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Abstract of thesis entitled: 

Towards IP Traceback based Defense against DDoS Attacks 

Submitted by L A U Nga Sin 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in June 2004 

In recent years, malicious attacks on the Internet have increased dramatically 

in frequency, severity and sophistication. Distributed Denial of Service (DDoS) 

attacks, in particular, have drawn great concern to the Internet community 

because they seek to consume the resources of target hosts or networks, thereby, 

denying or degrading the normal service provided by the victim to its legitimate 

users. 

One effective coimtermeasure against DDoS attack is to quickly identify 

the attack sources and separate them from the victim's network. However, 

finding the attack sources could be difficult because 

1. the attacker can arbitrarily spoof the source IP address; and 

2. the Internet is stateless and hence the routers do not store any informa-

tion about the packets forwarded by them. 

Therefore, locating the attack sources usually involves a relatively lengthy 

process, often referred to as IP traceback, in which the paths of the relevant 

packets are traced. 
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In this thesis, we propose a novel and comprehensive IP traceback based 

DDoS defense scheme which exploits the attack source information from IP 

traceback to perform packet filtering at strategic positions. With the knowl-

edge of attack paths and source routers, most of the malicious packets can be 

filtered. 

The defense scheme is comprised of two major components, namely the 

domain-based IP traceback scheme, and the route-based packet filtering scheme. 

The underlying algorithms of the proposed defense scheme have been well 

tested through numerous simulation experiments. As shown by the experi-

ment results, the defense scheme could remove over 90% of attack traffic and 

maintain a high percentage of normal packets reaching the victim during an 

on-going DDoS attack. In other words, the proposed solution significantly 

improves the overall throughput of the legitimate traffic, while reducing the 

collateral damage and bandwidth consumption by the attack traffic. 
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摘要Z 

論文題目：分散式阻絕服務攻擊之防禦 

作者：劉雅倩 

修讀學位：哲學硬士 

香港中文大學計算機科學與工程學系 

曰期：二零零四年六月 

近年來，網路攻擊事件的發生次數日漸頻密’其破壞力及複 

雜 性 亦 大 大 提 高 。 分 散 式 阻 絕 服 務 攻 擊 （ D i s t r i b u t e d Denial of 
Service, DDoS a t t a c k s ) 更 特 別 受 廣 大 互 聯 網 的 用 戶 所 關 注 ， 皆 因 

此類攻擊能夠耗盡目標主機或網路的資源’從而阻止或拖 

延目標主機對客戶的服務’或使目標網段的交通壅塞。 

對付此攻擊的最有效辦法，就是準確找出攻擊的來源，及盡 

快把它們從受害者的區域網路中分隔開。不過’找尋攻擊 

的真正來源並不容易’原因是： 

一 •攻擊者可隨意僞造封包（packet)的來源 IP位址（source IP 
address)； 

二 •互聯網中的路由器 ( r o u t e r )並不會記錄有關封包傳送的資 

料。 

因此，確認攻擊的來源需要追蹤封包所經過的路徑，此項 

方法稱爲「位址追蹤」（IP Traceback) ° 

在這篇論文中，我們提出一個既創新又完善的 D D o S 防驚方 

案。利用已有的攻搫來源資料，我們可於適當位置安裝過 

爐程式 ( f i l ter ing scheme) ’以丟棄接踵而來的封包。集合位址追 

蹤及封包過濾的技術，此防 S方案既可移除高逹百分之九 

十的可疑封包（malicious p a c k e t )，亦同時能有效提高其他正常 

交通的流量，及減低頻寛(bandwidth)的使用量。 
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Chapter 1 

Introduction 

In recent years, Denial of Service (DoS) attacks have become a serious threat 

to the Internet and they have increased dramatically in frequency, severity and 

sophistication [38，63]. Such attack normally involves a malicious party sending 

enormous volumes of traffic to a remote host or a network, thereby denying 

the victim from providing normal service to its legitimate users. Distributed 

Denial of Service (DDoS) attacks are a much more powerful form of DoS 

attacks because they are designed as a coordinated attack from many sources 

simultaneously against one or more targets [48 . 

Ill this paper, we propose a comprehensive DDoS defense scheme which 

combines the techniques of IP traceback and packet filtering to withstand the 

effect of DDoS attacks. The defense scheme is comprised of two major com-

ponents, namely domain-based IP traceback and route-based packet filtering. 

In our IP traceback scheme, a participating router would mark the packets 

with a low probability. After collecting sufficient packets, the victim would be 

able to reconstruct the attack graph incorporating attack paths and the source 

routers identified, with each node on the paths viewed as a domain. 

The attack graph serves as a filtering signature, which would be sent to the 
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routers equipped with our packet filtering scheme. The routers would examine 

the markings embedded in each incoming packet and match them with the 

filtering signature. If the packet is found to be malicious, the routers would 

drop it with certain probability. By performing this preferential filtering, the 

majority of attack traffic would be discarded before they reach the destination. 

1.1 Research Motivation 

The Internet, designed and started as the Advanced Research Projects Agency 

Network (ARPANET) in 1970s [85], has now become almost an indispensable 

communication and electronic service provision platform for our various daily 

life activities. Unfortunately, as witnessed by the dramatic increase of attack 

incidents, every computer host connected to the Internet is liable to being 

attacked. Not only the majority of Internet users are annoyed by the failures 

of Internet service access, the commercial entities on the Internet are also 

suffering from financial loss and bad publicity. 

Distributed Denial of Service, or DDoS attacks, in particular, have caused 

severe Internet service disruptions in recent years [32]. They are among the 

hardest security problems to address because they are easy to implement, 

difficult to prevent, and hard to trace [72]. Since DDoS attack is a much 

tougher problem than the single-site form DoS attack, we will take DDoS 

attack as our target problem in the sequel. 

According to the CIAC (Computer Incident Advisory Capability), the first 

DDoS attack occurred in the summer of 1999 [22]. In February 2000，one of 

the first major DDoS attacks was waged against Yahoo.com. This attack kept 

Yahoo off the Internet for about two hours (see figure 1.1) and cost Yahoo a 

significant loss in advertising revenue [7:. 
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Figure 1.1: Denial of Service attack against Yahoo.com in Feb 2000 

Another DDoS attack occurred in October 2002, against the 13 root servers 

that provide the Domain Name System (DNS) service to Internet users around 

the world [8]. These incidents have demonstrated the vulnerability of the In-

ternet to DDoS attacks. Therefore, there is pressing need to carry out research 

in the field network security to devise an effective methodology for defending 

against DDoS attacks. 

1 • 2 Problem Statement 

Many researches have been carried out on defending against DDoS attacks, 

and different solutions have been proposed. However, there are two major 

limitations in the existing proposals: 

1. The primary difficulty of dealing with DDoS attacks is IP Spoofing [33], 

which is a quite simple technique prevailing in DDoS attacks and other 



CHAPTER 1. INTRODUCTION 4 

network crimes due to the anonymous nature of Internet. When launch-

ing an attack, the attacker can arbitrarily spoof the source IP addresses 

in the attack packets to avoid being traced and blocked, so as to prolong 

the effectiveness of the attack. The source address being scattered across 

large amount of different spoofed addresses also makes some detection 

tools hard to identify the traffic anomalies [63 . 

2. Few proposals address the issues of real time attack mitigation and false 

positive minimization. During an on-going flooding attack, if no action 

is taken to stop the attack traffic from overwhelming the network, much 

of the legitimate traffic would be dropped by the upstream routers be-

fore reaching its destinations [58], or in other words, the legitimate traffic 

would suffer from collateral damage. The traffic is either harmed by 

the congestion of network, or is filtered by the deployed defense mecha-

nism [19 . 

These are the challenges in defeating DDoS attacks, and we aim at de-

veloping a comprehensive defense scheme which can overcome these inherent 

problems. This kind of research could make a significant contribution to the 

advancement of network security. 

1.3 Research Objectives 

Our work is motivated by the increased frequency and sophistication of DDoS 

attacks, and we mainly focus on the flooding-based DDoS attacks, which could 

potentially cripple or disable essential Internet services in minutes. In order 

to design a robust and effective DDoS defense scheme, an intensive survey has 

been conducted on both the DDoS attack and its existing solutions. Various 
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DDoS countermeasures are compared and evaluated. Throughout the study, 

we discover that there are different proposals available for IP traceback, which 

aim at locating the potential attack sources. Nevertheless, they cannot be 

employed to defend against DDoS attacks. 

Based on this finding, a new approach - a hybrid traceback-filtering defense 

scheme is proposed [50’ 51]. In this scheme, traceback and filtering are the two 

major components in defending against DDoS attacks. The reasons for us to 

select and combine the two techniques are: 

1. IP traceback is a major practice against IP spoofing problems, which in-

volves tracing the paths of the anonymous packets back towards their gen-

uine sources [10’ 16]. Though IP traceback technique by itself has limited 

capability of sustaining the victim's service availability, the knowledge of 

the attack sources and paths is very useful in eliminating the attack 

traffic as well as improving the effectiveness of DDoS defense [72]. Such 

information is vital for restoring normal network functionality, preventing 

reoccurrences, and ultimately, holding the attackers accountable [54:. 

2. Accurate packet filtering could mitigate the effect of DDoS attacks rapidly 

by dropping the majority of attack traffic, thus significantly enhancing 

the throughput of legitimate traffic with minimum collateral damage and 

bandwidth consumption [19 . 

The main purpose of our work is to develop a DDoS defense scheme which 

can efficiently trace the attack paths, as well as make intelligent use of the 

traceback information for packet filtering purpose. Through numerous testing 

and evaluations, we aim at improving our scheme so as to: 

• strengthen its defense power by minimizing false positives, processing 

overhead and collateral damage; 
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• make it more robust and effective even in the presence of multiple attacks; 

• outperform existing packet marking and filtering schemes and overcome 

many of their inherent problems. 

Our novel IP traceback based DDoS defense scheme exploits the attack 

source information from IP traceback to perform attack packets filtering at 

strategic positions. It is comprised of two schemes, as depicted in figure 1.2: 

1. a domain-based IP traceback scheme, for tracing attack sources (see chap-

ter 3); 

2. a route-based packet filtering scheme, for dropping most of the attack 

traffic and preserving legitimate traffic (see chapter 4). 

Traceback Filtering  
Marked Attack Filtering Dropping most of the 

Packet packet Path graph Placement signatures ) Packet ^ attack traffic + increasing 

Marking Reconstruction Selection Filtering the throughput of  
legitimate traffic 

Figure 1.2: Architecture of the proposed DDoS defense scheme 

The design of the defense scheme aims at maximizing the filtering of attack 

packets and minimizing the undesirable dropping of the legitimate packets, so 

that the DDoS attacks can be ultimately thwarted. 

1.4 Structure of the Thesis 

This thesis is organized as 6 chapters. Chapter 1 is an introduction of the 

thesis. In chapter 2, we present a background study of our work, including a 

survey of DDoS attack, a literature review on some of its countermeasures and 

their pros and cons. The core part of this thesis is our proposed DDoS defense 
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scheme, which would be presented in two parts: domain-based IP traceback 

scheme in chapter 3, and route-based packet filtering scheme in chapter 4. The 

simulation experiment results of our defense scheme are presented in chapter 

5. Finally, we conclude this thesis and discuss the future work in chapter 6. 

• End of chapter. 



Chapter 2 

Background Study on DDoS 

Attacks 

2.1 Distributed Denial of Service Attacks 

Have you ever tried to make a telephone call but couldn't because all the 

telephone circuits were busy? This may happen on a major holiday. The 

reason you could not get through is because the telephone system is designed 

to handle a limited number of calls at a time. Imagine that an attacker wanted 

to make the telephone system unusable by customers. One way would be to 

make call after call in an attempt to make all circuits busy. This type of attack 

is called a denial of service, or DoS, attack. 

Computer systems can also suffer DoS attacks. A malicious user exploits 

the connectivity of the Internet to cripple the services offered by a victim site, 

often simply by flooding a victim with many requests [39, 44]. A DoS attack 

can be either a single-source attack, originating at only one host, or a multi-

source, where multiple hosts coordinate to flood the victim with a barrage of 

attack packets. The latter is called a distributed denial-of-service, or DDoS, 

8 
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attack. It is a virulent, relatively new type of attack on the availability of 

Internet services and resources. DDoS attackers infiltrate large numbers of 

hosts by exploiting software vulnerabilities. These unwitting hosts are then 

invoked to wage a coordinated, large-scale attack against one or more victims. 

To achieve our project objective - developing an effective DDoS solution, 

we first study some common techniques used in DDoS attacks and present a 

comprehensive scope in this section. W e aim at defining DDoS attack architec-

ture, classifying different DDoS techniques, and describing the characteristics 

of the software tools used in setting up a DDoS attack network. These tax-

onomies help us to understand the similarities and differences in DDoS attacks 

and tools, and the scope of the DDoS problem. 

2.1.1 DDoS Attack Architecture 

In a typical DDoS attack, many hosts are compromised to fire packets simulta-

neously against one or more targets. Such attack is large-scale and coordinated 

in a way to deny the services of a system or network resource. Moore et al. [63 

use backscatter packets (the unsolicited responses that a DDoS victim sends 

to the spoofed IP address that it receives in the attack packet) to gauge the 

level of Internet DoS activity. Jung et al. [43] attempt to answer the question 

of how a site can differentiate between a DDoS attack and a simple high load 

condition by analyzing client request rates and file access patterns. 

The target under attack is defined as primary victim, while the compro-

mised hosts used to launch the attack are often called secondary victims. The 

use of secondary victims in performing a DDoS attack provides the attacker 

with the ability to wage a much larger and more disruptive attack, while mak-

ing it more difficult to track down the original attack source. 

Since a number of attacking hosts are involved, the attacker has to first set 
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up a DDoS attack network before launching an attack, as shown in figure 2.1. 

The masters are software packages located on computing systems throughout 

the Internet that the attacker uses to communicate indirectly with the agents. 

The agent software exists in compromised systems that will eventually carry 

out the attack on the victim system. A detailed description of the entire process 

of building a DDoS attack network is given in [32]. Some researchers have also 

analyzed other forms of DDoS network in [90，89, 36]. In descriptions of DDoS 

tools, the terms master and agents are sometimes replaced with handler and 

daemons respectively. Also, the systems that have been violated to run the 

agent software are also defined as secondary victims or zombies. 

Attacker 

Agents (daemons or zombies) ^ ^ ^ 

Victim 

Figure 2.1: DDoS Attack Network 

The attacker communicates with any number of masters to identify which 

agents are running, when to schedule attacks, or when to upgrade agents. 

Usually, attackers will try to place the master software on a compromised 

router or network server that handles large volumes of traffic. This makes 

it harder to identify messages between the master and agents. The users 

of the agent systems typically have no knowledge that their system has been 

compromised and will be taking part in a DDoS attack. W h e n participating in 
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a DDoS attack, each agent program uses only a small amount of resources (both 

in memory and bandwidth), so that the users of these computers experience 

minimal change in performance [38]. Today's DDoS attack tools can launch 

attacks against multiple victims at the same time, and use various types of 

attack packets. 

