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Abstract of thesis entitled: 

Speech Recognition on DSP: 

Algorithm Optimization and Performance Analysis 

Submitted by Y U A N MENG 

for the degree of Master of Philosophy 

in Electronic Engineering 

at The Chinese University of Hong Kong in 

July 2004. 

This thesis describes the exploitation of state-of-the-art automatic speech 

recognition (ASR) techniques for DSP-based embedded applications. Auto-

matic speech recognition technology has advanced rapidly in the past decades. 

While many ASR applications employ powerful computers to handle the com-

丨 plex recognition algorithms, there is a clear demand for effective solutions on 

embedded platforms. Digital Signal Processor (DSP) is one of the most com-

monly used hardware platforms that provides good development flexibility and 

requires relatively short application development cycle. 

Implementation of speech recognition algorithms generally involves a lot 

of floating-point arithmetic operations and manipulation of complex functions, 

which are not desirable for low-cost DSP hardware. Algorithm optimization is 

therefore necessary to remove such undesirable operations as far as possible. In 

this thesis, an isolated word recognition system (IWR) and a connected word 

recognition system (CWR) have been developed. More importantly, we present 

a thorough understanding and analysis for individual computational steps in 

the complex ASR algorithms. The most computationally intensive parts are 

identified and a set of appropriate optimization methods such as numerical 

quantization, simplification and approximation are applied to facilitate real-

time processing on a specific DSP platform. Experimental results show that 

the optimized recognition algorithms can be run about three times faster than 
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real time with slight degradation of recognition accuracy. We have also inves-

tigated and implemented two practical techniques, namely end-point detection 

(EPD) and spectral subtraction (SS), which are important for the ASR system 

to operate in real-world environments. Experimental results show that these 

techniques can not only satisfy the real-time requirement, but also enhance the 

recognition accuracy. 

With the detailed algorithm analysis and experiments, the relation between 

computational efficiency and recognition performance has been studied exten-

sively. This research can serve as a useful reference for the engineers with 

general DSP background to design ASR applications that meet their specific 

requirements on recognition accuracy and hardware resources.-
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摘要 

本文深入探討了自動語音識別新技術(ASR)在基於嵌入式DSP系統中的應用。 

自動語音識別技術在過去的幾十年間得到了快速的發展。儘管大多數ASR應用 

都採用具有強大運算能力及資源的計算機作爲開發平台以便處理複雜的識別算 

法，但是人們仍舊有將識別算法應用於嵌入式系統的想法和需求°數字信號處理 

器(DSP)，就是當今 流行的嵌入式平台之一 °它以其良好的開發靈活性及相對 

較短開發周期在嵌入式領域中佔有舉足輕重的地位。 . 

實現語音識別算法通常需要大量的浮點運算’而且要用到很多複雜的函 

數。這對於低功耗的DSP硬件來説是難以實現的°因此，我們需要優化算法來 

盡量減少不合需要的運算。我們不僅開發了兩個獨立的語音識別系統，孤立詞語 

音識別系統（IWR)和連接詞語音識別系統（CWR)�更重要的是，我們全面地、 

徹底地分析了複雜的語音識別算法中各個獨立的計算單元，並且指出了其中計算 

量 大的單元。對於這些單元，我們採用了不同的優化方法來降低計算量，以實 

現在特定DSP平台上的實時處理。這些方法大致上包括數値量化、簡化及近似° 

實驗結果表明，通過算法優化，整個處理時間可以被縮減到允許實時處理 長時 

間的三分之一，而識別率只有微小的下降。我們還硏究及實現了兩種實用技術， 

端點監測(EPD)和譜減法(SS)�這兩種方法對於真實環境中的自動語音識別是十 

分重要的。實驗結果表明，這兩种技術不僅可以滿足實時處理要求，同時也提高 

了識別率。 . 

通過詳細的算法分析及完整的實驗，我們清晰地揭示了計算有效性與識別 

性能之間的内在關係。同時，本硏究也可以爲那些嘗試在特定硬件系統上實現自 

動語音識別應用的工程師提供有效的幫助和參考。 
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Chapter 1 

Introduction 

Throughout the human history, speech has been the most dominant and conve-

nient means of communication between people. Today, speech communication 

is not only for face-to-face interaction, but also between individuals at any mo-

ment, anywhere, via a wide variety of modern technological media, such as wired 

and wireless telephony, voice mail, satellite communications and the Internet. 

With the rapid development of communication technologies, a promising speech 

communication technique for human-to-machine interaction has come into be-

ing. Automatic speech recognition (ASR) is the core challenge towards the 

natural human-to-machine communication technology [1 . 

Automatic speech recognition aims to automatically convert a speech wave-

form into a sequence of words by machine [2]. Currently, there have been a 

number of successful commercial ASR products ([3] [4] [5] [6]). However, many 

problems still exist in real-world ASR applications. The recognition accuracy 

of a machine is, in most cases, far from that of a human listener, and its per-

formance would degrade dramatically with small modification of speech signals 

or speaking environment. Due to the large variation of speech signals, speech 

�recognition inevitably requires complex algorithms to represent this variabil-

ity. As a result more computation and memory capacity are needed. But for 

real-world applications, such as embedded ASR systems, only limited resources 

are available. The goal of this research is focused on the exploitation of var-

ious optimization methods for state-of-the-art ASR techniques for DSP-based 
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Chapter 1. Introduction 

embedded applications while retaining high recognition accuracy. 

1.1 History of ASR development 

The earliest attempts to implement automatic speech recognition on machine 

began in the 1950s. The first significant ASR system was built at Bell Labs 

in 1952 by Davis, Biddulph and Balashek for isolated digit recognition [7]. In 

this system, only one single speaker can be recognized based on measuring the 

spectral resonances during the vowel region of each digit. 

In the 1960s and 1970s, a great deal of fundamental ideas in speech recog-

nition emerged and were published. These new techniques include fast Fourier 

transform (FFT) [8], cepstral analysis [9], and linear predictive coding (LPC), 

10] [11] [12] for spectral estimation and feature extraction, as well as dynamic 

time warping (DTW) [13] and Hidden Markov Models (HMMs) [14] [15] for 

pattern matching and acoustic modeling. 

While isolated word recognition was investigated in the 1970s, the problem 

of connected word recognition was the focus in the 1980s. In addition, the 

approach of pattern recognition shifted from template-based to statistical mod-

elling methods. In particular, the HMM approach was researched by Bell Labs 

16], CMU [17], IBM [18],etc. 

Since 1990s, people have moved their interests to the difficult task of Large 

Vocabulary Continuous Speech Recognition (LVCSR) and indeed achieved a 

great progress. Speech recognition has been developed from theoretical methods 

to practical systems.. Meanwhile, many well-known research and commercial 

institutes have established their recognition systems including ViaVoice system 

by IBM, HTK system by the University of Cambridge and Whisper system by 

Microsoft, etc. [2 . 
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Chapter 1. Introduction . 

1.2 Fundamentals of automatic speech recog-

nition 

1.2.1 Classification of ASR systems 

A speech recognition system can operate in many different conditions such 

as speaker dependent/independent, isolated/continuous speech recognition, for 

small/large vocabulary [19 . • 

Speaker-dependent versus independent system 

A speaker-dependent system is a system that recognizes a specific speaker's 

speech while speaker-independent systems can be used by any unspecified 

speaker. 

Isolated versus continuous speech recognition system 

- I n an isolated word recognition system, each word (note that word may be a 

simple utterance) is assumed to be surrounded by silence or background noise. 

This means that both sides of a word must have no speech input, making definite 

word boundaries easy to construct. This kind of recognition is mainly used in 

applications where only a specific digit or a word needs to be dictated. 

Connected speech (or more correctly 'connected utterances') recognition is 

similar to isolated word recognition. But it allows several words/digits to be 

spoken together with minimal pause between them. Longer phrases or utter-

ances are therefore possible to be recognized. 

Continuous speech recognition is much more natural and user-friendly. The 

system is able to recognize a sequence of connected words, which are not sepa-

• rated by pauses, in a sentence. This mode requires much more computation time 

and memory, and it is more difficult to operate than isolated word recognition 

mode for the following reasons: 

• Speakers' pronunciation is less careful; 
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Chapter 1. Introduction . 

• Speaking rate is less constant; 

• Word boundaries are not necessarily clear. 

Therefore the accuracy of continuous speech recognition is usually low com-

pared with the preceding modes. 

Small versus large vocabulary size 

It is clear that the smaller the vocabulary size, the higher the recognition ac-

curacy. Usually we classify the difficulty level of implementing a speech recog-

nition system with a score from 1 to 10 according to Table 1.1, where 1 means 

the simplest system (speaker-dependent, able to recognize isolated words in 

a small vocabulary (10 words)) and 10 correspond to the most difficult task 

(speaker-independent continuous speech over a large vocabulary (say, 10,000 

words)). State-of-the-art speech recognition systems with acceptable error rates 

are somewhere between these two extremes [20 . 

II II 

Isolated Word Continuous Word 

Speaker Dependent Small Voc 1 Small Voc 5 

Large Voc 4 Large Voc 7 

Multi-Speaker Small Voc 2 Small Voc 6 

Large Voc 4 Large Voc 7 

Speaker Independent Small Voc 3 Small Voc 8 
Large Voc 5 Large Voc 10 

Table 1.1: Classification of speech recognition difficulties 

1.2.2 Automatic speech recognition process 

Fig. 1.1 illustrates the architecture of a typical speech recognition system that 

employs today's main-stream approach. The acoustic models represent the 

4 



Chapter 1. Introduction . 

acoustic properties, phonetic properties, microphone and environmental vari-

ability, as well as gender and dialectal differences among speakers. The lan-

guage models contain the syntax, semantics, and pragmatics knowledge for the 

intended recognition task. These models can be dynamically modified according 

to the characteristics of the previously recognized speech. This is referred to as 

model adaptation. 

C A c o M s t i T N ^ F r o n t - e n d �L a n g u a p _^j^ecoded V M \ 
j y 讚 ^ y H Analysis Recognition Analysis 

^ ^  

^ ^ 广 — ^ 
�— • ‘ 

Acoustic Language 
^ ^ Models ^ Models • 

• Figure 1.1: General block diagram of an automatic speech recognition system 

Front-end analysis 

Front-end analysis, also referred to as acoustic analysis or feature extraction, is 

the first step in an automatic speech recognition system. This process aims to 

extract acoustic features from the speech waveform. The output of front-end 

analysis is a compact, efficient set of parameters that represent the acoustic 

properties observed from input speech signals, for subsequent utilization by 

acoustic modeling. 

There are three major types of front-end processing techniques, namely lin-

ear predictive coding (LPC) [21], mel-frequency cepstral coefficients (MFCC) 

22], and perceptual linear prediction (PLP) [23], where the latter two are most 

commonly used in state-of-the-art ASR systems. 
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Chapter 1. Introduction . 

Acoustic pattern recognition 

Acoustic pattern recognition aims at measuring the similarity between an in-

put speech and a reference pattern or a model (obtained during training) and 

accordingly determines a reference or a model, which best matches the input 

speech, as an output. One approach of acoustic pattern matching is called the 

dynamic time warping (DTW) [24]. DTW is a method which measures the 

distance between each input frame and each reference frame using the dynamic 

programming algorithm to find the best warping of the pattern, and determines 

the best match by minimizing the distance between the input frame and the 

reference frame. 

Another approach is based on statistical models. The most successful one 

is hidden Markov models (HMMs) [25], which characterize speech signals us-

ing a pre-trained "hidden" Markov chain. In the training stage, one or more 

HMMs corresponding to speech sounds of the same class (e.g., phones, words, 

phrases) are designed and optimized to represent the statistical features of that 

,class. In the recognition stage, probabilistic measures are taken to calculate 

how much an unknown input speech matches the given set of HMMs. There 

are many different kinds of HMM structures, among which the discrete HMM 

(DHMM), continuous-density HMM (CDHMM) are the most popular and suc-

cessful. CDHMM will be further discussed in later chapters. 

Language analysis 

In recent years language analysis is becoming more and more important in 

speech recognition, especially for large vocabulary continuous speech recognition 

(LVCSR) tasks. The speech decoding process needs to invoke knowledge of 

pronunciation, lexicon, syntax, and pragmatics in order to produce a satisfactory 

text sequence for further interpretation. In particular, the probabilistic N-gram 

language models, a specific form of probabilistic FSG language models, has been 

widely used due to its ease of implementation and coherence with the structure 

of an HMM [26 . 
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Chapter 1. Introduction . 

1.3 Performance measurements of ASR 

The performance of an ASR system mainly consists of three major parts: recog-

nition accuracy, complexity and robustness. 

