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Abstract of thesis entitled: 

Medical Data Mining using Bayesian Network and D N A Se-
quence Analysis 

Submitted by LEE Kit Ying 
for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in August 2004 

Due to the use of information technology in medical care, data col-
lected from clinical processes can be used for discovering useful pat-
terns. These patterns can be analyzed automatically or by medical 
professionals in order to develop better strategies to improve the qual-
ity of medical treatment. Our work is based on the Hepatitis B Virus 
(HBV) Genome Project for investigating the use of various machine 
learning and data mining models in the medical domain. This work is 
mainly divided into three major parts. 

The first part is the study of the application of Bayesian network 
classifiers (BNCs) on clinical data mining, which focuses on finding the 
interrelationship among the clinical attributes, as well as their con-
tributions to the disease. Variations of BNCs, including the Bayesian-
augmented Naive Bayes (BAN) and General Bayesian Network (GBN), 
which have various degrees of constraints on the attribute dependency, 
are proposed for classification. The existing learning algorithms of 
them are mainly based on dependency analysis approach. In this the-
sis, the evolutionary learning algorithm (Hybridized Evolutionary Pro-
gramming, HEP) is applied for learning these classifiers with satisfac-
tory performance. 

The second part is the development of a generic framework for virus 
DNA analysis and finding genetic markers. Based on the Genome 
project, a comprehensive framework including the data preprocessing, 
clustering, feature selection, classification and evaluation modules is 
proposed. Each module serves its functions in the architecture with 
a certain flexibility of customization. Using this framework, there are 
some important biochemical and medical findings, including the sub-
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grouping of HBV genotype C and genetic markers with high accuracy 
and sensitivity. 

The last part is the optimization of the HEP algorithm for struc-
tural learning of Bayesian networks. The idea of the novel Adaptive 
HEP algorithm (A-HEP) is based on the concept of adjusting the pop-
ulation size adaptively according to the dissimilarity of individuals in 
the current population. With the use of an increasing and a decreasing 
routines. The population expands for increasing diversity and contracts 
for reducing computation. The experimental results illustrate that our 
A-HEP has reduced the running time by half on average. 

In this thesis, the feasibility and efficiency of using computer sci-
ence technology to solve medical and biochemical problems are demon-
strated. 
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論文摘要 

由於在醫療保健中應用資訊科技，臨床過程中收集的資料可以被用來發掘有 

用的樣式。這些樣式可以由醫療專家分析或自動化分析，從而開發更好的策 

略以改進醫學治療的質素。我們的工作建基於乙型肝炎病毒(HBV)染色體項目， 

調查各種各樣的機器學習和數據挖掘模型在醫療領域的應用。這工作主要被 

劃分成三大部分。 

第一部份是關於硏究貝葉斯網路分類器（Bayesian network c l a s s i f i e r s ) 在 

臨床數據挖掘的應用，集中於發掘臨床屬性之間的相互聯繫及它們對疾病的 

影響。 

我們提議利用一系列BNC的變種，包括貝葉斯擴大的貝葉(BAN)和一般貝葉斯 

網絡(GBN)來進行分類。它們現有的學習算法主要根據依賴性分析方法。在這 

份論文中，混種演化編程算法(HEP)將被應用在這些分類器的學習，並得到滿 

意的效率。 

第二部份是關於發展一個框架以分析DNA病毒和發現基因標記。根據我們的 

項目，我們提出一個全面的框架，內含多個模組，包括資料預處理模組，簇 

群建立模組，特點選擇模組、分類模組和評估模組。各個模組以一定靈活性 

的定製在框架內發揮它的作用。透過這個框架，有一些重要生物化學和醫療 

硏究結果被發現，包括HBV基因型C的附屬群集和具高準確性和敏感性的基因 

標記。 

最後的一個部份是關於爲貝葉斯網路(Bayesian network釣結構化學習而提出 

的Hybrid EP (HEP)的優化。優化混種演化編程算法 (A-HEP)的槪念是根據 

當前生態群體的個體不相似性而適當調整群體大小。利用增加和減少的程序， 

當多樣性增加時群體會擴展，而當計算減少時群體會收縮。實驗結果說明， 

我們的A-HEP運行時間平均減少了一半。 

這份論文展示了利用計算機科學技術去解決醫療和生物化學問題的可行性和 

效率。 
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Chapter 1 

Introduction 

Due to the use of information technology in medical care, data col-

lected from clinical processes can be used for discovering useful pat-

terns. These patterns can be analyzed automatically or by medical 

professionals in order to develop better strategies to improve the qual-

ity of medical treatment. Our work is based on the Hepatitis B Virus 

Genome Project for investigating the use of various machine learning 

and data mining models in the medical domain. This work is mainly 

divided into three major parts - the study of Bayesian network classifier 

on clinical data mining; the development of a framework for virus DNA 

analysis and finding genetic markers; and the optimization of existing 

efficient Bayesian network learning algorithm - HEP. An introduction 

of our work is given in the following sections. 

1.1 Project Background 

The Hepatitis B Virus Genome Project is a co-operated research project 

among Department of Medicine and Therapeutics, Department of Bio-

chemistry and Department of Computer Science and Engineering, CUHK. 

In Asia, infection of Hepatitis B virus (HBV) is a major health prob-
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CHAPTER 1. INTRODUCTION 2 

lem. Near 20% of Chinese population are HBV carriers, and up to 

25% of HBV carriers will die as a result of HBV-related complications 

including liver cirrhosis and hepatocellular carcinoma (HCC) which is 

commonly known as liver cancer. The aim of the project is to find the 

genomic markers of the HBV and clinical information which are useful 

to predict occurrence of HCC and response to therapy. 

In this project, clinicians select patients for investigation that based 

on their expert knowledge and selection criteria. Data of patients are 

then collected from the Prince of Wales Hospital. At the same time, the 

latest or past blood samples of patients which contain Hepatitis B Virus 

are sent to Department of Biochemistry. They carry out advanced 

sequencing experiments to extract the whole genome of the HBV for 

each patient. Finally, computer science researchers are responsible for 

the data mining phase that finds the genetic and clinical markers which 

are useful for disease prediction and diagnosis. Clinical information and 

virus genome data are both used in the mining of significant markers 

of liver cancer (HCC). 

According to the HBV project proposal, we need to carry out data 

mining part mainly for HBV genomic data. This project is divided 

into two phases : Finding genomic markers of HBV that related to 

the liver cancer, and investigate the genomic characteristics of HBV in 

response to the drug treatment - Laminvndine. At this stage, we are 

working on the first phase. In this study, we look into the clinical data 

prepared by the clinicians, and the HBV DNA genomes prepared by 

biochemists. Patients who take part in this study are selected by the 

clinicians carefully, according to their age, sex, and past clinical status. 

Clinical attributes for analysis are chosen by the clinicians with their 

expert knowledge. The selection process and criteria of patients and 
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the research experiments run by the Department of Biochemistry will 

not be discussed in detail here. 

In biological point of view, the genome of an organism is all of the 

genetic information or hereditary material possessed by an organism; 

the entire genetic complement of an organism, i.e. HBV genomes are 

extracted by experiments and represented in a form of DNA. In this 

study, we have DNA sequences from 100 Control patients and 100 

HCC patients. The DNA sequences of HBV are not exactly the same 

for each group, and they possess some individual nucleotide mutations 

that may or may not be related to HCC. In literature, HBV can be 

divided into seven genotypes where each of them have more than 8% 

difference of nucleotides to the others. In Hong Kong, genotypes B 

and C are the most common types, and all the samples we have are of 

these genotypes. To reduce the noise of genotypical difference between 

genotype B and C, we analyze the DNA samples separately. 

The aim of this study is to develop a classification model for HCC 

based on HBV DNA and clinical data. This classification model should 

have high accuracy, specificity and sensitivity for HCC diagnosis and 

prediction. 

1.2 Problem Specifications 

This work is based on the HBV Genome Project and investigates the 

use of different machine learning and data mining models in medical 

domain. The background of this project is described in the previous 

section. It is mainly divided into clinical data mining and DNA anal-

ysis. The aim of this study is to find genetic and clinical markers for 

HCC, i.e. to develop a classification model for HCC based on HBV 

DNA and clinical data. 
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The clinical data mining focuses on finding the inter-relationship be-

tween clinical attributes, as well as their contributions to liver cancer. 

Among various machine learning models, we choose Bayesian network 

which can represent the casual dependency with probability. Bayesian 

network classifiers, such as Naive-Bayes, are also popular classification 

models with satisfactory performance. However, those simple struc-

tural classifiers limit the dependency among the attributes that may 

not be realistic in real-life problems. Therefore, the BN-augmented 

Naive-Bayes (BAN) and General Bayesian Network (GBN), which re-

lease the constraint on attribute dependency, are proposed for clas-

sification. Since the existing learning algorithms of them are mainly 

based on dependency analysis approach, we investigate the feasibility of 

applying evolutionary algorithm called Hybrid Evolutionary Program-

ming (HEP) [66] into them. 

Concerning the DNA analysis, it is a challenging and pioneering 

project the findings of which are very meaningful and valuable to the 

society. In medical and biochemical research field, the scale of this 

project is considered large and comprehensive. The whole genome of 

HBV DNA are extracted and analyzed. In the computer science point 

of view, the volume of data is too small while the data dimension is so 

large. Moreover, how to tackle such small data set carefully to ensure 

the statistical correctness, how to distinguish which genome sites may 

be meaningful to our analysis, how to reduce the noise (unrelated mu-

tations) of data, and how to choose a suitable classification model, are 

all challenges to this project. We endeavor to devise a comprehensive 

framework by giving a closer inspection on the problem. 

In addition, inspired by the adaptive elitist-population genetic al-

gorithm (AEGA), the efficient HEP could still further improved. Since 
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the running time of evolutionary algorithms depends on the population 

size, we may adopt the dynamic population size concept in AEG A in 

HEP. However, the search spaces of HEP and AEGA are totally dif-

ferent, so that a feasibility study should be conducted. How to adjust 

the population size with performance enhancement should also be ex-

plored. Finally, applications of new algorithm on medical domain will 

be studied. 

1.3 Contributions 

The contributions of this thesis are summarized as follows: 

• It investigates the real-life pioneer genome analysis project and 

design the approach to solve it by various machine learning and 

data mining models. 

• It proposes learning algorithms of BN-augmented Naive-Bayes 

classifier and General Bayesian Network classifier based on HEP. 

The modifications on HEP and introduction of Markov Blanket 

concept improve the performance of the classifiers. 

• It discovers the easy-missed errors in Bayesian network parameter 

calculation and investigates possible causes and suggest feasible 

solutions on the problem. 

• It applies the Bayesian network classifier on the clinical data of 

HBV genome project. The results have discovered the inter-

relationships among the clinical attributes which is very useful 

to the doctors. 

• It introduces a comprehensive framework for DNA sequence anal-

ysis targeted on classification. With the proposed data prepro-
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cessing, feature selection, classification and evaluation steps, use-

ful information can be obtained. 

• It analyzes the HBV DNA in the genome project and discovered 

a number of important biochemical and medical findings. 

• It optimizes the evolutionary HEP by introducing the concept of 

adjusting the population size adaptively. The new Bayesian net-

work learning algorithm A-HEP speeds up the original algorithm 

by two times with comparable performance. 

• We have published the paper named "A-HEP : Adaptive Hybrid 

Evolutionary Programming for Learning Bayesian Networks" in 

the "Genetic and Evolutionary Computation Conference 2004" 

4 2； . 

1,4 Thesis Organization 

This thesis is organized as follows. In the next chapter, we describe 

the background relating to our work. This includes a brief introduction 

on medical data mining, DNA analysis and Hepatitis B virus research. 

The background information about Bayesian network, Bayesian net-

work classifiers and their learning algorithms including HEP are also 

presented. 

In chapter three, the proposed learning algorithms on BN-augmented 

Naive-Bayes (BAN) and General Bayesian Network (GBN) are de-

scribed in detail. They are designed based on the efficient evolutionary 

Bayesian network learning algorithm - HEP. Next, the new findings on 

Bayesian network parameter calculation are discussed. At the end of 

this chapter, the performance of the proposed algorithms are evaluated 

by benchmark data sets and real-life clinical data sets. 
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Chapter four concentrates on DNA data analysis which is an im-

portant phase in Hepatitis B virus genome project. Since we target 

on finding genetic markers of HCC from HBV DNA sequences, the 

complete framework includes the data pre-processing, feature selec-

tion, classification and evaluation steps. A detail description on each 

step are presented with examples and experimental results. Important 

research findings are also introduced at the end of the chapter. 

In chapter five, the optimized version of HEP - A-HEP are pro-

posed. Its optimization strategy is based on dynamic population size 

controlled by a newly designed increasing routine and decreasing rou-

tine. Its speed improvements are illustrated by experiments with com-

parisons to the original HEP. Since the algorithm involves a number 

of parameters, the effect of parameter settings are also investigated 

through experiments. 

In the conclusion, the work is summarized with discussion on future 

directions. 

• End of chapter. 



Chapter 2 

Background 

In this chapter, we introduce the background and previous works that 

are relevant to our research. In Section 2.1, we introduce the emergence 

and importance of medical data mining. The difficulties encountered 

for medical domain are stated as well. In our Hepatitis B Virus Genome 

project, DNA sequence analysis also plays an important part of it. The 

general information and related works are described in Section 2.2. For 

a better understanding of our real-life project and research, Section 2.3 

provides more information on Hepatitis B Virus and related biochemi-

cal findings. On the other hand, Bayesian network is a major data min-

ing model used in this thesis. In Section 2.4, we give a brief overview of 

it and its learning algorithms. Finally, in Section 2.5，we describe dif-

ferent types of Bayesian network classifiers and their existing learning 

algorithms. 

2.1 Medical Data Mining 

The theme of our work is medical data mining. In this section, the gen-

eral information and related research of this area are presented. Next, 

the special features of data mining with medical data and difficulties 

8 



CHAPTER 2. BACKGROUND 9 

encountered are addressed. 

2.1.1 General Information 

Modern hospitals are well equipped with monitoring and other data 

collection devices which provide relatively inexpensive means to collect 

and store the data in inter- and intra-hospital information systems. 

Extensive amounts of data gathered in medical databases require spe-

cialized tools for storing and accessing data, for data analysis, and for 

effective use of data. In particular, the increase in data volume causes 

great difficulties in extracting useful information for decision support. 

Traditional manual data analysis has become inadequate, and methods 

for efficient computer-based analysis are indispensable. To satisfy this 

need, medical informatics may use the technologies developed in the 

new interdisciplinary field of knowledge discovery in databases (KDD), 

encompassing statistical, pattern recognition, machine learning, and 

visualization tools to support the analysis of data and the discovery of 

regularities that are encoded within the data. KDD typically consists 

of the following steps: understanding the domain, forming the data set 

and cleansing the data, extracting regularities hidden in the data and 

formulating knowledge in the form of patterns or rules (this step in 

the overall KDD process is usually referred to as data mining (DM)), 

post-processing of discovered knowledge, and exploiting the results [41 . 

Under this situation, various data mining techniques, together with dif-

ferent models of knowledge representations, are proposed for building 

medical diagnosis and prediction systems [35 . 
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2.1.2 Related Research 

Due to the use of information technology in medical care, data col-

lected from clinical processes can be used for discovering useful pat-

terns. These patterns can be analyzed automatically or by medical 

professionals in order to develop better strategies to improve the qual-

ity of medical treatment. There are plenty of examples, including 

discovering temporal-state transition in Hemodialysis [47], temporal 

pattern discovery in course-of-disease data (HIV) [34], knowledge dis-

covery in fracture and Scoliosis database [65] [51], improving diagnosis 

of ischaemic heart disease [38]，preoperative prediction of malignancy 

of ovarian tumors [48]，multiple classifier system for early melanoma 

diagnosis [60], using Bayesian network and decision trees in diagnosis 

of female urinary incontinence [33]，evolutionary computing for medical 

diagnosis [37], etc. 

Let us look into some of them in detail. Discovering temporal-

state transition in Hemodialysis is a research done by two Taiwanese 

researchers. They adopted the Bayesian network approach to encode 

the probabilistic relationships among medical treatments and transi-

tions of patient's physiological states in the Hemodialysis process. The 

background theoretical research is based on another paper [46]. It al-

low them to find the time dependency patterns in the clinical pathway. 

The second medical data mining example is temporal pattern discov-

ery in course-of-disease data. In this paper, authors did not apply 

the Bayesian network for data mining, but they clearly described the 

process of knowledge discovery in database (KDD). Their target is to 

discover patterns in Human Immunodeficiency Virus (HIV) database. 

In Hong Kong, researchers have applied evolutionary algorithms to 

discover knowledge from medical databases successfully. They used 
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MDLEP and genetic algorithm to learn the Bayesian network structure 

for the fracture database and Scoliosis database. Genetic algorithm 

has been used on the learning of discretization policies on variables 

51]. Obviously, applying various data mining techniques on medical 

domain to discover knowledge in database and/or to develop a decision 

support system has become a trend. Bayesian network is also a popular 

choice for knowledge representation. 

In recent years, Bayesian networks (BNs) have emerged as one of 

the most successful tools for medical diagnostics and many have been 

deployed in real medical environments or implemented in off-the-shelf 

diagnostic software [55]. BN is widely used because of its ability to en-

code the probabilistic relationships among variables, and efficiency and 

flexibility in inference. In certain domains such as medicine, planning 

and control, and industrial environments, the incorporation of temporal 

reasoning is crucial. Therefore, different variations of BNs are devel-

oped in order to represent the causal and temporal relationships among 

events or variables, like the above Hemodialysis and Course-of-Disease 

examples. 

In our work, Bayesian network and its classifiers are chosen as the 

knowledge representation and machine learning models to solve our 

medical problem. 

