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Abstract of thesis entitled: 

Robust Speech Recognition under Noisy Environments 

submitted by Lee Siu Wa 

for the degree of Master of Philosophy 

in Electronic Engineering 

at The Chinese University of Hong Kong in 

July 2004. 

Automatic speech recognition (ASR) has achieved satisfactory performance in 

controlled environments, where the average accuracy of a digit string recogni-

tion task is about 98%. A controlled environment refers to one that is without 

additive noise or channel distortion. However, background noise influence and 

channel distortions often exist in daily applications and most current ASR sys-

terns are easily affected with significant degradation in performances. Take an 

example, when the signal-to-noise ratio (SNR) of input speech is 5 dB, the accu-

racy decreases to about 40%. This thesis mainly focuses on the additive noise 

problem towards ASR. Conventional approaches can be classified into three 

groups, namely speech enhancement, feature compensation and model-based 

adaptation. 

In most standard ASR systems, acoustic models are trained with clean data. 

The analytical expression for noisy speech features is first derived and it is found 

that the recognition degradation may due to the mismatch between the training 

and testing conditions. This implies different acoustical models are necessary 

for various testing conditions. A simple noise-robust speech recognition system 

based on noise spectral estimation is proposed. A number of acoustical mod-

els are built for distinct SNR conditions. With the SNR estimated, the most 

relevant acoustical model is selected. This multi-modal approach improves the 

degree of matching. A modified statistical noise spectral estimation is further 

proposed for noise spectral estimation, which concentrates on the estimation 
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accuracy of harmonic frequencies. Experimental results show that the average 

recognition accuracy of the proposed system is higher than the baseline by 23%. 

For fast changing testing conditions (rapidly changing noise characteristics), 

this multi-modal approach may not be sufficient. Likewise, the recognition 

accuracy of noisy speech with matched model is still lower than those from 

clean speech. This is due to the reduced discriminability at low SNR conditions. 

Hence, there is a need to compensate the noise influence on feature vectors. The 

noisy speech feature is a non-linear function of the clean speech feature and the 

complex noise spectrum. By looking at the phase relationship between the 

speech and noise signal, the noisy speech spectrum can be accurately expressed 

in terms of the power spectra of the speech and the noise signal. The resultant 

compensated spectrum is compared with the one from other methods. It is 

further evaluated on the recognition accuracy. Experimental results indicate 

that the compensation method is extremely effective under noisy environments. 

Compared with the widely-used Spectral Subtraction, the proposed method 

. . shows superior performance in both known and estimated noise power spectrum 

conditions. In particular, all sources of recognition error - substitution, deletion 

and insertion are substantially reduced. 
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摘要 

自動語音識別系統在實驗室環境（無加性噪聲和通道噪聲）下已取得了很大的成 

功。就數字串識別來講，平均識別率可以達到98%�然而日常生活中背景噪音和 

通道噪聲必不可免。目前大部分的自動語音識別系統很容易受到噪聲的影響，造 

成識別率大幅度下降。例如在信噪比是5dB的情況下，識別率會下降到40% °本 

文主要側重於硏究加性噪聲對自動語音識別系統的影響。傳統的語音抗噪方法可 

以分爲三類，即語音增強，特徵參數補償和模型自適應。 

在目前大部分的自動語音識別系統中，語音聲學模型由無噪語音訓練得到。在本 

文中，首先我們得到了帶噪語音的分析表達式,發現識別率下降的原因是訓練環 

境和測試環境的不匹配造成的。這意味著不同的測試環境，應該對應不同的語音 

聲學模型。因此本文提出了一種簡單的基於噪聲頻譜估計的抗噪語音識別系統， 

即爲不同的噪聲環境構建了相應的聲學模型，在語音測試時再根據信噪比的估計 

値，選擇 相近的聲學模型的多模型方法。這種多模型方法改善了訓練環境和測 

試環境的匹配度。另外，我們還提出了改進的統計噪聲譜估計方法，該方法致力 

提高於諧波頻率估計的準確性。實驗結果表明，用我們提出的方法識別率比基錢 

系統提高了 2 3 % � 

但是，多模型的方法不適合應用於測試環境變化很快的情況（例如噪聲變化很快 

的情況），即使應用匹配模型，識別率仍然達不到無噪情況。其原因是低信噪比 

使語音的分辨性下降。因此，有必要在特徵參數上作補償。帶噪語音的特徵參數 

是無噪語音特徵參數和噪聲複頻譜的非綫性函數。通過觀察語音信號和噪聲信號 

的相位關係，我們發現帶噪語音頻譜可以由語音和噪音的功率譜準確表達。我們 

比較了用此種方法得到的補償頻譜與用其他方法得到的頻譜。除此之外，我們還 

用識別率對此方法作了進一步評估。實驗結果顯示此補償方法在噪音環境下非常 

有效。不論是已知噪聲頻譜和估計噪聲頻譜的情況下，我們提出的方法都遠遠超 

過被廣泛應用的譜減法。具體來講，誤識率的各種來源錯誤，即替代、刪除及插 

入錯誤都大大減少了。 
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Chapter 1 

Introduction 

As typical Automatic Speech Recognition (ASR) systems have achieved sat-

isfactory performance in controlled environments and electronic devices be-

come physically smaller and smaller, speech technologies have been deployed 

in domestic applications, such as the hand-free telecommunication. Hand-free 

telecommunication refers to a communication mode, in which the speakers in-

‘teract with each other over a communication network, without wearing any 

tethered devices such as desktop microphones [1 . 

There exists a number of technical considerations in such a scenario. For 

example, 

• background noise or speech from competitive speakers may be present 

when received, together with the desired speech signal and may affect the 

accuracy of ASR systems. 

• The speech signal captured is a function of the acoustical conditions, which 

depends on the types of microphone being used, as well as the transmission 

channel where reflection and reverberation need to be considered. 

This operating condition creates a difficult task for ASR. Recognition per-

formance degrades drastically when speech is corrupted by additive noise and 

channel distortion caused during transmission. It would be desirable to have a 

system which is insensitive to these environmental influences. We use the word 

'robust' to describe such a system. 

1 



Chapter 1. Introduction 

In this thesis, we shall mainly focus on the recognition problem induced by 

additive noise. Figure 1.1 depicts the signal model used for representation of 

corrupted speech segments. y{t) is the corrupted speech signal received. If no 

channel distortion is involved, the received speech y(t) is only interfered by the 

noise n{t) and h{t) is the unit impulse function. The following section gives 

an overview of automatic speech recognition and talks about some classical 

methods to alleviate this problem. • 

additive 
noise n(t) 

clean speech distortion x’(t) J^^^ y(t).  
segment x(t) channel h(t) 

Figure 1.1: The signal model for corrupted speech segments. 

1.1 An Overview on Automatic Speech Recog-

nition 

Speech recognition is the problem of determining the sequence of words that 

have been spoken in an utterance. It is essentially a statistical pattern classifi-

cation that determines a given speech segment into one of speech sound classes 

2’ 3]. The classification is performed using a sequence of features. A feature is 

a parametric form of the speech signal. Typical representations include the log 

filterbank output, mel-frequency cepstral coefficient (MFCC) and linear predic-

tive coding (LPC) coefficients. The speech recognition system first learns the 

distribution of the features for different classes through a process called training. 

During recognition (also referred as testing), a speech segment is assigned to the 

speech sound class whose distribution is most likely to generate the sequence of 

features. 

Let W represent an arbitrary sequence of words. Let denote the 

2 



Chapter 1. Introduction 

distribution of the speech sound class that associated to the word sequence W, 

where X now represents an arbitrary signal. The speech recognition problem 

can be stated as: 

X , ^ A if P{A)P{Xs\A) > P(B)P(Xs\B) for all A — B (1.1) 

where A and B are different instances of W. This can be rewritten as, 

^ A : A = arg max^{P{w)P{Xs\W)} (1.2) 

where Xg is the feature of the signal to be recognized. is the a priori 

probability of the word sequence W. It may be given by a language model in 

some cases, which is irrelevant to the robustness problem studied in this thesis. 

Most ASR systems exhibit unacceptable degradations in performance when 

the acoustical environments used for training and testing are not the same. 

When speech signal x(t) is corrupted by noise n⑴，a noisy speech y{t) is gener-

ated, one of the consequences is that the distribution of the features of y{t) are 

'no longer similar to the distribution of x(t) that learned from the training data. 

This mismatch results in degradation in recognition performance. For example, 

a clean speech connected digit recognition system with accuracy of 99% attains 

accuracy of only 40% when the signal-tonoise ratio (SNR) decreases to 5 dB. 

In recent years much effort has been directed to reducing this mismatch, so 

as to enhance the recognition performance. Basically, these methods can be 

classified into three groups, namely, speech enhancement, feature compensation 

and model-based adaptation [4, 5，6 . 

• speech enhancement 

Most of the early work towards robustness has been derived from the 

classical techniques developed in the context of speech enhancement. As 

a pre-processing step for recognition, speech enhancement techniques are 

intended to recover the waveform of the clean speech embedded in noise 

7]. Normally, the enhanced speech signal is reconstructed at the end. 

One of the most widely studied speech enhancement methods is spectral 

subtraction [8, 9, 10]. The spectral subtraction method assumes that the 

3 



Chapter 1. Introduction 

speech and noise are uncorrelated and additive in the time domain. In this 

case, the noisy speech power spectrum is the sum of the speech and noise 

power spectra. The method also assumes that the noise characteristics 

change slowly relative to those of speech signals, so that the noise spectrum 

estimated during non-speech periods can be used for suppressing the noise. 

Spectral subtraction is simple and efficient, but with several problems. 

For example, the subtraction may result in negative power where these 

spectral values are set to zero. This non-linear operation produces an 

annoying distortion called musical noise [11]. Besides, it is found that the 

performance of a recognition which uses this method for.noise reduction 

varies a lot. The accuracy can be ranged from 11% to 88% [12 . 

• feature compensation 

Feature compensation refers to the transformation of noisy speech features 

into the corresponding form in a reference environment and recognize it 

with a system trained in the reference environment. This category is 

highly similar to the speech enhancement group, where the two categories 

only differ in the input and output form. 

Several feature compensation methods have been proposed in the liter-

ature. One representative is the cepstral mean normalization (CMN) 

13，14]. CMN is designed to handle channel distortion, increasing the ro-

bustness of speech recognition systems to unknown linear filtering. This 

normalization is useful, because different microphones have distinct or 

even varying transfer functions. The transfer function also depends on 

the room configuration. 

The principle is that a convolutional distortion in time domain, such as 

a channel distortion, corresponds to an additive distortion in the cepstral 

domain. Let x{t) be a speech signal and h{t) be the channel impulse 

response. y{t) is the speech signal transmitted through the channel. We 

have the following equivalence, 

2 / � =r r � ® h(t) <=> Cy{k) = c“A;) + c“ /c) (1.3) 

4 



Chapter 1. Introduction 

where ® is the convolution operation and C x { k ) , C h ( k ) and C y { k ) are the 

cepstrum of the speech signal, channel and the transmitted speech signal 

respectively. 

Assuming that the channel characteristics are constant and the expecta-

tion of speech cepstrum is zero, taking the expectation on the right hand 

side of the equivalence gives 

E[cy(k)] = E[c^{k)] + E[ch{k)] 

= E [ c h { k ) ] = Ch{k) (1.4) 

By computing the long time average of the cepstrum of y(t), we have 

C“的=这 Cy(k) (1.5) 
fc=l 

where N is the total number of segments in the utterance. To remove the 

channel effect, C h ( k ) is simply subtracted from C y { k ) . 

‘ CMN may be harmful for short utterances. Assume that an utterance 

contains a single phoneme. The mean Cy(k) will be very similar to the 

segments in the utterance, since the phoneme is stationary. After nor-

malization, the mean is removed and the normalized Cy{k) will be close to 

0. Similar results will apply for other single phoneme utterances. Hence, 

CMN makes it impossible to distinguish these short utterances and the 

recognition error rate will be very high. 

• model-based-adaptation 

If the noise characteristics are known ahead of time, it is useful to have 

training under the expected condition. This method is limited, however, 

because it it impossible to train under all conditions. Therefore, it would 

be much more practical to have methods for automatically adapting the 

acoustic models to the environment. This is model-based adaptation. 

Parallel model combination (PMC) is one of the mature model-based 

adaptation methods developed recently. The distribution of the speech 

sound class and of the noise model are trained separately [14, 5]. During 

5 



Chapter 1. Introduction 

adaptation, the probabilities of the two models are combined to give the 

probability of the noisy speech segment. At medium to high SNR, PMC 

gives a significant improvement. Nevertheless, at low SNRs, the compen-

sated models have large variances. These large variances greatly reduce 

the discriminability between recognition units. In this case, signal en-

hancement or feature compensation outperform model-based adaptation 

methods. ‘ 

To have high discriminability between recognition units, an approach similar 

to speech enhancement or feature compensation is adopted. Noisy speech fea-

tures are converted to approximate the clean speech features. Particular atten-

tion has been put on the reasons why spectral subtraction cannot give accurate 

estimation, even if all input parameters are known a priori. By studying the 

deviation of noisy speech features, an effective spectral compensation method 

is proposed in this thesis [15]. Experimental results indicate that this com-

pensation method is extremely powerful under noisy environments. Compared 

with the widely-used spectral subtraction, the proposed method shows superior 

performance and all sources of recognition error are substantially reduced. 

1.2 Thesis Outline 

The thesis outline is as follows: 

In Chapter 2, the fundamentals of ASR systems and feature representation 

are given. In particular, the baseline recognition system is described in detail. 

Chapter 3 explores the reasons of the recognition degradation in terms of 

matching between the training and testing conditions. A simple and effective 

recognition framework is then proposed to bring up the recognition accuracy, 

which selects the best-matched acoustic model according to the noisy speech 

characteristic. 

Chapter 4 continues the work in previous chapter. We will present a statisti-

cal noise estimation method [16] to work with the recognition system proposed 

in Chapter 3. 
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Chapter 1. Introduction 

In Chapter 5, the degradation problem is analyzed in terms of the deviations 

of noisy speech features from clean features. By making use of the deviation 

expression, a spectral compensation method is proposed. We will show the 

motivation and mathematical principles and conclude with experimental results. 

Finally, Chapter 6 summarizes the results and provides a conclusion and 

discussion. There are also some suggestions for further studies. 

»» 

7 



Chapter 2 

Baseline Speech Recognition 

System 

This chapter gives a detailed description of a baseline speech recognition sys-

tem from the fundamentals of recognition systems, feature representation to 

the recognition experiment. The recognition task is a speaker-independent con-

‘ n e c t e d digit recognition in the presence of additive background noise and/ or 

channel distortion. 

2.1 Baseline Speech Recognition Framework 

Automatic Speech Recognition (ASR) refers to the process of converting input 

speech signals to word sequences, associating speech to the related concepts 

or performing tasks as specified. The recognition process finds out the word 

sequences that best match the acoustic observations according to some models 

or criteria [17]. Standard ASR framework generally consists of three modules, 

namely front-end analysis system, back-end decoder and pattern training pro-

cess. Figure 2.1 shows a baseline speech recognition framework. 

Front-end analysis system carries out feature extraction and most of the 

speech signal processing routines if necessary, such as end-point detection, pitch 

estimation and noise reduction. Features of certain parametric representation 

are used for recognition, instead of the input signal waveform, so as to empha-
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Chapter 2. Baseline Speech Recognition System 

size the discriminative characteristics in speech, remove irrelevant contents like 

speaker characteristics or background noise and decrease information rate. Typ-

ical examples of representation are short-time energy, linear-predictive coding 

(LPC), mel-frequency Cepstral Coefficients (MFCC) and reflection coefficients. 

The generated features, which are called observations, are then input to ei-

ther the back-end decoder during testing or the pattern training module during 

training. • 

The pattern training process generates a reference pattern or a statistical 

model for each speech unit with input features. A speech unit can be a word, 

syllable or phoneme. There are basically two recognition approaches, template 

matching and statistical modelling. While template matching uses reference 

patterns, the latter one uses statistical models. For simplicity, we assume the 

template matching approach in the following explanation. 

During recognition, the back-end decoder compares the input features 

against each reference pattern and measures the similarity between them. Dis-

‘ t a n c e measurement may be used equivalently. Popular distance measurements 

include log spectral distance, cepstral distance and Itakura-Saito distortion. 

Readers may refer to [18] for their details. Based on the similarity (distance) 

measurement, the reference pattern with highest similarity score (smallest dis-

tance measurement) is selected as the recognized output. 

during  
recognition�back-end recognized� 

/ d e c o d e r speech 

7 templates 
input analysis system or mcxkls 

- , pattern 
o , 

during training 
training 

Figure 2.1: A baseline recognition framework. 

Template matching has been widely used and the reference pattern for a 

certain speech unit can be easily obtained by averaging the input features rep-
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resenting the same speech unit. Each of these reference patterns acts as the 

mean of the inputs. During recognition, template matching approach compares 

the testing features with each reference pattern. It is obvious that only the first-

order statistics - mean, is concerned, but other higher-order statistics, such as 

the covariance, are neglected. However, speech signals have great acoustic vari-

ability and the covariance is particularly important for speech signals. Hence, 

a statistical approach with mean and covariance models are used in our base-

line recognition system, which is the well-known hidden Markov model (HMM) 

approach [19, 20]. HMM is also referred to as a Markov chain. It computes 

the probability that a certain sequence of speech units is uttered, given the 

observation sequence. 

Hidden Markov model is a parametric representation. In classical HMM-

based speech modelling, speech is characterized by two simultaneous random 

processes in temporal and spectral domains. Figure 2.2 depicts a simple HMM 

used for speech signals. 

jr\ 

state no. 1 2 3 4 

Figure 2.2: A first-order HMM with four states. 

A HMM can be described by a set of states, which is denoted by a node. State 

transition is used to model temporal changes; probability density function (pdf) 

is assigned to each state to model the spectral variation at a certain frequency. 

As speech characteristics change over time in a successive manner, a left-to-

right topology is used, meaning that only transitions going from the left to the 

right is allowed. It may be possible to transit from one state to another or 

remain in the same state, according to a set of probabilities a ĵ associated with 

state i and j. Conventionally, it is assumed that current state depends only 
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on the immediate predecessor state. This is the so called first-order Markov 

chain. The word 'hidden' is used to describe Markov chains for speech signals, 

because the state sequence is not directly observable and certain observation 

can be exhibited by different states. 

Speech signal is quasi-stationary so that within a short period of time, its 

characteristics, for instance, frequency components, periodicity and energy are 

roughly the same; when it is examined over a long period of time, "its char-

acteristics change with different speech units produced. Therefore, all speech 

analysis are short-time based and this short analysis period is called a frame. 

The front-end analysis system is critical to the recognition performance. It 

delivers features to the back-end decoder to select the best match speech unit. 

To have accurate recognition results, insensitivity to speaker characteristics or 

environmental changes and simple computation, the front-end analysis system 

should be designed in such a way that it facilitates the above requirements. In 

this thesis, we investigate the robustness of the front-end analysis system for 

. A S R under noisy environments. In the following section, we will talk about the 

core of the front-end analysis system - feature extraction and how do feature 

extraction and output features affect the recognition performance. 

