impression and reputa-
tion of senders and receivers respectively. In the Trust Model, receivers maintain
trustworthiness of the senders, while senders maintain deceivability of the receivers
in the Honesty Model. For a receiver to determine whether to believe the received
message(s) with the Trust Model, persuasiveness of the messages are compared
with stubbornness of the receiver. For a sender to determine whether to lie with the
Honesty Model, temptation of lying is compared with sincerity of the sender. As
deceivability is a dual of trustworthiness, and persuasiveness is a dual of temptation,

the functions share similar sets of axioms and theorems.

3.6 Performance of the Trust/Honesty Model

Simulations are done to compare performance of agents employing our Trust/Honesty

Model with performance of agents adopting other models or strategies. The setting
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of the simulation is as follows. We include receivers and senders adopting our
Trust/Honesty Model. In addition, we include receivers and senders adopting other
models or strategies. For receivers adopting our Trust/Honesty Model, a negative
stubbornness and a risk attitude of 0.2 are used. For receivers adopting Sabater
and Sierra’s REGRET Model [SS01] and Mui et al.’s Computational Model of trust
and reputation [MMHO02], reputation and trust are calculated with the parameters
suggested in these papers. These two receivers choose to believe the message from
a sender with the maximum reputation when several messages are received at a
time. If only one message is received, receiver adopting Mui et al.’s Computational
Model chooses to believe the message if the sender’s reputation is greater than 0.5,
as suggested in the paper [MHMO02]. Since Sabater and Sierra have not suggest any
threshold and 0.5 is general enough to be a threshold, receiver adopting Sabater and
Sierra’s REGRET Model also chooses to believe the message if the sender’s repu-
tation is greater than 0.5 when only one message is received. Receivers adopting
the “Choose Maximum Reputation” strategy chooses to believe the message from a
sender with the maximum reputation when several messages are received at a time,
where the reputation is calculated as suggested in this chapter. Using this calcula-
tion, an agent may have negative reputation. So, if only one message is received,
this receiver chooses to believe the message if and only if the reputation of the mes-
sage sender is positive. Similarly, receivér adopting the “Choose Maximum Utility”
strategy choose the message with maximum utility to believe when several mes-
sages are received at a time, and chooses to believe the message if the utility of the
message is greater than 0.5, where the utility is normalized to 1. Finally, receivers
adopting the Random strategy randomly choose to believe a message when several
messages are received at a time, and randomly choose to believe or not to believe
the message when only one message is received.

In each round, a random semi-competitive scenario is virtually generated. Each
sender decides whether to tell a lie to a receiver according to its adopted strategy.

Therefore, it is possible that a receiver receives more than one message at a time.
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| Models/strategies | Utility gain |
Maximum possible utility 1980
Trust/Honesty Model 1502
Sabater and Sierra’s REGRET Model [SS01] 521
Choose Maximum reputation 508
Mui et al.’s Computational Model [MMHO02] 499
Random -724
Choose Maximum Utility -812

Table 3.4: Average utility gain of receivers

Each receiver then chooses whether to believe the message according to its adopted
strategy. Note that a receiver adopting the Trust/Honesty Model may believe no
message at all if the persuasiveness of the messages it receives are all less than its
stubbornness. At the end of each round, a receiver gains if it has believed a true
message, or loses if it has believed a lie. On the other hand, a sender gains if the
receiver has believed its message, or loses if the receiver has not. Then all agents
update the impressions, reputations, trustworthiness, and deceivability accordingly.
In these simulations, all agents’ risk attitudes, stubbornness values, and sincerity
values do not change throughout the game. Each game contains 5,000 rounds, and
the average results of 1,000 games are shown in Table 3.4 and Table 3.5.

Table 3.4 shows the average utility gain* of receivers. In the table, maximum
possible utility means the maximum utility a receiver can possibly gain if it is so
smart as to always choose the right message to believe, and has never been cheated.
Note that this just serves as a benchmark for the comparison. Experiments show that
receivers adopting our Trust/Honesty Model significantly outperform the others by
at least 3 times. This is because the REGRET Model and Mui et al.’s Computa-
tional Model do not take utility into account in making decisions. Utility of the

receiver adopting the “Choose Maximum Reputation” strategy is similar to those of

“Rounded up to the nearest integer.
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| Models/strategies | Utility gain |
Maximum possible utility 1868
Trust/Honesty Model 1230
100% Truth 616

Mui et al.’s Computational Model [MMHO02] 540
Sabater and Sierra’s REGRET Model [SS01] 501
Random 50% Truth -678
Always Lie -1769

Table 3.5: Average utility gain of senders

the receivers adopting Sabater and Sierra’s REGRET Model and Mui et al.’s Com-
putational Model. The receivers adopting the Choose Maximum Ultility strategy and
the Random strategy end up with negative utilities, because they are easily cheated.

Table 3.5 shows the average utility gain of senders. Again in the table, maximum
possible utility means the maximum utility that a sender can possibly get if it can
always gain receivers’ trust. Again, this serves only as a benchmark for comparison.
Among all senders, sender adopting our Trust/Honesty Model with risk attitude
0.4 and sincerity 0.8 has the highest utility. The sender adopting the 100% Truth
strategy always tells the truth. However, receivers may not believe it if the utility
brought by the messages is not attractive, so its performance is not the best. Senders
adopting the REGRET Model and Mui et al.’s model choose to tell lies if the target
receiver has good reputation of being deceivable,. Their results are similar but not
very good as they only take reputation into account, but do not consider utility in
making decision. The sender adopting the Random 50% Truth strategy randomly
tells 50% of truth and the one adopting the Always Lie strategy always tells lies.
As a result, their utilities are negative, as their reputations are low and no receiver
believe them.

These experiments show that our Trust/Honesty Model significantly outper-
forms other trust models. It helps agents to achieve a utility that is about two to

three times better than that achieved by agents adopting other trust models reported
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in the literature. Experiments also show that considering only reputation or only

expected utility cannot achieve high utility.

3.7 Summary

In semi-competitive environments, agents have intentions to be honest and have in-
tentions to lie. This chapter introduces a Trust/Honesty Model for agents to choose
another type of actions, which is whether to believe a received message, and whether
to be honest. Simulations shown that agents with our Trust/Honesty Model signifi-

cantly outperform agents with other existing models or strategies.



Chapter 4

Adaptive Strategies

In this chapter, we improve the Trust/Honesty Model to an adaptive one. We first
introduce the problem of non-adaptive agents. Then we design the adaptive strategy.

Finally, we compare the performance of adaptive agents with the non-adaptive ones.

4.1 Problem of Non-adaptive Agents

In receivers’ trust model, there are two parameters that can be varied, which are risk
attitude and stubbornness, like the personality of human beings. As symmetry, risk
attitude and sincerity can also be varied in senders’ honesty model. Non-adaptive
agents means their risk attitude, stubbornness, and sincerity do not change through-
out the game.