1.3.1 Recognition accuracy 

Recognition accuracy is the most important and straightforward measure of 

speech recognition performance. Empirically, the collected speech data are par-

titioned into training set and test set. The training set, which usually contains 

most of the available data, is utilized for parameter estimation of the acoustic 

models. The remaining data form the test set, which is used to measure the ASR 

performance over signals unavailable during training. The recognition accuracy 

of training set and test set is evaluated by the training-set word error rate and 

test set word error rate, respectively, where the latter is a critical design target 

for most ASR systems. However, as the recognition accuracy for new data is not 

available in real implementations, the design objective is usually converted to 

minimizing both the training-set word error rate and the performance difference 

between the training set and the test set. 

1.3.2 Complexity 

Complexity is another issue that needs to be considered in most commercial 

ASR systems, especially when hardware cost is critical to system success. In 

general, the complexity of an ASR system refers to its computational complexity 

and model complexity. Computational complexity concerns the cost of execu-

tion time in each module of the system. For most practical implementations 

where the ASR operation is required to be finished in real time, computational 

complexity should definitely be well considered. Model complexity is usually 

measured by the number of distinct model parameters. There is a tradeoff be-

tween the model complexity and recognition accuracy. A reduced model com-

plexity can provide the obvious benefits of savings in memory and computation 

while the recognition accuracy will drop down at the same time. 
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Chapter 1. Introduction . 

1.3.3 Robustness 

While accuracy is crucial to speech recognition performance, robustness is also 

of great importance to an ASR system. At present, most ASR systems are 

trained upon a set of speech samples collected under some intended conditions. 

They would perform well if the operating conditions match the intended condi-

tions. Unfortunately, this assumption is often violated after system deployment, 

as variation in operating conditions is virtually inevitable. Important aspects 

of operating conditions include the level of background noise, channel noise and 

distortion, speaker difference, speaking style and syntactic deviation, spontane-

ity of speech, etc. In practice, the deviation of these conditions from those 

assumed during the design phase may result in substantial degradation in per-

formance. This has been the cause of increasing concerns about ASR robustness 

in recent years [27], and it has in fact become a critical performance index of 

almost all speech recognition systems. 

1.4 Motivation and goal of this work 

After nearly sixty years of research, speech recognition technology has reached a 

relatively high level. However, most state-of-the-art ASR systems run on desk-

top with powerful microprocessors, ample memory and an ever-present power 

supply. In these years, with the rapid evolvement of hardware and software tech-

nologies, ASR has become more and more expedient as an alternative human-

to-machine interface that is needed for the following application areas: 

• Stand-alone consumer devices such as wrist watch, toys and hands-free 

mobile phone in car where people are unable to use other interfaces or big 

input platforms like keyboards are not available. 

• Single purpose command and control system such as voice dialing for 

cellular, home, and office phones where multi-function computers (PCs) 

are redundant. 
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Chapter 1. Introduction . 

There is a great request for the implementation of automatic speech recognition 

for these consumer applications. 

As a matter of fact, the development has been impeded by a number of issues: 

computational costs, robustness in adverse environments, etc. One solution for 

the first issue is to use embedded systems which aim to provide low-power and 

high speed characteristics. Among various embedded systems, Digital Signal 

Processor (DSP) is one of the most popular embedded platforms on which com-

putationally intensive algorithms can be implemented. It has the advantage of 

providing good flexibility and relatively short application development cycle. 

Constrained by the current hardware technologies, reliable recognition of large-

vocabulary fluent speech is still not state of art, but reliable and highly accurate 

isolated/connected word recognition (IWR/CWR) with small limited vocabu-

lary (tens of words) systems should be achievable. However, the algorithms 

of IWR/CWR are developed using many floating point and complex functions 

such as integer divisions, logarithms, cosines and conditional loops. Low cost 

embedded systems generally can not fast process these functions because they 

don't have specific hardware structures to handle them. Optimizations of the 

recognition algorithms for low-cost hardware are necessary. It is important to 

implement them with no floating-point and minimal complex functions to re-

duce computational complexity. In fact, there lies a trade-off that algorithm 

optimization not only makes the implementation run faster, it degrades the 

recognition accuracy as well. One goal of this research is to deeply understand 

the ASR algorithms and investigate the possible algorithmic optimizations to 

improve the ASR accuracy, while controlling both the model complexity and 

computational complexity with acceptable performance degradation. In recent 

years, there are some researches on code optimizations for speech recognition on 

low cost fixed-point embedded systems (DSP or others) [28] [29] [30] and [31 . 

They did have outlined some optimization techniques for front-end and/or pat-

tern recognition parts. But unfortunately, they did not give a full presentation 

of the optimization techniques for the whole recognition system and furthermore 

there is still no such a framework that generally summarizes the optimizations 

9 



Chapter 1. Introduction . 

and the relationship between the optimizations and the recognition performance. 

Another goal of this research is intensively setting up a framework which could 

help the system designers who want to realize real-time ASR on DSP estimate 

the maximal recognition performance they could achieve within their limited 

hardware recourses. 

In a real-world environment, the background noise and when the speaker 

speaks and stops are both unknown. We need to explore some practical tech-

niques to make the speech recognition system more adaptive to the environment 

for practical implementations. 

1.5 Thesis outline 

The rest of this thesis is as follows: 

In Chapter 2, we describe the conventional front-end techniques used in au-

tomatic speech recognition in more detail. And pattern recognition technologies 

will be illustrated in Chapter 3. 

Since our work is based on a particular hardware platform which contains a 

Digital Signal Processor (DSP) chip, we need to know the structure and features 

of this system. In Chapter 4, we first compare different embedded solutions to 

show the advantage of choosing DSP as the target platform. And we also give 

a brief view of the considerations and solutions for ASR implementation on 

hardware aspect. 

Due to the consideration of computational complexity and model complexity, 

optimization strategies should be taken in ASR algorithms. In Chapter 5, we 

illustrate many optimizations of ASR algorithms for DSP applications. This is 

the most innovative and hard work in realization of speech recognition system for 

DSP applications. Two speech recognition systems are established in Chapter 

6. Experiments and the performance analysis will be presented in this chapter. 

As we know, in real world, noise-corrupted speech will damage the recogni-

tion system seriously. In Chapter 7, we propose a commonly-used simple speech 

enhancement technique, modified spectral subtraction (SS), to reduce the back-
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ground noise influence. Meanwhile, since we don't know exactly the beginning 

and ending of a speech utterance, we need a method to determine whether an 

utterance has started or not. In this chapter, the traditional end-point detec-

tion technique will be utilized. And experiments will be setup to see how these 

approaches influence the recognition accuracy. 

Chapter 8 provides the conclusion and suggestions for the future work. 
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Chapter 2 

Signal processing techniques for 

front-end 

Fig. 2.1 shows a block diagram of the speech recognition system used in our 

research. A speech recognition system can be roughly divided into two parts, 

namely front-end and pattern recognition. 

#» 

( ^ o u s t i c W a i ^ W ) ^ Data Feature ^ Search 
N. J Acquisition Extraction | Result J 

~ “ ~ 1 I If  
厂 _ 丨 厂 _ 1 _ _丨 I 
I End-point . ^ Speech . • 
I Detection j j Enhancement j I Model 
mmmm M̂B MM ĥv mmmm mm^ | ^̂ ^̂ ^̂ ^̂  ^^^^^^ 

Front-end Pattern Recognition 

Figure 2.1: Block diagram of ASR system 

Typically, the front-end building block includes two modules, namely data 

acquisition and feature extraction. As an optional choice, the end-point detec-

tion and speech enhancement module can be inserted to make the speech signal 

more adaptive and robust to the noise. 

The data acquisition module usually contains a microphone and a codec 

from which digitized speech data are generated. For DSP applications, speech 
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data is usually represented as a sequence of 16-bit long signed integers. So this 

module mainly depends on the hardware system and this will be illustrated in 

the following chapter. In this chapter, we only focus on the feature extraction 

module and optional module in the front-end part which contains many signal 

processing techniques. 

2.1 Basic feature extraction principles 

Fig. 2.2 is the detailed block diagram of the feature extraction processing. 

Feature extraction is done on short-time basis. The speech signal is divided into 

overlapped fixed-length frames. From each frame, a set of frequency-domain or 

cepstral-domain parameters are derived to form the so-called feature vector. In 

the following subsections, some basic principles and analysis techniques used in 

the feature extraction module will be carried out. 

2.1.1 Pre-emphasis 

The digitized speech signal,s (n), derived from the data acquisition module 

passes through a pre-emphasis process, which performs spectral flattening with 

a first-order FIR filter [16]: 

H{z) = l-a'z-\0.9<a< 1.0 (2.1) 

In this consideration, the output of the pre-emphasis network,s (n) 

s (n) = s (n) - a • 5 (n - 1) (2.2) 

where a is the pre-emphasis parameter (a most common value for a is about 

0.95). By using this method, the spectrum magnitude of the outgoing pre-

emphasized speech will have a 20 dB boost in the upper frequencies and a 32 

‘ d B increase at the Nyquist frequency. 

2.1.2 Frame blocking and windowing 

In this step the pre-emphasized speech signal,s (n), is segmented into frames, 

which are spaced 20—30 msec apart, with 10—15 msec overlaps for short-time 
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Figure 2.2: Block diagram of MFCC front-end analysis 
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spectral analysis. Each frame is then multiplied by a fixed length window 

h where Nq is the length of a frame. 

Window functions are signals that are concentrated in time, often of lim-

ited duration Nq. While window functions such as triangular, Kaiser, Barlett, 

and prolate spheroidal occasionally appear in digital speech processing systems, 

Hamming and Hanning are the most widely used to taper the signals to quite 

small values (nearly zeros) at the beginning and end of each frame for minimiz-

ing the signal discontinuities at the edge of each frame [32]. 

In this research, Hamming window, which is defined in Eq. 2.3, is applied. 

1 0.54 — 0.46 . cos (27m/iVo), 0 < n < No 
(2.3) 

0 otherwise ‘ 

The output speech signal of Hamming windowing can be described as 
x{n) = h (n) •s(n),0<n< No (2.4) 

2.1.3 Discrete Fourier Transform (DFT) computation 

“After windowing the speech signal, Discrete Fourier Transform (DFT) is used 

to transfer these time-domain samples into frequency-domain ones. There 

is a family of fast algorithms to compute the DFT, which are called Fast 

Fourier Transforms (FFT). Direct computation of the DFT from Eq. 2.5 

requires A/'^operations, assuming that the trigonometric functions have been 

pre-computed. Meanwhile, the FFT algorithm only requires on the order of 

iVlog2 N operations, so it is widely used for speech processing to transfer speech 

data from time domain to frequency domain. 
N-l 

X{k) = "^x (n) e-j一 N (2.5) 

- n = 0 

If the number of FFT points, N, is larger than the frame size Nq, N - Nq 

‘zeros are usually inserted after the Nq speech samples. 

2.1.4 Spectral magnitudes 

Generally speaking, the signal X {k) is a complex value containing the real and 

image parts. But in the speech recognition system which deals with the real 
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speech signal, the complex value is always ignored by researchers. Therefore, 

only the magnitude of the complex value X (k) is utilized in this situation. If we 

assume the real and image parts of X (k) are Re (X {k)) and Im (X (/c)), then 

the spectral magnitude of the speech signal should be 

X{k)\ = ^jRe(X �) 2 + Im {X (k)f (2.6) 

2.1.5 Mel-frequency filterbank 

In order to represent the static acoustic properties, the Mel-Frequency Cepstral 

Coefficient (MFCC) is used as the acoustic feature in the cepstral domain. This 

is a fundamental concept which uses a set of non-linear filters to approximate the 

behavior of the auditory system. It adopts the characteristic of human ears that 

human is assumed to hear only frequencies lying on the range between 300Hz 

to 3400Hz. Besides, human's ears are more sensitive and have higher resolution 

to low frequency compared to high frequency. Therefore, the filterbank should 

be defined to emphasize the low frequency over the high frequency. Eq. 2.7 is 
r 

the filterbank with M filters {m=l,2,, M), where filter m is the triangular filter 

given by: 

0 k< f{m-l) 

H m { k ) = { (/(；^-/(二 )） ^ ) - � � , （2.7) 
( / g 二 ) f{m)<k<fim + l) 
0 A; > / (m + 1) 

� 

M-l 
which satisfies ^m � = 1 . 

m = 0 

The central frequency of each mel-scale filter is uniformly spaced below 1 

kHz and it follows a logarithmic scale above 1 kHz as shown in Eq. 2.8 and 

Fig. 2.3. More filters process the spectrum below 1 kHz since the speech signal 

contains most of its useful information such as first formant in lower frequencies 

(Fig. 2.4). 

M d ( / ) = 25951ogi� ( l + 嘉 ) (2.8) 
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Figure 2.3: Frequency response of mel-filter bank 
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Figure 2.4: Mel scale of central frequency in each filter 

17 



Chapter 2. Signal processing techniques for front-end 

If we define fi and 九 be the lowest and highest frequencies of the filterbank 

in Hz, Fg the sampling frequency in Hz, M the number of filters and N the size 

of FFT, the centering frequency f (m) of the m仇 filterbank is: 

十 ( / 0 + m . 晴 ; ^ ； 二 ) (2.9) 
•sj \ M y 

where the Mel-scale Mel is given by Eq. 2.8 and is its inverse 
Md—i (6) = 700 . (10̂ /2595 _ 1) . (2.10) 

2.1.6 Logarithm of filter energies 

After passing through the filterbanks, the log-energy at the output of each filter 

is calculated as shown in Eq. 2.11 

'N-1 -

s (m) = logio , 0 < m < M (2.11) 
.k=0 . 

