
3D Model Reconstruction with noise filtering using Boundary Edges 

Lau Tak Fu 

Name of supervisor: Dr. K.H. Wong 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Philosophy 

in 

Computer Science and Engineering 

The Chinese University of Hong Kong 

October 2003 

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to 

use a part of or whole of the materials in the thesis in a proposed publication must seek copyright 

release from the Dean of the Graduate School. 



丨:f 11 f ^ i 
UNIVERSITY ~)鋪 

.>�LIBRARY SYSTEMy>^ 



3D Model Reconstruction with noise filtering using Boundary Edges Page 11 of 98 

Abstract of the sis entitled: 
3D Model Reconstruction with noise filtering using Boundary Edges 

Submitte d by Lau Tak Fu  

for the degree of M. Phil.  

at The Chinese University of Hong Kong in (Oct，2003) 

Abstract 

Structure from motion algorithms, for example the two-pass interleave bundle adjustment 

approach, can generate the pose and model. However, this approach assumes that good 

feature correspondences are available. But noise and feature mismatch may corrupt the 

correspondences and result in serious deformation of the model generated. In this thesis, 

a feature filter by using the silhouette clipping approach is proposed to select a good 

feature set from noisy data for model recovery of an object on a turntable. Synthetic as 

well as real images were tested using this method with good results. 
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摘要 

很多移動影像結構重組都是把姿勢和模型結構分開處理。透過利用轉 

換束組調節方式，模型的姿勢和結構可以在同一過程被推算。這方式 

提供更佳效率。不過，這方式假定良好特徵點對應能夠被找到。噪音 

和特徵點錯配可能導致嚴重模型扭曲。在這論文裡，一個使用輪廟剪 

影技術的特徵點過濾器被提出來選擇一組好的特徵點。由一組從一個 

轉台上的物件錄得來的含噪音的特徵點。電算機合成影像及真實影像 

亦用來測試這方法。兩者都有好的結果。 
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Chapter 1: Introduction 

1.1 Scope of the work 

In this thesis we investigate a way to select good features for multiple view 3D 

reconstruction. It is useful to enhance the result of existing model reconstruction 

algorithms. Specifically, my work is used to enhance the result of the reconstruction of 

an object on a turntable. 

My implementation is specifically built on the algorithm of interleave bundle adjustment 

for structure and motion recovery from multiple images [61]. The algorithm has an 

advantage that the pose and model could be obtained simultaneously and efficiently 

However, this algorithm, or any other Structure From Motion (SFM) algorithms, has a 

weakness that noise and feature mismatch easily distort the recovered model. The aim of 

my work is to select a better feature set to feed into the interleave bundle adjustment 

method [61] to improve it accuracy. 

A filter is proposed to filter out the bad and mismatch features. That filter takes the 

interleave bundle adjustment result as its input. Then it uses the silhouette information 

of the target object to select the correct features and feedback to the interleave bundle 
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adjustment algorithm again. The process is re-iterated until the quality of the output 

model is satisfactory. The system is tested with both synthetic data and real images. 

Here is an overview of our work: 

Given a set of noisy features that is extracted from a sequence of pictures, it is able to 

recover the 3D model of the object in the movie. However, if the noisy feature set is 

directly used in the interleave bundle adjustment algorithm for 3D model recovery, the 

output model would be seriously distorted due to feature mismatch. Because the bad 

feature points would locate at any places in the picture, therefore a simple 2D filter is 

normally not be able to filter out those bad feature points. 
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y f 

N o out of boundary feature ^ ^ ^ ^ ^ ^ 
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^ ^ ^ iteration number 

] r  
Finish and return the pose and model 

Figure 1 — the flow diagram of feature selection by using silhouette clipping 

Therefore, we propose a 3D filter for feature point selection to improve the situation. 

Figure 1 shows the basic flow diagram of our proposal. By using our algorithm, we are 

able to obtain a set of good features to feed into the alternative bundle adjustment 

algorithm. Our idea is implemented in Matlab code. In a synthetic data test，up to 14% 

error improvement is found in large noise condition with our algorithm. Our algorithm is 

also tested in real image cases and the results also have significant improvement. 
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1.2 Main contributions 

Before we enter the detailed discussion, it is useful to summarize the main contributions, 

which we believe, are made through this work: 

• Studied the weakness of the interleave bundle adjustment algorithm. 

• Designed a feature selection algorithm by using silhouette information. 

• An implementation of the snake algorithm with color histogram. 

• Implemented the feature selection algorithm and tested it with the alternative 

bundle adjustment method algorithm by using real images. 
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1.3 Outline of the thesis 

In Chapter 2 some background of structure from motion (SFM) is included. A study of 

various work on un-calibrated and calibrated SFM methods (2 views, 3 views and 

multiple views) are presented. The topics of dense matching and volume from silhouette 

are also discussed. 

A detailed discussion about the interleave bundle adjustment algorithm is included in 

Chapter 3. The basic perspective projection, Lowe's algorithm and interleave bundle 

adjustment algorithm are also described. The noise and feature mismatch effect on 

interleave bundle adjustment algorithm are also discussed. 

In chapter 4 a feature filter using silhouette clipping technique is proposed. A discussion 

about how the silhouette method is used to extract those bad features and how the bad 

features were pruned out from a 3D model are presented. The implementation details of 

the feature filter were presented in that chapter. Besides, a silhouette extraction scheme 

using a snake algorithm with color histogram is also presented. Some experimental 

results are included to demonstrate how the snake algorithm with color histogram 

approach overcomes a complex image background to locate the silhouette of the target 

object. 
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In Chapter 5 the experimental data of our algorithm is included. A synthetic sphere 

simulation is presented. The difference between before and after using the feature filter 

was studied. Real image tests are also presented in this chapter. 

The conclusion is presented in Chapter 6. The future work is also discussed. 
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Chapter 2: Background 

2.1 Three dimensional models from images 

Stereopsis or Stereo vision, according to Trucco [57], is the construction of a 3D structure 

and the distance of a scene from two or more images which are taken from different 

viewpoints. 

2.2 Un-calibrated 3D reconstruction 

Two views 

Early research on structure from motion concentrated on the study of the two views 

problem [58] [59]. It is assumed that a set of corresponding features can be obtained. 

By using two frames taken from an object, a fundamental matrix that incorporates the 

information of the camera motion can be found. When the intrinsic parameters of the 

camera are known, the extrinsic parameters can be obtained up to a scale factor. After 

the extrinsic parameters are known, the 3D locations of the features points can also be 

estimated. However, when the intrinsic parameters of a camera are hidden, it is called 

un-calibrated structure from motion. 
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In the field of feature-based structure from motion, two early approaches have been 

investigated by Faugeras [15] and Hartley [23]. They developed the fundamental matrix 

techniques that solve the projective structure of the two views geometry. A lot of work 

has been developed on how to find and use the fundamental matrix [9] [22] [34] [42] and 

some systems perform well on real image data [54] [55] [66]. 