2.1.3 Characteristics and Difficulties Encountered 

Data mining in realistic medical domain has a number of characteristics 

and also faces some common difficulties. They are briefly described in 

the following paragraphs. 

Let us start from the uniqueness of medical data mining. Krzysztof 

J.Cios et al. proposed the special features of data mining with medi-
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cal data [15]. In their paper, they pointed out that medical data are 

privacy-sensitive. We should collect them in an ethical and legal way, 

and administrate them in a secure way. The aim of collection should 

be primarily directed to patient-care activity but not solely used for re-

search resource. Data from medical sources are sometimes voluminous 

and with different structures and quality. In this case, the physician's 

interpretations are essential. 

Building classification and prediction models are the common pur-

pose of doing medical data mining. Typically, the goodness of the 

classification models depends on the accuracy. For medical applica-

tions, the sensitivity and specificity are also important for measuring 

the errors. 

In real medical domains, the problems of insufficient data and data 

with missing values are very common. It increases the difficulty of 

finding an accurate model. There are a number of researchers working 

on this. Here we focus on constructing Bayesian network from missing 

and inadequate data. X. Wu et el. did research on the learning of 

Bayesian network topologies using the algorithm they developed [67 . 

They explained why normal statistical models cannot be used, and ap-

plied their learning method on an example - stroke. They constructed 

a causal model with the help of an expert clinician. On the other hand, 

Nikovski also did similar research on this field [55]. He suggested the 

way to construct BN from incomplete and partial correct statistics. 

His key point was to introduce the domain dependent constraints. It 

is a similar idea to using expert knowledge. Another interesting paper 

is from Bellazzi and Riva in 1998 [57]. They investigated the way to 

deal with longitudinal data. One example of longitudinal data is the 

continuous assessments on the patient's clinical conditions. A diabetes 
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data set is used in its experiments. 

Medical data mining becomes more and more important in the re-

search field and clinical situation. The results of studies are expected 

to be beneficial to the society. 

2.2 DNA Sequence Analysis 

DNA sequence analysis is a wide research area in biological and med-

ical fields that becomes more and more important. There are plenty 

of research on DNA sequence analysis. They belong to the field of 

Bioinformatics. Bertone's paper gives a general picture of this field [4 . 

In the paper, the machine learning for analyzing genome-wide expres-

sion profiles and proteomics data sets is described. Current and future 

research directions are introduced. 

DNA is the acronym for Deoxyribo-Nucleic Acid. It is the basic 

hereditary material in all cells and contains all the information nec-

essary to make proteins. The structure of a DNA is composed of two 

complementary nucleotide strands aligned in a double-helix form. DNA 

is a linear polymer that is made up of nucleotide units. The nucleotide 

unit consists of a base, a deoxyribose sugar, and a phosphate. There 

are four types of bases: adenine (A), thymine (T), guanine (G), and 

cytosine (C). In normal DNA, the bases form pairs: A to T and G to 

C. This is called complementarity. 

In an organism, the order of amino acids in a protein produced 

is defined by the DNA in the cells. The order of Amino acids can 

affect the functions of the protein, and thus the development of an 

organism. Therefore, any mutations in the DNA of an organism may 

cause damages or benefits to its corresponding species. 

Our Hepatitis B Virus Genome project introduced in the previous 
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section aims on finding genetic markers of HCC. This is an project 

working on DNA sequence analysis. We define the genetic markers 

as those nucleic mutations or characteristics of HBV DNA which are 

related to the HCC occurrence. Biochemical and medical knowledge 

are essential for this analysis. 

2.3 Hepatitis B Virus 

Hepatitis B is caused by the hepatitis B virus. The virus is very com-

mon in China, Asia, Africa and the Middle east. It is estimated that 

there are over 350 million hepatitis B carriers worldwide which repre-

sents 5% of the worlds population and it is estimated that 10 to 30 

million people become infected with the virus each year. Hepatitis B 

virus (HBV) is transmitted by the exchange of body fluids e.g. Blood, 

Semen, Breast Milk and in some circumstances saliva. It is possible 

to be infected with the HBV and experience no illness or symptoms 

whatsoever. Commonest is an acute attack of hepatitis during which 

one may have the Hepatitis B symptoms. In some cases hepatitis B can 

be fatal, in the elderly. Around 90% of people infected with hepatitis 

B recover completely and become immune to the virus. Blood tests 

will show antibodies to hepatitis B (HBeAg) indicating you have had 

hepatitis B but are now immune and will not get hepatitis B again. 

However 10% of people infected with hepatitis B develop chronic infec-

tion, may have ongoing symptoms and they continue to be infectious 

for a variable length of time. Chronic infection is defined as having 

hepatitis B present for 6 months or more. People with a chronic hep-

atitis infection are at risk of liver damage and around 20-30% of these 

cases progress to cirrhosis [25] [26̂ . 
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Figure 2.1: Hepatitis B virus under microscope. Copyright is owned by 
A.D.A.M. Inc[28； 

2.3.1 Virus Characteristics 

Hepatitis B is a DNA virus of the hepadnaviridae family of viruses. 

It replicates within infected liver cells (hepatocytes). The infectious 

particle consists of an inner core plus an outer surface coat. In real 

life the virus is a spherical particle with a diameter of 42nm (Inm = 

0.000000001 metres), as shown in Fig. 2.2. Its outer shell (or envelope) 

composes of several proteins known collectively as HBs or surface pro-

teins. This outer shell is frequently referred to as the surface coat. The 

outer surface coat surrounds an inner protein shell which is composed 

of HBc proteins. This inner shell is referred to as the core particle or 

capsid. Surrounded by the core particle, there are the viral DNA and 

the enzyme DNA Polymerase [25 . 

There are various detectable clues on the infection of HBV, includ-

ing Hepatitis B DNA (HBV DNA), Hepatitis B DNA polymerase (HBV 

DNAp), Hepatitis B Core protein (HBcAg), Hepatitis B Surface anti-

gen (HBsAg), HBe Protein (HBeAg or 'e'antigen) and HBx Protein. 
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Figure 2.2: Hepatitis B virus structure [25 . 

Some of these components enter the blood stream and cause detectable 

changes, for example, HBV DNA and HBeAg. Blood tests can be done 

to check the state of infections of Hepatitis B virus. 

HBV is the smallest DNA vims infecting humans. Its genome con-

tains one strand with about 3200 nucleotides that is complementary 

to a shorter strand with 1700-2800 nucleotides. The two strands have 

cohesive ends over a stretch of about 200 nucleotides, which enable 

a circle to be formed, resulting in a unique, circular double-stranded 

genome with a single stranded gap of variable [70]. The HBV genome 

encodes proteins that constitute the external viral envelope and the 

viral capsid by its gene pre-Sl, pre-S2, S and C. The small size of the 

DNA genome limits the number of proteins that can be encoded. How-

ever, the HBV employs all three reading frames and overlaps them to 

encode four proteins. About half of the genome codes for two proteins 

at one time, using different reading frames. Regulatory signals are 
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also included in protein encoding genes. Therefore, the virus makes 

economical use of its genome. It also introduce great difficulties for 

analyze the genome in nucleotide-level. 

2.3.2 Important Findings on the Virus 

The studies on HBV are an active research area in both medical and 

biochemistry fields, since the infection of Hepatitis is one the major 

health problems in the world. Here, the related discoveries are intro-

duced briefly. 

Concerning the progression to cirrhosis, it is proved that the double 

promoter mutation, A1762T/G1764A is an important clue. The G-to-

A change at nucleotide 1896 (G1896A) which creates a stop codon at 

codon 28 also confirmed in relationship with the progression [70]. In 

our later study, we also discovery these benchmark findings from our 

genome data. 

Hepatitis B virus (HBV) has been classified into seven genotypes 

(A to G) based on a nucleotide divergence within the complete genome 

of greater than 8%. Recent research shows that genotypes are related 

to the degree of the liver disease, eruption of virus gene mutation, and 

drug effectiveness. In Asia-Pacific region, the most common genotypes 

are genotypes B and C. The HBV from our patients are all in this 

two genotypes. Since there are genotypical differences, we separate the 

samples according to their genotype in our study. 

2.4 Bayesian Network and its Classifiers 

Bayesian network (BN) is a popular knowledge representation for ma-

chine learning and data mining. Owing to its ability of representing 

causality and uncertainty, it is widely used in various domains. With 
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Figure 2.3: A Bayesian network example. 

the use of Bayesian networks, many medical and operational diagnostic 

and prediction systems can be developed. Bayesian network classifiers 

are models of using BN for classification. There are over ten differ-

ent models while Naive-Bayes and TAN are the most popular ones. 

Research on learning algorithm of BN classifiers is in progress with a 

view of improving their performance. On the other hand, evolutionary 

computation is an active research area in soft computing. It is espe-

cially efficient to find optimal or nearly optimal solution from large 

search-space. This section gives an introduction on them. 

2.4.1 Formal Definition 

A Bayesian network, G, has a directed acyclic graph (DAG) structure. 

As shown in Figure 2.3, each node in the graph corresponds to a discrete 

random variable in the domain. An edge, X — Y", on the graph, 

describes a parent and child relation in which X is the child and Y is 

the parent. All parents of X constitute the parent set of X which is 

denoted by Ux- In addition to the graph, each node has a conditional 

probability table (CPT) specifying the probability of each possible state 

of the node given each possible combination of states of its parents. If 

a node contains no parent, the table gives the marginal probabilities of 

the node [56 . 
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Since Bayesian networks are founded on the idea of conditional in-

dependence, it is necessary to give a brief description here. Let U 

be the set of variables in the domain and P be the joint probability 

distribution of U. Following Pearl's notation [56], a conditional inde-

pendence (CI) relation is denoted by / ( X , Z, Y) where X , Y, and Z 

are disjoint subsets of variables in U. Such notation says that X and Y 

are conditionally independent given the conditioning set, Z. Formally, 

a CI relation is defined as [56]: 

P{x I = P{x I z) whenever P{y,z) > 0, (2.1) 

where x, y, and z are any value assignments to the set of variables 

X , y , and Z respectively. A CI relation is characterized by its order, 

which is simply the number of variables in the conditioning set Z. 

By definition, a Bayesian network encodes the joint probability dis-

tribution of the domain variables, U = {TVi,..., iV^}: 

= (2.2) 
i 

2.4.2 Existing Learning Algorithms 

Typically, a Bayesian network can be constructed by eliciting knowl-

edge from domain experts. To reduce imprecision due to subjective 

judgments, many algorithms are designed for learning Bayesian net-

works from collected data and past observations in the domain. 

In the literature of Bayesian network learning, we could roughly 

divide the works into two categories: the dependency analysis and the 

score-and-search approaches [7]. Since BN is viewed as a model under-

lying the dependency, it suggests the use of dependency information 

for the BN construction. On the other hand, BN can be considered as 
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encoding a joint probability distribution. As a result, various kinds of 

score metrics and functions are designed to evaluate the quality of a 

given network. Therefore, constructing the BN can be formulated as 

searching the best network structure. Both approaches have respective 

problems and difficulties to be solved. 

Dependency Analysis Approach 

Since the BN structure encodes a group of conditional independence re-

lationships among the nodes, according to the concept of d-separation 

56]. This suggests learning the BN structure by identifying the condi-

tional independence relationships among the nodes. The dependency 

relationships are measured by using some kind of conditional indepen-

dence (CI) test. Cheng et al. applied information theory concept on 

CI test. [7\ 

In general, the dependency analysis approach has three typical prob-

lems. First, it is difficult to determine whether two nodes are depen-

dent. Examining every possible combinations of the conditioning set 

requires an exponential number of tests. Second, result from CI tests 

may not be reliable especially for high order CI tests. Also, an earlier 

mistake during the execution of the construction algorithm is conse-

quential [43 . 

Score-and-search Approach 

Recalling that BN encodes the joint distribution of the attributes, we 

could devise a measure for assessing the goodness of such encoding. Us-

ing the score metric, a search algorithm can be used to find a network 

structure with a good score. In literature, greedy search algorithms 

were firstly employed for learning the BN structure. At the same time, 
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computer scientists and statisticians worked on the local structure and 

the score metric which determine the goodness of the candidate struc-

tures [69] [11] [12] [20:. 

Heckerman et al. compared two learning approaches, and show that 

the scoring-based methods often have certain advantages over the CI-

based methods in terms of modelling a distribution. The common score 

metrics which the searching algorithms try to optimize include Bayesian 

Dirichlet score, Kullback-Leibler (KL) entropy scoring function and 

Minimum Description Length (MDL) [20 . 

Among the above metrics, MDL is widely used because it is a good 

tradeoff between the model complexity and model accuracy. The MDL 

score of a network B given a training set D is defined as follows: 

MDL{B\D) = - . \ogN\B\ — LL(B\D) (2.3) 

where N is the number of data in the training set, \B\ is the number of 

parameters in the network, and LL(B|D) is the log-likelihood of B given 

D. The first term simply counts how many bits we need to encode the 

specific network B, where we stored | • log iV bits for each parameter 

in 9 . The second term measures how many bits are needed for the 

encoded representation of D. For details of log-likelihood, please refer 

to the Heckerman's tutorial paper [20]. By minimizing the MDL score, 

the structure complexity is minimized and log-likelihood (i.e. the accu-

racy of the structure) is maximized. Limiting the structure complexity 

is required to prevent the over fitting of the training data, while max-

imizing the log-likelihood can ensure the structure can represent the 

data properly. 

As a property common to other metrics, the MDL metric is node-

decomposable and expressed as a summation of the independent eval-
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nation on the parent set, 11at̂ , of every node Ni in the domain U. 

MDL{B\D) = Y. MDL{Ni,UN,) (2.4) 
Nieu 

However, using the greedy search heuristics with any metric may 

yield sub-optimal solutions. Like branch-and-bound, exhaustive and 

systematic searching can find optimal solution. At its worst, the time 

complexity consumed would be exponential. These drawbacks can be 

reduced by using evolutionary algorithms. 

Existing evolutionary algorithms for learning Bayesian networks is 

introduced in next section. In addition, a number of researches have 

been conducted on related fields which include incomplete data [52], 

dynamic Bayesian network [58], node topologies, etc. [5] [13 

2.4.3 Evolutionary Algorithms and Hybrid EP (HEP) 

Bayesian network structure learning can be done by two approaches: 

score-and-search and dependency analysis. Finding the best structure 

of BN which can perfectly represent the interrelationship among at-

tributes are proved to be NP-hard [17]. The search space is a very 

large, multi-dimensional and multi-modal landscape, so that evolution-

ary algorithms (EA) are good solutions to this problem. 

Evolutionary Algorithm 

Evolutionary computation is a general stochastic search methodology. 

The principal idea derives from natural evolution mechanisms sug-

gested by Charles Darwin. Since the evolutionary computation is very 

powerful, it is often applied to solve large-scale optimization problems 

in different area. Although it is a stochastic computation, its perfor-

mance is always reasonable in many global optimization problems. 
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In general, there are four typical categories of EA: Genetic Algo-

rithm (GA), Genetic Programming (GP), Evolutionary Programming 

(EP) and Evolutionary Strategies (ES). They share the same concept 

-group search with guidance. 

A group of candidate solutions are randomly generated as the ini-

tial population. Each of the candidate solution is evaluated by a fit-

ness function which can determine the quality of the solution. For 

each iteration {generation), some individuals are selected to reproduce 

offsprings by some genetic operators, such as crossover and mutation. 

The new offspring are evaluated by the fitness function, then the better 

offspring replace the less fit candidates in the old population. 

The variation of genetic composition in each generation can be re-

garded as exploration of search-space. Selection comes into play where 

the weaker ones will eliminated while the stronger ones will have a 

higher chance to survive into the next generation. Only the better 

ones will survive, it is expected that a global, or near optimal solu-

tion can be obtained. Unlike the greedy searching methods, stochastic 

searching, as EA, can avoid trapping in local optimal solutions. 

Existing EA Bayesian Network Learning Algorithms 

Previous researches on Bayesian network learning by evolutionary al-

gorithms were mainly conducted in two directions: Genetic Algorithm 

(GA) and Evolutionary Programming (EP) approaches. 

Larranaga et al. used GA for structure learning. They represented 

BNs as connectivity matrix and encoded them in chromosomes. Fitness 

function is the Bayesian score. As genetic operators could create illegal 

structures, cycle repairing operator was introduced as a response�For 

more details, please refer to [39 . 
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Wong et al. [64] used EP to tackle the search problem. Their 

algorithm is called MDLEP, as they use the Minimum Description 

Length (MDL) as the fitness function. The mutation operators that 

they used include simple mutation, reversion mutation, move mutation 

and knowledge-guided mutation. The last operator is similar to single 

mutation except that an edge is selected by comparing the correspond-

ing MDL score of the connecting nodes. Heaviest edges tend to be 

removed and lightest edges tend to be added. For more details, please 

refer to [64 . 

Owing to the inefficiency of GA mutations and slow convergence of 

MDLEP, Wong et al. continued their work and introduced a HEP for 

BN structure learning [66] described below. 

Hybrid EP (HEP) 

As mentioned before, researchers treat the network learning problem 

by two very different approaches. They are the dependency analysis 

and the search-and-scoring approaches. Both approaches have their 

own drawbacks. Hybrid EP (HEP), an extension of MDLEP [64], was 

designed to incorporate the dependency information into the search-

ing process. The combination of the two approaches achieves better 

efficiency and improves the solution quality with a smaller number of 

generations [66 . 

The evolutionary part of HEP is similar to MDLEP, except that 

HEP has an additional CI test Phase immediately before the EP (Evo-

lutionary Programming) Search Phase. For every pair of nodes, the 

order-0 and order-1 CI tests are used to find the p-value which indi-

cates the dependency level between them. The search space is refined in 

each generation by checking the alpha value, the dependency threshold, 
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against the p-value matrix. 