Human ears also smooth the spectrum and use logarithmic scale approxi-

mately. 

2.1.7 Discrete Cosine Transformation (DCT) 

The inverse DFT is performed on the output of the filterbank. Since the log 

power spectrum is symmetric and real, the inverse DFT is reduced to discrete 

cosine transformation (DCT). This transformation decorrelates features, which 

leads to using diagonal covariance matrices instead of full covariance matrices 

while modeling the feature coefficients by linear combinations of Gaussian func-

tions. Therefore complexity and computational cost can be reduced. This is 

especially useful for speech recognition systems. Since DCT gathers most of the 

information in the signal to its lower order coefficients, by discarding the higher 

‘ order coefficients, significant reduction in computational cost can be achieved. 

Typically the number of coefficients, K, for recognition ranges between 8 and 

13. The equation is as following 

M - l 

C { k ) = ^ S (m) cos (TT • /c (m + 1/2) / M ) , 0 < k < K (2.12) 
m=0 
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2.1.8 Cepstral Weighting 

A weighting window (named liftering window) is applied after decorrelating the 

cepstral coefficients. In this work, the sinusoidal lifter (as shown in Eq. 2.13) is 

utilized to minimize the sensitivities by lessening the higher and lower cepstral 

coefficients. 

^ ‘ K / kirY 
C{k) = C{k)' 1 + — . sin — ， 0 < A : < i ^ (2.13) 

. 2 \K J • 

2.1.9 Dynamic featuring 

In addition to the cepstral coefficients, the time derivative approximations are 

used as feature vectors to represent the dynamic characteristic of speech signal. 

To combine the dynamic properties of speech, the first and/or second order 

differences of these cepstral coefficients may be used which are called the delta 

and delta-delta coefficients. And these dynamic features have been shown to 

be beneficial to ASR performance [33]. The first-order delta MFCC may be 

described as 

E I. � 

AC^ (k) = (2.14) 

E I' 
i=-p 

where C^ (k) denotes the k仇 cepstral coefficient at frame t after liftering 

and P is typically set to the value 2 (i.e., five consecutive frames are involved). 

The second-order delta MFCC is obtained in a straight forward manner [34 

35] [36:. 

In this work, we use the MFCCs, energy and their first-order delta coef-

ficients to form the feature vectors Ot,t G {1, ...,T}. It is worth noting that 

we do not add the second-order delta coefficients, because they do not show 

significant improvement in our task and it would definitely increase the compu-

tational cost and need more memory to store the model parameters. Also, we 

apply end-point detection and a speech enhancement technique, namely spec-

tral subtraction to the front-end in an attempt to make the recognition system 

more robust to noise. These specific issues will be shown latter. 
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2.2 Practical issues 

When people use an automatic speech recognition (ASR) system in real envi-

ronment, they always hope it can achieve as good recognition performance as 

human's ears do which can constantly adapt to the environment characteris-

tics such as the speaker, the background noise and the transmission channels. 

Unfortunately, at present, the capacities of adapting to unknown conditions 

on machines are greatly poorer than that of ours. In fact, the performance of 

speech recognition systems trained with clean speech may degrade significantly 

in the real world because of the mismatch between the training and testing 

environments. If the recognition accuracy does not degrade very much under 

mismatch conditions, the system is called robust 

2.2.1 Review of practical problems and solutions in ASR 

applications 

^ Although signal processing technologies show promise in leading to robust sys-

tems, the fundamental method for improving robustness is to understand the 

reason of the mismatch between the training data used in system development 

and testing data gathered in real environment [16]. Fig. 2.5 illustrates the main 

causes of acoustic variations resulting from the speech production processes [37 . 

Generally speaking, there are two main sources of this mismatch: 

1. Additive noise, such as fan running, other speaker's speech, car engines, 

etc.; . 

2. Channel distortion, such as reverberation, telephone line, microphones, 

etc. 

According to the different sources of the mismatch, robustness techniques may 

be split into three categories: 

1. Speech enhancement directly deals with these problems on speech data. 

It tries to make corrupted speech data much cleaner and matched to the 
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acoustic condition of the clean speech data. Spectral subtraction (SS) is 

a typical example. 

2. Robust speech feature extraction techniques are used to extract 

feature more immune to additive noise or channel distortion. It includes 

Cepstral Mean Subtraction (CMS), Relative Spectral (RASTA), etc. 

3. Model-based compensation approaches try to adapt the pre-trained 

recognition models such that they are more matched to the real acous-

tic environment. The famous examples are Vector Taylor Series (VTS), 

Parallel Model Combination (PMC), etc. 

However, there is another problem in practical implementation of ASR al-

gorithms. In theoretical analysis, a speech recognizer is assumed that the start 

and end of an utterance is known. It starts the recognition search from the 

beginning frame and ends the search at the end frame. However, in a real ap-

plication, utterance segmentation is unknown. One should find a way to detect 

“the beginning and end of an utterance. Some systems use a push-totalk button 

to let the users decide the utterance segmentation; therefore utterance detection 

algorithm is not needed. This model sometimes requires you to push and hold 

while talking. You push to indicate when the speech begins and then release 

when the end of speech. The disadvantage is the necessity to activate the speech 

processing manually each time one speaks. To make the system more flexible, 

we use an automatic utterance detection algorithm, called end-point detection 

(EPD), to decide when to start recognition, when to stop recognition in real 

time [38]. 

In the following subsections, we will first illustrate a typical model of en-

vironment which is critical to the recognition system. Then we will move on 

‘ t o the practical issues, end-point detection and spectral subtraction, in more 

detail. 
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2.2.2 Model of environment 

As mentioned in Subsection2.2.1, the main effects of environment are additive 

noise and channel distortion. Additive noise, such as door slams, a fan running 

in the background, or other speaker's speech, is common in our daily life. Chan-

nel distortion may be caused by reverberation, the presence of an electrical filter 

in the A/D circuitry, the response of the local loop of a telephone line, etc. Fig. 

2.6 shows a widely used model of the speech signal corrupted by both additive 

noise and channel distortion [39 . 

x[m] • h[m] • y[m: 
A 

n[m] 

Figure 2.6: A model of the environment 

Assume x [m] is clean speech signal, h [m] is the impulse response of channel 

distortion, n [m] is noise signal, and y [m] is corrupted speech signal. In time 

domain, the relation about these values is: 

y[m\= X [m] * /i [m] + n [m] (2.15) 

Additive noise n [m] is defined as white noise. And it is assumed to be 

stationary and uncorrelated with the clean speech signal x [m]. In this work, 

we ignore the effect of channel distortion. 

2.2.3 End-point detection (EPD) 

When implementing the end-point detection method, it is often assumed that 

during several frames (10 to 200 milliseconds) at the beginning of the incoming 
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speech signal, the speaker has not said anything as shown in Fig. 2.7. Thus, 

within this interval, the statistics of the background silence or noise is mea-

sured. The end-point detection is often based on the energy threshold which is 

a function of time [39]. Actually, several energy-based measurements have been 

proposed for end-point detection [40] [41] [42] [43]. In this work, we use the 

mean square energy (MSE) measurement. This is defined as the average of the 

squared sum of the speech samples in a frame in time domain, which is shown 

in Eq 2.16. 

1 N 

where N is the number of speech samples of one frame. 

If we suppose there are M frames of silence or noise at the beginning of the 

speech utterance, the estimated noise can be achieved by smoothing the MSE 

derived from these M frames of signals. Depending on the estimated noise, we 

can set thresholds or noise levels to detect the boundary of speech. If the MSE 

-of a frame is higher than the first predefined threshold, it is possibly believed 

as the beginning point. Then, if the MSE of a following frame is lower than the 

second predefined threshold, the end of the speech may be detected. 

Figure 2.7: End-point detection with boundary tb and tg 
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2.2.4 Spectral subtraction (SS) 

In spectral subtraction, we assume that there is no channel distortion but only 

additive noise in speech data. Then the environment model Eq. 2.15 can be 

simplified as: 

y[m] = X [m] + n [m] (2.17) 

After Fast Fourier Transform, the noisy speech signal is transformed to fre-

quency domain. Basically, most methods of speech enhancement have in com-

mon the assumption that the power spectrum of a signal corrupted by uncor-

related noise is equal to the sum of the signal spectrum and the noise spectrum 

44；. . 

I 糊 2 = | 權 2 + 剛 | 2 (2.18) 

However, taking this assumption as a reasonable approximation for short 

time analysis (20-25msec), it can lead to a simple noise subtraction method. In 

order to reduce the additive noise, what we need to do is to estimate |7V 

by the received speech data \Y { f ) f . Commonly, a method to achieve this is to 
p 2 use the average \Y (/)| over M frames which are known to be just silence/noise 

(i.e., when no speech is present) as noise estimate. If the noise is stationary, 

this estimate will be rather accurate. 
2 1 

聊 2 (2.19) 
i=0 

Then, an estimate \X can be achieved by subtracting the noise estimate 
. 2 

N ( / ) from the speech signal |y (/)| : 

义(/)|2 = \y{f)\' — | ^ ( / ) f = \Y{f)\' (1 - (2.20) 

where frequency-dependent signal-to-noise ratio SNR ( / ) is defined as 

、 = (2.21) 

N{f) 

Eq. 2.20 shows the magnitude of the frequency-domain speech signal but 

not the phase. It is not a problem since the phase information is always ignored 

in speech recognitions [44 . 
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Chapter 3 

HMM-based Acoustic Modeling 

In a speech recognition system, the incoming speech features from the front-end 

part are modelled by hidden Markov models (HMM). Since people traditionally 

suppose the speech signal to be short-time stationary and the speech features 

carry the information of the speech acoustic properties, the features should obey 

some kind of distribution. So HMMs, which have long dominated the world of 

acoustic modeling, are used to characterize the speech signal as a parametric 

stochastic process and statistically represent the variation of a speech unit (a 

word / phoneme/syllable). 

3.1 HMMs for ASR 

Generally speaking, a hidden Markov model in an automatic speech recognition 

system is defined by the following elements: 

• 0 = {0i,02, - The output observation sequence. The observation 

symbols correspond to the physical output of the recognition system being 

modeled; 

• n = { 1 , 2 , i V } - A set of states corresponding to the state space; 

• A = {aij} - State-transition probability matrix, where aij represents a 

transition from state i to state j ; 
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• B = {bj (ot)} - The output probability matrix, where bj (ot) is the prob-

ability of emitting symbol Ot when state j is entered; 

• TT = {ttJ - The initial state distribution where 

TT广 p (So = i) 1 < z < Â . 

Since ÂJ and TT̂  are all probabilities, they must follow these probabilities: 

N 

J^aij = 1 

N 

i=l 

On all accounts, we can use the following notation to represent the whole pa-

rameter set of an HMM for convenience. 

In this work, we use the widely applied model (as shown in Fig. 3.1) with 

the following properties: 

• Continuous density hidden Markov model (CDHMM); 

• States with Gaussian mixtures; 

• Left-to-right word model, no state skip. 

3.2 Output probabilities 

The output probabilities can be discrete or continuous. In order to achieve a 

.higher resolution of the output result, we choose the continuous density hidden 

Markov model. In this case, the output probability density function (PDF) is 

the multivariate Gaussian density: 

bj (o) =G{o,Jlj,Uj) = 1 “ - K “ 力 V ( “ 》 ) ( 3 . 1 ) 
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^55 
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Observation 
Sequence 

^ 古 4 古5 

Figure 3.1: A simple graph view of an HMM 

where D is the dimension of the vector space. It is the length of the feature 

vector. The parameters of the Gaussian PDF are the mean vector Jlj and 

“the symmetric covariance matrix Uj. Due to the decorrelated characteristic 

derived from the feature extraction part, the covariance matrix is diagonal. The 

determinant of the covariance matrix Uj can be simplified to the multiplication 
D 

of all the diagonal elements, f ] ah. 
d=l 

Practically, only one Gaussian distribution can not appropriately estimate 

the speech parameters. In this consideration, Gaussian mixtures are often used 

as following: 

bj P) =• E Cj,mG (o, Uj,m) 
m=l 

- = 艺 CL- / i ^ A e U u �e B ( “ j - ) �� - ‘ ) ) ’ (3.2) 
m=l V W 

M 

, E = 1 
• m=l 

Mixture densities are in principle flexible enough to sufficiently approximate 

"arbitrary" densities when an appropriate number of components is used. 
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3.3 Viterbi search engine 

The algorithm for finding the best state sequence (Viterbi, 1967; Forney, 1973) is 

known as the Viterbi algorithm. It is an application of dynamic programming 

for finding a best scoring path in a directed graph with weighted arcs. This 

trellis framework is shown in Fig. 3.2. 

