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A New Iterative Procedure for Removing Impulse Noise

Abstract

Abstract of thesis entitled:

A New Iterative Procedure

for
Removing Impulse Noise

Submitted by HU, Chen

for the degree of Master of Philosophy in Mathematics

at The Chinese University of Hong Kong in June 2004

This thesis proposes a two-phase iterative method for the random-valued im-
pulse noise removal. In the first phase, we use the adaptive center-weighted
median filter to identify pixels which are likely to be corrupted by noise (noise
candidates). In the second phase, these noise candidates are restored using a
specialized regularization method which allows edges and noise-free pixels to be
preserved. These two phases are applied in an alternate way. Simulation re-
sults indicate that the proposed method are significantly better than those using
just nonlinear filters or edge-preserving regularization only. The second phase
is equivalent to solving a one-dimensional nonlinear equation for each noise can-
didate. We describe a simple secant-like method to solve these equations. It
converges faster than Newton’s method, requiring the same number of function

and derivative evaluations per iteration.
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Chapter 1

Introduction

In image processing, images are often corrupted by noise during image acquisition
or digitization and transmission principally due to interference in the channel used
for transmission. There are many noise models in image processing applications.
Particularly, impulse noise and Gaussian noise are among the most common found
in image processing applications [1]. We will introduce these two noise models
in the later section. In this thesis, we focus on removing random-valued impulse

noise which is a kind of impulse noise from noisy image.

1.1 Noise Model

1.1.1 Impulse Noise

Impulse noise is frequently caused by malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission in a noisy channel.
We first give the definitions of the impulse noise. Let x;; be the gray level of

a true image x at pixel location (4, j) and [npmin, Tmax] be the dynamic range of x.
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If we let y;; be the gray level of the impulse noisy image y at pixel (i, 7), then

Tiis with probability p,
Yij = (1.1)
Lify with probability 1 — p,
where 7;; € [Nmin, Nmax) are random numbers and p is the noise ratio. Our goal
is to obtain a restored image X from the noisy image y. There are two kinds
of impulse noise in image processing applications. One is the fixed-valued (salt-
and-pepper) impulse noise, noisy pixels y;; can take either nmin OF Nmax, see [2].
Another is the random-valued impulse noise where 7;; can be any numbers 7;;
between Ny and Ny, see [3]. Cleaning such noise is far more difficult than
cleaning fixed-valued impulse noise since for the latter, the differences in gray
levels between a noisy pixel and its noise-free neighbors are significant most of

the times.

Figure 1.1: (Left-to-Right:) The noise-free (original) Lena image, the noisy
image corrupted by fixed-valued impulse noise, the noisy image corrupted by

random-valued impulse noise.

1.2 Removing Impulse Noise

So far, many techniques have been proposed to remove impulse noise from the

corrupted images [4]-[14], [3]. Most of them use the nonlinear filters to remove
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impulse noise [4]-[13], [3]. In recent years, detail-preserving variational method

(DPVM) has been proposed to restore impulse noise (14].

1.2.1 Nonlinear Filter

There are many classical nonlinear filters, such as median filter, mean filter, rank-
ordered mean filter, max and min filter etc. [1, 8. The best-known filter is the
median filter. which, as its name implies, replaces the value of a pixel by the

median of the gray levels in the neighborhood of that pixel:
&y = median{yi_y,j-v : “h Su,v < h}

where (2h + 1)? is the window size and &;; is the gray level of the restored image
x at pixel (4, ).

Median filters are particularly effective in the presence of impulse noise [1].
However, since filters typically are implemented invariantly across the images,
they also tend to modify pixels that are not affected by noise. In addition, when
the noise ratio is high, they are prone to edge jitter, and that the details and
edges of the original image are usually blurred by the filters, see (15] and Figure
1.2.

To improve performance, various decision-based filters have been proposed
where possible noise pixels are first identified and then replaced by using the
median filter. Examples of decision-based filters are the switch median filter
[11], the adaptive median filter [2], the adaptive center-weighted median filter
(ACWMF) [12], and the median filter based on homogeneity information [13].
These filters are good in locating the noise even in high noise ratio. However, the
main drawback is that the replacement of the noisy pixels by the median filter

entails blurring of details and edges, especially when the noise ratio is high.
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Figure 1.2: (Left-to-Right:) The original Lena image, The noisy image cor-
rupted by 50% random-valued impulse noise, The restored image by using median

filter with 7 x 7 window size.