2.1.2 DDoS Attack Taxonomy 

There are a wide variety of DDoS attack techniques. W e present a taxonomy 

of the main DDoS attack methods in figure 2.2. There are two main classes of 

DDoS attacks: 

1. Bandwidth depletion attacks: designed to flood the victim network 

with unwanted traffic that prevents legitimate traffic from reaching the 

primary victim system; 

2. Resource depletion attacks: designed to tie up the resources of a 

victim system. This type of attack targets a server on the victim system, 

making it unable to process legitimate requests for service. 

Bandwidth Depletion Attacks 

There are two main classes of DDoS bandwidth depletion attacks. A flood at-

tack involves the zombies sending large volumes of traffic to a victim system, 

to congest the victim system's bandwidth. An amplification attack involves 

either the attacker or the zombies sending messages to a broadcast IP address, 

using this to cause all systems in the subnet reached by the broadcast address 

to send a message to the victim system. This method amplifies malicious traf-

fic that reduces the victim system's bandwidth. 
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DDoS Attack 

+ + 

Bandwidth Resource 

Depletion Depletion 

t • • T 
Flood Amplification Protocol Exploit Malformed 

Attack Attack Attack Packet Attack 

^ I r 4 r i 
UDP ICMP Smurf Fraggle SYN PUSH+ IP Address IP Packet 

Attack Attack Flood ACK Attack Options 
Attack Attack Attack 

Figure 2.2: DDoS Attack Taxonomy 

Flood Attacks. In a DDoS flood attack the zombies flood the victim 

system with IP traffic. The large volume of packets sent by the zombies to 

the victim system slows it down, crashes the system or saturates the network 

bandwidth. This prevents legitimate users from accessing the victim. 

UDP Flood Attacks. User Datagram Protocol (UDP) is a connection-

less protocol. When data packets are sent via UDP, there is no handshaking 

required between sender and receiver, and the receiving system will just receive 

packets it must process. A large number of U D P packets sent to a victim sys-

tem can saturate the network, depleting the bandwidth available for legitimate 

service requests to the victim system. 

In a DDoS U D P Flood attack, the U D P packets are sent to either random or 

specified ports on the victim system. Typically, U D P flood attacks are designed 

to attack random victim ports. This causes the victim system to process the 
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incoming data to try to determine which applications have requested data. 

If the victim system is not running any applications on the targeted port, 

then the victim system will send out an ICMP packet to the sending system 

indicating a "destination port unreachable" message [22 . 

Often, the attacking DDoS tool will also spoof the source IP address of 

the attacking packets. This helps hide the identity of the secondary victims 

and it insures that return packets from the victim system are not sent back 

to the zombies, but to another computer with the spoofed address. U D P 

flood attacks may also fill the bandwidth of connections located around the 

victim system (depending on the network architecture and line-speed). This 

can sometimes cause systems connected to a network near a victim system to 

experience problems with their connectivity. 

ICMP Flood Attacks. Internet Control Message Protocol (ICMP) pack-

ets are designed for network management features such as locating network 

equipment and determining the number of hops or round-trip-time to get from 

the source location to the destination. For instance, ICMP E C H O R E P L Y 

packets ("ping") allow the user to send a request to a destination system and 

receive a response with the roundtrip time. 

A DDoS ICMP flood attack occurs when the zombies send large volumes of 

ICMP E C H O R E P L Y packets to the victim system. These packets signal the 

victim system to reply and the combination of traffic saturates the bandwidth 

of the victim's network connection [22]. As for the U D P flood attack, the 

source IP address may be spoofed. 
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Amplification Attacks 

A DDoS amplification attack is aimed at using the broadcast IP address fea-

ture found on most routers to amplify and reflect the attack (see figure 2.3). 

This feature allows a sending system to specify a broadcast IP address as the 

destination address rather than a specific address. This instructs the routers 

servicing the packets within the network to send them to all the IP addresses 

within the broadcast address range. 

w 
Amplifier / L : \  

/ \ Amplifier 
1 ~ h Network 

Figure 2.3: Amplification Attack 

Smurf Attacks. In a DDoS Smurf attack, the attacker sends packets to a 

network amplifier (a system supporting broadcast addressing), with the return 

address spoofed to the victim's IP address. The attacking packets are typi-

cally ICMP E C H O REQUESTS, which are packets (similar to a "ping") that 

request the receiver to generate an ICMP E C H O R E P L Y packet. The ampli-

fier sends the ICMP E C H O R E Q U E S T packets to all of the systems within 

the broadcast address range, and each of these systems will return an ICMP 

E C H O R E P L Y to the target victim's IP address. This type of attack amplifies 

the original packet tens or hundreds of times. 
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Fraggle Attacks. A DDoS Fraggie attack is similar to a Smurf attack 

in that the attacker sends packets to a network amplifier. Fraggle is different 

from Smurf in that Fraggle uses U D P E C H O packets instead of ICMP E C H O 

packets. There is a variation of the Fraggle attack where the U D P E C H O 

packets are sent to the port that supports character generation (chargen, port 

19 in Unix systems), with the return address spoofed to the victim's echo 

service (echo, port 7 in Unix systems) creating an infinite loop [60]. The U D P 

Fraggie packet will target the character generator in the systems reached by 

the broadcast address. These systems each generate a character to send to the 

echo service in the victim system, which will resend an echo packet back to 

the character generator, and the process repeats. This attack generates even 

more bad traffic and can create even more damaging effects than just a Smurf 

attack. 

Resource Depletion Attacks 

DDoS resource depletion attacks involve the attacker sending packets that 

misuse network protocol communications or sending malformed packets that 

tie up network resources so that none are left for legitimate users. 

S Y N Flood Attack. It is a TCP-based attack which exploits a leak in the 

implementation of the TCP/IP protocol. It involves sending a large number 

of spoofed T C P connection requests, which is never successfully established, 

to the server and therefore cramming the stack for storing these requests and 

tying the resources of the target machine. Thus, other legitimate connection 

requests are denied. Before we show how SYN Flood is launched, we should 

introduce T C P three-way handshake [67] first. 

Figure 2.4 shows the structure of T C P header [47]. Prom the figure we 

can see that there are URG, SYN, ACK, RST, PSH and FIN six flags in a 
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Figure 2.4: TCP Header 

T C P header. The three-way handshake that is involved in a T C P connection 

establishment is illustrated in figure 2.5. 

Client Server 

SYN 

ACK +SYN 

ACK 

Figure 2.5: TCP Synchronization 

At first, the initiating system sends a SYN (Synchronize) request. The 

receiving system sends an A C K (acknowledgement) with its own SYN request. 

The sending system then sends back its own A C K and communication can 

begin between the two systems. If the receiving system is sent a SYNx packet 

but does not receive an ACKy+i to the SYNy it sends back to the sender, 

the receiver will resend a new ACK + SYNy after some time has passed [20 
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(see figure 2.6). By this three-way handshake a T C P connection is established 

and the client and server can begin transmit data each other. The processor 

and memory resources at the receiving system are reserved for this T C P SYN 

request until a timeout occurs. 

A 名 = = 
節 X 

ACK + SYN 

’ x+1 y 

ACK xi+i + SYN Y 

Process remains active and 

re sends ACK + SYN 

Figure 2.6: TCP SYN Flood Attack 

In a DDoS SYN Flood attack, the attacker instructs the zombies to send 

such bogus T C P SYN requests to a victim server in order to tie up the server's 

processor resources, and hence prevent the server from responding to legiti-

mate requests. The T C P SYN Flood attack exploits the three-way handshake 

between the sending system and the receiving system by sending large volumes 

of T C P SYN packets to the victim system with spoofed source IP addresses, so 

the victim system responds to a non-requesting system with the A C K + S Y N . 

When a large volume of SYN requests are being processed by a server and 

none of the A C K + S Y N responses are returned, the server begins to run out 

of processor and memory resources. Eventually, if the volume of T C P SYN 

attack requests is large and they continue over time, the victim system will 

run out of resources and be unable to respond to any legitimate users. 

PUSH + ACK Attacks. In the T C P protocol, packets that are sent 
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to a destination are buffered within the T C P stack and when the stack is 

full, the packets get sent on to the receiving system. However, the sender can 

request the receiving system to unload the contents of the buffer before the 

buffer becomes full by sending a packet with the P U S H bit set to one. PUSH 

is a one-bit flag within the T C P header [4]. T C P stores incoming data in 

large blocks for passage on to the receiving system in order to minimize the 

processing overhead required by the receiving system each time it must unload 

a non-empty buffer. 

The P U S H + A C K attack is similar to a T C P S Y N attack in that its goal 

is to deplete the resources of the victim system. The attacking agents send 

T C P packets with the PUSH and A C K bits set to one. These packets instruct 

the victim system to unload all data in the T C P buffer (regardless of whether 

or not the buffer is full) and send an acknowledgement when complete. If this 

process is repeated with multiple agents, the receiving system cannot process 

the large volume of incoming packets and it will crash. 

Another type of TCP-based attack is to congest a victim's incoming link. 

Under these attacks, the victim usually responds with R S T packets, except 

when the attack packets are also RST packets. ICMP messages (echo requests 

and timestamp requests) and U D P packets may also be used to achieve the 

same result. In these cases, the victim usually responds with the corresponding 

ICMP reply and error messages, and U D P packets. 

Based on a backscatter analysis performed on the response packets sent 

back by attack victims, Moore et al. have provided insight into the prevalence 

of DoS activity on the Internet [63]. One notable observation reported is that 

most attacks used T C P packets (over 94 present), followed by U D P packets (2 

present) and ICMP packets (2 present). The TCP-based attacks are observed 

mainly based on SYN-ACK packets, RST packets, and ICMP error messages 
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sent back by victims in response to attacks. 

Malformed Packet Attack. It is an attack where the attacker instructs 

the zombies to send incorrectly formed IP packets to the victim system in 

order to crash the victim system. There are two types of malformed packet 

attacks. In an IP address attack, the packet contains the same source and 

destination IP addresses. This can confuse the operating system of the victim 

system and cause the victim system to crash. In an IP packet options attack, 

a malformed packet may randomize the optional fields within an IP packet 

and set all quality of service bits to one so that the victim system must use 

additional processing time to analyze the traffic. If this attack is multiplied 

using enough agents, it can shut down the processing ability of the victim 

system. 

2.1.3 DDoS Tools 

111 1998 the first known DDoS tool was developed. In rough chronological 

order, the DDoS tools [45] commonly seen today include: 

Trinoo was the first known DDoS tool, starting to appear in June or July 

1999. It is a kind of distributed SYN DoS attack [5, 27；. 

Tribe Flood Network (TFN) started to appear after Trinoo. T F N client 

and daemon programs implement a DDoS network capable of employ-

ing a number of attacks, such as ICMP flood, S Y N flood, U D P flood, 

and S M U R F style attacks. T F N is noticeably different than trinoo in 

that communication from the T F N client to daemons is accomplished 

via ICMP E C H O R E P L Y packets. The absence of T C P and U D P traffic 

sometimes makes these packets difficult to detect because many protocol 
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monitoring tools are not configured to capture and display the ICMP 

traffic [29:. 

Stachedraht (German for "barbed wire") is a DDoS tool that started to 

appear in the late summer of 1999 and combines features of trinoo and 

TFN. It also contains some advanced features, such as encrypted attacker 

master communication and automated agent updates [28 . 

Shaft is a DDoS tool which became available in November 1999. A Shaft 

network looks conceptually similar to a trinoo; it is a packet flooding 

attack and the client controls the size of the flooding packets and duration 

of the attack. One interesting signature of Shaft is that the sequence 

number for all T C P packets is 0x28374839 [26；. 

Tribe Flood Network 2000 (TFN2K) was released in December 1999. It 

is a complex variant of the original T F N with features designed specif-

ically to make T F N 2 K traffic difficult to recognize and filter, remotely 

execute commands, hide the true source of the attack using IP address 

spoofing, and transport T F N 2 K traffic over multiple transport protocols 

including UDP, TCP, and ICMP. T F N 2 K attacks include flooding (as 

in TFN) and those designed to crash or introduce instabilities in sys-

tems by sending malformed or invalid packets, such as those found in the 

Teardrop and Land attacks [14 . 

Mstream was discovered in late April 2000 on a compromised Linux system 

at a major university. This system was identified to be flooding packets 

using forged source addresses, targeted at over a dozen IP addresses [30 . 

W32/MyDoom.B is reported on March 2004. It harvests email addresses 

from an infected system, generates network traffic and installs a backdoor. 
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It causes collateral denial-of-service conditions in networks where a sig-

nificant number of systems are infected, large volumes of virus-related 

email are handled, or DDoS traffic is aggregated [2 . 

Attacks using these tools are based on the client/server model and can 

involve a large number of sites simultaneously. 

2.1.4 DDoS Detection 

The goal of attack detection is to detect every attempted DDoS attack as 

early as possible and to have a low degree of false positives. Upon attack 

detection, steps can be taken to characterize the packets belonging to the 

attack stream and provide this characterization to the response mechanism. 

Most of the detection works are performed by Intrusion Detection System 

(IDS) [49，86’ 25]. W e classify different attack detection strategies as follows: 

Pattern Detection 

Mechanisms that deploy pattern detection store the signatures of known at-

tacks in a database. Each communication is monitored and compared with 

database entries to discover occurrences of DDoS attacks. Occasionally, the 

database is updated with new attack signatures. As the event patterns are 

also called signatures, pattern detection is sometimes called "signature-based 

detection" [56]. 

The obvious drawback of this detection mechanism is that it can only detect 

known attacks, and it is usually helpless against new attacks or even slight 

variations of old attacks that cannot be matched to the stored signature. On 

the other hand, known attacks are easily and reliably detected, and no false 

positives are encountered. Systems like Snort [71], USTAT [40] and Bro [68: 
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are examples using pattern detection. . 

Anomaly Detection 

Mechanisms that deploy anomaly detection have a model of normal system 

behavior, such as a model of normal traffic dynamics or expected system per-

formance. The current state of the system is periodically compared with the 

models to detect anomalies. It relies on matching a user behavior against 

his/her profile of normal behavior, and raises an alarm when a deviation from 

normal behavior is detected [13]. Examples of anomaly detection systems are 

IDES [25], Hyperview [24] and Wise and Sense [84:. 

The advantage of anomaly detection over pattern detection is that unknown 

attacks can be discovered. However, anomaly-based detection has to address 

two issues: 

1. Threshold setting. Anomalies are detected when the current system state 

differs from the model by a certain threshold. The setting of a low thresh-

old leads to many false positives, while a high threshold reduces the sen-

sitivity of the detection mechanism. 

2. Model update. Systems and communication patterns evolve with time, 

and models need to be updated to reflect this change. Anomaly-based 

systems usually perform automatic model update using statistics gath-

ered at a time when no attack was detected. This approach makes the 

detection mechanism vulnerable to attacks which are launched over a 

long period with small change of traffic rate, and thus be able to mislead 

the models to avoid attack detection. 
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2.2 DDoS Countermeasure: Attack Source Traceback 

Several traceback approaches have been proposed. W e will present four repre-

sentatives out of these approaches. 

