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摘要 

近來，多用戶合作通訊的問題引起了廣泛的研究興趣。這些問題包括：點對點通 

訊架構，應用層組播以及應用層路由。在這篇論文中，我們主要研究一下兩個相 

關問題。 

•爲了讓網絡有更好的數據傳輸，我們提出一種應用層多路徑傳輸架構—— 

MultiServ�据我們所知，MiUtiServ是第一個定量對應用層多路徑傳輸進行 

優化的技術。我們的貢獻有：完整的應用層覆蓋網絡構建和分佈式多路徑路 

由協議。經過構造應用層覆蓋網絡和應用分佈式多路徑路由協議 ，在 

MultiServ平臺上可以完成很多原先在IP網絡中很困難的任務。例如大範圍 

的媒體流和應用層組播。同時，網絡運營商(ISP)也可以使用MumServ來提 

供更好的控制數據傳輸。和以前的相似方法相比，MultiServ適用範圍更大而 

且易於實現。仿真試驗告訴我們（1)和最短路徑和負載平衡多路徑方法比 

較，MultiServ能夠使傳輸速率加倍，從而接近可能的最優方法；�MultiServ 

可以在大範圍網絡使用，其性能高效而穩定；（3) MultiServ能夠對快速自適 

應各種網絡異常情況。我們也在環球網絡平臺（Planet Lab)上簡要測試了 

MultiServ� 

參我們基於覆蓋網絡提出一種新的應用層組播架構——動態分佈式媒體流 

(Dynamic Distributed Streaming, D D S ) �我們比較了 DDS 和基於樹結構的應 

用層組播的數據丟失。結果顯示DDS在用戶動態（加入退出頻繁）的情況 

下性能好很多。在用戶較多的情況下，DDS的數據丟失只有樹形結構的10%� 



Abstract 

Recently, there are research interests in the problem of collaborative commu-

nications among multiple users, such as the peer-to-peer overlay architecture, 

application layer multicast and application layer routing. This thesis addressed 

the following two problems. 

• An application-layer multiple path routing architecture called MultiServ 

is proposed to better distribute traffic. To our knowledge, MultiServ is 

the first quantitative approach toward optimal distributed routing. We 

provide the complete set of application-layer overlay construction and dis-

tributed multiple path routing schemes. By building efficient overlay net-

work and using distributed routing strategies and its implementations, 

MultiServ enables services such as large scale streaming and application 

layer multicasting to be more smoothly executed on the current IP net-

work. MultiServ can also be used in ISP level to provide better traffic 

management by aggregation and rerouting. Comparing with conventional 

traffic engineering methods, MultiServ is more scalable and easier to de-

ploy. Simulation results show that (i) the MultiServ routing strategies can 

double the throughput when compared to shortest path routing and equal 

loading inultipath routing and near optimal performance compared with 

iii 



centralized traffic engineering in reasonable traffic load; (ii) MultiServ can 

be deployed in large scaled overlays with efficient and stable performance; 

(iii) MultiServ has a quick response to traffic change and can adapt the 

capacity variations in real environment. These performance gains are also 

briefly demonstrated in planet-lab experiments. 

• A new framework called dynamic distributed streaming (DDS) is presented 

for both on-demand streaming and live-streaming using overlay network. 

A user model is built and the streaming data outage is derived and com-

pared with application-layer multicast. Results show that in dynamic user 

environment DDS can perform much better than existing approaches. In 

large overlays, the data outage in DDS can be as low as 10% compared to 

that in tree based application layer multicast. 
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Chapter 1 

Introduction 

1.1 Multiple Point Communication 

Multiple point communication means direct communication among many users. 

Numerous applications are using the multiple-point communication model, in-

cluding video conferencing, network gaming and content distribution. In the 

client and server model, a client mainly communicates with the server, even 

client to client communication is sometimes performed indirectly through the 

server. Obviously, the server may become a bottleneck in this model. There-

fore, multiple point communication usually faces the problem of performance, 

scalability and stability in current communication model. 

An example illustrates multiple point communication. Suppose a user want 

to share a video clip to other users. One common way is to upload it to a server 

so that everybody can download or stream it from the server. However, if the 

video clip is very interesting and draws many peoples' attention so that many 

users would download or stream it in a short period of time (this phenomenon 

1 



Chapter 1 Introduction 

is called flash crowd), the bandwidth and processing power of the server may 

be exhausted and users may have bad experience retrieving the video clips, or 

even the server may be crashed and thus the clip will be unavailable. To avoid 

this situation, an alternative for distributing the video clips is to utilize the end-

to-end collaborative communications. For example, the source can upload the 

clips to two users and each user having the clips (or partial clips) can upload 

to another two users. This application layer multicast provides much better 

performance and scalability. However since the machines of users are not as 

stable as server and user can leave the system at any time, without a robust 

protocol, the service is unreliable. 

From the above example, we see that a collaboration model is essential for 

multiple point communication. The key issue is how to allocate the resources, 

such as bandwidth, processing power and storage, so that the system can perform 

better. This is the focus of this thesis. 

1.2 Major Contributions 

The contribution of this thesis can be described in the following two areas. 

1. MultiServ 

An application-layer multiple path routing architecture called MultiServ 

is proposed to better distributing traffic. To our knowledge, MultiServ is 

the first quantitative approach toward optimal distributed routing scheme. 

We propose a complete set of application-layer overlay construction and 

distributed multiple path routing schemes. By building efficient overlay 
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Chapter 15 Introduction 

network and using distributed routing strategies and its implementations, 

MultiServ enables services such as large scale streaming and application 

layer multicasting to be more smoothly executed on the current IP net-

work. MultiServ can also be used in ISP level to provide better traffic 

management by aggregation and rerouting. 

Comparing with conventional traffic engineering methods, MultiServ is 

more scalable and easier to deploy. Simulation results show that (i) the 

MultiServ routing strategies can double the throughput when compared 

to shortest path routing and equal loading multipath routing and near 

optimal performance compared with centralized traffic engineering in rea-

sonable traffic load; (ii) MultiServ can be deployed in large scale networks 

with efficient and stable performance; (iii) MultiServ has a quick response 

to traffic change and can adapt the capacity variations in real environ-

ment. These performance gains will be briefly demonstrated in planet-lab 

experiments. 

2. Distributed Dynamic Streaming 

A new framework called dynamic distributed streaming (DDS) is presented 

for both on-demand streaming and live-streaming using overlay network. A 

user model is built and the streaming data outage is derived and compared 

with application-layer multicast. Results show that DDS can perform 

much better in dynamic user environment. In large overlay networks, the 

data outage in DDS can be as low as 10% compared to that in tree based 

application layer multicast. 
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Chapter 16 Introduction 

1.3 Thesis Organization 

This thesis is organized as follows. In chapter 2, we discuss the related work 

on multiple point communications, including peer-to-peer networks, application 

layer multicast and Internet traffic engineering. In chapter 3，an application-

layer multiple path routing architecture called MultiServ is proposed to provide 

better end-to-end communication performance and enable more services for end 

hosts. Chapter 4 introduces a new framework called dynamic distributed stream-

ing for both on-demand streaming and live-streaming using overlay network. In 

chapter 5，we summarize those approaches. 
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Chapter 2 

Related Work 

2.1 Peer-to-Peer Networks 

Peer-to-peer network (P2P) [69] is characterized by direct access between peer 

computers, rather than indirectly access through a centralized server. File shar-

ing is a dominant P2P application on the Internet, allowing users to easily 

contribute, search and obtain content. 

P2P file sharing architectures can be classified by their "degree of central-

ization" ,i.e. to what extent they rely to one or more servers to facilitate the 

interaction between peers. P2P filesharing architecture can be classified into 

three categories: 

• Hybrid decentralized architectures 

Napster [26] is the first generation of P2P file sharing program. Napster 

uses a hybrid decentralized architecture. It is doubtful that Napster is 

not real P2P systems. In Napster, there is a central server facilitating 

the interaction between peers by maintaining directories of the shared files 
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Figure 2.1: Architecture of Napster. 

stored on the respective hosts of registered users to the network. These 

central servers will perform the lookups and identifying the nodes of the 

network (i.e. the computers) where the files are located. Two peer clients 

make end-to-end connections to transfer the files. Figure 2.1 illustrates 

the architecture of Napster. 

• Purely decentralized P2P architectures 

Gnutella [25] and Preenet [70] [71] utilize purely decentralized P2P ar-

chitectures. All nodes in the network perform exactly the same tasks, 

acting as both servers and clients, and there is no central coordination 

of their activities. The nodes of such networks are termed "servents" 

(SERVers+clieENTS). Figure 2.2 illustrates the architecture of Gnutella. 

• Partially centralized systems 
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D 

Figure 2.2: Architecture of Gnutella. No central directory server maintains an 
index of the metadata. So random search is essential. A search request from 
node A with TTL = 1 reaches node B,C,D and E, with TTL = 2 reaches node 
B to L, however, cannot reach node M until TTL = 3. 
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Figure 2.3: Architecture of Kazaa. No central directory server maintains an 
index of the metadata. A search request from node A is first sent to supernode 
53, supernode 53 will forward the search request to other supernodes 51 and 
52. 
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Chapter 2 Related Work 

Kazaa [27] is an example of partially centralized systems. The basis is the 

same as with purely decentralized systems. In order to enhance the per-

formance of P2P network, some of the nodes assume a more "important" 

role than the rest of the nodes, acting as local central indexes for files 

shared by local peers. These nodes are called "Supernodes". Supernodes 

are dynamically assigned and will not constitute single points of failure for 

a P2P network. Figure 2.3 illustrates the architecture of Kazaa. 

P2P systems can also be differentiated by the degree to which these overlay 

networks contain some structure or are created ad-hoc. By structure here we 

refer to the way in which the content of the network is located with respect to 

the network topology. 

• Unstructured networks 

In unstructured networks (such as those in the Gnutella approach), the 

placement of data (files) is completely unrelated to the overlay topology. 

No information about which nodes are likely to have the relevant files 

is available. To obtain the information, the client will launch a random 

search where various nodes are probed and asked if they have any files 

that match the query. Figure 2.2 and 2.3 illustrate the search process in 

such systems. 

The advantage of such systems is that they can easily accommodate a 

highly transient node population. The disadvantage is that the queries 

cannot be distributed widely, and therefore it is hard to find the desired 

files, in particular, sparse files. For this reason unstructured P2P systems 

are considered to be unscalable [72 . 
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R 1 

J r / ' ' \ 

Figure 2.4: Architecture of Chord. No central directory server maintains an 
index of the metadata. Every node maintains a routing table. A search request 
from node S is sent through node RL and R2, and finally get the search response 
from nodes D. The length of search path is 0( log N) {N is the number of nodes). 
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• Structured networks 

In structured networks (such as Chord [49], CAN [50]，Pastry [54]，Tapas-

try [56]), a mapping is provided between the file identifier and location, in 

the form of a distributed routing table, so that queries can be efficiently 

routed to the node with the desired file. Structured networks have emerged 

mainly in an attempt to address the scalability issues in unstructured net-

works. Figure 2.4 illustrates the search process in Chord. 