1.2.2 Variational Method

For images corrupted by Gaussian noise, regularized least-squares methods, based
on edge-preserving regularization functionals have been used successfully to pre-
serve the edges and the details in the images [16]-[20]. But these methods fail in
the presence of impulse noise because the noise is heavy tailed, and the restora-
tion will alter considerable amount of pixels in the image, including those pixels
which are not corrupted by the impulse noise.

Recently, a detail-preserving variational method (DPVM) has been proposed
to restore impulse noise [14]. It uses a non-smooth data-fitting term (e.g. 1)
along with edge-preserving regularization. Because the [; data-fitting term leaves
unchanged the pixels which are similar to their neighbors [14, 21], DPVM can
remove impulse noise accurately. This variational method does not smear edges.
However when removing noise patches involving several adjacent pixels, the dis-
tortion of some uncorrupted image pixels at the edges cannot be avoided.

To overcome the drawbacks, in this thesis, we propose a two-phase itera-
tive method for removing random-valued impulse noise. First, noisy pixels are

detected using ACWMF; then these pixels are selectively restored by DPVM.
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These two phases are applied alternatively. Since in each iteration the edges and
the details are preserved for the noise candidates by the regularization method,
and no changes are made to the signal candidates, the performance of this com-
bined method is much better than just using either ACWMEF or DPVM, especially
when the noise ratio is high. Our method can restore large patches of noisy pixels
because it introduces pertinent prior information via the regularization term. It
is most efficient to deal with high noise ratio, e.g. ratio as high as 50%.

Like other medium-type filters, ACWMEF can be done very fast. The aim of
DPVM is to minimize the objective functional consisting of a data-fitting term
and an edge-preserving regularization term. It is equivalent to solving a system
of nonlinear equations for those noise candidates. Usually, Newton’s method is
preferred to solve these nonlinear equations and a method to locate the initial
guess is proposed [22]. However, the complexity of the algorithm is not good
as expected. To improve timing, we propose a simple algorithm which we shall
call secant-like method to solve these nonlinear equations. It converges in fewer
number of iterations than Newton's method with both methods requiring the

same number of function and derivative evaluations per iteration.

1.3 Organization of the Dissertation

The focus of this dissertation is on removing random-valued impulse noise, and

on using the secant-like method to solve nonlinear equations.

e In Chapter 2, we review the ACWMF and DPVM method for restoring the

random-valued impulse noise.

e In Chapter 3, we show our two-phase iterative method for cleaning random-

valued impulse noise.
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e In Chapter 4, we describe Newton'’s method, the secant method, and the
secant-like method for solving the nonlinear equations in the second phase

of our algorithm.

e In Chapter 5, we demonstrate the effectiveness of our two-phase iterative
method using various images, and the secant-like method converges faster

than Newton's method. The gain is greater for some parameters.

e In Chapter 6, we give the conclusions.



Chapter 2

Review of ACWMF and DPVM

2.1 Review of ACWMF

ACWMF is a good method for removing random-valued impulse noise when the
noise ratio is not high, see [12]. Here we give a review of the filter.

Let the window size be (2h + 1)* and L = 2h(h + 1). Then
;1:}“’}" = median{¥yi—u j-v, (2k)Oyij : —h S w,v < h},

where 2k is the weight given to pixel (i, ), and { represents the repetiton oper-
ation. Clearly, a; is the output of the standard median filter, whereas w?}" is the
output of the identity filter when k > L.

For current pixel y;; under consideration, we first define differences
S| S
d = |35 — yijl (2.1)

where k = 0,1,--- , L — 1. It is readily seen that dy < dy—; for k > 1, see [23].
These differences provide information about the likelihood of corruption for the

current pixel. For example, if d;_, is large, then the current pixel is not only the
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smallest or the largest one among the observation samples within the window,
but also very likely contaminated by impulse noise. On the other hand, in the
case where d is small, the current pixel may be considered as signal and be left
unchanged in the filtering. Together, the differences dy through dj,_, reveal even
more information about the presence of a corrupted pixel.

