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本論文硏究Paillier密碼系統。大部分密碼系統根據的活板門函數爲RSA或離算 

對數問題(discrete logarithm)�Paillier 硏究別的活板門函數——Composite degree 
residuosity class ° Paillier密碼系統的安全性以RSA問題爲依歸，而其特性對密 

碼學十分有用° 

身份碼密碼驗證(Identity-based identification)系統讓用戶識別被驗證者的身份°根 

據Paillier系統，本論文提出數個身份碼密碼驗證程序。我們提出的程序可用作 

電子簽署系統。同時’我們把一個現行的身份碼密碼系統融入我們的系統中。 

我們並爲系統的安全性提供理論上的證明。 



Abstract of thesis entitled: 

Identity-Based Cryptography from Paillier Cryptosystem 

Submitted by AU Man Ho Allen 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in June 2005 

Majority of cryptographic systems relies on one of the two trap-

door mechanism, namely, RSA and discrete logarithm. Paillier 

studied cryptosystem based on other trapdoor mechanism, the 

composite degree residuosity class, and proposed the Paillier 

cryptosystem. 

This dissertation studies the Paillier cryptosystem. Although 

it turns out that Paillier cryptosystem relies on the difficulty 

of computing the RSA problem, the trapdoor mechansim from 

Paillier is useful for many applications. 

Identity-based identification schemes allows users to prove 

their identities to verifiers. Several efficient realizations of the 

concept, based on Paillier Cryptosystem, are being proposed. 

Furthermore, our constructions can be turned into identity-based 
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signature schemes easily using the Fiat-Shamir heuristic. We 

also reformat the identity-based encryption scheme from Cocks 

to make it compatible with our setting. 

We provide evidence that our constructions are secure by pre-

senting reduction proofs in the random oracle model. Security 

of our constructions depends on well-studied hard problems. 
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Chapter 1 

Introduction 

Diffie and Hellman started the revolution in cryptography with 

their classic paper "New Directions in Cryptography"[14] in 

1976. They invented the concept of public key cryptography 

and make secret communication possible over insecure channel 

without a prior exchange of a secret key. 

Consider the situation when Alice wishes to communicate 

with Bob over an insecure channel. In public key cryptography, 

Alice request Bob to send his public key e to Alice first. She 

then encrypts the message using e. No one other than Bob 

can decrypt the message because only he know the private key 

d. In this way, they can communicate secretly over any public 

channel. 

However, opponent Oscar can still defeat the system by im-

personating Bob and send his own public key e' to Alice when she 
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CHAPTER 1. INTRODUCTION 2 

request for Bob's public key. He can then intercept and decrypt 

the message Alice encrypted using e'. Therefore, it is necessary 

that Alice must be convinced that she is encrypting under the 

legitimate public key of Bob. The use of digital certificate is one 

solution to the problem. Instead of sending Alice Bob's public 

key, Bob can send his digital certificate that contains his public 

key. The solution is, however, somehow tedious. 

In 1984, Shamir [39] proposed the idea of using the identity 

of the recipient as public key directly. This is known as identity-

based cryptography. Back to our example, when Alice wishes to 

communicate with Bob, she simply encrypt the message using 

the bit string “ Bob" as public key and thus eliminate the request 

of public key or digital certificate. 

On the other hand, the asymmetry of key also make it pos-

sible for the development of digital signature. Here, the private 

key is used to sign a message and the public key is used to verify 

the signature. A closely related concept is identification proto-

col for which the owner of a public key shows the verifier that 

he is the legitimate owner by proving that he knows the secret 

key correspond to the public key. 

Public key cryptography has been a very active research area 

in the academia. Many realizations of encryption scheme and 
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digital signature scheme were proposed. Paillier encryption and 

signature scheme [32] is one of which being proposed. Based on 

these primitives, many more complex systems are being devised. 

This dissertation is about Identity-based identification scheme 

based on Paillier cryptosystem. The rest of this thesis is or-

ganized as follow. Chapter 2 provides the mathematical and 

cryptographical background. This includes number theory, Al-

geria and complexity theory. A brief introduction to public key 

cryptography is also given. 

In Chapter 3 we talk about the Paillier cryptosystem for 

which our results are based on. We talk about the background 

of Paillier cryptosystem and outline what it is. Then we discuss 

several encryption schemes related to Paillier cryptosystem. 

Chapter 4 is about Identity-based cryptography. We review 

Identity-based encryption scheme, signature scheme and identi-

fication scheme. Cocks' identity-based encryption scheme[ll] is 

also discussed here. 

In Chapter 5 we presented our constructions of identity-based 

identification scheme from Paillier cryptosystem. We also refor-

mat Cocks' identity-based encryption scheme in Paillier setting. 

We concluded in Chapter 6 by giving certain possible future 

research directions. 
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• End of chapter. 



Chapter 2 

Preliminaries 

Summary 

This chapter introduces topics of complexity theory, 

number theory and cryptography that will be used in 

subsequent chapters. Readers interested in the theory 

of cryptography will find Oded Goldreich's book “ Foun-

dations of Cryptography" [18] and Wenbo Mao's book 

"Modern Cryptography: Theory and Practice" [25] help-

ful. 