The disadvantage of structured systems is that it is hard to maintain the 

structure required for routing in a very transient node population, in which 

nodes are joining and leaving at a high rate. 

In Freenet [70] [71], file locations are affected by routing hints, but they 

are not completely specified. Therefore not all searches succeed. This is 

a special kind of structured networks, sometimes called loosely structured 

networks. 

2.2 Application Layer Multicast 

Multicast is an action to send information to more than one receivers at the 

same time. IP multicast [44] has been proposed more than a decade ago, where 

a data delivery tree is constructed by the routers. As multicast packets flow on 

this tree, they are appropriately replicated by the routers at the different branch 

points of the tree. IP multicast is the most efficient way to perform group data 

distribution, as it is able to reduce packet replication on the wide-area network 

to the minimum necessary. 

10 
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However, many Internet service providers (ISPs) are still reluctant to pro-

vide wide-area multicast routing service [58], and deployment of IP multicast 

has been limited and sparse due to a variety of technical and non-technical rea-

sons. Specifically, multicast is still a hot and complex research subject, many 

protocols are not yet finalized, and monitoring IP multicast is not easy. For 

example, IP Multicast requires routers to maintain per group state (and in some 

proposals per source state in for each multicast group). The routing and for-

warding table at the routers now need to maintain an entry corresponding to 

each unique multicast group address. However, unlike unicast addresses, these 

multicast group addresses can not be easily aggregated. Also, multicast breaks 

the traditional pricing model where only the incoming flow is charged, and the 

pricing model for multicast traffic is not yet well-defined. Further more, the use 

of multicast is still driven more by the academic community than by customer 

demand. The ISPs seek for alternative solutions rather than deploy expensive 

IP multicast . 

Therefore Application layer multicast is proposed as an alternative tech-

nique for multicasting. As the name suggests, in application layer multicast, the 

multicasting functionality is implemented at the application layer, i.e. at the 

end-hosts instead of the network routers. 

Figure 2.5 illustrates the differences of several multicast scenarios. In the 

figure, A is the source and B, C and D are the receivers. In IP multicast, data 

packets are replicated at routers inside the network illustrated (see 2.5 (a)). 

Clearly IP multicast is the most efficient way to perform group data distribution 

where duplicated transmission is eliminated. In places where multicast service 

is not available, multiple unicasts from the source can emulate the multicast 

10 
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(a) IP Multicast (b) Unicast 

(c) Application Layer Multicast I (d) Application Layer Multicast 2 

Figure 2.5: Multicast scenarios. Square nodes are routers, and circular nodes 
are end-hosts. 

function (see 2.5 (b)). However we can see three duplicated flows in link A-Rl 

and two in link R1-R2. In application multicast scenario illustrated in Figure 

2.5 (c) and (d), We can see that not only the source but also receivers can deliver 

the data to other members in multicast. 

Several performance metrics have been defined to characterize application 

layer multicast performance and impacts on the network, as described below: 

Stress [18] is defined as the number of identical packets carried on a link. The 

optimal value, achieved with native multicast routing, is of course 1. 

Stretch is also called relative delay penalty in [18], the stretch metric between 

a source and a destination member is the ratio of the delay between them 

along the overlay distribution topology, to the delay of the direct unicast 

10 
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Application Layer Multicast 

Mesh first Tree first 

Infrastructure Coordinates RPF routing Tree/mesh Limited scope Clusters 

Delaunay Narada Y m Overcast NICE 
triangulaUon Scattercast TBCP, HMTP SHDC, ZIGZAG 

Figure 2.6: A taxonomy of application layer multicast [64 . 

path. 

Control overhead is the cost of Maintaining the application layer multicast 

topology. The cost includes control information exchanged (number of 

messages processed and bandwidth). 

Figure 2.6 classifies the application layer multicast proposals according to 

different building algorithm. Application layer multicast methods differ in the 

way they create the overlay topology: some of them create the tree topology 

first, while others create a mesh topology first. 

The typical "mesh first" approach is Narada [18], the proposals that assign an 

arbitrary coordinate to each member and then perform Delaunay triangulation 

65], and Bayeux [66 . 

The Narada protocol was one of the first application layer multicast proto-

cols that demonstrated the feasibility of implementing multicast functionality 

at the application-layer. Narada defines a special designated host, called the 

Rendezvous Point (RP), that is used to boot-strap the join procedure of a new 
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member. In fact, all application layer multicast protocols use an entity equiva-

lent to the RP in Narada to initiate the join mechanism. In the thesis, we use 

this term to denote the boot-strapping host for all application layer multicast 

protocols. 

When a new member wants to join the multicast group, it first obtains a list 

of group members that are already joined into the mesh. This information can 

typically be obtained from the RP, which maintains state about all members 

joined to the multicast group. The new member then randomly selects a subset 

of these members and attempts to join the mesh as neighbors of these members. 

The join procedure succeeds when at least one of these members accept the new 

member as its mesh neighbor. 

After joining the mesh, the new member starts exchanging periodic refresh 

messages with its mesh-neighbors. Whenever a new member joins or an exist-

ing member leaves the group (and the mesh), this group change information is 

propagated through the mesh to all the other members. 

The members of the group run a routing protocol to compute unicast paths 

between all pair of members on the mesh. The multicast data delivery path 

with any specific member as the source can then be computed using the well-

known Reverse Path Forwarding check employed by IP multicast protocols (e.g. 

DVMRP [20]). 

The data delivery paths in Narada are spanning trees of the mesh. Therefore, 

the quality of the data delivery path (i.e., the stress and stretch properties) 

depends on the quality of links that are part of the mesh. When new members 

join, or when the mesh recovers from partitions, a random set of edges are added 

to the mesh. Thus, periodic refinements are made to mesh edges to improve the 

10 
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丽 腳 鋼 

i ® 
(a) (b) (c) 

Figure 2.7: Control and data paths in Narada. Neighbors on the control path 
are connected by edges. Data are transferred through edges with arrow. 

quality of data delivery paths. Narada allows for incremental improvement of 

mesh quality. Members probe each other at random and new links may be 

added depending on the perceived gain in utility in doing so. Further, members 

continuously monitor the utility of existing links, and drop links perceived as 

not useful. 

We now show an example of Navada network. In figure 2.7(a), a Navada 

overlay network is running application layer multicast tasks where node A mul-

ticasts data to other node. In figure 2.7(b), A new node I joins the overlay 

network and selects node B, E and H as its neighbors. Data will be delivered 

from node H to node I. In 2.7(c), node C leaves and data cannot be deliv-

ered from node C to node G. Therefore, data will be delivered from node D to 

node G instead. New connection from node F to node G will be established to 

maintain the connectivity of overlay network. 

The "tree first" approaches include YOID [45], TBCP [62], HMTP [55], 

SHDC [63], NICE [10], Overcast [46], and ZIGZAG [61]. Some of them (TBCP, 

10 
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HMTP) rely on a recursive algorithm to build the tree: a new comer first con-

tacts the tree root, chooses the best node among the root's children, and repeats 

this top-down process until it finds an appropriate parent. The clustering solu-

tions (NICE, SHDC, ZIGZAG) create a hierarchy of clusters (i.e., sets of nodes 

"close" to each other). New comers recursively cross this hierarchy to find the 

appropriate cluster. 

Here we briefly introduce the NICE protocol. The NICE protocol arranges 

the set of members into a hierarchical control topology. As new members join 

and existing members leave the group, the basic operation of the protocol is to 

create and maintain the hierarchy. The hierarchy implicitly defines the multicast 

overlay data paths and is crucial for scalability of this protocol to large groups. 

The members at the bottom of the hierarchy maintain (soft) state about a 

constant number of other members, while the members at the top maintain 

such state for about O(logn) other members. 

The NICE hierarchy is created by assigning members to different levels (or 

layers) as illustrated in figure 2.8 (a). Layers are numbered sequentially with the 

lowest layer of the hierarchy being layer zero (denoted by LQ). Members in each 

layer are partitioned into a set of clusters. Each cluster is of size between k and 

3k - 1, where /c is a constant, and consists of a set of members that are close to 

each other. Further, each cluster has a cluster leader. The protocol distributedly 

chooses the (graph-theoretic) center of the cluster to be its leader, i.e. the cluster 

leader has the minimum maximum distance to all other members in the cluster. 

This choice of the cluster leader is important in guaranteeing that a new joining 

member is quickly able to find its appropriate position in the hierarchy using a 

very small number of queries to other members. 
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A3 A3 

A1 A2 A7 A1 A2 A7 

( a ) ( b ) 

Figure 2.8: NICE hierarchy and control and data topologies for a two-layer 
hierarchy. All AI hosts are members of only LQ clusters. All BI hosts are 
members of both layers LQ and Li. The only C host is the leader of the LI 
cluster comprising of itself and all the B hosts. 

The members are assigned to the different layers as follows: All members 

are part of the lowest layer, LQ. A distributed clustering protocol at each layer 

partitions these members into a set of clusters with the specified size bounds. 

The protocol also chooses the member which is the graph theoretic center of the 

cluster, to be the leader of the cluster. The cluster leaders of all the clusters in 

layer Li join layer L^+i. 

A new member joins a LQ cluster that is closest to itself with respect to 

the distance metric. Locating this LQ cluster is approximated by a sequence of 

refinement steps, where the joining member starts with the topmost layer and 

sequentially probes one cluster in each layer to find the "closest" member in that 

layer. 

The member hierarchy is used to define both the control and data overlay 

topologies. In the control topology, all members of each cluster peer with each 
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other and exchange periodic refreshes between them. The data topology is 

defined by the following forwarding rule on the control topology: The source 

member sends a data packet to all its peers on the control topology. Consider 

an intermediate member, h that belongs to layers LQ …LJ that receives the data 

packet from another member, say p. Then p and h belong to the same cluster in 

some layer, say Li. Member h will forward the data packet to all other members 

of cluster C k . k ^ i (where Ck corresponds to its cluster in layer Lk) if and only 

if h is the cluster leader of Ck . The ensuing data topologies are shown in figure 

2.8 (b). 

2.3 Internet Traffic Engineering 

Major objectives of Internet traffic engineering are to enhance the performance 

of an operational network at both the traffic and resource levels. To achieve 

this, the main task of Internet traffic engineering is addressing traffic oriented 

performance requirements, while utilizing network resources economically and 

reliably, the Internet has been a best effort service environment until recently. 

In particular, very limited traffic management capabilities existed in IP networks 

to provide differentiated queue management and scheduling services to packets 

belonging to different classes. 

One of the most significant functions performed by the Internet is the rout-

ing of traffic from ingress nodes to egress nodes. Therefore, one of the most 

distinctive functions performed by Internet traffic engineering is the control and 

optimization of the routing function, to steer traffic through the network in 
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the most effective way. Internet has employed distributed protocols for intra-

domain routing. These protocols are highly scalable and resilient. However, 

they are based on simple algorithms for path selection which have very limited 

functionality to allow flexible control of the path selection process. 

Currently, service providers apply many of the traffic engineering mechanisms 

to optimize the performance of their IP networks. These techniques include ca-

pacity planning for long time scales, routing control for medium time scales, the 

overlay model also for medium time scales, and traffic management mechanisms 

for short time scale. 