Mutation operators used in HEP include simple mutation, rever-

sion mutation, move mutation and knowledge-guided mutation. The 

last operator is similar to single mutation except that an edge is se-

lected by comparing the corresponding MDL score of the connecting 

nodes. Edges with larger MDL scores tend to be removed while edges 

with smaller MDL scores tend to be added. In the HEP framework, a 

new operator merge is also introduced for better evolution. Taking a 

parent network Ga and another network G^ as input, the merge opera-

tor attempts to produce a better network by modifying Ga with GV If 

no modification can be done, Ga is returned. The use of merge opera-

tor has proved to improve the effectiveness and the efficiency of HEP, 

which is outlined in Algorithm 1. 

2.4.4 Bayesian Network Classifiers 

Knowledge discovery from database constitutes an important part of 

computer science technology. Classification is one of the problems we 

face. Many tasks, including fault diagnosis, pattern recognition and 

forecasting can all be viewed as classification. By definition, classifica-

tion is the task to identify the class label for instances, while each of 

them is described by a set of attributes. 

The learning of accurate classifiers has been an active research area 

in the past two decades. Many representation models, such as deci-

sion trees, neural networks and association rules, have been used for 

classification. 

Since the Bayesian network (BN) has been formally defined by Pearl 

56], it is widely used as a knowledge representation model because of 

its powerful casual representation with uncertainty. Related research 
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Algorithm 1 Algorithm of HEP 
CI Test Phase 

for each pair of nodes (X, Y) do 
Perform order-0 and all order-1 CI tests; 
Store the highest p-vale in the matrix Py ； 

end for 
Evolutionary Programming Search Space 

Set t, the generation count, to 0; 
Initialize and evaluate the population with size m; 
for each individual Gi in the population Pop{t) do 

Initialize the a value randomly; 
Refine the search space by checking the a value against the Py matrix; 
Create a DAG randomly in the reduced search space; 

end for 
Each DAG in the population is evaluated using the MDL metric; 
while t is less than the maximum number of generations do 

Randomly select m/2 individuals from Pop{t), the rest are marked NS] 
for each of the selected ones do 

Merge with a random pick from the dumped half in Pop'{t — 1); 
If merge does not produce a new structure, mark the individual with 
NS; 
Otherwise, regard the new structure as an offspring; 

end for 
for each individual marked NS do 

Produce an offspring by cloning; 
Alter the a value of the offspring by a possible increment or decrement 
of Aa； 
Refine the search space by checking the a value against the Py matrix; 
Change the structure by performing a number of mutation operations; 

end for 
The DAGs in Pop{t) and all new offspring are stored in the intermediate 
population Pop'(t) with size 2 * m; 
Conduct pairwise competitions over all DAGs in Pop'{t). For each Gi 
in the population, its fitness is compared against q individuals. The 
score of Gi is the number of individuals (out of q) that are worse than 
Gg 
Store the m highest score individuals from Pop'{t) with ties broken 
randomly in Pop(t + 1); 
Increment t by 1; 

end while 
Return the final structure with the lowest MDL score in any generation 
of a run.  
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in its applications includes fault diagnosis [19] and management [58], 

medical database [65], document classification [63], etc. 

BN can also be used as a classifier that it gives the posterior probabil-

ity distribution of the class node C given the values of other attributes 

Ai,A2, . . . ,An. A major advantage of BN classifiers over other types 

of predictive models, such as neural networks, is that the BN structure 

represents the inter-relationships among the data set attributes. Hu-

man experts can easily understand the network structures and where 

necessary modify them to obtain better predictive models. Therefore, 

a series of BN classifiers are designed for classification [6] [7] [18 . 

Among the Bayesian Network Classifiers, Naive-Bayes and Tree-

Augmented Naive-Bayes (TAN) are the simpler ones. However, their 

performance is limited by their restricted structure. For the unre-

stricted models, their learning involves high complexity and compu-

tation cost. Recently, researchers start designing and improving their 

learning algorithms. Their approaches are Cl-based algorithms which 

mainly base on dependency tests [8] [9]. Score-and-search is another 

approach for learning BNs, and the hybrid approach using evolution-

ary programming (HEP) is one of the most efficient learning algorithms 

.66]. It is a score-based searching algorithm, and has adopted CI tests 

information into the approach, so that it can overcome the existing 

defects of score-based approach and generate good classifiers. 

By applying HEP learning algorithm, two classification models -

BN-augmented Naive Bayes and General Bayesian Network classifier 

can be obtained. In our work, several modifications are applied on 

HEP in the learning process for improvement. A series of experiments 

are conducted to evaluate the performance of these models which show 

that they have comparable performance as that of existing models with 
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some improvements. 

Bayesian Network Classifiers have been applied to many real life 

domains where the medical field is one of them. The Hepatitis B Virus 

Genome Project conducted by researchers in CUHK is currently work-

ing on data analysis on its HBV DNA genome and clinical data. They 

are valuable medical data sets for classification, especially the DNA 

genome data which are rare in medical and biochemical research fields. 

Partial analysis are accomplished by using BN classifiers in Chapter 3. 

In this section, mathematical background of the Bayesian network 

classifiers are presented. An introduction of some common types of 

Bayesian network classifiers is given, followed by their learning algo-

rithms. 

Mathematical background 

Bayesian network classifiers are one of the Bayesian classifier which 

follows the Bayes decision rule. The Bayes decision rule estimates the 

conditional probability of the class variable for a given instance, and 

returns the class which yields the greatest value. Let an instance I 二 

CL\，• • . , Qĵ i IS assigned to class q , if 

二 q | / ) � P ( C = c^|/) for all j ^ i (2.5) 

By Bayes rule, the class posterior probability could be expressed as, 

戲 1 A ) - •，尊剛 (26) 
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Since the denominator in equation 2.6 is the same for every P(C\Ai,...，An), 

the decision function can be rewritten as, 

P{I\C = Ci)P{C = Ci) > P{I\C = Cj)P{C = Cj) for all j ^ i (2.7) 

However, the theoretically sound idea creates a difficulty. Normally, 

the training set is not large enough to store the entire distribution. 

Therefore, it is impossible to learn the true distribution from the train-

ing data. Thus, various assumption is used to approximate the estima-

tion of the true distribution [43 . 

Since Bayesian networks can be used to represent a joint probabil-

ity distribution, we can apply them to approximate the estimation of 

P{Ai,..., An, C). For each instance, the predicted class Cp is the class 

that gives the greatest value in P{I\C = Ci)P{C = q). 

Naive-Bayes 

A Naive Bayes is a simple structure that has the class node as the parent 

node of all other nodes, as shown in Fig. 2.4. No other connections are 

allowed in a Naive-Bayes structure. 

An independence assumption among the attributes is made result-

ing in its simple structure - every attribute has the class node as its only 

parent. Such independence assumption enables the likelihood proba-

bility be represented as a product of P{Ai\C): 

P{Au. . . ,An\C) = l l P i A \ C ) (2.8) 

Unlike other classifiers, it is easy to construct Naive-Bayes, as the 

structure is given a priori. Although its structure is simple, it can 

surprisingly outperform some other more sophisticated classifiers over 
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Figure 2.4: Naive-Bayes BN classifier 

a lot of data sets. However, the independence assumption is rarely hold 

for real world problems. 

In recent years, a lot of effort has focussed on improving Naive-

Bayes classifier, following two general approaches: selecting feature 

subset and relaxing independence assumptions [18]. The variations of 

Naive-Bayes are introduced in the following parts. 

Tree-augmented Naive-Bayes classifier (TAN) 

TAN classifier extends Naive-Bayes by allowing the attributes to form 

a tree, as shown in Fig. 2.5, so that the independence assumption 

of attributes is relaxed. TAN is a compromise between accuracy and 

simplicity. It is defined by the following conditions: 

• Each attribute has the class attribute as its parent 

• Attributes may have at most one other attribute as its parent 

The latter condition means that if there is an arc from Ai to Aj， 

the two attributes are not independent given the class. Learning the 
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Figure 2.5: Tree-augmented Naive Bayes(TAN) 

tree-structural interrelationships among attributes in TAN is studied 

extensively. 

BA Augmented Naive Bayes classifier (BAN) 

BAN classifier is an variation of TAN which has looser constraint on 

the dependence among attributes. Unlike the TAN, attributes can form 

an arbitrary directed acyclic graph rather than just a tree. In Fig. 2.6, 

the node A4 has the class node C, Ai and A3 as its parents. 

General Bayesian Network (GBN) 

GBN is an unrestricted BN classifier which can be regarded as a normal 

Bayesian network. It treats the class node as an ordinary node when 

the structure is learned, so that it is not necessary to be the parent 

of all the attributes. The performance of this classifier is not as good 

as expected in preliminary research, because it highly depends on the 

performance of the BN structure learning algorithm. 
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Figure 2.6: BN-augmented Naive Bayes(BAN) 
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Figure 2.7: General Bayesian Network Classifier (GBN) 

2.4.5 Learning Algorithms for BN Classifiers 

Since the performance of Bayesian network classifiers are comparable 

to other popular classifiers, there are a lot of research attempting to 

improve on their learning performance. In this section, general infor-

mation and the learning algorithms of typical models of BN classifiers 

are introduced. 



CHAPTER 2. BACKGROUND 33 

Naive-Bayes and TAN 

Naive-Bayes has outstanding performance for classification with a sim-

ple structure. It is easy to construct, as the structure is given a priori. 

Hence, no structure learning procedure is required. 

Learning Tree-augmented Naive-Bayes Classifier (TAN) is relative 

easy and efficient by using dependency analysis and tree-learning algo-

rithms in graph theory. Friedman et al. developed one which returns 

the maximum likelihood estimate of tree-augmented structures [18. 

Here is the TAN learning procedure: 

Algorithm 2 Algorithm of TAN learning  

Compute the conditional mutual information Ip(Ai,Aj\C) between each 
pair of attributes, i • 

Build a complete undirected graph in which the vertices are the attributes 
Al , . . . ,An. Annotate the weight of an edge connecting Ai to Aj by 
Ip{A,,Aj\C). 

Build a maximum weighted spanning tree. 

Transform the resulting undirected tree to a directed one by choosing a 
root variable and setting the direction of all edges to be outward from it. 

Construct the classifier network by adding the class node, label by C, and 
adding an edge from C to each Ai. 

Calculating the weights of the edges has complexity of 0((n?N), and 

constructing the maximum weighted spanning tree has complexity of 

logn). Since N is usually larger than log n, the overall complexity 

is which is computationally efficient. 

In the literature, some TAN learning algorithms are also devel-

oped to reduce the space complexity. Lucas [49] developed the Forest-

augmented BN classifier (FAN) which is similar to TAN, except that 

the attributes are allowed to form a k-edge forest rather than a single 
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spanning tree. The learning algorithm of FAN is the same as TAN, 

except the spanning learning part. 

Other learning algorithms 

BN classifiers with more complex structures are less popular, thus fewer 

learning algorithms are developed. 

Cheng et al. tried to incorporate their BN learning algorithms into 

a TAN learning algorithm for BAN learning. Their own Cl-based BN 

algorithms, CBLi use information theory for dependency analysis [6 

7]. CBLi is used for case that node ordering is given, and CBLz is used 

for the case that node ordering is unknown. A learning algorithm is also 

designed for learning General Bayesian Network. Their approaches are 

presented in Chapter 3. Recently, they introduced a wrapper algorithm 

for combining multi-net and GBN for classification [9 . 

There are a number of research work done on BN classifier learning, 

including Madden's Markov Blanket Bayesian Classifier Algorithm [50], 

and SuperParent appraoch by Eamonn et al. [36], K. Huang's Semi-

Naive Bayesian network classifier [32], etc. 

• End of chapter. 



Chapter 3 

Bayesian Network Classifier 

for Clinical Data 

This chapter focuses on the use of an evolutionary Bayesian network 

learning algorithm (HEP), on learning Bayesian network classifiers, and 

its applications on clinical data classification. As discussed in the pre-

vious sections, Bayesian networks can be applied on classification in 

various ways. Models with simpler structures, including Naive-Bayes 

and Tree-augmented Naive Bayes (TAN), are good classifiers with ef-

ficient learning algorithms. However, the limitation on independence 

among attributes is unrealistic. BN classifiers with more complex struc-

ture shows better performance, but they require more computation. 

Existing learning algorithms for BN-augmented Naive Bayes classifier 

(BAN) and General BN classifier (GBN) mainly concentrate on de-

pendence analysis with given node topology. Therefore, there are still 

rooms for improvement on the learning algorithms. 

On the other hand, HEP shows good BN-learning performance with 

good convergence. The incorporation of dependency analysis greatly 

reduces the network structure searching space. Modifications on it are 

35 
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proposed here for learning the BAN and GBN. 

This chapter is structured as follows. Section 3.1 describes the pre-

vious algorithms designed by Cheng et al. and their shortcomings. Sec-

tions 3.2 and 3.3 present the proposed learning algorithms for BAN and 

GBN. In Section 3.4, we describe the possible errors found in param-

eter calculation in Bayesian network classifier learning. The proposed 

algorithms are then evaluated and compared with the existing learning 

algorithms on benchmark and real clinical data in Section 3.5. Finally, 

a summary of the evaluation is presented. 

3.1 Related Work 

In this section, the related work on BN-augmented Naive Bayes classi-

fier (BAN) and General Bayesian Network (GBN) learning algorithms 

are reviewed. Cheng et al. spent a great effort in this field. 

BAN learning 

Cheng et al. tried to incorporate their BN learning algorithms into a 

TAN learning algorithm for BAN learning. Their own Cl-based BN 

algorithms, CBLi use information theory for dependency analysis [6 

7]. CBLi is used for cases where node ordering is given, and CBL2 is 

used for the case that node ordering is unknown. For the dependency 

analysis approach, the number of Cl-test is an important concern on 

efficiency of the algorithm. In Cheng's case, CBLi requires O(n^) mu-

tual information tests , while CBL2 requires O(n^) mutual information 

tests. The BAN learning algorithm is shown as below: 

Like the TAN-learning algorithm, this BAN learning algorithm does 

not require additional mutual information tests, but it requires O(n^) 

mutual information tests. However, the complexity is much higher if 
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Algorithm 3 Algorithm of BAN learning by Cheng et al.  

Take the training set and X \ c (along with the node ordering) as input 

Call a modified CBLi algorithm - modified by replacing every mutual 
information test I{xi,xj\c), and replacing every conditional mutual infor-
mation test I{xi,xj\z) with I{xi,xj\z + c), where Z C X\c. 

Add c as a parent of every xi where 1< i < n. 

Learn the parameters and output the BAN. 

the node topology (ordering) is not given. 

GBN learning 

General Bayesian Network (GBN) is a normal Bayesian network with 

both a class node and attributes. Learning a GBN can be considered 

as learning a Bayesian network structure. Cheng et al. proposed con-

structing GBNs with CBLi algorithm [8 . 

Algorithm 4 Algorithm of GBN learning by Cheng et al.  

Take the training set S',and feature sets F with node ordering as input 

Call BN-structure learning algorithm CBLi 

Find the Markov Blanket of the classification node. 

Delete all the nodes that are outside the Markov Blanket. 

Learn the parameters and output the GBN. 

Discussion 

As discussed in Section 2.4.2, the structure of a Bayesian network can 

be learned by two approaches - dependency analysis and search-and-

score approach. Cheng's algorithms on BN classifier learning is founded 
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on the Information Theory based dependency analysis. The authors 

have proved that the proposed algorithm is efficient for finding a desir-

able Bayesian Network classifier. Besides, efficient BN learning algo-

rithm using evolutionary approach - HEP is published. The objective 

of our work is to analyze the performance of HEP on learning BAN 

and GBN for classification. 

S.Y丄ee [43] did something similar in his thesis. He analyzed the 

performance of multi-net and augmented Bayesian network directly 

learned by HEP with little modifications. In our proposed approach, 

HEP is slightly modified at Cl-test phase for learning the structure of 

BAN and GBN for classification. 

3.2 Proposed BN-augmented Naive Bayes Classi-

fier (BAN) 

The proposed learning algorithm is based on the state-of-the-art evo-

lutionary Bayesian Network learning algorithm - HEP. In this section, 

the details of the proposed algorithm and performance evaluation are 

presented. 

3.2.1 Definition 

BAN classifier is a variation of Naive-Bayes which has looser constraint 

on the dependence among attributes. Unlike the TAN, attributes can 

form an arbitrary directed acyclic graph rather than just a tree. Fig. 

2.6 shows an example of BAN classifier. In the figure, the class node C 

is the parent of every node. However, the node A4 is allowed to have 

Al and A3 as its parents, besides the class node C. 

The advantage of BAN structure is that the limitation on attribute 
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independency is released. It can model a more realistic causal relation-

ship among attributes. However, the search space of suitable structure 

is greatly increased when compared with that of the learning algorithm 

of Naive-Bayes and TAN. 

3.2.2 Learning Algorithm with HEP 

Cheng's algorithm for learning BAN stipulates that node ordering must 

be given as input. It is not practical in many cases. In addition, while 

predefined node ordering reduces the search space, it can also introduce 

errors. In the related work, Wong et al. did not investigated the use of 

HEP for learning BAN. Our proposed algorithm is replacing Cheng's 

mathematical CBLi algorithm with Wong's evolutionary HEP. 

Let C be the class node and A i , . . . , An be the set of attributes. 

Here is the outline of proposed BAN learning algorithm: 

Algorithm 5 Proposed algorithm of BAN learning  

Use HEP to learn the structure among the attributes Ai , . . . , (without 
the class node C) 

Add C into the parent set of every attribute Ai. 

