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Abstract 

Abstract of thesis entitled: 

A New Iterative Procedure 

for 
Removing Impulse Noise 

Submitted by HU, Chen 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in June 2004 

This thesis proposes a two-phase iterative method for the random-valued im-

pulse noise removal. In the first phase, we use the adaptive center-weighted 

median filter to identify pixels which are likely to be corrupted by noise (noise 

candidates). In the second phase, these noise candidates are restored using a 

specialized regularization method which allows edges and noise-free pixels to be 

preserved. These two phases are applied in an alternate way. Simulation re-

sults indicate that the proposed method are significantly better than those using 

just nonlinear filters or edge-preserving regularization only. The second phase 

is equivalent to solving a one-diniensional nonlinear equation for each noise can-

didate. We describe a simple secant-like method to solve these equations. It 

converges faster than Newton's method, requiring the same number of function 

and derivative evaluations per iteration. 
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摘要 

香港中文大學碩士論文摘要 

論文題目： 

一種新的去除隨機脈衝噪聲的迭代過程 

胡晨 

二零零四年六月 

本論文提出了一種二階段迭代法用來去除隨機脈衝噪聲°在第一階段，用 

適應中間加權中值濾波法來確認那些像被噪聲干擾的位置（稱為疑似噪聲）° 

在第二階段，這些疑似噪聲被特殊正則化方法還原°這種特殊正則化方法可以 

保護邊界和非噪聲部分不被破壞°這兩個階段被不斷的交替使用°實驗結果證 

明這種方法比只用非線性濾波法或者正則化方法得出結果有明顯的提髙°在第 

二階段，等價於在每一個疑似噪聲像素解一個一維非線性方程。我們提出一種 

簡單的似割線法來解這些方程°這種方法比牛頓法收斂的速度要快，同時在每 

一步和牛頓法要計算的函數值和導數值是一樣的° 
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Chapter 1 

Introduction 

In image processing, images are often corrupted by noise during image acquisition 

or digitization and transmission principally due to interference in the channel used 

for transmission. There are many noise models in image processing applications. 

Particularly, impulse noise and Gaussian noise are among the most common fomid 

in image processing applications [Ij. We will introduce these two noise models 

in the later section. In this thesis, we focus on removing random-valued impulse 

noise which is a kind of impulse noise from noisy image. 

1.1 Noise Model 

1.1.1 Impulse Noise 

Impulse noise is frequent caused by malfunctioning pixels in camera sensors, 

faulty memory locations in hardware, or transmission in a noisy channel. 

We first give the definitions of the impulse noise. Let Xij be the gray level of 

a true image x at pixel location (?；, j) and [n,„i,i, n,„axl be the dynamic range of x. 

1 
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If we let yij be the gray level of the impulse noisy image y at pixel (i, j ) ’ then 
• 

Tij, with probability p, 
JJij = (1.1) 

Xij ’ with probability 1 - p, 
\ 

where Uj G [n,„i„, n,„ax] are random numbers and p is the noise ratio. Our goal 

is to obtain a restored image x from the noisy image y. There are two kinds 

of impulse noise in image processing applications. One is the fixed-valued (salt-

and-pepper) impulse noise, noisy pixels yij can take either nmm or Timax，see [2 . 

Another is the random-valued impulse noise where r^ can be any numbers Tij 

between n,„in and n„,ax, see [3]. Cleaning such noise is far more difficult than 

cleaning fixed-valued impulse noise since for the latter, the differences in gray 

levels between a noisy pixel and its noise-free neighbors are significant most of 

the times. mmm 
Figure 1.1: (Left-to-Right:) The noise-free (original) Lena image, the noisy 

image corrupted by fixed-valued impulse noise, the noisy image corrupted by 

random-valued impulse noise. 

1.2 Removing Impulse Noise 

So far, many techniques have been proposed to remove impulse noise from the 

corrupted images [4]-[14], [3]. Most of them use the nonlinear filters to remove 
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impulse noise [4]-[13], [3]. In recent years, detail-preserving variational method 

(DPVM) has been proposed to restore impulse noise [14]. 

1.2.1 Nonlinear Filter 

There are many classical nonlinear filters, such as median filter, mean filter, rank-

ordered mean filter, max and min filter etc. [1, 8j. The best-known filter is the 

median filter, which, as its name implies, replaces the value of a pixel by the 

median of the gray levels in the neighborhood of that pixel: 

Xij -二 medmn{yi-uj-x> : -h < u,‘u < h} 

where (2/?. + 1)2 is the window size and Xij is the gray level of the restored image 

X at pixel (i, j ) . 