When a service provider plans to build an IP network, or expand the capacity 

of an existing network, effective capacity planning should be an important com-

ponent of the process. Such plans may take the following aspects into account: 

location of new nodes if any, existing and predicted traffic patterns, costs, link 

capacity, topology, routing design, and survivability. 

Interior gateway protocols (IGPs), such as Intermediate System - Intermedi-

ate System (IS-IS [41]) and Open Shortest Path First (OSPF [40]), commonly 

used to route traffic within autonomous systems in the Internet, are topology-

driven and employ per-packet progressive connection control. Each router makes 

independent routing decisions using a local instantiation of a synchronized rout-

ing area link state database. Route selection is based on shortest path com-

putation using simple additive link metrics. In that case, traffic engineering 

with IGP is done by increasing the OSPF or IS-IS metric of a congested link 

until enough traffic has been diverted from that link. Modifying IGP metrics 

to control traffic routing tends to have network-wide effect. Consequently, un-

desirable and unanticipated traffic shifts can be triggered. Recently, some new 
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intra-domain traffic engineering methods have been proposed [38，13, 15]. These 

methods take traffic matrix, network topology, and network performance objec-

tives as inputs, and produce load-sharing ratios to be set at the head-end routers 

of some Equal Cost Multiple Paths (ECMPs) as outputs. These new progresses 

open new possibility for intra-domain traffic engineering with IGP to be done 

in a more systematic way. 

Overlay traffic engineering was proposed to circumvent some of the limita-

tions of IP systems. The basic idea is to introduce a secondary technology, such 

as ATM, with virtual circuit and traffic management capabilities, into the IP 

infrastructure in an overlay configuration. The virtual circuits of the secondary 

technology serve as point-to-point links between IP routers. With this approach, 

service providers can establish logical connections between the edge nodes of a 

backbone, and overlay them onto the physical topology. 

Multiprotocol Label Switching (MPLS) is an advanced forwarding scheme 

which also includes extensions to conventional IP control plane protocols. Re-

cent developments in MPLS [31’ 32，33’ 34, 35，36，37j open new possibilities to 

address some of the these "IP limitation". A framework for MPLS is presented 

in [34] and an architecture is proposed in [37]. The requirements for traffic en-

gineering over MPLS were articulated in [31]. Although MPLS is a relatively 

simple technology (based on the classical label swapping paradigm), it enables 

the introduction of sophisticated control capabilities that advance the traffic en-

gineering function in IP networks [31，32，33，35’ 36]. A particularly interesting 

aspect of MPLS is that it can efficiently support origination connection control 

through explicit label-switched paths. When MPLS is combined with differen-

tiated services and constraint-based routing, QoS provisioning in IP networks 
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Chapter 3 

MultiServ: Application Layer 

Multiple Path Routing 

In this chapter, an application-layer multiple path routing architecture called 

MultiServ is proposed to better distribute traffic. To our knowledge, MultiServ 

is the first quantitative approach toward optimal distributed routing. Multi-

Serv's contributions are the complete set of application layer overlay construc-

tion and distributed multiple path routing schemes. We provide the complete 

set of application-layer overlay construction and distributed multiple path rout-

ing schemes. By building efficient overlay network and using distributed routing 

strategies and its implementations, MultiServ enables services such as large scale 

streaming and application layer multicasting to be more smoothly executed on 

the current IP network. MultiServ can also be used in ISP level to provide better 

traffic management by aggregation and rerouting. 
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3.1 Motivation 

Good end-to-end performance in Internet applications requires small delay and 

sufficient bandwidth. However, these requirements may not be easily satisfied. 

For example, large scale streaming service often causes link congestion and can-

not be easily deployed in large scale. When a link is congested, all transmissions 

passing through it are affected. Therefore, congestion in a small set of links 

may affect a large number of end-to-end applications. On the other hand, it 

was reported that the utilization of Internet backbones is quite small, no more 

than 30% on links most of the time [1，2]. The contradiction in bandwidth 

consumption and supply lead us to investigate better routing practices. 

Some causes of congestion in the current Internet are: 

• Traffic hot spot causes unbalanced loading in different paths. 

• The dominating transport protocol in Internet, TCP, does not perform 

stably in large delay bandwidth production environment, limiting trans-

mission throughputs. 

• The bursty nature of Internet traffic. 

• ISPs often use inefficient routing policies to safeguard their own interests. 

Various solutions have been proposed for these problems. Over-provision is 

the method ISPs use to deal with congestion due to growing demand. However, 

it is expensive to estimate the traffic and deploy sufficient equipments to ac-

commodate the future demand. From research community, improved protocols 

3，4] are proposed to exploit the available bandwidth, which still need time to 
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validate. There are routing improvements also on inter-domain site, such as the 

Border Gateway Protocol (BGP [39, 5, 6]). 

To solve the problem, we propose an architecture named MultiServ that uses 

overlay network to provide better Quality of Service to end-hosts. In current 

Internet, typically every user uses a single direct connection to exchange data 

with another user. This performs well when there is no congestion in the path to 

used. However, when congestion occurs, the user has to suffer from the unstable 

transmission. But there may be users who do not experience congestion in the 

path to the same destination. In that case, if the original user transmits through 

this kind of users, using them as a proxy, the transmission may be accelerated. 

Meanwhile, the traffic can be delivered through other less congested paths so 

that the load of congested path is alleviated. This is the basic concept of our 

MultiServ model. 

To use the MultiServ architecture, we need cooperation of multiple users. 

Therefore a special overlay should be constructed to cooperatively deliver traffic. 

Each host in the overlay can be a sender as well as a receiver. A sender has 

several neighbors, which are also the hosts selected from the overlay. During the 

transmission, the neighbors will be responsible for delivering some or all packets 

from the sender when encountering congestion. To some extent, transmission 

through the neighbors can be treated as the complement to the traditional end-

to-end delivery. 

To achieve this, first we use a heuristic method to construct a special over-

lay network by selecting the appropriate neighbors. Our algorithm selects the 

neighbor not only on consideration of the path QoS, but also in such a way that 
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the paths from the sender to the neighbors are maximally disjoint. We then pro-

pose distributed routing strategies to balance the utilization of different logical 

links and enhance the performance of data forwarding. An implementation of 

the routing strategies uses rate-based congestion control algorithm to dispatch 

the packets for further transmission. The implementation also minimizes the 

traffic burst by sending data using a unified rate in a smoothed manner. 

Here we show two possible usages of MultiServ model. Ordinary users can 

benefit from MultiServ model. By building a large scale overlay network using 

a system service, the user can experience better QoS using MultiServ-aware 

software. The sending and receiving packets will go through multiple paths, 

where alternative paths will be used as a complement to direct connection. So 

the user will not experience worse than using best-effort Internet. This gives the 

incentive for the user to use that kind of software. 

The model can be extended to ISP level as illustrated in Figure 3.1. Typically 

congestion occurs at the edge of an ISP due to unbalanced traffic to each gateway 

and traffic burst generated from the users. Using MultiServ, special servers 

can be placed in ISP gateways to redistribute the traffic to other gateways. 

The servers will aggregate the traffic sending to outside and deliver packets to 

other special servers in different ISPs by agreement with other ISPs. MultiServ 

can adaptively combine capacity of different paths to deliver the data to the 

destination efficiently using our proposed distributed routing strategies. 

Recently the notion of overlay network and application layer protocols has 

attracted Internet researchers' attentions. For instance, resilient Overlay Net-

works (RON) [7] was proposed to allow end-hosts and applications to coopera-

tively gain improved reliability and performance in the Internet in comparison 
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Figure 3.1: MultiServ illustration. 

with traditional routing schemes. OverQoS [8] aims to provide a new platform to 

offer Quality-of-Service (QoS) using overlay network. Service Overlay Networks 

[9], similar to our approach, purchases bandwidth with certain QoS guarantees 

from individual network domains via bilateral service level agreement (SLA) to 

build a logical end-to-end service delivery infrastructure on top of existing data 

transport networks. Different from the above approach, our approach mainly 

focuses on the mechanism of overlay construction and routing strategy. We try 

to generalize the above model to make it efficient, scalable and practical both 

for ISPs and end-users. 

The remainder of the chapter is organized as follows. Section 2 introduces 

the mechanism to construct the MultiServ overlay. Section 3 presents the rout-

ing strategy and implementation in details. Section 4 verifies the model using 

simulation and real experiments. In section 5, we summarize the approach and 

propose the future work. 
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3.2 MultiServ Overlay Construction 

Several methods have been provided to construct overlays which try to exploit 

the topological information, particularly locality in the underlying network. For 

example, application-layer multicast [10] and CDN network is of this kind, where 

each node keeps nearby neighbors in the underlying network in order to transfer 

data efficiently. In MultiServ, besides the path QoS from the sender to its 

neighbors, topological information is also a very important factor. Different 

from the above overlays, here the hosts should have minimal common links 

to neighbors where the congestion of links could less affect the data transfer 

performance. Therefore, the nearby hosts may not be the proper neighbor sets 

to deliver the traffic. For example, the hosts which placed in the same ISP may 

not form a good neighbors set. So, the criteria for good neighbors set should be 

that: 

(a) The paths to the neighbors should have as few common links as possible; 

(b) The paths from the sender to neighbors should maintain good QoS. 

Under these assumptions, a good set of neighbors of a sender should be in 

different ISPs, where these ISPs have good connection quality with the ISP the 

sender belongs to. 

To find a good neighbor set which satisfied the criteria, the common-link 

parameters D is defined as the number of common links between two paths: 

D{L,M) = \ E E F(“山) 

^ heLi /2GL2 
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where 
0 h辛h 

f{liM) = \ 
� 1 li = k 

It is necessary to know each link in the path in order to calculate the disjoint 

parameter D between two paths. Traceroute can be used to obtain the path 

information. The tool simply sends a packet with desired TTL n which then 

listens to an ICMP replied from the router n hops away. The IP address of the 

router can then be obtained. 

Using traceroute, we can obtain IP addresses of routers in the entire path. 

There might be routers which do not return ICMP packets. However we can 

ignore those routers and consider the path between successive responsive routers. 

For example, Host A uses traceroute to find that the routers between A and B are 

{A, n,厂2，*, *, rs, B}, where * is the router which does not respond to traceroute. 

We then assume that there are four links between A and B: A - n , n - r2, 

r2 - rs and r^ - B. If there is another host C with five links between A and C: 

A - RI, RI -厂2’ 厂2 - re, RE — ry and RJ - B, then D{LAB, LAC) 二 2 . 

Using the information, a host can judge whether the paths to the neighbors 

are disjoint. To find a good neighbor set for a host, the problem can be formu-

lated as following. Given a host x and a potential neighbor set S, where = n, 

Ls is the path from x to the neighbor s in S. The objective is to select n neigh-

bors to form a neighbor set N which minimizes the common links between x to 

the neighbors. Define the disjoint parameter Dm for neighbor set N 

DN= J： E 购。： N J 
ni£N "j-eN 

nj和t 

The neighbor set should be found with minimized disjoint parameter, that 
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is 

minDyv • (ZS,\N\ = n 

The complexity to compute the problem is It is computable with 

a small n and small potential neighbor set S. However, the neighbor can be 

any node in the overlay and the potential neighbor set can be very large, and 

then the computation and probing costs cannot be afforded. Therefore we use 

a heuristic algorithm A illustrated in Figure 3.2 to find proper neighbors. 