To determine whether the current pixel (i, j) is corrupted, a set of thresholds
T, are employed, where Ty > Ty for k = 1,2,---,L — 1. If any one of the
inequalities dy > Ty, k = 0,1,--+ ,L — 1, is true, then y;; is regarded as a noise
candidate and replaced by the median i.e., a;?j. Otherwise, y;; is regarded as a
signal candidate and will not be changed.

If 3 x 3 windows are used (i.e., h = 1 and L = 4), four thresholds T}, k =
0.1,--- .3, are needed. The median of the absolute deviations from the median

(MAD), which is defined as
MAD = median{yi—uj-» — 245 : =h < u,v < h} (2.2)

is a robust estimate of dispersion [9, 24], and its scaled forms are used as the

thresholds. Specifically, one sets
T.=s-MAD+ 4, 0k <3, (2.3)

with

[0, 61, 82, 83 = (40,25, 10, 5. (2.4)

This choice yields satisfactory results in filtering random-valued impulse noise
when the noise ratio is not high [12]. And here, parameter s varies for different
images degraded with different noise ratios, and it is observed empirically that
good results could be obtained using 0 < s < 0.6 in suppressing impulse noise for
various images.

This median-based impulse detector is shown to be robust for a wide variety of

images, which therefore simplifies the selection of the thresholds to the adjustment
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of a single parameter [12].

2.2 Review of DPVM

Recently, a detail-preserving variational method (DPVM) has been proposed to
restore impulse noise [14]. This variational method does not smear edges.
By DPVM, the noisy images are restored by minimizing a convex objective
functional Fy:
F(x) = Z |zi; — wij| + g Z Z ValTij — Tmn), (2.5)
(i.j)eA (i,j)€A (mn)EVij
where A is the set of all indices (i,j), and V;; is the set of the four closest
neighbors of (i, 7), not including (4, j). 3 is a regularization parameter, and ¢q is

an edge-preserving potential function. Possible choices for ¢, are:

o) = 7, l<a<?
It _
a

@alt) = log (cosh(é)), a >0,

Yalt) = Va+t?, a>0,

|t

Palt) =1+ log(1+ =), >0,

see [16, 17, 19, 25, 26]. It was shown in [14] and [21] that under mild assumptions
and a pertinent choice of 3, the minimizer X of Fy ensures &;; = y;; for most
of the uncorrupted pixels y;;. Furthermore, all pixels @;; such that &;; # vi; are

restored so that edges and local features are well preserved.

2.2.1 Minimization Scheme

The minimization algorithm is a Jacobi-type relaxation algorithm and works on

the residual z = x — y. It is stated as follows.
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1. Initialize 2 = 0 for each (i, ) € A.
2. At each iteration k, do the following for each (i, j) € A:

a. Calculate

f(” /8 Z ‘P:\ (yij — Zmn — ymn):

(m,n)eV;;

where ¢/, is the derivative of ¢q, and zp,, for (m,n) €V, are the

latest updates.

b. If IE(“] <1, set z( ) = (. Otherwise, find z by solving the nonlinear

equation

d Z Yn (k) + Yij — Zmn — ',Um,,_) — Sgll(gf;)) (26)

(mn)eV;;

3. Stop the iteration when
ma*({|z("+l) (")|} <7Ta

and
Fy(y +2%) = By (y +2*+D)
Fy(y +2V)

where 7, is some given tolerance.

S TA;

It was shown in [14] that the solution z( ) of (2.6) satisfies
sgn(z;) = —sen(€;}”),

and that z®) converges to 2 = X —y where X is the minimizer for (2.5). The
convergence of the minimization scheme has been shown in [14].

This minimization scheme is equivalent to solving the one-dimensional non-
linear equation (2.6) for all pixels (¢, j). Typically, Newton’s method is preferred
to solve the (2.6). Since the convergence domain of Newton’s method can be very

narrow, care must be exercised in choosing the initial guess, see [22].
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Figure 2.1: (Left) The noise image. (Right) Restored image by DPVM.