Simulation is done to compare performance of non-adaptive agents with dif-
ferent parameters. In the simulation, there are 66 receivers, with risk attitude 0,
0.2, ..., 1 and stubbornness —1, —0.8, ..., 1, interact with 66 senders, with risk
attitude 0, 0.2, ..., 1 and sincerity —1, —0.8, ..., 1. In each round, a random semi-
competitive scenario is virtually generated. Each sender calculates the temptation
of lying and decides whether to tell a lie to a receiver. Each receiver then calculates
the persuasiveness of each message and chooses to believe the message with the
highest persuasiveness among those persuasiveness higher than its stubbornness. A

receiver may believe no message if the persuasiveness of the messages are all lower
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Average Utility Gain

Figure 4.1: Average utility gain of non-adaptive receivers when interact with non-
adaptive senders

than its stubbornness. At the end of each round, a receiver gains if it believed a true
message, or loses if it has believed a lie. On the other hand, a sender gains if the
receiver has believed its message, or loses if the receiver has not. Then all agents up-
date the impressions, reputations, trustworthiness, and deceivability accordingly. In
this simulation, all agents’ risk attitude, stubbornness, and sincerity do not change
throughout the game. Each game contains 5000 rounds, and the average results of
100 games are shown in Fig. 4.1 and Fig. 4.2.

Fig. 4.1 shows the average utility gain of non-adaptive receivers when interact
with non-adaptive senders. From the figure, we see that receivers with negative stub-
bornness and risk attitude 0.2 perform the best. However, performance decreases
for more risk-seeking receivers. On the other hand, for receivers with positive stub-
bornness, they cannot gain anything if they are risk-averse.

Fig. 4.2 shows the average utility gain of non-adaptive senders when interact
with non-adaptive receivers. From the figure, less sincere senders have negative
utility gain. This is because these senders always lie, so receivers’ impressions on

them and their trustworthiness are very low, which means receivers seldom believe
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Figure 4.2: Average utility gain of non-adaptive senders when interact with non-
adaptive receivers

them. On the other hand, sincere senders have the best performance. Also, perfor-
mance decreases for more risk-seeking senders.

From Fig. 4.1 and Fig. 4.2, we can see that the performance of non-adaptive
agents depends very much on their risk attitudes, stubbornness and sincerity. In
addition, choices of parameters depend on the type of interacting agents. For ex-
ample, if a sender knows the receiver, that it is interacting with, is very stubborn,
then the sender needs to be more sincere. In contrast, if a sender knows the re-
ceiver, that it is interacting with, is very risk-seeking and not stubborn at all, which
means the receiver can be cheated very easily, then the sender can be less sincere
and more risk-seeking. However, in real practice, receivers(senders) can hardly find

out the type of senders(receivers) that they are interacting with. So, agents need to
be adaptive.
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4.2 The Adaptive Strategies

From Fig. 4.1, we can see that stubborn receivers in general perform better than less
stubborn receivers, and risk neutral receivers perform better than risk-seeking re-
ceivers. Intuitively, when a person discovers that he is cheated, it is rational for him
to become more risk-averse and more stubborn. In addition, the more the receiver
loses, the more risk-averse and the more stubborn it will become. On the other
hand, if an agent is too stubborn and too risk-averse, it may believe no message
and cannot gain anything. As a result, we derive the following adaptive strategy
for a receiver: if a receiver is cheated, it lowers its risk attitude and increases its
stubbornness by p%. This is to prevent the receiver from being cheated again. At
the same time, if it has not believed any message for more than m rounds, than
it increases its risk attitude and lowers its stubbornness by %%. This is to prevent
a receiver from being too risk-averse and too stubborn so as to prevent a receiver
from believing no message and gain nothing. Note that m cannot be too large, oth-
erwise the function will be lose. Also, m cannot be too small. This is because a
receiver can choose not to believe the received message if the message is not per-
suasive enough, in this way, it needs not change its risk attitude or stubbornness.
In addition, it is rational that an agent becomes more risk-seeking and less stub-
born if it has believed the true messages for some rounds. So if a receiver has
believed the true messages for more than k rounds, it increases its risk attitude and
lowers its stubbornness by %%. However, k cannot be too small, otherwise, the
agent will become too risk-seeking. In the following simulations, each game con-
sists of 5000 rounds, we use m = k = 10. The adaptive percentage p = %‘cﬁf}
accloss, = a x accloss,_; +(1—a) x loss,, which is a weighted sum of the utility
loss in the past and the utility loss in the latest round. It is rational that the latest
loss will have the most influence and the oldest loss will have the least influence, so
0 < a < 1. Similarly, accgain, = a x accgain,_; + (1 — a) x gain,,. loss, is

the amount that the agent loses in the latest round and gain,, is the amount that the
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| combination |  risk attitude | stubbornness/sincerity |
1 kept constant kept constant
2 kept constant changes over time
3 changes over time kept constant
4 changes over time | changes over time

Table 4.1: Combinations on variations of parameters of the Trust/Honesty Model

agent gains in the latest round. In particular, p = 1 if accgain, = accloss, = 0,
p = 100 if accgain, = 0 but accloss, # 0, and p = 155 if accloss, = 0 but
accgain, # 0.

From Fig. 4.2, we can see that less sincere senders have negative utility gain and
sincere senders perform much better. For sincere senders, performance depends less
on the risk attitude. However, for less sincere senders, performance decrease as risk
attitude increase. Intuitively, when a person discovers that he is less trusted by
others, it is rational for him to become more risk-averse and more sincere. As a
result, we derive the following adaptive strategy for a sender: if no receiver believes
the sender in the latest round, the sender lowers its risk attitude and increases its
sincerity by p%. This is to prevent the sender from telling too many lies. At the
same time, if it does not send out any message for more than m rounds or it has
gained the receiver’s trust for more than k rounds, it increases its risk attitude and
lowers its sincerity by ;—)%. This is to prevent the sender from being too risk-averse

to send out any message and gain nothing.

4.3 Variations of Parameters

In the Trust/Honesty Model, there are three parameters which can be varied: risk
attitude, stubbornness and sincerity. In fact, there are four combinations that the
parameters can be varied, which is shown in Table 4.1. Let us look at the intuitive

meaning of the four combinations of variations. Consider a sender, which sends the
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same lie to the same receiver in every round. Every time the receiver is cheated, it
lowers the trustworthiness of the sender, adjusts its own risk attitude and stubborn-
ness accordingly.