Median filters are particularly effective in the presence of impulse noise [1]. 

However, since filters typically are implemented invariantly across the images, 

they also tend to modify pixels that are not affected by noise. In addition, when 

the noise ratio is high, they are prone to edge jitter, and that the details and 

edges of the original image are usually blurred by the filters, see [15] and Figure 

1 .2. 

To improve performance, various decision-based filters have been proposed 

where possible noise pixels are first identified and then replaced by using the 

median filter. Examples of decision-based filters are the switch median filter 

11], the adaptive median filter [2], the adaptive center-weighted median filter 

(ACWMF) [12], and the median filter bcised on homogeneity information [13:. 

These filters are good in locating the noise even in high noise ratio. However, the 

main drawback is that the replacement of the noisy pixels by the median filter 

entails blurring of details and edges, especially when the noise ratio is high. 
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醱•釅 
Figure 1.2: (Left-to-Right:) The original Lena image, The noisy image cor-

rupted by 50% random-valued impulse noise, The restored image by using median 

filter with 7 x 7 window size. 
1.2.2 Variational Method 
For images corrupted by Gaussian noise, regularized least-squares methods, based 

on edge-preserving regiilarizatioii functionals have been used successfully to pre-

serve the edges and the details in the images [16]—[20]. But these methods fail in 

the presence of impulse noise because the noise is heavy tailed, and the restora-

tion will alter considerable aiiioiiiit of pixels in the image, including those pixels 

which are not corrupted by the impulse noise. 

Recently, a detail-preserving variational method (DPVM) has been proposed 

to restore impulse noise [14]. It uses a non-smooth data-fitting term (e.g. h) 

along with edge-preserving regularization. Because the h data-fitting term leaves 

uiicliaiiged the pixels which are similar to their neighbors [14’ 21], DPVM can 

remove impulse noise accurately. This variational method does not smear edges. 

However when removing noise patches involving several adjacent pixels, the dis-

tortion of some uiicorrupted image pixels at the edges cannot be avoided. 

To overcome the drawbacks, in this thesis, we propose a two-phase itera-

tive method for removing random-valued impulse noise. First, noisy pixels are 

detected using AC WMF; then these pixels are selectively restored by DPVM. 
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These two phases are applied alternatively. Since in each iteration the edges and 

the details are preserved for the noise candidates by the regiilarization method, 

and no changes are made to the signal candidates, the performance of this com-

bined method is much better than just using either ACWMF or DPVM, especially 

when the noise ratio is high. Our method can restore large patches of noisy pixels 

because it introduces pertinent prior information via the regularization term. It 

is most efficient to deal with high noise rcatio, e.g. ratio as high as 50%. 

Like other niecliiini-type filters, ACWMF can be done very fast. The aim of 

DPVM is to miiiimize the objective functional consisting of a data-fitting term 

and ail edge-preserving regularization term. It is equivalent to solving a system 

of nonlinear equations for those noise candidates. Usually, Newton's method is 

preferred to solve these nonlinear equations and a method to locate the initial 

guess is proposed [22]. However, the complexity of the algorithm is not good 

as expected. To improve timing, we propose a simple algorithm which we shall 

call secant-like method to solve these nonlinear equations. It converges in fewer 

number of iterations than Newton's method with both methods requiring the 

same iiumbei, of function and derivative evaluations per iteration. 

1.3 Organization of the Dissertation 

The focus of this dissertation is on removing random-valued impulse noise, and 

oil using the secant-like method to solve nonlinear equations. 

• In Chapter 2, we review the ACWMF and DPVM method for restoring the 

random-valued impulse noise. 

• 111 Chapter 3’ we show our two-phase iterative method for cleaning random-

valued impulse noise. 
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• In Chapter 4’ we describe Newton's method, the secant method, and the 

secant-like method for solving the nonlinear equations in the second phase 

of our algorithm. 

• In Chapter 5, we demonstrate the effectiveness of our two-phase iterative 

method using various images, and the secant-like method converges faster 

than Newton's method. The gain is greater for some parameters. 

• III Chapter 6, we give the conclusions. 



Chapter 2 

Review of ACWMF and D P V M 

2.1 Review of ACWMF 

ACWMF is a good method for removing random-valued impulse noise when the 

noise ratio is not high, see [12]. Here we give a review of the filter. 