Three views 

Model recovery using three views have also been studied. This is called the trifocal 

tensor technique. Spetsakis and Aloimonos [49] developed the calibrated case of 

trilinearities to transfer line and points. Later the un-calibrated case is studied for points 

[47], or lines [24] or both [21]. Torr and Zisserman [53] [53] then suggested robust 

computation methods for trifocal tensor and the properties of this method are well studied 

by Shashua and Avidan [46]. 

Multi-views 

Many researchers have extended the method for two images to multiple images. One 

method for multiple images structure recovery begins using two views, then sequentially 

adding new images to refine the model [5] [9]. A detailed study about the relationship 

between two views, three views to multiple views structure from motion have been 

analyzed by Fitzgibbon and Zisserman [17]. 
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Moreover, Heyden [25], Triggs [56] and Faugeras and Mourrain [14] also studied the 

problem of multiple view images recovery. Some important work has been done for the 

full perspective camera model, for example Azerbayejani [3]，Cui [12], Spetsakis and 

Aloimonos [49] and Szeliski and Kang [51]. For the im-calibrated cases, one remarkable 

work is the factorization approach from Tomasi and Kanade [52] based on an affine 

camera model. An enhancement which is able to solve the missing data case was 

proposed by Jacobs [26]. 

To refine the structure from multiple sequential images, Kalman filter is a useful tool [27]. 

Another approach is bundle adjustment [60] [65]. That idea was incubated by Mohr [39] 

in an early paper and then it was formally entitled as bundle adjustment [48]. 

2.3 Self calibrated 3D reconstruction 

Up to now our discussion focuses on un-calibrated structure from motion. This approach 

generates a projective structure output. However, in many applications, the projective 

structure is not accurate enough and the metric structure of scenes is preferred. A 

popular method to achieve the metric structure is to assume fixed intrinsic camera 

parameters. 
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This problem was first studied by Maybank and Faugeras [37]. Then Luong [34] and 

Zeller [63] [64] proposed a pair-wise calibration method which was inspired by Kruppa 

equations [30]. 

Another approach is to compare the intrinsic parameters difference between computation 

and factorization of the camera projection matrices. Hartley [19] obtained the metric 

structure by minimizing that difference. A few years later Trigg [68] proposed an 

absolute quadric approach. 

Some researchers simplify the problem by solving a particular case of the problem. They 

study the problem based on a restricted motion, for examples, a purely translating camera 

is studied by Moons [40] [41], a stratified approach is studied by Armstrong [1], a 

rotating camera case is studied by Hartley [20] and a planar motion is studied by 

Zisserman and Hartly [2] and Faugeras, Quan and Sturm [13]. 

In addition, Zisserman [189] proposed to impose, a posteriori, constraints on intrinsic 

parameters. Pollefeys [43] demonstrated how to use Kalman filter and bundle adjustment 

method to filter the feature outliners in long images sequences. Chang and Wong [61] 

proposed an interleave bundle adjustment method to acquire both the pose and model 

information simultaneously. 
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2.4 Initial model formation using image based 

Dense stereo matching 

Another approach is to compute the depth map by using correlation, or dense stereo 

matching. That method generates textured 3D models but the results are often not 

detailed enough. Moreover, some important scene features are missing so that the 

recovered models are often incomplete. However, an interesting aspect is that when a 

model is obtained from a set of sequential images, the poses of the camera are also 

known. That output could be feed into existing stereo matching algorithms to obtain a 

more detailed 3D model. 

Matthies, Szeliski and Kanade[36] introduced an early work to estimate depth from 

image sequences. They suggested a pixel-based algorithm that estimates depth and depth 

uncertainty at each pixel and incrementally refined these estimates over time. Kalman 

filtering is used to extrapolate and update the pixel-based depth representation. 

Comparing to feature-based Kalman filtering algorithm, this method is an effective way 

to extract depth from lateral camera translations. 

The advantage of the dense map method is that it gives detailed surface estimates and the 

accuracy of the multi-view aggregation is improved. However, in stereo processing, the 

lateral camera translation creates a tradeoff problem between precision and accuracy in 

matching. If the baseline of the camera is short, the estimated distance would be less 
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precise due to narrow triangulation. For more precise distance estimation, a longer 

baseline is preferred. Unfortunately, the tradeoff of this improvement is that a larger 

disparity searching range is needed. For this, Okutomi and Kanade[29] introduced a Sum 

of the Sum of Square Different (Sum of SSD) SSSD-in-inverse-distance function to 

exhibit a unique and clear minimum at the correct matching position. 

Another important work about correlation including the level-set algorithm was proposed 

by Faugeras and Keriven [16]. That idea extends the snake method by Kass and the 

context partial differential equation PDE driven evolving curves. A curve is like a 2D 

snake and is evolved by a PDE . The matching criterion is to find a suitable function so 

that the integral error |Ii(mi) -12(1112)f is minimized. Their work generates high quality 

reconstruction and even when occlusion occurs. However, some areas of their work 

need improvement, which included bad complex surface performance, regularization 

biases and no guarantee on unconstrained camera configurations and arbitrarily-shaped 

scenes. 

2.5 Volumes from Silhouettes 

Besides feature-based structure from motion, some researchers studied the use of 

silhouette information of an image to recover the model information. 
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A lot of work in this area assumes that several views of the silhouette of an object are 

found. An early work on this topic was proposed by Giblin and Weiss[18]. The model 

is developed from the envelope of its tangents. However, Giblin and Weiss's work is on 

simulation stage only. A practical work is done by Ronen and Ullman[4]. They showed 

that it is possible to predict a new appearance of a viewer-centered object from any given 

viewpoint by using the magnitude of the image curvature of an object's silhouette. They 

made an assumption that the projection of the camera had to be orthographic. Blake and 

Cipolla [7] [8] assumed that a camera moves continuously with a known motion, they 

parameterized the surface with respect to the arc length along the rim and the time. Their 

result is quite sensitive to the noise of the boundary. Instead of using the curvature of 

the boundary, they computed the difference between two radii of curvatures, or the 

differential curvature. Besides, Lim and Binford [32] described an object's surface by 

using two views of the object. Regis and Faugeras [44] studied the occluding contours 

problem of an image. They identified the occluding contours from triplets of images and 

modeled the object as the envelope of its tangent plane. 

More recent work about structure from motion using silhouette information has been 

done. Mendo9a,Wong and Cipolla[38] addressed the problem on using the profiles 

information to develop the model of an object rotating on a turntable in front of a single 

camera. The main improvement of their work is that it does not depend on point and line 

correspondences. Another work was presented by Wong and Cipolla[62] which 
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overcomes enhancement the problems occlusion when adding new views as the turntable 

rotates since part of the structure is invisible under circular motion. 

Up to now we already studied the development of the field of structure from motion. 

From the review we found that many of the algorithms for solving the model acquisition 

and pose estimation simultaneously were complex and slow. The approach from Chang 

and Wong [61] provides a more efficient method by using interleave bundle adjustment 

for generating both two results at once. However the generated model is easily distorted 

because of the feature mismatch in input images sequence. Therefore we developed a 

silhouette clipping method to enhance the structure reconstruction result of the interleave 

bundle adjustment algorithm. 
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Chapter 3: Initial model reconstruct the problem with 

mismatch noise 

In the last chapter, we have a brief revision about the research field of structure from 

motion. In this chapter, we will discuss the interleave bundle adjustment algorithm and 

the weakness of this algorithm. 