For the first combination, receiver is non-adaptive, and its risk attitude and stub-
bornness are kept constant even it is cheated. Every time the receiver keeps receiv-
ing the same lie, as utility brought by the message is the same and its risk attitude
is constant, persuasiveness of the message will be lowered as trustworthiness of the
sender is lowered. Eventually, persuasiveness of this message will fall below the
stubbornness, and the receiver will stop being cheated. In this way, the rate that
the receiver learns from its experience is proportional to the rate that the trustwor-
thiness of the sender is decreased. For the second combination, where risk attitude
is kept constant and stubbornness is increased as a reaction to the lie, the rate that
the receiver learns its experience is proportional to the rate that the trustworthiness
of the sender is decreased plus the rate that the stubbornness is increased. For the
third combination, where risk attitude changes over time and stubbornness is kept
constant, the rate that the receiver learns its experience is proportional to the rate
that the trustworthiness of the sender is decreased plus the rate that the risk attitude
is decreased.

The last combination, where both risk attitude and stubbornness changes over
time, is the adaptive strategy. After the first time the receiver is cheated, it lowers
the trustworthiness of the sender. The second time the receiver receives the same
lie, as utility of the message is the same and both its risk attitude and trustworthi-
ness of the sender are lowered, by Theorem 5, persuasiveness of the message will
be lowered. At the same time, stubbornness is increased as a reaction to the lie.
Eventually, this persuasiveness will fall below the stubbornness, and the receiver
will stop being cheated. In this way, the rate that the receiver learns its experience
is proportional to the rate that the trustworthiness of the sender is decreased plus the
rate that the risk attitude is decreased plus the rate that the stubbornness is increased.

Note that if the receiver, which has become more risk-averse, receives a message
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Average Utility Gain

Initial Risk Attitude

Figure 4.3: Average utility gain of adaptive receivers when interact with non-
adaptive senders

with higher payoff, from the same sender with lower trustworthiness, we cannot
determine whether the persuasiveness of this message is higher than the previous
one, as that depends on the how high the payoff is.

To conclude, keeping both risk attitude and stubbornness unchanged (non-adaptive)
have the slowest rate of learning and varying both (adaptive) have the fastest rate of

learning the experience.

4.4 Adaptive Agents vs. Non-adaptive Agents

Simulations are done to compare the performance of adaptive agents with that of
non-adaptive agents. In these simulations, both the adaptive agents and the non-
adaptive agents adopt the Trust/Honesty Model. Simulation settings are the same
as section 4.1. In Chapter 6, we will compare the performance agents adopting
different models and strategies.

Fig. 4.3 shows the average utility gain of adaptive receivers when interact with

non-adaptive senders. From the figure, we can see that all receivers can attain a
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Average Utility Gain

Figure 4.4: Average utility gain of adaptive senders when interact with non-adaptive
receivers

utility, which is very close to the maximum utility in Fig. 4.1. Also, utility gain be-
comes independent of the initial choices of risk attitude and stubbornness. Fig. 4.4
shows the average utility gain of adaptive senders when interact with non-adaptive
receivers. From the figure, we can see that all senders can attain a utility, which is
very close to the maximum utility in Fig. 4.2. Also, utility gain becomes indepen-
dent of the initial choices of risk attitude and sincerity. In this way, the problem
described in section 4.1 is solved.

Fig. 4.5 shows the average utility gain of non-adaptive receivers when interact
with adaptive senders. Compare the figure with Fig. 4.1, we can see that when
senders become adaptive, which means senders learn to tell less lies when they
discover that they are less trusted by the receivers, receivers’ utility gain increase
in general. Only the utility gain of less stubborn receivers decrease a little bit, that
is because senders adapt to these receivers and tell more lies to them. Fig. 4.6
shows the average utility gain of non-adaptive senders when interact with adaptive
receivers. Compare the figure with Fig. 4.2, we can see that when receivers become

adaptive, which means receivers learn to be more risk-averse and more stubborn
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Average Utility Gain

Risk Attitude

Figure 4.5: Average utility gain of non-adaptive receivers when interact with adap-
tive senders

Risk Attitude

Figure 4.6: Average utility gain of non-adaptive senders when interact with adaptive
receivers
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Average Utility Gain

Initial Risk Attitude

Figure 4.7: Average utility gain of adaptive receivers when interact with adaptive
senders

when they are cheated, so senders’ utility gain decrease in general.

Fig. 4.7 shows the average utility gain of adaptive receivers when interact with
adaptive senders. From the figure, we can see that all receivers can attain a utility,
which is higher than the maximum utility in Fig. 4.7 and the utility gain is indepen-
dent of the initial choice of risk attitude and stubbornness of the receivers. Fig. 4.8
shows the average utility gain of adaptive senders when interact with adaptive re-
ceivers. From the figure, we can see that all senders can attain a utility, which is
higher than the maximum utility in Fig. 4.8 and the utility gain is also independent
of the initial choice of risk attitude and sincerity of the senders.

From the above simulation results, adaptive agents can attain a utility close to
the maximum possible utility, no matter the opponents are adaptive or non-adaptive.
In addition, adaptive agents do not need initial choices on parameters. However,
performance of non-adaptive agents depends on the type of interacting agents. Also,
performance of non-adaptive agents depends very much on the initial choices of
parameters. So, we can conclude that adaptive agents perform better than the non-

adaptive agents.
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Average Utility Gain

Initial Risk Atitude

Figure 4.8: Average utility gain of adaptive senders when interact with adaptive
receivers

4.5 Summary

This chapter presents an adaptive strategy in addition to the Trust/Honesty Model,
which allows agents to adapt to the environment and improves the problem of the
non-adaptive models. Simulations show that adaptive agents perform better than

the non-adaptive ones.



Chapter 5

Related Work

Besides choosing an action of which goal to obtain or choose whether to stay still,
other types of actions that agents many need to choose are whether to trust other
agents, and whether to be honest. In choosing these types of actions, agents need
additional information, like impression, reputation, and trust. In the literature, there
have been various definitions and representations of impression, reputation, and
trust. In this chapter, we give a review of this topic. In addition, we give a review

on the theory of honesty.

5.1 Impression, Reputation and Trust

Marsh [Mar94] is among the first researchers to introduce a computational model
for trust. He defines General Trust, the amount of trust that agent x has in agent y,
which is independent of the situation, as a real number between —1 and +1, where
—1 means complete distrust and +1 means absolute trust. Marsh uses an estima-
tion of the general trust, an agent-subjective measure about the importance of the
situation, as well as utility to estimate the Situational Trust, which is the amount of
trust that agent x has in agent y in a particular situation. However, he does not men-
tion anything about reputation. Marsh mentions that an agent decides to cooperate

with a particular agent in a particular matter, if the trust it has on that particular

68



Chapter 5 Related Work 69

agent in that particular matter is greater than a cooperation threshold, which is cal-
culated from the risk and importance of the matter, as well as the competence of
that particular agent on that particular matter. The problem is that risk of a matter
and competence of an agent on a particular matter are difficult to estimate in real
practice. In addition, the framework is incomplete, as the way in which trust can be
modified is not defined.