A HMM-based baseline recognition system is built with the three modules. 

It is a speaker-independent connected English digit recognizer. 

2.2 Acoustic Feature Extraction 

Recognition is not performed on the speech signal, rather it works on the basis of 

the observation vectors, or the so called feature vectors derived from the speech 

input. These feature vectors should be representative of the speech signal, 

• helpful in distinguishing different speech units and containing any irrelevant 

information as little as possible [2]. 

11 
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2.2.1 Speech Production and Source-Filter Model 

In this section, the two broad classes of speech sounds are addressed first, they 

are voiced and unvoiced speech. A filter model for speech production will be 

given. A schematic diagram of the human vocal apparatus is shown in Figure 

2.3. Speech sounds can be generally classified into two types, based on the mode 

of excitation entered into the vocal tract. 

hard pQlate-"pala二"̂  [二 : : �. r̂ ŝ ^ î̂ / 

aiveolar • �N l ; -

/ y" \ 
tongue, vocal cords glottis 

Figure 2.3: A schematic diagram of the human vocal system. 

To produce a voiced sound, the vocal cords are tensed and air out of the 

lungs causes the vibration of the vocal cords and makes the output sound pe-

riodic. For unvoiced sounds, the vocal cords are relaxed. The air flow either 

(1) passes through a constriction in the vocal tract and becomes turbulent, 

this creates a wideband noise-like excitation or (2) pressure is built behind a 

point of total closure within the vocal tract and when the closure is opened, the 

pressure is-abruptly released to produce a plosive excitation [18, 21]. Voiced 

sounds have regular patterns in both waveform and frequency spectrum. The 

energy of voiced sounds is also much higher than unvoiced sounds. When dis-

tinct sounds are generated, shapes of the vocal tract is changed accordingly. 

Thus, the spectral properties of the output speech vary with time as the shape 

varies. To model this phenomenon, tubes of non-uniform cross-sectional area 

with air propagation are often used. The resonance frequencies of the vocal 
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tract tube are called formant frequencies, or simply formants. Different sounds 

are produced by altering the vocal tract shapes and equivalently, the formant 

frequencies, hence, they are important cues for speech recognition. Regarding 

the speaker characteristics, most of the differences are found in the excitation 

source generator. 

There are three types of excitation sources. They are, 

1. quasi-periodic pulse-like excitation from the vocal cord vibration 

2. noise-like excitation when the air passes through a constriction 

3. transient excitation when there is a sudden release of pressure 

With the knowledge of how speech sounds are generated, basic components 

of speech signals, such as the excitation source and the formant frequencies, can 

then be modelled. Figure 2.4 shows a commonly used block diagram of speech 

production, which is referred to as the source-filter model. 

excitation source ^ time-varying speech〉 

generator linear system output 

Figure 2.4: A source-filter model for speech production. 

The excitation source is separated from the vocal tract. The formants cor-

respond to poles of the filter transfer function and an all-pole filter is one of 

the popular representations for most speech sounds. To produce the first type 

of excitation, the excitation source generator outputs a quasi-periodic pulses 

which are spaced by a pre-defined period; to produce the remaining types of 

excitation, a random noise waveform is used instead. As a result, the block di-

agram is modified to the one shown in Figure 2.5. This model has been widely 

accepted for speech coding, recognition, synthesis and other speech processing 

for the past decades. 
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period 

^  

impulse train voiced 

generator \  

\ y " ^ 〉 t i m e - v a i y i n g speech〉 

linear system output 
个 . 

randomnoise ^ 

generator unvoiced gain 

Figure 2.5: The modified source-filter model with voiced or unvoiced excitation. 

2.2.2 Review of Feature Representations 

Various feature representations are used in speech processing. There are basi-

cally two major categories, time and frequency domain features. Examples of 

time domain features include, 

• pitch Speech sounds can be split into two basic classes, voiced and 

unvoiced. The rate of vibration (opening and closing) of the vocal cords 

during production of voiced sounds is called the fundamental frequency 

(fO). FO is closely related to pitch in that pitch is defined as the perception 

of the rising and falling of tones in speech [14]. Pitch has important 

roles in many speech applications, such as speech synthesis, recognition 

of tonal languages and speaker recognition. However, since pitch also 

represents the voicing characteristics of the speaker, it may not be suitable 

for speaker-independent ASR. 

• energy The energy En of a speech signal x(n) is defined as, 

- oo 

En= ^ [x{m)w{n - m)Y (2.1) 
m=—OO 

where w(n) is the framing window defined as, 

( 

1, 0 < n < A^- 1 
w(n) = — — (2.2) 

0， otherwise 
\ 

and N is the window length. 
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Amplitudes of voiced segments are generally larger than the amplitudes of 

unvoiced segments. Therefore, voiced segments always have high energy 

values, while unvoiced segments have much lower energies. 

• zero-crossing rate A zero-crossing occurs if successive speech sam-

ples have different algebraic signs. The zero-crossing rate is calculated 

by, 
00 • 

Zn = ^ ^ |spn[a:(m)] — sgn[x{m — l)]\w{n — m) (2.3) 
m=—oo 

where 
‘ / 

1, a:(n) > 0 
sgn[x{n)] = • (2.4) 

- 1 ’ x{n) < 0 

、 
and 

( 
•， Q<n< N - 1 

— — — (2.5) 
0, otherwise 

v 

For voiced speech, the energy is concentrated below 3 kHz, due to the 

speech production mechanism, whereas for unvoiced speech, most of the 

energy is found at higher frequencies [21]. Since low frequencies imply 

low zero-crossing rates, high frequencies imply high zero-crossing rates, 

zero-crossing rate is closed related to energy distribution with frequency. 

Hence, it can be generalized that if Z^ is high, the speech frame is un-

voiced, while if Zn is low, the speech frame is voiced. 

Different speech units can be categorized into voiced or unvoiced nature. 

By determining the input speech as voiced or unvoiced, this voicing in-

formation can be used with standard recognition features to improve the 

recognition performance. Both energy and zero-crossing rate provide re-

� liable cues for voiced-unvoiced classification. For recognition of noisy 

speech, however, energy and zero-crossing rate may not be reliable fea-

tures. A noisy voiced speech may have high zero-crossing rate, because 

of the noise-like property of corrupted speech and the energy of unvoiced 

speech may be raised by the noise energy. Extra compensation may be 

necessary to increase reliable use of them. 
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• duration Conventional HMMs models the temporal structure of 

speech with exponentially decreasing probability. The probability of t 

consecutive observations in state i is where an is the self-transition 

probability of state i. This implies that short duration is much more likely 

to occur than long duration. This implicit modelling is inadequate in that 

short duration may not be always favorable. Explicit duration modelling is 

needed, especially for large vocabulary continuous speech recognition, but 

parameter estimation for duration modelling requires extra heavy compu-

tation. For our connected digit recognizer, duration modelling may not 

be applicable. 

• dynamic features delta and delta-delta (A and A^) Tempo-

ral changes in spectra is useful for ASR [22], in particular, HMM-based 

ones. These temporal changes captured by first-order and second-order 

differences record the changes in coefficients over time and provide com-

plementary information for HMM, since HMM assumes each frame is in-

dependent of past frames. The first-order and second-order differences 

are called delta A and delta-delta A^ coefficients and they are often used 

in modern ASR systems. These dynamic features also help to alleviate 

channel distortion in input speech. This will be explained in later sections. 

For ASR, features in frequency domain have been the dominant represen-

tations. Given that speech sounds are characterized by different formant fre-

quencies, the time-varying linear system representing the spectral envelope is 

much more important than the excitation source. In general, frequency domain 

features are much more applicable than time domain features. This is because 

most of the discriminative features, like formants, are better characterized in 

the frequency domain. Examples include, 

• filterbank output One of the most important structures in the hu-

man ear for sound perception is the cochlea, which transmits sound signals 

to the brain via an auditory nerve [14]. The cochlea acts like a filterbank, 

whose outputs are ordered by location. High frequency components are 
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most sensitive in the filters closest to the cochlear base; low frequency 

components are most sensitive in those closest to its apex. To mimic 

how human perceives acoustic signals, filterbank analysis has been used 

for ASR. It is because the output from short-time Fourier analysis is too 

detailed so that both spectral envelope and excitation source are kept. 

Performing filterbank analysis smoothes the output and emphasizes the 

envelope. • 

Figure 2.6 illustrates a block diagram for filterbank analysis. X(uJk) is 

the output of filterbank k. The speech input passes through a series of 

bankpass filters linearly spaced in the frequency range under considera-

tion, for example, 300-3400 Hz may be used for telephone speech. The 

filterbanks are generally overlapped with each other. 

filter 1 1 

" . bandpass . 
^ ^ filter 2 speech  

input . 

N bandpass . 
^ filter k —X(o)k) 

. (a) Block-diagram 

(Oj CO2 

‘ / t Y i A m 
�IL ®2L ®2H �kL ® kH 

(b) Filterbank 

Figure 2.6: Filterbank analysis. 
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• linear predictive coding (LPC) Linear predictive coding is an-

other powerful speech analysis method. LPC assumes that a given speech 

sample at time n, x{n)^ can be approximated as the linear combination of 

past p speech samples, such that 

x{n) « aix(n — 1) + a2x{n — 2) H h apx{n — p) (2.6) 

where ai, a2,…，flp are the LPC coefficients for a speech frame. By adding 

an excitation term, Equation (2.6) becomes an equality as, 

x{n) = aix(n — 1) + a2x{n — 2) H + apx{n — p) + Gu{n) 
p 

=^aix{n - i) Gu(n) (2.7) 
i = l 

where u{n) is the normalized excitation of unity power and G is the gain of 

the excitation. LPC is a parametric representation that directly represents 

the speech samples with the source-filter model (an all-pole filter in most 

cases) described in Section 2.2.1. The LPC coefficients are found by 

minimizing the sum of the squared differences between the actual speech 

samples and the linearly predicted ones over a finite duration. 

By Z-transform, we have, 

p 

X{z) = + (2.8) 
i=l 

则 = M ) = r z - E f e - = ^ (2.9) 

where H{z) is t.he transfer function. 

If the linear combination of past speech samples is used to approximate 

x{n) by Equation (2.6), the prediction error e(n) is defined as, 

p 

e(n) = x(n) — x{n) = x{n) — ^ aix(n — i) (2.10) 

i=l 

When x(n) is an auto-regressive (AR) process which an all-pole filter can 

exactly model and the filter order p is correct, the prediction error e{n) 

will be equal to the excitation source Gu{7i). Hence, both the excitation 

source and the linear filter in the source-filter model can be determined 
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by linear predictive analysis. Similar to filterbank analysis, the spectral 

envelope can be found by using the coefficients ai, a2, . . . , ftp or H{z). 

• Cepstral analysis Cepstral analysis is motivated by the need of 

separating the excitation source and the vocal tract filter. Note that 

speech signal is the convolution output between an excitation source signal 

Gu{n) and the filter with impulse response h{n), such that 

x{n) = Gu{n) * h(n) (2.11) 

In the frequency domain, convolution becomes multiplication and gives, 

X{uj) = GU(U)H(LU) (2.12) 

By taking the logarithm of the magnitudes of the quantities in Equa-

tion (2.12), the multiplication is converted into a sum, 

In \X(u)\ = In\GU{uj)\ + In\H{u)\ (2.13) 

. The cepstrum of a signal x{n) is defined as, 

c{n) = ^ f \n\X(uj)y'^duj (2.14) 27r J-TT 

The block-diagram of cepstral analsysis is shown in Figure 2.7. Since 

H(u) models the spectral envelope and GU{uj) contains the high-frequency 

excitation source, low-order c{n) and high-order c(n) implicitly represent 

the spectral envelope and the excitation source respectively. 

, p . inverse ‘ speech� Fourier , , , ^ cepstrum� ~ f , > “ . ——)In I. I ——) Fourier ——^―——> input transform ^ transform 

Figure 2.7: The cepstral analysis. 
V . 

As the output spectra from filterbank analysis and LPC are always highly 

correlated with adjacent filterbanks or frequency bins, if diagonal covari-

ances are needed in the HMM-based recognizer, a cepstral transformation 

is necessary. 
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• perceptually-motivated representation The filterbanks de-

scribed before are uniformly spaced in the frequency domain. This is 

the simplest type of filterbank. Alternatively, non-uniform filterbanks 

are commonly used, because the human ear is a constant-Q system that 

resolves frequencies linearly in the logarithmic frequency scale. It is be-

lieved that having a feature representation that operates in a similar non-

linear manner helps the recognition performance. Typical examples of 

non-uniform filterbank types are Bark frequency scale and mel scale. The 

perceptual resolution in both scales are finer in the lower frequencies and 

coarser in the higher frequencies. By applying one of these frequency 

scale in the spectral analysis like filterbank output or LPC, perceptually-

motivated representation are formed. Among these representations, mel-

frequency cepstral coefficients (MFCC) and linear predictive cepstral co-

efficients (LPCC) are two popular candidates for most ASR systems. 

• pitch Pitch is not only a time domain feature, but also a frequency 

domain characteristic. In a narrowband spectrogram, the spectral har-

monics corresponding to the pitch during voiced segments are resolved 

and appear as horizontal lines in the spectrogram. 

2.2.3 Mel-frequency Cepstral Coefficients 

Several feature representations have been introduced in Section 2.2.2. The mel-

frequency cepstral coefficients (MFCC) was found to have superior performance 

over other representations [23]. This may be attributed to the fact that MFCC 

captures the non-linear property of human perception and separates the vocal 

tract filter from the excitation source by the cepstral analysis. 

� Representations derived from the Fourier spectrum, such as MFCC and the 

log filterbank output well preserves information in most phonemes, but param-

eters from the LPC spectrum are inaccurate for consonants. This is the conse-

quence of the all-pole filter used in LPC and LPC is less effective for unvoiced 

segments. 
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Another merit of MFCC is its compact representation. Normally, 6 to 12 

coefficients [17] are sufficient to capture relevant information for ASR. Higher 

cepstrum coefficients contain mainly for the speaker characteristics. MFCC 

has been adopted in our baseline ASR system and the following describes the 

detailed procedure of the feature extraction. 

Let x{t) be the speech signal. The MFCC extraction process converts it into 

a sequence of feature vectors c{k). ‘ 

MFCC extraction procedure 

1. cutting into frames 

x{t) is cut into frames. A frame is a short-time analysis period, such 

that speech characteristics are assumed to be stationary over this dura-

tion. The time separation between successive frames is called frame shift. 

The frame size is normally 20 - 30 msec. In addition, frames are often 

" overlapped to preserve smooth transitions at frame boundaries, so frame 

size is always larger than frame shift, as illustrated in Figure 2.8. The 

following steps process the frames. 

�frame shift� 

\M/vAAA{VWWW\AAM 
< frame size � 

I I 
I I 

• V I  
frame n 

fimne n + 1 

� Figure 2.8: The speech signal is first cut into frames. 

2. pre-emphasis 

It is a common practice to pre-emphasize the speech signal. In the past, 

the dynamic range of speech spectrum was large due to the lower energies 
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at high frequencies. Most of the speech coding hardware had insufficient 

wordlength to represent it. By using a first-order difference equation, 

x{n) = x{n) — pre-emcoefx{n — 1) (2.15) 

where the pre-emphasis coefficient pre-emcoef is equal to 0.97, the high 

frequency components is amplified, similar to having a high-pass filtering. 

The dynamic range of the speech spectrum is reduced. • 

3. windowing 

To avoid discontinuity at frame boundaries, the pre-emphasized signal 

x(n) is always tapered with a window function. Windowing is the op-

eration of multiplying a signal by a finite duration function w{n). That 

is， 

x{n) = x{n)w{n) (2.16) 

Popular window functions include the Hamming and Harming windows. 

In fact, windowing is always there, since the speech signal lasts only over 

a finite time interval and rectangular window is applied implicitly. In our 

baseline system, the Hamming window is used, which is defined as, 

w(n) = 0.54 - Q.46cos(27r ) ， 0 < n < N - l (2.17) 
N — 1 

where N is the window length and is equivalent to the frame size. Compar-

ing the Hamming window with the rectangular window, the sidelobes of 

the latter are always high and leakage between adjacent harmonics occurs. 

This introduces- ripples in the spectrum, leading to unclear spectrum. Al-

though the mainlobe of Hamming window is larger, a larger value of N 

can be used to increase the frequency resolution. 

4. magnitude spectrum and mel filterbanks 

After windowing, the signal x{t) is then Fourier transformed and the mag-

nitude of each frequency bin is taken. 

The non-linear mel frequency scale is defined by 

me/(/) = 25951ogio(l + ^ ) (2.18) 
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As shown in Figure 2.9, mel filterbanks are equally spaced along the mel 

frequency scale. The higher the center frequency, the wider is the band-

width. The magnitude spectrum is then binned by correlating it with each 

mel filterbank. Binning means that for a given mel filterbank, each coeffi-

cient in the magnitude spectrum is multiplied by the corresponding filter 

gain and the products are summed. Hence, each filterbank output is a 

weighted sum representing the spectral magnitude in that mel filterbank. 

mel filterbank 

1 • 1 , 1 I \ I L I I I 1 I 
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Figure 2.9: Mel filterbank with sampling frequency 8 kHz. 

It is possible that the mel filterbanks cover the whole frequency range from 

dc to Nyquist frequency. Nevertheless, to remove undesired frequencies 

that may contain noise only, the frequency range is often band-limited. 

5. cepstral analysis 

� Let fbank(m) be the log filterbank output of bank m. By applying the 

inverse Fourier Transform (IFT) on fbank(m), that is, 

c'(/c) = ^ [ /6an/c(m)e_dm (2.19) 

the cepstral coefficients are computed. Since the log filterbank output 

is an even function, the discrete cosine function (DCT) can be used to 
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replace the inverse Fourier Transform. 

6. cepstral liftering 

The principal advantage of cepstral coefficients is that c'{k) is generally 

decorrelated and this allows diagonal covariances to be used in the HMMs. 

However, one minor problem is that the higher order cepstra are numer-

ically quite small and this results in a very wide range of variances when 

going from the low to high cepstral coefficients [24]. Cepstral liftering is 

further used to re-scale c'(k) to have similar magnitudes. 

Finally, the cepstral coefficient c{k) is calculated by, 

r 
c{k) = {l + -sm^)c'{k) (2.20) 

Z LI 

where L denotes the liftering parameter. 

The complete MFCC extraction process is summarized in Figure 2.10. 

speech�ser ia l to frames� pre-
signal x(t/ pamllel ^ emphasis windowing — I.I — 

nU 

(c(k) • cepstral c'(k) IFT/ ,jbank(m) mel filterbank 
� liftering ^ DCT ^ ^ D()f)C\ 

Figure 2.10: Block diagram of the MFCC extraction process used. 