Prom the algorithm A we can see that each time when the host selects a new 

neighbor, the value of D ^ is decreased. In that case, the neighbor set will refine 

from time to time and hopefully it could form a good neighbor set after several 

rounds of refinements. 

For the hosts which cannot obtain path information such as hosts hiding in a 

firewall which blocks all ICMP packets, we will use simple algorithm B to find a 

proper neighbor set. In this case, we do not have enough information to optimize 

the neighbor set, however we still can use some intuitive method from simple 

networking information. For example, the hop number between two hosts can 

help to estimate if the two hosts are within the same ISP. Generally speaking, 

the more hops between the hosts, the more likely that the two are in different 

ISPs. Other techniques, such as King [11], can also estimate the distance of 

gateways and ASes for hosts. 

During transmissions, a host can rank neighbors by transmission rate and 

2In an overlay network, typically there will be a set of booting hosts which are in charge 
of collecting existing host addresses in current network and tell the newly joined hosts these 
addresses. Those booting hosts will be known by a new host and this is the first step for a 
new host to do and the host address it obtained each time can be considered as address of a 
random host. 
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Algorithm A: Heuristic 

1. Find a random host 

2. If the QoS to host x is satisfied then obtain path information L from the 
original host to host x\ 

3. Current neighbor set N, if |7V| < n, then N = N return; 

4. For each neighbor n e N compute 

M 二 mi込(Av-ni+:r)’ j = arg miniDN-m+x) 

5. If M < Dn then N = N - Uj x, return; 

6. Goto 1. 

Algorithm B: Simple 

1. Find a random host h, put it into candidate list; 

2. Get a host from candidate list, named x. If candidate list is empty, goto 
1； 

3. If the QoS to host x is not satisfied goto 6; 

4. If X in the same AS with current neighbors goto 6; 

5. Current neighbor set N, if |7V| < n, then N = N -\-x, return; 

6. If the QoS to x is better than any current neighbor, named n^, then N 二 

N — UJ X, return; 

7. Find neighbors of x, put them into candidate list; 

8. Goto 2. 

Figure 3.2: Algorithms for neighbor selection. 
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delay. Using this information, our algorithm can compare the measured distance 

among different neighbors for refinement. The addresses of good neighbors can 

also be stored for future refinement when the host needs a shutdown. Therefore 

the next selection process may be eliminated by using stored information. 

The selection of good neighbors may be different for different types of hosts. 

For example, some hosts may be connected to a congested gateway so that almost 

no hosts can be a good neighbor. In this case, increasing the capacity on the 

gateway is the only way out. However, for hosts that have congestion on some 

of its physical links to outside, large portion of hosts can be good neighbors. 

We also expect to balance the number of neighbors. In our scenario, one 

host may serve as neighbors for many hosts. In that case, the bandwidth of that 

specific host would be exhausted. To solve this problem, for ordinary host, a 

maximum number of neighbors should be defined. Meanwhile each host main-

tains a host-cache storing local or nearby host addresses. When one host finds 

one suitable neighbor, the neighbor may be overloaded and not able to process 

the relaying tasks The overloaded host gives the original host the nearby hosts, 

which has high probability to be suitable neighbors, i.e., possible candidates. 

This step can speed up neighbor selection while balancing the load of hosts. 

MultiServ is designed as a system service for hosts, so hosts should not 

frequently join or quit the overlay. Therefore the availability and stability of the 

overlay can partly be guaranteed. Furthermore, one neighbor is not the only 

host that is responsible for delivery. Therefore, failure of neighbors or links is 

not critical. Even if all links or neighbors fail, the delivery can still use direct 

connection. However, our algorithm selects neighbors which are likely to be in 

different regions so that situation will occur with low probability. 
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3.3 MultiServ Routing 

In this section we first describe the importance of routing strategy in overlay 

network, and then briefly review the traditional optimal routing result in IP 

network. Understanding the difference between IP network and overlay network, 

finally the MultiServ routing strategies and implementations are proposed. 

3.3.1 The importance of routing strategy 

Overlay networks such as peer-to-peer file sharing/distribution network have oc-

cupied more and more portion of Internet traffic. However, such overlay network 

brings problems both for the users and network administrators if it is designed 

without a controlled manner in data transmission. 

Most current peer-to-peer file sharing programs use greedy methods to allo-

cate bandwidth to achieve better performance. That is to say, the program may 

connect as many sources as possible to download the request content, such as 

in popular file sharing/downloading program edonkey [28] and bittorrent [29 . 

However, the concurrent and greedy multiple connection behavior of such pro-

grams may be considered as deny of service attacks to the gateways and edge 

routers by the network administrators. Meanwhile, as the program treats the 

objective to occupy as much bandwidth as possible, it probably violates the 

bandwidth share of ordinary users. The typical action against the violation is to 

ban or shape the bandwidth of the programs. To prevent this from happening, 

the program should present a better control scheme. 

In global scale overlay network, another problem is that the user may suffer 

is the poor performance. Some of the transmissions between hosts may perform 
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人 A->C: 4 
° 6 A->G: 4 

V 
Figure 3.3: Example of routing strategy. 

well. However due to link congestion in the underlying network, some of the 

transmissions may experience low throughput. To achieve better performance 

in a cooperative environment such as the overlay network, a good routing scheme 

should be seriously considered. 

The above situation suggests that a good routing scheme is expected in 

current overlay network. Specifically in the MultiServ platform, it is more im-

portant, since different routing algorithm will have different effects to underlying-

network. We illustrate an example in Figure 3.3. 

In the figure, each link represents a logical connection between nodes, which 

has a capacity of 6 units and each demand needs bandwidth of 4 units. We 

assume the link capacity is bidirectional here for simplicity. To satisfy the traffic 

demand, there are multiple ways. For example, using fixed single shortest paths 

to forward data, some of the demands may not be satisfied if two demands share 

one path. If we use shortest paths data forwarding where the traffic is equally 

34 



Chapter 3 MultiServ: Application Layer Multiple Path Routing 

divided into each shortest paths. That is, demand A to G uses paths A-F-G 

and A-D-G, demand A to C uses paths A-D-C and A-B-C, demand A to E uses 

paths A-F-G-E, A-D-G-E, A-D-C-E and A-B-C-E. Thus the utilization of links 

can be illustrated in the following table 3.1. 

From the table, we see that link A-D is heavily loaded and we should move 

some of the traffic in A-D to link A-B and A-F. 

3.3.2 Solutions for IP network 

One of the techniques that is being evaluated by many ISPs to achieve better 

network resource management is traffic engineering. Traffic engineering aims at 

using information about the traffic entering and leaving the network to optimize 

network performance. Most often the output of traffic engineering is an "op-

timal" set of paths and link loads that produce the best possible performance 

given the available resources. The problems can be formulated as follows. 

The IP network can be modeled as a directed graph G = {V, E) where V is 

the set of nodes and E is the set of links. We assume a traffic matrix T where 

T { S r , t r ) = dr denotes the average intensity of traffic from ingress node s to 

egress node t for demand r e R. Assume that an optimal allocation based on 

balanced traffic distribution yields a set of paths Pr for each demand r, so let 

Q； be the maximal link utilization for the entire network, d j be the capacity of 

link (i,j). The linear program can be formulated as 

min a + e ^ drXJ^ 
{ij)eEreR 

s.t. 
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Table 3.1: Link utilization under bandwidth allocation. 

"TIKk A-B A-D A-F B-C D-C D-G F-G G-E C-E 
~ B W 3 — 6 3 “ 3 3 3 3 ~ 2 ‘ 2  

Util 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.33 0.33 

E E XJj = 0, i^Sr,U,reR 
r-i3,i)eE j.{i,j)&E 

E XJj— E x;j = l’ i = U,reR 

^ drXr < acj, (i,j)eE 
reR 
0<Xlj< 1, (iJ)eE,reR 

where XT. is the fraction of traffic for demand r that flows through link {ij). 

The objective of the linear programming is to minimize the maximum of link 

utilization, e is a very small positive number which is introduced so that the 

optimization not only minimizes a, but also all the Xlj variables, and ensures 

that the minimization of a takes higher priority. Solving the linear program gives 

a traffic allocation { X I t h a t consumes no more than aCij amount of bandwidth 

on any link { i , j ) . It has been shown in [13] that the same performance, in terms 

of the bandwidth consumed on each link, can be achieved with a set of shortest 

path with desired weights by solving a dual problem which might simplify the 

solution to some extent. 

Several difficulties exist in deploying the optimal traffic engineering in IP 

networks. For example, the traffic allocation is in source-destination pair, which 

may not be quite suitable to deploy in current destination based forwarding 

routing protocol. Also current IP network cannot support unequal splitting of 

traffic which is necessary in the optimal traffic engineering. These problems are 

solved in [14] using destination based aggregation of traffic and approximating 
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unequal split of traffic using heuristics for traffic splitting, which achieves a 

near-optimal solutions for current IP networks. 

overlay networks do not have the problems of IP networks since overlay 

networks have the flexibility to use any protocol to communicate with each 

other. However, the overlay nodes may not perform as stable as routers in IP 

network. For example, the capacity of logical links and the traffic demand in each 

node may vary in different time. Also some overlay networks may have much 

more nodes than routers under an IP network, which increases the complexity 

of the calculation of optimal solution. Most importantly, the overlay cannot be 

controlled by a center so that a distributed routing algorithm is expected. Under 

such a condition, the original optimal solution cannot be used directly and we 

will present distributed heuristic solutions which have the ability to adapt real 

network environment for overlay network in the next subsection. 

3.3.3 MultiServ routing 

The overlay network can be modeled as a directed graph G = (V, E) where V 

is the set of nodes and E is the set of links. 

To perform routing in overlay network, we need a distance matrix D = 

Dij], which is the shortest hop distance from node i to node j in the overlay. 

The distance matrix can be calculated in the following way: a new overlay 

node broadcasts a distance value message (initialized to zero) to all other nodes 

through overlay network. Every node the message passes, its distance value is 

increased by one. Eventually the smallest distance value of received message in 

each node will be the shortest hop distance to the original node. Nodes can also 

update distance information with neighbors. In this way the distance matrix D 
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can be built. 

From node i,s point of view, the information it knows is the following: Cij is 

the capacity of logical link (i, j ) G E, MIK is the traffic demand to node K, IJK is 

the traffic input from node j where {i,j) e E and the destination is node k, Dik 

is the shortest hop distance to node k and Dj is the distance vector transferred 

to node i for data forwarding in node j where [i,j) E E. 

Given the above information for each node, it is not possible to obtain a 

global optimization. However, each node may obtain its local optimization in 

order to satisfy the traffic demand and make the system perform better. The 

objective of our optimization is to minimize total traffic generated and balance 

the utilization of logical links while satisfying as much traffic demand as possible. 