Learn the parameters (conditional probability table) and output the BAN 

3.2.3 Modifications on HEP 

HEP is originally designed for learning unrestricted Bayesian network 

structure, rather than learning BAN classifier. Slight modifications are 

proposed on the HEP, to obtain a more accurate classifier. In the CI 

test Phase of HEP, order-0 and order-1 CI tests are performed. The 

CI test result (p-value) of each pair of nodes is stored in the matrix Py 

which are used to reduce the search space. 
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Recalling the conditional independence assertion / ( X , Z,Y) of any 

two nodes X,Y and a conditioning set Z defined in HEP algorithm is 

calculated using test. The result (p-value) is checked against the 

cutoff value a. If p-value is greater or equal to a, the hypothesis would 

not be rejected and I(X, Z, Y) would be taken as valid. Consequently, 

these two nodes cannot have any edge between them, and vice versa. 

For the BAN model, an edge is added from the class node to each 

attribute node in Step 2 of Algorithm 5. Therefore, the class node 

C must be an element of conditioning set Z. In our algorithm, the 

CI-Test Phase of HEP should be changed as follow: 

Algorithm 6 Proposed modified CI Test Phase of HEP 
For every pair of nodes {Ai,Aj) where Ai,Aj are attribute nodes 

Perform order-1 and order-2 CI tests and class node C is an element in 
the conditioning set Z 

Store the highest p-value in the matrix Py. 

This change is expected to refine the CI-Test Phase for learning 

BAN classifier. In the experiment section, the effect of modification 

is tested by comparing the learning algorithms with and without this 

change. 

3.3 Proposed General Bayesian Network with Markov 

Blanket (GBN) 

In this section, the classifier learned by HEP on the training set is 

used for classification. Proposed learning algorithm incorporates the 

concept of Markov Blanket in it. 
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3.3.1 Definition 

Let Al,.An denotes the set of attributes and let C denotes the class 

variable. We can apply any Bayesian network learning algorithm on 

the training set, which consists of A i , . . . , C, and use the network 

returned as a classifier with unrestricted structure for classification. 

This is what we call General Bayesian Network (GBN). We use the 

decision function, Equation 2.7, for predicting the class of an instance. 

3.3.2 Learning Algorithm with HEP 

To construct unrestricted network like GBN, we can use BN learning 

algorithms. However, the accuracy may not be as good as expected. 

The BN learning algorithm has to be suitable for constructing classifier. 

Cheng's algorithm is efficient when the node ordering is given, but 

the case is different when node ordering is absent. They tried to use 

wrapper algorithms to improve their classifier-learning algorithms. Al-

though wrapper algorithms can combine the advantages of different 

classifiers, the computation effort is doubled or more. 

By taking Cheng's algorithm as reference, Markov Blanket concept 

is added into our GBN learning algorithm. Markov boundary of a 

node in a BN is defined as the subset of nodes that "shields" n from 

being affected by any node outside the boundary. One of n's Markov 

boundaries is its Markov Blanket [8]. In general, Markov Blanket of a 

node n is the union of n's parents, n's children and its children's parents. 

In Fig. 3.1, the purple nodes are the Markov Blanket of the class 

node C. The pink nodes are removed in our algorithm. Nodes outside 

the Markov Blanket can be deleted without affecting the classification 

accuracy, because they are conditionally independent from the class 

node when the the value of intermediate node between them are known. 
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Figure 3.1: The concept of Markov Blanket 

Here is the proposed algorithm of GBN using HEP: 

Algorithm 7 Proposed algorithm of GBN learning  

Use HEP (BN-learning algorithm) to learn the structure. 

Find the Markov Blanket M of the class node C. 

Remove the nodes that outside the Markov Blanket. 

Learn the parameters and output the classifier. 

With the use of Markov Blanket, the attributes outside the Markov 

Blanket are removed in the classifier. That means they can be ignored 

during classification without affecting the accuracy. This simpler struc-

ture can highlight the attributes related to the class, and reduce the 

computation effort. 
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3.4 Findings on Bayesian Network Parameters Cal-

culation 

Learning Bayesian network includes learning its structure and its pa-

rameters, i.e. the conditional probability table (CPT) for each node. 

The second task is relatively easier when the data is complete and 

abundant. Various algorithms are proposed for computing the param-

eters of BN when the data are incomplete. For example, EM approach 

and evolutionary approach. 

In our problem, we assume the data are complete, and can reflex the 

entire distribution. As the result, learning the conditional probability 

tables becomes a trivial task. After the BN structure is found, we just 

need to compute the conditional probability of each value of the node, 

given the values of its parents. In this section, we report the findings 

on the possible error arising in the parameter calculation, and propose 

an error handling method. 

3.4.1 Situation and Errors 

When we run experiments on the evaluation of the proposed GBN 

learning algorithm, the result of the model with Markov Blanket con-

cept is better than that of the model without it. However, according to 

the literature, the nodes outside the Markov Blanket of the class node 

is independent to the class node given the value of the node in-between 

them. Therefore, the removal of nodes outside the Markov Blanket 

of the class node should not lead to any accuracy gain. That means 

the calculated conditional probability tables have some errors, thus the 

class prediction is wrong. We try to investigate the reasons or causes 

of these errors. 
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Figure 3.2: Left: Without the removal of the nodes outside the Markov 
Blanket of the class node. Right : Removed the nodes outside the Markov 
Blanket of the class node. 

After checking the parameters calculation and testing by simple test 

data sets, the reason of this "pseudo" accuracy improvement was due 

to the zero entry(entries) in CPT(s). Fig 3.2 is a case of our debugging 

example. Both the GBN classifiers are learned from the same training 

set with eight attributes and one class node. For the left GBN, if the 

nodes that outside the Markov Blanket of the class node C are removed 

in our algorithm, it becomes the right GBN. 

By equation 2.7, the predicted class is the class with the larger 

joint probability distribution of the testing instance than the other 

class values. For example, there are two class values Ci and Oi. 

P{Ai 二 ai，乂2 = . . . , = ci) > P{Ai = ai， 4̂2 = a2 , . . . , Ĉ  = C2) 
(3.1) 

In this case, the predicted class is Ci. Since the joint probability dis-

tribution (JPD) of a Bayesian network is encoded as its structure and 

calculated by equation 2.2, a zero entry in the CPT may yield a zero 

value of JPD. Referring to Fig. 3.3, attributes X and Y are the par-
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, , n A n 
(X,Y) (0.0) (0.1) (0.2), (1.0)̂  (1,1) (1,2) 

�C J C = 0 2/3 sO^ 3/4 0 2/3 
T C = 1 1/3 1 1/4 0 j 1/3 1 O 

Figure 3.3: Zero entry in the CPT of GBN classifiers 

ents of the class node C. The absent of instances with {X = 1]Y = 0), 

( X = 0 ; y = 1) and {X = 1;Y ^ 2) in the training set causes the 

zero entries in the CPT of node C. If there is a testing instance with 

( X 一 1;Y - — 0), the calculated JPD for both classes become zero. In 

the program, the default class C = 0 is predicted. We may then get 

the wrong answer. The case is similar to other zero entries, provided 

that the training set cannot reflex the entire distribution. One point 

we need to clarify is that the zero entry may not cause error, but it 

may be reflexing the real distribution. It depends on the case and the 

assumptions on the data set made. If the entry of all class values are 

zero, like the column ( X = = 0) in the CPT shown in Fig. 3.3, 

we need to handle it carefully. 

Going back to our "pseudo" improvement of classification accuracy, 

the causes can be summarized in the following points: 

1. The training set is not large enough to store the entire distri-

bution, so that the entries in the CPTs may become zero when 

some value patterns of parents do not exist in the training set. 

The value pattern of the parents refers to the set of value of all 

the parents of a particular node. 

2. Unskillful programming. The programmer should prevent the 
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zero entries of CPT and handle the exceptional case, e.g. division 

by zero. 

3.4.2 Proposed Solution 

The zero entry in the CPT of a node is due to the absent of its value 

pattern of parents in the training set. The first solution is to use a 

larger training data set that can represent the entire distribution. The 

more training data is used, the more accurate the model can represent 

the true distribution. We do not aim at avoiding zero entry in CPT, 

as it may be the true case. One solution is to make assumption on 

the completeness of the data set. Another solution is modifying the 

program to return a small number (e.g. 0.0001) instead of zero in the 

CPT when that value pattern of parents with that class value is not 

found in the training set. The second solution is more practical for the 

case of insufficient data. 

When zero entries appear for every class value in a given value 

pattern of parents, no class can be predicted by the equations. One 

possible solution is to assign each value an equal probability. Here is a 

statistically sound solution to deal with it: 

Assume there are two possible value for the class node. Let one of 

the entry be p, while another entry he 1 - p. Since p is unknown, we 

can assume it as a random variable. Since the probability distribution 

of p is unknown, we can let it having a uniform probability distribution. 

That means equal probability is assigned to the value from 0 to 1. In 

this case, the expected probability of p is 1/2. In general, for a problem 

with n class values, the expected probability for each class value should 

be 1/n. 
In our experiments carried out for evaluation, we use 0.0001 to 
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replace zero entry equal probability in the second situation as proposed. 

3.5 Performance Analysis on Proposed BN Clas-

sifier Learning Algorithms 

In this section, the proposed learning algorithms on BAN and GBN are 

evaluated by experiments. In Section 3.5.1, we describe our experiment 

methodology. In Section 3.5.2，the performance of the classifiers are 

studied and compared with common Bayesian Network Classifiers -

Naive-Bayes, TAN and FAN. The experiments are run on benchmark 

data sets. In Section 3.5.3, real clinical data sets from an HBV Genome 

Project are used in the experiments to illustrate their performance on 

real-life medical data mining. Finally, the results are summarized in 

the discussion part. 

3.5.1 Experimental Methodology 

In the first part of the experiments, we concentrate on the benchmark 

data sets which can show the average performance of our classifiers. 

Two types of experiments are carried out. The first type aims at ex-

amining the improvement of learning algorithms after modifications on 

CI-Test Phase for BAN and Markov Blanket for GBN. The second type 

is for comparing the overall classification performance of different BN 

classifiers. Benchmark data sets in UCI Machine Learning Repository 

.27] are used for evaluation. Fig. 3.1 shows the summary of them. 

For simplicity, records with missing values are not considered. Those 

data sets with continuous attributes are preprocessed by MLC++ which 

is a popular API for Machine Learning experiments [31]. Some of the 

UCI data sets are obtained from the web site of MLC++ as they are 
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Discrete or No. of No. of No. of 
Data Set Continous instance attribute class Train Test 

DNA D 3186 I 60 I 3 I CVIO 
Flare D 1066 10 3 CVIO 

Vehicle C 846 18 4 CVIO 
D 435 16 2 CVIO 

Chess D 3196 — 36 2 2130 | 1066 
German D 1000 20 2 CVIO 

Lymophography D M8 19 4 CVIO  
Mushroom D 8124 | 22 | 2 | 5416 2708 

Table 3.1: UCI Data sets used for experiments 

in the format ready for preprocessing. We adapt the default entropy 

discretizor for preprocessing. 

In all the experiments, ten-fold cross validation (CVIO) are used for 

running small data sets. For large data sets, we simply use the default 

training set and testing set for performance evaluation. The experi-

ments are run for ten times for each data set. The average accuracy 

of each classifier is the percentage of average correct prediction on the 

testing data of each data set. 

In the performance comparison experiments, the Naive-Bayes, TAN 

and FAN classifiers are implemented by the jBNC - Bayesian Network 

Classifier Toolbox [22]. It is a popular Java toolbox used for perfor-

mance evaluation of Bayesian network classifier, machine learning and 

data mining applications. 

3.5.2 Benchmark Data 

Performance on improved learning algorithms 

In the learning algorithm of BAN, the CI-Test Phase of HEP are mod-

ified from order-0 and order-1 to order-1 and order-2 (with class node 
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in the conditioning set). Such change is reasonable as the class node 

is assigned as the parent of every node. Experiments are carried out 

to show the improvement of such modification. Only the DNA data 

set is used in this test. We used the default training and testing sets 

obtained from M L C + + web site. Table 3.2 shows the average accuracy 

on the CVIO experiments. 

Order of CI Test used Classification Accuracy (%) 
Order-0 and Order-1 93.17 
Order-1 and Order-2 93.68 

Table 3.2: Accuracy improvement by the modification on HEP 

This experiment shows that the accuracy is slightly improved. It is 

because the CI-Test is corrected to take consideration on BAN struc-

ture -existing edges between the class node and the attribute nodes. 

Therefore, such change is essential for the learning the structure of 

BAN. In the later experiments, improved version of HEP with new CI-

Test is used for learning BAN structure�However, the order of CI-Test 

for learning GBN is unchanged. 

In the learning algorithm of GBN, we adopt HEP to learn the struc-

ture and cut the Markov Blanket of the class node as the resultant 

classifier. In the following experiments, the use of Markov Blanket is 

examined by comparing the classification accuracy of each models. Ta-

ble 3.3 shows the summarized results on classification of Flare and Vote 

data sets. 

In the experiment results, there are improvements on the GBN clas-

sification performance after pruning out the nodes outside the Markov 

Blanket of the class node. This is the “pseudo"-improvement we de-

scribed in last section. Although we cannot prove the classification 
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Classification Accuracy(%) 
Before extracting After extracting 

Dataset Markov Blanket Markov Blanket 
Flare ~~82.48 士 0.48 82.62 士 0.14 
^ ^ ~ 93.73 ±0.18 94.65 士 0.18 

Table 3.3: Performance of GBN with/without the Markov Blanket extrac-
tion 

ability of GBN is improved, we can demonstrate the use of Markov 

Blanket extraction under the existence of zero entry in CPT. 

Comparison with existing BNC models 

In order to study the performance of BAN and GBN learned by the new 

algorithms, experiments are carried out to compare the learned models 

with other common BN classifiers. Table 3.4 shows the classification 

accuracy of different models on the selected data sets. The classification 

accuracy and standard deviation of different classifiers are evaluated on 

the nine data sets. 

Experimental results show that the performance of BAN and GBN 

learned by the HEP algorithm are satisfactory. BAN has better per-

formance on Lymophography, German, and Mushroom data sets, and 

GBN has outstanding performance on DNA, Lymophography and Mush-

room data sets which have larger number of attributes. Referring to 

the structure of GBN, it is favorable classifier for the data sets with 

larger number of attributes but not all of them are related to the class 

node. 

3.5.3 Clinical Data 

Different Bayesian network classifiers have been evaluated by bench-

mark data sets in the previous section. In this section, they are ap-
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> 1000 No. o f N a i v e -
Date set instances attribute Bayes (%) T A N ( % ) F A N ( % ) B A N ( % ) G B N ( % ) 

D N A X m ^ 9 2 . 3 3 ~ ~ ^ 9 5 . 4 1 9 6 ^ ^ 
±1.22 ±0.77 士 1.08 土 0.96 

Flare x 10 79.96 8 3 . 1 5 ~ 82.02 82.83 82.64 
±3.28 ±1.99 士 2.04 ±3.68 ±3.19 

Vehicle 18 59.23 6 9 . 3 9 ~ 6 9 . 7 4 68.91 60.41 
士 2.49 士 3.54 ± 3 . 5 0 士 3.15 土 3.24 

Vote 16 90.06 9 4 . 8 2 94.07 93.55 94.65 
士 4.15 士 1.92 ±2.04 ±3.32 ±3.46 

C ^ s X ^ 80.48 ^ 93 .15 90.95 92.72 

±2.17 ±0.81 ±0.77 士 1.92 士 2.87 

German x ^ 75.47 7 1 . 5 6 7 4 . 8 5 7 5 . 5 0 71.27 
±4.17 士 2.47 ±2.38 ±4.47 ±4.34 

Lymophography 19 8 4 . 0 0 8 2 82 98.43 99 .28 
士 5.24 士 5.49 ±5 .49 士 3.88 士 2.23 

Mushroom x 22 “ 98.59 “ 99.85 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 
Nursery x 8 90.44 “ 93 .58 93.66 90.46 91.06 

Average 83.74 86.56 86.18 88 .2 87 .15 — 

Table 3.4: A summary of performance of different classifiers. 

plied to real-life classification and prediction problems in medical do-

main. Since the Hepatitis B Virus Genome Project coordinated by 

researchers in CUHK is currently doing data analysis on its HBV DNA 

genome data and clinical data, different BN classifiers are used to find 

genetic and clinical markers of HCC from the HBV DNA genome data 

and clinical data. 

In Feb 2003, clinical database of this project was setup under the su-

pervision of the medical doctors. According to their expert knowledge, 

thirteen attributes are chosen for preliminary experiments and listed 

in Table 3.5. Most of the chosen attributes are laboratory test of blood 

sample. The bold value(s) for each attribute is the abnormal value(s), 

while the values in the bracket indicate the normal value/range for that 

attribute. 
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Attribute Name Type Details  
A ^ 5 < 30/30 - 40/40 - 50/50 - 60/ > 60 

Gender ~ 2 ~ ~ ^ ^  
Hemoglobin 2 Below/ Normal 

(#M:13.2-16.7 # F:ll.5-14.3) 
White Cell 2 Below/ Normal 

(#4.0-10.8) 
Platelet 2 Below/ Normal 

(#140-380) 
INR 3 < 1.4 / 1.4-1.8/ > 1.8 

Albumin 3 — < 28 / 28-35 / > 35 
Bilirubin 3 — < 35 / 35-50 / > 50 
HBeAg 3 — +, Eg  

HBeAb(Anti-HBe) 3 — +, -’ Eg  
ALP 5 < l x / lx-2x / 2x-5x / 5x-10x / >10x (#100) 
ALT 5 < l x / lx-2x / 2x-5x / 5x-10x / >10x (#58) 
AFP 3 ^ <20 / 20-50 / 50-100 / 100 500 / >500 — 

Table 3.5: Clinical Attributes for HBV genome experiments 

Data Preparation 

Since most of the attributes are numerical laboratory test results, they 

are either numeric or continuous, thus discretization is required. We 

adopt the conventional discretization ranges used by clinicians, please 

refer to Table 3.5. 