Let the window size be {2h + 1)2 and L = 2h{h +1 ) . Then 

xf�=ine,dian{:</i-uj_,；, (2k)0ijij : —h < u, v < h}, 

where 2k is the weight given to pixel (?:’ j ) , and • represents the repetiton oper-

ation. Clearly, is the output of the standard median filter, whereas xfj' is the 

output of the identity filter when k > L. 

For current pixel yij under consideration, we first define differences 

4 = 1增 i d (2-1) 

where A; = 0’ 1’ … ’ L - 1. It is readily seen that d^ < 4 - i for k > 1, see [23]. 

These differences provide information about the likelihood of corruption for the 

current pixel. For example, if (i^-i is large, then the current pixel is not only the 

7 
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smallest or the largest one among the observation samples within the window, 

but also very likely contaminated by impulse noise. On the other hand, in the 

case where do is small, the current pixel may be considered as signal and be left 

unchanged in the filtering. Together, the differences do through d i - i reveal even 

more information about the presence of a corrupted pixel. 

To deteniiiiie whether the current pixel (?:，j) is corrupted, a set of thresholds 

Tk are employed, where Tk-i > U for k = 1,2, • • • ,L - 1. If any one of the 

inequalities 4�7；:, A; = 0’ 1，.. •，L _ 1, is true, then ijij is regarded as a noise 

candidate and replaced by the median i.e., x ĵ. Otherwise, yij is regarded as a 

signal candidate and will not be changed. 

If 3 X 3 windows are used (i.e., h 二 1 fcind L 二 4), four thresholds 71:, /c 二 

0,1, • • • ,3, are needed. The median of the absolute deviations from the median 

(MAD), which is defined as 

MAD = me.(\mn{yi-u,j-v - 為• —h < u, v < h} (2.2) 

is a robust estimate of dispersion [9, 24], and its scaled forms are used as the 

thresholds. Specifically, one sets 

n = s . MAD + 4 , 0 < /c < 3, (2.3) 

with 

= [40,25,10,5]. (2.4) 

This choice yields satisfactory results in filtering random-valued impulse noise 

when the noise ratio is not high [12]. And here, parameter s varies for different 

images degraded with different noise ratios, and it is observed empirically that 

good results could be obtained using 0 < s < 0.6 in suppressing impulse noise for 

various images. 

This median-based impulse detector is shown to be robust for a wide variety of 

images, which therefore simplifies the selection of the thresholds to the adjustment 
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of a single parameter [12j. 

2.2 Review of DPVM 

Recently, a detail-preserving variational method (DPVM) has been proposed to 

restore impulse noise [14). This variational method does not smear edges. 

By DPVM, the noisy images are restored by minimizing a convex objective 

functional Fy： 

Fy(x) - Y ^ k o . l d + f I Z a - ^mn), (2.5) 
(iJ)€A {i,j)eA (7n,n)eVij 

where A is the set of all indices (?；, j ) , and Vij is the set of the four closest 

neighbors of not including {ij). (3 is a regularization parameter, and 中“ is 

an edge-preserving potential function. Possible choices for 中�are: 

= I 力 r , 1 < < 2, 

�= l + - - l � g ( l + - ) ’ « > 0 , 
a' a' 

== log (cosh(^)) , a � 0 ’ 

(̂ o ⑴ 二 如 + 力2, a > 0’ 

see [16, 17’ 19，25, 26]. It was shown in [14] and [21] that under mild assumptions 

and a pertinent choice of the minimizer x of Fy ensures Xij 二 xjij for most 

of the uncoiTupted pixels yij. Rirtherniore, all pixels Xij such that Xij + ijij are 

restored so that edges and local features are well preserved. 

2.2.1 Minimization Scheme 

The minimization algorithm is a Jacobi-t.ype relaxation algorithm and works on 

the residual z = x — y. It is stated as follows. 
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1. Initialize z^f 二 0 for each {i,j) e A. 

2. At each iteration k, do the following for each {iJ) e A： 

a. Calculate 

= 似 yij 之細.一 y職 

(m,n)€Vij 

where is the derivative of ifa, and Zmn, for (m’n) G Vij, are the 

latest updates. 

b. If |<̂JJ，）| < 1, set ẑ -̂  = 0. Otherwise, find z^^ by solving the nonlinear 

equation 

13 Y. ‘ ( 4 ) + yij - 'rnn — Vrnn) = Sgn(4f). (2.6) 
{vi;n)€Vij 

3. Stop the iteration when 

I, J J 

and 

Fy(y + z � ) - 儿 

where T4 is some given tolerance. 