This detail-preserving method can preserve edges when denoising, but it has
problem in suppressing noise patches, i.e., when many noise pixels are connecting
with each other. Another drawback is that some signal pixels at the edges will

be distorted, see Figure 2.1.



Chapter 3

Two-Phase Iterative Method

3.1 Introduction

When the noise ratio is high, ACWMF may falsely detect some noise-free pixels
as noisy pixels. If these erroneous noise candidates form patches, and are located
near to edges, DPVM will distort them. To alleviate these drawbacks of each
one of them, we apply our method iteratively with different thresholds. More
precisely, at the early iterations, we take large thresholds in ACWMF so that it
will only select pixels that are most likely to be noisy. Then we restore them by
DPVM. In the subsequent iterations, we decrease the thresholds to include more
noise candidates. Since the edges and the details are preserved by the regular-
ization successfully in each iteration, the restored image will not be distorted by

the method.

12
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3.2 Two-Phase Scheme

3.2.1 Detection Phase

Like other decision-based filters, the first phase of our method is to identify noise
candidates. Since ACWMF may falsely detect some noise-free pixels as noisy
pixels, we will modify the thresholds of ACWMEF such that we can identify noise
candidates more accurately.

In this phase, we use 3 x 3 window size, and do not fix the thresholds in each

iteration. The form of the thresholds is the following:
T," = 5 - MAD™ + & + 20(rmax — 7), (3.1)

for 0 < k<3,0<7 < Tmax, and 0 < 5 < 0.6, cf. (2.2)-(2.4).

Then we apply ACWMEF with the thresholds T,f."), 0 < k <3, to the image y".
If any one of the inequalities dj > T,f,"), 0 < k < 3, is true, then y;; is regarded as
a noise candidate. Otherwise, y;; is regarded as a signal candidate. The difference
d). are co?lputed by (2.1). Then we get the noise candidate set M) Finally, let

N® = UM“). This N is the final noise candidate set at rth iteration and

1=0
will be restored at the second phase.

3.2.2 Restoration Phase

When we get the noise candidate set, we do not replace them by median filter.
We restore them by DPVM, since the edges can be preserved by DPVM.
For using the DPVM, the minimization function Fy is not the same as the

(2.5). Since we just restore the noise candidates N (") the signal candidates will
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not be changed. Then the new minimization functional Fy is:

@)= > oyl

(1,7)eN(T)

+§ Z Z Pa(Tij — Tonn) (3.2)

(i,j)eEN () (mn)€Vij
+ > > Calymn — i)
(mm)EV, (v (1,7)EVimn W)

where N is the set of noise candidates at the rth iteration, and Vyu =
(U(i.j)eN(") Vu) N

The minimizer X of (3.2) is obtained by using minimization scheme but re-
stricted onto the set of noise candidates N, Hence, this phase is equivalent to
solving the one-dimensional nonlinear equation (2.6) for each noise candidate. In
the next chapter, we will give the Newton’s method and secant-like method to

solve this nonlinear equations.

3.2.3 Summary of the Algorithm

So far, we know the two-phase scheme clearly. To restore the noisy images,
we apply these two-phase alternatively. In the following we give our algorithm
together.

Algorithm:

1. Set r = 0. Initialize y") to be the observed image.

2. Apply ACWMF with the thresholds T,f."), 0 < k < 3, which is formed by

(3.1), to the image y") to get the noise candidate set M),

3. Let N = | JM©.

1=0
4. For all (i,) ¢ N, take &;; =y .

Restore all pixels in A by minimizing the functional (3.2) over N’ k),
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5:: Set U+l =35,
6. If 1 < rypax. set 7 = r+ 1 and go back to step 2.

In practice, four iterations are enough, i.e., rmax = 3 and the output is y(‘”.
This two-phase iterative method has successfully suppressed the noise while
preserving most of the details and the edges in both cases, even when the noise

ratio is high.



Chapter 4

Nonlinear Equation Solver

4.1 Introduction

According to the previous chapters, the second phase of our method is equivalent
to solve the nonlinear equation (2.6) with some @,.