As for the other medical data sets, there are also missing values in 

the experiment data. They belong to attribute HBeAg and HBeAb. 

In other data mining methodology, various techniques are used for pre-

dicting the missing values. However, it is not applicable in these two 

attributes. There are two major reasons. First, the data set is too 

small in our project. The second reason is nearly 50% of values for 

these 2 attribute are missing. It is not statistical significant for learn-

ing the missing values. Therefore, we assign the value N/A for the 

missed value. 
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Experiments 

There are 100 Control patients and 100 liver cancer (HCC) patients 

in our study. All of them are included in our project study. The goal 

of this test is to build up a classification model which can correctly 

classify the testing data into Control class or HCC class. BAN and 

GBN models are tested as they can discover the interrelation between 

attributes which is useful for clinicians. The experiments is repeated 5 

times 10-fold cross-validation for evaluation. 

Preliminary Results 

For the GBN experiments, we obtain several Bayesian network struc-

tures that representing the inter-attribute relationship in the training 

set. Among these learned structures, only six attributes are included 

as nodes of the networks. Referring to the algorithm of learning GBN, 

nodes outside the Markov Blanket of class node are removed from the 

network. Therefore, we can prove that these six attributes are highly 

related for class prediction. They are Hemoglobin, Albumin, HBeAg, 

AFP and ALT. Figure 3.4 shows one of the learned structure. The 

following table shows the classification performance of BAN and GBN 

models. 

BAN GBN 

Classification Accuracy (%) 92.6 士 5.82 92.10 士 5.72 

Table 3.6: Performance of BAN and GBN in HBV genome experiments 
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Figure 3.4: One of the GBN result in the experiments 

Discussion 

High classification accuracy can be obtained from the above experi-

ments by GBN, shown in Table 3.6. However, this result is not clini-

cally useful for doctors after they review it for certain reasons. Refer-

ring to medical literature, age and gender are important factors related 

to developing HCC. In our study, the age and gender of control and 

HCC patients are matched statistically in patient selection process for 

equalizing the variance of virus mutation due to age. Therefore, age 

and gender factors are not significant in our experiments. For those 

six attributes included in the network structure, AFP is a standard 

test used for HCC prediction with around 70% correctness. The clini-

cians suggest to us to exclude AFP from our experiment if we want to 

check the classification power of other related clinical attributes. More 

experiments can be run using with the data set AFP excluded. The 

clinical result is going to used with genetic data to get a more accuracy 

classification model. 
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Owing the the bias patient selection, the clinical experiment dis-

covery is not useful in clinical situation now. However, the use of BN 

classifiers can be demonstrated to be effective for classification on real-

life medical data. 

3.5.4 Discussion 

On average, BAN and GBN have better performance than other pop-

ular BN classifier models, especially on data sets with larger no. of 

attributes. Referring to the structure of GBN, it is favorable for data 

set with large number of attributes and not all of them are related to 

the class node. For other BN classifier models, the compulsory edges 

between class node and attributes sometimes yield a worse classifica-

tion performance. Although BAN and GBN are not the best classifiers 

for each data sets, they are classifiers with the highest average accuracy 

in those nine benchmark data sets. For the clinical application of BAN 

and GBN classifiers, their performance is evaluated and presented in 

Section 3.5.3. 

At the same time, the future research direction has been suggested 

for further improvements. The core of learning algorithms of BAN 

and GBN are HEP which using MDL as score metric. As Friedman 

showed that using MDL (or other nonspecialized scoring functions) for 

learning unrestricted Bayesian networks may result in poor classifier 

18]. Therefore, using evolutionary algorithm for BN classifier structure 

learning with MDL score metric as fitness function may yield a poor 

classifier. Hence, further research can concentrate on improving the 

use of MDL for learning a better BN classifier. 
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3.6 Summary 

In this chapter, the learning algorithms for BN-augmented Naive-Bayes 

classifier (BAN) and General Bayesian Network classifier (GBN) have 

been proposed. These learning algorithms are developed based on the 

Hybrid EP (HEP) which is a state-of-the-art Bayesian network learning 

algorithm. With some modifications on HEP and the introduction 

of the Markov Blanket concept, the proposed learning algorithms are 

effective to learn a satisfactory structure of classifier. 

The classifiers learned by proposed algorithms have been analyzed 

by a comprehensive set of experiments on UCI benchmark data sets, 

as well as a real-life clinical data set. The experimental results show 

that both models are satisfactory for classification, and can discover the 

inter-relationship between the attributes. The BAN and GBN classi-

fiers are especially useful for data sets with larger number of attributes. 

In addition, an easily-missed error on conditional probability table 

calculation are reported in this chapter. This error is mainly caused 

by the zero entry of CPT. Feasible solutions are proposed and used in 

our experiments. 

For the future direction, further investigation on the fitness evalu-

ation metric for HEP or other evolutionary Bayesian network learning 

algorithm can be tried. 

• End of chapter. 



Chapter 4 

Classification in DNA 

Analysis 

Our work is based on the HBV Genome Project and investigates the 

use of different machine learning and data mining models in the med-

ical domain. The details of this project are described in the previous 

sections. The project is mainly divided into clinical data mining and 

DNA analysis. The aim of the study is to find genetic and clinical 

markers for HCC, i.e. to develop a classification model based on HBV 

DNA and clinical data. This chapter concentrates on the DNA analysis 

part. 

This chapter is structured as follows. Section 4.1 describes the re-

lated work briefly. Then, we define the problem clearly in Section 4.2. 

Starting from Section 4.3，we present the proposed methodology ar-

chitecture and its modules in detail. Sections 4.4 and 4.5 focus on 

the feature selection and classification model selection modules respec-

tively. In our experiments, we find out a critical error which can lead 

to a completely incorrect evaluation of the model. It is discussed in 

Section 4.6. Our proposed framework is evaluated on the HBV DNA 

57 
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of our project. Important results are presented in Section 4.7. Finally, 

a summary of the evaluation is presented. 

4.1 Related Work 

The focus of this project is to find genetic marker(s) for liver cancer 

(HCC) from our Hepatitis B Virus (HBV) DNA sequences. There 

are similar medical researches in the literature, but all of them just 

focus on the specific gene positions, proteins or part of a virus genome. 

Therefore, this research project is a pioneer study on the complete viral 

genome. One of the past research is a HIV genomic study [2]. The 

researchers align each DNA sequence with a reference sequence first, 

then select the genes by their expert knowledge, and use decision tree 

and Support Vector Machine for analysis. In our project, we develop 

a new framework for finding genetic markers of HCC in HBV genome 

data. 

Another interesting publication is on the identification of HBV DNA 

sequences that are predictive to the response to Lamivudine therapy 

14]. In the paper, authors identified certain gene and mutations pat-

terns that can be used to predict the drug response to Lamivudine. 

Their experiments are carried out among 26 patients who is consec-

utively enrolled in hospital and under Lamivudine treatment. It is 

similar to the second part of our HBV genome project on drug re-

sponse. However, the scale of their study is rather small, compared to 

ours. They just concentrated on 3 nucleotides and 2 polymerase, but 

our study focuses on the whole viral genome of hundreds of patients. 

The paper gives us an introduction on the methodology that works on 

DNA sequences. 
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4.2 Problem Definition 

Genome of an organism is all of the genetic information or hereditary 

material possessed by an organism, and it includes the entire genetic 

complement of an organism. HBV genomes are extracted by laboratory 

processes and represented in a form of DNA. Section 2.3 has given you 

a general picture on Hepatitis B infection and virology background of 

HBV. In this study, we have DNA sequences from 100 Control patients 

and 100 HCC patients. The DNA sequences of HBV are not exactly 

the same for each patient, as they possess some individual nucleotide 

mutations that may or may not related to HCC. In the literature, HBV 

can be divided into seven genotypes (A to G) where each of them have 

more than 8% difference of nucleotides from the others. In Hong Kong, 

genotypes B and C are the most common types, and all the samples 

we have belong to these genotypes. To reduce the noise of genotypic 

difference between genotypes B and C, we analyze their DNA samples 

separately. 

This project is a pioneering project. In the medical and biochemical 

research field, the scale of this project is considered large and compre-

hensive. The whole genome of HBV DNA are extracted and analyzed. 

In the computer science point of view, the volume of data is too small 

while the data dimension is so large. At the same time, how to tackle 

such a small data set carefully to ensure the statistical correctness, how 

to distinguish which genome sites may be meaningful to our analysis, 

how to reduce the noise (unrelated mutations) of data, and how to 

choose a suitable classification model, are all challenges to this project. 

Our goal is to devise a comprehensive framework that can be used in 

classification of HCC based on the DNA sequences. This classification 

model should have high accuracy, specificity and sensitivity for HCC 
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diagnosis and prediction. 

4.3 Proposed Methodology Architecture 

According to the problem definition and characteristics of Hepatitis 

B virus DNA sequences, we have proposed a general framework for 

solving our problem defined. 

4.3.1 Overall Design 

Our proposed framework composed of several modules to handle data 

preprocessing, feature selection and data mining respectively. Fig. 4.1 

shows the overall architecture of our framework. 

We start from the modelling of DNA sequences with over thousands 

to millions of nucleotides. In this stage, we assume each nucleotide is 

independent from the other adjacent nucleotides. Each nucleotide is 

treated as an attribute. However, every DNA sequence does not have 

fix length because of the insertion and deletion of nucleotides. We have 

to align the DNA sequences with a reference DNA sequence obtained 

from GeneBank [53], before any comparison is made. As a result, 

we can consider the DNA sequences as records with a fix number of 

attributes. 

Going back to our HBV genome project, our group discovers that 

there exists subgroups in genotype C sequences by observing the phy-

logenetic tree of them. This is an important finding on biochemistry 

field. As analyzing different subgroups separately is a reasonable and 

effective approach, it is included in our proposed framework. 

For each subgroup, the training data are used to search the useful 

features for classification and learn the classification model. New test-

ing data must be assigned to the corresponding subgroup first, then 



CHAPTER 4. CLASSIFICATION IN DNA ANALYSIS 61 

All Training 

DNA 

Sequences 

：[  

广 N 
Alignment 

\ 乂 

1 r 

Clustering 

N  

\ r 
(~Fea t u r e~^ Testing DNA 

Selection Sequences 

,J Feature Site No. } f 

f ~ ^ ( ^ 
Classifier • Preprocessing 

I Learning J ) 

\ r 

/ S 
——Classifier • Classification 

V > 

1 r 

Prediction Result 

Figure 4.1: Overall design architecture 



CHAPTER 4. CLASSIFICATION IN DNA ANALYSIS 62 

extracted the chosen features for analysis, which are fed into the clas-

sification model learned. 

4.3.2 Important Components 

The important components steps of our framework are introduced as 

follows. 

1. Alignment 

Every DNA sequence does not have a fix length because of the 

nucleotide insertion and deletion. We have to align the DNA se-

quences with a reference DNA sequence before making any com-

parison. The public tool ClustalW is used for multiple sequences 

alignment in our experiments [24 . 

2. Clustering 

In this module, the subgroups existing in the data set will be dis-

covered. Separating different subgroups for analysis can enhance 

the accuracy of the model. The signatures of each subgroup dis-

covered can be used for subgroup classification for the prediction 

phase. 

3. Feature Selection 

The length of DNA sequences of a virus or an organism can range 

from thousands to billions of base-pairs. It is impossible to con-

sider every nucleotide as an attribute, because the complexity is 

too large and there may exist some noise features among the data. 

A tailor-made feature selection algorithm should be designed for 

each DNA analysis problem. 

4. Classifier Learning 

In our framework, different classification models can be applied 
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with general or problem-specific learning algorithms. 

5. Preprocessing 

Testing data must be assigned to the corresponding subgroups, 

if there exists subgroups in the problem. Then, some attributes 

are extracted from the testing sequences according to the result 

of feature selection step. 

6. Classification 

Testing data is applied into the learned classifier for class predic-

tion. 

4.4 Clustering 

In our HBV genome data set, there are 86 sequences in genotype B 

and 110 sequences in genotype C. Before applying any classification 

models to these two data sets, the phylogenetic tree results show that 

there exists 3 subgroups in the genotype C data set. Fig. 4.2 is the 

phylogenetic tree for genotype C sequences, where CI, C2 and C3 are 

the subgroups we found. 

After we subdivide the sequences into CI, C2 and C3 groups, we can 

generalize some site positions as the signatures of each group. However, 

these signature sites number cannot be presented here as the latest 

results are being patented. When we have a new DNA sequence, we 

can align it with the reference sequence and check the signature site 

positions of each subgroup. Since this part is my research partner Y. 

T. Ng's work, please refer to his term paper for details [54 . 
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4.5 Feature Selection Algorithms 

The length of HBV DNA sequence is between 3200 to 3300 base-

pair (bp). In our current approach, we cannot use all of them for classi-

fication. As we just have 200 records in total, the number of records is 

insufficient for the statistical correctness. Therefore, feature selection 

must be performed, so that the gene positions that are more "useful" 

for distinguishing between Control and HCC groups are selected for 

analysis. In our project, we have tried the following criteria for the 

feature selection : 

1. InfoGain : 

Rank all the nucleotide positions with information gain and choose 

the top rank positions. This approach can sort out the positions 

with the most distinguishing power for classification. 

2. C-Pure 

Select the nucleotide positions that have the same nucleic acid for 

all the Control sequences but have mutations in HCC sequences. 

Rank the selected positions by information gain, and choose the 

top ranking ones. We suspect that the virus mutation may con-

tribute to the risk of HCC, thus this feature selection approach 

can validate our hypothesis. 

3. H-Pure 
Select the nucleotide positions that have the same nucleic acid for 

all the HCC sequences but have mutations in Control sequences. 

Rank the selected positions by information gain, and choose the 

top ranking ones. We suspect that the virus mutation may resist 

the progression of HCC, thus this feature selection approach can 

validate our hypothesis. 
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4.5.1 Information Gain 

Information Gain is a common criterion for feature selection. It is fre-

quently used in decision tree learning. Feature with higher information 

gain is the one which can reduce more uncertainty (entropy) in the 

target attribute. The following is some background information about 

it. 
Equation 4 1 is the entropy E, of an attribute X with n values 

...Xn. P{Xj) is the probability of the value Xj. 

E{X) = f:-P{X,)log,P{X,) (4.1) 

i=i 

Specific to a typical DNA classification problem, we assume the 

data have M classes Ci... Cm- For each aligned site position, it has N 

possible nucleotides Vi . . . V/v- We define 口 be the number sequences 

in class Cm- \Cmi\ be the number of sequence in Class Cm, whose 

character at the aligned site is Vi. 

The reminder of X, R{X) is defined as follows : 

R{X) 二 [ 7 E{P{Cu).. . P(Cm^)) (4-2) 

Information Gain IGj(S) of aligned site j is the difference between 

the original information content of the data set and the amount of 

information to classify all the data in the data set : 

IGj{S) = E{C) - R{j) (4.3) 

Calculated information gain of each aligned site can be displayed 

with the aligned sequences by our viewer tools. Using different feature 

selection criteria, top ranked sites are chosen for experiments. 
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4.5.2 Other Approaches 

Apart from using information gain, different feature selection approaches 

can be applied. Expert knowledge is the primary way to do it. Bio-

chemists and doctors have knowledge on the virus virology and im-

munology, so that they can pick out suspected genes, sites or specific 

proteins for analysis. However, their knowledge on the virus is limited 

and should only be used to aid the research and automatic knowledge 

discovery. Human justification is sometimes imprecise and inaccurate. 

Moreover, autonomous feature selection is another approach. For ex-

ample, using evolutionary algorithm like genetic algorithm (GA) to 

seek the set of features which is most favorable for classification [68 

61: 

Feature selection on biological and medical data sets is more chal-

lenging than that from normal domains. We should consider the nature, 

characteristics and biological meanings of each attribute. For example, 

our attributes are sites taking different nucleic acid with mutations as 

their values, but the different nucleic acid may not imply that the mu-

tation contributes to the disease. Consecutive sites may have linked 

relationship among them. At this time, expert knowledge may be use-

ful. The most efficient approach is to combine the autonomous feature 

selection with expert knowledge. 

4.6 Classification Algorithms 

Our goal is to discover genetic markers of HCC from HBV DNA. In 

other words, we are building up a classification model for HBV DNA 

for predicting cancer. In fact, the choose of classification algorithm 

is crucial for the model. In this section, we describe the classification 
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models we have used for analysis and other possible choices in detail. 

4.6.1 Naive Bayes Classifier 

Naive Bayes is the first model we tried in our analysis. Its structure is 

simple but efficient for computation and classification. The details of 

Naive Bayes can be found in Section 2.4.4. Using it as our classification 

model, we must assume that each nucleotide position (site) is indepen-

dent from each other. Although this may not be the real case, we can 

investigate the independent contribution of each site to the class value. 

Another advantage of this model is its scalability. It can handle large 

number of attributes without great computational effort. 

4.6.2 Decision Tree 

Decision tree is a popular model for classification. It takes an object 

or situation described by a set of attributes as input, then give out 

yes/no decision as output. It can also represent functions with larger 

range of outputs [59]. In our framework, we can choose decision tree as 

our classification model. Popular decision tree constructing algorithms 

include IDS and C4.5. In our project, we use C5.0 which is the lat-

est efficient decision tree constructing algorithm for our experiments 

•30] • One advantage of using decision trees is its readability to the re-

searchers who are not in computer science field. The decision tree can 

also be translated into decision rule which is useful for future clinical 

use. 