State 个 y 

^ 1 1 1 

—ĥ ^T ĵ̂ Jî jSl̂ fc) I I I I ‘ • 
1 2 3 4 5 6 7 8 Frame 

Figure 3.2: The Viterbi trellis computation for the HMM 

Generally speaking, the Viterbi algorithm for isolated word recognition can 

be separated into three major parts 

• Initialization 

• (i) = nA (oi)， l<i<N 

• Recursion 

� 1 男器 � aij -bj{ot),l<j <N,2<t<T 

• Termination 

P = 5t (AO 

P is the score from one model. The best matched model is achieved by com-

paring each P of all the models. 
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3.4 Isolated word recognition (IWR) fc Con-

nected word recognition (CWR) 

In this work, we mainly focus on the isolated word recognition and connected 

word recognition algorithms which are computationally saving and have been 

implemented on DSP platforms. 

3.4.1 Isolated word recognition 

Isolated word recognition, by its name, is a task within which only a single 

word is recognized. Each word forms a unique model which can be a digit, 

a letter or a string of syllables. These words or strings are all modelled in 

the vocabulary. The vocabulary size is always finite, and there are only a few 

models can be recognized. Due to the simplicity of the searching structure, 

isolated word recognition has been commercially available [45]. 

Let V = {wi,w2, -..^Wy} be a set of v words to be recognized. If A is an input 

-utterance to be recognized and all words are equally probable to be spoken, then 

the recognized word is 

w = arg max P {A\w) 
wev 

The process of an isolated word recognition system is shown in Fig. 3.3. 

yf AM of Wj V 

^ ^ AM of ^ ^ 
. ： �— ^ Maximum � 

A • ——^ ^ 

： selection 
^ ^ 1 

�A M o f W y , 

AM: Acoustic Model 

Figure 3.3: Process of isolated word recognition 
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3.4.2 Connected word recognition (CWR) 

Connected word recognition is an extension of isolated word recognition. For 

connected word recognition, the exit state of one HMM is connected to the 

entry state of another HMM. In this case, path extension can be within or 

across models. The recognition result is given by the best model sequence 

W = {wi,w2, •..•,Wn} that has the highest accumulated probability at the last 

frame. The search network of connected word recognition is shown in Fig. 3.4. 

Figure 3.4: The search network of connected word recognition 
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Chapter 4 

DSP for embedded applications 

In this chapter, we focus on reviewing the hardware environment: a fixed-point 

Digital Signal Processor (DSP) platform. First, a brief view of the embedded 

systems will be given and comparisons will be made to illustrate the advantage 

of using DSP platform for our work. Second, the key features of the specific 

platform will be shown to support the reason of choosing this DSP platform 

，for the ASR implementation. At last, we will roughly explain the difference 

between fixed-point and floating-point algorithms. 

4.1 Classification of embedded systems (DSP, 

ASIC, FPGA, etc.) 

For embedded systems, the cost of speech recognition can be negligible compar-

ing to the total system cost. Typically, only 5 to 10% of the cost can be used 

for additional speech module to the product. With the advances in semicon-

ductor technologies, a number of mainstream Integrated Circuit (IC) products 

which use digital circuit techniques had emerged. The digital revolution not 

only increases circuit robustness, cost efficiency, system integration, and flex-

ibility, but also enables a continuous stream of completely new consumer ap-

plications, increasingly based on embedded (re) programmable processor cores 

like Digital Signal Processors (DSPs), and Field-Programmable Gate Arrays 

(FPGA) chips and un-programmable processors like Application-specific ICs 
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(ASICs) [46]. There are many principles such as flexibility, scalability, reusabil-

ity, portability and short development times for selecting the right hardware for 

the embedded speech recognition engine. The following is the comparison of 

some alternatives available for digital signal processing with DSP, which is the 

hardware applied in this research: 

• The FPGA alternative 

Field-Programmable Gate Arrays have the capability of being reconfig-

urable within a system, offering reasonably fast time to market. However, 

FPGAs are significantly more expensive and typically have much higher 

power dissipation than DSPs with similar functionality. 

• The ASIC alternative 

Application-specific ICs can be used to perform specific functions ex-

tremely well, and can be made quite power efficient. However, since ASICs 

are not field reprogrammable, they can not be changed after development. 

‘ Consequently, every new version of the product requires a redesign and 

has to be re-produced. This is a big impediment to rapid time-to-market. 

On the other hand, programmable DSPs can merely change the software 

program without changing the silicon, which greatly reduces the devel-

opment cost and makes aftermarket feature enhancements possible with 

mere code downloads. 

Furthermore, more often than not, in real time signal processing applica-

tions, ASICs are typically employed as bus interfaces, glue logic, and func-

tional accelerators for a programmable DSP-based system. According to the 

above description on various popular embedded systems nowadays, the reason 

of choosing DSP as the hardware platform for our research is quite obvious: 

• Single-cycle multiply-accumulate operation; 

• Real-time performance, simulation and emulation; 

• Flexibility; 
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• Reliability; 

• Increased system performance; 

• Reduced system cost. 

Applications of DSP: 

• Classic signal processing: digital filtering, adaptive filtering, FFT, spec-

trum analysis; 

• Modern signal processing: AR, ARM A, wavelet analysis; 

• Speech processing: speech coding, speech synthesize, speech recognition, 

speech enhancement, speech mail, speech storage; 

• Image processing: image compressing/transferring, image recognition, an-

imation, image enhancement; 

• Military electronics; 
r 

• Automatic control; 

• Consumer electronics. 

Although DSP is powerful for real-time processing, especially for speech pro-

cessing, it is not that easy to implement the functionally complex automatic 

speech recognition algorithm on it. 

In recent years, some new embedded systems have emerged, such as MIPS 

and Intel Strong Arm. .These systems are mainly embedded in iPAD and they are 

all for general purpose use. They generally don't have any special architectures 

for signal processing like DSP does. 

4.2 Description of hardware platform 

In our research, the hardware platform we are using is a DSP Starter Kit (DSK) 

board (Fig. 4.1) with a fixed-point, 160 MHz clock cycle DSP on it, namely 

TMS320VC5416 DSP. This starter kit is a product of Texas Instrument Inc. 
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(TI). It is a low-cost platform which enables customers to evaluate and develop 

applications for the TI C54X DSP family. The primary features of the DSK 

are: 

• 160 MHz TMS320VC5416 DSP; 

• PCM3002 Stereo Codec; 

• A microphone with amplification; • 

• On-board Flash and SRAM. 

Mic Line Line Speaker 
111 Out Out 
I I I 

I I 丨 丨 / I 
USB Power External JTAG Reset LEDs DIP 
Port Jack Header Switch Switches 

Figure 4.1: Main sections on the board 
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In this DSP, there are some specific blocks which are designed for some 

commonly-used operations, such as FFT, VQ, etc. These architectures can 

make the DSP run faster and more effective for these operations in speech 

recognition, speech coding and some other implementations. 

4.3 I /O operation for real-time processing 

In Fig. 4.1, there is a microphone port which can be connected to an external 

microphone to pass analog speech data in and also there is a speaker out port 

which can output the processed speech data simultaneously. Both hardware 

and software should cooperate to realize the real-time input/output operation. 

In this project, we utilize the pipeline method which is suggested by TI [47 . 

Fig. 4.2 is the hardware structure of I/O processing. First, the digitized 

speech sample from the CODEC passes through a serial port interface on the 

chip and then is stored in the Data Receive Register (DRR). Second, after a 

dedicated frame of speech data is full, a hardware interrupt, called serial port 
$ 

receive interrupt service routine (ISR), will be enabled and this frame of data 

goes to the audio software interrupt which activates the main function of the 

speech processing. Then when the processing of this frame is completed, the 

processed speech data will return to the ISR and each speech sample will serially 

go through the Data Transmit Register (DXR) which is connected to the output 

serial port. 
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Audb Software Interrupt 
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Serial Port Serial Port  

^ OUT 

Wudio Sourad Codec f periphera 11 

• “ a sample 

Figure 4.2: Hardware structure of I/O processing 
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Fig. 4.3 is the diagram showing how the interrupts operate along pro-

cessing. In this diagram, HWIl, HWI2, and HWI3 are hardware interrupt 

(HWI) threads, and SWIl, SWI2, SWI3, and SWI4 are software interrupt (SWI) 

threads. The priority of threads decreases from left to right. (SWI2 and SWI3 

have the same priority.) A thread can be interrupted by a thread to its left, 

if that thread becomes ready to run and no higher priority threads are ready. 

Each software interrupt thread can be preempted by any hardware interrupt 

thread. A software interrupt thread can be preempted by a higher-priority soft-

ware interrupt thread. This may occur if the lower-priority software thread 

itself posts a higher-priority thread. After we load out program to DSP and 

initialize the hardware environment, the DSP will fall into an idle loop to wait 

for any hardware interrupt or software interrupt occur. 

This procedure of I/O operation is a general method called 'pipeline'. This 

'pipeline' architecture is suitable for real-time data processing for speech. 

r 

w. 
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� Figure 4.3: Diagram of software interrupt priorities 
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4.4 Fixed point algorithm on DSP 

While most ASR systems for PC use are based on floating-point algorithms, 

most of the processors used in embedded systems are fixed-point processors. 

An inevitable deviation from the original design is caused by the finite amount 

of arithmetic precision available with fixed-point processors [48 . 

Normally, a floating point number has the format with sign bit, mantissa 

and exponent. For example, the IEEE standard for floating-point number has 

1-bit sign bit, 23-bit mantissa and 8-bit exponent. In this case, the mantissa 

provides a fixed length of resolution and the exponent has a wide dynamic range 

of 2128 ；^ io38. Because every floating-point number is individually normalized 

into this format, it maintains the 23-bit precision while within the 10̂ ® dynamic 

range. Depending on this good precision, the algorithm designer needs not care 

about the scaling problems. However, it usually costs more power and more 

execution time than fixed-point operation. On the other hand, in a 16-bit 

fixed-point processor, the only format is a 16-bit integer, ranging from 0 to 

'65535 (unsigned) or -32768 to +32767 (signed). So for an algorithm designer, 

the algorithm should carefully normalize its numerical behavior to the dynamic 

range of a 16-bit integer at every computation stage [31] [49 . 

Another consideration to the fixed-point algorithm is the efficiency of dif-

ferent numerical operations. Generally, there is always a hardware multiplier 

incorporated in a fixed-point processor which enables addition and multiplica-

tion be completed in one CPU cycle. However, there is no hardware for division 

which takes more than 20 cycles to do it by a routine. Neither the hardware can 

provide other complex operations such as logarithm, exponent, trigonometric 

functions and etc. To avoid such complex operations, some strategies should 

be considered. For example, we often replace division operation with the pre-

computed inverse data so that a division can be changed to a multiplication. 

Another way for taking division is using bit-shift. This is a simple but effective 

operation on DSPs. For example, right-shift one bit for a value in binary format 

is equal to dividing this value by 2. And bit-shift only needs 1 cycle indeed. In 

the latter chapter, we will discuss a number of useful strategies of optimizing 
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the speech recognition algorithms for DSP applications in more detail. 
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Chapter 5 

ASR algorithm optimization 

5.1 Methodology 

Despite the continual growth of the computing power of DSP, direct implemen-

tation of ASR algorithms can't offer real-time processing. In this chapter, we 

will discuss the optimizations of ASR algorithms for real-time processing on 

,DSP. 

When porting speech recognition algorithms to embedded platforms, the 

essential procedures will be included: 

• Use fixed-point computation as far as possible; 

• Analyze the algorithm and identify the computationally most critical 

parts; 

• Simplify the computation by, e.g. using look-up table, avoiding complex 

function, etc.; 

• Avoid unnecessarily repetitive computation; 

• Pre-compute frequently used parameters as pre-stored constant values 

whenever possible; 

• Use low-level language if appropriate. 
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In this work, we propose a set of optimizations for ASR algorithms. By ana-

lyzing each computation part in ASR, the most effective optimization methods 

are applied. Details are shown in the following sections. 

5.2 Floating-point to fixed-point conversion 

As described in Chapter 4, signal processing algorithms are often converted from 

floating-point to fixed-point because of the hardware requirements [50]. For the 

ASR algorithms as described in Chapters 2 and 3，there are three main parts 

that have to be converted from floating-point to fixed-point: 

• Acoustic front-end; 

• Computation of Gaussian probability density function; 

• Viterbi search. 

Regarding the front-end, fixed-point implementations of common signal pro-
r-

cessing techniques such as autocorrelation, convolution, windowing, Linear Pre-

dictive Coding (LPC), and LPC to cepstrum (LPCC) conversion have been 

reported in [50] and [51]. The implementation of mel-frequency cepstral coeffi-

cient (MFCC) was discussed in [31 . 