2.2.1 Link Testing 

The technique link testing is introduced where traceback starts from the router 

closest to the victim and interactively tests its upstream links until they deter-

mine which one is used to carry the attacker traffic. This procedure is repeated 

recursively on the upstream router until the source is reached [72]. This tech-

nique requires that an attack remains active until the completion of a trace. 

There are two variants of link testing schemes: input debugging and controlled 

flooding. 

Input debugging [77] is one implementation of the link-testing approach. 

This method requires cooperation between system administrators of different 

ISPs to identify which router interface a particular packet was received. This 

may involve substantial management overhead in communicating and coordi-

nating efforts across multiple network boundaries and ISPs. It requires time 

and personnel on both the victims' and ISPs' side. DDoS attacks compound 

this problem because attack traffic could originate from machines under the 

jurisdiction of many separate ISPs. Table 2.1 illustrates the advantages and 

disadvantages of input debugging. 

Another technique that falls into the link-testing category is controlled 

flooding [18]. This technique works by selectively exhausting selected network 

resources and monitoring the traffic so as to detect the links that a DoS attack 

is traversing. But this technique is only applicable during on-going attacks. 

Moreover, the technique itself is a sort of DoS attack, which can disrupt le-
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Table 2.1: Advantages and disadvantages of input debugging  

Advantages Disadvantages 
Compatible with existing protocols High overhead in terms of time and re-

sources in organizations along the at-
tack traffic path  

Insignificant network traffic overhead Communications and cooperation of 
ISPs along the attack path must be es-
tahlished  

Supports incremental implementation The attack must last long enough for a 
successful t,ra,ce  

Compatible with existing routers and Less suitable for distributed denial-of-
nptwork iiifra.cit.mrtnrfi service R.tita.ckR  

Table 2.2: Advantages and disadvantages of controlled flooding  

Advantages Disadvantages 
Compatible with existing protocols Serves as a kind of denial-of-service at-

tia,ck  
Support for incremental implementa- Requires accurate map of the network 
tion topology  
Compatible with existing routers and ISP cooperation might be required 
npt.wnrk infrfl.^t.riirtnrp  

gitimate traffic on the unsuspecting upstream routers and networks. This, 

of course, makes it unsuitable for widespread routine usage on the Internet. 

Table 2.2 illustrates the advantages and disadvantages of controlled flooding. 

2.2.2 Logging 

An obvious solution to establishing the true origin of offending Internet traffic 

is to log the packets at key routers throughout the Internet and then use data-

mining techniques to extract information about the attack traffic's source. 

Although this solution seems obvious and allows accurate analysis of attack 

traffic even after the attack has stopped, its most significant drawbacks include 

the amount of processing and storage power needed to save the logs. Also, the 

need to save and share this information among ISPs poses logistical and legal 
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problems as well as privacy concerns. Given today's link speeds, packet logs 

can grow quickly to unmanageable sizes, even over short timeframes. 

Although logging a probabilistic sampling of the packet stream and com-

pression can reduce resource demands somewhat, those demands are still quite 

significant. Snoeren et al. [74] proposed a novel approach to logging and IP 

traceback called SPIE (Source Path Isolation Engine). Instead of storing the 

whole packet, they suggested storing only a hash digest of its relevant invariant 

portions in an efficient memory structure called a Bloom filter. To complete an 

IP traceback request, a network of data collection and analysis agents spanning 

the different networks could use this method to extract significant packet data 

and generate appropriate attack graphs, thus identifying the attack traffic's 

origin. 

All alternate and innovative logging approach is proposed in [12], which 

entailed an overlay network built of sensors that could detect potential attack 

traffic, tracing agents that could log the attack packets on request, and man-

aging agents that could coordinate the sensors and tracers and communicate 

with each other. This approach attempts to overcome traditional logging meth-

ods' limitations by selectively logging traffic-after an attack is recognized and 

logging only certain characteristics, rather than entire packets. The approach 

also allows for increased speed and requires less storage. Current logging-based 

traceback methods use a sliding time window for storing logged data to avoid 

excessive storage and analysis requirements in exchange for catching attacks 

while in progress or shortly thereafter (so that the required logging data is still 

available). Table 2.3 illustrates the advantages and disadvantages of logging. 
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Table 2.3: Advantages and disadvantages of logging  

Advantages Disadvantages 
Insignificant network traffic overhead Resource-intensive in terms of process-

in̂  and storage requirements  

Allows post-attack analysis Sharing of the logging information 
among several ISPs leads to logistic 
and legal issues  

Compatible with existing routers and Less suitable for distributed denial-of-
npt.wnrk infrfl.strnct.nre service R,ttia,ckR  

2.2.3 ICMP-based traceback 

Bellovin [17] proposed a new traceback scheme which relies on the IP protocol. 

He named his approach as iTrace, which adds a new type of ICMP message 

as the traceback message. For each packet received, routers would generate, 

with a small probability, an ICMP message to the destination address of the 

packet containing the IP address of the router. Network managers could piece 

together these messages to trace a packet's path back to its origin. To limit 

the additional traffic this method generates, a router would generate an ICMP 

traceback message for only one in 20,000 packets passing through it (0.005 

percent). This low probability limits additional network traffic, but still lets 

the victim figure out the attack traffic's actual path. 

One of the iTrace scheme's weaknesses becomes apparent in a DDoS attack 

ill which each zombie contributes only a small amount of the total attack traffic. 

In such cases, the probability of choosing an attack packet is much smaller than 

the sampling rate used. The victim probably will get many ICMP traceback 

messages from the closest routers but very few originating near the zombies' 

machines. 

To overcome this drawback, Mankin et al. [59] presented an improvement 

to this scheme, called intension-driven ICMP traceback. This technique sep-
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Table 2.4: Advantages and disadvantages of ICMP-based traceback  

Advantages Disadvantages 
Compatible with existing routers and Generates additional network traffic 
T-iPfwnrk infrast.nirt.nre  
Supports incremental implementation Unless there also is an encryption 

scheme with key distribution imple-
mented, attackers could inject false 
ICMP traceback messages into the 
packet stream to mask the attack traf-
fic's true origin  

Allows post-attack analysis ICMP traffic increasingly is filtered by 
organizations due to its use in several 
mmiTion Fit,t丨ark srena.rios  

ISP cooperation is not required Very few ICMP traceback messages 
from distant routers in the case of a 
Histrihnt.prl dpnipil-nf-叩rvirp a.ttar.k  

arates the messaging function between the decision module and the iTrace 

generation module. A recipient network supplies specific information to the 

routing table to indicate it requests I C M P traceback message. On the basis of 

specific information provided in the routing table, the decision module would 

select which kind of packet to use next to generate an iTrace message. It 

also lets a recipient network signal whether it is interested in receiving iTrace 

packets, which increases the proportion of messages considered useful to the 

receiving network. This scenario also would be helpful if a given network sus-

pects or detects that it is under attack: it could request iTrace packets from 

the upstream routers to identify the attack traffic's origin. Although this im-

provement reduces the overhead of I C M P traceback significantly, unless there 

is an encryption scheme with key distribution implemented, attackers could 

forge I C M P traceback messages to mask the attack traffic's true origin. Table 

2.4 lists the advantages and disadvantages of ICMP-based traceback. 
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2.2.4 Packet marking 

Packet marking methods are characterized by embedding traceback data within 

the IP header inside the packets to be traced. This approach lets the host ma-

chine use markings in the individual packets to deduce the path the traffic has 

taken. To be effective, packet marking should not increase the packets' size (to 

avoid additional downstream fragmentation, thus increasing network traffic). 

Furthermore, packet-marking methodologies must be secure enough to prevent 

attackers from generating false markings. Problems also arise when we try to 

work within the framework of existing IP specifications. The order and length 

of fields in an IP header are specified, so for the packet marking method to be 

effective, it must work with those settings and not alter them. Packet mark-

ing algorithms and associated routers must be fast enough to allow real-time 

packet marking. 

The packet marking techniques can generally be grouped into two major 

categories - one based on tracing a single packet, and the other based on 

collecting a large number of packets for tracing back to the attackers. 

Hash-based traceback [74], the representative of the former technique, di-

gests and logs some particular information of every packet on the routers. The 

victim can query the routers whether a certain packet has passed through 

them. There are two obvious problems: it requires a large-scale database 

(bloom filter) on each router to store and manage the packets information. 

Furthermore, the queries must be done before the relevant records of database 

are updated. Yaar et al. [88] proposed a Path Identification (Pi) mechanism 

which allows the victim to identify the paths in a per packet fashion. Each 

packet travelling along the same path carries the same identifier, enabling a 

victim to identify packets traversing the same paths through the Internet on 
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a per packet basis. 

The marking scheme proposed in this thesis belongs to the latter one. In 

the literature, different approaches, based on using a large number of packets, 

have been proposed for IP traceback. 

Savage et al. [72] proposed algorithms for packet marking, ranging from 

simply appending the current router address to employing probabilistic traffic-

sampling. He used a probability of 1/25 to avoid excessive overhead on the 

routers' packet marking, and proposed three kinds of probabilistic marking 

schemes - node sampling, edge sampling and compressed edge fragment sam-

pling. Node sampling records only one IP address in the packet according to 

the marking probability; so it cannot trace multiple attacks. Edge sampling 

records the IP addresses of two adjacent routers and the distance from the 

further router to the victim; and it needs more than 70 bits of storage space 

for the markings, which is not available in a normal IP header. 

Compressed edge fragment sampling, which is also known as Fragment 

Marking Scheme (FMS), divides the edges into fragments to overcome the 

storage problem: each router computes a uniform hash of its IP address once, 

at startup. This hash is interleaved with the original IP address. The resulting 

quantity known as edge-id is then broken into k fragments each labelled with 

its offset, which the router selects randomly when marking a packet. The next 

downstream router uses the offset to select the appropriate fragment to XOR 

-thereby encoding part of an edge. If enough packets are sent by the attacker, 

the victim will eventually receive all fragments. 

However, there are two major drawbacks especially when the number of 

attack paths increases: one is the high computation overhead for examining 

various combinations of the edge fragments; the other one is the large number 

of false positives which could be generated as a result of the collisions of the 
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encoded values. 

Some other researchers have also evaluated the effectiveness of Probabilistic 

Packet Marking. Park and Lee [55] and Alder [9] study the tradeoff between 

the number of IP header used and the number of packets required for recon-

struction. A recent research [87] indicates that Groups Of Strongly Similar 

Birthdays (GOSSIB) can be used to obtain effects similar to a successful birth-

day attack on this scheme. 

Song and Perrig [75] improved the probabilistic marking scheme and pro-

posed the advanced and authenticated marking scheme that copes with multi-

ple attackers. By using an upstream routers map they made a significant im-

provement on the performance as measured by the number of packets needed to 

reconstruct each path, the reconstruction time, the number of false positives, 

and the ability to deal with distributed DoS attacks. Furthermore, their mark-

ing scheme provides authentication for the marking information through the 

use of hash chains, which was not implemented in other previous work. They 

also use a 5-bit distance field, but they do not fragment marking information. 

Instead, they include a (6-5)-bit XOR of hashed message authentication codes 

(HMACs) from each router and its downstream router. Nevertheless, there 

exist some false positives when the number of attack paths is quite large. In 

addition, the design of effective hash functions, which are used in their marking 

scheme, is not an easy task. 

Dean et al. [23] proposed an algebraic approach to encode the upstream 

router path for IP traceback. Nodes mark packets with evaluations of the 

sample points of a polynomial over a finite field. The coefficients of the poly-

nomial are the IP addresses of the routers in the attack path. Unfortunately, 

their schemes do not easily lend themselves to authentication, without requir-

ing knowledge of universal tree. Moreover, the reconstruction algorithms are 
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Table 2.5: Advantages and disadvantages of packet marking  

Advantages Disadvantages 
Can be deployed incrementally and ap- Requires modification to the protocol 
pears to be low cost  
Works with existing routers and net- Produces false-positive paths 
work infmstnirtinre  
Effective against distributed denial-of- Victim must receive minimum number 
service attacks of packets  
ISP cooperation not required Cannot handle fragmentation 
Allows post-attack analysis Does not work with IPv6 and is not  

compatible with IPSec  

complex and slow for large-scale Distributed Denial of Service attacks, and 

it introduces certain amount of "noise". Chen et al. [21] has enhanced the 

algorithm to perform IP traceback for reflector attacks. Table 2.5 depicts the 

advantages and disadvantages of packet marking. 

2.2.5 Comparison of various IP Traceback Schemes 

In this section, we evaluate the above mentioned traceback schemes against 

certain metrics, which can serve as the criterion of being a good and effective 

traceback scheme. 

• ISP Involvement. ISPs and enterprise networks do not have incentives 

to monitor for attack packets. The lack of incentives comes from the fact 

that monitoring for such packets has no immediate benefit to the ISP 

itself or its subscribers. Furthermore, most ISPs are reluctant to disclose 

their internal topology. Consequently, IP traceback solutions should not 

assume complete cooperation of ISPs. It is desirable for the scheme to 

have low ISP involvement, which implies that it can be easily built or 

inserted with little infrastructure or operational change. 

• Scalability. It is related to the additional configuration on other devices 



CHAPTER 2. BACKGROUND STUDY ON DDOS ATTACKS 32 

needed to add a single device to the scheme. It also measures the ability 

of the scheme to perform as network size increases. An ideal scheme 

should be scalable, and configuration of the devices involved should be 

totally independent of each other. 

• Number of packets required for traceback. A good traceback 

scheme should be able to determine the source of an attack based on 

as few packets as possible once the attack is detected. This will enable 

the scheme to successfully trace back more attacks. 

• Processing overhead. It can be incurred for every packet and during 

traceback. Processing overhead on the ISP routers is especially undesir-

able since it may result in the need to upgrade or buy more equipment. 

Therefore, a scheme with less processing overhead incurred on the net-

work will most likely be accepted by an ISP. 

• Bandwidth overhead. It is considered as the additional traffic the 

the network has to carry for traceback. Large bandwidth overhead is 

undesirable since it may exhaust the capacity of links and routers. 

• Memory requirements. An ideal scheme would have a limited amount 

of additional memory required at the dedicated server, and no additional 

memory requirements on network equipment. 

• Ease of evasion. The scheme is said to be easy to evade if the attacker, 

who is aware of the scheme, can easily orchestrate an attack that will be 

untraceable. Clearly, this quality is not desirable in a traceback scheme, 

and the ease of evasion should be as low as possible. 
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Table 2.6: A comparison of four approaches for IP traceback  
Metrics Link testing Logging ICMP-based Packet mark-

traceback ing  
ISP involvement None High Low Low  
Scalability N/A ~Poor High High 
Number of packets required for Huge 1 Thousands Thousands 
trarfthark  
Prior knowledge of topology Yes No Yes Yes 
and routing required  
Processing overhead Fair High Low Fair  
Bandwidth overhead Huge High Low None  
Memory requirements Low Low Low None 
Ease of evasion N/A Low High Low  

2.3 DDoS Coimtermeasure: Packet Filtering 

Packet filtering is an alternative solution against DDoS attacks. By classifying 

the malicious packets out the normal packets, most of the attack traffic could be 

dropped (rate-limiting is another possible action). The effectiveness of packet 

filtering refers to the throughput of normal service that can be maintained by 

the victim during a DDoS attack. 