4.6.3 Neural Networks 

Neural network is another popular model for classification which mod-

els the biological nervous system. It is composed of a large number 
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of interconnected processing elements (neurons) working in union to 

solve specific problems. It has remarkable ability to derive an implicit 

prediction model from complicated or imprecise data. It can be used to 

extract patterns and detect trends that are too complex to be extracted 

by either humans or other computer techniques [23 . 

In our problem, the interrelationship between each attribute (site) 

is unknown. Neural network may be a good choice for DNA sequence 

classification. Experiments are conducted for evaluation of our hypoth-

esis in the later part of this chapter. 

4.6.4 Other Approaches 

Apart from above models, other classification models can be tested in-

cluding association rules, nonlinear multi-regression networks [45],etc. 

Classification rules are an ideal knowledge representation of this analy-

sis for the doctors, because of its human readability. Association rules 

learning is useful to discover relationship or patterns between different 

attributes. Nonlinear multi-regression networks are also used as a clas-

sification model in the framework. The preliminary results shows that 

it can get outstanding results. 

4.7 Important Points on Evaluation 

In our experiments, we find out a critical error which leads to a com-

pletely incorrect evaluation of the model. In the preliminary stage of 

our analysis, we designed this framework with information gain as fea-

ture selection approach and Naive Bayes as classification model. At 

that time, the evaluation experiments on real HBV DNA sequences 

showed that the classification accuracy is up to 85% or more. We were 

curious to know why the accuracy was so high for this real and complex 
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clinical problem. Consequently, we discovered this error of evaluation 

methodology. 

4.7.1 Errors 

In fact, the mistake is quite tricky and easily-made. In our experiment 

methodology, we used ten-fold cross-validation (CVIO) for evaluation 

as the volume of data sets are just 20-80. The original data set is 

divided into ten groups and there are ten experiments for each round. 

For each round, one group is taken as testing set while the other nine 

groups left are taken as the training set of the model. Each group take 

turns to be the testing set in these ten experiments. 

Before we discovered this error, we divided the data set into ten 

groups immediately after feature selection step and before the classi-

fication step. Then, the training and testing sets were used for model 

training and testing respectively. As the testing set was not involved in 

the model training, we assumed that it was a valid experiment because 

the testing set was independent from the training. However, this is not 

the case. 

The testing set had already participated in the feature selection 

learning step with the training set. It had contributed to the modelling 

process. Therefore, the sites picked for use was partially selected by 

the testing data. As a result, we could obtain a higher accuracy in the 

later classification step because of the sites selected. 

4.7.2 Independent Test 

Once the error is identified, the evaluation methodology is corrected. 

The experimental results show that the inclusion of testing data in 

feature selection step will enhance the accuracy of the model, i.e. over-
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training. It is also statistically biased in real classification problem. 

Since the class of unclassified data is unknown, how can they contribute 

to the feature selection step which deciding which sites to pick? 

For any similar study, the independence of testing data is very im-

portant for model evaluation. The testing data must be excluded from 

the experiments from the very beginning. 

4.8 Performance Analysis on Classification of DNA 

Data 

In this section, we present the results of applying different classification 

models to classify the HBV DNA data into liver cancer (HCC) and 

normal cases. 

4.8.1 Experimental Methodology 

After preprocessing the HBV DNA sequences by multiple sequence 

alignment, clustering and feature selection, we try to use Naive-Bayes, 

decision tree, neural network models and expert rules for classification. 

Table 4.1 shows the details of our HBV genome data. 

Genotype\Datasets CON HCC Total % 
B I 49 I 37 I 86 I 
CI 10 26 13.265 

22 40 20.408 
C3 19 25 44 22.449 

Total 96 100 196 

Table 4.1: Summary of HBV DNA data 

Genotype B and genotype C data were separated for analysis. Bio-

chemists applied data cleansing process on the data after alignment. 
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Two genotype C and one genotype B sequences were removed from our 

data set. Our experiments used ten-fold cross-validation (CVIO) for 

each experiment setting to obtain an accurate evaluation of the model. 

The HBV genome project is a medical project the results of which 

will be used clinically for cancer prediction in the future. In medical 

diagnosis and disease predication problems, the algorithm or model 

performance is not only judged by accuracy, but also sensitivity and 

specificity. According to the expert opinion from doctors, sensitivity is 

much more important than specificity and accuracy, because they do 

not want to miss any patients with diseases. Extra diagnosis and tests 

can be done to confirm their prediction. Therefore, we evaluate our 

model in all these three measurements. 

k True Positive + True Negative 
Accuracy — rp̂ ^̂  Positive + True Negative 

True Positive . . 
滅 i v i t y 二 True Positive + False Negative (‘吕） 

c ••fi > True Negative . . 
Specificity 二 True Negative + False Positive 力） 

The true positives are the number of all the patients with the disease 

and positive test results, whereas the true negatives are the number of 

all the patients without the disease and negative test results. The 

false positives are the number of all the patients without the disease 

and positive test results, whereas the false negatives are the number of 

all the patients with the disease and negative test results. In medical 

diagnosis, a false negative is the most undesirable case. 
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4.8.2 Using Naive-Bayes Classifier 

Naive Bayes is the first classifier we used for analysis. It has a sim-

ple but efficient structure that can save computation effort on model 

learning. Table 4.2 shows the summary of using Naive Bayes as the 

classifier of liver cancer cases in our framework. 

Genotype B Genotype Cl Genotype C2 Genotype C3 
.Sensitivity (%) ^ ^ 70 50 

Specificity (%) 64 40 58 36 
Accuracy (%) | 60 | 77 | 65 | 44 

Table 4.2: Performance of model with Naive Bayes as classifier 

Experimental results show that the accuracy of classification of 

genotypes Cl and C2 is better than other subgroups. This pattern 

also applies to other kinds of classifiers. However, the above results are 

not satisfactory enough for real medical use. 

4.8.3 Using Decision Tree 

The next set of experiments are conducted by using decision trees as 

the classifier. We adopt the C5.0 which is the latest efficient decision 

tree learning algorithm for our classifiers [30 . 

Genotype Cl Genotype C2 
Sensitivity (%) 1 0 0 . 0 0 7 2 . 2 0 
Specificity (%) 50.00 66.60 
Accuracy (%) 80.00 70.00 

Table 4.3: Performance of model with decision tree as classifier 

In this model, we concentrate the testing on genotypes Cl and C2. 

Table 4.3 shows the performance of our model using decision tree as 

classifier. In the doctors' opinion, the sensitivity and accuracy are 

high enough for clinical use, but the specificity is rather low. Further 
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verification and improvements on the model should be done in the 

future. 

4.8.4 Using Neural Network 

As described in the previous section, neural networks are chosen as 

our classifier in our framework. Table 4.4 shows a summary of the 

experimental results. 

Genotype B Genotype CI Genotype C2 Genotype C3 
Sensitivity (%) 100.00 87.00 87.00 
Specificity (%) 71.00 60.00 86.00 50.00 
Accuracy (%) 71.00 85.00 86.00 71.00 

Table 4.4: Performance of model with neural network as classifier 

The performance of neural networks working with our framework is 

pretty good. It can obtain at least 71% accuracy on genotype B and 

genotype C3 data sets, and over 85% on genotypes CI and C2. The 

sensitivity is quite high, while the specificity is also satisfactory. This 

is the best model among the three classifiers we have tested. 

Fig. ？? shows the classification performance of different classifiers 

on each genotype. By comparing the average classification performance 

of all models in different genotypes, genotype B and C3 have relative 

low accuracy and sensitivity which are not satisfied for being clinical 

tests. On the other hand, every classifier gets over 70% of accuracy 

and up to 100% of sensitivity in Genotype CI and C2. These results 

are very promising and encouraging. Among different classifier models, 

neural network is the best model for classification. The accuracy and 

sensitivity are up to 85%, except in genotype B. In addition, the speci-

ficity of every test is quite low. Although sensitivity is more important 

than specificity in medical tests and diagnosis, it is still a room for 
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improvement. 

4.8.5 Discussion 

The proposed framework with particular feature selection approach 

and classification models work well for DNA analysis. For example, 

the accuracy and sensitivity of the framework using neural networks as 

its classifier can reach up to 80-100% for several subgroups of sequences. 

The findings are validated and accepted by the biochemists and doctors 

in our project. 

In our methodology, we have made some assumptions that may 

have missed some useful information or introduced some bias into our 

model. There is still room for improvement. 

Firstly, we interpret each nucleotide in a DNA sequence as an in-

dividual attribute. In fact, there may exist interrelationship between 

adjacent nucleotides which we have not considered in our approach. In 

future analysis, representations at gene level and protein level can be 

tried, or a new model which can take this relationship into considera-

tion could be proposed. 

Secondly, not all the mutations of a HBV DNA sequence affect the 

genetic functions of a virus and its activity. These mutations may 

be random processes and do not contribute to the HCC progression. 

Our study makes an assumption on the direct relationship between 

mutation and HCC progression. 

However, from our previous experiments, the above assumptions do 

not have big impacts on our model. The results obtained are validated 

by biochemists and doctors with reference to the related researches and 

knowledge-base. 
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4.9 Summary 

The use of a full viral DNA sequence for computational data mining is 

quite new and unique in the field of bioinformatics. After working for 

the past two years, we have several great findings such as the existence 

of subgroups in HBV vims. Moreover, we have achieved the project 

goal in genotypes B, CI and C2 and the classifiers developed have over 

70% accuracy. As our project team is now undergoing the stage of 

patent application, we believe that our project will be completed with 

great success. 

Our proposed framework for doing DNA sequence analysis have 

been shown to be comprehensive and effective to solve DNA sequence 

classification problems. Different feature selection approaches and clas-

sification models can be included in our framework with high flexibility. 

Users can tailor-make their models according to the characteristics of 

data and problems. 

• End of chapter. 



Chapter 5 

Adaptive HEP for Learning 
Bayesian Network Structure 

This chapter describes an optimized algorithm for learning Bayesian 

Network structure by using adaptive population sized evolutionary pro-

gramming (A-HEP). Bayesian network (BN) is a popular knowledge 

discovery model which represents the causal relationship of different 

events or attributes with uncertainty. Learning the structure solely by 

dependency analysis or search-and-score approach is not effective. The 

hybrid algorithm on evolutionary programming, HEP, has been shown 

to be effective and efficient to solve this learning problem [66]. By in-

troducing the concept of adjusting the population size according to the 

individuals' dissimilarity, HEP is further optimized in respect of the 

execution time with comparable performance. The empirical results 

illustrate that the optimized algorithm has reduced the running time 

by half on average. 

78 
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5.1 Background 

As described in Chapter 2, there are two major approaches to this 

network learning problem - dependency analysis and score-and-search 

approach. However, the two approaches have their own drawbacks. 

In the previous work, a hybrid approach is used for learning Bayesian 

network structures by evolutionary programming (HEP) [66]. HEP 

searches the network structure with the help of the statistical depen-

dency information. It is shown to be effective and efficient in this learn-

ing problem. On the other hand, Y. Liang have designed the adaptive 

elitist-population search method (AEGA) that locates all optima of 

multimodal problems [44]. By combining the concepts of both algo-

rithms, an optimized version of Bayesian network learning algorithm 

can be designed. In this chapter, A-HEP is described as an extension 

of HEP adopting the dynamic population size concept of AEGA. 

5.1.1 Objective 

Since the running time of evolutionary algorithms depends on the pop-

ulation size, our algorithm (A-HEP) should be designed in a way that 

the population size can increase and decrease adaptively according to 

the dissimilarity of individuals. Once the algorithm converges to a cer-

tain degree, the population size can be decreased and computation is 

also reduced. As a result, execution time can be reduced significantly. 

5.1.2 Related Work - AEGA 

AEGA is a new technique used to solve multimodal function maximiza-

tion problems. Elitist individuals are defined as the best ones on the 

respective peaks. With the help of elitist operators, the diversity of 

the population can be maintained and even improved by adjusting the 
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population size according to the dissimilarity and relative directions of 

individuals in the population. Eventually, the population can explore 

all optima of multimodal problems in parallel based on elitism. [44 . 

The principles of AEGA (assuming the objective is finding all the local 

and global maxima) can be summarized as follows: 

• If the relative ascending directions of both individuals are back to 

back, these two individuals are dissimilar and locate on different 

peaks. 

• If the relative ascending directions of both individuals are face 

to face or one-way, and the distance between two individuals are 

smaller than a threshold, they are similar and locate on the same 

peak. 

Elitist crossover operator and elitist mutation operator are designed 

according to the above principles. As a result, each elitist individual is 

converging into each local or global maximum and solving multimodal 

problems efficiently. 

5.2 Feasibility Study 

Our original objective was to adopt the concepts of AEGA into HEP 

to enhance its performance. As AEGA can be used to find multi-

local optima of a problem, we believed that similar concept might be 

used to find local optimal structures. Therefore, we tried to design 

a distance measurement function between individuals and population 

size variation routines. 

As a matter of fact, the concepts of AEGA cannot be adopted 

directly into Bayesian network structure learning problem because of 

the following factors: 
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Objective Function Objective Function 

^ ~ — 

Increasing Value Undefined Value 

Numerical Bayesian Network Stnictiire 

Figure 5.1: Search space 

1. AEGA is basically used on numerical data, while HEP is used to 

find the structure of a Bayesian network which is represented as 

a data structure, which is discrete in nature. 

2. The relative direction between individuals is undefined in Bayesian 

network structure learning problem. However, the core idea of 

AEGA is to vary the population by the relative directions be-

tween parents and offsprings. 

3. It is difficult to determine if a structure is the local optimal one 

or not. Even we get some structures, we cannot confirm whether 

they are local optimal structures by varying each part of the 

Bayesian network. 

Referring to Fig.5.1, red points represent the local optima and blue 

points represent the current individual. For the numerical cases, the 

relative direction between two individuals can be calculated, i.e. toward 

the same minima in this case. Then, the AEGA algorithm is able the 

remove the redundant individual and keep the elitist one. For the 

Bayesian network structure, the concept of relative direction does not 
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exist. We can only define the distance between two individuals and 

compare their objective function values. Therefore, the concepts and 

operators of AEGA cannot be used directly in our problem. The only 

idea we can adopt is the dynamic population size. 

5.3 Proposed A-HEP Algorithm 

The principle used for improving HEP is the adaptive population size 

concept based on the dissimilarity of individuals. Similar to other evo-

lutionary algorithms, the population of HEP converges into one or sev-

eral solutions with best fitness at the end of evolution. In the later 

part of evolution, most individuals are similar or exactly the same. 

Computation time can be reduced if these redundant individuals are 

removed from the population in later generations. On the other hand, 

the diversity of the population are also important for searching the 

optimal solution, especially at early generations. Based on the HEP 

algorithm, new routines for increasing and decreasing population size 

are designed, in order to increase the diversity and remove redundancy 

respectively. These routines work by comparing the dissimilarity of 

individuals in the population. We have also defined a structural dis-

similarity comparison metric for comparing different Bayesian network 

structures. In this section, the techniques will be described in detail. 

5.3.1 Structural Dissimilarity Comparison 

The objective is to use the A-HEP algorithm to speed up the process of 

searching good network structures with small MDL scores. Therefore, 

a representation for network structures has to be defined. In A-HEP, 

a network structure is represented as a two-dimensional matrix (shown 

as in Fig. 5.2). The size of the matrix is n x n, where n is the number 
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of nodes. 
i 

A B C D E (Parent List) 

A I 0 I 0 I 0 0 ^ ^ ^ ^ 0 @ 

‘ Z I l I L Z I L V / X 
C 1 1 0 __o_____^ ( c ) ( p 

j D 0 1 0 0 
E 0 0 1 1 0 ^ 

Figure 5.2: Representation of a Bayesian network structure 

The value of the matrix is defined as: 

/ 
1 if node j is the parent of node i 

StructureBij 
0 if node j is not the parent of node i 

Since the individuals are represented in this data structure, we can 

define a function to compare the distance between two individuals, i.e. 

the dissimilarity of two Bayesian networks. 

• 
n where Xij = 0 if Bij = B'” 

Distance�B, B') 二 工 x^ , 

id where Xij 二 1 if Bij ^ 

For example, the distance between the two Bayesian networks in 

Fig. 5.3 is 2, as one edge is added and one edge is deleted. 

5.3.2 Dynamic Population Size 

In the original HEP algorithm, the population size m is fixed. In each 

generation, each individual either cross over with another individual in 

the previous generation or mutates itself by different operators to get 
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Figure 5.3: Two different Bayesian network structures with distance = 2. 

its new offspring. New population size is then increased to 2m. After 

that, a number of pairwise competitions are carried out and the fittest 

m individuals are kept for the next generation. 

In A-HEP, the population size changes adaptively according to the 

dissimilarity of individuals in the current population and newly evolved 

offspring. The principles of this approach are: 

1. If new offspring is quite different from the individuals of the cur-

rent population (i.e. the distance is large), it is worthy to keep it, 

although it has worse fitness. 

2. If some individuals are similar or exactly the same as other in-

dividuals (i.e. the distance is small or zero), it is reasonable to 

remove them. 

Undoubtedly, the above principles cannot be applied strictly through-

out the whole evolution process. Otherwise, the search space for better 

solutions will be limited by the second principle, and the algorithm will 

not converge under the first principle. Therefore, the stage of evolution 

must be considered as a factor of population size expansion and con-

traction. In the early stage of evolution, we can allow more degree of 

population size expansion and less degree of contraction. In the later 

stage of evolution, we can limit population size expansion and allow 

removing more redundant individuals in the population. At the same 



CHAPTER 5. ADAPTIVE HEP FOR LEARNING BAYESIAN NETWORK STRUCTUREIOO 

time, the population size is maintained within a range of values. 