Mui et al. [MMHO02, MMA*01] use a Bayesian approach in the computational
model of trust and reputation, in which they estimate the reputation of agent x in
the eye’s of agent y as the probability that agent x cooperates with agent y, that is
the number of cooperation that agent x has made toward agent y out of the previous
encounters. The reputation defined there is an opinion that a single agent has about
a particular agent, rather than the opinion that a group of agents have about a par-
ticular agent. This deviate from the definitions in the dictionaries [htta, httb]. In the
computational model, they define trust as the expected probability that agent x will
cooperate the next time, given a history of encounters. There is a problem with this
approach. Agents adopting this model can be cheated easily. For example, out of
10 encounters, agent x cooperates with agent y in 9 rounds bringing a utility gain of
10, but it does not cooperate in 1 round bringing a utility loss of 100, the expected
probability that agent x will cooperate the next time is 0.9, so agent y will still trust
agent x. However, agent x actually brings much more harm than gain to agent y,
that is agent y is trusting a harmful agent. The reason for this is that this model only
calculates the expected probability for cooperation, but does not include the utility
that the interacting agent brings.

Mui et al. [MHMO2] use the reputation model, called Reputation Tic-for-tat,
to simulate the Prisoner’s Dilemma game [Axe84]. Agent adopting traditional Tic-
for-tat strategy, will cooperate initially, and then does what the other agent did (co-
operate or defect) in the previous round. Agent adopting the Reputation Tic-for-tat
strategy, will cooperate initially depending on the reputation of the other agent,

and then does whatever the other agent did in the previous round. However, the
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Reputation Tic-for-tat strategy is not much different from the traditional Tic-for-tat
strategy. Note that this Reputation Tic-for-tat will be the same as the traditional tic-
for-tat strategy if the reputation of agents is assumed to be high at the very beginning
of the game when there is insufficient information. They define different types of
reputation for the Reputation Tic-for-tat strategy. Among which, propagated repu-
tation perform the best. Propagated reputation means when an agent encounter an
unknown agent, it will ask other agents for the reputation of the unknown agent. In
the experiment, there are only two types of agents. One of which always defect,
named AlID agents. Another type use the Reputation Tic-for-tat strategy. When a
Reputation Tic-for-tat agent encounter an unknown agent, what it need to do is just
to identify whether the unknown agent is an AlID agent or a Reputation Tic-for-tat
agent. Then defects the AlID agent and cooperates with the Reputation Tic-for-tat
agent. In this way, it will always defect the AlID agents and always cooperate with
the Reputation Tic-for-tat agents, and a maximum utility can be obtained. In fact,
it is easy to make the identification because there are only two types of agents in
the environment. Also, the AlID agents must have a very low reputation as they
always defect and the Reputation Tic-for-tat agents must have a high reputation as
they always cooperate with agents of the same type.

Sabater and Sierra [SSO01] propose another reputation model. There they de-
fine impression that an agent has on another agent as the subjective evaluations
made by an agent on certain aspects of the agent being evaluated, and they calcu-
late individual-experienced reputation that an agent has on another agent, directly
from an agent’s impression database. For example, to evaluate the reputation of
being a trustworthy sender, agent will consider the reputation of telling the truth. In
this model, there is a group-experienced reputation that a group of agents have on
a particular agent being evaluated. This is calculated by the weighted sum of the
individual-experienced reputation that the member agents in the group has, on the
agent being evaluated. This matches the definition from the dictionary [htta]. How-

ever, this work mainly concentrates on the calculation of impression and reputation,
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rather than showing how to use these information to make decisions.

Rubiera et al. [RLMO1] also define reputation as the past experience of individ-
ual agent together with references from other agents. In addition, an agent will only
choose some of the agents to ask references for and it will determine how much the
received reference will count for. This is similar to a weighted sum of individual
experience.

Yu and Singh [YSO01, YS03] define reputation based on a probabilistic approach.
For agent x to evaluate the trustworthiness of agent y, they calculate the reputation
of agent y, which is done by combining the reputation of y as seen by a group of
witness agents, as well as the reputation of the witness agents are integrated. These
papers also concentrate on the calculation of impression and reputation as well as a
network of trust information.

Castelfranchi and Falcone [CF98, FC01] describe the importance of trust and
explain what trust is, though in a rather qualitative way. They also define under
what situation should an agent delegate to other agents. In addition, they propose
that risk should be taken into account when deciding whether to delegate, and agent
should have a risk policy, which means agent should refuse a choice of decision if
the hazard of that choice is greater than a certain threshold. This similar to our risk
attitude. In addition, they have implemented their model to analyze the different
nature of the belief sources and their trustworthiness [CFP03].

Glass and Grosz [GGO00] use Brownie Points to represent an agent’s historical
reputation. The value of brownie points of an agent will be increased if the agent
makes a socially conscious decision, and the value will be decreased otherwise.
This representation measures the opinion that a group of agents in general have
about a particular agent. This can help agents prevent lying, but in a passive way.
In our proposed model, agents choose whether to lie and it can prevent itself from
lying by the adaptive strategy.

Furthermore, Griffiths and Luck [GLO03] apply the concept of trust in coalition
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formation, in which agents can benefit mutually. They define trust as a representa-
tion of an agent’s estimation of how likely another agent is to fulfill its cooperative
environment, which is inferred based on agents’ experience over time. They also
mention that the trust values can be updated according to the agents’ personality:

optimistic or pessimistic. However, they do not have a quantitative definition.

5.2 Theory of Honesty

The issues of honesty have also been addressed by Gmytrasiewicz and Durfee
[GD93]. For an agent to decide whether to lie, they first model the respective actions
that the receiver will take on believing and not believing the lie. Then they calculate
the expected utilities on telling and not telling lie. To calculate the expected utility
on telling lie, they consider the resulting utility if the receiver believes the lie and
the resulting utility if the receiver does not believe the lie. An agent decides to lie
only if the expected utility of lying is greater than that of being honest. In their
model, only expected utility is considered in deciding whether to believe a message
and deciding whether to lie. The problem is obvious, agents are easily cheated by

those lies, which claim to bring high expected utilities.