There exist many methods for solving this nonlinear equation. Newton’s
method and the secant method are very popular and can be guaranteed to con-
verge. Usually we use ¢, (t) = |t|* as our edge-preserving function, because it will
tend to |t| when a tends to 1. But, if we use ¢q(t) = [t|* as our edge-preserving
function, the complexity of the algorithm is not good.

To improve the timing, we describe another simple method which is called
the secant-like method to solve (2.6). This method converges in fewer number of
iterations than Newton’s method with both methods requiring the same number

of function and derivative evaluations per iteration.

16
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4.2 Newton’s Method

4.2.1 Newton’s Method

Suppose we have a function f whose zeros are to be determined numerically. Let
# be a zero of f and let # be an approximation to Z. Then by Taylor’s theorem,

if f" exists and is continuous, we have

fle+h)= f(x)+hf'(z)+O(h?)

= f(@

= (08

where h = & — 2. When h is small enough, it is reasonable to ignore the O(h?)

term. Then we can get

f(z) +hf'(x) =0

@)
f'(x)

_, (@)

If « is an approximation to &, then x — m
z

=5h =

should be a better approximation
to x.
We let 25 be the initial guess. Newton’s method begins with this initial guess

2o and then defines inductively

Tpyr = Ty — m ('n' > 0)

4.2.2 Order of Convergence

Now we shall analyze the convergence of the Newton’s method. We assume that
f" is continuous and Z is a simple zero of f, so that f(Z) = 0 and f'(Z) # 0. And
the errors are defined as

= Tn — &
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From the definition of the Newton iteration, we have

En+1 = Tpil — T
f(an) =
= Ip= -
f'(@n) (4.1)

(a)
B
enfl(l'n) f(-"'n)

J (‘Ln)

By Taylor’s theorem, we have

f(il»'n = en) == f(-'l"u) = e,,,f’(a:,,) 2 €n ”(én)
- 1@
=

where &, is a number between z, and Z. So we get

; 1
en.f (-'Un) = f(wn) = '2'f”(€n)6121
Putting this in (4.1) leads to

oo L),
n+ (2,") n
17 ) o
2F@

= (Ce?

Q

n’

where C' is a constant.

This tells us that Newton's method is the second order convergence (also
called quadratic convergence). From [22] we know how to find the initial guess
such that Newton’s method is guaranteed to converge. However, the complexity

of our algorithm with ¢, = [t|* is not good.

18
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4.3 Secant Method

4.3.1 Secant Method

One of the drawbacks of Newton's method is that it involves the derivative of the
function whose zero is sought. To overcome this disadvantage, the secant method
has been proposed.

If we use
fws) — f(mn-l)

Tp — Tp-1

to approximate the f’(x,), then Newton’s iteration is changed as following

2 e PN T T Tn — Tn-1
il f(”“) (f(flnl) == f(lL'n.-—l)) (n 2 1)

This algorithm is called the secant method.
Since the calculation of x,4; requires z, and ,-;, two initial points must
be prescribed at the beginning. However, each new x,4; requires only one new

evaluation of f.

4.3.2 Order of Convergence

Similar to Newton’s method, we have e, = 2, — Z. From the definition of the

secant method,

€nyl = Tpp1 — T
= f(:vn)ﬂ;'n—l = f(xnv—l)-'vn —7
f(ﬂ:n) = f(xn—l) (42)

f(ivn)e‘n—l = f(-’vn—l)en
f(:"'n) = f(‘vn—l)
f(mrl) f(a"n—-l)> ety

1
f(ﬂ:-n) - f(mn-l) ( €n Cn-1
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By Taylor’s theorem, we have

flza)= f(T*en)
f(@) +eaf'(Z)+ 3 e,,f”( ) + O(e)).

Since f(Z) = 0, this gives us

%’:):f@n% of"(2) + O(€3),
and
ﬂ:l;:luf()ﬂu;e,, S'(Z) + OERy).

Hence, we get

f(:l"n) f( Tp— l

€n €n-1

= 2(6,, —en-1)f"(Z) + 0(6;",_1).