A-HEP is developed based on the original HEP with several mod-

ifications. The original CI Test Phase and different operators are still 

used in the new algorithm. An increasing routine and a decreasing 

routine are introduced for processing mutated individuals to change 

the population size adaptively. In A-HEP, the pairwise competition is 

no longer used because the new routines are employed to decide which 

individuals should be kept. 
Algorithm 8 outlines the operations of A-HEP. The following nota-

tions are used to describe A-HEP throughout this chapter: 

• pc is the current population size in this generation. 

• pnew is the new population size for next generation. 

• Pmax is the maximum population size. 

• Pmin is the minimum population size. 

• Gene is the current generation number. 

• Gentotai is the total generation number. 

« AvgDisi is average distance between the individual h to all other individuals. 

•丑1，丑2，丑3 are three random numbers between 0 and 1. 

Algorithm 8 Algorithm of A-HEP  
CI Test Phase 

Same as the one in HEP (Algorithm 1) 
Evolutionary Programming Search Space 

Set Geric = 0; 
Initialize and evaluate the population with size pinit] 
while Geric < Gentotai do 

Randomly select pc/2 individuals for merge operator 
Each unselected and unmerged individual produce one offspring by dif-
ferent mutation operators 
Increasing Routine (See Routine 1); 
Decreasing Routine (See Routine 2)\ 
Update population size, Pc ~ Pnew 

end while 
Return the final structure with the lowest MDL score.  
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Increasing Routine 

In order to increase the diversity at the early stage of evolution, the popula-

tion size is increased adaptively by examining the newly mutated offspring. 

If the newly mutated offspring is very different from the individuals in cur-

rent population, the parent and itself will be kept, regardless of their fitness 

values. This technique can prevent premature convergence. However, the 

population size expansion must be controlled by considering the following 

factors: 

1. Ratio of the current population size to the maximum population size, 

Pc/ Pmax 

2. Ratio of the current generation number to the total generation number, 

Gend Gentotai 

Two random numbers are generated and compared against the above ratios. 

If they are larger than the ratios, newly mutated offspring is considered to 

be added into the next population. When the current population size or the 

generation number is large, it is less likely to further increase the population 

size. 

In order to decide the fate of the newly mutated offspring and its parent, 

calculation is performed on the average distance between them and all the 

other individuals in the current population by the dissimilarity metric de-

fined in the previous section. If it is larger than the threshold, far-factor x 

no. of nodes, both of them will be preserved for the next generation. Since 

the size of matrix for representing for a Bayesian network structure depends 

on its number of attributes, the distance threshold should also depend on 

the number of nodes. 
With the population size increasing routine, the diversity increases with 

the search space in the early generations. Experimental results have shown 

that better network structures can be obtained. 
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Routine 1 For increasing population size  
Pnew • Pc 
i — 0; 

while Pc < Pmax, and Ri > Pc/Pmax, and R2 > Genc/Gentotai, and i < Pc 
do 

for each mutated offspring Ii do 
Calculate AvgDisi; 
if AvgDisi > far-factor x no. of nodes then 

Both its parent and itself are kept for next generation; 
Pnew�Pnew 1; 

end if 
end for 
i — i + 1; 

end while  

Decreasing Routine 

The main objective of A-HEP is to reduce the running time of the original 

HEP. This can be achieved by removing the redundant individuals in the 

population at the later part of evolution. Based on AEGA [44], a routine 

is designed for decreasing the population size adaptively by considering the 

dissimilarity between individuals. 

Similar to the increasing routine, ratio of the current generation number 

to the total generation number is used as a parameter to delay the time of 

population size contraction. There are two cases when population size is 

going to decrease: 

1. Where two mutated offsprings are fitter, and are more similar between 

themselves than their parents do between themselves, and their dis-

tance fall short of the threshold, thecutoff-distance. 

2. The pair of chosen individuals for the next generation are exactly the 

same. 

Before the individual is removed from the population, a random is generated 
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Routine 2 For decreasing population size  
for each pair of mutated individuals UJj and their parents if , /J do 

Calculate di = Distance(lf, I^)] 
Calculate d] = Distance(Ii, Ij); 
Compare the fitness of h with If and Ij with /J, and take the fitter 
one in each pair for next generation; 
if Both children,li, Ij, are chosen then 

if pc > pmin and d2 < di and d: < cutoff-distance then 
Choose the fitter child and remove another one; 
Pnew ^Pnew 1， 

end if 
end if 
if Distance between chosen pair = 0, and pc > Pmin, and R^ > I -
Geuc/Gentotai then 

Remove one of them; 
Pnew 乂Pnew — 1; 

end if 
end for  

and compared against one minus the above ratio, 1 一 Gen�/Gentotai. In 

the later stage of evolution, the ratio is so large that the random number 

is always large enough to satisfy the condition of deleting the redundant 

individuals. 

With the decreasing routine, redundant individuals are removed in the 

population at the later stage of evolution. As population size decreases, 

the computation effort required for each generation is also reduced. Con-

sequently, the time it takes to obtain the final structure is greatly reduced. 

This will be demonstrated by experiments in next section. 

5.4 Evaluation on Proposed Algorithm 

The performance of A-HEP was evaluated and compared with the original 

HEP by the following set of experiments. An optimized algorithm should 

obtain a Bayesian network with comparable or even better quality in shorter 

time. Therefore, the following experiments are used to examine the perfor-

mance of A-HEP on running time and fitness of final network structure 
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(k 乂 p 
/ 1. Visit to Asia 

/ 2. Tuberculosis 

/ 3. Smoking 
4. Lung Cancer 

5. Tuberculosis or Cancer 

6. X-Ray Result 

7. Bronchitis 

8. Dyspnea 

Figure 5.4: The ASIA network [43；. 

obtained. 

5.4.1 Experimental Methodology 

In our experiments, we used seven data sets generated from the well-known 

benchmarks of Bayesian networks including the ALARM, the PRINTD, and 

the ASIA networks. 

AlarmlOOO, alarm2000, alarm5000, alarmlOOOO, and alarm-O were cre-

ated from the ALARM network. These data sets were obtained from two 

different sources. One of them (alarm-0) containing 10,000 cases was ob-

tained from Bayesian Network PowerConstmctor [10]. The others were used 

for evaluating MDLEP [64]. The four data sets are of different sizes and 

contain 1,000, 2,000, 5,000, and 10,000 cases respectively. The structure of 

ALARM network is shown in Fig.5.5. Originally, the ALARM network is 

used in the medical domain for potential anesthesia diagnosis in the oper-

ating room [3]. Since it has 37 nodes and 46 directed edges, it is a complex 

network which is widely used for evaluating the performance of a Bayesian 

network learning algorithm. Examples include the K2 algorithm [16], the 

CB algorithm [62], the BENEDICT algorithm [1], and MDLEP [64；. 
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0 0 ® 
I. central venous pressure 2. pulmonary capillary wedge pressure 
3 history of left ventricular failure 4. total peripheral resistance 
5. b lood pressure 6. cardiac output 
7 heart rate obtained from blood pressure 8. heart rate obtained from electrocardiogram 
9 heart rate obtained from oximeter 10. pulmonary artery pressure 
I I . arterial-blood oxygen saturation 12. fraction of oxygen in inspired gas 
13. ventilation pressure 14. carbon-dioxide content of expired gas 
15 minute volume, measured 16. minute volume calculated 
17. hypovolemia 18. left-ventricular failure 
19. anaphylaxis 20. insufficient anesthesia or analgesia 
21. pulmonary embolus 22. intubation status 
23 kinked ventilation tube 24. disconnected ventilation tube 
25 left-ventricular end - diastolic volume 26. stroke volume ^ . , 
f Z r.tPrholamine level 28. error in heart rate reading due to low cardiac output 
I I t r ^ L a T r a t e 30. error in heart rate reading due to electrocautery device 
31 shunt 32. pulmonary-artery oxygen saturation 
33: arterial carbon-dioxide content 34. alveolar ventilation , , _ 
35. pulmonary ventilation 36. ventilation measured at endotracheal tube 
37. minute ventilation measured at the ventilator 

Figure 5.5: The ALARM network [43 . 
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One data set is generated from the ASIA network with 1,000 cases. 

Its structure is shown in Figure 5.4. ASIA network is a relatively simple 

structure that contains eight nodes and eight edges. The network is also 

known as the "chest-clinic" network which describes a fictitious medical 

example on whether a patient has tuberculosis, lung cancer, or bronchitis, 

related to the attributes (X-ray, dyspnea, visit-to-Asia, and smoking) of the 

patient [29, 40；. 

® 24 

1 Spool Process O K 2. Local Disk Space Adequate 3. Application Output OK 
4 Spooled Data O K 5. Print Spooling On 6. GDI Data Input O K 
7 Correct Driver 8. Uncorrupted Driver 9. Correct Driver Settings 
10 G D I Data Output O K 11. Correct Printer Selected 12. Correct Local Port 
13' Local Cable Connected 14. Network Up 15. Correct Printer Path 
16. Network Cable Connected 17. Print Data OK I f Network Path O K 
19 Network/Local Printing 20. Local Path OK 21. P C to Printer Transport O K 
22； Printer On and Online 23. Paper Loaded 24. Printer Memory Adequate 
25. Printer Data O K 26. Printer Output OK 

Figure 5.6: The PRINTD network [43；. 



CHAPTER 5. ADAPTIVE HEP FOR LEARNING BAYESIAN NETWORK STRUCTUREIOO 

Another data set with 5,000 cases is generated from the PRINTD net-

work. The PRINTD network is primarily constructed for troubleshooting 

printer problems in the Windows^^ operating system [21]. The structure 

of the network is shown in Figure 5.6. It has 26 nodes and 26 edges. 

Since both algorithm are stochastic in nature, we conducted 40 trials 

for each experiment. The programs were executed on the same Nix dual 

Intel Xeon 2.2GHz Linux machine. For both algorithms, we set A^ to be 

0.02 and the initial population size to 50. The A^ refer to the change of . 

a value for creating a new network in HEP. For A-HEP, the maximum and 

the minimum population sizes were 100 and 3 respectively. The far-factor 

and cutoff-distance were set to be 0.8 and 1. The maximum number of 

generations is 5000. The results are summarized in Fig. 5.4.1, Table 5.1 and 

5.2. 

Q. 1 ^ _ _ , ,——,——,——•——.——.—— £] 40.——‘——‘ ‘ ‘ • 

I R ^ 1 
I 0.8 I 20 … . • • 
CL 圍 0 n . . . . • … • . . 

考 0.6 圓 8 0 • 

s� l l l l l l l 5 -4� 
c j I I 1 • • • • I I _ e o l 3 b c d e f g ' 

Data sets Data sets 

Figure 5.7: Data set (a)alarm-lOOO, (b)alarm-2000, (c)alarm-5000, 
(d)alarm-lOOOO, (e)alarm-O (original), (f)asia-lOOO and (g)printd-5000; 
Left: Comparison on average running time in each data set; Right: Compar-
ison on the average fitness (MDL score) of final Bayesian network obtained 
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5.4.2 Comparison on Running Time 

In our experiments, the running time of A-HEP is 20-60% less than the orig-

inal HEP. This improvement is due to the adaptive population size concept. 

Once the population converges into a certain degree of similarity, redundant 

individuals are removed from the population. Therefore, the computation 

effort for later generations are greatly reduced and the running time is short-

ened. Table 5.1 shows the average running time for each data set. Average 

improvement of A-HEP is around 1.96 times faster. 

This speed-up is particularly significant for small data sets, such as 

asialOOO and alarmlOOO. At the later stage of evolution, the individuals 

in the population are very similar or even exactly the same. The decreas-

ing routine removes these individuals from the population dynamically, and 

increases the efficiency of the algorithm. By adjusting the far-factor and 

population size limits, the running time can be further reduced. The tuning 

of parameters will be described later. 

“ Average Running Time (second)  
Data set HEP A - H E P R a t i o 

(A-HEP/HEP) 

alarmlOOO 53.08 士 1.14 20.10 ±4.67 0.38 
alarm2000~ 56.05 士0.51 23.70 士6.01 0.42 
alarm5000~ 63.38 士0.9 47.68 士 11.07 0.75 
alarmlOQOO “ 75.97 士 1.84 54.50 士5.92 0.72 

alarm-0 102.65 士 2 5 . ^ 54.33 士 11.18 0-53 
asialOOO — 8.18 士0.3¥~ 3.40 士0.50 0.42 

prmtd5000~ 38.33 士0.62 14.30 士 1.34 0.37 
Average - - 0.51 

Table 5.1： Performance comparison between HEP and A-HEP on running 
time 



CHAPTER 5. ADAPTIVE HEP FOR LEARNING BAYESIAN NETWORK STRUCTUREIOO 

5.4.3 Comparison on Fitness of Final Network 

Although A-HEP can learn the Bayesian network structure in a shorter time, 

the quality of the final networks are also important. Therefore, the average 

fitness (MDL score) of the best network obtained by each algorithm are 

compared. Table 5.2 shows the MDL scores of the final networks obtained 

by both algorithms. 

In real trials, both algorithms can obtain the individual with minimum 

MDL score in most cases. The differences of MDL score on Table 5.2 is 

mainly due to obtaining sub-optimal structures in particular trials. How-

ever, those MDL score differences are insignificant. A-HEP can even obtain 

fitter Bayesian network in more cases than HEP in alarm-10000 data set. 

Therefore, we can conclude that A-HEP has comparable BN structure learn-

ing performance as HEP. With shorter running time and comparable quality 

of final network structure obtained, A-HEP is more efficient than the state-

of-the-art Bayesian network learning algorithm - HEP. 

“ Average MDL Score of final network  
Data set H ^ A-HEP Difference 

(A-HEP - HEP) 

"^rmlOOO 17862.48 士 19.68 17877.48 士28.31 15.01 (0.08%) 
33787.45 ±56.24 — 14.39 (0.04%) 

alarm5000 ^1004.00 士0.0 “ 81015.22 士68.18 11.22 (0-01%) 
"j^^^ilOOO^ 1 ^ 7 . 5 4 士247.02 158473.53 -44.01 (-0.28%)  

alarm-0 13^549.48 士385.83— 138564.95 士405.60 15.48 (^0%) 
asialOOO 3̂98.66 士0.16 _ 3398.60 士0.00 -0.06 (^0%) 

~^ntd5000 106542.00 士0.00 106542.00 ±0.00 0.00 (0%) 
“ 7 72 

Average - ： ill  
Table 5.2: Performance comparison between HEP and A-HEP on fitness of 
final network 
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5.4.4 Comparison on Similarity to the Original Network 

Besides the MDL Score (Fitness of final network) and running time, there 

are other metrics to evaluate the performance of A-HEP and original HEP. 

Among them, the structural difference between the learned structure and the 

original structure is the more important. A good Bayesian network learning 

algorithm should minimize this difference and obtain an accurate network 

structure. Table 5.3 shows the performance comparison between A-HEP and 

HEP. TWO approaches for calculating the structural difference are used. The 

first one is simply counting the number of edge difference between the final 

solution and the original network. The second one is counting the number 

of edge difference between final solution and the equivalent class of original 

network, i.e. a set of networks representing the same data distribution. 

The smaller the value, the better the performance. Here we can see that 

A-HEP performs better in large data set alarm-0. That means the final 

network structure found is more similar to the original one, than the one 

obtained by original HEP. On the other hand, the HEP performs better in 

other smaller data sets. However, the differences are insignificant. There-

fore, we can conclude that the A-HEP have comparable performance to the 

original HEP. 

Structural Difference Structural Difference (Eq.class) 
Data set "hEP | A-HEP^_HEPj_ A-HEP 

alarmlOOO 10-75 12.25 14.25 
alarm2000 7.18 7.73 7.21 
alarmSOOO "T.IO 7.70 6.00 ^  
alarmlOOOO 4.59 5.53 4.49 ^  

“alarm-0 —9.28 7.55 8.83 ^  
asialOOO ‘ 2.75 3.00 2.75 ^  

"printdSOOO 0.00 0.00 0.00 0.00 
Average | 5.95 | 6.25 6.22 6.25 

Table 5.3: Performance comparison between HEP and A-HEP on the simi-
larity to the original network 
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5.4.5 Parameter Study 

In the previous section, A-HEP is shown to be efficient for learning Bayesian 

network structures. In our algorithm, we have a set of parameters affect-

ing the performance and population size variation. Here, we have a more 

comprehensive study on these parameters. 

The important core of A-HEP are the increasing routine and decreasing 

routine. Some of the following parameters are taken into account in both 

routines, including limits on maximum and minimum population size, initial 

population size and the far-factor used for adding new individuals into pop-

ulation. The following experiments use the same data sets and methodology 

as the previous section, but parameter of different values are studied. 

Maximum population size 

In the increasing routine of A-HEP, a random number is generated to com-

pare against the the ratio of current population size to the maximum pop-

ulation size limit. It controls the degree of expansion of population size in 

early stage of evolution. The maximum population size is set to 100 ( 2 x 50, 

the initial population size ) in the previous experiments. 

Running Time Ratio Diff. of Fitness of Final Network 
Max. pop-size 75 100 | 125 150 75 100 125 150 

Data set  
alarm-1000 20.21 15.01 10.86 21.77 

11.64— 14.39 -1.91 -0.89 

alarm-5000 J j ^ 11.22 0.00 0.00 
0.76 T i p " -21.14 -44.01 -37.44 -41.34 

15.48 41.55 106.77 
asia-1000 0.38 0.42 —0.46 0.48 -0.06 -0.06 -0.06 -0.06 

~ ^ d - 5 0 0 0 0.36 0.37 0.37 0.38 0.00 0.00 0.00 0.00 
Average | 0.50 | 0.51 | 0.57 | 0.73 | 3.29 | 1.72 1.86 12.32— 

Table 5.4: Parameter study on maximum population size 

Table 5.4 shows that the running time increases with the maximum pop-
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Illation size limit. Obviously, the larger the limit, the more new individuals 

can be added in the early stage of evolution. Therefore, more computation 

time is required for each generation. However, simply choose a smaller limit, 

like 75, we may not get the optimal solution. It is because the expansion 

of population is not able to meet sufficient diversity, so that it is trapped in 

local optimal solution. From the analysis of above experiments, the maxi-

mum population size limit should be set to two fold of the initial population 

size (50). 