2.2.4 Energy and Dynamic Features 

The performance of a speech recognition system can be greatly enhanced by 

augmenting an energy term E and time derivatives to the basic static MFCC 

parameters. 
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The energy is computed as the log energy of the speech signal. We have, for 

samples x(n),n = 0 ,1 , . . . , Â  — 1 in a certain frame, 

N-l 

E = log Y^ (2.21) 
n = 0 

Both the first and second order time derivatives are used in our baseline 

system. Time derivatives help to reduce the effect of channel distortion on the 

feature parameters. If the channel distortion is stationary or changes slowly, and 

since the time derivative of a constant is zero, so time derivative is insensitive 

to channel effects and suffers no distortion from the channel. The first order 

derivatives (referred to as delta coefficients) are computed using the following 

regression formula, 

dt = 仏 ’ 〜 日 ) (2.22) 

where dt is a delta coefficient at time t calculated in terms of the corresponding 

static coefficients Ct-e to Ct+e. 6 denotes the delta window. The same equation is 

applied to the delta coefficients to obtain the second order derivatives (referred 
r 

to as acceleration coefficients), but the 6s for delta and acceleration can be 

different. For the beginning and the end of the speech, some Ct-e or Ct+e may 

be undefined, and the first or the last c(n) is used to replicate any undefined 

term if necessary. 

The feature representation used for our baseline ASR consists of the static 

MFCC, the energy term, delta and acceleration coefficients. They are aug-

mented together to form a feature vector. In Figure 2.11, an example of the 

final feature vector is.shown. 

c(l) c(2) ... c(J2) c(0) E dc(l) dc(2) ... dc(0) dE ac(l) ac(2) ... ac(0) aE 

c(k) is the static cepstral coefficient 
E is the energy term 

dc(k;) and dE are the delta coefficients and 
ac(k) and aE are the acceleration coefficients 

Figure 2.11: Example of the feature vector with 12 cepstral coefficients. 
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2.3 Back-end Decoder 

Parameters of training and back-end decoder, such as the number of states 

per HMM model, the number of mixture components in each state and the 

number of cepstral coefficients etc., are chosen to follow common settings. The 

recognition of digit strings is considered as a task without restricting the string 

length. 

Whole word HMM models are used for the digits and every word has 16 

states with two dummy states at the beginning and end. State skipping is not 

allowed and simple left-to-right topology is adopted. We use three Gaussian 

mixtures to model each state. As the cepstral coefficients are assumed to be 

uncorrelated, diagonal covariance matrices are used in all HMM models. 

In addition to whole word models, there are two pause models used, which 

are the same as defined in [25]. They are 'sil' and 'sp'. 'sil' has a transition 

structure with three states as shown in Figure 2.12. The number of Gaussian 

mixtures in each state is six. It is used to model the pauses before and after 

the utterance. 

state no. A 2 J 3 

Figure 2.12: A 3-state 'sil' pause model. 

� 'sp' consists of a single state which is tied with the middle state of the 'sil' 

model. It is used to model pauses between words. 

During recognition, an utterance can be modelled by any digit sequence 

with 'sir models at the beginning and at the end and with optional 'sp' models 

between two digits. 

Table 2.1 summarizes the parameter values used in our baseline system. 
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related ASR module parameter value 

fs . 8 kHz 

frame size 25 msec 

frame rate 10 msec 

pre-emcoef 0.97 

hamming window not applicable 

no. of FFT bins 256 

feature extraction no. of mel filterbanks 23 

lowest frequency in mel filterbanks 64 Hz 

highest frequency in mel filterbanks 4 kHz 

. no. of cepstral coefficients 12 

L 22 

delta window 2 

acceleration window 2 

no. of state/ word 16 

topology left-to-right 

no. of Gaussian mixtures/ word model state 3 
training and ； “ “ ； 

covanance matrix nature diagonal 

decoding no. of states/ 'sil' model 3 

no. of Gaussian mixtures/ ‘sil’ model state 6 

no. of state/ 'sp' model 1 

Table 2.1: The parameter values used in the baseline recognition system. 
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2.4 English Digit String Corpus — AUR0RA2 

To have fair performance comparisons between various algorithms, definitions 

of training and testing scenarios are necessary. A speech database called AU-

R0RA2 is used for all the recognition experiments. It was released by the 

Evaluation and Language resources Distribution Agency (ELDA) in 2000 [25 . 

The AUR0RA2 database is designed to evaluate the performance of speech 

recognition algorithms in noisy conditions. It is exceptionally suitable for the 

evaluation of front-end feature extraction processes, by using the pre-defined 

HMM-based recognition back-end. 

The recognition task is a speaker-independent connected digits recognition 

in the presence of additive background noise and/ or convolutional distortion. 

Both noise and channel distortions are artificially added to the clean TIDigits 

database [26]. TIDigits consists of connected English digits spoken by Amer-

ican talkers. The speakers are male and female US-American adults speaking 

isolated digits and digit strings of up to seven digits. The speech samples are 

downsampled from 20 kHz to 8 kHz by using a low-pass filter with passband 

between dc to 4 kHz. 

To simulate the frequency responses of several mobile terminals, additional 

filtering is applied. Two frequency responses G.712 and MIRS are defined [25, 

27] and the clean speech samples is convolved with either one filter. Both G.712 

and MIRS are bandpass filter with passbands from 300 to 3400 Hz. The major 

difference between the two frequency responses is that the passband of G.712 

is very flat, whilst MIRS shows a rising amplitude response from low to high 

frequencies. 

Regarding the noise corruption, eight different noise types are selected and 

, t h e noise is recorded in real conditions. It is added to the clean speech over a 

wide range of signal-to-noise ratio (SNR): 20 dB, 15 dB, 10 dB, -5 dB with 

a 5 dB step. A noise segment with the same length as the clean speech signal 

is randomly extracted from the long recording. The noise samples are collected 

in, 
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• subway (by travelling in suburban trains) 

• crowds of people (the so-called babble noise) 

• cars 

• an exhibition hall 

• restaurants . 

• streets 

參 an airport 

• train stations 

The long-term spectra of all noises [25] are shown in Figure 2.13. Most of the 

energies of the eight noise types concentrate in the low frequency region. Some 

noises are quite similar, such as those from an airport and train-stations, even 

though they are recorded from under different environments. Some noise types 
r 

are fairly stationary, like the car noise and the one captured in the exhibition 

hall. Other noise types are non-stationary, such as those recorded on the street 

or at an airport. 

To study the performance of front-end algorithms, the baseline training uses 

clean data^. Thus, there is no any distortion or noise in the resultant acoustical 

models. The models well preserve the high discriminability between clean speech 

units and when the testing inputs are clean data, the recognition is obtained 

with the highest accuracy. Hence, it is believed that given the clean training 

models, the cleaner the testing input, the better the recognition is. 

The training data set consists of 8440 clean utterances spoken by 55 male 

and 55 female adults. These raw data are filtered with the G.712 frequency 

response. 
^There is another training mode defined in [25] called multi-condition training. Multi-

condition training refers to the case that both clean and noisy data are used for training and 

the distortion by noise contributes in the resultant acoustic models. The noisy data used for 

training are those corrupted by subway, babble, car and exhibition noise, that is, the same 

noises as in test set A. This leads to a highly matched condition of training and testing. 
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Figure 2.13: The long-term spectra of the eight noises. 
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There are three test sets in AUR0RA2, test set A, B and C. 4004 utterances 

spoken from 52 male and 52 female adults are divided into four subsets with 

1001 utterances in each^. These utterances and the noise signals are filtered with 

the G.712 filter. Recordings of all speakers are present in each subset. One noise 

signal is added to each subset of 1001 utterances at SNRs of oo (clean), 20, 15, 

10’ 5’ 0，-5 dB. 

In test set A, four noise types are used, namely, subway, babble, car and 

exhibition noises. There are totally 4 x 7 x 1001 = 28028 utterances. Test set 

B is created by using identical raw speech data as test set A, but with four 

different noises, including restaurant, street, airport and train station. Test set 

C contains two subsets with 1001 utterances in each. The raw utterances and 

the noise signals are filtered with the MIRS filter, rather than the G.712 used in 

test set A and B. Two noises, subway and street noise, are added to the filtered 

utterances. 

2.5 Baseline Recognition Experiment 

To evaluate the performance of the baseline recognition system, we use the word 

accuracy as the figure of merit. It is widely used as one of the most important 

measures. There are three types of word recognition errors in speech recognition: 

• substitution 

an incorrect word was substituted for the correct word 

• deletion 

a correct word was omitted in the recognized sentence 

• insertion 

an extra word was added in the recognized sentence 

Even for isolated speech recognition, you may still have the insertion error, 

since the word boundary is unknown and detected in most applications. It is 

thus possible that a isolated utterance is recognized as two words. 
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After counting the number of substitution, deletion and insertion errors, 

the word accuracy can be calculated. Let 5, D, I and N be the number of 

substitution error, deletion error, insertion error and the total number of word 

in the correct sentence respectively. The word accuracy is defined as, 

word accuracy = ^ ~ ^ + x 100% (2.23) 

and is in the unit of percentage. “ 

The corresponding word accuracy of the baseline system is shown in Ta-

ble 2.2. Although the recognizer performs well when the inputs are clean speech, 

there is a significant degradation in recognition performance when the signal-

to-noise ratio, SNR changes from high to low, such as from 15 dB to 10 dB. 

This may be due to the mismatched conditions between training and testing 

scenarios, as most standard recognition systems, including our baseline system, 

are trained from clean speech data, while testing is commonly done on various 

noisy environments. Hence, recognition degradation is unavoidable and it is 

“necessary to improve the recognition performance under noisy environments. 

HMM has been adopted in our baseline system, where the statistical proper-

ties of certain speech classes are modelled, such as the mean and the covariance. 

Prom the recognition result shown in Table 2.2, the word accuracy is found to 

be unable to reach 100% even for clean speech. Possible reasons for this phe-

nomenon include (1) speech samples in the test sets which are outliers from the 

training set or (2) the configurations of acoustic models are not optimal that the 

trained models are not good representatives for different speech classes. How-

ever, the baseline system achieves nearly 99% for clean speech, which is already 

comparable with other current connected-digit recognizers. 

2The utterances in each subset are distinct, hence, the clean speech recognition results in 

each of subset are different. 

32 



Chapter 2. Baseline Speech Recognition System 

test A in clean training 

SNR/ dB subway babble car exhibition average 

dean2 98.83 98.97 98.81 99.14 98.94 

20 96.96 89.96 96.84 96.20 94.99 

15 92.91 73.43 89.53 91.85 86.93 

10 78.72 49.06 66.24 75.10 67.28 

5 53.39 27.03 33.49 43.51 39.36 

0 27.30 11.73 13.27 15.98 17.07 

-5 12.62 4.96 8.35 7.65 8.40 

average between 0 and 20 dB 69.86 50.24 59.87 64.53 61.13 

test B in clean training 

SNR/ dB restaurant street airport train-station average 

clean^ 98.83 98.97 98.81 99.14 98.94 

20 89.19 95.77 90.07 94.38 92.35 

15 74.39 88.27 76.89 83.62 80.79 

10 52.72 66.75 53.15 59.61 58.06 

5 29.57 38.15 30.39 29.74 31.96 

0 11.70 18.68 15.84 12.25 14.62 

-5 5.00 10.07 8.11 8.49 7.92 

average between 0 and 20 dB 51.51 61.52 53.27 55.92 55.56 

test C in clean training 

SNR/ dB subway(MIRS) street(MIRS) average 

clean 99.02 98.97 99.00 

- 2 0 94.47 95.19 94.83 

15 87.63 89.69 88.66 

10 75.19 75.27 75.23 

5 52.84 48.85 50.85 

0 26.01 21.64 23.83 

-5 12.10 10.70 11.40 

average between 0 and 20 dB 67.23 66.13 66.68 

Table 2.2: Word accuracy of the baseline system. 
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Chapter 3 

A Simple Recognition 

Framework with Model Selection 

To improve the robustness of ASR, in this chapter, the reasons of the perfor-

mance degradation are first explored. Knowing that there is often a mismatch 

between the training and testing conditions, a recognition framework is intro-

duced to reduce this mismatch by looking at the noise type and the signal-to-

noise ratio (SNR). Finally, a simple and effective framework is proposed to im-

prove the recognition accuracy, which selects the best-matched acoustic model 

according to the SNR of the input noisy speech. The term SNR below refers to 

the global SNR unless specified. 

3.1 Mismatch between Training and Testing 

Conditions 

The recognition experiment shown in Chapter 2 indicates a problem. Even if a 

�s p e e c h recognition system performs remarkably well in laboratory evaluations 

with a clean environment, it often performs not nearly as well in real situations 

where background noise always exists. This is mainly because the speech that 

actually has to be recognized varies from conditions to conditions and usually 

differs from the training speech. Some of the previous research work have re-

ported that even the awareness of speaking to a speech recognizer could make 
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the speaker produce a noticeable difference [28]. 

Conventional ASR frameworks are based on training using clean speech data. 

These ASR systems are very sensitive to additive noise and/ or channel dis-

tortion found in the input speech, which causes a mismatch between the clean 

training speech and the corrupted input. The ASR performance, hence, severely 

degrades. 

~ matching | 
training ^ > testing 

acoustic background, channel and 
speaking style 

Figure 3.1: Matching between training and testing conditions. 

Matching refers to the similarity between training and testing conditions, 

such as additive background noise, channel distortion or speaking style, as illus-

‘ t r a t e d in Figure 3.1. It is highly critical for ASR [4]. Even when the test data 

is obtained in a reasonably quiet environment, the recognition accuracy may 

decrease if training is done in a much higher SNR condition, such as when the 

test data are collected using a close-talk high quality microphone in a sound-

proof chamber. On the other hand, if training is performed under the same 

condition as those under which the speech is to be recognized, better matching 

and recognition performance could be achieved. 

Take an example. Dautrich, Rabiner and Martin [29] demonstrated that 

an isolated word recognizer trained in clean condition and capable of achieving 

a recognition accuracy of 95% has an order of magnitude decrease in word 

accuracy when tested with noise-corrupted speech at SNR of 18 dB. Figure 3.2 

‘ s h o w s the recognition accuracy at various SNRs. 

The line with A marker shows the baseline recognition accuracy of the 

Dautrich system. Although the baseline performance is worse than most of the 

current insolated ASR systems, this recognition experiment illustrates several 

major considerations. In particular, the recognizer can maintain the perfor-
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Figure 3.2: The word accuracy of noisy speech recognition under various SNRs. 

•: both training and testing are under same SNR; A: only clean speech is 

used for training and testing inputs are under different SNRs indicated by the 

marker; • : training and testing conditions are mismatched with testing SNRs 

all at 18 dB and training SNRs are indicated by the marker. 
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mance with only moderate degradation when the SNR decreases. This is shown 

by the line with the • marker. For proper recognition performance, matching 

should be maintained. 

To increase the degree of matching between the two conditions, there are two 

possible directions. Referring to Figure 3.3, (1) the acoustic model is adjusted 

to the input speech; or (2) the characteristics of the noisy input are adjusted to 

fit the model trained from clean data. Typical examples of the second" approach 

are zero-mean normalization and spectral subtraction. In contrast, rather than 

attempting to estimate the corresponding clean speech from the noisy input, 

the first approach allows the presence of noise in the recognition process. 

approach I: make the model 

appropriate for the noisy input 

input model 

(during testing) (during training) 

approach II: convert noisy inputs to 

match the clean data trained model 

Figure 3.3: Two possible directions to increase the degree of matching between 

testing and training conditions. 

The first approach is used in this chapter. The acoustic model can be ad-

justed to match one single or multiple properties of the input speech. These 

properties'include the noise type, SNR and the speaker style. Since our recogni-

tion task is speaker-independent, the potentials of noise type and SNR matching 

for noisy speech recognition are investigated in the following. 
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3.2 Matched Training and Testing Conditions 

Assume that a number of acoustic models are available. By choosing the model 

which is matched to the given noisy input, the training and testing conditions 

are matched and it is expected that when the SNR decreases, the recognition 

degradation should be reduced. 

The two conditions can be matched according to the noise types, SNRs or 

both. Given a noisy speech input y{t)^ let x{t) and n(t) be the corresponding 

clean speech and the noise signal respectively. We have, 

y(t) = x(t)-hn(t) . (3.1) 

Several experiments have been conducted, so as to evaluate the effectiveness 

of the two matching on noisy speech recognition. The experimental details and 

results are reported below. 

3.2.1 Noise type-Matching 

In the training data set in AUR0RA2, there are four noise types. They are 

subway, babble, car and exhibition noises. One model is trained for each noise 

type and hence, the whole training set is divided into four subsets. Originally, 

the training set contains 422 x 5 x 4 = 8440 utterances. After dividing into four 

subsets, only 422 x 5 = 2110 utterances are used for each model training. This 

is the recognition system with noise type-matching. 

During testing, the noise type of the input noisy speech is assumed to be 

known and the model trained with the same noise type is used. For example, for 

inputs corrupted by babble noise, the model trained with babble noisy speech 

is applied. 

‘ The recognition results are shown in Table 3.1. It is found that the recogni-

tion system with noise type-matching outperforms the baseline (Table 2.2) by 

89.85 — 61.13 = 28.72% average in test A absolute word accuracy. In low SNR 

conditions, the gains are even more promising, even when SNR equals 0 dB, the 

recognition accuracy increases up to about 67.82% from the baseline 17.07%. 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.34 98.49 98.57 98.33 98.43 

20 98.19 97.85 98.06 97.75 97.96 

15 97.39 97.31 97.91 97.35 97.49 

10 95.95 95.56 96.66 94.91 95.77 

5 92.05 88.27 91.14 89.48 90.24 

0 71.81 61.88 67.10 70.47 67.82 

-5 29.17 26.57 22.04 29.03 26.70 

average between 0 and 20 dB 91.08 88.17 90.17 • 89.99 89.85 

test B 

SNR/ dB restaurant street airport train-station average 

clean 98.34 98.49 98.57 98.33 98.43 

20 86.52 96.70 94.81 90.81 92.21 

. 15 74.27 95.13 91.17 77.57 84.54 

10 58.06 91.44 83.66 56.93 72.52 

5 38.38 79.56 72.71 34.77 56.36 

0 9.15 52.60 50.76 15.43 31.99 

-5 -9.86 19.95 14.38 2.78 6.81 

average between 0 and 20 dB 53.28 83.09 78.62 55.10 67.52 

test C 

SNR/ dB subway(MIRS) street(MIRS) average 

clean 98.53 98.37 98.45 

- 20 98.10 94.11 96.11 

15 97.02 90.08 93.55 

10 94.38 78.75 86.57 

5 84.65 60.25 72.45 

0 50.72 32.16 41.44 

-5 21.55 16.29 18.92 

average between 0 and 20 dB 84.97 71.07 78.02 

Table 3.1: Word accuracy of the recognition system with noise-type matching. 
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Regarding the recognition performance of test B and C, significant improve-

ments are observed in street, airport, subway(MIRS) and street(MIRS) cases 

only, but not in restaurant nor train-station cases. From the experimental re-

sults, it is concluded that this noise-type matching is useful for noisy speech 

recognition. 