2.3.1 Ingress Filtering 

One effective action that the Internet Service Providers (ISPs) can take against 

DoS/DDoS is to eliminate routing of spoofed packets by discarding any packet 

with IP address outside the range of a customer's network. Early methods 

focused on detecting the incoming points of attack traffic within a single net-

work administration, such as deploying network ingress filtering to eliminate 

the ability to forge source addresses [35]. Any packet with IP address out-

side the range of a customer's network would be discarded. The success of 

this approach depends to some extent on if all ingress routers have sufficient 

processing power to inspect the source address of every packet, and sufficient 

knowledge to distinguish between legitimate address and illegitimate addresses, 
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Table 2.7: Advantages and disadvantages of ingress filtering  
Advantages Disadvantages 
Compatible with existing routers and High deployment difficulty 
network infra.stnictiiire  
Supports incremental implementation Fail to filter packets with valid ad-

dresses  
Low computation complexity 

which may not be possible in practice. In addition, this method cannot handle 

flooding attacks originated from valid IP addresses, and may negatively affect 

mobile IP services [65 . 

A more recent and functional approach to ingress filtering is proposed by 

Li et al. in [57]. Their protocol, called SAVE, has routers construct tables of 

valid source addresses per incoming interface. A packet whose sources address 

is out of the proper range is easily identified and dropped. Table 2.7 depicts 

the advantages and disadvantages of ingress filtering. 

2.3.2 Egress Filtering 

SANS institute urged network administrators to adopt egress filtering which 

prevents one's network from being the source of forged communications used in 

DoS attacks [6]. An egress filter is designed for implementation in the routers 

at the edge of a network. These filters analyze all packets forwarded, looking 

for forged IP addresses. Since any particular network is assigned a specific 

subset of IP addresses, any packet containing an invalid IP address is assumed 

to be spoofed, and the filter drops such packets. This ensures that only IP 

packets with valid source IP addresses leave the network and thus protects the 

outside from spoofed packets. 

This approach can effectively deter attackers from attacking others with 

one's own network. However, it has three severe shortcomings. Firstly, there 
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Table 2.8: Advantages and disadvantages of egress filtering  
Advantages Disadvantages 
Effective to filter packets with spoofed Only restrict traffic from local network 
addresses  
Do not incur extra overhead Not applicable to forward legitimate 

traffic that is not part of its address 
space  

Compatible with current infrastructure Require large portion of deployment 

is little incentive for an ISP to provide egress filtering since it does not protect 

from the attack, it only keeps an attacker from using your network for a DDoS 

attack. If egress filtering is not employed by a significant number of networks, 

it will not be a viable solution to DDoS attacks. Secondly, egress filtering is 

difficult for many service providers who frequently need to forward legitimate 

traffic that is not part of its address space. Thirdly, egress filtering will not 

detect internally spoofed IP addresses. Table 2.8 depicts the advantages and 

disadvantages of ingress filtering. 

2.3.3 Route-based Packet Filtering 

The route-based packet filtering (RPF) technique shares some similarity with 

Ingress filtering method by installing packet filters at certain amount of au-

tonomous systems distributed in the Internet. At an extreme, with all au-

tonomous systems and their routers implementing R P F method is no much 

different from the effect of perfect ingress filtering, with no spoofed IP flows 

being able to escape. 

The R P F approach [66] uses routing information to determine if a packet 

arriving at a border router at an autonomous system, is valid with respect to its 

claimed source/destination addresses, since a source and destination address 

pair should follow the reachability constraints imposed by routing and network 
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Table 2.9: Advantages and disadvantages of RPF  
Advantages Disadvantages 
Incremental deployment is possible Require BGP messages to carry source 

a,d dresses  
Effective under current Internet AS High global deployment 
connectivity structure  

topology. 

The main merit of this method as shown by their performance evaluation 

is that, with a partial coverage on at 18% of such filters equipped autonomous 

systems, significant amount of spoofed packets can be dropped and the ori-

gins of those spoofed IP flows succeed reaching their targets can be local-

ized to within a small, constant number of sites (less than 5 for Internet AS 

topologies). However, the cooperation of thousands of autonomous systems 

is still an unfavorable requirement, with every ingress/egress router of which 

has to install the filter. In addition, the effectiveness depends intimately on 

the connectivity structure of the underlying AS graph. Another problem with 

this method is that computing appropriate filtering tables alongside existing 

inter-domain routing protocols (e.g., BGP) is a nontrivial problem due to the 

destination-based structure of Internet routing protocols. Table 2.9 presents 

the advantages and disadvantages of RPF. 

2.3.4 IP Traceback-based Packet Filtering 

Minho Sung and Jun Xii proposed a novel technique [78] for defending against 

Internet DDoS Attacks based on knowledge of reconstructed attack paths from 

underlying IP traceback schemes. They use some packet marking IP traceback 

scheme to reconstruct the attack graph, and call the network edges on the 

attack graph "infected" edges. Consequently, packets marked with the "in-

fected" edge markings will be preferentially filtered out, while packets from a 
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legitimate client, on the other hand, have higher probability to be filtered out, 

since typically most of the edges on the legitimate path to the victim are not 

infected. They modified the underlying traceback scheme a bit for effective 

filtering effect. The marking performed by each router is divided as two types: 

signaling is for traceback purpose as the underlying IP traceback scheme re-

quires (around 5% of total marks); the other is for marking packets with edge 

information so as to serve as the filtering signatures (as proposed at 95%). A 

defense-line with implementation of filters around the victim will impose rate-

limit on incoming traffic flows based on the inscribed marks in each packet. 

However, to make sure significant amount of traffic can be filtered based on the 

second type of marks, only 5% of the marks are signaling marks. This implies 

that the reconstruction of the whole attack graph will be 20 times slower than 

in the underlying IP traceback scheme, which is a considerable delay when 

considering the relatively short lifetime of most DDoS attacks. In addition, as 

the attackers become more distributed, the normal paths between legitimate 

clients and attack paths have high probability to overlap, which means an "in-

fected" edge would also be traversed by a non-attack packet, especially when 

they near the victim. 

2.3.5 Router-based Pushback 

In Pushback mechanism [41], a congested router nearest to the victim uses 

statistics and pattern analysis to determine from which most adjacent up-

stream routers the unexpected traffic volume are coming, and then send sig-

nals to notify the traffic contributors to rate-limit the suspect traffic. The 

approach is then repeated at the upstream routers in a chain to identify and 

rate-limit the traffic contributors. This scheme therefore requires immediate 

action during the attack, and requires considerable coordination between net-
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Table 2.10: Advantages and disadvantages of router-based pushback  
Advantages Disadvantages 
Incremental deployment is possible High storage space requirement for 

pushback daemon to analyze dropped 
packets  

No need for a map of upstream routers Lack of trust relationship among ISPs 
to respect pushback requests from oth-

Lers  

work operators. 

The main drawback with the hop-by-hop tracing method is that, in large-

scale DDoS attacks, it has limited capabilities to separate the legitimate pack-

ets from attack packets in a pattern-based way. As a result, rate-limiting 

imposed on the detected aggregates usually drop attack packets as well as 

normal packets because both match the aggregates signature [58]. Table 2.10 

demonstrates the pros and cons of the router-based pushback approach. 
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Table 2.11: Classification of DDoS countermeasiires according to several viewpoints 
Probabilistic [72，75，74, 23’ 21，66’ 69, 88, 55’ 87, 
Packet Marking 9, 37’ 83’ 34，15，52，31, 73, 50] 

Traceback ICMP Traceback [17, 59] 
Others [12’ 18，77，53, 10’ 16] 

r”‘ • Packet Filtering[35, 78, 6, 80, 79, 81, 70, 57] 
Filtering  

Rate Limiting [91, 41, 58, 62’ 61, 90] 

• End of chapter. 



Chapter 3 

Domain-based IP Traceback 

Scheme 

Our proposed defense scheme exploits the attack path reconstructed by our 

proposed IP traceback scheme to perform attack packet filtering at strategic 

positions. So tracing the attack packets back to their sources is the first and 

essential step in making attackers accountable. 

To locate the attack sources, we propose a domain-based marking scheme 

(DBMS) for IP traceback, which supports two types of packet marking. A 

participating router would perform deterministic intra-domain source router 

marking when a packet enters the network from an end-host, and probabilistic 

inter-domain edge marking when it receives a packet from another domain. 

After collecting sufficient packets, the victim would reconstruct the attack 

graph incorporating attack paths and the source routers identified, with each 

node on the paths viewed as a domain. 

40 



CHAPTER 3. DOMAIN-BASED IP TRACEBACK SCHEME 41 

3.1 Overview of our IP Traceback Scheme 

Our proposed IP traceback scheme can be split into two phases: packet mark-

ing executed by the routers, and attack path reconstruction operated by the 

victim, as depicted in figures 3.1 and 3.2. W e use y, R, and A to denote the 

victim, router, and attack source respectively. 

/"Incofningi packe? stream Outgoing psKket streamN. 
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Figure 3.1: Packet Marking 

During the packet marking phase, the routers marks the incoming packets 

probabilistically before forwarding it to the next router. The marked packets 

contain partial or complete information of the paths which they traversed. As 

shown in figure 3.1, there are two paths traversed by the packets: {Ri - R2 -

R4 - Rq - R12) and (i?3 - Re - R n - Ru). In the case of DDoS attack, since 

the attacker normally floods the network with a huge volume of packets, most 

of these packets carry the markings associated to the two attack paths. 

Upon receiving these marked packets, the victim can make use of the pieces 

of marking information to trace the path traversed by the packet, hop by hop 
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through a series of upstream router, and finally reach the source of the attack 

packets, which could be a source router in a particular domain. 
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Figure 3.2: Path Reconstruction 

The final product of the path reconstruction phase is an attack graph G 

reconstructed based on the markings from the packets and an upstream router 

map, which is a map describing the topology of the upstream routers from a 

single host and capturing their IP addresses. Figure 3.3 depicts an upstream 

router map from the view of the victim. Here upstream is used to describe 

routers viewed from the victim. For example, R4 is the upstream router of R7 

and Rq. 

With reference to figure 3.1, there are two attack paths - {Ri - R2- R4- R9 
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- R U ) , and {RS - RE - RN - -̂ 12) respectively. In figure 3.2, as indicated by the 

bold arrows, we reconstruct the attack paths edge by edge starting from the 

victim; where the edges correspond to the relevant edges in the Internet map; 

the arrows also indicate the direction of attack path reconstruction. Some 

routers might be compromised by the attacker and they would forge informa-

tion in the packets. Therefore, we limit the traceback problem to finding a 

candidate attack path that contains a valid suffix of the real attack path. For 

example, path {Ru - Rq - R4) is a valid suffix of the real attack path {Ru - Rq 

-R4 - R2 - RI). As depicted in figure 3.2, there are two reconstructed attack 

paths represented by the bold arrows: {R12 - Rq - R^ - R2 - Ri) and (R12 -

RII - Rq - R3) respectively. 

¥ 
V 

Figure 3.3: Upstream router map as viewed by the victim 
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3.2 Assumptions 

To make our marking scheme more practical and effective, the following as-

sumptions are made in the design of our algorithms: 

1. Attackers can send a large number of packets. 

2. Multiple attack paths may exist. 

3. Attackers might be aware that they are being traced. 

4. Packets may be reordered or lost. 

5. Routes between the attacker and the victim are fairly stable. 

6. Routers have limited computation power so that they cannot perform too 

much processing per packet. 

7. Routers or domains are not compromised in big proportion and the 

routers adjacent to the victim should not be compromised. 

8. Routers are capable of marking the IP Identification and Type of Service 

fields of all packets that they forward. 

The first two assumptions match with the characteristics of flooding-based 

DDoS attacks which we are targeting at. Since our marking scheme marks 

packets with a very low probability, it requires a good number of marked pack-

ets for path reconstruction. This is usually not a problem since the attacker 

normally floods the network with a huge volume of packets. 

The third one is a conservative evaluation of the abilities of the attackers. 

The sophisticated attackers should be aware that they are being traced and 

may send fake packets or packets with spoofed IP addresses to make the victim 
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confused. So the traceback method proposed must consider such a potential 

ability of the attackers. 

With the knowledge of current network infrastructure, the forth, fifth and 

sixth assumptions are quite easy to understand. For the seventh assumption, 

if some routers are compromised, we might only trace the source back to 

the compromised router since it could tamper the information marked by its 

upstream routers. So we use valid suffix instead of the entire attack path to 

assess the robustness of the traceback technique. 

Nonetheless, the source router identification procedure in our proposed 

marking scheme helps us to confirm indirectly if the last domain of a recon-

structed attack path is a source domain or simply a compromised one. Note 

that the routers nearest to the victim should not be compromised; otherwise 

they could tamper any information marked by the upstream routers and the 

victim might reconstruct incorrect paths. 

Regarding the last assumption, since the 16-bit IP Identification field and 

the 8-bit Type of Service field are little used in current network design [76, 11], 

overloading these two fields is considered feasible. Using these fields for packet 

marking is quite common in the literature, first proposed by Savage et al. [72 

and later by others [23，75，59, 6，88] in their proposed marking schemes. 

3.3 Proposed Packet Marking Scheme 

In this section, we introduce our domain-based marking scheme (DBMS) in 

detail. To locate the attack source(s), we propose a domain-based packet 

marking scheme for IP traceback, which supports two types of marking; A 

participating border router would perform deterministic intra-domain source 

router marking when a packet enters the network from an end-host, and prob-



CHAPTER 3. DOMAIN-BASED IP TRACEBACK SCHEME 46 

abilistic inter-domain edge marking when it receives a packet from another 

domain. After collecting sufficient packets, the victim would reconstruct the 

attack graph incorporating attack paths and the source routers identified, with 

each node on the paths viewed as a domain. 

3.3.1 IP Markings with Edge Sampling 

Our proposed marking scheme exploits the idea of probabilistic edge sam-

pling [72], to mark the packets with a low probability in order to reduce the 

marking overhead of the routers. Probabilistic edge sampling is a promising 

technique proposed by Savage et al. [72]. Its main idea is to let routers proba-

bilistically mark packets with partial path information during packet forward-

ing. The path information includes the IP addresses of two adjacent routers 

in an Internet map, and the distance between the victim and the router last 

marked the packet. 

Below are the marking and path reconstruction algorithms of probabilistic 

edge sampling proposed by Savage et al. [72 . 

Algorithm 1 Marking procedure at router R  
for each packet w do 
let x be a random number from [0...1) 
if X <p then 
write R into w.start and 0 into w.distance 

else 
if w.distance = 0 then 
write R into w.end 

end if 
increment w.distance 

end if 
end for  

V 

As shown in the marking algorithm, three finite fields are pre-allocated in 

the IP headers. These fields are {start, end, distance}. Each participating 
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Algorithm 2 Path reconstruction procedure at victim v 
let be a tree with root v 
let edges in G be tuples {start, end, distance) 
for each packet w from attacker do 

if w.distance = 0 then 
insert edge {w.start, v, 0) into G 

else 
insert edge {w.start, w.end, w.distance) into G 

end if 
remove any edge (x, y�d) with d + distance from x to v in G 
extract path {Ri...Rj) by enumerating acyclic paths in G 

end for 

router marks the packets targeted to the victim site with a probability p. 