For node i, a linear program can then be formulated: 

min e a + E {Dj^ - Dik + l)Xjk (3.1) 
- k£V {i,j)eE -

s.t. 

E 知 = 风 f c ) ^ ^ y (3.2) 

小 ( 3 . 3 ) 

kev 

Xjk = 0, Ijk>0,{i,j)eE (3.4) 

Xjk > 0, Ijk = 0,{iJ)eE (3.5) 

where Xjk is the traffic going through link ( i j ) which has the destination 

k, a is the maximal utilization of the links from i to its neighbors. Constraint 

(3.2) says that the total flow to node k is Mik. (3.3) indicates that the utilization 

of each logical link will be less than a. (3.4) prevents sending back the traffic 

to the node receive from. The objective function (3.1) is to minimize the total 
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traffic generated. Notice that if all traffic goes through shortest path to the 

destination, that is through node j where Djk = Afc — 1, the generated traffic 

will be minimized. However not always the traffic demand can be transferred 

through shortest path in the overlay, therefore traffic demand that may not go 

through shortest path will introduce extra traffic. Specifically in node i, the 

extra traffic introduced is 

Ti = J2 H (Djk - Afc + l)Xjk 
fcev (i’j)GE 

e is a very small positive number which is introduced so that the optimization 

not only minimizes T“ but also balances the link utilization, and ensures that 

the minimization of 7] takes higher priority. 

3.3.4 MultiServ routing with bounded complexity 

The traffic demand may vary from time to time, so it is necessary to have real 

time calculation for bandwidth allocation. Although in the routing strategy we 

proposed, the calculation is affordable. However solving large linear program-

ming is complicated and time consuming, it may be still impossible under real 

environment. Therefore we propose the following complexity-bounded heuristic 

method to use in practice. 

Notice that to avoid generating extra traffic, the data forwarding should 

mainly use shortest path. Under this principle, the heuristic method basically 

uses shortest path first scheduling. 

Consider trying to forward as much traffic as possible using shortest path 

forwarding, we can formulate a maximum flow problem as following. 

To maximum the traffic going through shortest path, we use a virtual graph 
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Figure 3.4: Shortest path maximum flow 

{GS, ES) illustrated in Figure 3.4. In the graph S node is a virtual source which 

launches all the traffic request in node i. T node denotes traffic demand where 

the capacity from the source to TK is MIK, N node denotes the neighbor. The 

capacity from Nj to the E node is Cij. A link (Tfc, Nj) is present if traffic to node 

k can be forwarded through node j as a shortest path, where Djk - Dik + 1 = 0. 

M is a large value so that the bottleneck of any path from 5 to E will not be 

the link which has capacity M. 

By solving the maximum-flow problem from S node to E node, we can trans-

fer maximal traffic through shortest path where the flow in (Tk.Nj) represents 

the traffic going through link {i,j) which has the destination k. However, there 

might be traffic demand which are still not satisfied. Fortunately, the rest part 

of the traffic which cannot be forwarded through shortest path can be also sched-

uled using the similar graph in Figure 3.4. The satisfied part of traffic demand 

and consumed capacity should be removed from the graph and the structure of 

the graph also need small modifications, where {Tk.Nj) e Es for every Ijt = 0. 

The best known complexity of the maximum-flow algorithm is 
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Suppose each node has n neighbors we have totally m nodes in the overlay, the 

graph ill Figure 3.4 has m + n 4- 2 nodes and less than (n + l )m + n edges. 

Therefore the complexity could be bounded under 0{{m + n)mn). 

The maximum flow method does not minimize the maximal value of the link 

utilization. Therefore, a traffic-balancer algorithm is proposed to balance the 

traffic in each link. Let Xjk be the traffic going through link (z, j ) which has the 

destination /c, Define Uj as utilization of link {i,j) where Uj 二 Y^k&v XjklCij-

the objective is to minimize the variance of link utilization, defined as follows, 

E E (u广 Ukf 
{id)eE ii,k)£E 

Therefore we propose a heuristic method to decrease the variance iteratively. 

The algorithm in Figure 3.5. tries to move traffic from high utilized link 

to low utilized link while keeping the extra traffic constant. The move of 

traffic will decrease the objective function K each time. This algorithm can be 

executed until no more traffic could be moved. 

3.3.5 Routing implementation 

In our model, hosts may use TCP connections to communicate with neighbors. 

However, the following reasons prevent us from using direct TCP connections 

between hosts: 

• The rate of a TCP connection is not easily controllable; 

• Multiple TCP connections may involve the burst of traffic and induce 

congestion; 
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Decrease_Pair_Variance(a, b, U) 
{ 
For each Destination x 
if {Daa： == A J and (Xa, > 0) 
{ 

t = min(Xax, E Xak - UCia.UCib - E Xbk)\ 
k^V k£V 

^AX 二 ^AX — T) 
^BX — ^BX + 

if ( E Xak = = Ucia or E Xbk == Ucib) 
kev k£V 

return; 
} 

} 

Decrease—Variance () 
{ 

u = E I： X诉I E Q,-; 
(i 旅 E fcev {i,j)£E 

for all neighbor a 
for all neighbor b 
if { E Xak > Ucia and E Xtk < Udb) 

kev kev 
Decrease_Pair_Variance(a, 6，U)\ 

1 
Figure 3.5: Heuristic algorithm to decrease variance of link utilization 
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Figure 3.6: Example of joint congestion control. 

• TCP is not suitable for applications such as streaming. 

For these reasons, it is necessary to propose a TCP friendly congestion control 

protocol for smooth data transmission with better control. 

We propose a rate-based congestion control algorithm, similar with CM [12 . 

The idea is to aggregate the flows sending from the host, the aggregated flow to 

one neighbor uses an Additive-increase multiplicative-decrease (AIMD) conges-

tion control in order to be friendly to background TCP flows. The sending rate 

will increase when no packet loss. Upon a packet loss, the rate will be halved. 

When persistent congestion occurs, the rate drops to a small value forcing slow 

start to occur. An ARQ-based mechanism is used. The sender will retransmit 

the packet until receiving the acknowledgement. 

An illustration is presented in Figure 3.6. A large data transmission from 

the sender to the receiver encountered congestion. Therefore, the sender makes 

connections to its neighbors to achieve better experience of transmission. 
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Flows will be aggregated while sending to one neighbor. Each flow may 

have different transmission speed because neighbors will send out the packets 

to different destinations. Through aggregation, we can easily adjust the rate of 

flows by setting different weights in the aggregate flow, as the scheme described 

in [8 . 

To further smooth the traffic from hosts, also set up a framework for easily 

rate controlling, instead of making individual TCP connections with the neigh-

bors, a unified packet sender is used. In transmission, flow to neighbor i will 

report a rate for sending packets, say u. The sender will use a aggregated send-

ing rate of ^2” instead of individual sending rate n. Flow i can be controlled 

using a weight Wi, where Wi = n/J^'^i- A round robin scheduler will be used 

to distribute packets proportional to fit the rate. In Fig. 3.6, suppose the rate 

with AIMD control for the four destinations are 400Kbps, 300Kbps, 200Kbps 

and 100Kbps, respectively. The rate sending out the packets for the host will 

be 1Mbps. In average, 4 out of 10 packets will be sent to neighbor 1, 3 packets 

will send to neighbor 2，and so on and so forth. 

Packets sending out from one host are controlled using unified packet sender. 

This enables the smoothest traffic. The intervals of packets for every router in 

the path will be approximately equivalent if no congestion is encountered. 

Each host in the overlay will use that algorithm to control the packets. The 

intermediate host in a multiple path transfer will do some additional tasks. The 

intermediate hosts will buffer the data from sending hosts in order to make 

delivery consistent. The intermediate host will feedback the delivery rate to the 

sender so that the sender can adjust the sending rate. The receiver should have 

a buffer for rearranging packets that are out of order. 
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Using MultiServ in ISP level, bandwidth may be reserved for the aggregate 

flow to achieve better throughputs. More aggressive protocols can also be used 

to enhance performance. For example, the edge server may set up a constant 

total bit rate for multiple paths, and then distribute the packets to each path 

by balancing the loss rate among all the paths. 

The benefits of the joint congestion control are of three folds, (a) The burst 

of traffic will be smoothed. The unified and rate-based sender sends data in a 

smooth way which will decrease the burst of traffic, (b) Rate control scheme can 

be easily applied. To adjust the rate for each path, users just need to modify 

their sending rate and the weight, (c) The aggregate flow has more control in 

QoS. Flows are aggregated so the hosts can easily adjust the rate for each flow 

to enable rich flow control. 

3.4 Performance Evaluation 

In order to evaluate the effectiveness of our approach, we conducte both sim-

ulation and experiments in real overlay network. The purpose of simulation is 

to compare different routing strategies. The purpose of real experiments is to 

explore the efficiency of overlay construction methods and compare potential 

performance of MultiServ data forwarding with IP network data forwarding. 

3.4.1 End-to-end streaming 

Since the overlay network is constructed by special algorithm, the topology of 

overlay network typically is different from the topology in IP network. The nodes 

in the overlay network typically select neighbors from random nodes. Therefore 
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Figure 3.8: Cost function and maximal link utilization vs total traffic in a 100 
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in large scale overlay network the topology is likely to be formed as random 

graph, where each potential link has almost same probability to be connected. 

In similar way, the neighbors could be considered as random nodes in the overlay 

network. This can be observed in popular peer-to-peer sharing network which 

is using simple algorithm to construct the overlay network. So in simulation we 

constructed the overlay network as this kind of graph. Specifically, we generate m 

nodes and each node has n neighbors where the neighbors are selected randomly 

from all the other nodes. All logical links are considered as symmetric and we 

set the capacity as 2Mbps for simplicity. 

For the artificially generated topologies, random traffic matrices are gener-

ated. As an application layer protocol, we designed an end-to-end media stream-

ing scenario in the simulation. Consider all users provide streaming service and 

streaming demands are generated from some of users. We consider the traffic 

as different quality of MPEG-4 CBR video clip and use r = 300 + rand(lOOO) 

Kbps to generate traffic rates. The source-destination pairs are selected so that 

the rate of traffic demands in each user will not exceed its capacity. 

We add two routing strategies for comparison. The first one is forwarding all 

traffic using a fixed shortest path between each source and destination, named 

Shortest Path. The other is distributing the traffic to the next hop equally 

among all possible shortest paths in each node, named Equal Loading Multipath. 

For example, if the node has two possible neighbors which can lead the traffic 

to the destination through shortest path, then both neighbors will deliver half 

of the traffic. In this method, the traffic can be divided multiple times in the 

intermediate nodes to distribute the traffic to as many links as possible. In our 
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experiments, the optimal routing is denoted as Optimal, the MultiServ rout-

ing strategy is denoted as MultiServ Routing and the MultiServ routing with 

bounded complexity is denoted as Bounded MultiServ. 