Moreover, we have
€np — €Ep—1 = Tp — Tp-1,
and
Ty — Tp-1 1
f(mn) = f(aln 1) f,(i)

Put these results in (4.2), we arrive at

o L@
Enyl = 2f’(i) n€n-1

== Cenen—ly

where C is a constant. To discover the order of convergence of the secant method,

we first suppose that the secant method is ath order convergence, then we have
(43
|en+l| o A/[leﬂl
where M is a positive constant. Hence,

len| ~ Mlen—1|*
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and
i, ol
len_1| ~ M= |en|=.
From these results, we get
A it
Mle,|* ~ |C||en| M~ lea]=.
This can be written as
1
A/[H-%lcl—l =~ |en|l—a+-‘;.
Since the left side of this relation is a nonzero constant while e, — 0, we have
1
l-a+-—=0.
@

Taking the positive root of this equation,

1+
2

1+ 5
—

B

a=

So the order of convergence is We call the secant method’s rate of

convergence is superlinear.
Although each iteration of the secant method requires only one new evaluation
of f, the order of convergence of the secant method is not good as Newton’s

method.

4.4 Secant-like Method

4.4.1 Secant-like Method

As we mentioned before, even for Newton’s method, the complexity of our algo-
rithm with ¢,(t) = [t|* is not very good. Fox example, for 30% noise ratio, it
will take 30 times more CPU time than ACWMEF. To improve the timing and

from the idea of secant method, we describe a simple method which is called the
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secant-like method. This method converges in fewer number of iterations than
Newton's method with both methods requiring the same number of function and
derivative evaluations per iteration.
For our problem (2.6), we choose pa(t) = [t|* with @ > 1. With some
modifications, similar techniques can be applied to other edge-preserving ¢, too.
According to Step 2(b) of the Minimization Scheme, we only need to solve
(k)

(2.6) if |£“')| > 1. We first consider the case where &;;

5 P

When solving (2.6), 2mn + Ymn — ¥ij, for (m,n) € Vij, are known values. Let

these values be denoted by d;, for 1 < j < 4, and be arranged in an increasing

order:
dj < djq.
Then (2.6) can be rewritten as
1
H(z)=-1+ aﬂngn(z —d;)|z—d;|*t =0. (4.3)
j=1

Hence (2.6) has a unique solution z* > dj, see [22]. By evaluating {H (dj)}j=2,
we can check that if any one of the d;, 2 < j < 4, is the root z*. If not, then 2*

lies in one of the following intervals:
(dl, (12). (d‘), (13), (d;;, d4), or (dq, 00)

We first consider the case where 2* is in one of the finite intervals (d;, dj41).
For simplicity, we give the details only for the case where 2* € (da, d3). The other
cases can be analyzed similarly. Since H is a monotone function in (ds, d3), see

[22], it has an inverse G with G(H) = z. The goal is to compute G(0). Suppose

22
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the following data are known:

G(Hl) =21,
G(H-z) = 2,
(4.4)
GI(HI) =D,
G'(Hs) = pa.
Note that G is the inverse of H
G(H(2)) = 2,
so we have
G'(H(2) = G'(H)EZ
= 1.
In particular,
/ 1 ;
G'(H;) = TG gl
dz

We approximate G by a cubic polynomial P which satisfies the conditions

(4.4). Let

= z +a(H - H)) +bH - H)(H - H») +cH(H - H))(H — H,)

for some constants a. b, c. From the conditions

and

Pi = PI(H,'), = 1,2,

we obtain
2 — 2

“H,—H,
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and
Hj(a —p) + Hi(a — P2)_
(Hy, — H»)?

b=
Thus the new approximate zero is given by
P(0) = z; — aH; + bH H>.
In summary, the iteration is given by
Zne1 = 2n — @nH (2) + buH (z0)H(20-1), n>1

where
Zpn — Zp-1

H(Z.,,) = H(zn-l)

p =

and 1 ’
H(zy)(an — '[7/(2_"__1)') i H(Zn—l)(an - ‘m)

(H(zn) — H(zu-1))?

Given zp, the iterate z; is taken as the Newton iterate. Then apply the secant-like

bn —

method to obtain the solution up to a given tolerance 75, that is,

Finally, we turn to the case where ¢® < —1. The nonlinear equation (4.3)

becomes:

4
1+ a-ﬁngn(z —d;)|z —d;|*~' =0,
i=1

we can use almost the same method to solve this equation.