However, since some of the noise are non-stationary and only one-fourth of 

the original training amount is used in each model training, we may alternatively 

have smaller number of models trained with larger amount of training data for 

each of them. Among the eight noise types, some of them are similar to each 

other in properties, for example, babble is much close to exhibition, and street 

and train-station noise contain human speech and noise from travel vehicles. 

The following experiment divides the eight noise types into three groups and 

studies how this grouping may affect the recognition accuracy. 

According to the noise types, they are categorized into three groups of, 

• group I, street and train-station 
r 

• group II, subway and car 

• group III, babble, exhibition, restaurant and airport 

Recall that the AUR0RA2 training data set contains only speech corrupted 

from subway, babble, car and exhibition noise. For group II and III, the training 

process uses the corresponding speech data. For group I (street and train-

station) ,the model trained by group II is used for recognition, which is more 

similar in noise property. Therefore, there are two models which are trained by 

group II (subway and car) and group III (babble and exhibition) respectively. 

For each model training, 422 x 5 x 2 = 4220 utterances are used. During 

. t es t ing , the noise type of the input noisy speech is assumed to be known and 

the recognition model used is selected according to the grouping. This is the 

recognition system with similar noise type-matching. The recognition results 

are shown in Table 3.2. 

Comparing the recognition results of this experiment with the baseline per-

formance (Table 2.2), this similar noise-type matching brings recognition im-
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test A 

SNR/ dB II’ subway III，babble II’ car III，exhibition average 

clean 98.50 98.52 98.33 98.49 98.46 

20 97.88 97.85 97.61 97.28 97.66 

15 96.99 97.13 97.58 96.58 97.07 

10 95.39 95.50 96.00 93.80 95.17 

5 89.68 88.09 89.05 87.69 88.63 

0 67.18 61.85 59.26 63.93 63.06 

-5 28.28 26.57 20.46 23.94 24.81 

average 89.42 88.08 87.90 87.86 88.32 

test B 

SNR/ dB III, restaurant I，street III，airport I，train-station average 

clean 98.53 98.52 98.45 98.49 98.50 

20 97.08 97.64 97.38 97.13 97.31 

. 15 94.96 95.95 96.15 95.31 95.59 

10 91.99 94.07 92.84 92.69 92.90 

5 83.48 83.22 85.24 82.04 83.50 

0 58.70 57.26 62.78 53.75 58.12 

-5 23.49 24.18 26.66 19.01 23.34 

average 85.24 85.63 86.88 84.18 85.48 

test C 

SNR/ dB II, subway(MIRS) I, street(MIRS) average 

clean 98.46 98.46 98.46 

20 - 97.30 96.77 97.04 

15 96.41 95.74 96.08 
k. "'' ‘ ‘ "““ •丨丨 ‘ 丨丨‘• ,—,••. .- -I.. _,._•• I . „ , 丨•_, I 

10 92.97 92.32 92.65 

5 81.76 81.77 81.77 

0 48.45 51.48 49.97 

-5 20.14 22.07 21.11 

average 83.38 83.62 83.50 

Table 3.2: Word accuracy of the recognition system with similar noise-type 
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provement in nearly all cases, except when the inputs are clean speech. The 

average absolute improvement is 88.32 — 61.13 = 27.19%, which is only slightly 

smaller than the previous noise type-matching experiment. When the input 

SNR is low, the improvement over the baseline remains significant, showing a 

comparable result with the previous noise type-matching experiment. 

Although the number of speech utterances used for training in the first 

experiment is only half of the current experiment, the recognition performance 

is not affected. 

Comparing the two recognition accuracies for test A, the first experiment 

always achieves better performance than the current experiment. As the data 

in test A are used to train models, the four noises, subway, babble, car and 

exhibition are seen. During recognition, the first experiment uses the model 

which is trained by data corrupted by the same noise. The current experiment 

(recognition system with similar noise type-matching) uses the model trained 

by the same group only, but there are training data with a different noise type. 

. For example, to recognize the subway data set, the current experiment uses the 

model trained by subway or babble data. In the sense of matching between the 

training and testing condition, the first experiment (recognition system with 

noise type-matching) is better matched than the current experiment (recogni-

tion system with similar noise type-matching). 

Superior recognition performance has been found in test set B, even in 

restaurant and train-station cases, where the first experiment (recognition sys-

tem with noise type-matching) does not produce apparent improvement. The 

current experiment uses the model trained by babble and exhibition data set 

for recognition, whilst in the first experiment, one noise type is used for each 

model training. As test B is a testing data set, where the noises are unseen 

‘ d u r i n g training, using different noises for training is expected to produce better 

recognition performance than using only a single noise type. 

In the current experiment (recognition system with similar noise type-

matching) ,restaurant and train-station test sets use the model from group III. 

Note that the group III model is trained by the babble and exhibition data. In 
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the first experiment, restaurant test set uses the model trained from subway data 

and train-station test set uses the model trained from exhibition data. From the 

noise property and perception aspects, restaurant noise is non-stationary and 

contains human speeches, similar to the babble or exhibition environment, but 

subway contains stationary vehicle noise. For the train-station data, it contains 

non-stationary human speech and noise from vehicles. Hence, it is more appro-

priate to use the group III model to recognize restaurant data, rather than the 

subway model. 

3.2.2 SNR-Matching 

As shown in the previous section, by choosing the matched model for a given 

noisy speech, the recognition degradation due to the noise contamination can 

be greatly reduced. Rather than the noise type, the global signal-to-noise ra-

tio (SNR) is used in this section, to choose the most appropriate model for 

recognition. 
f 

Let SNRg be the global signal-to-noise ratio given by 

SNR, = 1 0 1 o g , o { g M _ 1} (3.2) 

The AUR0RA2 database contains noisy utterances at SNRs: oo (clean), 20 

dB, 15 dB, 10 dB, -5 dB with a 5 dB step. Training data sets include all 

utterances at SNRs from 5 dB to 20 dB and the clean data set. It is divided into 

three groups, according to the SNR values. These groups are called high SNR, 

medium SNR and low SNR. Each group has its own model. The high SNR 

group contains all clean utterances. There are 422 x 4 = 1688 utterances used 

for training the high SNR model. The medium SNR group contains speech data 

�f r o m either 15 dB or 20 dB data sets. The low SNR group contains speech data 

from either 5 dB or 10 dB data sets. For both medium and low SNR groups, 

the number of utterances used for training is 422 x 2 x 4 = 3376. 

During testing, the SNR of the input noisy speech is assumed to be known 

and is calculated with Equation (3.2) by finding the corresponding clean speech 

x{t). Testing is carried out by using the model trained by the matched SNR, 
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except to those testing data with SNR equal to -5 or 0 dB, which uses the low 

SNR system. Table 3.3 shows the recognition results. 

Concerning the recognition results, the test A accuracies found in noisy 

speech inputs are similar to those in the previous two experiments, with an 

average absolute improvement of 89.83 - 61.13 = 28.7% and when the SNR 

is 0 dB, the recognition accuracy increases from 17.07% to 64.46%. For clean 

speech inputs, the decrease in clean speech accuracy is the smallest one among 

the three experiments. This may be because the training mode is matched to 

SNR, rather than the noise type. 

For test B, significant improvement is found with the SNR-matching in all 

cases. For test C, comparing the recognition results of the three experiments, 

the system with SNR-matching brings the highest recognition accuracies. 

3.2.3 Noise Type and SNR-Matching 

Prom previous experiments, it is found that both SNR-matching and noise type-
I' 

matching are essential to reliable noisy speech recognition. Both the first exper-

iment (recognition system with noise type-matching) and the last experiment 

(recognition system with SNR-matching) reach satisfactory word accuracy with 

two different approaches - matching noise type or matching SNR. In this exper-

iment, combined noise type and SNR matching is used and many more models 

are trained. 

For every combination of noise type and SNR, a model is built. There are 

4 X 5 = 20 models in total. For training a model for noise type a and SNR /? 

dB, any utterance that is corrupted by a or with a global SNR (5 dB is used for 

training. For example, to obtain a model for the babble noise 10 dB system, 

any utterance that is corrupted by babble noise or with a global SNR equal to 

10 dB is used for training this babble noise at 10 dB system. The number of 

utterances used in each system is (4 + 5 — 1) x 422 = 3376. 

The noise type and the SNR of the input noisy speech are assumed to be 

known during testing and used to select a model for recognition. Testing is 

carried out by using the model trained with matched SNR and noise type, 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.86 98.88 98.78 99.01 98.88 

20 98.16 98.04 98.12 97.84 98.04 

15 97.05 97.31 97.64 97.13 97.28 

10 94.38 94.95 96.06 93.71 94.78 

5 90.08 88.24 91.02 88.98 89.58 

0 72.77 62.64 68.00 74.42 64.46 

-5 34.51 19.41 25.74 34.90 28.64 

average between 0 and 20 dB 90.49 88.24 90.17 ‘ 90.42 89.83 

test B 

SNR/ dB restaurant street airport train-station average 

clean 98.86 98.88 98.78 99.01 98.88 

20 97.67 97.73 97.70 97.59 97.67 

. 95.86 96.74 96.51 95.93 96.26 

88.58 93.23 91.41 92.47 91.42 

5 79.18 83.71 84.46 83.89 82.81 

0 51.92 59.07 63.20 59.73 58.48 

6.45 21.64 18.55 20.89 16.88 

average between 0 and 20 dB 82.64 86.10 86.66 85.92 85.33 

test C 

SNR/ dB subway(MIRS) street(MIRS) average 

c l ^ 99.02 98.88 98.95 

- 20 97.85 97.04 97.45 

• 96.19 95.86 96.03 

93.40 92.62 93.01 

— 5 85.20 84.28 84.74 

0 53.58 57.47 55.53 

18.94 21.34 20.14 

average between 0 and 20 dB 85.24 85.45 85.35 

Table 3.3: Word accuracy of recognition system with the SNR matching. 
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except to those testing data with SNR equal to -5 or 0 dB, which uses the 

model trained by matched noise type and 5 dB data. Table 3.4 shows the 

recognition results. 

Observing the word accuracy rates, the current recognition (system with 

noise type and SNR-matching) produces the best average results in both test 

A and B. The average word accuracy in test A and B are about 90.11% and 

85.5% respectively. Even in test C, the average word accuracy of 84.9% is close 

to the maximum accuracy rate produced by the third experiment (recognition 

system with SNR-matching), which is about 85.35%. In low SNR conditions, 

such as, when SNR is 0 dB, the average word accuracy in test A is the best at 

about 70%. 

Average Word Accuracy in test set A vs SNR 

1001 1 1 1 丨 ‘ A 

90- J r ^ •• -

8�- / / ,Z _ 

. 70- f/ / -
1 A / 
I 6 0 - 丨 / -
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A noise type-matching 
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I • ^ noise type and SNR-matching 

-5 0 5 10 15 20 Inf 

SNR/dB 

Figure 3.4: The average word accuracy in test set A versus SNR. 
、 

An overall average word accuracy plot is shown in Figure 3.4. Comparing the 

performance between the four experiments and the baseline system, all the sys-

tems with matching outperform the baseline system. When SNR increases, the 

differences between the four experiment systems become insignificant. Besides, 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.77 98.76 98.87 99.01 98.85 

20 98.37 98.00 98.06 97.38 97.95 

15 97.24 97.40 97.70 96.45 97.20 

10 95.12 95.53 96.18 94.63 95.37 

5 90.85 87.88 91.35 89.66 89.94 

0 74.06 64.06 69.07 73.25 70.11 

-5 33.93 28.11 23.77 33.94 29.94 

average between 0 and 20 dB 91.13 88.57 90.47 ‘ 90.27 90.11 

test B 

SNR/ dB restaurant street airport train-station average 

clean 98.77 98.76 98.87 99.01 98.85 

^ 96.96 97.61 97.05 97.01 97.16 

93.86 96.34 94.96 95.16 95.08 

10 90.76 94.01 92.78 92.93 92.62 

5 81.21 83.19 83.27 82.38 82.51 

0 56.65 61.85 64.00 57.95 60.11 

-5 17.19 27.60 22.88 20.49 22.04 

average between 0 and 20 dB 83.89 86.60 86.41 85.09 85.50 

test C 

SNR/ dB subway(MIRS) street(MIRS) average 

clean 98.96 98.64 98.80 

• 20 97.94 97.01 97.48 

2 96.81 95.62 96.22 

^ 93.64 92.62 93.13 

. 5 83.48 81.80 82.64 

0 52.99 57.16 55.08 

-5 18.94 24.76 21.85 

average between 0 and 20 dB 84.97 84.84 84.91 

Table 3.4: Word accuracy the recognition system with matched noisetype or 
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the rate of increase in average word accuracy becomes smaller and smaller when 

SNR increases. In low SNR conditions, the accuracy rates of the system with 

noise type-matching, SNR-matching and both noise type and SNR-matching 

are close to each other and higher than the one in the system with similar noise 

type-matching. 

Figure 3.5(a), 3.5(b) and 3.5(c) show the magnified views of the word ac-

curacy versus SNR plot. Using systems with SNR-matching or noise type and 

SNR-matching can always produce satisfactory recognition. This implies that 

SNR-matching is very useful in robust speech recognition. 

This is extremely valuable for noise types which are not present during 

training. For test set B, the recognition performance of the systems with SNR-

matching or noise type and SNR-matching is much better than the one using 

noise type-matching (referring to the average word accuracy in test set B among 

the four experiments in Figure 3.6). Note that in the last two experiments, the 

number of speech samples used in each individual system training is only 3376. 

“ Figure 3.7 shows the average word accuracy in test set C. Similar recognition 

performance as with test set B is achieved. The systems with the noise type and 

SNR-matching or simply only the SNR-matching are always the best in recogni-

tion performance. The performance difference to the system with similar noise 

type-matching is much larger. As there is no severe recognition degradation 

when moving from test set B to C, it can be concluded that SNR-matching has 

certain robustness towards channel responses which are different from the one 

seen during training. 

3.3 Recognition Framework with Model Selec-

tion 

Prom the experiments shown in Section 3.2，SNR-matching or noise type and 

SNR-matching are very effective for noisy speech recognition. They both pro-

vide promising improvements. The training and testing conditions are matched 

by selecting the most appropriate one out from a pool of models. It is previously 
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Average Word Accuracy in test set A vs SNR  
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Figure 3.5: The magnified average word accuracy versus SNR. 
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Average Word Accuracy in test set B vs SNR 

1001 1 1 1 1 I Tiffi 

90- -

8� - X . 
/ A- / 

70- / -

^ / . / 

$60- 论 ... / -
i / , / . 

r � - / -

昏 / / 
g 40- / / -
« / / 

4： .. . . / .. 
20 -I / -

‘ •• • baseline 

"“ A noise type-matching 

10. 9 similar noise type-matching • 

' r -*- SNR-matching  

^ ^ 卞 noise type and SNR-matching 

-5 0 5 10 15 20 Inf 
SNR/dB 

Figure 3.6: The average word accuracy in test set B versus SNR. 
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Average Word Accuracy in test set C vs SNR 
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Figure 3.7: The average word accuracy in test set C versus SNR. 
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assumed that the SNR or the noise type of the noisy speech input are known, 

however, in real applications, they are unknown and required to be estimated 

before model selection. 

To estimate the SNR, there are widely-used algorithms with different suc-

cesses. Examples are, simple estimation during speech pauses, the histogram 

approach [30] or estimation from a microphone array. On the contrary, cur-

rently there is no standard algorithm to determine the noise type "of a noisy 

speech. In Chapter 4, the idea of the SNR-matching is adopted to provide sat-

isfactory improvement for noisy speech recognition and avoid the difficulties of 

determining the noise type. Figure 3.8 depicts the overall block-diagram of the 

simple recognition framework with model selection. By estimating the noise 

spectrum, the global SNR is calculated and the best-matched model is chosen 

accordingly. Identical to the experiment of SNR-matching in Section 3.2.2’ the 

three acoustic models, namely high SNR, medium SNR and low SNR, are used. 

high SNR 
model 

noisy inpulj noise / 一 medium recognition 
y(t) estimation SNR model output 

^ low SNR 
model 

. recognition system 

Figure 3.8: The block-diagram of the simple recognition framework with model 

selection. 
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Chapter 4 

Noise Spectral Estimation 

This chapter continues the work from Chapter 3 and suggests a statistical 

noise estimation method. A review of current estimation methods is given. 

By studying how speech harmonic structure affects noise estimation, an esti-

mation method called Mainlobe-Resilient Time-Frequency Quantile-base Noise 

Estimation is proposed. It is designed to prevent the overestimate of the noise 

‘ power and provide a good tracking at harmonic frequencies. Evaluations on the 

noise estimation and recognition performance are shown at the end. 

4.1 Introduction to Statistical Estimation 

Methods 

In the recognition framework suggested in Section 3.3, there are two building 

blocks of noise estimation and model selection. 

Noise Estimation has been a popular research topic for over the past 20 

years. There are various applications from speech enhancement to robust speech 

� recognition. A statistically-based noise estimation method is proposed in this 

chapter, which works together with the model selection framework. Before 

looking at this new estimation method, the following attempts to discuss several 

classical ways to perform noise estimation. Most estimation methods perform 

the estimate in the frequency domain. Basically, these methods are classified 

into two groups, voice-activity detection-based or statistical-based. 
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4.1.1 Conventional Estimation Methods 

Noise estimate is conventionally obtained from a reference signal or during 

speech pauses. In the application of adaptive noise cancellation (ANC) [31], 

two configurations can be used to capture the reference time-domain signal: 

1. The reference microphone (used to collect the reference signal) is placed 

next to the noise source and another microphone which is called the pri-

mary microphone is placed close to the desired speech source located far 

from the reference microphone. 

2. An acoustic barrier is used and is located between the primary and the 

reference microphones. 

The waveform captured by the reference microphone is often used as the noise 

signal. In real applications, it is not always possible to place the two micro-

phones far apart with the reference microphone very close to the noise source. 

For the second configuration, the acoustic barrier must provide a strong iso-

lation between the speech signal and the interfering noise, which may require 

extra equipments to be put on by the speaker. 

These two configurations attempt to spatially separate the noisy speech y(t) 

into two components x(t) and n(t). Nevertheless, no array signal processing 

technique is used. When the two sources are close to each other, the reference 

signal always contains a strong speech component, leading to an inaccurate 

noise estimation. For the present task of connected digit recognition, there is 

only one single microphone. 

Apart from using two microphones to spatially separate the noisy speech, it 

was proposed that the noise estimate can be found during speech pauses [9, 32 . 

. A simple way to estimate the noise spectrum is to average the spectra within a 

the short duration before the speech signal commences. 

To cope with non-stationary noise, the noise estimate should be updated 

regularly. This is usually done by detection of speech pauses to locate segments 

of pure noise. The detection of speech pauses is commonly referred to as the 

voice-activity detection (VAD), so this type of noise estimation is VAD-based. 
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A typical example of the VAD-based noise estimation methods is the 

weighted average method [30]. This method calculates the weighted sum of 

past spectral magnitude where t) is the coefficient of Fourier 

Transform of the input speech y{t) at frequency u and at time t. For each 

frequency u, an estimate of the noise magnitude is obtained by a first order 

recursive equation, 

N{cu, t)\ = (l-a)- x/|y(a;,t)|2 + a . t 一 1)| (4.1) 

where \N(cu, is the estimated noise magnitude at frequency u in time t. 