5.3 Summary

In this chapter, we review previous research done on the calculation of trust, impres-
sion, reputation and honesty. Definitions on reputation [MHMO02, SSO01, RLMO1,
YSO01, YS03] are similar. In addition to calculation and definition, these research
also apply the trust information to decide whether to cooperate with other agents.
Another type of decision-making is to decide whether to lie or whether to believe
a message. In choosing such an action, some of the previous work consider only

trust and/or reputation, while some only consider expected utility, but little consider

both.
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Performance Analysis

In this chapter, simulation is done to compare performance of agents adopting vari-
ous models or strategies. In the literature, there is no similar decision-making model
for comparison. So, we choose two of the existing reputation models: Sabater and
Sierra’s REGRET Model [SS01] and Mui ez al.’s Computational Model of trust and
reputation [MMHO2] for comparison. We have not implemented Marsh’s model
[Mar94] because agents’ competence is irrelevant in our model, and the way trust
should be modified is not defined, as discussed in Chapter 5. Also, Mui et al.’s
Reputation Tic-for-tat [MHMO2] is not implemented, either. This is because it can-
not handle the case when a receiver receives more than one message at a time.

Mui et al.’s another model [MMHO2] is used for comparison instead.

6.1 Simulation Settings

Simulations are done to compare performance of agents employing our Trust/Honesty
Model with performance of agents adopting other models or strategies. The set-
ting of the simulation is as follows. We include receivers and senders adopting
our Trust/Honesty Model. In addition, we include receivers and senders adopting
other models or strategies. For non-adaptive receiver adopting our Trust/Honesty
Model, a negative stubbornness and a risk attitude of 0.2 are used. For adaptive

receiver adopting our Trust/Honesty Model, randomly generated stubbornness and
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risk attitude are used. For receivers adopting Sabater and Sierra’s REGRET Model
[SSO1] and Mui et al.’s Computational Model of trust and reputation [MMHO02],
reputation and trust are calculated with the parameters suggested in these papers.
These two receivers choose to believe the message from a sender with the maxi-
mum reputation when several messages are received at a time. If only one message
is received, receiver adopting Mui et al.’s Computational Model chooses to believe
the message if the sender’s reputation is greater than 0.5, as suggested in the pa-
per [MHMO2]. Since Sabater and Sierra have not suggest any threshold and 0.5 is
general enough to be a threshold, receiver adopting Sabater and Sierra’s REGRET
Model also chooses to believe the message if the sender’s reputation is greater than
0.5 when only one message is received. Receivers adopting the “Choose Maximum
Reputation” strategy chooses to believe the message from a sender with the maxi-
mum reputation when several messages are received at a time, where the reputation
is calculated as suggested in Chapter 3. Using this calculation, an agent may have
negative reputation. So, if only one message is received, this receiver chooses to
believe the message if and only if the reputation of the message sender is positive.
Similarly, receiver adopting the “Choose Maximum Utility” strategy choose the
message with maximum utility to believe when several messages are received at a
time, and chooses to believe the message if the utility of the message is greater than
0.5, where the utility is normalized to 1. Finally, receivers adopting the Random
strategy randomly choose to believe a message when several messages are received
at a time, and randomly choose to believe or not to believe the message when only
one message is received.

For non-adaptive sender adopting our Trust/Honesty Model, a risk attitude of
0.4 and sincerity of 0.8 are used. Again, sincerity and risk attitude are randomly
generated. Senders adopting the REGRET Model and Mui et al.’s model choose to
tell lies if the target receiver has good reputation of being deceivable. The sender
adopting the 100% Truth strategy always tells the truth. The sender adopting the
Random 50% Truth strategy randomly tells 50% of truth and the one adopting the
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Always Lie strategy always tells lies.

In each round, a random semi-competitive scenario is virtually generated. Each
sender decides whether to tell a lie to a receiver according to its adopted strategy.
Therefore, it is possible that a receiver receives more than one message at a time.
Each receiver then chooses whether to believe the message according to its adopted
strategy. Note that a receiver adopting the Trust/Honesty Model may believe no
message at all if the persuasiveness of the messages it receives are all less than its
stubbornness. At the end of each round, a receiver gains if it has believed a true
message, or loses if it has believed a lie. On the other hand, a sender gains if the
receiver has believed its message, or loses if the receiver has not. Then all agents
update the impressions, reputations, trustworthiness, and deceivability accordingly.

1,000 games are simulated and each game contains 5,000 rounds.

6.2 Performance in Semi-competitive Environment

6.2.1 Performance of Receivers

Fig. 6.1 shows the average utility gain' of receivers adopting various models or
strategies when interact with a specific type of senders, where mixed population
means the population of senders contains senders with different models and strate-
gies. In the figure, maximum possible utility means the maximum utility a receiver
can possibly gain if it is so smart as to always choose the right message to believe,
and has never been cheated. Note that this just serves as a benchmark for the com-
parison.

From the simulation results, adaptive receiver adopting our Trust/Honesty Model
have the best performance in general. In particular, when interact with adaptive
senders adopting our Trust/Honesty Model, the adaptive receiver obtains 84% of the

maximum possible utility and outperforms receivers adopting other existing models

"Rounded up to the nearest integer.
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Receiver’s Average utility gain of receivers when interact with senders adopting
models/strategies Non-adaptive Adaptive Sabater & Sierra’s Mui et al.’s 100% Truth 50% Truth Always Lie Mixed
Trust/Honesty Trust/Honesty REGRET Model Computational strategy strategy strategy population
Model Model [SS01] Model [MMH02)
Maxi
R 1980 1980 1980 1980 1980 1980 1980 1980
possible utility
Non-adaptive
1092 848 803 817 1347 489 -34 902
Trust/Honesty Model
Adapti
LR 1089 1662 1001 1017 1357 633 4 1499
Trust/Honesty Model
Sabater and Sierra’s
REGRET Model 558 256 984 962 1346 448 -29 506
[SS01]
Mui et al.’s
Computational Model 548 315 956 999 1354 486 -32 472
[MMHO02]
e 573 386 875 944 1254 487 28 493
Reputation
Ch
ey -909 835 627 753 624 -1036 -583 -834
Utility
Random -851 =735 -946 -834 557 -878 -862 =727

Figure 6.1: Performance of receivers in semi-competitive environment

or strategies by 2 to 5 times. In another case when interact with senders adopting
Always Lie strategy, the adaptive receiver outperforms other receivers by at least
7 times. When interact with a mixed population of all types of senders, the adap-
tive receiver obtains 76% of the maximum possible utility and outperforms others
by about 3 times. Although when interact with non-adaptive senders adopting our
Trust/Honesty Model, utility of the adaptive receiver is only comparable to that of
the non-adaptive receiver adopting our Trust/Honesty Model, it outperforms other
receivers by at least 2 times.