The fixed-point format here only has 16-bit. To avoid overflow we should 

pre-estimate the maximum magnitude of the input waveform and then normalize 

the waveform to make the maximum magnitude lower than +32767 - 1). 

Additionally, multiplications and summations would cause overflow too. For 

the development of fixed-point algorithm, these operations should be paid more 

attention because they are very "dangerous" and may break the whole system. 

.�With certain amount of testing data, we can roughly determine how many bits 

we need to shift at these operations to avoid overflow and attain the highest 

precision by reserving the effective bits as many as possible at the same time. 

For example, when we calculate the energy output of a mel-scale filterbank, it 

is needed to compute the summation of the power of the samples (Eq. 2.11). 
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In this case, the resulted filterbank energy may overflow. We need to find out 

how many bits should be shifted to avoid this problem. 

In HMM, the computation of Gaussian distributions with fixed-point arith-

metic has to be fast because it is one of the most time-consuming part of the 

whole recognition system (typically between 30% and 60% of the decoding time). 

And since its precision can greatly affect the recognition performance, this com-

putation has to be accurate as well. 

Suppose the log likelihood of an observation vector is calculated as: (Eq. 

3.1) 

1 / / \ \ 1 ^ / N2 
D.ln (2.) + In J ] � … -1 1 ： ^ ^ ^ (5.1) 

^ V \d=l ) ) ^ d=l ^d 

The first term —| D • In (27r) + In ( f ] cr̂ ^ ) can be pre-computed since it 
is independent to the observation o. Most of the computation and integer con-
version errors are caused by computing the squares (od — /i^)^ and the product 
D 2 

In order to achieve high performance, many different hardware ap-
. d = l d 

plications chose different solutions for this tough problem [46] [52]. With 16-bit 

fixed-point DSP, we do the followings: 

1) Pre-compute the scaled factor SCALE/a^ (here SCALE = ) which 

is a 16-bit integer so that the division operation becomes a multiplication 

depending on the representation of [53]； 

2) Quantize all the other parameters in the models to 16 bits and use 32 bit 

multiplications; 

3) Multiply Od - fid by SCALE/al and right shift 11 bits to get indexl-

4) Multiply indexl by Od - fid and right shift 12 bit to get index2] 

5) After the summation, right shift the result with 3 bit to rescale the value 

to the original J ] (二 

By performing the above steps, overflow can be avoided with high probability 

and precision can be maintained. 
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At the search level, the probabilistic score of a search path is the product 

of all the transition and observation probabilities along its path. Because these 

probabilities were small values (< 1.0), they are generally computed into loga-

rithm to avoid underflows. But the scores still have a large range after logarithm 

while the speech utterance is long. We have to use long integer of 32 bit to store 

the recognition score to prevent overflow. 

5.3 Computational complexity consideration 

For real-time speech recognition based on DSP, we should try our best to reduce 

the computation in each part of the recognition. In the following subsections, 

we will describe our approaches in detail. 

5.3.1 Feature extraction techniques 

Feature extraction is computationally intensive because it involves many signal 

^ processing steps such as windowing, Fast Fourier Transform, Mel-scale filter 

banks, Discrete Cosine transform and so on. For each of these steps, different 

approximation techniques have been considered. 

Windowing 

In this work, we use the Hamming window as described in Eq. 2.3. For a 

frame with fixed-length N, the window shape is fixed and it is not needed to 

calculate the window function h (n) for each incoming frame. Instead, h{n) ,0 < 

n < N is pre-stored in the RAM. In this way, we save N cosine operations, N 

multiplications and N additions which require a lot of CPU cycles. We will need 

N 16-bit words of RAM to store the window function which is not overburden 

compared to the execution time it costs. 
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Integer FFT Implementation 

Although the Fast Fourier Transform (FFT) is much more efficient than the 

original Discrete Fourier Transform (DFT), it still requires the computation 

of many exponential or trigonometric functions and multiplications that would 

take a long execution time on fixed-point DSPs. Integer implementation of FFT 

for DSP applications is highly desirable. 

In this work, 256 point radix-2 in-place FFT is used. Since speech is a 

real-valued signal, each input frame contains 256 real elements [54]. The result 

contains the first half i.e. 128 complex elements as the FFT output. This output 

still provides the full information because an FFT of a real sequence has even 

symmetry around the center or Nyquist point {N/2). 

The output y {k) is shown in the following format: 

Ke{y{0)}M{y{N/2)}^DC 

ReOKl) } ’ Im{2 / ( l ) } 

Refe(2)}，ImO/(2)} 

Re{y{N/2)}M{y{N/2)) 

where Re and Im mean the real and imaginary parts of one output element. 

Because of the complexity of FFT calculation which contains exponential 

and many multiplications and divisions, it is hard to realize the 256-point FFT 

using high level language (like C language) with real-time constraints. The 

alternative method used in this work is using assembly language. The assembly 

language implementation of FFT is provided as standard reference library by 

TI. It runs considerably faster than the equivalent code in C language [55 . 

Here tHe FFT is in 16-bit format because it is accurate enough for speech 

recognition. So we did not have to use 32-bit FFT which costs more compu-

tation. And to avoid overflow, we need a scale down of factor 2 at each of the 

8 butterfly stages. Meanwhile, the reference library allows us to remove the 

input frame and replace the same memory space with the output elements for 

convenience and saving memory [31 . 
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Computation of spectral magnitude 

For speech recognition, the phase of the spectrum after FFT is always ignored. 

For each complex element in frequency domain only the magnitude is needed. 

The magnitude of x = ŝ  + j • Si is |a:| = \J— sf. The computation includes 

a square root, two multiplications and an addition. Here we suppose Sr and 

Si are non-negative. For a frame of N FFT points, there will be N/2 square 

roots operations which are still very expensive in computation. To get rid of 

the square roots, three methods can be considered: 

• A simple method is shown as following: 

x\ = s} ^ max (s”, Si) (5.2) 

which essentially select the larger one of Sj. and Si. This approximation 

can be used [56], if the accuracy requirements are not very stringent; 

• Better accuracy can be achieved by using a lookup table as described in 

, [53]. This algorithm is shown in Appendix A. By using lookup table, the 

precision can be increased at the price of increased memory requirement; 

• Another method is based on a linear combination of the real and imaginary 

parts,Sr and ŝ , which is described by 

x\ = y/sisi ^ ax max (s^, Si) + 卢 x min (s^, Si) 
. , � (5.3) 

In the third method, we try to use a linear curve to fit the conic. We consider 

a set of data points of t between 0 and 1. By calculating the least mean square 

error, we find that when we set the coefficients to a = 0.9344 and (3 = 0.4269, 

the mean square error (MSE) is minimized. Furthermore, for fixed-point DSP 

implementation where calculating a multiplication of decimal values also needs 

more execution time than bit shift, it is better to regularize the coefficients to 

the power 2 format. So we let a = 1 and P = 0.25 (equivalent to right shifting 

two bits) which can maximally minimize e {t) with minimal execution time. 

Table 5.1 shows the mean square error for different setting of these coefficients. 
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And we found that the mean square error of this setting is 1.9635 while the 

error is 0.8465 when the coefficients are set to a = 0.9344 and (3 = 0.4269. In 

the experiment as described in Chapter 6，we only use the third method and 

let a = 1 and (3 = 0.25 due to the comparison of MSE in Table 5.1. 

a jS Mean square error 

1 0.9344 0.4269 0.8465 . 

2 1 0.25 1.9635 

3 1 0 6.1508 

Table 5.1: MSE of linear combinations 

Output of mel-frequency filterbank 

Recall that the filterbank output in Eq. 2.11 are calculated as the squared 

magnitude. In practice, this will present some challenges since this squared 

‘number multiplied by the filter coefficients, Hm (k), would easily overflow the 

32-bit registers. This overflow can be avoided by using the magnitude instead 

of the squared magnitude: 
•N-l -

S{m) = \og,^ , 0 < m < M (5.4) 

There is a trick of calculating the energy in each filterbank [57]. As men-

tioned in Chapter 2, traditionally the first step is finding the samples in one 

filterbank. Second, the magnitude is multiplied with the corresponding weight 

of the filterbank function. At last, the weighted magnitudes in one filterbank 

are summed to get the energy and logarithm is taken. We can find that the 

whole procedure contains many multiplications and additions. 

� As shown in Fig. 2.3, if we normalize the gain of the filterbanks to 1，the 

weight for each sample will be in the range between 0 and 1. For each sample, 

it may fall into two overlapped filterbanks. We need to calculate the weight 

twice. Consider the example as illustrated in Fig. 5.1. 
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A B 

z f N 
C c D Frequency 

f(m) s f(m+l) 
LSB USB 

Figure 5.1: Filterbank illustration 

A sample s falls in the upper side band (USB) of filter m and the lower side 

band (LSB) of filter m+1 where f {m) and / (m + 1) are the centers of these 

two filters. It is obvious that AACD = ABDC . Therefore 

b+c=l , � 
(5.5 

_ f{m+l)-s � ) 
. �~ /(m+1)—/(m) 

We only need to process sample s in the USB (or LSB) of the filter m (or 

filter m+1). From Eq. 5.5, the output of s from filter m can be computed 

as \X (s)| X c. At the same time, the output of s from filter m+1 can be 

easily obtained by \X (s)| — \X (s)| x c. For all the N samples in one frame, N 

multiplications can be reduced. We can also pre-store the N weights in RAM 

to further save computation. 

DCT Implementation 

After computing the logarithmic energy, Discrete Cosine Transformation is im-

plemented to decorrelate these coefficients. As mentioned before, trigonometric 

function is computationally intensive on fixed-point DSP chips. To avoid these 

cosine calculations as required in Eq. 2.12, a look-up table is set up. It can be 

efficiently interpolated using the algorithm in Appendix A. 

A lookup table with 132 parameters in 16-bit fixed-point format is used to 

achieve enough resolution. 
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Cepstral weighting 

In Eq. 2.13, the weight 1 + f • sin (替）is not related to the cep-

stral coefficient C {k). Therefore we can pre-compute the weight sequence 

{ l + f . sin (普）} ,0 < /c < M and pre-store it in the RAM so that M sine 

functions and M multiplications are reduced. 

5.3.2 Viterbi search module 

The computational load of the Viterbi search is mostly contributed by the com-

putation of b (o)，which has to be calculated for each frame and each state. 

Suppose that b (o) is a mixture of Gaussian density functions, i.e. 

M 

= (o) (5.6) 
m=l 

where M is the number of mixtures and b—) (o) is the mth mixture com-

ponent given as, 

‘ 叫 ( o ) = c . . . 1 e x p ( - i f ( ” 一 ) 、 (5.7) 

y d=i 

where Od is the dth component of o, firn,d and am,d denote the mean and vari-

ance of the dth dimension for the mth mixture component, D is the dimension 

of the feature vector, c爪 denotes the weight for the mth mixture component 
M 

and E c爪=1. 
m=l 

For dynamic range reduction, the logarithm of b (o) is often used. The 

direct computation of In6 (o) based on Eq. 5.6 is computationally prohibitive 

and approximation is needed. 

Consider M=2, then we have In6 (o) = In ( 6 �( o ) + 6 �( o ) ) which can be 

re-written as 

b = max (呂1，約 + In 1 + exp (jnin ( R P) — • 工 ( R ” ) (5.8) 

where b = \nb{o), b^ = ln6(i) (o) and P = In6(2) (o) . 

We propose the following approximation: 
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if {max{b^,P) — mm{P-,P)) < threshold, use Eq. 5.8 

else, let b ^ 

That is, if the two components have a large difference, we simply ignore the 

smaller one. Otherwise, Eq. 5.8 would be used for accurate calculation. 

From Eq. 5.7, b̂  and are computed as 

(o) = In L . ( 2 , ” / 2 - i f ： 

I d=l J d=l 

where In • ( can be pre-computed from the 

trained model parameters. The factor 1 / c r � c a n also be pre-computed and 

the division operation would become a multiplication [53 . 

The method we proposed can be easily extended to more than 2 mixtures. 

For example, if M = 3, we have three mixture components. We first find out the 

smallest two components and apply the above approximation technique. The 

result is then regarded as a new Gaussian component. It will be combined with 

the remaining component to produce the final log output probability. 

5.4 Memory requirements consideration 

Embedded DSP system has limited memory resource. For a particular recog-

nition task, the memory storage required depends on the vocabulary size and 

the complexity of the HMMs. For the storage of HMM parameters, means and 

variances of the Gaussian components require most of the memory. The mem-

ory size required is approximately equal to2xMxnxmxD, where M is 

the number of models, n is the number of active states for each model, m is the 

number of mixtures at each state and D is the dimension of feature vector. In 

an HMM, there are other parameters needed to be stored, such as weights of 

mixtures, GCONST and transition probability matrix. The number of mixture 

weights for one HMM is nxm. 'GCONST' is a value calculated by multiplying 

the determinant of the covariance matrix by (2?:)^. For an HMM, GCONST 

needs nxm words. We don't need to save all the values in the transition matrix 
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because in this research the model is assumed to be a left-right word model with 

no skipped state. Only 2xn values in the transition matrix are stored. So there 

are 2 x n x m x D + 2 x n x m + 2 x n words stored for one HMM model. 