A short summary about the interleave bundle adjustment algorithm will be described here 

first. Figure 3.1 shows the flow diagram of the basic idea. A set of features was 

extracted from each image and an initial model (e.g. a plane model) is assumed. The 

feature sets and model will be used to estimate the pose of each frame. The pose 

information will then be used to predict a better model by using Newton's method with 

minimal residual image error. The pose estimation and model estimation processes are 

iterated until the total 2D re-projection error is small enough or too many iterations have 

been executed 
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y r  
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L  
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I  
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J 
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enough or too ^ ^ 
many iterations? ^ ^ ^ 

\ r  
Finish and return the pose and model  

Figure 3.1 - Flow diagram of the interleave bundle adjustment method 
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3.1 Perspective Camera Model 

In figure 3.2, a camera with focal length f is located at position and a point P is 

located at a 3D position with respected to the camera. The perspective 

camera model of the image coordinate 0，少）is given by: 

x = = (3.1) 

Model M at t=l 

v-axis 

Y-axis ^ ^ ^ ^ y / ^ 

“ ^ , 1 = [ 义 ， 少 ] Z - a x i s 

\ X i 

/ ^ ^ ^ ^ "-axis 
c 丨(Image  
卞 ter)  

center)    
^ ^ . . . . . ‘ � 

X=axis i � ' - 戶 focal 
length 

Figure 3.2 - Perspective projection of an object onto an image 
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3.2 Intrinsic parameters, Extrinsic parameters and camera motion 

3.2.1 Intrinsic parameters 

For a CCD camera, an image point (w，v) that is captured from the computer does not 

directly represent the physical coordinate in the retinal plane. The value of this image 

point depends on the size and shape of the pixels and the position of the CCD chip in the 

camera. Figure 3.3 shows the relationship between pixel size and the value of an image 

point. Therefore, in addition to the focal length, there are a set of parameters to 

characterize the optical, geometric and digital characteristics. They are defined as the 

intrinsic parameters [57] of the camera and we have: 

； c = - a n d 产！ ^ ^：：： ^ (3.2) 

where is the coordinates in pixel of the image center and (js”sy) is the effective 

size of the pixel in the horizontal and vertical direction respectively. 

Using a matrix form, the relation between two coordinates can be denoted as follow: 

- 叫 [ 一 亡 。 令 -

V = 0 -女 Oy y (3.3) 

_lj 0 0 1 
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Figure 3.3 - The relationship between pixel size and the value of an image point 
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3.2.2 Extrinsic parameter and camera motion 

In general, the camera center location and the world center are not the same. Therefore, 

the transformation between the camera and the world frame is needed. To describe this 

transformation, two kinds of information are needed. The first one is a 3-D translation 

vector T. It describes the relative position between two centers. The second one is a 3 

by 3 rotation matrix R . It is an orthogonal matrix that brings the corresponding axes of 

two coordinate systems onto each other. With this information, the relation between 

world coordinates and camera coordinates could be written as: 

P^=R(P^-T) (3.4) 

where P^ is the world coordinate. 

This is also called the extrinsic parameters [57] of a camera. Then we obtain: 

. 喻 / 鶴 

where R.,i 二 1，2，3 is a 3-D vector formed by the i-th row of the matrix R . By using the 

matrix form, the equation can be rewritten as: 
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� 1 
c Y 

Y = � i ? 丁 r ] “ 
c - - Z 

z ^ 

which is simplified to 

This equation also describes a camera motion from one point P̂  to another point 尸2 so 

that we have 

-1 

「 幻 

1 Y 
K =�7? — i^Tj^l 2 (3.5) 

L �Z 2 Z, 2 
_1 _ 

Plugging into equation (2.3), we rewrite the equation as 

M K �H [ ？ • 

、 V = 0 一 丄 。 V � 7 ? 2 (3 .6 ) 
y L �Z 

^ 0 0 1 1 2 
�L J 1 

or, it is simplified to 
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- J C 2 
X 

y = 礼 凡 5 

Z 

and we have 

u=— and V =— 
z z 

3.3 Lowe's method 

The basic perspective projection equations illustrates the relation between the position of 

corresponding features in two images and the pose change of a three dimensional model. 

However, it still has not provided the solution of the pose change calculation. An early 

work was done by Lowe [33]. It demonstrates that the locations of all projected model 

features in an image have to be consistent with the projection from a single viewpoint. 

Assumed that the pose change parameters of the model between two images are denoted 

as . The partial derivatives of u and v with respect to each of the pose 

change parameters are able to be calculated. The Newton method is used to calculate the 

optimum correction rotations about the camera-centered axes and 

correction translation AD太,AZ), AD" Since have: 
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u =丄七 
z + Dz ‘ 

so 

Su . =1 

Also 

5u _ f 5x fx 5z 
豕 一 (Z + A)2 豕 

but we know that 

5x J 5z = z and = -X 

帥y 帥y 

for simplicity, a constant c is substituted to: 
1 

c = 
z + Dz 

giving, 

4^ = fcz + fc'x' = fc{z + ex") 
o(py 

Similarly, 

5u f 5x J. 
——=~丄 =-fey 

观 z + A 秋 

The goal of the multi-dimensional Newton convergence is to solve the vector of 

corrections 
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The error of w，v components is used independently to create separate linear constraints. 

The error E^ and E^ of u and v is generated by the sum of the projects of its partial 

derivatives times the unknown error-correction values: 

^ Su , ^ Su . ^ Su . ^ 5u . , Su . , Su & 丄 ^ -
瓦二瓦A + < ， + 疋 化 A 么 + 豕 A 么 A 么 3 . 7 

E�二 叫 + 奶 , 叫 魄 + 务 ~ 伞 , i 魄 SD^ 5Dy 5D: 观 观 S^z 

where the partial derivatives of u andv with respect to each of the camera viewpoint 

parameters are: 

u V 

~^^飞 1 

" a ^ ^ 

A fc^xy /c(z + c / ) 

•y fc{z + cx^) fc^xy 

武 -fey fcx 

Table 3.1 Residual Error with respect to pose parameters 
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In general the more correspondences between model and image the better the result, one 

way to merge correspondences is to use the Gauss least-squares method. The matrix 

equation is rewritten to: 

Jh=Q 

where J is the Jacobian matrix containing the partial derivatives, h is the vector of 

unknown corrections for pose change parameters that we are solving, and e is the vector 

of total 2D error measured in the image. When the iteration converges to a correct 

solution, a least squares fit of the error is able to be performed by solving the 

corresponding normal equation: 

By solving the vector h, we are able to get the pose change of the object between the 

images. 

3.4 Interleave bundle adjustment for structure and motion recovery from multiple 

images 

The original Lowe's pose estimation is designed to solve the pose estimation problem 

with a known structure in a single image. It is also an advantage of this method. 

However, this method assumes that the model structure P is known. Generally, in real 

application, this assumption does not hold. Chang and Wong [61] implemented an 
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interleave bundle adjustment algorithm to solve it by using a sequence of F images to 
— —• 

find the model P and the pose sequence 没={̂ i,《，...,没,，...，没�}. 