W h e n the router decides to mark a packet, it writes its own IP address into 

the start field and zero into the distance field. Otherwise, if the distance field 

is already zero, which means this packet has been marked by the previous 

router, it records its IP address in the end field and increments the distance 

value by one. If the router does not mark the packet, it simply increments the 

distance value by one. This value indicates the number of hops between the 

victim and the router which last marked the packet. The mandatory increment 

of the distance value is crucial to minimize the spoofing of the markings by an 

attacker, so that a single attacker would be unable to forge an edge between 

itself and the victim [72]. Figure 3.4 illustrates the set of marked and unmarked 

packets as collected by the victim. 

Marking Fields data Packet  
I start I end | distance Y / / / / / A | 卜 | 0 Y / / / / / A 

翼 卜 卜 卜 醫 / / / i 

Figure 3.4: Set of marked and unmarked packets collected by the victim 
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3.3.2 Domain-based Design Motivation 

Existing marking schemes normally reconstruct the full path or suffix of the 

path to the attacker in order to defend the victim. In practice, however, there 

could be much difficulty in doing so. The reasons behind are: 

1. There is a trend that ISPs only use public addresses for interfaces to cus-

tomers and other networks, and use private addressing within their own 

networks; in this situation, full address traceback may not be practical 

since we cannot identify the IP addresses of private address routers; 

2. Even if public addressing is used within an ISP's network, ISPs are gen-

erally reluctant to disclose their topologies. Therefore, to avoid this in-

herent difficulty, our marking scheme involves only the border routers of 

a domain, and the markings can be based only on the prefix of the IP 

addresses of such routers. 

As we are primarily interested in identifying the location of the attacker, we 

need to trace only the domains in the Internet map which the attack packets 

traversed, without tracing the individual routers within a domain. Therefore, 

instead of requiring all routers within each domain to participate in packet 

marking, we apply only domain-level packet marking which involves mainly 

the border routers of each domain. 

Nonetheless, information about the routers closer to the attack sources 

would be most useful for locating the origin of attackers. Therefore, we also 

perform marking on source routers, which serve as a gateway between a local 

area network containing the attack nodes and the rest of the Internet [61 . 

Physically, these routers connect to both end users and other routers forward-

ing packets from another domain through different interfaces. 
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The design proposed in this thesis assumes that a source router is able to 

identify the interfaces through which it receives the incoming and outgoing 

traffic, so it can distinguish whether the packets are forwarded from an indi-

vidual host (end-user) or from another domain. The source routers may not 

be adjacent to the attackers, but they must be within the domains containing 

the attack sources. Both the domain-level marking and source router marking 

are done probabilistically in order to reduce the packet's marking overhead of 

the routers concerned. Figure 3.5 depicts the packet marking participation of 

routers at different positions. 

R: Border ingress p ^ Routers 
routers of a domain j S partid_ed in 

mark丨叩 

Figure 3.5: Participation of routers at different positions 

3.3.3 Mathematical Principle 

The main idea of our packet marking scheme relies on computing a fullpath 

value based on the matrix equation, shown below, as introduced in [23 . 

Figure 3.6 shows a matrix equation (or system of equations) with Vander-

monde matrix coefficients. In linear algebra, there is a theorem stating that the 

above matrix equation, with AiS unknown, has a unique solution if and only if 
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Figure 3.6: Matrix equation with Vandermonde matrix coefficients 

the Xj's are distinct [64]. By applying field theory to the above theorem, we can 

obtain a similar theorem over GF{m), where GF denotes Galios Field and m 

is a prime number if the x̂ 's and fullpathi's are elements in GF{m) [42]. Each 

fullpath value in the above system of equations corresponds to the following 

polynomial: 

fullpathi = {Al + A2Xi + A^x^ + ... + An-ix^'^ + AnX^'^^) m o d m 

={Al + + + …+ (Ai-1 + AnXi)xi)...)xi)xi) mod m 

W e apply such special property of the above matrix equation to a packet 

marking scenario. W e split a router's IP address into four fragments; each with 

8 bits (1 byte) long. Consider a series of A^'s in the matrix as the four fragments 

of a router's IP address. Upon receiving a packet, the router performs the 

marking probabilistically by assigning a distinct value Xi to the packet, and 

using it together with a particular fragment of the IP address, represented by 

Ai^ to compute the corresponding fullpath value. The fullpath value would 

then be written into the packet header. 

In general, an attack packet will pass through a number of routers before 

reaching the victim. The first router that decides to make a marking assigns 

an X to the packet, and computes a fullpath value according to the above 
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polynomial. Then the next router computes its fullpath value by multiplying 

the fullpath value from the packet by x, and adding its IP address fragments. 

The following routers mark the packet similar to what the second one does. 

When the packet arrives at the victim, it records a fullpath value related to 

a certain number of routers. In fact, it is the value of the above polynomial 

with IP address fragments of two adjacent routers, represented by Aj's. 

Note that there is no way for a router to know whether it is the "first" 

participating router on a particular path, so the packet would be re-marked 

under a low probability value. The router will generate a random number r, 

and if this number is smaller than our predefined marking probability p、the 

router will select an x for the marking of this packet and do the marking in 

the capacity as the first router; otherwise, it assumes that it is not the first 

router and simply follows the procedure presented above. 

3.3.4 Marking Mechanism 

Similar to all marking schemes, our marking scheme (DBMS) involves record-

ing the markings in the packets' IP headers by the routers and reconstructing 

the attack paths by the victim. Our proposed marking scheme handles two 

types of marking: domain edge marking and source router marking. Domain 

edge marking is performed probabilistically by a border router for a domain 

whenever it receives a packet from another domain; whereas source router 

marking is carried out deterininistically by a router when it detects that a 

packet enters the network from an end host. The algorithm of D B M S marking 

is presented below. 

To reduce the size of the marking field, we only record the prefix (the 

first two bytes) of the IP address of the router which performs the marking; 

the prefix corresponds to the domain's identity. Only the border routers of 
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Algorithm 3 Domain based marking algorithm at border router R 
for each packet pkt do 

if pkt is passed from an upstream domain then 
domahTLEdgeMarkiiig(pfc 力） 

else if pkt enters the network from an end-host then 
soiirceRouterMarking(pA;i) 

end if 
end for 

every domain are involved in packet marking. As it is essential to get more 

information about the source of an attack, our marking algorithm also marks 

the suffix (the last two bytes) of the source router IP address; besides the source 

router, the suffix of the IP address of any other routers would be ignored. 

The markings recorded in each marked packet include four integer values: 

flag, cc, distance and fullpath:, as depicted in figure 3.7. 

flag X distance (ullpath 

1 bit 2 bits 4 bits 5 bits 

Figure 3.7: Marking fields inside a packet 

• flag indicates the type of markings; it is set to 1 if a source router marking 

is written, otherwise it is set to 0 in the case of domain edge marking; 

• 2； is a value assigned by the router which first took part in creating the 

markings carried by a packet to the victim; 

• distance is the number of hops between the victim and the router which 

last took part in creating the markings in a packet; 

• fullpath is a value computed based on the matrix equation presented in 

figure 3.6, for a domain edge (considered as a sub-path) comprising (1) 

the prefix of the IP address of a start router in one domain and the prefix 

of the IP address of an end router in an adjacent domain, or (2) only 
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the prefix of the router's IP address if the router is in the domain closest 

to the victim in the Internet map. In case of source router marking, the 

fullpath would be for a single router based on the full IP address. 

Domain edge marking 

The idea behind the proposed packet marking scheme is similar to edge sam-

pling. The prefix of an IP address consists of 16 bits; we split it into two 

fragments in our marking scheme. Consider a packet being marked respec-

tively by any two consecutive routers Ri and i?2； that is, Ri and R2 would 

become the start router and end router of the edge respectively in the marking. 

If router Ri's IP address is 137.189.89.101, then the prefix of IP address 

would be 137.189，and the two fragments, Aî i and ,々2, of the prefix would 

be 137 and 189 respectively. Router Ri may compute the fullpath as follows: 

fullpath = (i4i，i + mod m (3.1) 

Similarly, we split the prefix of the IP address of R2 into two fragments 

^2,1 and 2̂,2- Then R2 would compute its new value of fullpath for the edge 

as follows: 

fullpath = + 1̂,23； + 2̂,13：^ + 乂 2’ 2工 3 ) mod m (3.2) 

where Ai/s {ij = 1, 2) form the prefixes of the two adjacent routers' IP 

addresses, and m is the smallest prime number larger than 15 i.e. 17. 

If the router is adjacent to the victim, the last two terms of fullpath should be 

omitted. The objective of letting the above formula modulo by m is to reduce 
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the value of fullpath so that it would occupy fewer bits in the IP header. 

Algorithm 4 depicts the procedure of domain edge marking. 

Algorithm 4 Domain edge marking procedure at border router R 
generate a random number r in the range [0...1) 
if r < p then 
// p is the domain edge marking probability 
randomly select an integer x in the range [0...3] 
pkt.x = X 
pkt.fullpath = (Ai’i + mod m 
pkt.flag = 0 
pkt.distance = 0 

else 
if pkt.distance = 0 then 
// upstream border router has marked the packet 
X = pkt.x 
pkt.fullpath = {pkt.fullpath + Ai^ix^ + m o d m 

end if 
increment pkt.distance by one 

end if 

As shown in the marking procedure, when border router R receives a packet 

pkt from its upstream domain, it first generates a random number r and per-

forms marking depending on r and the distance recorded in the packet. 

As an example, let the IP address of router R be 137.189.89.101 and the 

values of (x, distance, fullpath) from the packet being marked are (2，distance, 

15). Router R would first generate a random number r. Then the marking 

algorithm would produce one of the 3 possible outcomes: 

• Case 1 {r < p): suppose the randomly selected x is 3. Then, fullpath — 

(137 + 189 * 3) mod 17 = 7, distance = 0. 

• Case 2 {r > p and distance = 0): Assume distance from packet is 0. 

fullpath 二（15 + 137 * + 189 * 2^) m o d 17 二 1, distance 二 1. 

• Case 3 (r > p and distance > 0): Increment distance by 1. 
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Source router marking 

In addition to domain-based marking, we perform source router marking to 

record the router's whole IP address when the packet is traversed from a host. 

The source router markings can be used during attack paths reconstruction 

to locate the attack source more accurately. The markings can also be used 

to confirm if the end of a reconstructed path corresponds to the source of an 

attack. 

The fullpath computation for source router marking is similar to that for 

domain edge marking as mentioned above. However, source router marking 

involves node sampling, where the whole IP address of the source router is 

divided into four fragments. For example, if the IP address of the source 

router R is 137.189.90.101, we split it into 4 fragments Ai’i, Ai,2， 1̂,3, and 

A i ’ 4 , with the values 137, 189, 90, and 101 respectively; where Ai’i and 

form the prefix of R's IP address; Ai’3 and form the suffix. Algorithm 5 

depicts the procedure of source router marking. 

Algorithm 5 Source router marking procedure at router R  
generate a random number r in the range [0…1) 
if r < g then 
// is the source router marking probability 
randomly select an integer x in the range [0...3] 
pkt.x = X 
pkt.fullpath = + + + Ai’4:r3) mod m 
II Ai^i, 1̂,3 and are the 4 fragments of R,s IP address 
pkt.flag = 1 

end if 

W h e n 4 (or 2) packets with distinct x's arrive at the victim, the victim can 

solve the relevant matrix equation in section 3.3.3 to obtain the IP addresses 

of two adjacent routers (or the nearest router to the victim) in the attack path. 

Therefore, we use a set of 4 distinct x's (0-3) to do the marking. Note that we 
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Table 3.1: Storage space for the marking fields in the IP header 
Marking field Bit size 

flag ln(2) = 1 bit 
X ln(4) = 2 bits 

distance ln(15) = 4 bits 
fullpath In(17) = 5 bits 

Total 12 bits 

use two different marking probabilities in the two procedures (see algorithms 4 

and 5): p is used for domain edge marking and q is for source router marking. 

Since source router marking is more useful in identifying the actual attack 

sources by our IP traceback scheme, the value of q is much higher than that 

of p. W e will discuss the optimal values of the two marking probabilities in 

section 5.2.2. 

3.3.5 Storage Space of the Marking Fields 

This sub-section introduces the marking fields and the corresponding bits re-

quired for storage. In domain-based marking, the markings written in the 

IP header of each marked packet includes four fields: flag, x, distance and 

fullpath. The flag field occupies 1 bit. The values of x range between 0 and 3, 

so we need 2 bits for x. In general, a packet would reach its destination through 

no more than 32 hops [82], whereas the inter-domain path length would not 

exceed 15 hops, so allocating 4 bits for the distance field should be sufficient. 

Besides, we split a router's IP address into 4 fragments; its prefix, made up 

of the first two IP address fragments, requires 16 bits. The m parameter used 

in the fullpath computation formula can be set to 17, which is the smallest 

prime number larger than 15 (2(1). Thus the value of fullpath should not 

exceed 17’ and it requires 5 bits for storage. 

Table 3.1 shows the details of the marking fields and the required storage 
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space in terms of the total number of bits. Totally 12 bits are required to store 

all the fields in the packet header. 

3.3.6 Packet Marking Integrity 

One shortcoming of our marking scheme is that the packet markings are not 

authenticated. A compromised router on the attack path could forge the mark-

ings of upstream routers, such as the values of distance and fullpath. More-

over, it could forge the markings according to their probability distribution, 

thus preventing the victim from detecting and determining the compromised 

router by analyzing the markings distribution. To alleviate the seriousness of 

this problem, we need a mechanism to authenticate the packet markings. 

Existing authentication methods often require sharing a secret key between 

two parties. This approach, however, may not be practical in a network en-

vironment since it is impractical to require each router to share a secret key 

with each potential victim. To avoid the sharing of secret keys problem, we 

can compute a checksum, based on the marking contents, to be included in 

each marked packet; then the integrity of a packet's markings can be verified 

by examining the checksum. 

^ 12 bits ^ 

flag X distance fullpath 

H { ) 

‘r 

H (flag, X, distance, fullpath) 

< • 

12 bits 

Figure 3.8: Checksum computation based on marking fields 

As shown in figure 3.8, we use the entire packet marking fields for message 
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checksum computation. The packet marking fields include the values flag, x, 

distance and fullpath. W e first concatenate the four values together to form a 

string. Then we encode the string using a uniform one-way hash function [46 

to produce a message checksum. This checksum would be appended to the 

packet marking. In our marking scheme, two routers for two adjacent domains 

are involved in each edge sampling. To reduce the checksum computation 

overhead, only the routers which mark the end domain of a domain edge are 

required to compute a checksum as mentioned above. 

3.3.7 Path Reconstruction 

To identify the attack sources, we first construct an attack domain graph and 

locate the intermediate domains along each attack path. With the attack 

graph, we can identify the potential source domains, and then trace back 

any source routers by exploiting the IP addresses of the routers within any 

identified potential source domain in the Internet map and checking if there 

is any packet which carries markings based on any full IP address of those 

routers. 