For the front-end part, the major memory requirement comes from storage 

of look-up table for DCT and gains of filterbanks, and some pre-computed 

parameters such as the weights of Hamming windows, the center frequencies of 

each filterbank and cepstral weights. Table 5.2 shows the memory storage for 

these parameters. 

Lookup table Pre-computed parameters 

DCT Hamming cepstral filterbank cepstral 

window weights center lifter 

Mo No N/2 Ml K 

Table 5.2: Memory requirements ( in words) for front-end 

where Mq is the size of cosine lookup table for DCT, Nq is frame size, 

N is FFT points, Mi is the number of filterbanks and K is the number of 

first-order cepstral coefficients. The total memory size for front-end is about 

N/2 + Mo + iVo + Ml + 
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Experimental results and 

performance analysis 

Using the optimization techniques described in Chapter 5，two recognition sys-

tems have been implemented for experiments. The two systems are for Can-

tonese isolated word recognition system and connected English digits recogni-

, t i o n respectively. Both of them use mel-frequency cepstral coefficients (MFCCs) 

as the acoustic feature extracted from the front-end part and continuous den-

sity hidden Markov models (CDHMMs) as the acoustic model. For the search 

engine, they both use the Viterbi search algorithm. 

For each system, we first compare the computation complexity and required 

memory size between the original un-optimized and optimized recognition algo-

rithms. Then the recognition performance will be analyzed to illuminate that 

optimization methods can reduce the computation complexity without notice-

able degradation of recognition performance. From the relation analysis between 

optimization and performance, a framework is established to assist system de-

signers to realize a particular speech recognition system on fixed-point DSP 

within their limited hardware resources. 
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6.1 Cantonese isolated word recognition 

(IWR) 

The vocabulary contains 11 Cantonese words. Each word has two syllables. 

This vocabulary is shown in Appendix B. Training data include 2200 utterances 

from 5 male and 5 female native speakers. 898 utterances from another 10 males 

and 10 female speakers are used for performance evaluation. Both training and 

testing utterances are recorded in the same laboratory environment at about 30 

dB SNR. 

The signal analysis configuration used in the front-end part is given as in 

Table 6.1. 

A/D k Sampling 8 kHz, 16-bit linear PCM 

Pre-emphasis y[n] = x[n] - 0.97 x x[n-l] 

Frame size 20 msec. 

• Frame shift 10 msec. 

Window Hamming window 

FFT 256 points 

Feature parameters 13 MFCCs+13 A MFCCs 

Table 6.1: Analysis configuration at the front-end 

Each of the 11 words is modeled by one HMM. The HMM has 8 active states 

and each state has two mixtures. The HMMs are trained offline by the speech 

recognition toolkit HTK [58 . 

6.1.1 Execution time 

Without optimization, the speech recognition algorithms can't be run in real-

time on DSP. Fig. 6.1 shows the computation load analysis of front-end before 

optimization. From this figure, we find that the front-end alone would require 

about 11 msec which exceeds the 10 msec upper bound of real-time processing. 
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It is also shown that FFT, computation of spectral magnitude and DCT cost 

computation time significantly. With the illustrated optimization procedure, 

the execution time of the front-end can be greatly reduced as shown in Table 

6.2. We can purposefully illustrate the improvement of computation time from 

Fig. 6.2, which shows the computation time ratio of the front-end part after 

optimization. It is obvious that the execution time can be reduced to 5% by 

applying the optimization techniques to the front-end. 

Total time=ll.83ms 

FFT 

Hamming ^ ^ ^ ^ ^ ^ ^ ^ 

0.484% / / / \ \ \ Mel-scale Spectrum 

Frame Energy / \ \ ^filter bank Magnitude 

0. 140% / DCT 0.390% 36.440% 

Data shift / Delta 4. 905% 

. 0.074% n fi^Ifetefficients 
0 遍 0.099% 

Figure 6.1: Computation time ratio of front-end before optimization 

FFT I s I DCT Others Total 

Un-optimized 6.72 4.31 0.58 0.22 11.83 

Optimized 0.05 0.09 0.31 0.22 0.67 

Table 6.2: Execution time (in msec.) for main parts in front-end process 

. Consider the computation required at a particular time frame in the Viterbi 

search. Let the time for computing a mixture component be P and the time for 

path extension be Q. The theoretical estimate of the execution time for process-

ing one frame is given by ETesUmated = P x m x n x M + Q x n x M . Knowing 

that m=2, n 二 8 and M 二 11, ETesUmated = 8 8 x ( 2 x P + Q). Table 6.3 shows 
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Total time=0. 67ms 

DCT 
M e l - s c a l e 4 5 % 

S p e c t r u m C o e f f i c i e n t s 

1 3 % ^">"^4^、’...... O t h e r s 

F F T ^ ^ ^ ^ y x 12% 
8% L . 1 \ _ D a t a s h i f t 

P r e - e m p h a s i s p r a m e E n e r g y 1% 

H a m m i n g • 

9% 

• Data shift • Frame Energy • Pre-emphasis Hamming 

• Assembly FFT • Spectrum Magnitude • Mel-scale filter bank 

• DCT • Delta Coefficients • Others 

Figure 6.2: Computation time ratio of front-end after optimization 

the experimentally measured values of P and Q, as well as the total execution 

time. The slight difference between ETmeasured and ETesUmated is mainly due to 

‘ the occasional necessity of computing add-log with Eq. 5.8. Because the mea-

sured value P is about 7 times larger than Q, we can approximately consider 

that ETesUmated IS equal to PxmxnxM. 

P Q ETmeasured ETestimated 

0.0128 0.0019 2.443 2.42 

Table 6.3: Execution time (in msec.) for pattern recognition in IWR 

The total execution time for one frame of speech, including both front-end 

and Viterbi search (estimated), is 3.090 msec, which is much shorter than the 

frame shift of 10 msec. The execution time would increase with the number of 

‘ H M M s . To just meet the real-time requirement, the maximal affordable number 

of models is (10 — 0.67)/(16 x P + 8 x Q) = 42. When the number of models 

increases to 42’ the execution time is just below 10 msec. This gives the upper 

bound of the vocabulary from execution time point of view. 
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6.1.2 Memory requirements 

As described in Section 5.4, the total memory requirement for front-end is shown 

in Table 6.4. The memory requirement for one model i s 2 x 8 x 2 x 2 6 + 2 x 8 x 

2 + 2 X 8 = 880 words. If there are 11 models, the memory for model storage will 

be 9680 words. It is obvious that the memory requirement for front-end is quite 

small compared to the model storage. And in all the experiments in this thesis, 

the front-end configuration is unchanged. Due to the above two reasons, we 

only approximately regard the model storage as the whole memory requirement 

in ASR systems and ignore the front-end part. 

Lookup table Pre-computed parameters 

DCT Hamming cepstral filterbank cepstral Total 

window weights center lifter 

132 160 128 33 12 465 

" Table 6.4: Memory requirements (in words) for front-end 

Given the limitation of 32k words capacity of this DSK, the maximal afford-

able number of models is 32/c/880 = 37. Considering both the execution time 

and memory limitations, it is possible to extend the vocabulary size of IWR to 

about 37 for this particular DSP platform. 

6.1.3 Recognition performance 

Recognition performance depends on the complexity of the HMMs [16]. As 

shown earlier, the number of HMM states and the number of Gaussian mixture 

components at each state determine the execution time and memory require-

ments for the DSP implementation. We have carried out a series of recognition 

experiments on the IWR task with different complexity levels of HMM. 

As discussed in Subsections 6.1.1 and 6.1.2, both the execution time and 

the memory requirements are approximately determined by the total number 

of mixtures n x m in each model. Generally, the more complex the model is, 
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the more accurate the recognition system can achieve. This is at the assump-

tion that we have infinite training data. Practically, due to the constraints of 

CPU speed and limited storage, the fairly complex model can not be realized. 

And different combination of m and n may lead to different recognition per-

formance. In the isolated word recognition system, if the vocabulary size is 

fixed, the largest number of mixtures affordable is about 66. Table 6.5 shows 

the recognition performance using different combination of m and n. 

In this table, 'Front-end type for training' illustrates the type of feature vec-

tors for training by HTK tool. For example, ‘DSP’ means that the features are 

obtained from the fixed-point DSP platform and they are in integer data for-

mat. And 'Front-end type for testing' means the format of features from testing 

utterances. Take an example, ’HTK’ accounts for the HTK tool with floating-

point, original algorithm. From this table, we see a clear trend of increase of 

recognition accuracy when the number of mixture components increases. And 

we can also find that the DSP-based speech recognition system attains good 

recognition performance with a degradation of about 2 % . 
r 

The relation between model complexity and recognition accuracy can be 

plotted as in Fig. 6.3. This diagram serves as a useful reference for a DSP 

application engineer to design and implement the recognition system for a par-

ticular vocabulary and a particular hardware platform. Since the execution 

time is proportional to the total number of mixtures, the highest recognition 

accuracy among the models with the same execution time but different combi-

nation of states and mixtures per state is shown in this figure. Therefore this 

is also useful for an- application engineer to determine the number of mixtures 

and states for the highest recognition performance based on their specific re-

quirement's. As a rule of thumb, given a DSP processor with 100 MIPS and 32 

^ K word memory, the optimal selection of the model parameters are 8 states and 

4 mixtures. The recognition accuracy can reach about 98% according to this 

figure, 
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no. of Front-end Front-end 1 mix- 2 mix- 3 mix- 4 mix-

state type for type for ture tures tures tures 

training testing 

DSP HTK 76.06 81.96 87.19 90.76 

4 HTK HTK 78.73 88.42 88.98 92.98 

DSP DSP 74.83 79.06 87.86 90.65 

DSP HTK 92.09 95.55 97.44 97.55 

8 HTK HTK 91.31 96.66 97.44 98.78 

DSP DSP 92.54 95.32 96.33 97.77 

DSP HTK 95.43 96.88 96.55 96.77 

12 HTK HTK 97.66 98.11 98.00 98.00 

DSP DSP 95.21 96.55 96.66 97.10 

DSP HTK 96.33 97.10 96.99 97.88 

16 HTK HTK 97.22 98.55 98.66 98.78 

• DSP DSP 96.55 97.44 97.33 98.33 

DSP HTK 97.44 97.44 98.00 97.44 

20 HTK HTK 98.00 98.78 99.01 99.33 

DSP DSP 97.10 97.66 97.88 97.66 

DSP HTK 97.88 97.44 98.00 97.44 

24 HTK HTK 98.44 98.78 99.22 99.22 

DSP DSP 97.88 97.66 98.22 97.77 

DSP . HTK 98.11 98.00 98.11 97.55 

28 HTK HTK 98.11 98.66 99.11 99.44 

- D S P DSP 98.00 98.00 98.33 97.88 

DSP HTK 98.33 98.00 98.11 97.66 
� 

31 HTK HTK 98.44 99.00 99.22 99.11 

DSP DSP 98.66 98.22 98.33 98.11 

Table 6.5: Recognition accuracy (in percentage) evaluation for IWR 
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Figure 6.3: Recognition performance of the IWR 
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In Fig. 6.3, the curve with the circle mark illustrates the recognition ac-

curacy of floating-point software simulation based on HTK. It can be regarded 

as the performance upper bound of our DSP implementation. The recogni-

tion performance represented by the rectangular mark was also obtained by 

HTK simulation, but the features parameters for HMM training were obtained 

from the fixed-point DSP implementation. The performance with such an ar-

rangement indicates whether the proposed optimization of the Viterbi search 

algorithm would degrade the recognition accuracy. Lastly, the curve with the 

triangular mark represents the recognition accuracy attained with full DSP im-

plementation. For the task of Cantonese isolated word recognition, the full 

DSP implementation attains an accuracy that is only 1% lower than that of the 

original floating-point algorithms. 

6.2 Connected word recognition (CWR) 

This task concerns the recognition of connected English digits. The vocabulary 

contains 11 words, including the digits "zero" to "nine", and "oh" as a pro-

nunciation variant of "zero". And there is still a silence model to represent the 

silence or noise before and after the speech segment. 

Speech data are from the Aurora 2 database. We use 4004 training utter-

ances from 52 male and 52 female speakers. There are 1688 testing utterances 

from another 55 male and 55 female speakers. Both training and testing data 

are artificially corrupted with 4 different noise types in 10 dB SNR [59]. There 

are 1001 training and 422 testing utterances for each kind of noise in one SNR 

level. 