It was shown in [14] that the solution ẑ ĵ  of (2.6) satisfies 

sgn(必:)）=-sgn(4f), 

and that z(人:）converges to z = x - y where x is the minimizer for (2.5). The 

convergence of the minimization scheme has been shown in [14 . 

This minimization scheme is equivalent to solving the one-dimensional non-

linear equation (2.6) for all pixels (?!, j ) . Typically, Newton's method is preferred 

to solve the (2.6). Since the convergence domain of Newton's method can be very 

narrow, care must l)e excu'cised in choosing the initial guess, see [22]. 
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« • • „ ,J , J J 4 » • 7 • • " « 

Figure 2.1: (Left) The noise image. (Right) Restored image by DPVM. 

This detail-preserving method can preserve edges when denoising, but it has 

problem in suppressing noise patches, i.e., when many noise pixels are connecting 

with each other. Another dmwback is that some signal pixels at the edges will 

be distorted, see Figure 2.1. 



Chapter 3 

Two-Phase Iterative Method 

3.1 Introduction 

When the noise ratio is high, ACWMF may falsely detect some noise-free pixels 

as noisy pixels. If these erroneous noise candidates form patches, and are located 

near to edges, DPVM will distort them. To alleviate these drawbacks of each 

one of them, we apply our method iteratively with different thresholds. More 

precisely, at the early iterations, we take large thresholds in ACWMF so that it 

will only select pixels that are most likely to be noisy. Then we restore them by 

DPVM. In the subsequent iterations, we decrease the thresholds to include more 

noise candidates. Since the edges and the details are preserved by the regular-

izatioii successfully in each iteration, the restored image will not be distorted by 

the method. 

12 



A New Itenitive Procedure for Removing Impulse Noise 13 

3.2 Two-Phase Scheme 

3.2.1 Detection Phase 

Like other decision-丨)ased filters, the first phase of our method is to identify noise 

candidates. Since ACWMF may falsely detect some noise-free pixels as noisy 

pixels, we will modify the thresholds of ACWMF such that we can identify noise 

c;andidates more accurately. 

In this phase, we use 3 x 3 window size, and do not fix the thresholds in each 

iteration. The form of the thresholds is the following: 

if) = s • MAD('、）+ 4 + 2 0 ( r _ _ r), (3.1) 

for 0 < A： < 3, 0 < r < 厂⑴拟’ and 0 < s < 0.6, cf. (2.2)-(2.4). 

Then we apply ACWMF with the thresholds i f ’ � , 0 < /c < 3, to the image y: 

If ciny one of the inequalities d k �j f ) , 0 < k < 3, is true, then jjij is regarded as 

a noise candidate. Otherwise, y !� is regarded as a signal candidate. The difference 

(if, are computed by (2.1). Then we get the noise candidate set M � � �. Finally, let 
r 

JkM 二 [ This A / " � is the final noise candidate set at rth iteration and 
1=0 

will be restored at the second phase. 

3.2.2 Restoration Phase 

When we get the noise candidate set, we do not replace them by median filter. 

We restore them by DPVM, since the edges can be preserved by DPVM. 

For using the DPVM, the minimization function Fy is not the same as the 

(2.5). Since we just restore the noise candidates Â(，,）, the signal candidates will 
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not be changed. Then the new minimization functional Fy is: 

Fy (x )= l^ij - Vijl 

+ f m ) (3.2) 
一 V�j.)€"(’�)(川.’".)叫 

+ [ 如�ym.n - Xij) 
(m’n)eV^(,.) (i’j)eV,„„fW(’-) / 

where is the set of noise candidates at the rth iteration, and 二 

The minimizer x of (3.2) is obtained by using minimization scheme but re-

stricted onto the set of noise candidates A/"� .Hence, this phase is equivalent to 

solving the one-diinensional nonlinear equation (2.6) for each noise candidate. In 

the next chapter, we will give the Newton's method and secant-like method to 

solve this nonlinear equations. • 

3.2.3 Summary of the Algorithm 

So far, we know the two-phase scheme clearly. To restore the noisy images, 

we apply these two-phase alternatively. In the following we give our algorithm 

together. 