Assumed an object M with Nobservable feature points P = ( /；，？？，…，巧 , " .，户 "）w h e r e 

P. = is a 3D position (Figure 3.2). At time / = 1, the object is placed at an 

arbitrary location. At time t = 2,3,.....F, the object is moved to a new position of 

rotational R, and translation 7； transformations. A set of 2D feature point 

歹={"1,,,"2,,”...，"《,,} is taken at time t. 

The projected 2D feature 仏,is expressed as the projection result of the rotation and 

translation of model point . Assumed the rotation and the translation of the model at 

"11 "12 
time t \s R,= r � � r ^ j "23 and 7； respectively. The 2D projection 

result is 仏’，=0,’,v,’,）=射及,i；+7；) ,where gQ is a projective function, 

Hi 
is the translation vector and R, = r^, r〕】r^i is the rotational matrix. Specifically, g() is 

/n ^33 "33」， 

r , , �i 2 y + � Z + 7； 
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/ N A 

Let 0 be the initial estimate of the pose and 6 be the true pose, so that 6 = 0 + 56, where 

59 is the estimation error. By using expanding g{e, P) into a series, we have 

仏 ( 没 , � = g ( 式 巧 祐 (3.10) 
du 

A 

where is the actual 2D feature point we measured, and g(<9，î ) is the predicted feature 

A 

point based on the known model point P̂  and the estimated pose 6. The residual error 

between the measured feature point position and the predicted position is 

‘ dO 

Because bothSq. and g{6,P.) are measurable or calculable, SO is able to be found. By 

decreasing the residual error Sq^，the estimated pose is able to gradually approach to the 

true pose by repeating the process iteratively until the residual error is small enough. 

Let the initial estimated pose G = {1\,7\,1\,(1\水水�’ where 伞〜水,為 denotes the roll, 

pitch and yaw (RPY) angles. By using Eq. 3.7 and Eq. 3.8，we have 

To compute the residual error, the i-th point of the 3D model is rotated and translated. 

By using Eq. 3.9, the rotated model is given by 
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Z广=认+〜”+仏 

and the translated model is 

By using the result of table 3.1, we have the residual error component with respect to T: 

dui f du. _ , dUi f X i 
- = — , ~ - = 0 and ~ - = - / — 

dT, Z. dT\ dT, Zf 

and 

57； dJ\ Z, dT, J Z/ 

The residual error components with respect to (j) are written as: 

and 

也 I 一 f 这 〜 二 一 f l ^ 
d(j), J Z/ ，d(f>, J Z,2 , d(l), z . 

Now we have six unknown parameters (AT；, , bĴ ，A 於,A 疼，咏 ) in two equations for 

each feature point. When we have N feature points in a model, we have 2N equations for 

the six unknown parameters. The equations are then solved by using standard least 
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square methods [50]. After AT； and Â ẑ . have been solved, they are converted back to 

matrix representation for further calculation. 

Now the model estimation component is added into the calculation process. By 

extending the equation Eq. 3.10，the estimated model error is included in the 

calculation of residual error. The Eq. 3.10 is then expanded to 

dv^ dr-

where P represents the current state estimation of the model points. Then the model is 

improved by updating P̂  = Pj+SP^. The model and pose change development are 

separated into two phases. The first phase estimated the pose sequence 

= {<^1，式，...,殘，…，吞} by an estimated model P . The second phase then used the 

二 ‘―» • 

estimated 0 result in phase one to update the estimated model P. The two phases iterate 

until the overall residual error becomes a minimum. 

The general description of Wong and Chang's algorithm is shown as follow: 

Step 1: Feature sets ,} are extracted from images for i = \,2,…,N and t = l ,2 , . . . , r . 

Step 2: Initialize model structure P，e.g. a plane with some noise 
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Step 3: First pass: 

For / = 1 ro r 
— . / V 

Using P and image feature {仏,,，仏,,，...,�jv’,} of the t-th image to find 6, 

by Lowe's method. 
End 

A A . A A / N 

An estimated pose sequence 6 = { 6 ^ , 6 ^ , . . i s found. 

Step 4: Second pass: 

For i = \ to N 

A 

Using 6 and the i-th image features of the all images i , � , 2，....,《,,r} 
find a better-predicted model structure P using Newton's method by 

minimizing the residual image error. 

End 

An estimated structure pose P is found. 

Step 5: Stop if the 2D total re-projection error ^ {Sq̂  , f is small enough or too many 
all i,l ’ 

iterations have been executed. Otherwise loop back to step 3. 
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3.5 Feature points mismatch analysis 

One of the significant causes of incorrect model recovery is the error of feature points. 

Those errors of feature points mainly come from three sources: 

1. The extraction error from the feature extraction program 

2. The noise from the original picture 

3. The missing points from the motion of the object 

The effect of noise is explained. Assumed the noise of a feature point i at frame t to be 

and gv/,/, then the feature point location becomes: 

6w 'i,t=bu + ^Uij， 

The noise error term causes a deformation of the model. Because it is bounded by an 

initial base image, the deviation of SXei and SYei will not be greater than 
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他 , = 仏 》 * 化 

where f is the focal length of the camera 

Since we have, 

S �=a;丨坏 

Therefore, the effect of ^m/,/ and�v/, , are rewritten to 

where Ze, is the effect of Z change due to 办,and Z'e, is the effect of Z change due t o � / . 

By substituting the value of SXe. and SYe.，we have 

= 1 + «12 J + 

, S Z ' e , 
《V,’, = “2 丨 J + « 2 2 J + 口23 权 
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Then we have the total noise effect of Ze from both the horizontal and vertical pixel noise: 

‘ Wl^"/., + “1'3/)(>4化’,+ “ L / ) - 〜 化 ’ , 

From the above result, we found that point mismatch causes a serious model distortion 

during reconstruction. In spite of many improvements in feature points tracking 

algorithms, point correspondence are still a problem in this topic especially for real 

images. Therefore, we need a mechanism to pick out the mismatch points. Chang and 

Wong [61] suggest two methods to solve the problem. 

The first method is to hard code the boundary of the feature point by using a rectangular 

boundary. An important source of mismatched feature points comes from the 

background of the picture. This method filters out the unwanted background feature 

points. The advantage of this method is fast and simple. However, the weakness of this 

method is not robust enough and it is not able to filter out some background feature 

points if the object under test is an irregular object. Besides, this method is also not able 

to fix the mismatch feature points belonging to the object. 

The second method is to delete those fast moving feature points. If the movement of a 

feature point is found abnormally large between two pictures, it will be considered as a 

noisy feature point and it will be deleted during the model recovery. This method is able 
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to filter some noisy features. However, if the image of object under test is moving fast, 

this method will delete some actual feature points by wrongly considering those feature 

points as noise. 

The feature point mismatch effect is demonstrated by a simulation result using a sphere 

as follows. The simulation is processed by the following condition. 