There are several reasons for the outstanding performance of the adaptive re-
ceiver adopting our Trust/Honesty Model. First, the adaptive receiver can learn to
become more risk-seeking and less stubborn when the sender brings benefits to it,
and it can learn to become more risk-averse and stubborn when the sender lies,
while other receivers cannot. The adaptive receiver outperforms other receivers es-

pecially when interact with the adaptive senders. When the adaptive senders tell a
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certain number of truths, their reputation increase and receivers will believe them.
Then the adaptive senders will become more risk-seeking and less sincere and tell
more lies, but the adaptive receiver will be more risk-averse and stubborn after it
is cheated and stop believing the adaptive sender if it continues to lie. However,
as the senders’ reputation are still high, receivers with other reputation models or
reputation-related strategies will still believe them. Although the reputation of the
adaptive senders will drop and these receivers will not believe the adaptive senders
for some rounds, the adaptive senders will learn to be more risk-averse and more
sincere and tell more truth to increase their reputation again. When their reputation
are high, these receivers are cheated again. However, as the adaptive receiver will
be more risk-averse and stubborn after it is cheated and stop believing the adap-
tive sender if it continues to lie, the adaptive senders will learn to be honest to the
adaptive receiver. As a result, the adaptive receiver outperforms receivers adopting
Sabater and Sierra’s REGRET Model, Mui er al.’s Computational Model and the
Choose Maximum Reputation strategy very significantly. In an extreme case when
interact with senders adopting Always Lie strategy, the adaptive receiver does not
lose much as it can learn to stop believing such lair very quickly. Although the
adaptive receiver will increase its risk attitude and stubbornness when it has not be-
lieve any message for a number of rounds, as the receiver has not gain any utility,
the percentage increase will be too small to be significant.

Second, receivers adopting Sabater and Sierra’s REGRET Model, Mui et al.’s
Computational Model and the Choose Maximum Reputation strategy only consider
reputation in making decisions, but do not take into account the utility that will
be brought by the messages. As a result, these receivers choose to believe those
messages from senders with good reputation but the messages may bring a very low
utility. Also, they miss some chances to earn from the less reputed senders. On
the other hand, the adaptive and the non-adaptive receivers with our Trust/Honesty
Model make a balance on trustworthiness of senders and utility of the messages,

so these two receivers earn more in general. In addition, the adaptive percentage is
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proportional to the utility loss. This means that the more an adaptive receiver has
lost, the faster it adapts and the faster it stops believing the lies.

When interact with senders adopting 100% Truth strategy, receivers adopting
models or strategies related to reputation have high utilities and their performance
are similar. This is because the senders always tell the truth and have high reputa-
tion, which always gain receivers’ trust. However, the utilities of receivers adopting
the Choose Maximum Ultility strategy and Random strategy are not as good as the
others’. This is because they do not believe all the messages they received. In
other cases, receivers adopting the Choose Maximum Utility strategy and the Ran-
dom strategy end up with negative utilities, because they are easily cheated. In
all cases, performance of receivers adopting Sabater and Sierra’s REGRET Model,
Mui et al.’s Computational Model, and the Choose Maximum Reputation strategy
are similar. This is because all of the three strategies choose the sender with maxi-

mum reputation to believe, only the ways they calculate the reputation are different.

6.2.2 Performance of Senders

Fig. 6.2 shows the average utility gain?

of senders adopting various models or
strategies when interact with a specific type of receiver, as well as a mixed popu-
lation of receivers with different models and strategies. Again, maximum possible
utility means the maximum utility that a sender can possibly get if it can always
gain receivers’ trust. Again, this serves only as a benchmark for comparison.

From the simulation results, the adaptive sender adopting our Trust/Honesty
Model outperforms other senders in general. Only the sender using 100% Truth
strategy has a comparable performance. However, sender adopting the 100% truth
strategy cannot get the highest utility because the receivers with our Trust/Honesty

Model may not believe its message if the utility is low. In particular, the adaptive

sender outperforms other senders by 2 to 5 times when interacting with adaptive

2Rounded up to the nearest integer.
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Sender’s Average utility gain of senders when interact with receivers adopting
models/strategies Non-adaptive Adaptive Sabater & Sierra’s Mui ef al.’s Choose Maximum | Choose Maximum | Random | Mixed
Trust/Honesty Trust/Honesty REGRET Model Computational Reputation Utility population
Model Model [SS01] Model [MMH02]
S 1868 1868 1868 1868 1868 1868 1868 | 1868
possible utility
e 998 768 m 786 854 956 M2 | 923
Trust/Honesty Model
Aptive 996 1620 1010 1003 982 976 713 | 1485
Trust/Honesty Model
Sabater and Sierra’s
REGRET Model 696 328 922 968 913 967 709 475
[SS01)
Mui et al.’s
Computational Model 709 397 904 983 933 949 711 482
[MMH02]
100% Truth strategy 714 1068 956 981 940 944 713 726
50% Truth strategy -609 -1360 -1123 -1268 -1373 951 710 -620
Always Lie strategy -1815 -2387 -1799 -1747 -1848 980 711 -1903

Figure 6.2: Performance of senders in semi-competitive environment

receivers adopting our Trust/Honesty Model. Also, the adaptive sender outperforms
other senders by about 3 times when interacting with a mixed population of all types
of receivers.

When interacting with receivers adopting Choose Maximum Utility and Ran-
dom strategies, all senders have similar performance and senders with Random 50%
Truth and Always Lie strategies have positive utility gain because these two strate-
gies are independent of reputation. In other cases, senders using Random 50% Truth
strategy and Always Lie strategy have negative utilities because they are hardly be-
lieved by the receivers as they have low reputation. In all cases, senders adopting
Sabater and Sierra’s REGRET Model and Mui et al.’s Computational Model have
similar performance. This is because both of the two senders choose to cheat the
receiver with maximum reputation of deceivable, only the ways they calculate the
reputation are different. The performance of these two senders are not as good as
that of the senders adopting our Trust/Honesty Model. This is because these agents

only consider reputation in making decisions, but do not take into account the utility,
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which means they tell lies if the receiver has good reputation of being deceivable,
even if utility gain is small. As a result, these senders tell more lies than senders
with our Trust/Honesty Model, which make a balance on deceivability of receivers
and utility of lying. So, if the utility of lying is not good enough, senders with our
Trust/Honesty Model will choose not to lie, which maintain their reputation.
Another reason for the outstanding performance of the adaptive sender adopting
our Trust/Honesty Model is that it can learn to be more risk-seeking and less sincere
when the receiver believes its messages and learn to be more risk-averse and sincere
when it lose the receiver’s trust, while other senders cannot adapt. In particular,
when interact with the adaptive receivers, utilities of senders adopting Sabater and
Sierra’s REGRET Model and Mui et al.’s Computational Model are only one-forth
of that of the adaptive sender. This is because when the adaptive receivers believe
their messages, the receivers have good reputation of deceivable, then they cheat the
receivers. However, the receivers adapt and do not believe their messages. These
senders tell the truth again only when the receivers’ reputation drop. On the other
hand, the adaptive sender learns quickly as the adaptive percentage is proportional
to utility lost. As described in section 6.2.1, the adaptive sender learns to be honest

to the adaptive receivers and gains the receivers’ trust.