Algorithm: 

1. Set r = 0. Initialize y ( ” to be the observed image. 

2. Apply ACWMF with the thresholds j f ) , 0 < k < 3, which is formed by 

(3.1)，to the image y � to get the noise candidate set «M('’). 
r 

3. Let, A / " � =I j y W � . 

/=0 

4. For all { i j )车 A/"(',)’ take x ĵ = y - . 

Restore all pixels in A/"('') by minimizing the functional (3.2) over A/"(”). 
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5. Set y(，’+i) = X. 

6. If r < r„,ax, set r = r + 1 and go back to step 2. 

Ill practice, four iterations are enough, i.e., r„,ax 二 3 and the output is y � . 

This two-phase iterative method has successfully suppressed the noise while 

preserving most of the details and the edges in both cases, even when the noise 

ratio is high. 



Chapter 4 

Nonlinear Equation Solver 

4.1 Introduction 

According to the previous chapters, the second phase of our method is equivalent 

to solve the nonlinear equation (2.6) with some ipa-

There exist many methods for solving this nonlinear equation. Newton's 

method and the secant method are very popular and can be guaranteed to con-

verge. Usually we use ^^(t) = as our edge-preserving function, because it will 

tend to \t\ when a' tends to 1. But, if we use 如(t)=�"as our edge-preserving 

function, the complexity of the algorithm is not good. 

To improve the timing, we describe another simple method which is called 

the secant-like method to solve (2.6). This method converges in fewer number of 

iterations than Newton's method with both methods requiring the same number 

of function and derivative evaluations per iteration. 

16 
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4.2 Newton's Method 

4.2.1 Newton's Method 

Suppose we have a function f whose zeros are to be determined numerically. Let 

X be a zero of f and let a; be an approximation to x. Then by Taylor's theorem, 

if f" exists and is continuous, we have 

f(x + h) 二 f � + hf(x) + O(h') 

= / ⑷ 

= 0 , 

where h = x - x. When h is small enough, it is reasonable to ignore the 

term. Then we can get 

f[x) + hf'{x) 二 0 

f(x) 

If X is ail approxiiiiatioii to x, then x 一 should be a better approximation 

to X. 

We let xo be the initial guess. Newton's method begins with this initial guess 

n'o and then defines inductively 

丄.n+i = 丄 - 尸 ( ; ) [n > 0). 

4.2.2 Order of Convergence 

Now we shall analyze the convergence of the Newton's method. We assume that 

./•� is continuous and x is a. simple zero of / , so that f{x) = 0 and f'{x) + 0. And 

the errors are defined as 

6?! _ '•^n — ^ • 
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From the definition of the Newton iteration, we have 

6(1 + 1 — 工n+l _ 无 

. /(工n) 
— TTf \ 丄 

/ � (4.1) 
— _ /(工n) 
= “ 7M 

= e n f ' j X n ) - fjXn) 
— I M • 

By Taylor's theorem, we have 

f{x.n - e.n) = f(Xn) 一 + 

= m 

= 0 , 

where is a number between Xn and x. So we get 

enf'ix,,) - f M = ^r(Cn.)el 

Putting this in (4.1) leads to 

_ i/�(e».)广2 

〜 ！ 風 2 
� 2 / ' � 

where C is a constant. 

This tells us that Newton's method is the second order convergence (also 

called quadratic convergence). From [22] we know how to find the initial guess 

such that Newton's method is guaranteed to converge. However, the complexity 

of our algorithm with = is not good. 
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4.3 Secant Method 

4.3.1 Secant Method 

One of the drawbacks of Newton's method is that it involves the derivative of the 

function whose zero is sought. To overcome this disadvantage, the secant method 

has been proposed. 

If we use 
f M - f(Xn-l) 

⑴ n 一 — 1 

to approximate the /'(.t„), then Newton's iteration is changed as following 

i = Xn - f(Xn) (JT^^二 x) ^ ” . 

This algorithm is called the secant method. 

Since the calculation of Xn+i requires Xn and a;,,.-!, two initial points must 

be prescribed at the beginning. However, each new â +̂i requires only one new 

evaluation of f . 