Note that we only attempt to identify the source routers within a potential 

source domain; we do not aim to identify the paths of the attack packets within 

a source domain since there could be much difficulty or overhead in doing so; 

for example, the ISPs may be reluctant to disclose their network topologies. 

Moreover, information about the attack source routers would be most useful 

for defense purpose. 
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Algorithm 6 depicts the path reconstruction procedure. It first employs 

the upstream Internet map M of the victim to reconstruct the domain based 

attack graph G. From the attack graph G, we can identify any potential source 

domains. 

Then the victim attempts to identify the source router(s) within each po-

tential source domain using the source router identification procedure depicted 

in algorithm 7. To verify that the markings are not forged by attackers, we 

check the integrity of a packet's markings by examining the checksum before 

inserting any node into the attack graph G. 

• End of chapter. 
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Algorithm 6 Inter-domain path reconstruction algorithm at victim site v 
sort all marked packets by distance, then by values of x 
let P denote the group of packets with flag 0, Pd denote the set of packets with 
distance d{0 < d < maxd) 
let P(i,x denote the subsets of packets with a certain value x in P^ 
let M denote the upstream inter-domain Internet map 
let G be reconstructed attack graph initialized with node v 
for each direct upstream domain D of f in M do 

count = 0 
for X = 0 to 3 do 

path = (Ai^i + mod m 
for each packet pkt in Pq.x do 

if path = pkt.fullpath then 
increment count by one 
exit the inner-most for loop 

end if 
end for 

end for 
if count = 2 then 
insert D next to v in G 

end if 
end for 
for d = 1 to maxd do 
for each domain D inserted into G in the last for loop do 
for each upstream domain Di of D in M do 

count = 0 
for a: = 0 to 3 do 

path = {Ai^i + + + mod m 
for each packet pkt in Pd,x do 

if path = pkt.fullpath then 
increment count by one 
exit the inner-most for loop 

end if 
end for 

end for 
if count = 4 then 
insert Di next to D in G 

end if 
end for 

end for 
end for 
output the reconstructed attack paths in G 
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Algorithm 7 Source router identification procedure at domain D 
sort all marked packets by values of x 
let Q denote the group of packets with flag 1, Qx denote the subsets of packets 
with a certain value x in Q 
let G be reconstructed attack graph initialized with node v 
for the remote end domain D of each path in G do 
for each router R within D do 

count = 0 
for a; 二 0 to 3 do 

path =(々,1 + + Ai^^x^ + ]1’40：3) mod m 
for each packet pkt in Qx do 

if path = pkt.fullpath then 
increment count by one 
exit the inner-most for loop 

end if 
end for 

end for 
if count = 4 then 
add R as sl source router of D in G 

end if 
end for 

end for 
output the set of source routers contained by each remote end domain D 



Chapter 4 

Route-based Packet Filtering 

Scheme 

In addition to trace and locate the attack sources, our proposal seeks to mit-

igate the effect caused by the DDoS attacks by exploiting packet filtering. 

Facilitated by the domain-based IP traceback scheme presented in previous 

chapter, our proposed packet filtering scheme supplies the gap of IP traceback's 

incapability of defending against on-goiiig DDoS attacks with the practice of 

removing the attack packets from the network. 

The attack graph reconstructed from the IP traceback scheme is encoded as 

signature bitmaps, consisting of marking of detected source routers or domains 

on attack paths. The signature bitmaps would then be sent to the upstream 

routers, which would examine the markings embedded in each incoming packet 

and match them with the filtering signature. If the packet is found to be ma-

licious, the routers would drop it with certain probability. By this preferential 

filtering, the majority of attack packets would be discarded before they reach 

the destination. 

62 
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4.1 Placement of Filters 

Filtering attack traffic from multiple sources normally requires the cooperation 

of routers throughout the whole network. However, this incurs high deploy-

ment and processing overhead to the network. With the prior knowledge of 

attack paths and source routers, it would be easier to distinguish between nor-

mal packets and malicious packets, as well as to place filters at some strategic 

positions. One feasible option is to place filters at the ends of each attack path, 

so that most of the attack traffic is restrained at the path end, and thus the 

congestion of the entire network is minimized. 

Filtering mechanism can be deployed at the firewall or gateway in front of 

the victim, since these devices possess functionality to monitor the incoming 

traffic as well as control the passing rate. Alternatively, filtering can also be 

carried out at the last hop of the attack paths, preferably at the border routers 

from the identified source domain (where the source router may reside), so that 

attack traffic can be removed near the sources before it gets to consume the 

victim's network bandwidth. 

Attack source — 一 — _ _ _ 一 一 _ _ 一 — 一 _ _ _ _ _ 
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Figure 4.1: Possible locations to perform packet filtering 
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In general, there are two options concerning where to perform packet fil-

tering: source-end network and victim-end network. As depicted in figure 4.1, 

a DDoS attack resembles a funnel in which attack packets are generated in a 

dispersed area. The effectiveness of packet filtering declines rapidly as attack 

packets are dropped closer to the victim, because more normal packets would 

also be dropped. However, deployment of filters near the victim's network is 

relatively easier, due to the shorter distance between the victim and filters. 

4.1.1 At Sources' Networks 

There are several advantages to place packet filters close to the sources of the 

attack over placing them further downstream: 

1. Restraining attack streams near the source preserves Internet resources 

that are usually overwhelmed by the attack traffic. 

2. Overall congestion can be reduced and more resources are available to 

legitimate users. 

3. Filtering closer to the sources adversely reduces the range of legitimate 

traffic affected. 

However, this approach relies on the victim sending filtering signatures 

to the corresponding remote routers, which requires a reliable, secure and 

authenticated communication between the victim and the source router. Since 

security and authentication might be difficult to achieve across different ISPs, 

the performance of this approach may not be guaranteed. 

4.1.2 At Victim's Network 

Placing filters near the victim-side can directly protect the victim from con-

gested traffic. In a DDoS attack where the victim is flooded by a huge volume 
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of traffic, the filters can block all the incoming packets before they reach the 

victim. Obviously, it is undesirable to drop all traffic traversed towards the 

victim, since there may exist some packets coming from legitimate hosts. That 

is the reason why we need a wise and effective filtering mechanism to preserve 

the normal traffic. 

In addition, victim-end deployment does not require the help of other ISPs, 

so that the amount of communication across different ISPs is reduced. 

However, the drawbacks of a victim-end filtering mechanism are: 

1. Routers resided at the victim side are less accurate in differentiating the 

normal packets and the attack packets, since their traversed paths are 

highly integrated. Both attack packets and legitimate packets can tra-

verse along an overlapped sub-path. It is thus possible to filter legitimate 

packets falsely, causing collateral damage and decrease in throughput. 

2. The overlapping is getting more serious when the filters are placed closer 

to the victim, since most of the packets traversed towards the victim 

tend to go through the same paths. As a result, it is more difficult to 

distinguish between normal packets and attack packets. 

3. Another practical issue is that during an on-going attack, if an incoming 

link is jammed by attack packets, the victim may not be able to do 

anything but shut down its network and ask the upstream ISP to filter 

the packets involved. 

4.2 Proposed Packet Filtering Scheme 

Our proposed scheme improves the throughput of legitimate traffic during 

a DDoS attack, by preferentially filtering the traffic that is more likely to 



CHAPTER 4. ROUTE-BASED PACKET FILTERING SCHEME 66 

come from an attacker than a legitimate host, the filtering is either performed 

at the sources' network or at the victim side. With the knowledge of the 

source routers and attack paths obtained from our IP traceback scheme, packet 

filtering can be performed in a more accurate manner. 

4.2.1 Classification of Packets 

Basically, if a packet is found to be malicious, with our filtering scheme, the 

router would choose a filtering probability to drop the packet according to its 

"marking type". The markings contained in the packets are generally classified 

into three types: 

1. Marking corresponds to an edge inside the attack graph G. 

2. Marking corresponds to a "clean" edge (edge not included in the attack 

graph). 

3. Empty marking when no router on the path inscribes a mark on the 

packet due to the probabilistic nature of the marking algorithm. 

Packets of type 1 are most reliable to be attack ones among all types of 

packets. In contrast, packets of type 2 are most likely to be legitimate ones. 

Unmarked packets (type 3) can either be transmitted from an attack source, 

or from a normal host. To limit the congested attack traffic rate, we would 

also drop a little proportion of packets with no markings. 

Our packet filtering scheme aims at removing the packets of type 1’ while at 

the same time preserving the packets of type 2. With our IP traceback scheme, 

a marked packet (type 1) can contain either one of two types of markings: do-

main edge marking, or source router marking. Since packets with source router 

marking are most likely to come from an attack source, these packets would 
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be dropped at a higher probability than those with domain edge marking. 

Based on these marking types, the following three filtering probability values 

are used: 

• fd' the probability of dropping packets with domain edge markings 

• fr: the probability of dropping packets with source router markings 

• fb: the probability of dropping packets with no marking (blank) 

4.2.2 Filtering Mechanism 

The routers would check the marking concerned against one of two bitmaps: 

either the one for domain edge markings or the one for source router markings, 

which encode the attack graph, as follows. Let U be the bitmap with each entry 

indexed by the domain edge marking and containing one bit with binary values: 

it would be set to 1 (INFECTED) if its marking corresponds to any identified 

domain on the attack paths, and set to 0 (CLEAN) otherwise. In the same 

manner, bitmap V encodes the set of source router markings corresponding to 

the identified source router (s). To better enhance the accuracy and efficiency 

of filtering, we deploy two different filtering mechanisms at either source-end 

or victim-end, as depicted in section 4.1.1 and 4.1.2. 

Packet Filtering at Source-end 

Within the attack source domains identified by our IP traceback scheme, most 

out-going packets either carry the source router markings or no marking at all. 

Some packets may contain a domain edge markings, but they are most probably 

coming from other domains. Therefore, our source-end filtering scheme mainly 

filters the packets with source router markings or no marking, as presented in 

algorithm 8. 
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Algorithm 8 Packet filtering algorithm at source-end router R 
let V represent the bitmap for source router markings 
let fr and ft be filtering probabilities for packets with source router markings or 
no marking respectively 
for each packet pkt destined to the victim do 
if pkt contains a source router marking i then 

if V[i\ = INFECTED then 
drop pkt with probability fr 

end if 
else 
drop pkt with probability fb 

end if 
end for  

Packet Filtering at Victim-end 

Near the victim-end, the paths contain traffic coming from different hosts 

within the entire network. Our victim-end filtering scheme mainly filters the 

packets with domain edge markings and source router markings, as presented 

in algorithm 9. 

Algorithm 9 Packet filtering algorithm at victim-end router R  
let U represent the bitmap for domain edge markings 
let V represent the bitmap for source router markings 
let fd and fr be filtering probabilities for packets with domain edge markings or 
source router markings respectively 
for each packet pkt destined to the victim do 

if pkt contains a domain edge marking i then 
if Uli] = INFECTED then 
drop pkt with probability fd 

end if 
else if pkt contains a source router marking j then 

if V[j] = INFECTED then 
drop pkt with probability fr 

end if 
end if 

end for  

Packets whose markings match with our bitmaps of attack graph would be 

dropped with probabilities fd and fr respectively. Since pa,ckets with source 
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router markings most likely came from attack sources, the value of fr would 

be set higher than that of fd. The results with varying filtering probability fd 

would be demonstrated in the performance evaluation section. 

Note that the path of legitimate packets and an attack path may have 

one part overlapped. Therefore both attack packets and legitimate packets 

can traverse along such an overlapped sub-path. It is thus possible to filter 

packets with domain edge markings falsely (we define it as false drops). One 

possible solution to reduce the number of false drops is to suppress packet 

filtering with domain edge markings from nearby routers. 

W e notice that markings from nearby routers would incur false drops more 

likely based on the following two observations. First, as the probability of 

receiving a packet marked d hops away by the victim is p(l - p)"̂ '̂  (with 

marking probability p), it is more likely that the packet would carry a marking 

from routers near the victim. Second, the attack graph could be generally 

viewed as a tree rooted from the victim, and the normal paths and attack 

paths overlap more near the victim, leading to more false drops. Therefore, 

we let pass the packets with markings from routers within certain distance to 

the victim. W e introduce a parameter r to denote this radial distance between 

the victim and the nearby routers for deploying filters, and adjust the value of 

r ranging from 1 to 3. 

• End of chapter. 



Chapter 5 

Performance Evaluation 

W e have performed a good number of simulation experiments to examine the 

feasibility and to evaluate the performance of our proposed DDoS defense 

scheme. The overall performance of the defense scheme clearly depends on 

the performance of the two constituent parts - domain-based IP traceback 

scheme and route-based packet filtering scheme. In this chapter, we present 

how the simulation experiments are carried out and depict the corresponding 

experimental results. Various satisfactory experimental results indicate that 

our proposed scheme has very good performance and can be effectively put 

into practice. 

5.1 Simulation Setup 

Extensive experiments have been conducted to examine the feasibility and to 

evaluate the performance of the proposed DDoS defense scheme. 

In preparation for the simulation experiments, we prepared an upstream 

router map, which is comprised of around 50,000 routers and 10,000 domains. 

The routers were then assigned some real IP addresses obtained from the 

70 
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traceroute dataset of Caida's Skitter Internet mapping project [1]. Each do-

main is connected with 1 to 5 other domains. The topology of the map consists 

of several routes from a single origin to multiple hosts on the Internet. In our 

simulations, we assume that this origin is the victim and the attackers and 

legitimate users are randomly distributed among the destination hosts in the 

map. W e fix the number of legitimate users to 250, and the number of attackers 

vary as other parameters vary. 

The attack paths are randomly chosen from the paths in the map. The 

paths are not totally isolated; there are around 40% overlapped edges in the 

map. A number of simulated packets are generated at some destination hosts 

and transmitted along each of these paths. For performance evaluation pur-

poses, we assume that the packet sending rate at all attack sources is the same 

and the transmission rate along each path is constant throughout the simu-

lations. Moreover, there will not be any abnormal or high bandwidth traffic 

congesting the network except the flooding packets generated from the attack 

sources. 

The simulation results are obtained through numerous experiments using 

Network Simulator 2 [3] and C programs in Unix platform. They will be 

presented as several plots and evaluated in the later sections. Each data point 

in the plots corresponds to an average value of around 1,000 experiment runs. 

Since the simulated metric of our scheme is independent on the actual values 

of the parameters concerning bandwidth and data rates, we will use relative 

ratios for characterizing these parameters instead of the actual rates. 
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Table 5.1: Control parameters and performance metrics used in our traceback 
scheme  

Pmin • Minimum number of packets for attack path reconstruction 
False positives'. Number of routers added to the reconstructed attack graph 
by the traceback mechanism, but are not included in the original attack path 

Performance metrics ^success: Successful reconstruction probability  
TreconReconstruction time (seconds) 
l\ Path length (hops) 
a: Number of attack sources 

Control Parameters P: Probability for domain edge marking 
<7： Probability for source router marking 

5.2 Experiments on IP Traceback Scheme 

The primary objective of the following experiments is to investigate the robust-

ness of our proposed IP traceback scheme. Each router on the attack paths 

simulates marking the packets as defined in the marking algorithm. With the 

pool of marked packets collected, the victim simulates applying the proposed 

reconstruction algorithm to reconstruct all the attack paths. 