6.3 Performance when Interact with Strategic Senders

In this section, simulations are done to compare the performance of agents adopting
various models or strategies when interact with strategic senders. The first strategic
sender tells a lie bringing a loss of 1 in every ten rounds, and tells the truth but
brings only a utility gain of 0.01 in the rest of the time. The second strategic sender
tells a lie bringing a loss of 0.01 in every ten rounds, and tells the truth but brings a
utility gain of 1 in the rest of the time. The third strategic sender tells a lie bringing
a loss of 0.01 in every ten rounds, and tells the truth but brings a utility gain of 0.01

in the rest of the time. Strategic sender 4 tells a lie bringing a loss of 1 in every
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Receiver’s Average utility gain of receivers when interact with
models/strategies Strategic Sender 1 Strategic Sender 2 Strategic Sender 3 Strategic Sender 4 Strategic Sender 5
Maximum
P 45 4500 45 4500 500
Non-adaptive
Trust/Honesty Model -24 4494 39 3999 349
=AY 41 4495 40 4000 497
Trust/Honesty Model
Sabater and Sierra’s
REGRET Model -454 4493 39 3998 0
[SS01]
Mui et al.’s
Computational Model -455 4494 38 3998 0
[MMHO02]
Choose Maximum
TS -452 4492 37 3996 0
Choose Maximum
Vllity -500 4495 0 4000 500
Random -228 2245 20 2000 228

Figure 6.3: Performance of receivers when interact with strategic senders

ten rounds, and tells the truth but brings a utility gain of 1 in the rest of the time.
Strategic sender 5 tells a truth bringing a gain of 1 in every ten rounds, and tell
lies bringing a utility loss of 0.01 in the rest of the time. The results are shown in

Fig. 6.3.

6.3.1 Senders Telling More Truths than Lies

When interacting with the first strategic sender, which tells a lie bringing a loss of
1 in every ten rounds, and tells the truth but brings only a utility gain of 0.01 in
the rest of the time, adaptive receiver adopting our Trust/Honesty Model has the
best performance. When this receiver is cheated by the sender, it becomes more
risk-averse. This means that it is more cautious for messages with high utilities.
As a result, after being cheated for a few times, it does not believe the messages

with high utilities anymore. On the other hand, it chooses to believe the messages
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with low utilities when the persuasiveness of the message is higher than its stub-
bornness. Although, it increases its risk attitude and lowers its stubbornness when
it has believed the right messages for a number of rounds, the adaptive percentage
is not significant as utility gain is little and utility lost is relatively large in com-
parison. In this way, adaptive receiver adopting our Trust/Honesty Model obtains
a very outstanding performance approaching the maximum possible utility. For the
non-adaptive receiver adopting our Trust/Honesty Model, as its risk attitude and
stubbornness do not change during the game, it only stops believing the lie when
the trustworthiness of the lair becomes low. So, its utility is negative. However,
its performance is much better than performance of agents adopting other models
or strategies. Agents adopting Sabater and Sierra’s REGRET Model, Mui et al.’s
Computational Model and the Choose Maximum Reputation strategy have similar
results. All of these three agents do not take utility into account in making decision.
In addition, agents adopting Sabater and Sierra’s REGRET Model and Mui et al.’s
Computational Model consider a sender to have good reputation only because the
sender tell more truths than lies. As the strategic sender tells much more truth than
lies, these two agents will always believe this strategic sender. Since the lies bring
great loss in utility, the performance of these agents are very low. Agent adopting
the Choose Maximum Ultility strategy believes all the lies but not any truth as the
utilities of the truths are very low and the utilities of the lies are very high, so this
agent also has very bad performance. Agent adopting a Random strategy randomly
believes about half of the message, it also has a negative utility gain.

When interacting with strategic senders 2 to 4, all agents with reputation-related
models and strategies obtain very high utilities approaching the maximum possi-
ble utility. This is because these senders tell the truths most of the time and the
total lost brought by the lies are low in comparison. As a result, agents with our
Trust/Honesty Model always believe this sender due to its high trustworthiness.
Although the adaptive agent lowers its risk attitude and increases its stubbornness

when it is cheated, it still always believe these senders. This is because utility gain
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is much more than lost, which makes this adaptive percentage too low to be signifi-
cant. Agents with Sabater and Sierra’s REGRET Model, Mui et al.’s Computational
Model and the Choose Maximum Reputation strategy always believe these senders
since the senders tell the truths most of the time. Agent using the Choose Maximum
Utility strategy always believes the truths if the truths bring high utilities, believes
no messages if all messages bring very low utilities, and believes all messages if all
messages bring high utilities. Agent using the Random strategy only chooses about

half of the message to believe, so it misses some chances to earn which makes it has

a relatively low utility gain.

6.3.2 Senders Telling More Lies than Truths

It is easy to understand that if the sender tells much more lies than truths, receivers
with reputation-related models or strategies will not believe the sender because of
the low reputation of the sender. Let us consider strategic sender 5, which tells a
truth bringing a gain of 1 in every ten rounds, and tell lies bringing a utility loss of
0.01 in the rest of the time. Receiver using Choose Maximum Utility strategy can
get a maximum utility because it only chooses to believe the messages with high
utilities, which are the truths. It does not believe any lies as the utilities of the lies
are too small. This is just a special case in which receiver using the Choose Max-
imum Utility strategy performs well. In other simulations shown before, receiver
using this strategy generally perform not very well. Adaptive receiver with our
Trust/Honesty Model can get a utility very close to the maximum utility. This re-
ceiver and the non-adaptive one outperform receivers with other reputation-related
models and strategies. This is because reputation of the liar is low and utilities of
the lies are also low, which make the adaptive receiver do not believe the lies. As
the adaptive receiver has not believed any message for a number of rounds, it will
increase its risk attitude. As it become risk-seeking enough, it will believe messages

with high utilities, which are the truths. Although the non-adaptive receiver does
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not perform as good as the adaptive one, its utility gain is much better than other
receivers with reputation-related models or strategies. This is because it also con-
sider utility in making decisions. On the other hand, receivers adopting Sabater and
Sierra’s REGRET Model, Mui et al.’s Computational Model and Choose Maximum
Reputation strategy consider only reputation in decision making. As this sender tell
lies most of the time, it has a very low reputation in view of these three receivers,
so these receivers do not believe this sender at all and thus cannot gain anything.
Again, receiver using Random strategy gets about half of the maximum possible

utility.