In segments of pure noise, the magnitude values yJ\Y{u^ are Rayleigh-

distributed and speech activities are represented by larger magnitude values. 

The noise estimation should only be updated during speech pauses, hence, a 

threshold (3\N{u^t — 1)| is used to roughly detect when the speech is likely to 

be present. (3 normally takes a value in the range of 1.5 to 2.5. When the input 

spectral magnitude is larger than this threshold, a speech signal 

, is detected and the noise estimation by Equation (4.1) is stopped. The noise 

estimate will be updated again when is smaller than or equal to the 

threshold. As a result, the noise estimate is recursively found by, 
F 

A" � （ 1 - … . V F R W + cv. \N{u,力一1)1’ < t 一 1)1 
N(uj,t)= 

|A/'(cj, t — 1)1, otherwise 

. (4.2) 

The weighted average method separates the noise spectrum and the speech 

spectrum with the.use of a threshold. This is actually a VAD operation. In 

practice, VAD is a difficult task by itself, especially if the background noise is 

non-stationary or the SNR is low. VAD-based approaches are also unsuitable 

for fast-changing non-stationary noise, because the noise estimate cannot be 

updated during speech segments. 

4.1.2 Histogram Technique 

The histogram technique is based on the statistical analysis of the received 

spectral values at each frequency [30, 33, 34]. For every frequency, a histogram 
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of the spectral values is built from several hundred milliseconds of data. During 

segments of pure noise, the most frequent spectral value is related to the noise 

level at that particular frequency. The threshold j3\N{uj, t—1)| introduced in the 

weighted average method is still used to roughly separate the segments of noise 

and speech. The histogram stores only those spectral values smaller than or 

equal to the threshold and the most frequent spectral value in the histogram is 

considered as the noise spectral estimate. Finally, the noise estimate is smoothed 

over time to eliminate rarely occurring spikes. 

Note that the histograms are built in the magnitude spectrum domain. Al-

ternatively, the histograms can be built in the log-energy spectral domain. 

An evaluation of the two estimation methods in terms of the relative error 

of noise estimation was reported [30]. This evaluation was made by artificially 

adding different stationary noise signals to clean speech at different SNRs. The 

relative error is calculated by, 

• relative error = 口ffi)! :丨义⑷丨尸 (4.3) 

A 

where |A/'(cj)| and are the true average noise magnitude spectra cal-

culated by the noise added and either one of the two estimation methods re-

spectively. The average magnitude spectra are calculated as the sum over all 

frames. 

Figure 4.1 shows the the relative error of adding car noise to utterances from 

three male and three female speakers. Comparing the two estimation methods, 

the histogram technique always gives lower relative error than the weighted 

average. The increase in the error at high SNRs may be due to the incorrect 

noise estimation at speech segments, because at high SNRs, even a small error 

leads to a large relative value. 

The histogram technique does not rely on explicit speech, non-speech detec-

tion. The noise spectrum is estimated during both non-speech and speech seg-

ments continuously by finding the most frequent spectral value under a thresh-

old. This is essentially the mode of the distribution. This statistical approach 

is highly favorable, since VAD can be a major problem in its own right and such 
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Figure 4.1: The relative error of the noise power spectrum estimation with 

weighted average and histogram technique. 

statistical approach avoids this difficult task and allows the noise estimate to 

be updated not only close to the boundaries of speech segments but also during 

speech segments. 

4.2 Quantile-based Noise Estimation (QBNE) 

Instead of using the mode of the distribution, Martin [35，36] proposes a noise 

estimation method which records the minimum values of a smoothed noisy 

power spectrum. At each frequency, a time window is defined over which the 

minimum statistics are derived. A similar method was suggested by Arslan et 

al. [37]. The noise estimate is continually updated and is allowed to increase 

much more slowly than it is allowed to decrease. The noise estimate will increase 

only slowly during speech segments but collapse quickly in non-speech segments. 

Therefore, these two methods are unlikely to respond well to increases in noise 

levels. 

An enhanced statistical noise estimation method is proposed for the simple 

recognition framework with model selection, which is based on the Quantile-

based Noise Estimation (QBNE) [38’ 39]. The following section introduces the 

general ideas of QBNE. 
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4.2.1 Overview of Quantile-based Noise Estimation 

(QBNE) 

The QBNE method was originally developed in [38]. Stahl et al has extended 

the idea of histogram to quantile-based noise estimation by removing the thresh-

old. 

It is well known that even in speech segments, not all frequencies are perma-

nently dominated by the speech power. In fact, there is a significant portion of 

time that the received power at a certain frequency is due to noise only. QBNE 

is based on the quasi-periodic characteristic of voiced segments in human speech 

signals. The noisy power spectrum is the superposition of the noise spectrum 

and the harmonic spectrum from speech. At inter-harmonic frequencies, the 

power values are mainly contributed by the additive background noise. At 

harmonic frequencies, both speech and noise signals contribute to the received 

power spectrum. If a buffer is used to store the received power spectrum over a 

short duration and a histogram is built from it, the histogram should be either: 

• a uni-modal distribution for the power spectrum at inter-harmonic fre-

quencies, representing the noise power OR 

• a bimodal distribution for the power spectrum at harmonic frequencies, 

related to the superposition of speech and noise spectrum. 

QBNE utilizes the uni-modal distribution at inter-harmonic frequencies. 

The following procedure describes how QBNE estimates the noise spectrum. 

Given a noisy speech signal y(t), it is first windowed into segments and 

the corresponding short-time power spectra are being computed. Let 

and be the power spectrum of y(t) and the estimated noise power 

‘ spectrum at frequency cj and time t respectively. For each frequency bin, an 

buffer stores the value of over a pre-defined duration T. The buffer 

content is then sorted and the q-th quantile is taken as The process 

can be summarized as follows: 
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1. For each segment, take the Fourier Transform and obtain, 

\Y{uj,t)\\ t = 0 , . . . , r (4.4) 

2. For each frequency bin, sort in ascending order of the power 

spectral values and re-index, 

|1>’6O)|2 < < • < \Y{uj,bT)\' . (4.5) 

3. Select the q-quantile and assign it as the noise estimate 

\N,{u,t)\' = \Y{uj,b,T)\' . (4.6) 

Figure 4.2 illustrates how buffers are used for estimating \Nq{u,t)\'̂  in 

QBNE. To estimate \Nq{uj,t)\'̂  at different frequencies and time, the buffer 

is shifted accordingly. 

个 

^ I a buffer stores IY(co, t- 1)P over duration T for IN。((0’ t -

I LL^^^^Pr---^  
1 • . ^ ^ a buffer stores IY(co - 1，t)P over duration T for IN (̂co - 1，t)P 

. . . I — H H H M H H • . . 
it: . 

t ime〉 

Figure 4.2: How buffers are used in the QBNE calculation. 

For example, q = 0 yields the minimum, g = 1 represents the maximum 

and q =' 0.5 gives the median. This algorithm is based on the assumption 

that each frequency bin carries noise power in at least q portion of time, even 

during speech segments. This is true for small values of q, but to have a robust 

estimation of the noise spectrum, that is not sensitive to outliers or speech 

signals, q should be somewhere around the median {q ^ 0.5). 

Figure 4.3 shows \Nq{uj, calculated by Equation (4.6) for different q values 

at three frequencies [38]. The input is a seven digit utterance taken from the 
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Figure 4.3: Quantiles of the energy distribution of a noisy speech at 300, 1500 

and 3000 Hz. 

MoTiV corpus. The utterance is mostly in speech segments. It was found that 

about 80 - 90% of the noisy spectra are low values, which is believed to be close 

to the noise power level. Only 10 - 20% are high values, which indicates voiced 

speech segments. This observation is true for different frequencies. 

To have fast tracking of non-stationary noise spectrum, the buffer duration 

T should not be too long. Hence, q should be reduced accordingly. 

All parameters in QBNE are relative and independent of the absolute spec-

tral values. Referring to Figure 4.4，the noise estimation performance of QBNE 

is compared against the histogram technique and a standard VAD-based noise 

estimation in hand-labelled speech pauses [39]. Hand-labelled speech pauses 

are used so as to circumvent any degradation caused by the VAD errors. The 

noise level is increased throughout the duration of the utterance. The noise es-

timate from the VAD-based method remains unchanged throughout the speech 

segments and for the histogram technique, the distribution of the magnitude 

spectrum is quantized and the quantization effect on the noise estimate are par-

ticularly noticeable, where QBNE does not show this problem. The result shows 

that QBNE always yields better noise estimation than the other two methods. 
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Figure 4.4: The noise power estimates from the three methods, mean repre-

sents the VAD-based noise estimation with hand-labelled speech pauses, mode 

represents the histogram technique and the median represents the QBNE. 
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4.2.2 Time-Frequency Quantile-based Noise Estimation 

(T-F QBNE) 

In QBNE, the noisy power |y(ct；, is placed in a buffer and the buffer content 

is numerically sorted. The noise estimate is taken as the median 

value of the buffer. Inevitably, the noise estimate is affected by the presence of 

speech to some extent. 

Referring to Figure 4.5, when a speech signal is present at frequency u and 

time t, the current noisy power probably stays on the right hand side 

of the median and the buffer contents that correspond to noise power are located 

in a much lower quantile region. When only noise is received, the current noisy 

power is likely to stay on the left hand side of the median and the 

buffer contents that correspond to noise power are placed within low to high 

quantile regions. 

,, 1 1 1 — 

Qt median 

noise ! noise or speech / 

^ 1 I , ^ 
0.0 0.25 0.5 0.75 1.0 

Quantile, q 

Figure 4.5: The current noisy power may enter on the left or the right 

of the median, depends on the presence of speech. 

The first case is encountered sometimes because speech signal may consis-

tently dominate at harmonic frequencies. In this case, the noise estimation from 

QBNE is inaccurate because QBNE only records spectral values along the time 

axis and most of the buffer contents are contributed by the speech signal. Tak-

ing the q-quantile as the noise estimate represents the speech power only, but 
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not the noise power. 

• j j H 
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謹 
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t ^ a r i ^ ^ n k frequencies, values at adjacent 
IY(a)，t)P IS consistently ^ spectral troughs 

dominated by the speech are used 
harmonics 

‘ Figure 4.6: The spectral values at adjacent troughs are used for the noise esti-

mation at harmonic frequencies. 

To have better estimation at harmonic frequencies, some research studies 

have proposed to use spectral information in both time and frequency do-

mains [33，40，41] to predict the noise level at spectral peaks, as shown in 

Figure 4.6. This is called the Time-frequency Quantile-based Noise Estimation 

(T-F QBNE). The-following describes the principle of T-F QBNE in details. 

T-F QBNE uses different estimation schemes for harmonic and inter-

harmonic frequencies. For inter-harmonic frequencies, the noise estimate is set 

to the QBNE estimate or any combination of this value and the instantaneously 

received noisy power \Y{iJ, For harmonic frequencies, the noise estimate is 

found by using estimates at adjacent spectral troughs located at either side of 

the current frequency. Note that for harmonic frequencies, the spectral infor-

mation in frequency axis is used instead, while the spectral information along 

the time axis is used for inter-harmonic frequencies. This is because the QBNE 
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estimate may be degraded by the speech powers in harmonic structure along 

the time course. Some information can also be used for the noise estimate at 

frequency u and time t, together with the noise estimates of adjacent spectral 

troughs, including, 

• the QBNE estimate \Ng{u,t)\^ 

• the QBNE estimates at adjacent spectral troughs \Nq{uH, OP and 

• the instantaneous noisy powers st adjacent spectral troughs 

and \Y(ujL,t)\'̂  . 

where Uh and ljl denote the frequencies of the high and low spectral troughs 

at either side of u. 

Let \Nt-fq{uj,t)\'̂  be the noise estimate from T-F QBNE found by, 

|7Vt_/“a;’t)|2 = + (4.7) 

where are the weighting factors for the five components. 74 and 75 are often 

set to zero, meaning that only \Ng{uj,力)「，\Nq(uH, and \Nq(ujL, are taken 

into consideration. 

T-F QBNE first estimates the noise power for every frequency u at time t 

by QBNE. For any harmonic frequencies, it further utilizes the spectral values 

at adjacent troughs to revise the noise estimates. These spectral values can be 

the QBNE estimate and the instantaneous noisy powers. Therefore, the buffer 

should be a 2-dimensional array storing spectral values along both time and 

frequency axes, as shown in Figure 4.7. 

. In Equation (4.7)，a weighted sum is used for noise estimation. Very often, 

interpolation between the neighborhoods is used to find the noise level for a 

given harmonic frequency. This implementation also ensures a smooth spectral 

change around the harmonic peak. 

Regarding the interpolation, the boundaries of the interpolation are located 

at constant and equal distance on each side of every harmonic frequency found 

64 



Chapter 4- Noise Spectral Estimation 
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Figure 4.7: The buffer content to estimate \Nt-fq(uJ,t)\'̂ . The cross labels the 

current frequency uj and time t. 

in the QBNE spectrum. Let Upi, ujp2 and band be the first harmonic frequency, 

second harmonic frequency and the distance between the two boundaries re-

spectively. Figure 4.8 depicts the interpolation used in T-F QBNE. 

harmonic peak at cOp, harmonic peak at ©p̂  

J \ interpolation j \ 

noise level •nf^,, _ !二"乂 ^ ^̂ ！“ 

I I I I 
frequency distance = band 

Figure 4.8: The interpolation used in T-F QBNE. The spectrum is the one 

estimated by QBNE. The boundaries are located at an equal distance from the 

harmonic frequency on each side. 

4.2.3 Mainlobe-Resilient Time-Frequency Quantile-

based Noise Estimation (M-R T-F QBNE) 

By avoiding the adverse effects of speech power on noise estimation, T-F QBNE 

is expected to provide a more accurate estimation than QBNE. The major 
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difference between QBNE and T-F QBNE is the use of interpolation between 

the spectral values around the harmonic frequencies. 

Recall that the interpolation boundaries are located at a constant distance 

from each harmonic frequency found in the QBNE spectrum. By observing 

the QBNE spectrum, it is found that the bandwidths of harmonic frequencies 

are substantially different. This observation is shown in Figure 4.9. The clean 

speech signal x(t) is a synthetic speech generated by the source-filter model. The 

synthetic speech is generated by using a pitch value of 150 Hz. The formant 

frequencies are 700, 1220 and 2600 Hz and the corresponding bandwidths are 

130, 70 and 160 Hz respectively. White noise is added to x{t) to produce a SNR 

of 15 dB. 

a QBNE-csiimaicd noise spectnim versus frequency  

1 1 1 1 1 1 1 1 1 ； 

10' • • 

“ 10̂  : : 

'vllwli J l ^ i j i 
10"'I— 1 i 1 1 I I I I 1 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
f/Hz 

Figure 4.9: In a QBNE noise spectrum, the bandwidths of harmonic frequencies 

are different. 

� To have accurate interpolation, the bandwidths assigned for strong and weak 

peaks should be adjusted accordingly. When a strong peak roll-offs down to the 

noise level, the frequency distance is much greater than the one for the weak 

peak. The Mainlobe-Resilient Time-Frequency Quantile-based Noise Estima-

tion (M-R T-F QBNE) proposes to give a larger band to strong harmonic peaks 

and a smaller band to weak harmonic peaks. As illustrated in Figure 4.10, it is 
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necessary to assign a larger band to stronger peaks. On the other hand, smaller 

band is also essential for weaker peaks to have better tracking of the noise level. 

Hence, the band is changed according to the strength of the harmonic peak, 

making the noise estimation resilient to the mainlobe height. 

strong harmonic peak 

I 
A poor interpolation 

A, \ 
/ \ appropriate \ 

/ \ interpolation \ 

noise level ^ ^ ^ ^ ^ ^ ^ ^ m o n i c peak 

frequency distance = band 
Figure 4.10: Different bandwidths are used for interpolation in M-R T-F QBNE. 

‘ The following gives a detailed description of the proposed M-R T-F QBNE. 

Let y(t) be the noisy speech signal. 
M - R T-F QBNE procedure 

1. cutting into frames 

The noisy speech y{t) is cut into overlapping frames. For every frame, do 

the following, 

2. QBNE 

A coarse noise estimation is obtained by QBNE. Let T be the buffer 

� duration used in QBNE. For frames located at the beginning and the 

end of an utterance, where the number of available frames is less than 

the total frame number in T, the buffer duration is reduced to store all 

the available frames only. Let be the estimated noise power 

spectrum by QBNE. 
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3. peak picking 

In order to apply interpolation around speech harmonic frequencies, the 

spectral peaks from speech signal are selected. This peak picking step is 

used to pick out all peaks from the QBNE noise spectrum. The QBNE 

spectrum is first smoothed by using a low-pass filter to remove small 

spikes. The low-pass filter used is a third order Butterworth filter with 

a cut-off frequency of 3200 Hz. The filtered spectrum is denoted by 

Nq{u, It is assumed that there is no peak at d.c. or the frequency 

bin with the highest frequency. 

Theoretically, a peak should have either zero or non-difFerentiable first 

derivative and negative second derivative. By using Taylor series ex-

pansion, differentiation can be approximated by second-order centered 

finite-divided-difference equations with high accuracy [42，43]. The first 

derivative of a function f{x) is calculated by, 

d f ( x ) �- f { x + 2Ax) + 8f{x + Ax) - Sfjx - Ax) + f{x - 2Ax) 
‘ 12Ax 

(4.8) 

where Ax is finite-divided-difference. The second derivative is found by, 

d^f(x)�-f(x + 2Ax) + I6f{x + Ax) - 30f(x) + 16/(x - Ax) - f{x - 2Ax) 
dx^ 12(Ax)2 

(4.9) 

The centered difference equations are used to have higher accuracy by in-

corporating more terms. The first-order first derivative and second deriva-

tive equations shown below can be used for boundary frequency bins if 

necessary, 

“ df{x) f{x + Ax) - f{x - Ax) , � 

- - — — k r — — - (4.10) 
• d'fix)�fix + Ax) - 2f{x) + fix - Ax) 

Any frequency bin that has a negative second derivative is recorded and 

consecutive frequency bins with negative second derivatives are grouped 
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together. For each group, the frequency bin with the smallest absolute 

first derivative is taken as a peak. 

As the error of the numerical differentiation is proportional to the differ-

ence or the square of it, the number of FFT bins is increased. 

4. pitch estimation 

If a peak is from the speech harmonic structure, its location should be 

close to the multiples of the pitch frequency of the speech segment. There-

fore, the pitch frequency is also estimated. A robust pitch extraction is 

employed by weighting the autocorrelation with the average magnitude 

difference function (AMDF) [44 . • 

Let y{t) be the windowed noisy speech segment using a Hamming window. 