4.3.2 Order of Convergence 

Similar to Newton's method, we have = x.,, - x. From the definition of the 

secant method, 

e,,+i 二 ；r,,.+i - X 

—f(x.n)Xn-\ - f(Xn-l)Xn 一 _ 
fM - f{Xn-l) (4.2) 

=/ ( : l ,n )e , , - i - f(Xn-l)en 
f(Xn) - f{Xn-l) 

— 1 ff{Xn) f(Xn-l)\ ^ ^ 
—"77 \ 77 7 ^n^n-l-

JK^n) - J[^'n-l) \ en e.n-1 / 
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By Taylor's theorem, we have 

f{Xn) = f{x + e-n) 

二 m + ej'ix) + \e^J"{x) + (9(4). 

Since f{x) = (), this gives us 

and 

Hence, we get 

触-Ziflizil = i(e,, — e , “ ) / �� + 

Moreover, we have 
n̂ _ n̂—1 二 ^n _ 工7i—1， 

and 
工n -工n—1 〜 1 

f(Xn) - f ( X n - l ) � / ' � . 

Put these results in (4.2), we arrive at 

1 f"[x) 

— C&n^n—li 

where C is a constant. To discover the order of convergence of the secant method, 

we first suppose that the secant method is a'th order convergence, then we have 

|e_".+i| �M | e „ r 

where M is a positive constant. Hence, 

|e,,| �y\//|e„-i� 
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and 

|e,,._i| �M - 去 W去. 

From these results, we get 

This can be written as 

Since the left side of this relation is a nonzero constant while e,,. 0, we have 

1 - a' + i = 0. 
a 

Taking the positive root of this equation, 

l + \/5 

So the order of convergence is 丄 + 今 We call the secant method's rate of 

convergence is siiperliiiear. 

Although each iteration of the secant method requires only one new evaluation 

of / , the order of convergence of the secant method is not good as Newton's 

met hod. 

4.4 Secant-like Method 

4.4.1 Secant-like Method 

As we mentioned before, even for Newton's method, the complexity of our algo-

rithm with = I力 is not veiy good. Fox example, for 30% noise ratio, it 

will take 30 times more CPU time than ACWMF. To improve the timing and 

from the idea of secant method, we describe a simple method which is called the 
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secant-like method. This method converges in fewer number of iterations than 

Newton's method with both methods requiring the same number of function and 

derivative evaluations per iteration. 

For our problem (2.6), we choose ( ^ �� =w i t h a > 1. With some 

modifications, similar techniques can be applied to other edge-preserving 中�too. 

According to Step 2(b) of the Minimization Scheme, we only need to solve 

(2.6) if > 1. We first consider the case where > 1-

When solving (2.6)，z,肌 + y職.-jjij, for (m’n) G Vy, are known values. Let 

these values be denoted by dj, for 1 < j < 4, and be arranged in an increasing 

order: 

dj < dj+i. 

Then (2.6) can be rewritten as 

4 

H{z) = - 1 + - dj)\z - djl""-' = 0. (4.3) 
i=i 

Hence (2.6) has a unique solution z* > di, see [22]. By evaluating {i/((ij_)}j=2’ 

we can check that if any one of the dj, 2 < j < 4’ is the root z*. If not, then 

lies in one of the following intervals: 

{dud2), {d2,ds), or (d^.oo). 

We first consider the case where is in one of the finite intervals {dj, dj+i). 

For simplicity, we give the details only for the case where z* G ((：“’ 而).The other 

cases can be analyzed similaHy. Since H is a monotone function in (d2, d-^), see 

22]’ it has an inverse G with G(H) = z. The goal is to compute G(0). Suppose 
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the following data are known: 

卿 二 办 ( 4 . 4 ) 

G'{H2) = P2. 

Note that G is the inverse of H 

G{H(z)) = z� 

so we have 

= 1 . 

In particular, 

_ = • ， ？: = 1，2. 

dz 

We approximate G by a cubic polynomial P which satisfies the conditions 

(4.4). Let 

z 二 P{H) 

= + a{H 一 H,) + b{H 一 Hi){H — H^) + cH[H - H,){H - H^) 

for some constants a, b, c. From the conditions 

z.i == Pm, 7： = 1,2 

and 

Pi = p'm, 

we obtain 
a _ 幻 - 之 1 

H2 — Hi 
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and 
_ H2(a - Pi) + Hi{a - P2) 

(H： - H2? . 

Thus the new approximate zero is given by 

P(0) = — ciHx + bHiH^. 