Step 1: The set of 3D sphere raw data is generated by Matlab software 

Step 2: The 3D sphere is then rotated by a small step sequentially 

Step 3: An image is captured for each pose-changed sphere 

Step 4: Those images are feed to the alternative bundle algorithm and a 3D model is 

generated 

Step 5: Some noise is added to those captured images 

Step 6: Those images are feed to alternative bundle adjustment algorithm and a 3D 

model is generated again 

The model output from step 4 for the images set without noise is shown in figure 3.4a. 

The model output from step 6 for the image set with noise is shown in figure 3.4b. From 

the model result, serious distortion is found due to the effect of the mismatch noise at the 

input image sequence. More detail about the synthetic data will be discussed in chapter 5 

again. 
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mCi^m P — 1 
Figure 3.4a (Left) The simulation sphere result from the images without noise. Figure 3.4b(Right) the 

simulation sphere result from the image with noise 

In this chapter, we have a revision on the perspective camera model and discussed the 

details of an interleave bundle adjustment algorithm. We have also studied the effect of 

feature mismatch to that algorithm. In the next chapter, we will suggest a method to 

improve the noise effect problem. 
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Chapter 4: Feature selection by using silhouette 

clipping 

In the last chapter we discussed the effect of feature mismatch in 3D model recovery by 

using an interleave bundle adjustment method. In this chapter, we shall propose a 

solution to improve the problem. Our proposal is inspired by a technique called 

silhouette clipping. Silhouette clipping was originally an algorithm for 3D rendering 

which was introduced by Sander, Hoppe and Snyder[45]. In the rest of this chapter, we 

have a brief introduction about the silhouette clipping technique and how to enhance the 

result of the interleave bundle adjustment algorithm. 

4.1 Introduction to silhouette clipping 

In a rendering process, a set of triangles to describe the surface models is required. 

However, to process those triangles is also the bottleneck in geometry processing. The 

output quality and the calculation efficiency in a rendering process are contradicted to 

each other because the increase in the number of triangles provides a better result visually 

but causes longer calculation time. Much work has been done for how to generate a 

surface model in using coarse meshes [35] [11] [10]. Those techniques give a pretty 
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good approximate result by using fewer triangles; however, it is not a true solution to the 

problem. 

Sander, Hoppe and Snyder[45] introduced a silhouette chipping technique to improve the 

performance. The basic idea of their algorithm is shown as follows: 

Preprocess - Give a dense original mesh: 

• Build a progressive hull representation of the original mesh and extract from it a 

coarse mesh, which has the property that it encloses the original, allowing proper 

clipping. 

• Sample the color and/or normal field of the original mesh, construct a texture map 

and/or normal map over each face of the coarse mesh. 

• Enter the edges of the original mesh into a search tree for efficient runtime 

extraction of silhouette edges. 

Runtime - for a given viewpoint: 

• Extract the silhouette edges from the search tree 

• Create a mask in the stencil buffer by drawing the silhouette edges as triangle fans. 

• Render the coarse mesh with its associated texture/normal maps, but clipped an 

anti-aliased using the stencil. 
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4.2 Silhouette clipping for 3D model 

Out of bound feature 

Silhouette clipping extracts the silhouette edges to set a stencil and clips away the out of 

bound data. It is able to filter out those feature data that do not belong to the observed 

object. Figure 4.1 shows an example of out of bound feature with an imaginary sphere 

face. During the feature capture phase, some out of bound features are captured for 

model recovery. Those bad feature points distort output model and are needed to be 

removed. By checking whether a feature point lies outside the silhouette of the object, it 

is not difficult to separate out those bad feature points from good ones. 

Feature not belongs to the object 
Silhouette of the object / � \ 

I V ^ ^ f ^ ^ ^ ^ O ； 、 I 

W w W 

Figure 4.1 Raw pictures of sphere face 
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Out of bound spike 

As we mentioned in the last chapter, the feature noise or mismatch causes the distortion 

of the model and generates many spikes on the output model. When those mismatch 

feature points are removed, those spikes will be disappeared as well. Let's use the sphere 

face example again. When a mismatch feature point exists on the sphere face picture, the 

3D output model will generate an unwanted spike similar to that in figure 4.2. Figure 

4.2a shows a perfect sphere face. Figure 4.2b shows a sphere face with a spike from the 

same point of view. 

w ^ 
(a) (b) 

Figure 4.2 the view of a sphere face from reference frame view. 

Figure 4.2a (Left), a perfect sphere face. Figure 4.2b (Right) the face has a spike 

It is difficult to pick out the mismatch point from the view of figure 4.2b. However, 

when the camera view is changed to another position, for instance, rotates the object by 

90 degrees, those spikes will be easier to be found out, at least by human eyes. For 
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examples, in figure 4.3b, the spike is easier to be figured out when the camera view is 

changed. Figure 4.3 a shows the perfect model view for the same pose. 

� （b) 

Figure 4.3 The view of the sphere from a new pose. 

Figure 4.3a (Left), a perfect sphere face. Figure 4.3b (Right) the face has a spike 
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The spike in figure 4.3b is easier to be detected by human eyes because all spike points 

shall not exceed the silhouette boundary in all pose projection view. It is quite similar to 

the idea of silhouette clipping. However, the original silhouette clipping method only 

corrects the out of bound triangles for the rendering result. We enhance the idea so that 

the 3D model is corrected as well. The pose changes {6^,6^,...6^) of a set of sequential 

picture {t = l，2，...，r) are assumed to be known. By comparing the projection of the 

model at the pose 6- and the silhouette of the image at t=i (Figure 4.4)，we are able to 

pick out those mismatched points. 

Silhouette 

# © 1 Out of bound 
I feature 

Figure 4.4 Use the silhouette to filter the out of bound feature 

i 
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The procedure of the boundary filter is shown as follows: 

Step 1: Raw feature sets {q^ ,} are extracted from images for i=l,2,..,N, and t=l,2,.., r. 

Step 2: Boundary sets {bj ,} are extracted from image for j=l，2,.,,M, and t=l,2,.., Y by using the 

snake algorithm. 

Step 3: First pass: 

For t=l to r 

By using the boundary outline {b" }，take out all the out of bound feature in each 

image frame. The preliminary filtered feature sets {q. ,} are extracted for 

i=1.2,..,N„ and t=l,2,.., T are generated 

End 

Step 4: Initialize model structure Pand pose change per frame 0 = {(̂ 1’式’.4’...，(̂ 「} information 

per frame by using bundle adjustment Lowe's method and the filtered feature sets. 

Step 5: Second pass: 

For t=l to r 

For e = e . to e � 

4 

/ - V A . 

1. Transfer the model P to pose 0 

2. Project the transferred model to corresponding image view. 
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3. By using the boundary outline {bj ,}, take out all the out of bound 

features in each image frame. The filtered feature sets {&.’,} are 

extracted for i=l,2,..,N'„ and t=l,2”” T are generated. 

End 

End 

Step 6: Iterate the model structure Pand pose change per frame 6 = by using 

bundle adjustment Lowe's method and the filtered feature sets. 

Step 7: Loop back to step 5 until either deletion of no further point or exit the maximum iteration 

number. 