Since the MultiServ Routing and Bounded MultiServ are performed in each 

node without knowing the whole traffic status in the overlay network, the ex-

periments of these methods meet a little difficulty. In fact, the traffic input is 

necessary to be aware by these algorithms to generate the traffic output. How-

ever the traffic output is the traffic input of the neighbors, this will sequentially 

affect the status of forwarding. Therefore we need to simulate the real network 

as precise as possible which can reflect the phenomena. In our experiments we 

assume the delays of links are similar, thus the traffic can be delivered in steps. 

The first step the traffic flow out of the source and to its neighbor, named the 

first forwarder, the second step the traffic will flow to the first forwarder's neigh-

bor, the second forwarder, and so on until the traffic reaches its destination. 

For each step the algorithm is running in each node according to the traffic in-

put. We stop running the algorithm until the system enters a balanced status 

where the traffic flow in each node becomes stable and all the traffic reaches its 

destination. 

We use a cost function described in [15] to compare performance of different 

strategies. The idea behind that is that it is cheap to send flow over a link with 

low utilization and expensive when the link is heavily loaded. It will be heavily 

penalized if the utilization is over 100%. Define d j and Uij as the capacity and 

utilization of link [i,j): 
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cost = ^ Cijf{Uij) where 
{i,3)€E 

X, 0 < X < 1/3 

3rc - 2/3, 1/3 < a; < 2/3 

l O x - 16/3, 2/3 < a; < 9 / 1 0 
/ ⑷ = 

70x - 178/3, 9/10 <x<l 

500a; - 1468/3, 1 < x < 11/10 

SOOOrc - 16318/3, 11/10 < a: 

We use Matlab V6.5 to simulate the overlay network and solve the optimiza-

tion problems. In Figure 3.7(a) and 3.7(b), we plot the cost and the maximal 

link utilization with different traffic demand for different routing strategies on 

a 50 node 200 edge graph. The traffic demand is from 5 to 70 streaming re-

quests. Figure 3.8(a) and 3.8(b) plots the same content on a 100 node 400 edge 

graph with 10 to 120 streaming requests. It can be shown that when the traffic 

increases, the costs of Equal Loading Multipath and Shortest Path method in-

crease sharply. While the MultiServ Routing and Bounded MultiServ method 

achieves similar cost comparing with Optimal method. On the maximal link uti-

lization, the MultiServ Routing and Bounded MultiServ method is also similar 

with the Optimal method, while Equal Loading Multipath and Shortest Path 

method need more than two times of link capacity to deliver the traffic. From 

the result, the MultiServ Routing and Bounded MultiServ methods show near 

optimal performance under reasonable traffic load. 
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3.4.2 Application-layer multicast 

In this simulation, application layer multicasting is performed using MultiServ 

Model. Imagine there are g multicast groups where each group i has one source 

with Ui users and the streaming rate is r Kbps. For simplicity, each group forms 

a binary multicast tree. Each newly joined user selects an existing user in the 

tree where the user has less than two children and the hop distance is minimal 

in order to generate less traffic in the overlay network. 

In this simulation, large overlay network is formed in order to see the perfor-

mance of different bandwidth strategies at large scale. The overlay network is 

still formed as random graph where each node has 4 neighbors and the capacities 

of all logical links are 1Mbps for simplicity. 20 multicast sources are randomly 

selected in the overlays where the rates are all 300Kbps, the traffic demands 

are constructed using the following ways: a random user is selected and it will 

pick a random multicast group which will add a traffic request for the overlay 

network. 

In Figure 3.9’ we plot the maximal link utilization with 50 to 500 multicast 

users for different routing strategies on a 500 node 2000 edge graph. Figure 3.10 

plots the same content on a 1000 node 4000 edge graph with 100 to 1000 mul-

ticast users. In the figure we do not plot result of Optimal method because 

the global optimization needs to solve a linear programming problem which has 

millions of variables and constraints where we cannot afford the computation 

cost. For comparison our MultiServ Routing method only has around m * n 

variables and similar number of constraints which are less than 10000 and still 

can be solved in normal PCs. 

It can be seen from all the results that the MultiServ Routing and Bounded 
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MultiServ methods achieve similar performance in all simulation, which is far 

better than Equal Loading Multipath and Shortest Path methods. For example, 

from Figure 3.9，in 500 node 2000 edge graph with 1Mbps link capacity, more 

than 600 multicast users with 300Kbps rate can be supported using our strategies 

however using single shortest path only less than 150 users can be supported. 

From Figure 3.10’ in 1000 node 4000 edge graph with 1Mbps link capacity, more 

than 1300 multicast users can be supported using our strategies and less than 

400 users can be supported using single shortest path. It will be interested 

to consider the performance when the multicast content can be retrieved from 

multiple sources, but due to the limit of space it will not be discussed in this 

article. 

The proposed routing strategies also show good scalability, stability and fast 

response. Illustrated in Figure 3.11, In 500 node overlay network with 500 

multicast users, typically no more than 10 steps it can achieve a stable status 

where almost all traffic arrive its destination and the value of cost function have 

less than 1% difference between successive steps, which shows the utilization of 

links are quite stable. 

The logical link capacities may change due to the congestion in underlying 

network. The performance of our routing strategies are also been evaluated 

under such situation. In 500 node overlay network with 500 multicast users, the 

link capacity are reset using c = 750 + rand(500) Kbps every five steps. The cost 

function is illustrated in Figure 3.12. We can see our routing strategies can adapt 

the varied capacity and perform the data forwarding quite well, it is observed 

that no links are overloaded and all traffic can safely reach its destination. 
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Figure 3.13: Positions of the 12 hosts 

3.4.3 Experiments in real network 

We have deployed a prototype of MultiServ platform in Planetlab hosts. 12 hosts 

are selected where the hosts are placed in 4 continents, 5 in North America, 4 in 

Europe, 2 in Asia and 1 in Oceania. The positions of the nodes are illustrated 

in Figure 3.13. 

To verify the performance of our overlay construction algorithm, we obtain 

path information using traceroute from all the hosts and build a path database. 

Using the database, we first form a random graph which each node has 4 neigh-

bors, and use algorithm A in Figure 3.2. to refine the graph. The average of 

disjoint parameter DN for all the nodes will be calculated, this is the average 

common links used in transmission in each path pair. 

In the experiment, we generate 1,000,000 random graph, the average common 

links of original graph are 6.16. After refinement, the average common links are 

5.31, where almost one common link is eliminated in each path pair. The least 

common links our algorithm gets is 4.97. 

We also measure the round trip time between these hosts, the round trip 

time is measured in different time of the day and the average is calculated. It is 

found that 61 of 132 round trip time could be decreased if the data is transferred 
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Table 3.2: Neighbor set of nodes in the overlay 
Site IP Address Neighbors 
ucb169.229.51.250 hp uw I cam I cuhk 

cuhk 137.189.97.17 ucb tw cam tub 
tw 140.109.17.180 cuhk tor mit uts 
hp 204.123.28.51 ucb mit diku tor 
uw 128.95.219.192 ucb mit tub uts 
mit 18.31.0.190 tw hp uw uuse 
tub 130.149.49.26 cuhk uw diku cam 
tor 128.100.241.67 tw hp diku uts 
uts 138.25.15.194 tw uw tor uuse 

cam 128.232.103.201 ucb cuhk tub uuse 
diku 192.38.109.143 hp tub tor uuse 
uuse 193.10.133.128 mit uts cam diku 

through other intermediate nodes to the destination. For example if we transfer 

data from ucb to tw through hp lab the round trip time could be decreased from 

0.229s to 0.167s. 

We pick a neighbor set which has 5.00 average common links in each path 

pair illustrated in Table 3.4.3. We use this neighbor set to form the overlay 

network for further experiments. 

Lots of simulation of data transmission has been done in the situation with 

fixed bandwidth in each logical links. In real experiment, repeating the same 

experiment will result in similar result. Therefore we would like to explore 

the potential performance of the overlay network, that is, the maximum data, 

transmission rate with the help of neighbors in the real experiment. 

To achieve the purpose, first we have designed a program to estimate the 

throughput in a TCP transmission. The program launches a TCP transmission 

to transfer data without constraints between two hosts and last for 20 seconds. 

To eliminate the effect of TCP slow start, we use the average transmission rate 
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Table 3.3: Ti-ansmission time from ISP 1 to other ISPs. 

KBps ucb cuhk tw hp uw mit tub tor uts cam diku uuse 

ucb 518/210 723/145 442/227 2022/1254 791/378 716/175 577/544 824/185 794/231 800/165 831/172 

cuhk 1007/323 1744/1190 373/32 908/354 824/266 673/194 675/226 733/164 769/248 660/229 871/225 

— t w 905/253 1668/1260 435/26" 718/272 663/311 783/198 633/317 711/165 675/234 609/194 732/196 

hp 1208/692 471/181 644/79 1283/163 505/128 421/260 423/168 579/72 805/25 520/45 308/70 

“ ^ “ 1796/1248 496/188 769/142 378/95 795/408 751/184 598/525 819/222 671/227 689/165 819/169 

mit 727/376 467/138 619/149 419/75" 1198/389 859/269 549/726 845/137 828/399 939/233 992/240 

tub 535/156 397/117 513/95 325/2^ 589/206 729/258 556/209 651/96 1171/3461083/1331269/261 

t O T 1 3 8 2 / 7 8 7 574/202 676/309 505/73 1756/796 1125/1256 1170/426 861/297 954/604 1152/3851409/411 

m 7 9 4 / 3 1 6 435/164 689/165 463/23 1149/427 807/269 649/98 610/297 618/202 613/177 808/177 

cam 528/217 369/125 585/123 440/27 991/228 874/409 1825/580 626/330 811/106 1399/6391736/669 

diku 588/247 444/173 634/195 423/2^ 1165/315 1007/465 2119/701 764/379 765/177 1973/1250 2403/1188 

uuse 632/276 387/224 668/196 377/28" 1135/325 976/49012046/837| 73 8/387 837/178 1975/107511873/12531 — 

in period of 1020 seconds as estimation of the rate of a TCP transmission. 

Using the program, we estimate two kinds of transmission rates between two 

sites. One is the rate of direct connection and the other is the rate with the 

help of the neighbors, i.e., transmission to the destination through the neighbors. 

The second rate is considered as the potential transmission rate under MultiServ 

model. 

The experiments were repeated 6 times in different time of a day and the 

average rates (KBps) of all source destination pairs are recorded in Table 3.3. A 

shaded cell indicates that the corresponding source destination pair has smaller 

round trip time using MultiServ model than direct connection. Table 3.3shows 

that the potential rate of transmission in MultiServ model is much higher than 

direct connection, especially in some sites with poor QoS to other sites, such 

as the hp site. This result suggests MultiServ a promising platform for heavy 

transmission tasks. 
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3.5 Summary and Future Work 

This chapter proposes a new model called MultiServ to alleviate the congestion 

and to provide better quality of service for end-host using overlay network. 

A special overlay is proposed in this model. Meanwhile, distributed routing-

strategies are proposed to balance the utilization of different logical links and 

enhance the performance of data forwarding. The advantages of MultiServ are 

summarized as follows. 