5.2.1 Performance Metrics 

The experiments examine a number of parameters having an impact on the 

performance of our IP traceback scheme, which include the minimum number 

of packets needed for attack path reconstruction, number of false positives, 

the reconstruction time, number of attack sources, attack path lengths and 

marking probabilities. Table 5.1 lists the control parameters and performance 

metrics used in our IP traceback scheme. 

An effective IP traceback scheme should use as few packets as possible to 

reconstruct an attack path; otherwise, the amount of time required by the 

IP traceback scheme to collect sufficient packets would be longer. The time 

for path reconstruction should also be reasonably short, so that the victim 

can complete the reconstruction of attack graph rapidly, and make use of 
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the attack graph for defending against the attack and restoring the service 

availability within a short time. It is also desirable for a IP traceback scheme 

to have low false positives, so that legitimate hosts would not be included in 

the reconstructed attack graph. 

W e have compared our results with the two recently proposed packet mark-

ing schemes: fragment marking scheme (FMS) [72] and the advanced marking 

scheme (AMS) [75]. Recall from section 2.2.4, F M S records the IP addresses 

of two routers constituting of an edge. But to overcome the storage problem, 

the marking is broken into k fragments each labelled with its offset. The next 

downstream router uses the offset to select the appropriate fragment to X〇R-

thereby encoding part of an edge. If enough packets are sent by the attacker, 

the victim will eventually receive all fragments. 

A M S does not fragment marking information. Instead, they include a (6-5)-

bit XOR of hashed message authentication codes (HMACs) from each router 

and its downstream router. Nevertheless, there exist some false positives when 

the number of attack paths is quite large. 

5.2.2 Choice of Marking Probabilities 

Fixed Probability 

To guarantee a sufficiently short attack path reconstruction time, the marking 

probability p for domain edge marking should not be too small. According 

to the coupon collecting problem [64], for each attack path with d routers 

(excluding the victim)，the expected number of packets needed to reconstruct 

the attack path is N(d) = 口(二Li. W e observe that N(d) is minimized when 

V = 2- This is the best result we can achieve for marking algorithm with a 

fixed probability. Suppose the maximum distance d for an inter-domain path 
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is 15 hops, we can get the value of marking probability p to be around 6%. 

Since the markings from source routers are more valuable to our defense 

scheme, particularly in the attack source identification and packet filtering pro-

cesses, the marking probability q used in the source routers should be slightly 

higher than p. Higher marking probability, however, implies more marking 

overhead to the routers. Therefore, a large value of q is undesirable and so we 

set q to be 20%. 

Distance-adjustable Probability 

In the original probabilistic edge sampling scheme [72] ’ a fixed marking proba-

bility is used by all the routers. Let Pm{d) denote the probability that a packet 

is marked by a router d hops from the victim and that it arrives at the victim 

without being re-marked. If the two fixed marking probabilities p and q are 

applied in the marking scheme, we have: 

maxd 

Pm{d) = q{l — P)腿+ E -
d=l 

With the predefined values of p 二 6% and q = 20%, Pm{d) would be around 

66%. The above relation shows that Pm{d) will be smaller for a larger value 

of d. This implies that the probability of a packet being marked by a router 

far away from the victim and not subsequently re-marked by routers close to 

the victim will be small. In another word, markings in packets with a large 

distance value will have a greater chance of being overwritten [69]. As a result, 

there will be more packets marked by routers close to the victim than those 

marked by routers further away. 

From this we can deduce that, by using a fixed marking probability, the 



CHAPTER 5. PERFORMANCE EVALUATION 75 

victim will receive too many packets marked by nearby routers, and too few 

packets marked by remote routers for path reconstruction. To avoid this prob-

lem, the marking probability can be made adjustable; it should be proportional 

to the distance between the router concerned and the victim. Through this 

adjustment, the marking probability employed in the marking process would 

gradually decrease when the packets are transmitted along the attack paths 

towards the victim. 

Regarding the parameter setting in the experiments, the domain edge mark-

ing probability p is set to be 6%. After adjusting it based on the distance, the 

range of p is between 3% and 6%. For attack source identification purpose, the 

value of source router marking probability q is larger, which is set to be 20%. 

5.2.3 Experimental Results 

Various experimental results are presented in figures 5.1 to 5.5. From the plots, 

it can be observed that the proposed marking scheme is feasible and the overall 

performance is quite promising. 

Minimum number of packets for path reconstruction 

Figure 5.1 shows the minimum number of packets, required for reconstruction, 

sent by an attacker along any single path with marking probabilities p = 

6% and q = 20%. In the simulations, the probabilities for a successful path 

reconstruction are at least 95%. Although our scheme is domain-based, to 

have a fair comparison with other marking schemes, the path length presented 

here is of router-level. The plot compares the minimum number of packets 

required by our proposed marking scheme with those presented in F M S [72 

and A M S [75:. 
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Figure 5.1: Minimum number of packets for path reconstruction against different 
path lengths 

From figure 5.1 we can observe that our marking scheme requires signifi-

cantly fewer packets for attack path reconstruction. One main reason is that 

in our proposed marking scheme, the markings are formed based on the pre-

fix of a router's IP address, which corresponds to a domain identity, and so 

in theory we need only four packets from the same router (representing the 

domain participating in the marking) for path reconstruction. This number is 

less than that of FMS, which involves splitting an IP address into a number of 

fragments during packets marking and combining the fragments from different 

packets during path reconstruction. 

In general, each of the marking schemes requires more packets for a larger 

value of path length. However, the underlying rate of increase of packets with 

path length of our proposed marking scheme is smaller than those of other 

marking schemes. 
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Figure 5.2: Minimum number of packets for reconstructing paths with different 
lengths using D B M S with fixed and distance-adjust able marking probabilities 

Figure 5.2 compares results based on a fixed marking probability equal 

to 6% from the proposed marking scheme with those based on an adjustable 

marking probability of around 3% to 6%. Using a fixed marking probability 

could lead to the problem of having more packets marked by routers close to 

the victim and less packets from remote routers and as a result we need more 

packets from the attackers for attack path reconstruction. As shown in the 

plot, using a distance-adjustable probability requires fewer packets for path 

reconstruction. 

Figure 5.2 also presents an estimated theoretical upper bound for the num-

ber of packets needed for attack path reconstruction in our marking scheme. 

Suppose we split an IP address into c identical chunks and the distance from 

the attacker to the victim is d. In our marking scheme, we need c packets to 

identify each domain adjacent to the victim and 2c packets to identify each 
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of the other upstream domains. The victim should receive at least 2c packets 

marked by the furthest router for attack path reconstruction. If the marking 

probability is p, we need at least 口“二“ packets. Based on this, we can 

evaluate an upper bound for the expectation of the number of packets needed. 

W e conservatively estimate the probability of a packet marked with a distance 

di < d to be p{l — -i. Then based on the well-known coupon collector 

problem [64], we have 

綱 < 

where E{N) denotes the expectation of the number of packets needed for 

reconstruction. Since the value of c in our traceback scheme is fixed, the 

value of E{N) directly depends on the marking probability p. This value has 

also been plotted in figure 5.2, so as to assess if our simulation results are 

reasonable. 

Multiple attack sources 

Our attack path reconstruction algorithm does not need to discern the packets 

by the paths through they traversed to the victim. Since edge sampling is 

used, we can unambiguously identify two adjacent routers of each path by 

using the proposed reconstruction algorithm. Therefore, our traceback scheme 

is effective at tracing multiple attacks. 

Figure 5.3 further compares the use of fixed and adjustable marking prob-

ability in our proposed marking scheme under different number of attack 

sources. By examining the results, we have three observations: (1) more 

attack sources require more packets for reconstruction, and the number of 
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Figure 5.3: Minimum number of packets for reconstructing paths with multiple 
attack sources using fixed and distance-adjustable marking probabilities 

packets increase exponentially with the number of attack sources; (2) when 

compared with the adjustable marking probability, the fixed marking prob-

ability requires additional packets for reconstruction; and (3) the additional 

packets mentioned in (2) would become more pronounced when the number of 

attack sources becomes large. In conclusion, the results confirm the proposed 

adjustable marking probability could be quite significant since it would enable 

the victim to trace the attack sources with relatively fewer packets sent by the 

attacker(s). 

False positives 

The most prominent advantage of our marking scheme is that no false posi-

tives are generated in our millions of path reconstruction experiments. This 
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also verifies that the attack path reconstruction algorithm yields no false posi-

tives. Any two routers (or domains) with distinct IP addresses (or IP address 

prefixes) cannot yield the same f ullpath values for packets with the same set 

of x's, so it will never include any unrelated router in an attack path. 

Moreover, it can be proved mathematically because a Vandermonde matrix 

equation has a unique solution. Most other marking schemes employ hash 

functions for encoding purpose, which could have a collision problem; that is, 

they would have the same hash value for two different IP addresses. So they 

usually produce a certain amount of false positives. 

Successful reconstruction probabilities 
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Figure 5.4: Number of packets needed to reconstruct paths with successful recon-
struction probabilities between 85% and 99% 

W e have also performed experiments to investigate how the number of 

packets needed for reconstruction varies with different successful reconstruction 
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probabilities. Figure 5.4 shows the results based on a marking probability of 

6%, and reconstructed paths with length of 10 hops, 20 hops and 30 hops 

respectively. In the plot, the probability to have a successful reconstruction 

ranges from 85% to 99%. 

From figure 5.4, we observe that for a given path length, the number of 

packets for reconstruction increases geometrically as the success probability 

increases. The figure also shows that the number of packets for reconstruction 

increases non-lineaiiy with the success probabilities. The increase in the num-

ber of packets will be more acute as the successful reconstruction probability 

approaches 100%. 

Reconstruction time 
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Figure 5.5: Path reconstruction time under attack with multiple sources 

Figure 5.5 presents the reconstruction time of the proposed marking scheme 

in handling multiple attacks. It can be observed that our reconstruction al-

gorithm can reconstruct 2,000 distributed attack paths (with a path length of 
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20) within just one minute on a IGHz Pentium IV Linux workstation, which is 

considered an acceptable time duration even for real-time IP traceback applica-

tions. It is also much faster than F M S [72], which requires a high computation 

overhead in examining various combinations of the edge fragments. 

A good portion of the reconstruction time has been spent on sorting and 

grouping the packets. When the number of received packets becomes very 

large, say, more than 300,000, the proposed reconstruction algorithm might 

take more time than does the advanced marking scheme [75]. However, in 

practice, the victim can simply use a subset of received packets for reconstruc-

tion if the reconstruction time is crucial; moreover, if necessary, the overhead 

on grouping the packets could be much reduced by using sophisticated sorting 

algorithms and implementation techniques. 

5.3 Experiments on Packet Filtering Scheme 

The primary objective of the following experiments is to investigate the ef-

fectiveness of our proposed filtering scheme. Each router on the attack paths 

simulates filtering the malicious packets as defined in the filtering algorithm. 

Depending on whether the filtering is deployed at source-end and victim-end, 

the filtering ratio of the routers would vary so as to contribute to an efficient 

elimination of attack traffic. 

t 

5.3.1 Performance Metrics 

To estimate the accuracy of our packet filtering scheme, we measure both the 

normal and attack packets drop ratio at the points of filtering routers. Since 

the markings embedded in the packets are not unique within the network, 

false positives may exist in case a packet carrying the same checksum as the 
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Table 5.2: Control parameters and performance metrics used in our fltering scheme 
Ndrop (False Drop Ratio): Percentage of the normal packets dropped (false 
positives)  

Performance metrics A r o p (Attack Traffic Drop Ratio): Percentage of the attack packets dropped 
Nsurv (Normal Traffic Survival Ratio): Percentage of normal packets finally 
arrivpiH at. thp virt.im  

p: Probability for domain edge marking 
q: Probability for source router marking 
a: Number of attack sources 
g: Percentage of normal packets out of all packets generated 
r: Perimeter radius centered at the victim 
fd- Filtering probability for packets with domain edge markings 

Control Parameters 八：卯tering probability for packets with source router markings 
fb： Filtering probability for packets with no marking (blank) 

attack ones is passing through the filtering agent. Packet filtering at the victim 

provides the fast relief for the victim, whereas the complementary source-end 

filtering can accurately remove the majority of attack traffic near the sources. 

Table 5.2 lists the control parameters and performance metrics used in our 

filtering scheme. 

False Drop Ratio {Ndrop) represents the percentage of the normal traffic 

being dropped. It is obtained by the number of normal packets dropped out of 

the total number of normal packets. This ratio is also referred as false positives, 

in which a normal packet is incorrectly classified as an attack one. Attack 

Traffic Drop Ratio {Adrop)̂  on the other hand, represents the percentage of the 

attack packets being dropped. It is obtained by the number of attack packets 

dropped over the total number of attack packets. This ratio indicates the 

proportion of attack traffic that our filtering scheme can successfully eliminate. 

The Normal traffic Survival Ratio {Nsurv) is the metric we would like to 

improve, which is the percentage of normal packets finally arrived at the victim. 

It is calculated by the number of normal packets remained out of the total 

number of packets received by the victim. 

The control parameter r is the radial distance from the victim. It is used in 
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the victim-end filtering, which indicates the number of hops between the victim 

and the filtering routers. As mentioned in 4.2.2, we let pass the packets with 

markings from routers within certain distance to the victim so as to minimize 

the number of false drops; and we introduce r to denote this distance. In the 

experiments, we choose r to be within the range of 1 to 3 hops. The parameter 

g represents the percentage of legitimate traffic generated over the total traffic. 

In the following plots, we use three different normal traffic percentages (5%, 

10% and 20%) to test our filtering scheme. 

5.3.2 Choices of Filtering Probabilities 

111 our scheme, there are three filtering probabilities, /山 fr and fb. In setting 

the values for these probabilities, we have the following considerations: 

Source-end Filtering 

There are two tuning parameters for dropping malicious packets in our source-

end filtering scheme, namely fr and fb. At sources' networks, since most 

marked packets with source router markings are likely to be coming from the 

attack source, we set fr to be 1.0, so as to filter all of this kind of packets. 

However, source router markings are inscribed under a probability q, thus some 

of the packets coming from the source may remain unmarked. Therefore, in 

our filtering scheme, we also drop a certain number of blank packets, so as 

to avoid the attack packets passing further downstream. This approach aims 

at rate-limiting the attack traffic rather than identifying the attack packets. 

Figure 5.6 depicts how the Attack Traffic Drop Ratio {Advop) changes with 

different values of fb- The plot shows that Advop increases linearly with f̂ . 
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Figure 5.6: Attack Traffic Drop Ratio in source-end filtering, with varying 九 and 
fr = 1.0 

Victim-end Filtering 

Similarly, in victim-end filtering scheme, we pass the packets with two filter-

ing probabilities: fd and f” Since most marked packets with source router 

markings are likely to come from the attack source, we set fr to be a high 

probability, which is 0.8. W e do not set fr to be 1.0 here, since at the victim 

side, some packets carrying a source router marking may also come from legit-

imate hosts. Figure 5.7 depicts how the normal traffic survival ratio changes 

with different values of fd. 