Figure 4.5 shows the flow chart of our algorithm. Stepl prepares the raw features for 

model recovery and step 2 prepares the silhouette boundary for boundary filter. Step 3 

filters the useless background features which do not belong to the object. Step 4 

generates the preliminary model and the pose change per frame. However, the model in 

this stage is still distorted by noise and mismatch points. 

Step 5 mainly has two purposes. The first purpose is to move the model to the poses of 

the future frames and to generate the projected view of the model at those poses. The 

second purpose is to delete the model points if those corresponding feature points are out 

of bound in the projected view. 
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Step 6 regenerates the model again. Because the model and the pose that were generated 

in step 5 are distorted, we need to regenerate the model and pose after the feature points 

are updated. The new result will be more correct. 

Step 7 reiterate the boundary filter and model generation until the stop criteria is fulfill. 

Feature sets extracted from images 

1 r 

Silhouette extraction 

1 r 

Initial 2D filtering to filter out the out o f bound features 

y f 
^ Use alternative bundle adjustment model to generate the model and pose of each image 

，r  

Rotate the model to the pose of each image and re-project the 2 D image 

y r 

Compare the re-projected 2D image to the silhouette filtered the out of bound feature 

1 r 

^ ^ ^ ^ ^ No out of boundary point 
found or exit maximum “！!^ 

iteration number 

J f 
Finish and return the pose and model 

Figure 4.5 一 Flowchart of feature selection by silhouette clipping 
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4.3 Implementation 

The implementation of our work is divided to two parts. The first part is a silhouette 

extraction program. The second part is a feature filter which is merged into the algorithm 

of interleave bundle adjustment algorithm. ‘ 

4.3.1 Silhouette extraction program 

Our silhouette extraction program is modified from a well-known snake algorithm [69]. 

In additional to the traditional snake algorithm, a color likelihood function is added to the 

original external energy term. The detail of the modification is shown as follow: 

In the original snake algorithm, a curve function z{s) = is used to describe the 

boundary outline of an object in a picture, where s is measured from the arc-length from 

the starting point of a boundary curve. An energy function is used to control the 

evolution of the boundary curve. The function energy is given by: 

where E-̂ ^ is the interior energy 

五 i n t : 丄 [ [ _ 鲍 2 ( 力 鲜 V 

\ J 

and a{s) is the snake tension and P{s) is the snake rigidity. 
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The external energy E^, typically uses the spatial gradient - V/ of the gray-level 

intensity image I , computes at each snake point. To minimize the energy function, the 

Euler equation + F^, has to be equal to zero. is the interior force from internal 

energy E-̂ ^ and F如 is the external force from external energy 五浏. 

When the snake program is used to capture the silhouette outline in real images in our 

application, the outline is wrongly captured when the background is noisy. Therefore, a 

minor modification is made to add a color analysis on top of the snake algorithm. 

A color histogram of the target object is a pre-requisite of our color analysis. The target 

object is assumed to be located at the center of the image. The sample color histogram is 

obtained from a 10 by 10 square box around the center point of the picture. The color 

histogram is then normalized and translated to probability function p{t | h). 

p{t I h) represents the probability that a color measurement t belongs to the target object 

baed on the color histogram h of the target object. 

An initial boundary curve is set in an arbitrary area on the image that coveres the target 

object. In addition to the original external force in the snake algorithm, a color likelihood 

external force —VE��丨 is added so that the external force is then changed to 
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F • This color external force is proportional to the color likelihood of 

the control point to the target object. It is then formulated to: 

•五c�/ = — ： ^ I 均 ^ Pthreshoia a n d , 

• £ ; � / = 0 i _ / / ) > / 7一 

With this color external force term, the snake curve is able to overcome the local 

minimum attraction from the noisy and complex background and is able to catch the 

target object. 

The program was implemented in Matlab environment. The original images are shown 

in Figure 4.6. Figure 4.6a, 4.6b, 4.6c and 4.6d shows the objects that need to be tracked 

for their outline respectively. The objects under test were put around the center area of 

the images. 
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剛 P 
, . . . g 

� （b) 

(c) (d) 

Figure 4.6 Examples of the input picture for the snake algorithm 
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Then the color histograms of the target object were captured. Figure 4.7a, 4.7b, 4.7c and 

4.7d show the color histograms of the target object respectively. In Figure 4.7, the hue 

and situation color space are divided to 51 partitions and was laid horizontally on the x-

axis and y-axis respectively. The vertical axis represents the normalized frequency of a 

particular color found on the target ob jec t . ‘ 

The initial boundary of the snake curve is set on either the 4 comers of the image or an 

arbitrary location on the image. The result of the outline tracking is shown at Figure 4.8. 

The thick line around the target object is the tracking result. 
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⑷ （b) 

！：肩• ’ 
(C) (d ) 

Figure 4.7. The color histogram of the target object in Figure 4.6 
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(C) (d) 

Figure 4.8 The result (in blue traces) of the snake outline tracker. 
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4.3.2 Feature filter for alternative bundle adjustment algorithm 

The implementation is assumed that an object is put on a turntable and a video sequence 

is taken. Pictures are extracted from the video and undergo the following process steps: 

• Silhouette outline of the object from the image sequence are extracted from our 

snake tracker. 

• Feature extraction by KLT tracker[28] 

• Initial filter out those feature points lie outside of the silhouette boundary of each 

picture 

• Feature positions are fed to the alternative bundle adjustment algorithm 

• 3D structure and pose information obtained 

• Use the pose information from the alternative bundle adjustment algorithm, rotate 

and translate the 3D model from the pose of each image accordingly. 

• Project the 2D pictures for each changed pose model 

• Filter those features the lie outside the silhouette boimady of each picture 

• Feature position are fed back to the alternative bundle adjustment algorithm again 

until the feature is good enough 

• From the 3D structure and the first picture of the sequence, produce textured 

VRML files for display. 
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In this chapter, we described the idea of using silhouette clipping in feature points 

filtering. We also discussed about the details of the implementation work of our 

algorithm. The test result of our algorithm will be demonstrated in the next chapter. 
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Chapter 5 - Experimental data 

5.1 Simulation 

A synthetic data simulation has been used for testing the algorithm. A virtual sphere was 

generated by a Matlab program. The sphere had many feature points on its surface. The 

sphere was then placed before a simulation camera. The sphere was rotated and pictures 

were taken for each few degrees of rotation. Those pictures were then input to our 

algorithm for testing. 

5.1.1 Input of simulation 

The details of the simulation are described as follows: 

A synthetic sphere was generated and about 1200 feature points in evenly distribution by 

scattered on the surface of the sphere. The synthetic sphere was then rotated before a 

virtual camera and a picture was taken for every 3 degrees of rotation. Totally 120 

frames were taken. Figure 5.1 shows a few sample pictures of the original synthetic 

sphere. Because the rotation angle between each picture is not large, each sample picture 

looks quite similar and not much different. 
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Figure 5.1 Sample pictures of original sphere 

After the synthetic sphere pictures were generated, noise was injected into those pictures. 

To demonstrate the effect of noise, noise was injected in different magnitude in several 

tests so that the effect is easier to be compared. Noise was injected with the following 

conditions: 
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Noise magnitude distribution normal distribution with: 

m e a n O „ o , J = « ^ ， w h e r e 

n腿=5 pixels in testing condition (a). 

n醒=10 pixels in testing condition (b). 