The autocorrelation function 0(t) is defined by, 

^(r) = ^ ^ y { t ) y { t + r) (4.12) 
t=o 

• where N, r are the window length and the lag number. Let P be the period 

of the signal y{t). Now, 0(0) has the largest magnitude among (/)(r) and 

the second largest is given by (/)(P).執丁、has peaks at multiplies of P. In 

some cases, the peak located at r = 2P may be larger than that at r = P 

or there are some peaks at r < P, as shown in Figure 4.11. They are the 

so-called the half pitch error and the double-pitch error respectively. To 

avoid these errors, it was proposed to weight the autocorrelation function 

by an inverse AMDF. 

The AMDF function is described by 

- 1 N-l 

功 = 力)-射力+ T)I (4.13) 
t=0 

When y{t) is similar to y{t + r), '0(r) becomes small. Hence, if y{t) has a 

period of P, iP(t) has deep notches and the inverse of iP{t) produces peaks 

at multiplies of P. 

As the noise included in 0(r) behaves differently with that included in 

^(r) , the error of pitch extraction from the AMDF-weighted autocorrela-
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Figure 4.11: The autocorrelation function (/)(r) and the AMDF-weighted auto-

correlation function r}(T). T�corresponds to the true pitch period. 

tion function is expected to be reduced. The following function is used to 

extract the pitch value, 

‘ " ⑴ = 森 （4.14) 

where k is a positive constant to stabilize xp{j�when r = 0. 

By searching the peak of the weighted function ”(丁) from 50 Hz to 400 

Hz, the pitch value of the speech segment is estimated. This range covers 

the region of the fundamental frequencies of most human speakers. 

5. decide if a peak comes from speech or not 

This step is. used to determine if a peak comes from speech harmonic 

spectrum or noise spectrum. With the pitch value and peak locations, a 

peak is assumed to be from speech harmonics if it is located around the 

pitch frequency within a small shift. This is shown in Figure 4.12. 

6. assign different band according to log \Nq{uj,t)\'^ 

The following applies only to the speech harmonic peaks. For all remaining 

frequencies, the noise estimate by ordinary QBNE is taken as the M-R T-

F QBNE estimate. Let \NM-Rt-fq{uJ,t)\'̂  denote the noise estimate from 

M-R T-F QBNE. 
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Figure 4.12: A peak is assumed to be from speech harmonic if it is enclosed by 

the rectangle. The stems and the arrows represent the harmonics and detected 

peak locations, respectively. The rectangles model the small shift region and 

the tick and cross above the figure show if a peak is a speech harmonic or not. 

The log-scale dynamic range of peaks in each speech segment is divided 

into four equal portions. For each harmonic peak, one value is selected 

from the four possible band values. This value is used to define the distance 

“ between the two boundaries for interpolation. Equation 4.15 is used to 

assign this band value, 

bandu a <log\Nq{ujp,t)\'^ < f 

band = (4.15) 
hand,, l<\og\N,(up,t)\'<f 

where log a and jS are the current, minimum and maximum ‘ 

log power of harmonic peak, respectively. 

THe two interpolation boundaries are symmetrically located around the 

harmonic peak at a distance band/2. 

7. interpolation around speech harmonic peak 

Finally, the noise estimate around speech harmonic peaks is found by 

linear interpolation. 

By assigning different bands to harmonic peaks with various power, M-R T-F 

QBNE prevents the poor interpolation in strong harmonic peaks or inaccurate 
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tracking in weak peaks. The overall M-R T-F QBNE procedure is summarized 

in Figure 4.13. 

noisy speecĥ  serial to frames〉qbnE INq(①;t)丨2〉peak 
y(t) parallel picking . 

L - ( t ) | � I N m， ( ^ ’ OP 

) p i t c h ) h : = or - - assign band and 

extraction interpolate 

Figure 4.13: Block diagram of the M-R T-F QBNE. 

4.3 Estimation Performance Analysis 

The performance of M-R T-F QBNE is examined by using synthetic speech as 

well as real speech immersed in different background noise. There are two tests 

conducted in total. 

The first test is about the mainlobe-resilient property of M-R T-F QBNE. 

It is used to study if M-R T-F QBNE prevents the overestimate of noise power 

from speech power at harmonic frequencies. 

Synthetic speech segments are produced by the source-filter model [45]. Re-

ferring to Figure 2.5，there are two type of excitation. To synthesize voiced 

speech, an impulse train consisting of impulses at pitch frequency is used as the 

input to the filter. For unvoiced speech, a random noise-like input is used. A 

‘ formant filter is a second-order recursive filter having the transfer function 

丑 ⑷ = 厂 2 (4.16) 

where A is a, scaling constant, bu is the formant bandwidth in radians, u is the 

formant frequency (also in radians) and 

r = e-(^/2) (4.17) 
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Normally, the vocal tract filter is characterized by three or more pairs of 

formant frequencies and band widths. It is realized by cascading all formant 

filters. 

Figure 4.14 shows the estimated noise spectra from several quantile-based 

methods. The clean speech signal is a synthetic speech with pitch frequency 

of 150 Hz. The formant frequencies are 700，1220 and 2600 Hz and the cor-

responding bandwidths are 130, 70 and 160 Hz, respectively. White noise is 

added to produce a SNR of 15 dB. It is found that M-R T-F QBNE accurately 

estimates the noise spectrum, while the QBNE estimate is poor at speech har-

monic frequencies. The estimate from T-F QBNE is also found to be affected 

when the speech harmonic power is high. 

synthesized sound spectrum vs frequency 
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Figure 4.14: Estimated noise spectra of a synthesized speech segment. The true 

value refers to the exact noise spectrum found by periodogram. 

The second test calculates the mean-square-error (MSE) in noise estimation 

from various methods. The noisy speech samples are the real speech from 

AUR0RA2 database. The true noise spectrum is found by subtracting the noisy 

speech waveform by the corresponding clean speech waveform and followed by 
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spectral estimation by a periodogram. Figure 4.15 is the plot of MSE of noise 

estimation versus SNR. 
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Figure 4.15: The MSE plot versus SNR. 

( 

Comparing with QBNE and T-F QBNE, M-R T-F QBNE achieves the lowest 

MSE at all SNR conditions. The improvement over the QBNE comes mainly 

from the utilization of spectral information at adjacent troughs (T-F QBNE) 

and M-R T-F QBNE further reduces the estimation error. 

4.4 Recognition Experiment with Model Selec-

tion 

A simple recognition framework with model selection capability is suggested 

in Section 3.3，which requires a noise estimation method. The proposed M-R 
i 

T-F QBNE provides such a noise estimate to select the best matched model. 

Figure 4.16 gives a functional block diagram of the overall system. 
After M-R T-F QBNE, the global signal-to-noise ratio SNRg is calculated 

by 

吟 〜 { ^ i f e S I b - 1 } _ 
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Figure 4.16: The block diagram of the recognition system with M-R T-F QBNE 

and model selection. 

The acoustic models used are identical to the three acoustic models trained 

in Section 3.2.2. The best-matched model is chosen according to the SNRg. 

If SNRg is higher than or equal to 18 dB, the high SNR model is selected. If 

‘ SNRg is between 8 dB to 18 dB, the medium SNR model is used. Otherwise, 

the low SNR model is taken. This arrangement is used to align with the typical 

SNR range found by M-R T-F QBNE. 

The recognition accuracy of the proposed recognition system is shown in 

Table 4.1. Table 3.3 (on page 45) represents the performance of model selec-

tion with known noise spectrum and Table 2.2 (on page 33) are the baseline 

results using clean data training. For comparison, the recognition accuracy of 

the multicondition training specified in AUR0RA2 corpus is given in Table 4.2. 

The number of utterances used in multicondition training is 8440. The recog-

nition results of the four systems are listed again in Table 4.3 for the following 

comparison. 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.83 98.88 98.78 99.01 9 8 . 8 8 

20 98.16 97.97 98.12 97.84 98.02 
15 97.05 97.31 97.64 97.13 97.28 
10 94.20 94.86 96.06 94.26 94.85 
5 84.62 82.71 85.65 85.59 8 4 . 6 4 

0 54.28 41.90 46.50 52.58 4 8 . 8 1 

-5 24.44 1.57 18.70 25.86 1 7 . 6 4 

average between 0 and 20 dB 85.66 82.95 84.80 85.48 84.72 
test B 

SNR/ dB restaurant street airport train-station average 

clean 98.83 98.88 98.78 99.01 98.88 

20 97.67 97.67 97.35 97.32 97.50 

. 15 95.86 96.74 96.51 95.93 96.26 

10 91.68 93.74 80.79 92.59 92.62 

5 76.85 80.62 80.79 78.62 79.22 

0 37.12 46.25 44.44 40.05 41.96 

-5 -8.01 16.29 7.19 11.97 6.86 

average between 0 and 20 dB 79.83 82.93 82.39 80.90 81.51 

test C 

SNR/ dB subway(MIRS) street(MIRS) average 

clean 98.89 98.88 98.89 

‘ 20 97.85 97.04 97.44 

^ 96.19 95.85 96.03 

90.45 90.75 90.60 

5 68.28 74.18 71.23 

0 35.86 49.06 42.46 

-5 17.29 20.62 18.95 

average between 0 and 20 dB 77.73 81.38 79.55 

Table 4.1: Word accuracy of the recognition system with M-R T-F QBNE and 

model selection. 75 
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test A in multicondition training 

SNR/ dB subway babble car exhibition average 

clean 98.68 98.52 98.39 98.49 98.52 
20 97.61 97.73 98.03 97.41 97.69 

- 15 96.47 97.04 97.61 96.67 96.94 
10 94.44 95.28 95.74 94.11 94.89 
5 88.36 87.55 87.80 87.60 87.82 
0 66.90 62.15 53.44 64.36 6 1 . 7 1 

-5 26.13 27.18 20.58 24.34 24.55 
average between 0 and 20 dB 88.75 87.95 86.52 88.03 8 7 . 8 1 

test B in multicondition training 

SNR/ dB restaurant street airport train-station average 

clean 98.68 98.52 98.39 98.49 98.52 

20 96.87 97.58 97.44 97.01 97.22 

15 95.30 96.31 96.12 95.53 95.81 

10 91.96 94.35 93.29 92.87 93.11 

5 83.54 85.61 86.25 83.52 84.73 

0 59.29 61.34 65.11 56.12 60.46 

^ 25.51 27.60 29.41 21.07 25.89 

average between 0 and 20 dB 85.39 87.03 87.64 85.01 86.27 

test C in multicondition training 

SNR/ dB subway(MIRS) street(MIRS) average 

clean 98.50 98.58 98.54 

- 20 97.30 96.55 96.92 

15 96.35 95.53 95.94 

10 93.34 92.50 92.92 

5 82.41 82.53 82.47 

0 46.82 54.44 50.63 

-5 18.91 24.24 21.57 

average between 0 and 20 dB 83.24 84.31 83.77 

Table 4.2: Word accuracy of multicondition training system. 

77 



Chapter 4- Noise Spectral Estimation 

model selection with model selection with multicondition 
SNR/ dB �f D m n Mm baseline 

M-R T-F QBNE known noise spectrum training 

clean 98.88 98.88 98.94 98.52 

20 98.02 98.04 94.99 97.69 

15 97.28 97.28 86.93 96.94 

' 10 94.85 94.77 67.28 94.89 

5 84.64 89.58 39.36 87.82 

0 48.81 64.46 17.07 61.71 

-5 17.64 28.64 8.40 24.55 

average 84.72 89.83 61.13 87.81 

Table 4.3: Average word accuracy of test set A from the four systems. 

、. 
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Regarding the overall average recognition accuracy with the known noise 

spectrum and the one from M-R T-F QBNE, both approaches outperform the 

baseline system in all test sets. For test set A, the M-R T-F QBNE system 

brings a 23.4% absolute improvement and a 60.5% relative improvement; while 

the system with known noise spectrum has a 28.5% absolute improvement and 

a 73.7% relative improvement. 

Compared with the multicondition training, the model selection system with 

known noise spectrum has a promising performance in that the accuracy is 

even slightly higher and each acoustic model is trained with 20-40% of the 

original training size. There is nearly no degradation for high SNR inputs. This 

shows the great potential of the model selection capability for robust speech 

recognition. As the recognition result from the M-R T-F QBNE system is close 

to the one with known noise spectrum, it is concluded that M-R T-F QBNE 

works well with the model selection and improves the robustness of the speech 

recognition system. However, when the input SNR is extremely low (when SNR 

’ = 0 , -5 dB)，there is an apparent difference between the two system performance. 

The noise estimation from M-R T-F QBNE may not be accurate enough and 

that limits the improvement. 

Note that the number of models in the proposed system is three only. It 

is expected that even if more models are used for selection, similar result will 

be achieved. This is because with the noise type and SNR-matching shown 

in Section 3.2.3，the recognition performance is highly similar to the system 

using SNR-matching only. Although the number of models in noise type and 

SNR-matching is 20 (many more models are used than SNR-matching), using 

three models only in SNR-matching provides similarly sufficient improvement 

in recognition. 

‘ The proposed recognition system with model selection is effective in noisy-

speech recognition and simple in implementation. It chooses from the available 

models one that best matches a given noisy speech. Only model selection is 

required after estimating SNRg, skipping other computations that may appear 

in standard speech enhancement schemes. This robustness is believed to be the 
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consequence of matched conditions between training and testing. Nevertheless, 

even with known noise spectrum, the improvement from model selection for low 

SNR inputs is always smaller than the one for high SNR inputs. The accuracy 

at 0 dB is only 64%, whilst the accuracy at 20 dB is 98%. This is due to the 

phenomenon that at low SNRs, the models have large variances in MFCC [5 . 

The discriminability between recognition units is no longer as good as at high 

SNR conditions. • 

The optimum recognition system should have robust performance under var-

ious SNR conditions. Rather than making the model suitable for the input noisy 

speech, Chapter 5 proposes a new feature compensation method which converts 

noisy speech segments to the corresponding clean segments. It is expected that 

the high discriminability at high SNR conditions can be maintained. 
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Chapter 5 

Feature Compensation: 

Algorithm and Experiment 

In previous chapters, the reasons of the performance degradation in noisy speech 

recognition are analyzed in the view of matching between training and testing 

conditions. In this chapter, the degradation problem is investigated in terms of 

the deviation of noisy speech features from clean features. By making use of 

the deviation expression, an effective spectral compensation method is designed 

to approximate the clean speech feature. In the following, we will address the 

motivation and mathematical principles of the proposed system. At the end, 

we will show some recognition experiments. 

5.1 Feature Deviation from Clean Speech 

Recall that the speech recognition process generally consists of two parts, 

namely,-front-end analysis and back-end decoding. When a clean speech signal 

is corrupted by background noise, the feature extracted from the noisy speech 

is expected to be different from the one of the corresponding clean speech. This 

discrepancy degrades the recognition performance. The following is intended to 

analyze how the features of noisy speech deviate from the clean features. The 

feature used is MFCC. 
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additive 

noise n(t) 

clean speech〉distortion x'⑴ ̂ ^ ^ y ⑴ 〉 ^ ^ I ^ 

segment x(t) channel h(t) ^ ) • 

IY(w)l 

^ 

Cy(k) ipT / fbanky(m) mel filterbank 

M DCT f 1 in n • 

Figure 5.1: The signal model for features extracted from corrupted speech seg-

ments. 

5.1.1 Deviation in MFCC Features 

Figure 5.1 depicts the model used in the derivation. Both additive noise and 

channel distortion are encountered. Let x{t), x'{t) and y{t) be the clean speech 

segment, the intermediate speech segment corrupted from distortion channel 

. and the final noisy speech segment corrupted from both distortion channel and 

additive noise respectively. 

多 [ . ] is used to denote the Discrete Fourier Transform (DFT) operation. 

The symbol ® and * represent the convolution operation and the conjugation, 

respectively. The channel distortion of x{t) produces, 

o / �= � 

and with additive noise, 

y{t) = a：'� + n{t) = x{t) ® h{t) + n{t) (5.1) 

x{t) ^ X{LU) 

2 / ⑴ 工 n … 

h{t) ^ H{u) 

n{t) ^ N(uj) 

Y{uj) = X{uj)H{uj) + N{uj) (5.2) 

where h{t) and n{t) are the impulse response of the distortion channel and the 
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additive noise signal respectively. 

Py{u) = I ^ H p = [X{uj)H{u) + N{u)][X*{uj)H*(lu) + N*{u;)] 

=PxMI^MI' + PN(UJ) + 2Re {X(UJ)H{UJ)N*(LU)} (5.3) 

where Py{uj), Px{^) = and 尸 = are the power spectra of 

y{t), x{t) and n(t) respectively. Re[-] denotes the real part of [.. 

Let a 腳 denote the gain of filterbank m at frequency UJ. The output of 

filterbank m is found by 

fbanky{m) = I n ( 5 . 4 ) 

Substituting Equation (5.3) to (5.4) gives • 

fbanky(m) = In a ^ x / P ^ M I i ^ M P + P n M + 2Re [X{U)H{UJ)N*{UJ)]^ 

“ (5.5) 

Finally, the cepstral coefficient Cy{k) is found by applying IFT on fbanky(m), 

that is, 

“ 1 广 

Cy{k) = — J fbanky(jn)e鄉 dm 

=去/_，{5 ‘ 

If the input speech segment x{t) does not undergo any corruption, y{t) is 

identical to x{t), and 

fbanky{m) = fbankx (m) 

= I n j ^ a r r u ^ l ^ M l j (5.7) 

Cy{k) = c 工(k) 

—冗 UJ 

= i / 加 d m (5.8) 
^ LJ 
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where fhankx(m) and Cx{k) denote the filterbank output and cepstral coefficient 

extracted from clean speech respectively. 

If there exists additive noise only, 

For all u, H(u) = 1 

fbankyim) = In j [ QwVi^“c j ) + + 2Re (5.9) 

y/Px{uj) + Pn(u) + 2Re j>e计爪 dm (5.10) 

Equation (5.10) is used to study the recognition degradation due to addi-

tive noise. IFT is a bijective transformation that fbanky{m) can be uniquely 

found by knowing Cy{k). Hence, we focus on the role of N{uj) on fbanky{m) in 

， Equation (5.9). 

Concerning how noise affects the filterbank output, there are two major 

observations. (1) Although the noise n{t) is linearly added, the filterbank output 

fhanky{m) contains the noise terms in a non-linear expression which involves 

natural-log and square-root operations. Simple linear operations, such as adding 

a compensation term, cannot convert fbanky(m) back to the corresponding 

clean filterbank output. (2) In clean speech features, only the magnitude or 

power spectrum contributes to the filterbank output, as shown in Equation (5.7). 