The implementation of CWR shares the same front-end and HMM configu-

ration as the IWR. Therefore the execution time for the front-end and memory 

requirement for HMM parameters are about the same as described in the previ-

ous subsection. The main difference between CWR and IWR is on the execution 

time for the pattern recognition process. 
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6.2.1 Execution time consideration 

For the CWR, extra search time is needed at the entry state of an HMM to 

determine whether the path extension comes from the same entry state or the 

exit state of another HMM. For IWR, this is not required because the path 

extension must be within the same model. 

Table 6.6 shows the execution time for the pattern recognition process in 

the CWR task, where Q1 denotes the execution time of path extension for an 

entry state and Q2 is the execution time of path extension for a non-entry 

state. The theoretical estimate of the execution time for processing one frame 

is ETestimated = P x m x r i x M + ( 3 l x M + Q 2 x ( n — l ) x M . In contrast 

with Table 6.3, CWR requires only slightly longer execution time than IWR. 

P Q1 Q2 ETmeasured ETestimated 

0.0128 0.0027 0.0019 2.642 2.650 

Table 6.6: Execution time (in msec.) for pattern recognition in CWR 

6.2.2 Recognition performance 

We also build up the relation between model/computational complexity and 

recognition performance for the connected word recognition task. Fig. 6.4 is 

the relation between model complexity and recognition accuracy. 
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memroy requirements (K 16-bit words) 
IQ0I.35 5.57 9.79 14.01 1^.23 22.44 26.66 30.88 3^.10 3^.32 

98 • -

94 . 

I：严 ^̂^ 
2 II -A- DSP/DSP 
3 88 - I 令 HTK/HTK 
o II DSP/HTK 

86 • I (A,B):(state,mixture) • 

84. ff DSP: fixed-point hardware platform • 

f HTK: floating point software platform 

82 • K C/D: training engine/ testing engine • 
8 0 -
781 I I I I I I I I I  

1 2 3 4 5 6 7 8 9 10 
execution time (msec) 

Figure 6.4: Recognition performance of the C W R 
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It shows that if we push the execution time per frame to be less than 3 

msec., the recognition accuracy would drop dramatically due to the insufficient 

representation of the acoustic property in the model. On the other hand, the 

recognition accuracy remains high and can not be further improved if the re-

quired execution time exceeds 5 msec. Thus if one want to set up a recognition 

system for a similar task, 12 states per model and 2 mixtures per state or 16 

states per model and 2 mixtures per state would be an appropriate choice. It 

can retain high recognition accuracy and save computation time for other usage 

like incorporating other robust speech processing algorithms. It also allows the 

use of lower-speed CPU or smaller memory for commercial considerations. 

The 'performance saturation' phenomena is mainly due to'the limited train-

ing data for a practical system. Theoretically, if there are infinite training data, 

the more complex the models are, the higher recognition accuracy the system 

can achieve. In practice, the recognition accuracy will not grow unlimitedly 

because the amount of training data is always limited. With this limitation, the 

mixture components can not be effectively trained if the number of components 
r 

is large. Thus, the recognition accuracy can not be increased any more. 

From Fig. 6.4, we find that there is about 2% degradation of recognition 

accuracy between the floating-point SR and the optimized fixed-point SR. This 

2% degradation is considered not very critical for real-time speech recognition 

system in real-world operation. 

To better understand the contributions of individual optimization tech-

niques, a series of simulation experiments have been carried out and the key 

findings are summarized as in Table 6.7. We have the following observations: 

• The major degradation is caused by the floating-point to fixed-point con-

version. This degradation is inevitable for implementation on fixed-point 

� processor; 

• By using the assembly code to optimize the FFT algorithm, the recogni-

tion accuracy can be increased by 0.12% compared with the un-optimized 

fixed-point C language one. The assembly code not only runs faster, but 

also gives better precision than the un-optimized fixed-point C language 
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FFT code; 

• When applying the optimization of spectral magnitude calculation to the 

fixed-point un-optimized SR system, the recognition accuracy will have 

0.07% degradation due to the approximation of square root and square 

operations; 

• When optimizing the output probability calculation in the back-end, the 

recognition accuracy will decrease for about 0.07%. 

From this analysis, it is shown that for the computation optimization meth-

ods, the optimization for spectral magnitude calculation mostly affects the 

recognition accuracy. This result is based on the implementation of optimiza-

tion Method2 in magnitude computation. We compare the relation between 

the computation time and the recognition accuracy for the different methods of 

magnitude calculation discussed before in Table 6.8. From this table, we can 

verify that using Method2 can not only remain recognition accuracy, but also 

save the computation time. 

Computation optimization 

Front-end Back-end Accuracy 

FFT Mag. 

floating-point no no no 96.44 

no no no 94.78 

• yes yes yes 94.40 

fixed-point no no yes 94.71 

no yes no 94.71 

, yes no no 94.90 

Table 6.7: Performance identification (in percentage) for each major individual 

part in SR (yes: optimized, no: unoptimized) 
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Computation time (msec) Recognition accuracy (%) 

unoptimized 2.6 94.78 

optimized using method 1 0.46 94.75 

optimized using method 2 0.08 94.71 

optimized using method 3 0.075 94.54 

Table 6.8: Performance comparison of different optimization methods for spec-

trum magnitude computation 

6.3 Summary & discussion 

With a thorough and in-depth understanding of the ASR algorithms, we opti-

mize the complex parts of these algorithms under the considerations of execution 

time and memory requirement on DSP. It shows that the computation cost of 

both the front-end and the pattern recognition algorithms can be reduced sig-

nificantly so that real-time ASR is achievable without noticeable degradation 

‘ of recognition performance. Furthermore, an IWR and a CWR system are suc-

cessfully implemented and a series of recognition experiments are carried out to 

reveal the tradeoff between resources requirement and recognition performance. 

A reference framework is therefore provided for a simple and quick design of 

ASR applications on DSP. 
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Chapter 7 

Implementation of practical 

techniques 

In this chapter, we will mainly discuss about how to implement two practi-

cal techniques, end-point detection (EPD) and spectral subtraction (SS), in 

real-time applications. Some modifications will be made to enhance the perfor-

^ mance of these techniques. A set of experiments are carried out to evaluate the 

improvement of recognition performance in detail. At last, some results and 

conclusions will be given. 

7.1 End-point detection (EPD) 

As explained in Chapter 2，energy-based end-point detection is computational 

effective to be implemented on low-cost embedded systems. In order to achieve 

a better detection of the speech, a set of parameters should be adjusted for a 

specific recognition task. For example, what are the energy threshold levels to 

judge the beginning and ending of speech activities? How many high-energy 

frames does it take to qualify for utterance starting? How many low-energy 

frames for utterance end? 

The proposed energy-based end-point detection procedure consists of four 

steps: 

1) Estimate the background noise energy by averaging the energies from the 
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first several frames; 

2) The beginning and ending threshold are defined by multiplying different 

factors to the estimated noise energy; 

3) The beginning of the real speech will not be detected until the energies 

from a set of successive frames are bigger than the beginning threshold; 

4) The ending of the real speech will be declared if the detected speech 

utterance is longer than a certain period and the energies from a series of 

successive frames are smaller than the ending threshold. 

The detailed EPD procedure employed in this research is shown in Fig. 7.1. 

In this figure, energies are represented in logarithm to reduce the dy-

namic range. After computing the reference noise energy Es from the first 

7 frames which are assumed to be non-speech, the beginning energy threshold 

{BJhrenergy) and the end energy threshold {EJhrenergy) are obtained by 

multiplying Es with different constants B.const and E-const. After a certain 

number of successive frames pass the energy threshold, the recognizer notifies 

to start recognizing the speech signal. In order to better estimate the averaged 

noise power Es/7, a certain number of frames should be used as noise at the 

beginning. The counter Begin-cnt should be carefully determined. Too long to 

determine the beginning of real speech will cause long delay which is harmful 

to real-time processing. On the other hand, too little counter will introduce 

more judging error because short clip noise may be decided to be real speech. 

The ending determination counter EmLcnt can not be set too large or too little 

either. Too large End-cnt will include more noise in the detected speech while 

too little End-cnt may lose real speech if there is a long silence or pause period 

during the whole speech part. The same methods should be considered when 

adjusting two energy thresholds, B-threnergy and E-threnergy. If the thresh-

olds are set too high, the important speech information will be lost (Fig. 7.2). 
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Es : accumulated MSE f o r noise estimation 
Begin一cnt : counter f o r detecting the beginning of speech 
End—cnt : counter f o r detecting the ending of speech 
Frame_cnt : frame counter f o r noise estimation 
End—detect : judgment f o r completion of end-point detection 
B_threnergy : energy threshold f o r beginning of speech 
E—threnergy : energy threshold f o r ending of speech 
B—const : constant f o r weighting the beginning threshold 
E一const - : constant f o r weighting the ending threshold 
Frame—ID : number of frames detected as speech 

Figure 7.1: End-point detection algorithm 
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Otherwise, more useless information (noise) will be included in if the thresholds 

are too low (Fig. 7.3). 

___m l i i i l 
Cutoff , , Cutoff 

I I 

Begin End 

Figure 7.2: Overvalued energy threshold for EPD 

1 丨丨 j 
Cutoff I Cutoff 

Begin End 

‘ Figure 7.3: Undervalued energy threshold for EPD 

‘ Since it is not an absolute requirement that the end-point detection offers 

very accurate end-point in this research, the parameters (such as B-threnergy, 

E-threnergy and End_cnt) can be adjusted loosely to keep a low rejection rate 

(i.e., speech segments should not be detected as silence/noise segments). Any 

false rejection leads to an error to the recognizer. On the other hand, a possible 
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false acceptance (i.e., the EPD interprets noise segments as speech segments) 

may be rescued by the speech recognizer later if the recognizer has appropriate 

noise models. 

7.2 Spectral subtraction (SS) 

The basic spectral subtraction method is described by Eq. 2.20. If we directly 

subtract the estimated noise spectrum from the speech spectrum, the resulted 

signal may have negative power spectrum when SNR ( / ) < 1. Obviously, this 

is unreasonable. In order to keep subtracted power spectrum positive, Eq. 2.20 

can be modified as: • 

2 f剛 2一々⑴ 2’ 綱,)丨2〉外)2 
^ ( / ) = < ‘ (7.1) 

I a, otherwise 

where a > 0 is the floor of spectral value. This is also known as half-wave 

rectification (HWR) [60:. 

‘ A major problem with the modified implementation is that a "new" noise is 

introduced to the processed speech signal. This new noise is described as ringing 

or warbling, and hence referred to "musical noise" [61]. The presence of musical 

noise is due to poor estimate of SNR ( / ) from Eq. 2.19 and Eq. 2.21. This is 

partially because that SNR ( / ) is supposed to be independent at each frequency 

which is incorrect in practice. As we know, when two frequencies /o and f i are 

close to each other, SNR (/o) and SNR(fi) is correlated. Consequently, the 

estimation of noise, in Eq. 2.19 may be inaccurate. 

There are several methods to reduce musical noise. Full-wave rectification 

(FWR) is one of methods described as the following: 

、 V,,、2 f |y(/)|2- N ( f ) \ iflV(f)l'> N{f)" 

^{f) =\ . 2 9 (7.2) 
[ N { f ) -\Y(f)\\ otherwise 

In the following experiments, we use both HWR and FWR. Comparative 

results show that better recognition performance in noisy environment can be 

achieved by using FWR than using HWR [62] [63 . 
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7.3 Experimental results 

In this section, two speech recognition tasks, namely, isolated English digit 

recognition (IWR) and connected English digit recognition, are experimented. 

The speech data are all extracted from the Aurora 2 database [59]. We will 

mainly analysis and discuss the effect of speech enhancement technique to the 

speech recognition performance at different SNR. Different parameters will be 

chosen in each task. “ 

7.3.1 Isolated word recognition (IWR) 

For the isolated word recognition task, we use the single-digit utterances from 

Aurora 2 for both training and testing. There are 1144 training utterances from 

52 male and 52 female native speakers, and 474 testing utterances from another 

55 male and 55 female speakers. Both training and testing data are artificially 

corrupted with 4 different types of noise at lOdB SNR. 

. • Suburban train; 

• Crowed of people (babble); 

• Car; 

• Exhibition hall. 

The signal analysis configuration used in the front-end part is exactly the 

same as the one in Table 6.1. For the recognition part, Hidden Markov Models 

and Viterbi search engine are used for decoding. Each HMM model contains 

8 active states. In the following experiments, the number of mixtures in each 

state is changed from one to four. 

Performance evaluation of end-point detection 

As discussed in previous sections, implementing the end-point detection al-

gorithm needs to adjust a number of parameters. In this task, we set these 

parameters as in Table 7.1 
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Frame_cnt 7 

B .const 2 

E_const 12 

Begin.cnt 4 

End.cnt 20 

Table 7.1: EPD Parameters for IWR 

These values are not very strict because they are obtained from experiments. 

Practically, this is one of the best settings we have tested. By setting these 

values, we can retain the full speech segment without losing useful information, 

especially for the clean speech environment as seen in Fig. 7.4. 