«max = 1 5 pixels in testing condition (c). 

n醒=20 pixels in testing condition (d). 

and, variance ( 心 ） = 5 

Probability of a feature point are normal distribution with: 

inflected by noise mean ( / / 歸 淑 ) = 0 . 3 ， 

v a r i a n c e ( ( 7 L , � — ^ , _ ^ ) = 0.1 

Figure 5.2 and figure 5.3 show the captured feature points. Figure 5.2 shows the original 

feature points without noise. Figure 5,3a, 5.3b, 5.3c and 5.3d show the feature points 

with maximum noise magnitude (n臓 ) equa l s to the testing condition (a), (b), (c) and (d), 

or, 5，10，15 and 20 pixels respectively. 
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Figure 5.2 - Feature extraction for no noise condition 
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5.1.2 Output of the simulation 

The improvement of our feature point filter is demonstrated in three ways - comparing 

the radii distribution of the recovered 3D model points, comparing the actual 3D model 

feature points plotting. The third way is by plotting the recovered 3D model by using a 

VRML display with the texture map. 

5.1.2.1 Radii distribution 

The radius of each recovered sphere model feature point is plot in a graph. From the 

graph, many mismatched feature points are found to be filtered. Figure 5.4 shows the 

radii distribution for the original sphere without noise. The y-axis represents the scaled 

radii and the x-axis represents the feature point number. The range of the radii is in 

between 12x10^ to ISxlOl Figure 5.6al, 5.6bl，5.6cl and 5.6dl show the scaled radius 

of the recovered model from the picture with noise magnitude n^^ in testing condition 

(a), (b)，(c) and (d) respectively before using the feature filter. Figure 5.6a2, 5.6b2, 5.6c2 

and 5.6d2 show the scaled radii of the recovered model after using the feature filter. 
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Radius distribution 

15000 1 1 1 1 r- r — r r 1  
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CO 
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pointNo 

Figure 5.4 - The radius of the recovered 3D sphere feature distribution 

When we compare the difference between the recovered model error before and after 

using the feature filter in figure 5.5, we find that the radii distribution with the filter is 

narrower than that without using the filter. Then the root means square (RMS) of the 

radii errors are calculated to demonstrate the improvement. Before the filter is used, the 
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Maximum Noise ( n^^) / pixel Small noise condition Large noise condition 
^ 5 I 10 一 15 20 

RMS radii error without using m ^ ^ 2894 
filter  

Vail i-ltoN 八 

RMS radii error using filter 596 m ^ 

Vail i°ltoN 八 

Percentage error of radii Wo 7^4% 20% 21.6% 

without using filter (Enf=— 
Kea! 

Percentage error of radii with ^ ^ ^ 

filter 
^  

l i ^ rovemen t (E„rEf) 0.6% 0.5% 10.6% 
Table 5.1 - The comparison of radius error between using filter and without using filter 

Percentage error of radii against noise level 

25.00% -|  

J 20.00% 广 

2 / 
15.00% -f— ： 

g / — E r r o r without filter 

V / -»—Error with filter 
S) 10.00% / 

I 
S 5.00% 0) “ Q. 

0 . 0 0 % — — — — — — — — — — — — — 
5 10 15 20 

I—•—Error without 5.01% 7.43% 20.59% 21.66% 

filter  

-»-Er ro r with filter 4.46% 6.89% 9.49% 7.09% 

Noise level 

Figure 5.5 — The comparison of RMS radii error before and after using filter 
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The next analysis is done by comparing the radii range. In Figure 5.6al, the radii range 

of the sphere model lies between 7x10^ and 20x10^. After the feature filter is applied, the 

radii range is narrowed down from 7x10^ to 15x1 O � . T h e radii range deviation of the 

model has about 51% improvement. In other testing conditions (figure 5.6b, 5.6c and 

5.6d), similar improvement is also able to be found. The detail radii range improvement 

is shown in table 5.2. 

Maximum Noise Small noise condition~~ Large noise condition 
(/^.ax)/pixel ^ 10 20 
Max radius without 20276 23328 67349 107750 
filter (M,)  
Min radius without TSTs 8OT ^ 4813 
filter (M^) 
Max radius with 15865 19252 16454 17543 
filter (M3)  
Min radius with 7 ^ 5 w F s ^ 9 1 ^ 
filter ( M , ) 
Radius range n % \ 1 4 ^ 10546 102937 
without filter 

Radius range with 8550 10195 10546 8355 
filter 
iR,=M,-M,)  
Table 5.2 - The comparison of radius range between using filter and without using filter 



3D Model Reconstruction with noise filtering using Boundary Edges Page 11 of 98 

Maximum Noise ( w 随 ) = 5 pixels 
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Figure 5.6al  
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Figure 5.6a2  
Figure 5.6a - Radius distribution with noise 
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Maximum Noise ( ) “ 1 0 pixels 

x i o ' Radius distribution 
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Figure 5.6b 1 
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Figure 5.6b2  
Figure 5.6b - Radius distribution with noise 
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Maximum Noise (/2謹）=15 pixels 

Radius distribution 

71 r 1 1 1 1 1 1 1 1  

i k 

6 - -

5 - -

t- 4 - -

B 
S ••§ 
a 2 . 

S 3- -

• « 
• « 

2 - • • • • -

, • • . •• V. , , / • � • • ••• 

1： ： ： . . 

I , I 1 1 1 1 1 1 1 
0 100 200 300 400 500 600 700 800 900 1000 

point No 

Figure 5.6c 1 

. Radius distribution 
X10' 

71 1 1 1 1 1 1  

6 - -

5 - _ 

4 - -

ic e 
3- -

2 - -

1 . • • -
‘  

nl I 1 1 1 1 1 
0 100 200 300 pointNo 400 500 600 700 

Figure 5.6c2  
Figure 5.6c - Radius distribution with noise 
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Maximum Noise (n^^) = 20 pixels 

jjlO* Radius distribution 
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Figure 5.6dl  
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Figure 5.6d2  
Figure 5.6d - Radius distribution with noise 
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5.1.2.2 3D model output 

The second way to demonstrate the feature filter effect is by plotting the output model in 

a 3D graph. Figure 5.7 shows the 3D recovered model without noise. Figure 5.Sal, 

5.8bl, 5.8cl and 5.8dl show the recovered model from the pictures with noise condition 

(a), (b), (c) and (d) respectively and without using feature filter. Figure 5.8a2, 5.8b2, 

5.8c2 and 5.8d2 show the recovered model after using the feature filter. 

model found in real-track 

XI�‘ XI。‘ 

一 S -1.5 -1.5 x-axls 

Figure 5.7 - The 3D feature graph for the recovered model without noise 
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Maximum Noise ( ^ 2匪 ) = 5 pixels 

model found in real-track 
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Figure 5.Sal  
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Figure 5.8a2  
Figure 5.8a - The 3D features of the recovered model with noise 
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Maximum Noise (72瞧）=10 pixels 

model found in real-track 
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Figure 5.8bl  
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Figure 5.8b2  

Figure 5.8b - The 3D features of the recovered model with noise 
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Maximum Noise ( 7 2讓 ) = 1 5 pixels 
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Figure 5.8cl  

model found in real-track 

. . . . . . . ." .�� .� . . 
. . • •• • • • . ‘ . * . •« • . . t • « . ‘ 

xio' .......】.‘.....•...； . . . . . . .k 、 . . ‘ ’ . . 