• Scalable and Stable: The overlay uses a heuristic construction algorithm 

which can perform in stable way and can be easily extended to large scale, 

and the routing strategies can also work well in large overlay network with 

varied link capacities; 

• Higher performance, rich QoS control and enable more services: The ag-

gregate flow has enabled rich control on flows, the model could enable 

many services which may not be practical or scalable in IP network, such 

as large scale streaming and multicasting; 

• Easy to deploy: For ISPs, edge servers with MultiServ can balance traffic; 

for users, simple system service and MultiServ-aware software enables the 

service. 

We have performed extensive simulation and real experiments to verify our 

model. From the result we can see the routing strategies perform pretty well 

under different applications in large scale overlays and the constructed overlay 

shows good potential performance in real network. 
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This is an ongoing work. We will implement the proposed model and deploy 

it to real environment for further evaluations. As shown in the simulation, 

application-layer multicast based on this model is also considered as a promising 

research direction. 
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Chapter 4 

DDS: Distributed Dynamic 

Streaming 

In this chapter a new framework called dynamic distributed streaming (DDS) is 

presented for both on-demand streaming and live-streaming using overlay net-

work. A user model is built and the user data outage in streaming is derived 

and compared with application-layer multicast. Results confirmed by simula-

tions show that DDS can perform much better in dynamic user environment. In 

large overlays, the data outage in DDS is as low as 10% of that in tree based 

application layer multicast in a highly dynamic user environment. 

4.1 Motivation 

Streaming bandwidth sensitive media from a single source to a large number 

of users is a difficult task on the Internet. We can divide streaming into two 

59 



Chapter 4 DDS: Distributed Dynamic Streaming 

categories: on-demand streaming and live-streaming. A possible way to serve on-

demand streaming is the use of content distribution network (CDN) which can 

be considered as a distributed caching technique. Generally speaking, caching, 

including CDN, is a method of using storage to reduce transmission. However, 

media data are large objects that are difficult to store in the cache server. Further 

more, for live streaming, the storage cannot help much. In this case, multicast is 

a natural paradigm for distributing live media data. However IP multicast is not 

widely deployed. Therefore application-layer multicast is served as a alternative 

solution. Unlike IP multicast where data packets are replicated at routers inside 

the network, in application-layer multicast data packets are replicated at end 

hosts. The data delivery path in application-layer multicast is an overlay tree. 

A key challenge in constructing a resilient application-layer multicast proto-

col is to provide fast data recovery when an overlay host failure breaks down the 

data delivery paths. Overlay hosts are processes on regular end-hosts which are 

potentially more susceptible to failures than the routers. 

In this chapter, we present a new framework for both on-demand streaming 

and live-streaming in application layer called Distributed Dynamic Streaming 

(DDS). Simple examples of application layer multicast and DDS are illustrated 

in Fig. 4.1. Similar to application-layer multicast, DDS builds an overlay net-

work and the content is replicated at end-hosts. Different from the traditional 

streaming model, in DDS, the overlay network is a random graph topology and 

streaming content will not come from one single upstream source, the content will 

be delivered like gossiping, from all available paths to the clients. Several appli-

cation layer streaming or content distribution solutions were presented [16，18], 

these work are based on tree structure where each host has only one upstream 
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provider. Cooperative streaming [19], flash crowds handle [22] and multicast 

data recovery [17] are methods for improving the performance of streaming in 

application layer. The main focus is on resilient and efficient streaming under 

a dynamic user environment. The user model is built and the user data outage 

in streaming is derived and compared with application-layer multicast. Results 

confirmed by simulations show that DDS can perform much better in dynamic 

user environment. 

The remainder of the chapter is organized as follows. In section 2 we in-

troduce the DDS protocol. Section 3 contains the analysis the streaming data 

outage in tree and graph model given user model, the model is verified using 

simulation in section 4. In section 5，we summarize the approach and propose 

the future work. 

4.2 Distributed Dynamic Streaming 

The principle of distributed gossip communication is simple. In each time step, 

each host v in the network selects some random host it; as a communication 

partner and exchange information with each other, therefore over a period of 

time, information spreads through the network in an "epidemic fashion". 

Quality of streaming for each host is the primary design objective of the DDS 

protocol. The design can be divided into two parts: algorithm to construct an 

overlay and protocol to deliver streaming content using gossip based techniques 

among users. 
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4.2.1 DDS overlay construction 

DDS overlay can be considered as an unstructured overlay network. The un-

structured overlay network can be viewed as an undirected graph, where nodes 

correspond to hosts and edges correspond to open connections maintained be-

tween the hosts. Two connected hosts are known as neighbors. Several large 

unstructured overlay networks are running on the Internet. One of the earliest 

unstructured overlay network uses the Gnutella protocol [25]. The construc-

tion protocol of Gnutella is simple, robust and scalable for millions of users to 

participate. Information searching is normally hard to be scalable in large un-

structured network. But for streaming, searching is not necessary and so not a 

problem. 

Here we briefly describe the construction of an unstructured overlay. When 

a client wishes to join an overlay network, it first contacts a bootstrap server to 

obtain a preliminary list of neighboring candidates identified by a list "IP:Port" 

combinations. The client then contacts these candidates to find satisfactory 

neighbors. Depending on the satisfaction of certain criteria, such as limit of 

neighbor size, the neighbor and the client can then form a neighbor relationship. 

The overlay will grows when neighboring hosts are joined following the above 

process. 

In DDS design, the neighbor size n of each client should be carefully chosen. 

If n is too small, gossips cannot be passed effectively. On the other hand, if n is 

too large, a host may be overloaded by gossips. In Gnutella system, the neighbor 

size setting is typically between 3 and 4. Our design adopts this setting. 

To improve the streaming quality, the constructed overlay should be locality 

aware, for example, the overlay host chooses neighbors with small delay and large 
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(a) Multicast (b) GBS 

Figure 4.1: A comparison of Multicast and DDS 

bandwidth. Several techniques [20’ 23] were proposed to construct a locality 

aware overlay. These can also be directly adopted in construction of the DDS 

overlay. 

To improve the overlay performance for dynamic user environment, similar 

with [17], each host in the overlay will maintain a list of good neighbor candi-

dates, thus, when one neighbor leaves the overlay, the host can directly negotiate 

with the best neighboring candidate to form a new neighbor relationship. This 

practice can restore the overlay as soon as possible under dynamic user environ-

ment. 

In an overlay with n hosts, the hop radius (The average logical hops between 

two hosts) is in the order of log(n) [24]. On the other hand, a Gnutella overlay 

network can remain connected even if 30% of the randomly selected hosts are 

removed [21]. Those characteristics suggest a stable platform for streaming 

tasks. 
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4.2.2 DDS streaming 

In DDS streaming, the content is divided into basic elements called bricks to 

transfer between hosts. A brick has a fixed size. Bricks are labelled by non-

negative integers. For example, if the size of brick is 4096 bytes, then the nth 

byte of content is in brick L?V4096J. 

The task of streaming is to fetch all the bricks timely and efficiently. The 

protocol is illustrated in Fig. 4.2. The DDS system is composed of three parts: 

buffer manager, scheduler and sender. 

1. Buffer Manager: buffer manager is responsible for managing buffer, 

receiving data from scheduler and feeding data to the sender. In DDS we 

may need to maintain a large buffer for providing contents to other hosts. 

2. Scheduler: Scheduler is a key component in the system. It is responsible 

to decide at a specific moment which brick should be fetched from where. 

We will explain the details later. 

3. Sender: The task of sender is rather simple, upon receiving a request 

from neighbor for content, it will get the content from the local buffer and 

send it out to the neighbors. 

The procedure of delivery begins from establishing the connection to the 

neighbor. Once connected, the host will fetch a buffer map from the neighbor, 

where they know which brick is available in the neighbor. Then the transmission 

begins. In streaming, a buffer map change should notify all the neighbors. For 

example, if a brick is received, the host will send a message to all the neighbors 

saying that it has the brick, the message should include the brick sequence 
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Application 
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Figure 4.2: DDS delivery structure illustration. 

number with a flag indicate that the brick is received. The message can be as 

small as 5 bytes. This will ensure that the host have the buffer status of all the 

neighbors at any time. 

The scheduler will make a decision of transmission given the buffer status of 

all neighbors. A simple scheduler algorithm is given in Fig. 4.3, where available 

needed brick with lowest sequence number is transferred from each neighbor in 

turn. This enable balanced data delivery from each neighbor. 

There might be other schedulers which can provide better delivery perfor-

mance for the system. For example if the delivered sequence of bricks is ran-

domized, the availability of content in the system may be larger. This might be 

an interesting research topic and is out of scope of this thesis. 
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Simple Scheduler Algorithm 

1. Wait until the buffer is not full; 

2. Find neighbor A with the longest available time (no data fetching for 
longest time); 

3. Find the brick s with lowest sequence number available in neighbor A 
which is not available in the local buffer; 

4. Establish a process to fetch brick s from neighbor A; 

5. Goto 1 

Figure 4.3: Simple scheduler algorithm. 

DDS can be considered as a general quality of service content delivery plat-

form and thus we want the delivered content to be precise and complete. There-

fore in the design of protocol we do not focus on incorporating complicated 

streaming techniques such as FGS (Fine Granularity Scalability) streaming or 

MDC (Multiple Description Coding). However our protocol can easily be ex-

tended for use with these techniques. 

4.3 Performance Analysis in Dynamic User En-

vironment 

In this section, we analyze the data outage in application layer multicast and in 

DDS. 
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4.3.1 Basic definition and user model 

Consider an overlay network with n nodes, the overlay here can be any topology. 

For example, in scalable application layer multicast protocol NICE [16], the 

overlay network is a tree with up to m children in each non-leaf node. In DDS, 

the overlay is considered as a near random graph. For simplification of analysis, 

neighbors can be considered similar with children in the tree structure, so each 

node in DDS also has m neighbors. We assume the streaming source (the root 

in the multicast tree) is stable thus the streaming source will be considered as 

a special node which will not fail in the following discussion. 

In the overlay network, each node represents a user who can leave at any time, 

the departure of a user can be considered as the failure of a node. Therefore the 

failures of nodes are independent events. Ideally, if the connection time any node 

in the overlay is exponential distributed with identical parameter A, then the 

failure can be modelled as a Poisson process, which has the following properties: 

At any particular time period [t, t + e], the probability of the failure of any node 

is 1 - e"^'. In general, the node may have arbitrary distribution in online time 

and arrival time, but as long as we treat the node identical and independent, it 

is safe to say that in any small enough time period [t,t-\- e], the probability of 

the failure of any node is approximately identical, which can be represented by 

a function of t and e, say f(t, e). Therefore we can define the failure rate for any 

node as R{t), where R{t) = l i n i A - o A ) / e . We assume our analysis period 

t, i + e] is stable, that is i? 二 _ is a constant in the period. Therefore we 

can have the following estimations: The average failure of the overlay network 

is nRe and the probability of failure of any host in the period is Re. 