I ‘ ‘ …� 
�V � � � v < 杀 ^ ^ ̂  ‘ • = % ̂  ( + 、 

、•̂[广 f，“ , : > • 
f \ - • •：： ‘ 
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Figure 7.4: EPD with proper energy threshold 
For high SNR, this end-point detection algorithm may be efficient. But when 

SNR is lower than lOdB, this algorithm is becoming poor. This is a challenge 

in the end-point detection algorithms. Here we only implement this simple one. 

Table 7.2 shows the comparison of recognition performance between the base 

line system (without EPD) and the one with EPD. 
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1 mixture 2 mixtures 3 mixtures 4 mixtures 

Base 81.01 85.65 90.72 91.14 

EPD 87.35 90.72 91.35 93.25 

Table 7.2: Recognition accuracy (%) in SNR=10dB 

Performance evaluation of spectral subtraction 

In spectral subtraction, we assume that the first 7 frames be non-speech seg-
. 2 

ments which can be used for estimating N ( / ) . Half wave rectification (HWR) 

and full wave rectification (FWR) are used in this experiment. Comparison of 

these two methods is shown in Table 7.3. 

1 mixture 2 mixtures 3 mixtures 4 mixtures 

Base 81.01 85.65 90.72 91.14 

“ SS (HWR) 82.28 84.81 90.93 91.35 

SS (FWR) 85.65 88.19 91.77 91.98 

EPD_SS (HWR) 89.03 90.93 92.83 94.09 

EPD_SS (FWR) 88.61 90.72 93.04 94.30 

Table 7.3: Recognition accuracy comparison in SNR=10dB 

From this table, we can see that most of time full wave rectification can 

achieve higher recognition performance than half wave rectification. We also 

find that the performance is much better when implementing both end-point 

detection and spectral subtraction than only implementing spectral subtraction. 

‘ If spectral subtraction is implemented to a long period of noise, more residual 

noise will be introduced by wrongly subtracting the estimated noise from the 

actual noise spectrum. 
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7.3.2 Connected word recognition (CWR) 

The connected word recognition task also uses Aurora 2 database. It is exactly 

the same as the task in Chapter 6 except that the SNRs here cover from 5 

to 20dB and as well as the clean data. In this task, we implement the end-

point detection and spectral subtraction techniques in the front-end part of the 

recognition system. 

The parameters in EPD are set as in Table 7.4. 

Frame_cnt 7 

B.const 2 

E_const 8 

Begin.cnt 4 

End_cnt 50 

Table 7.4: EPD Parameters for CWR 

In connected word recognition, there are one or more (up to 7) digits in 

an utterance. Between each pair of two adjacent digits, there may exist a 

short pause. It will make the end-point detector wrongly judge the end of an 

utterance if the parameter End-cnt is shorter than a short pause. We found 

that the short pause between two digits in Aurora database is always shorter 

than 45 frames. Therefore, we set the End.cnt to 50 to satisfy that no digit 

is lost after end-point detection. However, this long End_cnt will also cause 

the tail of an utterance contains longer noise which will reduce the recognition 

performance after spectral subtraction. Other people's work showed that a 

short pause model should be used between two digits [59]. But in our current 

‘ implementation, we restrict that all the models have the same number of states 

and mixtures. Therefore it does not allow the use of a short pause model. In the 

future work, we may improve the implementation by using short pause model. 

75 



Chapter 1. Implementation of practical techniques 

Evaluation of recognition performance 

In order to evaluate the robustness of the speech recognition system with speech 

enhancement techniques, we use clean speech data to train a clean model by 

HTK and use multi-condition speech data to evaluate the recognition perfor-

mance. The recognition accuracy is listed in Table 7.5 for recognition with or 

without spectral subtraction (SS). The result shows that spectral subtraction 

can increase the recognition accuracy while the SNR is lower than lOdB. Per-

formance measure for the whole test set has been introduced as average over all 

noises and over SNRs between 5 and 20dB plus clean. This average accuracy is 

87.09% for the whole test of spectral subtraction. 

SNR/dB subway (nl) babble (n2) car(n3) exhibition(n4) Average 

忍 I JS SS JS SS ^ SS JS SS 

clean 98.90 98.54 98.55 97.78 98.92 98.49 98.95 98.57 98.83 98.35 

20 95.51 96.22 96.93 96.59 98.10 97.63 96.74 95.90 96.82 96.59 

15 89.67 90.47 92.79 91.53 95.26 93.84 91.78 90.90 92.38 91.69 

10 77.33 79.56 82.92 82.50 84.72 84.95 80.05 79.78 81.26 81.70 

5 64.23 66.38 67.97 67.29 68.22 70.83 61.85 64.05 65.57 67.14 

Average 85.13 86.23 87.83 87.14 89.04 89.15 85.87 85.84 86.97 87.09 

Table 7.5: Recognition accuracy (in percentage) of clean training CWR (no 

SS/SS) 

The recognition result for spectral subtraction plus end-point detection is 

listed in Table 7.6. This table shows that for the noises that are approx-

. imately statistically stationary, end-point detection and spectral subtraction 

methods can enhance the recognition performance. For non-stationary noises, 

these methods can not effectively estimate the background noise so that the 

recognition accuracy will drop. And EPD is not good in noisy speech recog-

nition. Overall speaking, the accuracy is slightly higher than the one without 

76 



Chapter 7. Implementation of practical techniques 

spectral subtraction. 

SNR/dB subway(nl) babble(n2) car(n3) exhibition (n4) Average 

Js SS Js SS SS ^ SS 55 SS 

clean 98.8 98.78 97.96 98.03 98.60 98.58 98.54 98.59 98.48 98.50 

20 91.64 94.86 95.43 94.82 97.06 96.67 94.37 94.51 94.63 95.22 

15 84.10 89.90 89.02 86.84 92.19 91.36 87.86 88.61 88.29 89.18 

10 69.07 76.54 74.15 71.64 78.11 76.53 72.32 73.01 73.41 74.43 

5 54.18 58.34 55.14 49.32 55.24 52.41 51.58 49.34 54.04 52.35 

Average 79.56 83.68 82.34 80.13 84.24 83.11 80.93 80.81 81.77 81.93 

Table 7.6: Recognition accuracy (in percentage) of clean training CWR (EPD, 

no SS /EPD with SS) 

7.4 Results 

For a practical implementation of speech recognition system, the type of noise 

and the noise level are always unknown or not what we have expected. There-

fore, noise robust techniques are essentially useful in such conditions. Spectral 

subtraction, one kind of speech enhancement techniques, has been implemented 

in this work, which is possible for real-time operation on DSP due to its simple 

computation. The experiment results shown in this chapter reveal that spectral 

subtraction with full wave rectification can increase the recognition accuracy in 

different tasks. 

In this chapter, we also describe a simple end-point detection technique 
V 

based on frame energy. To get the right beginning and ending place of the 

speech part, some parameters should be adjusted. Although this end-point 

detection can work well in high SNR environment, the performance will drop 

down if the SNR is too low. This can be found in the experiments of this 

chapter. 
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Chapter 8 

Conclusions and future work 

8.1 Summary and Conclusions 

Speech recognition technology has many applications on embedded systems, 

such as stand-alone devices and single-purpose command and control systems. 

The development of such applications is not straightforward. The highly com-

, plex ASR algorithms have to be optimized to meet the limitations in comput-

ing power and memory resources. The optimization, which typically involves 

simplification and approximation, inevitably leads to the loss of precision and 

the degradation of recognition accuracy. This thesis describes the exploita-

tion of state-of-the-art ASR techniques for DSP-based embedded applications. 

The complex algorithms have been optimized for real-time processing on a spe-

cific DSP platform. An isolated-word recognition system and a connected-word 

recognition system have been successfully developed. More importantly, the the-

sis provides a thorough and detail analysis for individual computational steps 

and suggests many optimization methods for computation reduction. The use 

of these methods reveals the underlying principles of optimization for different 

‘ kinds of computation. The suggested methods are applicable not only to DSP, 

but also to other embedded platforms. It is anticipated that this thesis can 

serve as a useful reference for the design and implementation of embedded ASR 

applications. 

Two speech recognition systems have been successfully realized on 
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TMS320VC5416 DSP. For the recognition of 11 Cantonese isolated words, the 

optimized algorithms can be run about three times faster than real time with 

only 2% degradation of recognition accuracy. For a 10 msec, speech frame, only 

3 msec, processing time is needed. For the connected English digits recogni-

tion, similar performance can be achieved. Only 3.1 msec, is needed within a 

10 msec, frame. 

Two practical techniques, namely end-point detection (EPD) and spectral 

subtraction (SS), are implemented in the ASR systems. Experimental results 

show that the recognition performance with EPD can be increased by 5.07% 

for IWR task with 2 mixtures per state and 0.12% for CWR task. When both 

EPD and SS are applied, the recognition performance shows a 5.28% absolute 

improvement for IWR with 2 mixtures per state and 0.16% improvement for 

CWR. 

Performance analysis shows that the execution time or memory requirement 

is approximately proportional to the number of mixtures in HMMs, which de-

termines the model complexity. Theoretically, the recognition accuracy would 

keep increasing with the increase of model complexity, if we have infinite amount 

of training data. In practice, the recognition accuracy will not grow unlimitedly 

because training data are always limited. With limited training data, the mix-

ture components can not be efficiently trained if the number of the components 

is too large. For example, in the IWR task, the recognition accuracy will stop 

growing when the execution time reaches to 4 msec, and above. 

By optimizing the speech recognition algorithms, the computation time for 

both front-end and pattern recognition has been efficiently reduced. We inves-

tigated the front-end and back-end parts in detail and found out the elements 

that cost most of the computation. In the front-end, FFT, spectral magnitude, 

� DCT and Hamming window cost a lot of computation. Experimental results 

show that the optimization methods have reduced the computation time for 

front-end part to 0.67 msec., which is about 20% computation load of the entire 

recognition system. 

On the other hand, the execution time for the back-end is proportional to 
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the complexity of model. The more complex the model is, the more execution 

time and memory will be required. Experimentally, 2 . 5 - 4 msec, of computa-

tion cost for the back-end is adequate to give good recognition accuracy. The 

memory requirement for storing the model parameters is the most intensive load 

of the whole system, and it is approximately proportional to the total number 

of states and models which are crucial to the recognition performance. We 

have investigated the relation between the model complexity and recognition 

accuracy. Experimental result shows that if the total number of mixtures is 

larger than 16’ the recognition performance will not increase very much for the 

isolated word recognition system. 

8.2 Suggestions for future research 

There is potential work to be done in the future: 

1) To make the system more robust to the noisy environment, especially for 

r low SNR environment, some new modifications to the spectral subtraction 

method may be researched for low-cost applications. 

2) As we can see, the end-point detection used in this work is only based on 

the frame energy which is not good for a noisy environment with low SNR. 

The error rate of determining the beginning and ending of speech segments 

will greatly increase which directly influence the recognition performance 

at the pattern recognition part. So, we should try to use some effective 

way to do end-point detection. One of these methods we think may work 

is to use the statistical way to find a distribution which can separate the 

noise and speech from each other. 

‘ 3) Although we have proposed many optimization methods to the complex 

speech recognition technology, there maybe some other optimizations that 

we can apply. For example, when the vocabulary size increases, we can 

use pruning technique to reduce the computation time for path extension. 

4) In this work, we assume that the number of states and mixtures are same 
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-•‘ . 

for each model. This limitation is too strict. So in the future work, we 

should make the number different for each model, which is more flexible 
� i 

for use. 
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Appendix A 

Interpolation of data entries 

without floating point, divides or 

conditional branches 

Let f 0 be the function being approximated, b be the number of bits in the 

r unsigned input number x, and t be the number of bits used to index the table. 

The table will have values of / (x) for x = n • for n = 0 , 1 , 2 , — 1. 

The index for the table entry j . is just j left shifted by (b - t). Thus to 

approximate f (x) using the table we just right shift x by (b - t) bits and then 

index into the table. 

To interpolate between table entries, let the value obtained from the lookup 

table be and the next higher entry in the lookup table be /之.Obviously f (x) 

is in between j\ and /之.To interpolate we use standard linear interpolation and 

get the equation 

- f / N _ (/2 - /l) (x - Xtrunc) . r 
Japprox � — 

‘ where Xtmnc is x with the lower b-t bits zeroed out. Note that x — Xtmnc 

is just the lower (b-t) bits of x which can be implemented as a bitwise AND. 

The division is by a power of two so it is just a shift. It may be necessary to 

distribute the shift by (b-t) into two operations to prevent overflow in computing 

the numerator. The index for /之 is just one more than the index for / i . 
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Appendix B 

Vocabulary for Cantonese 

isolated word recognition task 

Vocabulary 

A - 廚 房 B - 客 廳 C - 飯 廳 D - 睡 房 

E - 廁 所 F - 電 燈 G - 冷氣 H - 音響 

I-HiFi J-電視 K-風扇 
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