However, for features extracted from noisy speech, both magnitude and phase 

spectra.take part. To exactly recover the clean filterbank output from the noisy 

counterpart, it is necessary to know the complex noise spectrum N{uj). 
V 

5.1.2 Implications for Feature Compensation 

Prom the derivation shown above, the noise effects can be compensated in several 

locations in the signal model illustrated in Figure 5.1. For instance, 
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1. cepstral domain Cy{k) 

Equation (5.10) is used. Using Taylor Series Expansion [42], the square-

root term is approximated by, 

x/PxM + Pn(to) + 2Re [X{u)N*{u) 

= 厕 、 + 丨 ， … } 
V ^x(c^) 

" 1 2 P,(uj) 

^ ^ + 
3 1 Pr.{u) + 2Re[X{u)N*{u;)] 1 

十 8 P,{uj) I +...I (叫 

By further applying Taylor Series Expansion to the natural-log operation, 

Cy(k) can be approximated by a linear combination of the term {P„(a;) + 

2Re [X{uj)N*{u)]}/P^{u). 

The noise corruption can be compensated by removing the IFT coefficients 

of all terms containing {PN{uj) + 2Re [X{UJ)N*{UJ)]}/PX{UJ). However, this 

requires the knowledge of the complex spectrum N{u). 

2. filterbank domain fbanky(m) 

The compensation is highly similar to the case when it is performed in 

cepstral domain. All terms containing {P„(cj) + 2i?e [X{uj)N*(u)]}/Px{u) 

after Taylor Series Expansion should be removed from fbanky{m). 

3. magnitude domain 

Both Pn{u) and 2Re{X{u)H{uj)N*(u)} in Equation (5.3) should be sub-

tracted to obtain the clean speech spectrum. 

4. just after the summation of x{t) and n{t) 

Actually, if the complex noise spectrum is available, the noise can be 

totally eliminated by subtracting N{uj) from y(cj). 

The compensation in all domains requires the knowledge of N{u\ both 

magnitude and phase. In the last two domains, only linear compensation is 
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involved and no approximation is taken. As a result, it is much simpler and 

more accurate to do compensation in either the time or frequency domain. 

5.2 Overview of Conventional Compensation 

Methods 

In this section, a number of compensation methods are reviewed. Basically, 

they can be classified into three groups, namely, speech enhancement, feature 

compensation and model-based adaptation. Speech enhancement and feature 

compensation approximate the clean signal or features from the noisy speech by 

reducing the noise contents in a certain domain. The noise is cleaned up prior 

to the speech recognition system. The analysis delivered in Section 5.1 uses 

this approach. These two families are highly similar, they only differ from the 

other in the input-output relationship. Speech enhancement has a noisy speech 

signal y{t) as input and outputs a noise-reduced cleaner speech signal. The 

output is regarded as an approximation of the clean speech signal x{t). Typical 

examples of speech enhancement methods include Spectral Subtraction, Wiener 

Filtering and Blind Source Separation [8, 10, 46]. Feature compensation accepts 

any features extracted from noisy speech as input. The output is the modified 

features which may not be in the same domain as input features. For example, 

it is possible to have a feature compensation method which has noisy speech 

y{t) as input and MFCC Cy{k) as output. 

The following discusses some compensation methods and their pros and cons. 

• Weighted Filter Bank Analysis Filterbank analysis is one of the 

most extensively employed spectral analysis techniques in ASR. By using 

‘ a bank of highly overlapped bank-pass filters, the short-time spectral en-

velope of a input speech segment can be obtained. This measured spectral 

envelope is often sensitive to background noise. It was found that noise 

is perceptually more tolerated in the spectral formant regions than in the 

spectral valleys. The weighted filter bank analysis method emphasizes the 
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high energy parts of the log filterbank energies such that the cepstral co-

efficients become less susceptible to the noise [47, 48]. Similar ideas were 

proposed in [49’ 50 . 

speech�serial to frames� pre-emphasis and ^ I ^ 
signal y(t) parallel windowing • 

w(l) • 

l ( ； ; 7 7 7 ] 
/ I � 尿… / / , � mel tilterbank 

^ IFT/DCT ( � ^ J 

加”聊 M A \ 
个 

w(M) 

Figure 5.2: Block diagram of the weighted filter bank analysis. 

Referring to Figure 5.2, let there be M filter banks in total. Let w{m) 

‘ denote the weighting factor for filter bank m. The log filterbank energies 

are multiplied by a set of weighting factors before IFT. 

Before weighting, 

fbank{m) = In (5.12) 

After weighting, 

. fbank{m) = w(m) • In amu;Py(cv)| (5.13) 

The weighting factor w{m) is related to the SNR of the frame by, 

M 

� ^ H = M Y ^ P j (5.14) 

Pm = + (5.15) 

where SNRt and F{SNRt) denote the frame-based SNR value and a 

function of SNRt respectively. 
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F{SNRt) is a linear relationship between SNRt and the function output. 

The function output is always positive and bounded between Fmin and 

Fmax- For low SNRt, the function output is closed to Fmin'^ for high 

SNRt, the function output is near Fmax- When F{SNRt) tends to 1 and 

filterbank m has the highest energy, w{m) = 1 and w(j) = 0 for m j. 

When F(SNRt) — oo，all w(m) are equal to 1/M. 

The experimental results reported in [47, 48] show the use of weighted 

filterbank energies provide moderate improvement in medium to high SNR 

conditions. 

• Spectral Subtraction Spectral Subtraction (SS) [8] was developed 

by Boll in 1979. It has been widely used for speech enhancement and 

robust speech recognition, which may be due to its simple computation. 

As the noise is additively mixed with the speech signal, we have, 

y(t) = x{t) + nit) (5.16) 
I 

Taking the autocorrelation at both sides, assume speech is uncorrelated 

with the noise, the autocorrelation function is 

Ryir) = E{[x(t) + + r) + n{t + r)]} 

= + (5.17) 

where RX(T) and Rn{r) are the autocorrelation function of the speech 

signal and noise signal respectively. 

Taking the Fourier Transform at both sides, 

尸 � = P,{UJ) + Pn{u) 

‘ \Y{U)\^ = 剛 |2+ 剛 |2 

= (5.18) 

The output enhanced speech X(uj) is found by, 

X{iu) = [\Y{uj)\^ - l A T ( �| 2 ] i e 乂 ( 5 . 1 9 ) 
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where Zy(cj ) is the phase spectrum of y{t). If the difference |y(cj)p — 

N(uj)\'̂  is negative, it is set to 0. Although this method reduces the noise, 

it usually introduces an annoying musical noise. To further reduce back-

ground noise and eliminate musical noise, oversubtraction and spectral 

floor are adopted [9, 13]. The substraction is modified as, 

D{lj) = \Y(uj)\^ - a\N(uj)\^ (5.20) 

X{uj)\^ = (5.21) 
/3|7V(a;)p, otherwise 

V 

a > 1 (5.22) 

0 < P < 1 (5.23) 

where a is the oversubtraction factor and P is the spectral floor parameter, 

which normally take values of 1 to 4 and 0.005 to 0.06 respectively. The 

result |X(cj)| is either used for reconstructing the output speech or input 

to standard feature extraction process. 

• Missing Data Theory In missing data theory [32], time-frequency 

regions which carry reliable speech information are identified. Unreliable 

data are treated as missing. Recognition is then based on the reliable 

regions alone. 

To locate reliable regions, SNR-related criteria are often used. For exam-

ple, data is considered as missing if 

• I 义 ( 5 . 2 4 ) 

of 

|yM|-|iV(cj)| < 0 (5.25) 
A 八 

where \N{uj)\ and are the estimated noise power spectrum and 

clean speech power spectrum, respectively. 

Figure 5.3 shows the spectrogram and the identified reliable regions from 

a spoken digit sequence. The utterance is corrupted by factory noise at 10 
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Figure 5.3: Reliable regions identified from a noisy speech corrupted with fac-

tory noise at 10 dB. 

SI . 
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dB. The reliable regions found are close to the desired speech spectrogram 

as shown. 

Missing data theory is a special case under the speech enhancement meth-

ods. No speech signal or feature is generated at the end, but only informa-

tion about reliable speech regions is extracted. The information contents 

are actually similar to those obtaining from other enhancement schemes 

or compensation methods, where the estimated clean speech spectrum is 

the so-called reliable region. 

• Blind Source Separation The problem of separating the desired 

speech from interfering sources, the so-called cocktail party effect, has 

been a popular research area recently. Blind source separation (BSS) 

assumes no information about the mixing process or the sources, apart 

from their mutual statistical independence. Among various techniques 

solving this BSS problem, Independent Component Analysis (ICA) [46, 51, 

, 52] is a method which estimates a set of linear filters to separate the mixed 

signals under the assumption that the original sources are statistically 

independent. 

Although BSS is capable of solving such complicated scenarios, the system 

requirement is high. In particular, the number of microphones required 

must be higher than or equal to the number of speakers. For our single-

channel connected digit recognition task, BSS cannot be used. 

Among the compensation methods addressed, spectral subtraction, weighted 

filterbank analysis and missing data theory are closely related to each other. 

They share the same underlying principle that only spectra or features with 

high SNR are left at the end. 

If there is a mismatch between training and testing conditions, it is sensible 

to retrain the acoustic models. It is always desirable to adapt the acoustic 

models given a relatively small amount of speech from the new environment. 

This is done in practice for telephone speech where only telephone speech is used 

during training [14]. No clean and high-bandwidth speech is involved. Model-
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based adaptation modifies the acoustic models used inside the back-end decoder 

to adapt to the input noisy speech, by using statistics on noise or noisy speech 

14, 53]. The most straightforward method is to re-train the whole acoustic 

model with speech in the new environment. The recognition system with model 

selection proposed in Chapter 3 is also under this type. The following describes 

a classical example of model-based adaptation methods, which is parallel model 

combination (PMC). • 

• Parallel Model Combination (PMC) By using the acoustic mod-

els trained with clean speech and a noise model, the distributions of cor-

rupted speech can be approximated. This approach saves much compu-

tation, as the approximation is done on model-level, where the whole set 

of training data is not required on-line. This is the idea behind parallel 

model combination (PMC). PMC assumes the distribution of clean speech 

and noise is a mixture of Gaussians and further uses distribution of mix-

tures of Gaussian to represent the distribution for noisy speech. Figure 5.4 

illustrates how PMC obtains the noisy speech distribution with the two 

separated models. 

Assume that the feature vector is in the MFCC representation. The clean 

speech model and noise model are first transformed back to the log filter-

bank domain by using DFT or inverse discrete cosine transform (IDCT). 

Then the corresponding spectral values are found with an exponential 

operation. The resultant models are in linear spectral domain at this mo-

ment. They are combined by simply adding them together to generate 

the distribution for noisy speech. Finally, the distribution is converted 

back to the cepstral domain by following the standard feature extraction 

process. 

PMC generally provides satisfactory performance of noisy speech recog-

nition. For stationary or slow-varying noises, only little computation cost 

is incurred. For fast-changing noises, PMC is computationally expensive. 

It is assumed that both the clean speech and noise are normal-distributed 

and their power spectra are log-normal. After the combination, the sum 
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Figure 5.4: Block diagram of parallel model combination. 

is also modelled by a log-normal distribution. Nevertheless, the sum of 

two log-normal distributions is no longer log-normal. 

For model-based adaptation methods, the recognition rate for clean speech 

is often sacrificed for the improvement of recognition at low SNRs. This is 

because the model discriminability is decreased as a consequence of the large 

distribution variance, after incorporating the noise model. To have satisfactory 

recognition under various SNR conditions, feature compensation is adopted for 

our recognition system. In addition, spectral subtraction is used as a benchmark 

for evaluating the proposed method. 
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5.3 Feature Compensation by In-phase Feature 

Induction 

A spectral feature compensation method called In-phase Feature Induction (IFI) 

is proposed to improve the robustness of ASR. IFI accurately obtains the corre-

sponding clean speech features from a noisy speech corrupted by additive noise. 

By converting to clean speech features and keeping the high discriminability, 

it is designed to give a much better improvement than the recognition system 

with model selection proposed in Section 3.3. 

The compensation problem is first reformulated and particular interests have 

been put on the phase difference between complex spectra of noisy input and 

interfering noise. This leads to a reasonable assumption for this phase difference 

and gives an accurate spectral estimation. From the approximately-clean spec-

trum, the recognition degradation under low SNRs is significantly reduced. In 

this section, we will address the deficiency of Spectral Subtraction, describe the 

, motivation of this new compensation method and compare with other studies. 

Afterwards, the details of mathematical framework will be shown. 

5.3.1 Motivation 

Among various feature compensation methods, Spectral Subtraction (SS) has 

been widely used for both speech enhancement and robust speech recognition. 

SS requires simple computation only and keeps high discriminability between 

recognition units.- However, SS is unable to derive the exact clean speech spec-

trum, even if the noise magnitude spectrum is known. 

If the noise magnitude spectrum is known a priori, the average word error 

rate of a digit string recognizer ranges from 11% to 88% for different tuning 

parameters, such as the spectral floor or oversubtraction factor [12]. It is be-

cause the phase relationship or the correlation between spectra of clean speech 

and interfering noise is neglected. These limit the usage of SS on ASR, espe-

cially when the noise estimation is not accurate enough. In the following, the 

mathematical details of SS are reviewed. 
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For 

y{t) = x{t) + n{t) (5.26) 

then 

Ry{r) = + n(t)] [x{t + r) + n{t + r ) ] } 

=E[x(t)x(t + r)] + E[n{t)n(t + r)] + E[x{t)n{t + r)] + E[n{t)x{t + r)； 

= R X { T ) + Rn(R) + E[n(t)x{t + r)] + E[x{t)n(t + r)] (5.27) 

In SS, it is assumed speech is uncorrelated with noise, so that 

Ryir) = i?a:(T) + i?n(T) (5.28) 

\Y{uj)\^ =丨 X(a;)|2 + |iV(u;)|2 (5.29) 

This assumption is only true when a sufficient number of samples is available in 

x{t) and n{t). Within a typical frame duration, the number of samples is 160 

. -480 (20 ms with sampling frequency 8 kHz to 30 ms with sampling frequency 

16 kHz). Due to the small number of samples, even if the speech and the 

noise are uncorrelated, the numerical values computed for E[n{t)x{t + r)] and 

E[x{t)n(t + T)] in Equation (5.27) are non-zero. Hence, both (5.28) and (5.29) 

are not accurate representations when the sample size is small. 

Taking the Fourier Transform of both sides in Equation (5.26), we have 

= X(U) + N{UJ) (5.30) 

|y(u;)|2 = [X(uj)-^N{uj)][X*{uj) + N*{uj)] 

=I^MP + \N{uj)\^ + 2Re [X{lu)N*{u)] (5.31) 

It is seen that, the cross-term 2Re [X(a;)iV*(a;)] is omitted in Equation (5.29). 

To accurately restore the clean speech spectrum, this cross-term accounts for 

the non-zero correlation between x{t) and n{t) (equivalent to ^{E[n(t)x{t + 

T)] + E[x{t)n(t + r)]}) , which is highly essential for the accurate estimation of 

This explains why SS cannot derive the exact clean speech spectrum, 

even if the noise power spectrum is known a priori. 
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The term 2Re [X{uj)N*(cc；)] not only bears the power spectrum of x{t) and 

n(^), but also the information of the phase spectra. Its magnitude depends on 

X(a;)| and |iV(cj)| and their angles. Sometimes, it can be as large as the speech 

power; at another instant, it can be zero. In most cases, only the power spectra 

are estimated and the phase spectra are unknown, making the exact restoration 

difficult. 

To overcome this problem, a previous research study [54] proposed a method 

called smoothing of time direction. This method is built on top of SS. It con-

siders the average of noisy speech power spectra over a short period of time as 

the estimated noisy speech power spectrum for current time index, so as to re-

duce the influence of the cross-term 2Re [X(a;)7V*(u;)]. The noisy speech power 

spectrum is expressed in terms of, 

d = 0’1，...’D-1 (5.32) 

Y A = Y (5-33) 
d 

|l>，t)|2 = (5.34) 
d 

where D and Pa are the number of frames for averaging and the weighting factor 

for \Y{u,t- respectively. 

Assuming the speech and noise are stationary within the period D, substi-

tuting Equation (5.31) into (5.34) gives 

d d 
. + Y, [X(UJ, t - d)N*{uj, t - d)] (5.35) 

d 

\X{u, i)|2 (5.36) 
� d 

(5.37) 
d 

+ Y, Pd2Re [X(uj, t - d)N*{uj, t — d)] (5.38) 
d 
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The cross-term 2Re [X{u, t — d)N*{u, t — d)] of successive frames is assumed to 

be independent of each other. This leads to, 

Y^ Pd2Re t - d)N* {u, t - d)] (5.39) 
d 

Equation (5.38) becomes, 

\Y{uj,t)\^ . (5.40) 

Finally, \Y{uj,t)\'^ is used to replace |y(ct;)p in Equation (5.20) for noise reduc-

tion. 

This smoothing method uses a smoothed noisy spectrum and reduces the 

correlation between the speech signal and the noise. However, besides the over-

subtraction factor and noise floor, there are two other parameters required to 

be fine-tuned for proper averaging. They are Pd and D. In [54], it was reported 

that the optimal value of D varies under different SNR conditions. 

An alternative approach is to apply a low-pass filter on the SS output 
r 

so as to reduce the errors made during subtraction [55 . 

5.3.2 Methodology 

The failure of SS for noise compensation is due to the improper use of \N{uj)\'^ 

and the coarse estimate of it. In previous section, the importance of the cross-

term 2Re is discussed. The following describes the proposed In-

phase Feature Induction (IFI) method and illustrates how a better utilization 
I 

of |iV(a;)|2 benefits spectral estimation and noisy speech recognition. 

Note that the complex spectra of y{t), x{t) and n{t) are related by, 
\X{u;)\^ = \Y{u)\^ - |iV((j)|2 - 2Re [X{uj)N*{u)] (5.41) 

、 

Within a frame, which is a short period of time, the removal of the critical 

cross-term 2Re [X{UJ)N*{UJ)] is inappropriate and results in a poor estimate of 
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On the contrary, we suggest the following reformulation, 

|X(a;)|2 = 丨2-I等 )|2-2i?e[X(a;)7V*(cj) ] 

=|y(u;)p + - 2Re [Y{u)N*{uj)] 

= | 1 » 丨 2 + | 等 ) | 2 

-2\Y(uj)N(uj)\cos{ZY(u) - ZN(uj)} • (5.42) 

where and ZN{uj) are the phase spectra of y{t) and n{t) respectively. 

Figure 5.5 depicts the plot of the phase difference ZY{U)-ZN{(JJ), together with 

the corresponding cosine values of a SNR 10 dB noisy speech. For illustration 

purposes, the respective clean speech speech is also shown. 

clean speech waveform 
I I I 1 1  

: ： 嘗‘,.. . .•隱 -

• - •[： , , • 丨 -

0 0.2 0.4 0.6 0.8 1 t / s 

phase difference ZY - ZN in degree 
I 1 1 ^ 1 1 n 1 1 1  

500 - -

0 

-500 - -
1 1 1 1 1 I I I I I  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t / s 
cos(ZY - ZN) 

,I I I I I 1 1 1 1 1 1  

:| • 爾 1 
一 1 : ‘ y 

— I — I — I — J I I I I I I “ 
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Figure 5.5: Plots of the phase difference and the corresponding cosine values 

versus time. 