A node failure in the overlay may cause data outage in direct downstream 
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nodes until the time the data delivery tree is reconstructed. Consider a node has 

a buffer of time U in receiving streaming content, therefore if the downstream 

node cannot find another node to fetch stream (that is a new neighbor in DDS 

and parent in the tree structure) after 4 time from the failure, an outage of data 

may occur. This can be considered as identical event for each host, thus we can 

define that each direct downstream of the failure node has equal probability P � 

of not finding a new upstream node within tb time, which will be useful in our 

following analysis 

4.3.2 Data outage in tree topology 

In the tree topology, each node has up to m children. To simplify the estimation, 

we assume the tree is complete, i.e., at most one non-leaf node has less than m 

children. Therefore the height of the tree is h = \log^({m - l )n + 1)J - 1. 

For node X in the tree, any ancestor failure may cause the data outage if 

the downstream node can not find a new parent in time. For example, in Fig. 

4.1(a), if node B fails, the data outage probability of node F and E is P�. If 

data outage occurs in node F, then it will also occur in node C since it cannot 

receive the data where F do not received For example, if an ancestor fails, the 

probability of data outage is P � � i f two ancestors fail, the probability of data 

outage is 尸。+ (1 — PO) * P�, So let A{u,i) be the event that node u has data 

outage with i ancestor failures, the probability of the event is 

P ^ 4 ( M ] = l - ( l - P o ” 

1 There might be other data recovery techniques which may decrease the data outage prob-
ability, but for simplicity of analysis, we do not address the techniques here and use the basic 
model. 
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Let B[k,i) be the event that i nodes fail in k ancestors in period [t,t-\- e], then 

probability of the event is 

Let C(u, k) be the event that node u in depth k has data outage in period [t, t+e • 

Then the probability of the event is 

P[C{u,k)' 
fc-i 

i=0 

= _ 1)(刷乂1 - Re) '- ' - ' . (1 _ (1 _ PoY) 
i=0 \ ^ / fc-i /u 

= y r ~ ]{Rey(l-Re)'-'-'-
fci V w 
fc-1 fk - 1\ U 1 • 
E . ( (刷 ( 1 - p � ) m -刷 
i=o \ 2 / 

= 1 - (1 - P o R e f - ' 

The average data outage in the tree E ( A ) can be calculated by adding proba-

bility of all the nodes, 
h-l jji'^ 一 1 

E ( A ) = + ———)*P(CK/i)) 
i=2 饥—丄 

二 + 树 - 1 ) 
m — 1 m - 1 

„ ^ „ Jm{l - PoRe))''-^ - I " 1 、 

— 务 W — “ ) - 1 (4.1) 
From Eq. (4.1) we can estimate the average node data outage in the tree struc-

ture given n, m, P�and Re. For example, given n = 5000，m = 3,Po = 0.2, R = 

0.001 and e = 10，the estimation of E{Dg) is 56.46. That indicates the following 

facts: In a 5000 nodes multicast tree with 3 children in each node, assume each 
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node has 20% possibility to be short of data when its parent fails, if in a future 

10 seconds period, 50 nodes fail while new nodes replace the current nodes and 

the tree keeps the original size, then on average 56.46 data outage will occur in 

the period. 

Note the discussion above is the best condition in such a tree structure. In 

real environment, the performance may be worse. For example, if the tree is not 

a complete tree, the height of the tree will increase so that the probability of data 

outage will also increase since nodes may have more ancestors and thus more 

probability on the failure of the ancestors. Also, if is in the tree maintenance 

protocol, low depth nodes will process more messages and thus it might be more 

vulnerable. These nodes therefore have higher probability of failure. This will 

also increase the data outage percentage since it has more descendants and affect 

more nodes when departure. So in practical environment, (4.1) is a conservative 

esitmate. 

4.3.3 Data outage in DDS 

In DDS each node has m neighbors where all the neighbors can provide streaming 

content to the node, the facts lead to a direct implication that the delivery of 

streaming content can survive in worse network conditions and user transience 

than the tree topology where only one data supplier is available for one node. 

For example, the protocol of DDS can greedily seeks all available parts of the 

streaming content from the neighbors, therefore even all neighbors have data 

outage, the node can still survive in very high probability. So we will omit the 

situation and focus on the event of a direct neighbor failure. 

Failure of a node may cause the data outage of all its neighbors. Similar 
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with tree topology analysis, here we know that the probability is P � w h e n the 

downstream node cannot find another node for stream delivery after U time from 

failure of neighbors. However when it cannot find a new node in given time, the 

data outage still may not occur. For example, in Fig. 4.1(b), consider a specific 

failure at node B, all the neighbors of B may be affected by the failure. Unlike 

tree topology, for the node F who has lost the neighbor B, F still can continue 

the streaming from the content node C and E provides. Generally speaking, 

suppose X fails and X is y ' s neighbor, if one or more neighbors of the host Y 

can delivery the part which X should originally deliver to Y in the time period 

node Y tries to find a new neighbor, the data outage would not occur. This 

process can greatly decrease the probability of data outage. 

In the following analysis, a parameter Ps is defined as the probability for any 

node to serve full streaming service during the time its neighbor needs to find a 

new neighbor. Recall in the multicast tree structure almost all non-leaf nodes 

need to deliver m copies of stream, we believe serving full streaming service for 

the node at a specific time period should not be a hard task thus Ps is reasonable 

to be a large value, for example we can assume Ps > 0.5. 

Therefore for node A, the data outage only occurs when in e time, the node 

cannot find a neighbor and none of the remaining neighbors are capable to serve 

the streaming. We define 0{A) be the event node A has data outage, So the 

probability the event is: 

PIO(A)] 
m 

= P � Y ^ P [ i neighbors fail) • 
i=l 

P(none of remaining neighbors can serve streaming) 

71 



Chapter 4 DDS: Distributed Dynamic Streaming 

= P o f ] h ] { l - Rer-\ReY . (1 - Psr~' 
f^iK^J 

=Poit 

-((1 - P,)(l - Re)r) 

=Po((l -Ps + PsRer - ((1 - Ps){l - Re)r) 

Therefore the average data outage in the graph E{Dg) can be calculated by 

adding probability of all the hosts, 

E{Dg) = nPo{{l - Ps + PsRer-

(il - P,){1 - Re)r) (4.2) 

Prom Eq. (4.2) we can estimate the average outage number of nodes in the 

graph structure given n,m,Ps,t and Re. For example, given similar parameters 

with tree topology which is n = 5000, m = 3,Po = 0.2, P, = 0.6’ = 0.001 

and e = 10，the estimation of E(Dg) is 4.82. This means that in a 5000 nodes 

DDS topology with 3 neighbors in each node, assume each node can serve full 

streaming service during the time its neighbor need to find a new neighbor in 

probability of 0.6. If in a future 10 seconds period, 50 nodes fail while new 

nodes replace the current nodes and the tree keeps the size around 5000. then 

on average 4.82 data outage will occur in the period, which is much smaller than 

in tree structure. 

The result of Eq. (4.2) is a rough estimation. Since if not all neighbors fail, 

the streaming content can at least be partially provided and thus the time of 

buffer underflow will be delayed so that the streaming should survive more time. 

Further more, if no single neighbor can supply the full streaming, the collabo-

ration of neighbors may provide full streaming content. This is not included in 
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Figure 4.4: Data outage of overlay network with different metrics 

estimation. So in practical environment, the Eq. (4.2) data outage might be of 

overestimation on data outage in the overlay. 

4.4 Performance Evaluation 

In this section we present a performance evaluation of both tree structure appli-

cation layer multicast and DDS based on various of dynamic user environment. 

4.4.1 Simulation setup 

In all these simulations we model the scenario of a source node distributing 

streaming media to a set of nodes. We use a tree topology and random graph 

topology to build the overlay. Because the main objective of the simulation is 

to verify the analysis model in the previous section, in the simulation, we do not 

consider the bandwidth and link delay in the overlay network, and focus on the 

data outage in user dynamic environments. 

The tree structure is constructed in the following way: When a new node 

joins the overlay, it will find the oldest node which can accept a new child (less 
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than m children) and get the streaming content from the node. This process 

will limit the height of the tree. Similar with tree topology, in construction of 

DDS, when a new node joins the overlay, it will find m random node which can 

accept a new neighbor (less than m neighbor) and get the streaming content 

from these nodes. 

In both topology, end-hosts first continuously join and leave the multicast 

group. The join and leave rate for members are chosen to be equal {R) so that 

the average size of the group remained nearly constant (n). 

The parameters in the simulation are chosen in the following ranges: n from 

500 to 5000，m from 2 to 5 ， f r o m 0.0001 to 0.01’ P�= 0.1，Ps = 0.5 and we 

fix € to 10 to see the short period phenomena of the overlay network, the short 

period can also reflect the long period as long as the overlay network is stably 

evolving. 

4.4.2 Simulation results 

In Fig. 4.4(a) the node data outage of overlay network with different sizes are 

shown. The size is from 500 to 5000 with m 二 4 and = 0.001. We show the 

theoretical and simulation result. In all the simulations, we run it for 100 times 

in each scheme and get an average to compare with theoretical result. It is shown 

that when the overlay becomes large, the data outage in tree structure increase 

significantly while data outage in DDS increases much slower. For example, for 

overlay large than 1000 nodes, the data outage in the graph is as low as 10% 

of that in the tree model. This indicate that DDS is more scalable in dynamic 

environment than tree based structure. 

In Fig. 4.4(b) the node data outage of overlay network with different failure 
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rate are shown. R is from 0.0001 to 0.01 in a 1000 node overlay with m = 4. 

It is shown that when failure rate R of nodes increases, the data outage in tree 

structure increase significantly while data outage in DDS increases much slower. 

This indicates that DDS is more robust under high user transience. 

In Fig. 4.4(c) the node data outage of overlay network with different neighbor 

number are shown, m is from 2 to 5 in a 1000 node overlay. It is shown that 

when neighbor number m increases, the data outage of both topology decreases, 

DDS shows much advantage over tree structure in all cases. In tree structure the 

decrease is more significant however increasing m in the tree indicates each non-

leaf nodes should support more clients which may made them heavy loading. 

DDS, for comparing, the load of each node may increase when they have more 

neighbors but it will not be much since the load will be nearly equally distributed 

to all neighbors. 

4.5 Summary and Future Work 

In this chapter, we propose a new framework called dynamic distributed stream-

ing for both on-demand streaming and live-streaming in application layer. User 

model is built and the user data outage in streaming is derived and compared 

with application-layer multicast. Results confirmed by simulations show that 

DDS can perform much better in dynamic user environment. 

This is an ongoing work. We will implement the proposed framework and 

deploy it to real environment for further evaluations. 
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Chapter 5 

Concluding Remarks 

This thesis attempts to explore the problems in the area of multiple point com-

munications. As we mentioned previously, there are three key issues: perfor-

mance, scalability and stability. Our approach is working towards these points. 

The MultiServ architecture aims at improving the performance and scalability of 

data transmissions in overlay network. On the other hand, the DDS scheme ad-

dresses the problem of performance and stability in previous approaches. Simu-

lations and experiments show significant advantages in our approaches compared 

with others. 

In area of multiple point communication, undoubtedly a lot of work is yet to 

be done. This thesis just tried to tackle a little from the huge mountain, much 

is left to be dig later, in which I expect to find treasures. 
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