6.4 Summary

These experiments show that our Adaptive Trust/Honesty Model significantly out-
performs other trust models. This is because the adaptive strategies enable agents
to learn from their experiences and change their parameters accordingly. Another
reason is that the Trust/Honesty Model makes a balance on reputation and expected
utility in making decisions, while models or strategies considering only reputation

or only expected utility cannot achieve high utility.
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Conclusion and Future Work

7.1 Conclusions

This thesis describes methods for agents to choose their actions and communica-
tion actions in semi-competitive environments. Semi-competitive environment is
an environment in which cooperation and competition can both exist.

For agents to represent their knowledge, predict other agents’ actions and choose
their own actions. Gmytrasiewicz and Durfee propose the Recursive Modeling
Method (RMM). RMM is recursive as it not only represents an agent’s own prefer-
ences, abilities and beliefs about the world, but also represents the beliefs the agent
has about other agents, the beliefs it has about other agents’ beliefs, and so on, form-
ing an infinite hierarchy. However, the authors have made an assumption that the
belief hierarchy is finite and terminates the hierarchy explicitly by a probabilistic
approximation at the point where an agent has no sufficient information to model
other agents. We improve the original design of RMM by Recursive Formulas, with
which no assumption and approximation are made.

For agents to choose their communication actions, we introduce our Trust/Honesty
Model. In semi-competitive environments, agents have incentives to be honest as
well as dishonest. So, being a sender, agent needs to choose whether to tell lies or
to tell the truth. On the other hand, being a receiver, agent needs to choose whether

to believe the received message or which message to believe. From a receiver’s
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point of view, we introduce a Trust Model, which enables the receiver to determine
whether to trust the received messages. In the Trust Model, we first differentiate
and define the terms impression, reputation and trustworthiness. We introduce how
areceiver decides on which message to believe and follow by comparing the persua-
siveness of the message with its stubbornness to the sender, where persuasiveness
of a message is calculated from the trustworthiness of the message sender, utility
brought by the message and risk attitude of the receiver. From a sender agent’s
point of view, we introduce an Honesty Model, which enables the sender to deter-
mine whether to be honest. To do so, we propose to calculate the temptation of lying
from deceivability of the receiver, utility of lying and risk attitude of the sender, and
compare it with the sender’s sincerity to the receiver.

Furthermore, we improve our Trust/Honesty Model by an adaptive strategy.
With the adaptive strategy, receiver can learn to be more risk-averse and stubborn
after it is cheated and learn to be more risk-seeking and less stubborn to senders who
bring benefits. As symmetry, an adaptive sender can learn to be more risk-averse
and sincere after it lost the receiver’s trust and learn to be more risk-seeking and
less sincere to deceivable receivers. We relate the adaptive percentage to the utility
that an agent has gained and has lost. This is because the more the receiver lose,
the more risk-aver and the more stubborn it will become. This mimics the model in
human interaction.

Simulations shown that agents with our Adaptive Trust/Honesty Model perform
much better than agents with other existing models or strategies. This is because ex-
isting models only take reputation into account in making decision, but agents with
our Trust/Honesty Model consider both trustworthiness/deceivability of the oppo-
nents and utility brought by the messages. In addition, agents with the adaptive
strategy can adapt to the environment, learn from experiences and prevent them-

selves from being cheated or learn to be more honest.
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Figure 7.1: Example of agent manipulation

7.2 Future Work

7.2.1 Agent Manipulation

There is another approach to perform cheating. Let us consider the following ex-
ample. There are two goals (+; and G, both with worth 10. G,’s priority ordering
of agents is B, > R; > R3 and (,’s priority ordering of agents is R, > Rs > R,.
The cost for R; to obtain (7, is 1, the costs for R, to obtain G, and G, are 8 and 9
respectively, and the cost for R to obtain Gy is 1. R, is inaccessible to G, and R
is inaccessible to (7;. Initially, R, and R, know the presence of GG; and G but Rj
knows nothing. The example setting is shown in Fig. 7.1. By applying RMM, it can
be seen that R; can get maximum payoff by obtaining (&, provided that R, does
not obtain (1. As Rj has the highest priority in (,’s priority ordering of agents
and R; can get maximum payoff by obtaining (&}, the only way for R; to prevent
R, from obtaining (7, is to lie to R, that there is another goal, which gives R, a
higher payoff than (; does. As R; knows that telling a lie to R, will decrease its
trustworthiness, so instead of telling the lie by itself, R, tells R; the information
about (¢, and manipulate Rj to tell the lie. If R3 believe the information provided
by R, it will know that it can get a maximum payoff by obtaining (&, provided that
R, does not obtain (5. From R3’s point of view, it knows only about (3, R, has the
highest priority in (3’s priority ordering of agents and R, can get maximum pay-
off by obtaining (v, so Rj thinks the only way for it to prevent R, from obtaining
the worth of (7, is to tell R, that there is another goal, which can give R, a higher

payoff than (G, does. As R3 has no other information, the only way for it to get any
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worth is to cheat R,. Follow the utility-maximizing behavior, R will do so, and if
it succeeds, R, will be directed to obtain the fake goal, which is what R; wants to

achieve. As future work, agent manipulation can be investigated.

7.2.2 Algorithm for Solving Recursive Formulas

We have not mentioned how the recursive formulas can be solved in a computa-
tionally tractable way, as it is out of the scope of this thesis. As future work, an
algorithm for solving the recursive formulas can be designed. In addition, one can
do simulations and compare the performance of the original RMM with that of the

improved RMM.

7.2.3 Fuzzy Trust/Honesty Model

The concepts in the Trust/Honesty Model are rather fuzzy. An agent can have a
good impression on one agent, or have a bad impression on another agent, where
good and bad are fuzzy terms. Also, risk averse, sincere, neutral stubborn, ..., are

all fuzzy terms. So, as future work, a fuzzy Trust/Honesty Model can be developed.

7.2.4 Opinion from the Mass

In the proposed Trust/Honesty Model, agents make rational decision by using im-
pression, reputation, risk attitude, and expected payoff. An agent chooses to believe
amessage if persuassiveness of the message is greater than the agent’s stubbornness.
However, in human communication model, opinion from the mass can also affect
the decision. For example, a person receives a message saying the stock market
will rise and this person chooses to believe the message because of the trustworthy
source and high expected payoff. However, ten other people, who also receive the
same message, choose not to believe the message. Then the person who chooses

to believe the message before may consider not believing the message due to other
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people’s decision. As future work, elements can be added to the model to handle

this case.

7.2.5 Network Application

There is a fundamental assumption in the current generation of ad hoc networks,
which is that the nodes will cooperate and will not cheat [DD03]. However, such
assumption may no longer be valid if the nodes in the network do not have a com-
mon goal. The environment will then become semi-competitive. As future work,

our Trust/Honesty Model can be applied in an ad hoc network.
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