Minimum population size 

Similarly, there is a random number which is compared against the ratio of 

current population size to the minimum population size limit in the decreas-

ing routine of A-HEP. It controls the degree of contraction of population size 

in the later stage of evolution. 

Running Time Ratio Diff. of Fitness of Final Network 
Mm. pop-size 1 3 | 5 10 1 3 5 ！ ^ 

Data set  
0.4^ 15.01 15.01 13.89 13.71 
O i 14.39 14.39 14.39 14.39 

0.75 0.78 11.22 11.22 11.22 11.22 
l̂̂ rm-IOnOO 0.75 -44.01 -44.01 -44.86 -48.96_ 

a s i a - 1 0 0 0 0 - 4 7 -0.06 -0.06 -0.06 -0.06  
~ ^ d - 5 0 0 0 0.35 0.37 0.41 0.53 0.00 0.00 0.00 0.00 

Average | 0.51 | 0.51 | 0.52 丨 0.58 丨 1.72 | 1.72 | 1.94 0.44 

Table 5.5: Parameter study on minimum population size 

Table 5.5 shows that the running time increases with the minimum pop-

ulation size limit. In the later stage of evolution, the population usually 

shrinks to the minimum size limit. Therefore, more computation time is 

required for each generation where the limit is larger. On the contrary, a 

large limit can prevent early convergence and improve the solution quality. 
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Therefore, a balancing exercise must be made between these two factors. In 

our experiments, the minimum population size is set to 3. 

Initial population size 

The main difference between A-HEP and original HEP is that the former can 

change the population size adaptively according to the dissimilarity between 

individuals to increase efficiency. Original HEP has a fixed population size 

throughout the evolution. For fair comparison, the initial population size 

is set to 50 for both algorithms in the previous experiments. Since A-HEP 

is able to vary population adaptively, this section attempts to investigate 

the effect of initial population size to A-HEP. The original initial population 

size, 50, is still used for HEP algorithm as the reference. 

Running Time Ratio Diff. of Fitness of Final Network 
Initial pop. 10 I 20 I 30 40 50 10 I 20 I 30 I 40 | 50 

Data set  
“alarm-1000 58.85 34.82 39.49 24.93 15.01 

a l a r g ^ j ^ j j ^ 0.41 0-42 53.51 23.64 5.07 14.91 14.39 
alarm-5000 ； ; ^ 58.80 42.84 6.64 4 . 4 6 _ _ 1 1 ^ 

0-72 114.31 13.11 6.39 -52.14 -44.01 
aiarm-0 0.46 0.53 142.42 263.30 93.05 34.52 15.48 
asia-lOOQ 0.41 "042 0.01 

—printd-5000 0.32 0.33 0.35 0.35 0.37 0.00 0.00 0.00 0.00 OTOO 

Average 0.42 | 0.45 | 0.47 | 0.49 | 0.51 | 61.13 | 53.95 | 21.51 | 3.80 1.72 “ 

Table 5.6: Parameter study on initial population size 

Table 5.6 shows that the running time increases with the initial popula-

tion size as the running time depends highly on population size. However, 

the quality of Bayesian network learned is not satisfactory for small initial 

population size. The possible reason may be insufficient divergence in the 

population throughout the evolution. The search space is not explored ex-

tensively and the algorithm is trapped in local optimum. On the other hand, 

the increasing routine is not adaptive enough for exploring the search space. 
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There are rooms for improvement in this situation. With the correct use of 

initial population size, A-HEP can still work efficiently. 

Far-factor 

In the increase routine of A-HEP, the new offspring is added if it is very 

different from the the current popu lat i on . If its average dissimilarity to 

the individuals of current population is larger than the threshold, the far-

factor, then the new offspring is added into the population regardless its 

fitness. This approach can increase the diversity of the population in the 

early stage of evolution. 

Running Time Ratio Diff. of Fitness of Final Network 
far-factor 0.6 0.7 0.8 0.9 1 . 0 0 . 6 0.7 0.8 0.9 1.0 
D cttcL set  

alarm-lOOO ； 1 6 . 3 5 15.01 14.21__12-10 
alarm-2000 ； j j ^ j j ^ 11.64 14.39 -1-00__-1.26 

0.77 0.76 0.21 5.04 11.22 15.83__ 
介rm 0.72 0.73 -49.11 -34.84 -44.01 -81.79 -76.31 

alarm-0 ； j j T j j T T ^ 0.50 0.49 130.23 68.32 15.48 82.20 81.4^ 
~ ~ - 1 0 0 0 0.35 0.28 -0.06 -0.06 - 0.06 -0.06 -0.06 
_ printd-5000 0.38 0.37 0.37 0.37 0.37 0.00 0.00 0.00 0.00 0.00 
_ Average 丨 0.54 | 0.52 | 0.51 丨 0.51 | 0.50 丨 15.54 丨 9.49 丨 1.72 | 4.20 | 2.99 

Table 5.7: Parameter study on far-factor 

As shown in Table 5.7，the running time is not greatly affected by the 

value of far-factor. The insignificant drop is caused by the decrease of aver-

age population size in the early stage of evolution. The larger the far-factor, 

the more difficult it is for the routine to add new individuals. For the quality 

solution, a correct value of far-factor should be used in order to get an op-

timal Bayesian network structure. When a smaller value is used, it is easier 

to add new offspring. The population size reaches a larger value or even 

attends maximum in the early stage of evolution, and those potential good 

individuals cannot be added to the population in the later stage of evolution. 
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When a larger value of far-factor is used, the ease of adding new offsprings 

decreases. The population does not able to get sufficient diversity, so that 

it is trapped in local optimum. Therefore, a suitable value of far-factor is 

important for finding a better solution. 

5.5 Applications on Medical Domain 

As discussed in chapter 2, applying various data mining techniques on med-

ical domain to discover knowledge in database and/or to develop a decision 

support system has become a trend. Bayesian networks have an important 

role to play. This section investigates the use of our proposed A-HEP on 

medical domain. 

5.5.1 Discussion 

In recent years, a number of researches on knowledge discovery have been 

done in medical domain. Among the knowledge discovery models, Bayesian 

network (BN) is a popular choice as it can represent the causal relationship 

of different events or attributes with probability. It have emerged as some 

of the most successful tools for medical diagnostics and many have been 

deployed in real medical environments or implemented in off-the-shelf diag-

nostic software [55]. BN is widely used because of its ability to encode the 

probabilistic relationships among variables, and efficiency and flexibility in 

inference. 

In Hong Kong, researchers have applied evolutionary algorithms to dis-

cover knowledge from medical databases successfully. They used MDLEP 

and genetic algorithm to learn the Bayesian network structure for the frac-

ture database and Scoliosis database. Genetic algorithm has been used on 

the learning of discretization policies on variables. [64] [51 . 

Our proposed algorithm A-HEP is an optimized version of HEP, in the 

mean time the HEP is an extension of MDLEP. The common characteristic 
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Name Type Explanation   
Sex Nominal Sex  
Age Numeric Age(between 0 to 16 years old)  
Admday Date Admission day (between 1984 to 1996) 
Stay Numeric Length of staying in hospital(in days)  
Diagnosis N o m i ^ Diagnosis of fracture based on the fracture location 
Operation Nominal Operation  
S u r g e o n N o m i n a l Surgeon (null if no operation)  
Side Nominal Side of fracture ("Left", ” Right”，” Both” or，，Missing”) 

Table 5.8: Attributes in the Fracture Database 

of these algorithms is using evolutionary algorithms as the search-and-score 

approach for learning Bayesian network structure. Therefore, applying A-

HEP on medical applications is expected to be feasible and effective. 

5.5.2 A n Example 

Since most medical data sets contain patients' private personal data and 

clinical records, there are not many medical data sets available in public 

archives. Those data sets are sometimes treated as intellectual properties 

of research projects as well. With the help of authors of MDLEP, we can 

obtain the Fracture database used in their paper [64] [51 . 

Problem Definition 

Fracture is a medical database obtained from Orthopaedic Department of 

Prince of Wales Hospital of Hong Kong. It consists of children with limb 

fractures admitted to the hospital in the period 1984-1996. The data can 

provide information for the analysis of fracture pattern. Fracture database 

has over 6500 records and eight attributes, which are listed in Table 5.8. 

In those papers, authors proposed to learn discretization policy using 

genetic algorithms. Since MDLEP, HEP and A-HEP also use MDL metric 

as the fitness of the network structure, the G A discretization policy obtained 

from the papers can still be used in our example. Table 5.9 shows the dis-
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" A ^ : [0-4] [5-9] [10-12] [13-16] _ 
" ^ r : [1984-1987] [1988-1991] [1992-1996] _ 
~SUy : [0-3] [4-12] [13-1081] — 

Table 5.9: Discretization Policy of the Fracture Database 

cretization range for different attributes. For the Admday attribute, Day 

and Month values are discretized into one range, which means that only one 

value is considered. As a typical medical data set, there are some missing 

values for each attributes. For simplicity, we remove those records contain-

ing missing values in any attribute from our testing data. The size of the 

Fracture data set becomes 5294 records. 

In the following experiments, A-HEP is compared to HEP and MDLEP 

on the Bayesian network structure learning performance on the Fracture 

data set. The result of MDLEP is directly obtained from the paper, while A-

HEP and HEP are run to get the result. Since both algorithm are stochastic 

in nature, we conducted 40 trials for each experiment. The programs were 

executed on the same Nix dual Intel Xeon 2.2GHz Linux machine. For both 

algorithms, we set A^ to be 0.02 and the initial population size to 50. For 

A-HEP, the maximum and the minimum population sizes were 100 and 3 

respectively. The far-factor and cutoff-distance were set to be 0.8 and 1. 

The maximum number of generations is 5000. 

Experimental Results 

The Bayesian network structure obtained by MDLEP stated in the papers is 

shown in Fig. 5.8. In our experiments, the structure obtained from reduced 

Fracture data set by A-HEP and HEP are exactly the same. It is shown 

in Fig. 5.9. Comparing these two structures, an edge is removed between 

attribute Operation and Year, and the edge between Operation and Diag-

nosis is reversed. The cause of these changes may be due to the removal of 

records with missing values in the Fracture data set. However, incomplete 
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( Diagnosis j 

Figure 5.8: Bayesian network obtained by MDLEP from Fracture data set 

data set is a common problem in medical data mining. It is still a popular 

research topic in this field [55 • 

Prom the network structure constructed by A-HEP, the following rela-

tionship are observed. 

. T h e value of Operation affects the values of Diagnosis. This may be 

odd in some sense. As described in previous paragraph, this phe-

nomenon is resulted from data preprocessing. However, it still shows 

that these two attributes are interrelated. Different fractures are 

treated with different operations. 

• The value of Diagnosis affects the values of Stay. Different fractures 

require different time of recovery. 

• The value of Diagnosis affects the values of Age. Some fractures are 

more frequently occur in particular age groups. 

• The value of Age affects the value of Sex. It is observed that the young 

patients are more likely to be female, and older patients are more likely 
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( Operation 1 

I Diagnosis j 

Figure 5.9: Bayesian network obtained by HEP and A-HEP from Fracture 
data set 
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to be male. 

• The value of Operation and Stay affects the value of Year. It is ob-

served from the database that length of stay in hospital is longer in 

the years 1985, 1986 and 1994. 

Fitness of Final Network (MDL Score) Running Time (second) 
H ^ 49780.40 ~ ^  

‘ A-HEP 49780.40 — ^  
Differnce/Ratio 0 

Table 5.10: Performance comparison between HEP and A-HEP on the Frac-
ture data set 

In order to prove the efficiency of proposed A-HEP, its running time 

is compared with that of HEP. The results are shown in Table 5.10. It 

is quite consistent with the previous experimental results. The A-HEP is 

more efficient than original HEP for learning Bayesian network structure. 

The improvement is around 78% of original HEP which is below the average 

improvement 50% of original HEP. The possible reason is the small size of 

the Fracture data set with small number of attribute. A-HEP has better 

performance in large data sets and complicate problems. 

In this section, the performance of proposed A-HEP is evaluated by 

applying it to solve real-life medical problem. Compared to existing algo-

rithms, it has shown that A-HEP has comparable BN learning ability but 

shorter running time. It will be one of the excellent algorithms for learning 

Bayesian network structure and mining causal information in complicated 

real-life problems. 

5.6 Summary 

In this chapter, the adaptive population size evolutionary algorithm, A-

HEP, for learning Bayesian network structures has been presented. This is 
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an optimized version of HEP which is one of the state-of-the-art algorithms 

of this type. The technique is based on the concept of adjusting population 

size adaptively according to the dissimilarity of individuals in current pop-

ulation. With the use of increasing and decreasing routines, the population 

expands in early generations for increasing diversity, and contracts in later 

generations for reducing computation time. A-HEP has been experimentally 

tested with several data sets of different sizes and numbers of variables. The 

performance of it is compared with the original HEP on running time and 

quality of Bayesian network obtained. All experiments have demonstrated 

that A-HEP consistently and significantly reduces the running time with 

comparable performance on Bayesian network learning. This speed-up is 

very important as A-HEP can be used efficiently for learning Bayesian net-

works on many data mining problems. 

At the end of this chapter, A-HEP has also demonstrated its applicability 

on medical data mining. Compared to original HEP, similar result can be 

obtained but with a great speed improvement. 

In order to further optimize the learning performance of A-HEP, we are 

going to design a new operator for crossover between two individuals. We 

also want to investigate the feasibility of applying dynamic population size 

concept in other algorithms. 

• End of chapter. 



Chapter 6 

Conclusion 

We conclude our work with a summary of our contributions and discuss 

some possible future research directions. 

6.1 Summary 

At the beginning of this thesis, we describe the trend of medical data mining 

in the world with the Hepatitis B virus genome project as an example. 

The objective of this project is to find the genetic and clinical markers for 

hepatocellular carcinoma (HCC) from the virus DNA sequences and clinical 

data. Based on this project, the use of different machine learning and data 

mining models and techniques are investigated. Our research work can be 

summarized into three major parts. 

Clinical data mining is the first part of the work. It focuses on mining 

the inter-relationship among those clinical attributes, as well as their contri-

butions to liver cancer. Among various machine learning models, Bayesian 

network is chosen because of its representation on the casual dependency 

with probability. Bayesian network classifiers are also popular classification 

models with satisfactory performance. In Chapter 3，the learning algo-

rithms for Bayesian-augmented Naive-Bayes classifier (BAN) and General 
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Bayesian Network classifier (GBN) have been proposed. In these algorithms, 

some modifications are made on HEP and the Markov Blanket concept is 

introduced. For performance evaluation, the classifiers learned by proposed 

algorithms have been tested by experiments on benchmark data sets, as 

well as a real-life clinical data set. The experimental results show that both 

models are satisfactory for classification. They can also discover the inter-

relationship among the attributes. By observation, the BAN and GBN are 

especially useful for data sets with larger number of attributes. In addition, 

an easily-missed error on conditional probability table calculation has been 

reported. This error is mainly caused by the zero entry of CPT. Feasible 

solutions are proposed and used in our experiments. 

The second part of this thesis concentrates on DNA sequence analysis. 

Based on our project, we develop a general framework for DNA sequence 

analysis aimed for classification. This framework includes modules of data 

preprocessing, clustering, feature selection, and classification model. Each 

module serves its functions in the architecture with a certain flexibility for 

customization. In Chapter 4, the framework is described in detail with 

various suggestions for each module. The importance of independent test 

on evaluation is also mentioned. The HBV DNA analysis work has also 

been carried out under this framework. It is a pioneer project in the field of 

Bioinformatics. In the clustering step, we have discovered several important 

findings such as the existence of subgroups in HBV virus. Genetic markers 

which can guarantee over 70% of accuracy and sensitivity have been found. 

These results are great contributions to the biochemistry and medical fields. 

Since Bayesian network (BN) is a major data mining model we used in 

this thesis, further research on the optimization of one of BN learning algo-

rithm, HEP, have been conducted. The success of the optimized algorithm 

is based on the concept of adjusting population size adaptively according 

to the dissimilarity of individuals in current population. Using an increas-
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ing and an decreasing routines, the population expands in early generations 

for increasing diversity, and contracts in later generations for reducing com-

putation time. Our A-HEP has been experimentally tested with several 

data sets of different sizes and numbers of variables. All experiments have 

demonstrated that A-HEP consistently and significantly reduces the running 

time by half on average, with comparable performance on Bayesian network 

learning. Moreover, We have also demonstrated its applicability of A-HEP 

on medical data mining with real-life data set. 

All the above work demonstrate the feasibility of using computer sci-

ence technology to solve medical and biochemical problems, as well as its 

efficiency and power. 

6.2 Future Work 

As part of our future work, the research work in the HBV genome project 

is continued. The second phase of this project concentrates on the relation 

between virus DNA and the drug response to the Lamivudine therapy. The 

proposed framework may be used with some modifications in the next phase 

of study. 
At this stage, the clinical data and genetic markers are analyzed sep-

arately. Combining both of them may yield a better classifier of higher 

accuracy and sensitivity. It is a worthy direction for future research. 

Most of the research results of our project have not been published yet. A 

special task force is recently established for the patent application of specific 

feature sites and methodologies we have used in this project. 

• End of chapter. 
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