4.4.2 Order of Convergence

The secant-like method is equivalent to scheme 3 on p. 233 of [27], where it is
stated that the order of convergence is 1 + v/3. Now we stated the details about

how to get this number.
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Since we use a sequence cubic polynomial P,(H), n 2 2, to approximate

G(H) and
P,(H;) = G(Hy), P.(H;) = G'(H), i=n-—1n.
The difference between G(H) and P,(H) is

R.(H) = G(H)— P,(H)

@
E EILL—EGQ(H — Hp)*(H - Hy)?,

where &, lies in the interval determined by Hy-1, H,, and H. We know that

z, = P,_1(0) and 2* = G(0), so the errors

Entyl = Zn+l T z*
= Pn(O) - G(O)
(4.5)
() (£ p
= -¢ 4§£ )Hzr—le

n

where C' is a constant.

Similar to the derivative in the previous section, we have

zi—2*

where 7 is a number between z; and z*. Because H (z*) =0, we get

Hi= H(z)

H'(n)e;.

We put this result in (4.5), then we get

lensa| ~ |Cillenl*|en-1[?

25
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where C} is a constant number. Assume that

lens1]| ~ Mlen|®,
where M is a positive constant number. Then, for e,-; we have

eni| ~ M™% eq|".

Hence we get the relation
Mleal® ~ [Cillenl|M ™% en]=.

This can be written as

A/[Hﬁ-lcll—l = |en|2—a+%'

Since the left side of this relation is a nonzero constant, we need
2
2—a+—=0.
o

Taking the positive root of this equation, we get
a=1+V3,

which means that the order of convergence of the secant-like method is 1 + V3.

Hence the method converges faster than Newton’s method. In the next chap-
ter, we see the secant-like method always takes fewer number of iterations than
Newton's method. Experimentally, the secant-like method is as robust as New-

ton’s method although we do not have any theoretical result in this direction.



Chapter 5

Numerical Experiments

5.1 Removing Noise

In this section, we compare our method with ACWMF [12] and DPVM [14].
The 256-by-256 picture of Lena and Bridge are used as the true image. Then
30% and 50% of the pixels are corrupted by random noise uniformly distributed
on its dynamic range [Pumin, Mmax), see Figures 5.1(a), 5.2(a), 5.3(a), and 5.4(a).
Henceforth, we use the potential function p(t) = |t|*#®. To measure our results,
we use peak signal-to-noise ratio (PSNR) and mean absolute error (MAE) in our

simulations. The definitions of PSNR and MAE are given in the following:

M n
1
MAE = VN 2 ZI |zi5 — yijl,
=1 J= - (5.1)
PSNR = 10log
. % 2ii(Ti5 — yij)Q)

In the simulations, for each noise level, the parameters s in (2.3) and 3 in (3.2)
are chosen to give the best restoration in terms of PSNR.
From Figures 5.1-5.4, we see that there are noticeable noise patches in the

images restored by either ACWMF or DPVM, especially when the noise ratio

27
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Table 5.1: Errors of Restored Images at 30% Noise

bird | bridge | camera | goldhill | lena

Noise Image | 15.85 | 13.98 | 13.79 15.23 | 14.48

PSNR| ACWMF |32.06 | 22.21 | 24.35 26.57 | 27.18

DPVM 33.26 | 22.44 | 24.72 27.13 | 27.29

Our method | 33.72 | 22.76 | 25.08 27.52 | 28.33

Noise Image | 18.48 | 23.10 | 2345 | 19.95 | 21.63

MAE ACWMF 1.61 | 8.43 4.17 4.36 3.32
DPVM 2.25 | 11.90 | 6.06 6.18 | 4.97

Our method | 1.27 7.95 3.67 3.85 2.80

is 50%. In contrast, our method has successfully suppressed the noise while
preserving most of the details and the edges in both cases.