During non-speech periods, the phase difference ZV(cu) — ZN{U) is always 

negligible, since Y{uj) « N{lu). Thus, we assume Y{U) and N(U) are always 
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in-phase and let the phase difference be 0. Then, 

|X(cc;)|2 = + —2|y(cj)7V(u;)|cos(0) 

= 等 ) l ] 2 (5.43) 

Equation (5.43) gives the essence of the proposed method. IFI is different 

from SS in that speech signal is not necessarily reconstructed, but the spectral 

features are well compensated by the reformulation and the phase (cross-term) 

contribution. 

While the in-phase assumption between Y{U) and N{U) is highly accurate 

in non-speech periods, ZX{UJ) — ZN{UJ) is always unknown. Therefore, the 

phase difference Z.Y{LJ) — Z N { U ) is used, instead of ZX{LJ) - ZN{UJ) shown in 

Equation (5.41). 

Comparing with the smoothing technique described in Section 5.3.1, IFI is 

supported by both mathematical derivation and the accurate in-phase relation-
r 

ship between Y{UJ) and N{UJ). The averaging operation is only a mean to reduce 

the influence of the cross-term 2Re but IFI directly manipulates 

it to improve the accuracy of spectral estimation. 

The following attempts to compare and contrast the results attained by SS 

and IFI. Figure 5.6 gives the compensated results using exact at fre-

quency around 938 Hz for the same noisy speech shown in Figure 5.5. The 

speech signal presents from 0.4 s to 0.8 s. Both SS and IFI perform well dur-

ing speech period and reduce the background noise level. It is observed that 

IFI compensation greatly outperforms SS in non-speech periods. This shows 

the phase difference of the noisy spectrum Z.Y(UJ) - Z.N{U) and the in-phase 

assumption are critical. 

To study whether IFI and SS is sensitive to the noise power, the IFI com-

pensated magnitudes from different SNR inputs are plotted in Figure 5.7(a). 

Figure 5.7(b) shows the compensated magnitudes from SS with the same set of 

inputs. 
Comparing the compensated magnitudes by the two methods, IFI has reli-
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Figure 5.6: Magnitude versus time from the clean speech, noisy speech, SS-

compensated speech and IFI-compensated speech. 

able compensation at all SNRs and similar performance is observed, no matter 

how strong the noise is. For SS, residual noise is found in the compensated 

magnitude, especially during non-speech periods. When the SNR decreases, 

the estimated clean magnitude spectrum is mostly found by the noise floor and 

residual noise remains substantial. 
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Figure 5.7: Magnitude versus time at different SNRs. 
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5.4 Compensation Framework for Magnitude 

Spectrum and Segmental Energy 

To evaluate the performance of IFI for recognition, a front-end compensation 

framework is suggested below. The compensation process is carried out in the 

magnitude spectrum domain. Two kinds of compensation are adopted. Namely, 

• spectral compensation 

The clean speech magnitude spectrum is estimated by the proposed IFI 

method. 

• energy compensation 

Besides the magnitude spectrum, the energy term E in the MFCC feature 

vectors is also compensated. This is the energy compensation. By using 

the Parseval's theorem [56] for each segment, 

= I 等 ( 5 . 4 4 ) 
t 2 冗 

The clean speech energy term E is calculated by, 

^ = I ^ M N ^ l } (5.45) 

If the two energies are equal, E is set to 0. 

IN(co)|2 
. 小 

noisy speech • FFT . IFI 
r ^ framing > Y(co) ：̂  

yit； ° compensation 
/•TN I I 

‘ E 
〈compensa ted standard ^  

MFCC vectors MFCC extraction ^  

IX(co)l 

Figure 5.8: Block diagram of the noise compensated front-end system. 
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The delta and acceleration coefficients are computed with the compensated 

MFCC vectors. Figure 5.8 shows a block diagram of the noise compensated 

framework. 

5.5 Recognition Experiments 

The test set A in AUR0RA2 is used for the recognition experiments. Typical 

MFCC representation is used in the feature extraction part, which is identical 

to the one stated in Chapter 2, except rectangular window is used and no pre-

emphasis is performed. 

Although hamming window and pre-emphasis are used in standard MFCC 

extraction, they are not included in the compensated framework. This is because 

the mathematical derivation of IFI requires Y{uj) exactly equal the summation 

of X(u；) and N{u). Generally speaking, N{uj) is obtained by some noise estima-

tion methods, without Hamming window or pre-emphasis. As a consequence, 

rectangular window is used instead and no pre-emphasis is performed. 

Two sets of recognition experiments are performed to evaluate the perfor-

mance of IFI for noisy speech recognition. A reference noise power spectrum 

iV(a;)|2 is required for the compensation. Two estimators are adopted, they are 

the known noise spectrum and the weighted average method. 

The known noise spectrum is calculated by subtracting the noisy speech 

waveform from the corresponding clean speech waveform and finding the resul-

tant periodogram. It is used as an ideal noise estimator. On the other hand, 

the weighted average method provides a simple and coarse estimate. It is used 

to show how the recognition performance is, if a poor noise estimate is applied. 

The training data set consists of 8440 clean utterances, which is the iden-

� tical training set used in the baseline system. Two benchmark systems are 

chosen, namely the baseline system and the spectral subtraction system. The 

baseline system refers to the standard speech recognition system without any 

noise compensation or model adaptation. The spectral subtraction system is 

the compensation system that uses SS instead of IFI. 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.96 98.85 98.54 99.11 98.87 
20 95.15 79.78 92.04 95.46 9 0 . 6 1 

15 85.54 60.91 75.63 89.29 77.84 
10 66.32 39.72 51.06 71.64 5 7 . 1 9 

5 39.12 21.07 29.29 43.01 3 3 . 1 2 

0 17.50 6.95 12.79 16.75 13.50 
-5 9.58 2.36 7.49 7.71 6.79 

J 

average between 0 and 20 dB 60.73 41.69 52.16 • 63.23 54.45 

Table 5.1: Word accuracy of the baseline system. 

The recognition accuracy of the baseline system is shown in Table 5.1. The 

overall average is calculated as the average over SNRs between 0 dB and 20 dB. 

Table 5.2 and Table 5.3 show the results of the SS compensation system with 

of the known noise spectrum and estimated from the weighted average 

method respectively. 

Comparing the three sets of recognition results, the SS compensated system 

with known \N{uj)\^ always provides improvement over the baseline system, 

although it degrades gradually when the noise level increases. When |iV(u;)p 

is not known, but estimated by the weighted average method, its recognition 

performance is significantly affected by the wrong estimate and the result is 

even worse than the one from the baseline system in most cases. 

Table 5.4 and Table 5.5 show the recognition accuracy from the IFI compen-

sation system with |iV(a;)|2 of the known noise spectrum and estimated from 

the weighted average method respectively. 

Regarding the recognition results of the IFI compensation system, for known 

there is nearly no degradation found when SNR decreases and an accu-

racy of 97% is still achieved when SNR is equal to -5 dB. With the rough noise 

estimation from the weighted average method, the recognition performance is 

better than the one from the baseline system, especially when the SNR is above 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.96 98.85 98.54 99.11 9 8 . 8 7 

20 98.74 98.52 97.97 98.52 9 8 . 4 4 

15 98.37 98.16 97.70 98.40 9 8 . 1 6 

10 97.61 97.58 97.32 97.69 9 7 . 5 5 

5 96.41 95.71 95.94 96.33 9 6 . 1 0 

0 93.00 91.02 91.65 93.40 9 2 . 2 7 

-5 82.62 77.21 81.09 85.25 8 1 . 5 4 

average between 0 and 20 dB 96.83 96.20 96.12 96.87 9 6 . 5 0 

Table 5.2: Word accuracy of the SS compensation system with known noise 

spectrum. 

r 

test A 

SNR/ dB subway babble car exhibition average 

clean 98.43 98.67 98.09 98.64 98.46 
20 84.92 68.59 90.22 84.45 82.05 

71.42 52.00 79.78 71.83 68.76 
10 50.81 33.43 58.31 46.93 47.37 
5 29.01 17.74 31.94 23.48 25.54 
0 13.08 8.65 11.93 9.07 10.68 

� -5 7.86 6.80 7.31 6.82 7.20 

average between 0 and 20 dB 49.85 36.08 54.44 47.15 46.88 

Table 5.3: Word accuracy of SS compensation system with noise estimate from 

the weighted average method. 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.96 98.85 98.54 99.11 98.87 
20 98.80 98.67 98.18 98.95 98.65 
15 98.56 98.61 98.27 98.92 9 8 . 5 9 

10 98.46 98.40 98.12 98.89 98.47 
5 98.22 98.58 98.06 98.49 9 8 . 3 4 

0 98.28 97.91 97.02 98.40 97.90 
-5 97.11 96.98 96.96 97.69 9 7 . 1 9 

average between 0 and 20 dB 98.46 98.43 97.93 • 98.73 9 8 . 3 9 

Table 5.4: Word accuracy of IFI compensation system with known noise spec-

trum. 

0 dB. If the noise spectrum is estimated from a different method, such as the 

histogram technique or the QBNE, it is expected that the result of IFI will 

" be better than the weighted average method, due to the continuous and close 

tracking of noise estimation. 

Comparing the average recognition accuracy of the two compensation sys-

tems, when \N{u)\'^ is known a priori, the performance of the SS compensation 

system is still affected by the substantial noise level in low conditions. As shown 

in Figure 5.6 previously, the SS-compensated spectrum still contains consider-

able amount of noise during non-speech periods even the noise estimate is exact. 

Besides, the rate of degradation is found to be much faster than the one from 

the IFI compensation system. Note that the inputs to the two systems are 

totally-identical, hence, SS cannot take the full advantage of the accurate noise 

estimation for ASR. On the other hand, IFI provides significant improvement 

with the help of the phase difference information. When the SNR drops to a low 

value, there is still some negligible loss in accuracy. This is due to the unknown 

phase relationship between Y(uj) and N{uj), which is only necessary for exact 

spectral restoration, but may not be needed for ASR. 

Since the magnitude trajectory is well preserved at the beginning and the 
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test A 

SNR/ dB subway babble car exhibition average 

clean 98.96 98.61 98.24 98.73 98.64 
20 92.72 87.64 96.54 94.08 92.75 
15 81.49 71.89 92.28 90.28 83.99 
10 60.95 49.85 76.59 77.38 6 6 . 1 9 

5 33.40 22.25 50.28 51.81 39.44 
0 10.76 0.60 21.72 25.49 1 4 . 6 4 

-5 7.73 -4.42 12.16 13.44 7 . 2 3 

average between 0 and 20 dB 55.86 46.45 67.48 . 67.81 59.40 

Table 5.5: Word accuracy of IFI compensation system with noise estimate from 

the weighted average method. 

end of speech, it is expected there should be a great reduction in the number of 

insertion, deletion and substitution errors from the IFI compensation system. 

This is verified in Figure 5.9. The statistics are taken from the experiments 

with known |iV(cj)|2. 

With either compensation method, IFI or SS, the average number of error 

of any type is reduced. When the SNR decreases beyond 10 dB, the amounts 

of substitution, deletion and insertion found in the SS compensation system 

quickly increase. On the contrary, only slight increases are found in the IFI 

compensation system under the same situation. 

The average number of substitution, deletion and insertion errors under four 

types of noise are listed in Table 5.6, Table 5.7 and Table 5.8 respectively. These 

figures are averaged over more than 3200 words. Among the four types of noise, 

the baseline system suffers from excessive number of substitution and insertion 

error when it is a babble noise. Owning to the speech-like property of babble 

noise, substitution and insertion errors are highly probable. This phenomenon, 

however, in not encountered in the other two systems and the IFI compensation 

system always gives the lowest number of errors under different noise types. 
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average no. of substitution errors vs SNR 
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average no. of insertion errors vs SNR 
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Figure 5.9: Average number of errors versus SNR. 

. noise type baseline SS IFI 

subway 433.71 99.43 24.14 

‘ babble 868.50 119.86 26.29 

car 568.86 120.86 34.29 

exhibition 563.57 89.43 16.57 

overall average 608.66 107.39 25.32 

Table 5.6: Average number of substitution errors under four types of noise. 
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noise type baseline SS IFI 

subway 504.43 24.00 13.86 

babble 199.86 36.00 13.86 

car 579.43 32.43 16.14 

exhibition 379.86 24.43 11.57 

overall average 415.89 29.21 13.86 

Table 5.7: Average number of deletion errors under four types of noise. 

noise type baseline SS IFI 

subway 401.14 36.14 16.00 

babble 898.29 47.14 16.57 

car 447.57 37.29 20.71 

- exhibition 339.14 31.14 16.14 

overall average 521.54 37.93 17.36 

Table 5.8: Average number of insertion errors under four types of noise. 

110 



Chapter 5. Feature Compensation: Algorithm and Experiment 

Referring to Figure 5.9(b), the number of deletion errors reported in the 

IFI compensation system is roughly the same, independent of the SNR. This 

is believed to be one of the major benefits bought from the accurate spectral 

estimation in IFI. Deletion error refers to the case when a correct word is omitted 

in the recognized sequence. As IFI closely-tracks the noise power in non-speech 

durations, including the between-word periods, the word boundaries are clearly 

defined and hence, the deletion errors are significantly reduced. • 

When the unknown \N(uj)\'^ is estimated by some means, such as the 

weighted average method, the noise estimation accuracy is important to the 

recognition performance. With rough estimation from the weighted average 

method, the SS compensation system is greatly affected and becomes worse than 

the baseline, but the IFI compensation system is only degraded marginally. It 

is believed that the proposed compensation method requires an estimator with 

lower accuracy for \N{uj)\'^ than SS needs, to provide similar recognition perfor-

mance. 

.. When the SNR is below 0 dB in subway and babble noise, IFI is found to 

be not working as well as SS for estimated noise spectrum. This may due to 

the non-stationary property of the noises and the inaccurate estimate of noise 

spectrum. The estimated clean spectrum in SS is often set to the spectral 

floor after subtraction, where the distortion from compensation is minimized. 

Provided the noise estimation is accurate enough, IFI compensation is reliable, 

as shown in Table 5.4. 

Regarding the methodologies of the two methods, IFI does not require any 

parameter tuning, for instance, the oversubtraction factor and the noise floor. 

The IFI compensation system uses the same approach as other speech en-

hancement schemes, where the noisy features are converted back to the clean 

� features. In Section 3.3’ a simple recognition framework is proposed to select the 

most appropriate acoustic model for recognition, according to the noisy speech 

characteristics. Comparing the performance of the two systems (Table 5.4 and 

Table 3.3), the accuracies of the IFI system are always higher. This is especially 

prominent in low SNR conditions. 
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Chapter 6 

Conclusions 

6.1 Summary and Discussions 

This thesis addresses a real world problem. Even if a speech recognition system 

performs remarkably well in laboratory evaluations, when it is applied in prac-

tical situations, such as under a noisy acoustical environment, it often performs 

“ not nearly as well, sometimes with dramatic degradation. To deal with this 

problem, we consider a feature compensation which exploits the phase relation-

ship between the input noisy speech and the background noise to find the clean 

speech magnitude spectrum. The phase information contributes to the corre-

lation between the two spectra, which essentially affects the input magnitude 

spectrum. 

It has been shown by experiments that the proposed In-phase Feature Induc-

tion (IFI) compensation method achieves a much higher recognition accuracy 

than the baseline system and the widely used Spectral Subtraction (SS) does. 

The average recognition accuracy of the baseline system is 54%. With the use 

of the IFI compensation method and known noise power spectrum, this figure 

is improved to 98%. Although the SS compensation system always brings im-

provements over the baseline, the improvement becomes smaller and smaller 

when the SNR decreases. For the IFI compensation system, when the SNR 

decreases, the recognition performance still remains satisfactory and the lowest 

average accuracy observed is 97% (the lowest average accuracy found in the SS 
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compensation system is 82%). In practice, the noise power spectrum needs to be 

estimated. From the experimental results, the proposed method is only slightly 

affected by the accuracy of the noise estimation and the recognition results are 

always better, in compared with the baseline and the SS compensation system. 

Likewise, the principle of the proposed method is entirely based on the math-

ematical derivation of the noisy speech spectrum, such that the clean speech 

spectrum, noise spectrum and their correlation are all considered; 

In addition to the new feature compensation method proposed, other im-

portant studies in this thesis include, 

• reasons of performance degradation are explored in term of (1) degree of 

matching between training and testing conditions and (2) deviation of the 

noisy speech features from the clean speech features 

• a simple recognition framework with model selection capability is firstly 

introduced to increasing the degree of matching 

• a statistical-based noise estimation method is proposed, which is designed 

to prevent the overestimate of noise power and provide a good tracking at 

speech harmonic frequencies. It can used as an individual noise estimation 

for speech signals in other applications. 

Both the simple recognition framework with model selection and IFI com-

pensation method achieve satisfactory improvement over the baseline and the 

IFI system provides superior recognition under most cases. 

Several factors are found to be extremely critical to the recognition per-

formance under noisy conditions. Firstly, noise estimation plays an impor-

tant role in feature compensation. As shown in Section 5.5, although the SS 

“ compensation system achieves reliable recognition performance when |A/'(ci;)p is 

known, it is so sensitive to the noise estimation accuracy and deteriorates to be 

worse than the baseline system when only a rough estimator is used to provide 

There is similar observation in the IFI compensation system, although 

the degradation is much smaller. 
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The location where the compensation takes place affects the way and the 

recognition performance to some extent. Generally speaking, model-adaptation 

method brings moderate improvement over the baseline and the performance is 

often less sensitive to any noise estimation accuracy. Model-adaptation is often 

used inside the back-end decoder. On the other hand, speech enhancement 

and feature compensation have shown promising noise reduction capability and 

better recognition performance than model-adaptation methods, provided noise 

estimation is accurate. 

Recently, there are some robust speech recognition systems that use multi-

ple microphones with more than one input signal or work together with some 

image processing such as lip reading to extract reliable visual features for speech 

recognition. 

6.2 Future Directions 

Although a spectral feature compensation method is proposed and it shows 

attractive recognition improvement, there are still a number of questions that 

remain unanswered. For example, 

• In Chapter 3, we have tried to investigate how the recognition performance 

be affected by matching the training and testing conditions in term of 

noise type and SNR. It would be very useful if an analytical expression is 

formulated to represent the degree of matching in term of noise type and 

SNR. . 

• A noise estimation method M-R T-F QBNE is suggested in this thesis. 

It emphasizes the noise estimates at speech harmonic frequencies. During 

‘ the noise estimation, the same method is applied for both voiced and 

unvoiced segments. However, speech harmonics exist in voiced segments 

only. Hence, it may be necessary to have a voiced/ unvoiced detection in 

the beginning. 

• When people speak in a noisy environment, not only does the recorded 
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speech sum up the noise signal, but the pitch and frequency components 

also change. These variations are collectively called the Lombard effect 

57]. These indirect influences of noise can be as great as the case when 

both speech and noise are recorded. The practical scenario is only realized 

by considering these Lombard effect together with the signal model used 

in Section 5.1. 
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