In suinniary, the iteration is given by 

= 2,, — a„H(Zn) + bnH{z,,)H{z.n-i), n > 1 

where 
^n 一 ^n—l 

=H{z.n) - m^n-l) 

and 1 
H(Zn)(an — WltT)^ + H(z.n.,)[an 一 

‘ 二 iH{Zn) - H(Zn-l)r • 

Given zq, the iterate zi is taken as the Newton iterate. Then apply the secant-like 

method to obtain the solution up to a given tolerance 丁b, that is, 

\Zn 一 ：n-l| < TB. 

Finally, we turn to the case where f �< - 1 . The nonlinear equation (4.3) 

becomes: 
4 

1 + a(3j2^gn{z — dj)\z - 丄 = 0 ’ 

we can use alinost the same method to solve this equation. 

4.4.2 Order of Convergence 

The secant-like method is equivalent to scheme 3 on p. 233 of [27], where it is 

stated that, the order of convergence is 1 + y/S. Now we stated the details about 

how to get this nuiiiber. 
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Since we use a sequence cubic polynomial Pn{H), n > 2, to approximate 

G{H) and 

Pn{H,) = G{H.i), K脚=G\Hi), i = n- l,n. 

The difference between G{H) and Pn{H) is 

Rn(H) 二 Gi^H) - P.,m 

where G lies in the interval determined by 1, Hn, and H. We know that 

Zn = Pn-i(O) and z* 二 G(0)，so the errors 

e-n+i 二 - 之 * 

=Pn{0) - G(0) 
(4.5) 

— G �t t 2 TT2 
— 4 ! 

二 CHi一此、 

where C is a, constant. 

Similar to the derivative in the previous section, we have 

Zi — z* 

where r/ is a number between Zi and 2*. Because H(z*) = 0’ we get 

H,= H{zi) 

=H'{'n)(z, - zn 

= 丨 ) e i . 

We put this result in (4.5), then we get 
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where Ci is a constant number. Assume that 

|en+i| � 

where M is a positive constant number. Then, for we have 

|en-i| �M - 去 l e j i . 

Hence we get the relation 

M|e,r �I C ^ i l W V厂悬w尝 . 

This can be written as 

Since the left side of this relation is a nonzero constant, we need 

2 ^ 
2 - a + - 二 0. 

a 

Taking the positive root of this equation, we get 

a = 1 + x/3, 

which means that the order of convergence of the secant-like method is 1 + \/3. 

Hence the method converges faster than Newton's method. In the next chap-

ter, we see the secant-like method always takes fewer number of iterations than 

Newton's method. Experimentally, the secant-like method is as robust as New-

ton's method although we do not have any theoretical result in this direction. 



Chapter 5 

Numerical Experiments 

5.1 Removing Noise 

111 this section, we compare our method with ACWMF [12] and DPVM [14 • 

The 256-by-256 picture of Lena and Bridge are used as the true image. Then 

30% and 50% of the pixels are corrupted by random noise uniformly distributed 

on its dynamic range [n„.i„, n„,axl, see Figures 5.1(a), 5.2(a), 5.3(a), and 5.4(a). 

Henceforth, we use the potential function ip(t) = |力「气 To measure our results, 

we use peak sigiial-to-noise ratio (PSNR) and mean absolute error (MAE) in our 

simulations. The definitions of PSNR and MAE are given in the following: 
1 M n 

r “ 255^ \ (5.1) 

P S N R 為 。 ( 侧 〜 1 一 

In the siinulations, for each noise level, the parameters s in (2.3) and p in (3.2) 

are chosen to give the best restoration in terms of PSNR. 

From Figures 5.1-5.4，we see that there are noticeable noise patches in the 

images restored by either ACWMF or DPVM, especially when the noise ratio 

27 
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Table 5.1: Errors of Restored Images at 30% Noise 

bird bridge camera goldhill lena 

Noise Image 15.85 13.98 13.79 15.23 14.48 

PSNR ACWMF 32.06 22.21 24.35 26.57 27.18 

DPVM 33.26 22.44 24.72 27.13 27.29 

Our method 33.72 22.76 25.08 27.52 28.33 

Noise Image 18.48 23.10 23.45 19.95 21.63 

MAE ACWMF 1.61 8.43 4.17 4.36 3.32 

DPVM 2.25 11.90 6.06 6.18 4.97 

Our method 1.27 7.95 3.67 3.85 2.80 

is 50%. In contrast, our method has successfully suppressed the noise while 

preserving most of the details and the edges in both cases. 