To assess the effectiveness of our method in processing various images, we tried
three other 256-by-256 gray scale images. The parameters s and 3 were chosen
to be the same as in the previous simulations. The results in terms of PSNR and
MAE, are summarized in Tables 5.1-5.2. From the tables, we see that our method
are significantly better than the other two methods. Pictures of the noisy images
and the restored images can be found at www.math. cuhk. edu. hk/~rchan/paper/chn/.
Overall, our restored images are significantly better than those restored by the

other two methods.
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(c) (d)

Figure 5.1: (a) Image with 30% noise. Restored images by (b) ACWMF with
s = 0.6, (¢) DPVM with 3 = 0.19, and (d) our method with 3 = 2,s = 0.6 and

4 iterations.
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(c) (d)

Figure 5.2: (a) Image with 50% noise. Restored images by (b) ACWMF with
s = 0.3, (¢) DPVM with 8 = 0.19, and (d) our method with 3 = 2.3,s = 0.1 and

4 iterations.
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(c) (d)

Figure 5.3: (a) Image with 30% noise. Restored images by (b) ACWMF with
s = 0.6, (¢) DPVM with 3 = 0.19, and (d) our method with 8 = 2,s = 0.6 and

4 iterations.
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(c) (d)

Figure 5.4: (a) Image with 50% noise. Restored images by (b) ACWMF with
s = 0.3, (¢) DPVM with 8 = 0.19, and (d) our method with 8 = 2.3,s = 0.1 and

4 iterations.
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Table 5.2: Errors of Restored Images at 50% Noise

bird | bridge | camera | goldhill | lena

Noise Image | 13.62 | 11.82 | 11.59 12.99 | 12.28

PSNR | ACWMF |25.36 | 19.53 | 2043 | 22.74 |22.40

DPVM 26.81 | 20.21 | 21.17 23.63 | 23.08

Our method | 29.93 | 20.77 | 22.53 25.04 | 25.48

Noise Image | 30.91 | 38.18 | 39.00 | 33.22 | 36.04

MAE | ACWMF 4.96 | 14.87 | 9.838 9.05 8.26

DPVM 6.22 | 16.92 | 12.12 10.88 | 10.20

Our method | 2.84 | 12.84 6.86 6.85 5.41

5.2 Complexity of Algorithm

Now, we consider the complexity of our algorithm. Since rpax = 3, the algorithm
requires four applications of ACWMF and four applications of DPVM restricted
to the set of the noisy pixels N). Like other medium-type filters, ACWMF
can be done very fast. The application of DPVM is the most time-consuming
part as it requires the minimization of the functional in (3.2). If we use Newton’s
method to solve this problem, for 30% noise, our method takes 30 times more CPU
time than ACWMEF. Hence, we describe a secant-like method. We compare the
number of iterations of secant-like method with Newton’s method with different
magnitudes of a.

In the simulations, for each noise pixel, we use ACWMEF in the first phase, and
detail-preserving regularization in the second phase. Also, we use the secant-like

method to solve (2.6) with the potential function ¢(t) = |t|. We choose B=2
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Secart- e method

e le o
S gt
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(a) (b)
. Compare the number of iterations of secant-like method with New-

Figure 5.5

ton’s meth od (a) restore 30% noisy image (b) restore 50% noisy image.

for all settings. The tolerances is chosen to be

TA'= (nmax = n‘mi") X 10-4
and
75 =5 x 107

In Figure 5.5, we give, for different values of «, the total num ber of iterations.

From the figures, we see that the secant-like method converges faster than New-

ton’s method. The gain is greater as « approaches 1.

34



Chapter 6

Concluding Remarks

In this thesis, we propose a two-phase iterative method for removing random-
valued impulse noise. To improving the CPU time, we describe a simple secant-
like method to solve the nonlinear equations.

Simulation results indicate that the proposed method is significantly better
than those using just nonlinear filters or regularization only. Our method can
restore large patches of noisy pixels because it introduces pertinent prior infor-
mation via the regularization term. It is most efficient to deal with high noise
ratio, e.g. ratio as high as 50%.

In the second phase, we need to solve some nonlinear equations. We illustrate
that the secant-like method converges faster than Newton’s method, yet requiring
the same number of function and derivative evaluations per iteration. The gain

is greater as a approaches 1.
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