5.3.3 Experimental Results 

The different experiment results are as presented in figures 5.8 to 5.15. The 

metrics for measuring the effectiveness of the packet filtering scheme include 

False Drop Ratio, Attack Traffic Drop Ratio, and Normal Traffic Survival 

Ratio. 
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Figure 5.7: Normal Traffic Drop Ratio in victim-end filtering, with varying fd and 
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Figure 5.8: False Drop Ratio with different marking probabilities (at source-end) 

Figures 5.8 and 5.9 show respectively the normal packet drop ratio at 

source-end and victim-end under varying marking probability. There are three 

curves in each figure, corresponding to three different normal traffic percent-

ages (5%, 10% and 20%). W e can see from figures 5.8 and 5.9 that under a 
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Figure 5.9: False Drop Ratio with different marking probabilities (at victim-end) 

relatively low marking probability (around 0.01 to 0.03), the normal packet 

drop ratio is quite high, since many packets are unmarked and thus they are 

dropped by the filtering agents. When the marking probability increases, say 

around 0.04 to 0.06, the decrease of normal packet drop ratio indicates most 

of the legitimate traffic is preserved. As the marking probability further in-

creases, more normal packets will be marked. But when they traverse along 

some attack paths, domain edge marking will also be inscribed into their IP 

header, which makes them being dropped by the routers. As a result, a slight 

increase in false drop ratio is observed at high marking probability. 

Attack Traffic Drop Ratio 

Figures 5.10 and 5.11 show respectively the attack traffic drop ratio under 

varying marking probabilities. W e can see that when the marking probability 

is around 0.01 to 0.03，the attack traffic drop ratio is not so promising. The 

relatively low marking probability causes the packets transmitted along the 

attack paths remain unmarked. Therefore, the packets would not be dropped 
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Figure 5.10: Attack Traffic Drop Ratio with different marking probabilities (at 
source-end) 
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Figure 5.11: Attack Traffic Drop Ratio with different marking probabilities (at 
victim-end) 

by the routers according to our filtering mechanism. Consequently, when the 

marking probability gradually increases, the number of packets being filtered 

increases. 
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Figure 5.12: Normal Traffic Survival Ratio with different path length (at source-end) 
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Figure 5.13: Normal Traffic Survival Ratio with different path length (at victim-end) 

Normal Traffic Survival Ratio 

Figures 5.12 and 5.13 show respectively the normal traffic survival ratio of 

source-end and victim-end approach with different number of hops recon-

structed. From the plots we observe that in source-end approach, the ratio 

does not change with the number of hops, since the curves inside figure 5.12 

are almost flat. This can be explained by the fact that packet filtering is per-
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formed once at the last hops along the attack paths, which have nothing to do 

with the entire paths. Therefore, the number of hops reconstructed has little 

impact towards the normal traffic survival ratio. 

For victim-end approach, the normal traffic survival ratio increases with the 

incremental hops of paths reconstructed. When the number of hops increases, 

there are more alternative paths that the normal packets can traverse. In 

other words, less normal packets would go through the suffix of attack paths, 

ill which they may inscribe with domain edge markings. Consequently, less 

normal packets are filtered before they reach at the victim, which results in 

the increase of normal traffic survival ratio. 
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Figure 5.14: Normal Traffic Survival Ratio with different marking probabilities (at 
source-end) 

Figures 5.14 and 5.15 show respectively the normal traffic survival ratio 

of source-end and victim-end approach under different marking probabili-

ties. With low marking probabilities, the ratio is small, since there are more 

unmarked packets, causing the filtering routers not be able to differentiate 

the normal packets from the malicious one. Thus, more legitimate traffic is 

dropped during packet filtering. But as the marking probability further in-
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Figure 5.15: Normal Traffic Survival Ratio with different marking probabilities (at 
victim-end) 

creases, the normal traffic survival ratio is improved. 

5.4 Deployment Issues 

In the following subsections, we will give an evaluation on our proposed IP 

traceback based defense scheme on some key issues. 

5.4.1 Backward Compatibility 

Backward compatibility is an important issue concerning whether the proposed 

method can be put into practice. As our marking scheme involves writing some 

information to the IP header of a packet, we should find out the maximum 

number of bits available in an IP header that can be used to store the mark-

ings. In our traceback scheme, the total number of bits required to store the 

markings is 12 bits. After appending the checksum for marking fields' authen-

tication, 24 bits are required from the IP header. 

As the minimum number of packets required to reconstruct an attack path 



CHAPTER 5. PERFORMANCE EVALUATION 92 

is path independent, it can be analyzed based on a single attack path. In 

our scheme, we split an IP address into four identical fragments and records 

only the first four fragments (the prefix). As mentioned above, we need four 

packets to identify each domain adjacent to the victim and four packets to 

identify each upstream edge formed a pair of domains. For each edge, the 

victim should receive at least four packets with markings of the edge for attack 

path reconstruction. 

There is a tradeoff between the number of packets needed for path re-

construction and the number of bits for the markings, which depends partly 

oil the number of IP fragments. In our scheme, we split an IP address into 

four identical fragments. A smaller number of IP fragments for an IP address 

implies: 

1. Fewer packets and a shorter time would be required for attack paths 

reconstruction since the number of IP fragments would be smaller; 

2. More bits would be needed since the value of each IP fragment would be 

larger. Though the range of distinct values for x would be smaller, the 

total number of bits needed would be larger. 

For packet marking purpose, our traceback scheme would overload certain 

bit space inside the IP header to store the markings. The fields being over-

loaded includes the 16-bit Identification field and 8-bit Type of Service field. 

Figure 5.16 shows the structure of the IPv4 header. 

The 8-bit type of service field is used to allow hosts way to give hints to 

routers as to what kind of route is important for particular packets [11], and it 

has been little used in current network design. The 16-bit Identification field 

enables the destination host to determine which datagram a newly arrived 

packet fragment belongs to. Since Stoica and Zhang [76] pointed out that 
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Figure 5.16: Structure of IPv4 Header 

less than 0.25% of the entire network traffic is fragments, we consider that 

overloading the Identification field is appropriate. These 24 bits could be 

assigned to the marking fields. Therefore, the proposed marking scheme is 

backward compatible with current version of IP protocol and can be effectively 

put into practice. 

Nonetheless, the proposed marking scheme could not be applied directly 

to IPv6, where the IP header does not have the Identification field and the IP 

address is 128 bits. However, it is possible that there could be similar space 

available in the IP header of IPv6; if the space available is not sufficient, we 

need to partition the IP address into more fragments. 

5.4.2 Processing Overheads to the Routers and Network 

The packet marking algorithm as shown in section 3.3.4 takes only a constant 

time to execute. Each router marks the packets with a low marking probability. 

When marking a packet, it computes a fullpath value for a single router or 

for an edge involving two adjacent routers. To reduce the overhead on the 

computation of such fullpath values, we can keep possible fullpath values in 

a table for each router. Thus, the marking overhead would become very small. 
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The complexity of the reconstruction algorithm as shown in section 3.3.7 

depends on a number of parameters including the number of attack paths, the 

number of direct upstream edge of each router on an attack path, the number 

of packets collected in each packet set for a certain distance from the victim, 

the time to compute path values during the reconstruction process, etc. The 

reconstruction is done hop by hop, starting from the routers closest to the 

victim. To check if a certain edge is on an attack path, we need to compute 

four path values; overall, it is quite fast. 

When compared to the probabilistic marking scheme of Savage et al. [72], 

checking each direct edge (from the upstream routers map) of a router already 

found to be on a reconstructed path is much more efficient than checking all 

possible combinations of IP fragments. While our traceback scheme has a 

computation complexity of around 0(^dn% the method of Savage et al. has 

a complexity of around 0{dn^), where d is the maximum path length and n 

is the number of attacking hosts. Since our domain based marking scheme 

involves a smaller distance d, its complexity is relatively small. 

At the baseline, our proposed marking scheme requires only a random num-

ber generator, normal A L U operations, and compares. These could easily 

be accomplished using combinational logic in an ASIC [92] or custom chip. 

Therefore, the computation involved in packet marking is very efficient for 

contemporary routers. 

In addition, with the aid of a upstream router map, we need not solve the 

polynomials of Vandermonde matrix as proposed in the algebraic approach 

by Dean et al. [23]. Thus, the processing time for path reconstruction can 

be much reduced. W e can further speed up the reconstruction process by 

storing in a table the path values based on different values of x for each router. 

Then, instead of computing the path values, the reconstruction algorithm can 
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search from the table the path values for any upstream router being examined; 

so much computation time could be reduced. Overall, the proposed path 

reconstruction algorithm is quite efficient. 

5.5 Evaluations 

Through numerous simulation experiments in evaluating the feasibility of the 

proposed DDoS defense scheme, we have the following observations: 

1. The scheme requires a much smaller number of packets for attack path 

reconstruction than other methods such as F M S [72] and A M S [75] as 

presented in the experiment results, section 5.2.3; 

2. It can handle multiple attack sources effectively and can reconstruct es-

sentially all attack paths; 

3. No false positives are produced during attack path reconstruction. This 

can be proved by strict mathematical theorem that the matrix equation 

with Vandermonde matrix coefficient has unique solution. 

4. It performs attack path reconstruction quite rapidly, and takes only one 

minute to reconstruct as many as 2,000 attack sources; 

5. With the introduction of the proposed packet filtering scheme, around 

90% of the attack packets can be successfully removed, and the normal 

traffic survival ratio could be enhanced from 20% (without filtering) to 

around 90%. Thus the service availability could be much improved. 

• End of chapter. 



Chapter 6 

Conclusion 

This thesis investigates the knowledge of DDoS attack defense mechanisms. 

After noticing the importance of the network security in nowadays Internet 

world and reviewing the state-of-the-arts technologies of DDoS countermea-

sures, we present a practical approach comprised of IP traceback and packet 

filtering techniques to efficiently defend against DDoS attacks. 

6.1 Contributions 

Our DDoS defense scheme exploits an innovative IP traceback scheme to iden-

tify the attack paths. Then by preferentially dropping the packets coming 

from attack paths, our dynamic packet filtering scheme effectively mitigates 

the attack while protecting the legitimate traffic from collateral damage. In 

conclusion, our research work has the following contributions to the advance-

ment of network security: 

• While many proposals focus on IP traceback which aims at identify-

ing potential attack sources, they cannot be employed to defend against 

DDoS attacks. Motivated by this, we propose a hybrid traceback - filter-
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ing defense scheme which can both identify the attack paths, as well as 

preferentially drop the packets coming from the attack paths. 

• What makes our approach more appealing is that making intelligent use 

of the traceback information can enhance the effectiveness of packet fil-

tering. In the literature, there are very few proposals suggesting to use 

traceback information as filtering signatures. From our experiment re-

sults, it can be observed that the effectiveness of this approach is quite 

high, in terms of high accuracy in dropping attack packets, as well as 

high improvement on the throughput of legitimate traffic. 

• Our proposed marking scheme is domain based, meaning that only the 

border routers of each domain are involved, without requiring the uni-

versal employment of all routers. The idea of encoding just inter-domain 

attack path instead of the whole path is innovative, in which the involve-

ment and overhead incurred to the routers are much reduced. So the 

proposed method would be relatively easy for practical implementation. 

• Most existing marking schemes do not address the problem of packet 

marking authentication. Consequently, a compromised router on the at-

tack path could forge the markings of upstream routers. To solve this 

problem, we propose a light-weight authentication mechanism which en-

ables the victim to check the integrity of the markings, so as to avoid 

them being forged by the attackers. 

• W e have proposed a novel IP traceback scheme, which features a number 

of advantages: 

- T h e markings are formed based on the prefix parts of a pair of 

adjacent domain border router IP addresses instead of the full IP 
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addresses, so fewer bits are encoded; only 12 bits are required for 

recording the markings. 

-Since only domain border routers are considered, when measured in 

terms of the number of domains, the number of hops reconstructed 

is reduced. So the number of packets required to identify each attack 

path can be kept to a minimum. Further, the proposed use of an 

adjustable marking probability facilitates the use of even less pack-

ets for path reconstruction, since fewer packet samples are required 

from remote routers. 

—Since fewer packets can be used to reconstruct the paths, the mark-

ing overhead as well as reconstruction time would be relatively small 

when compared with other marking schemes. 

- T o enable tracing more accurately the sources of the attack packets, 

it also performs the source router marking, which can be considered 

a kind of probabilistic node sampling. The source router markings 

can be used to confirm if the end domain of a reconstructed path 

corresponds to the source of an attack. If it is not the source of an 

attack, the last domain in a reconstructed path could be a compro-

mised one. 

-Attack path reconstruction is carried out quite rapidly by our mark-

ing scheme, and thus it could be used to locate attack sources in real 

time, which is one of the critical steps in defending against DDoS 

attacks. 

—The path reconstruction process generates no false positives. This 

can be proved by strict mathematical theorem that the matrix equa-
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tion with Vandermonde matrix coefficient has unique solution. 

• In addition to the IP traceback scheme, we have proposed an effective 

packet filtering scheme, which has a promising performance in various 

aspects: 

- T h e packet filtering scheme can be deployed dynamically at various 

strategic positions, which enables the victim to quickly discard the 

majority of attack packets and restore the service availability. 

- W h e n compared to other filtering methods which involve detecting 

anomaly traffic rate from the network monitored, the filtering sig-

natures used in our scheme are formed based on the actual attack 

source information. Thus the chance of dropping legitimate traffic 

by the scheme can be minimized. 

—With our filtering scheme, about 90% of the attack packets can be 

successfully removed, and the normal traffic survival ratio could be 

enhanced from 20% (without filtering) to around 90%. Thus the 

service availability could be much improved. 

Based on the above outstanding features, we believe that the proposed IP 

traceback based DDoS defense scheme can act as a light-weight, flexible and 

powerful DDoS deterrent to date, and show a significant potential in reducing 

the DDoS threat. 

6.2 Discussions and future work 

For any IP traceback solution to be effective, it would need to be deployed 

across corporate and administrative boundaries in a substantial portion of the 
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Internet infrastructure. However, it is somehow difficult to achieve in such a 

large-scale network which consists of millions of domains. To effectively put 

our scheme into practice, it should be enhanced to support better incremental 

deployment, which involves as few routers as possible, and could be imple-

mented with negligible overhead. 

Another limitation of our approach is that its current design could have 

difficulty to be applied to IPv6, where the IP header does not have the Identi-

fication field and the IP address is 128 bits (note that the IP address of IPv4 

is only 32 bits). It is also not compatible with IPSec. These are the inher-

ited problems of any marking-based traceback technique. A feasible solution 

should be worked out before IPv6 would become widely employed. 

As complimentary to the filtering signatures generated based on the re-

constructed attack graph and filtering probabilities, more parameters could 

be taken into consideration in limiting the attack traffic rate, such as the 

bandwidth at the sources' and the victim's network, and some statistical and 

historical data logged inside the routers. 

With all the ongoing research into IP traceback and packet filtering meth-

ods, the final challenge is convincing the disparate entities now controlling 

the Internet to work together, share information about traffic flowing through 

their networks, and equip with proper defense mechanisms, so as to mitigate 

the vulnerability towards DDoS attacks. 

• End of chapter. 
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