3丫......T. ..J---1- ...’!..••..'’.�_....丄.�\..r..�4....:T\ 
2 .5 . . . • •••• 丨 . . ： . - i ： j � ：•••... ； • • - : � .； •••••..：： 

..J---' i ; ：•••... i •••••；..„ 「、.•...： 

2 、 i •: • ...i-- ： J. f.、...、i ； .、 . . : .： 
..：.••••- U , . ， • 丨 * 广 • . 、 、 丨 ， . 、 ； . � . .i "•••-： 

1 . 5 � . . . . .； - •••• ： • . .j--^ i ‘ .4. r . � . i .； --i. 
^ i 1 … … ^ 、 卜 ‘ .； 

. 、..'•..•...... ...、‘...， 

y-axis -1 .5 - 1 5 X-axis 

Figure 5.8c2  

Figure 5.8c - The 3D features of the recovered model with noise 
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Maximum Noise ( 7 2 匪）二 20 pixels 
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Figure 5.8d - The 3D features of the recovered model with noise 
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5.1.2.3 VRML plotting 

For better visual understanding, the improvement of the filter is demonstrated by plotting 

the recovered model in a VRML diagram with the texture map. Figure 5.9 shows the 

VRML model without noise. Figure S.lOal, 5.10bl，5.10cl and S.lOdl show the VRML 

output model from the pictures with noise testing condition (a), (b), (c) and (d) 

respectively and without using feature filter. Figure 5.10a2, 5.10b2, 5.10c2 and 5.10d2 

show the VRML output of the recovered model after using feature filter. 

Pi| 
Figure 5.9 VRML plotting of the recovered sphere without noise 
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5.2 Real Image testing 

Real images are used to test the silhouette filter algorithm. The tests include different 

kinds of objects. Those objects include a toy robot, toy house, flask and toy tomb. 

Each object is put on a turntable and pictures are captured by a camera during the 

object rotation. 

5.2.1 Toy house on turntable test 

A toy house is put on a turntable for testing. A camera captures pictures in every 2 to 

3 degrees during the turntable rotation. A comparison between the recovered 3D 

model results before and after the use of the filter is performed. Some samples of the 

pictures of the house are shown in Figure 5.11. 

Frame 1 Frame 10 Frame 20 

Figure 5.11 - Sample pictures of house test 
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The pictures are then feed into the interleave bundle adjustment algorithm. The 

results of the 3D model before and after using our filter are shown in figure 5.12. 

Figure 5.12al and 5.12bl display the texture mapped VRML results of the recovered 

model without using our feature point selection filter. Figure 5.12a2 and 5 • 12b2 

display the result after applied the feature filter. It is clearly shown that a spike is 

located at the top and the bottom of the house and it is removed after the filter is 

applied. 
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ÎH
 

•it
 

11
 

ÎH
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5.2.2 Other tests on turntable 

To test the flexibility of the algorithm, different objects are using for testing. Figure 

5.13 shows the sample original pictures of a toy robot, flask and tomb respectively. 

The comparison of the result is shown in Figure 5.14 and Figure 5.15. 

Frame 1 Frame 10 Frame 20 

Figure 5.13b 

•國 
Figure 5.13d  

；|i|BH 
Figure 5.13g Figure 5.13h Figure 5.13i  

Figure 5.13 - Original sample pictures for toy robot, flask and tomb respectively 
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一 Without filter With filter 

画圃 
Figure 5.14c Figure 5.14d 

Figure 5.14e Figure 5.14f  
Figure 5.14 - The result of the toy house, flask and tomb with and without using feature filter (wire 

frame) 



3D Model Reconstruction with noise filtering using Boundary Edges Page 11 of 98 

Without filter With filter 

_ 
Figure 5.15a Figure 5.15b 

Figure 5.15e Figure 5.15f  
Figure 5.15 - The result of the toy robot, flask and tomb with and without using feature filter 
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In this chapter, we discussed a synthetic data simulation result of the feature filter 

algorithm and demonstrated the improvement of the filter by using the radii 

distribution of the sphere and the 3D texture mapped VRML diagram. The algorithm 

was also tested in sequential real pictures and significant improvement on the 3D 

recovered model was found. 

In the next chapter, a conclusion of our work and the future working direction will be 

discussed. 
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Chapter 6 一 Conclusion and discussion 

The work presented in this thesis dealt with a feature point selection problem for a 

realistic 3D model recovery algorithm for sequential images. A feature filter that is 

able to filter out the mismatch feature points is developed for the use of the interleave 

bundle adjustment algorithm. We implemented the algorithm and applied 

successfully to synthetic data simulation and real images. 

In this thesis, 

• We discussed the effect of the mismatch feature points to the alternative 

bundle adjustment algorithm. We found that the mismatch points would 

generate some spikes on the recovered output model. 

• We proposed a feature point selection algorithm by applying the silhouette 

clipping technique. A brief description of our proposal is shown as follows: 

1. A set of feature point is extracted for each image. 

2. Use the silhouette of the target object to pick out the out of bound feature 

points in each image. 
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6. Use the silhouette of the target object to filter out the out of bound feature 

points in each image again. 

7. Loop back to step 3 and reiterate the process until no out of bound feature 

is found or the maximum number iteration is exceeded. 

• In our study, we found that our algorithm still has some areas for improvement, 

o Feature over-pruning - because the noisy feature affects both the 

estimated model and pose, if the pose result is incorrect good feature 

points are also pruned incorrectly, 

o Silhouette clipping sensitivity - because of the above over feature 

pruning problem, we need to add some tolerance to the silhouette 

boundary to avoid over pruning. However, how to set the tolerance 

parameters to optimize the performance needs future study. 

Future directions: 

Selection of correct feature points for a corresponding object in Structure from motion 

(SFM) is my main research interest. Many structure-from-motion algorithms 

nowadays are able to solve the problem of a single moving object only. However, in 
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moving objects situation. The main reason is that many existing approaches found the 

pose and model in separate processes. However, by using the interleave bundle 

adjustment algorithm, it would be possible to find a reasonable solution. 

In the interleave bundle adjustment algorithm, because the pose and model 

information can be found in a same process，some clustering techniques in the process 

is able to be applied so that multi-moving objects problem is possible to be dealt with. 

The idea for multiple objects structure from motion is described as follows: 

During the pose estimation phase of the alternative bundle adjustment algorithm, 

instead of estimating the pose angles by using a standard least square method, we can 

use a clustering tool, for example K-mean clustering, to separate the feature points to 

two or more groups by using the residual error of each model point error. After the 

feature groups are formed, we can apply a standard least square method to find the 我 

value of each group. Then we continue the original interleave bundle adjustment 

algorithm to find the model and pose of each feature group. 

Although the theory of the above feature selection method is quite simple, it still 
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