To assess the effectiveness of our method in processing various images, we tried 

three other 256-by-256 gray scale images. The parameters s and (3 were chosen 

to be the same as in the previous simulations. The results in terms of PSNR and 

MAE, are summarized in Tables 5.1-5.2. From the tables, we see that our method 

are significantly better than the other two methods. Pictures of the noisy images 

and the restored images can be found at www. math. cuhk. edu. hk/~rchan/paper/chn/. 

Overall, our restored images are significantly better than those restored by the 

other two methods. 



A New Itenitive Procedure for Removing Impulse Noise 29 

•國 
(a) (b) 

國圃 
(c) (d) 

Figure 5.1: (a) Image with 30% noise. Restored images by (b) ACWMF with 

s = 0.6, (c) DPVM with p = 0.19，and (d) our method with p = 2, s = 0.6 and 

4 iterations. 
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HU 
(a) (b) 

圓國 
(c) � 

Figure 5.2: (a) Image with 50% noise. Restored images by (b) ACWMF with 

s = 0.3, (c) DPVM with (3 = 0.19, and (d) our method with P = 2.3，s = 0.1 and 

4 iterations. 



A New Itenitive Procedure for Removing Impulse Noise 31 

a m 
(a) (b) 

關圓 
(c) ⑷ 

Figure 5.3: (a) Image with 30% noise. Restored images by (b) ACWMF with 

s 二 0.(3, (c) DPVM with (5 = 0.19, and (d) our method with "二 2’s = 0.6 and 

4 iterations. 
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mm 
(a) (b) 

(c) � 

Figure 5.4: (a) Image with 50% noise. Restored images by (b) ACWMF with 

s 二 0.3，(c) DPVM with p = 0.19, and (d) our method with P = 2.3，s = 0.1 and 

4 iterations. 
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Table 5.2: Errors of Restored Images at 50% Noise 

bird bridge camera goldhill lena 

Noise Image 13.62 11.82 11.59 12.99 12.28 

PSNR ACWMF 25.36 19.53 20.43 22.74 22.40 

DPVM 26.81 20.21 21.17 23,63 23.08 

Our method 29.93 20.77 22.53 25.04 25.48 

Noise Image 30.91 38.18 39.00 33.22 36.04 

MAE ACWMF 4.96 14.87 9.88 9.05 8.26 

DPVM 6.22 16.92 12.12 10.88 10.20 

Our method 2.84 12.84 6.86 6.85 5.41 

5.2 Complexity of Algorithm 

Now, we consider the complexity of our algorithm. Since 厂„概=3, the algorithm 

requires four applications of ACWMF and four applications of DPVM restricted 

to the set of the noisy pixels . Like other medium-type filters, ACWMF 

can be done very fast. The application of DPVM is the most time-consuming 

part as it requires the niiniinization of the functional in (3.2). If we use Newton's 

method to solve this problem, for 30% noise, our method takes 30 times more CPU 

time than ACWMF. Hence, we describe a secant-like method. We compare the 

nmnber of iterations of secant-like method with Newton's method with different 

magnitudes of q；. 

In the simulations, for each noise pixel, we use ACWMF in the first phase, and 

detail-preserving regularization in the second phase. Also, we use the secant-like 

method to solve (2.6) with the potential function = We choose (3 = 2 
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Figure 5.5: Compare the number of iterations of secant-like method with New-

ton's ineth od (a) restore 30% noisy image (b) restore 50% noisy image. 

for all settings. The tolerances is chosen to be 

Ta == (."max - •"'mill) X 1 0 斗 

and 
Ts 二 5x 10_4. 

In Figure 5.5, we give, for different values of a, the total nuni ber of iterations. 

From the figures, we see that the secant-like method converges faster than New-

ton's method. The gain is greater as a' approaches 1. 



Chapter 6 

Concluding Remarks 

In this thesis, we propose a two-phase iterative method for removing random-

valued impulse noise. To improving the CPU time, we describe a simple secant-

like method to solve the nonlinear equations. 

Simulation results indicate that the proposed method is significantly better 

than those using just nonlinear filters or regularization only. Our method can 

restore large patches of noisy pixels because it introduces pertinent prior infor-

mation via the regularization term. It is most efficient to deal with high noise 

ratio, e.g. ratio as high as 50%. 

In the second phase, we need to solve some nonlinear equations. We illustrate 

that the secant-like method converges faster than Newton's method, yet requiring 

the same nuiiiber of function and derivative evaluations per iteration. The gain 

is greater as a approaches 1. 
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