2.1 Complexity Theory 

Let A be an algorithm. By 乂(.）(resp. 乂(.，...，•)）we denote 

that A has one input (resp. several inputs), y — A{x) denotes 

5 



CHAPTER 2. PRELIMINARIES 6 

that y was obtained from algorithm A on input x. 

In complexity theory, problems are classified by the most ef-

ficient algorithm that solve them. Efficiency of an algorithm is 

measured by the resources required to solve the problem. Time 

complexity (resp. space complexity) of an algorithm refers to 

the number of primitive steps (resp. memory) required to solve 

the problem. 

Standard asymptotic notation is used to compare running 

time of algorithms. By / (n ) = 0{g{n)) we denote that there 

exists some positive constants c, no such that for all n > no, 

0 < f{n) < cg{n). That is, f is bounded asymptotically by 

g. If g{n) = 0{f{n) holds, then / (n ) = n(g(n)). Further 

more, if f(n) = 0(g(n)) and g(n) = 0(f(n)), then we write 

f(n) = 0(g(n)). On the other hand, f(n) = o(g(n)) means 

that the upper-bound is not asymptotically tight. That is, for 

any positive constant c, there exists an integer tiq such that 

0 < / (n ) < cg{n) for all n > Uq. 

Let A be an algorithm with running time of A being 0(exp(c+ 

for some positive constant c, a, satisfying 0 < 

a < 1 with respect to input size n. We say that A is polynomial-

time if Q； = 0, exponential-time if a = 1 and sub-exponential 

time otherwise. 
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2.2 Algebra and Number Theory 

Number theory plays an important role in public key cryptog-

raphy. We review some of the basic facts that shall be used in 

subsequent sections. 

2.2.1 Groups 

A group is a non-empty set S together with a binary operation 

* that maps 5 x 5 to 5 satisfying the following properties. 

• Associative: {a ^h) ^ c = a ^ {h ̂  c) Va,b,c e S 

• Existence of Identity: 3u G S s.t. 冬 u = u 本 a = a 

• Existence of Inverse: Va G 5, 36 G 5 s.t. a ^ b = u e S. b 

is called the inverse of a 

In addition, if a * 6 = 6 * aVa, 6 G 5, then it is called a com-

mutative (or abelian) group. If the binary operation is called 

addition (denoted by + ) ’ the identity element is denoted by 0 

and inverse element of a is denoted by -a. On the other hand, 

if the operation is multiplication, the inverse of a is denoted by 

1/a or a—i. We use the notation a几 for element a multiplying 

itself n times and to denote element a—i multiply itself by 

n times. 
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Let G be a group. denotes the number of elements G. G 

is finite if \G\ is finite and G is cyclic \i 3g ^ G s.t. \/a e G 

3x e Z s.t. a = g工,g is called generator of G and we can write 

{g) = G. The order of an element a, denoted by ord(a), is the 

smallest positive integer n such that a" 二 1. A group H is said 

to be a subgroup of another group G, denoted hy H C G, if H 

and G shares the same binary operation and \/a e H,a e G. 

2.2.2 Additive Group Z^ and Multiplicative Group Z* 

One important group in cryptography is the set of integers mod-

ulo n together with addition modulo n. This group, denoted by 

Zn, is abelian. Another important group Z* is formed by the 

set of positive integers smaller than n and relatively prime to n 

with multiplication modulo n. It is obvious that = n and 

Z* I = (j){n) where the Euler totient function is defined as 

follow. 

Definition 2.1. The Euler totient function 0(n) for any positive 

integer n is (j){n) = |{a|l < a < n, gcd{a, n) = 1 } . 

For n = where Pi are the prime factors of n, (j){n) 

can be computed by 

<t>{n) = n\{(l-llvi) 
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We have the following theorems regarding 

Theorem 2.2 (Euler's Totient Theorem). 

… = 1 mod n 

for all a relatively prime to n. 

In particular, if n is a prime number, we have the Fermat's 

Little Theorem. 

Theorem 2.3 (Fermat's Little Theorem). 

a^-i = 1 mod n 

for all n \ a where n is prime. 

2.2.3 The Integer Factorization Problem 

The security of many cryptosystems, such as RSA[37], Rabin[35], 

to name a few, relies on the hardness of the integer factorization 

problem. We first describe when we consider a problem to be 

hard in an rather informal manner in the following definition. 

For a more formal treatment, see [25 . 

Definition 2.4. A problem is said to be easy when there exists 

an algorithm that solves the problem with running time that is 

polynomial in size of the input. A problem is hard when no such 

algorithm exists. 
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Definition 2.5 (Integer Factorization Problem). Given a 

positive integer n, find its prime factorization. That is, write 

n = • •.where the pi are pairwise distinct primes and 

I 

Some algorithms are tailored to perform better for n of special 

format. These algorithms, including trail division, Pollard's rho 

algorithm, Pollard's p-1 and the elliptic curve algorithm, are 

known as special-purpose factoring algorithm. In contrast, the 

running time of the general-purpose factoring algorithm depends 

only on the size of n. Examples of these types of algorithms 

includes quadratic sieve and general number field sieve. 

If a large prime n is the product of two primes which are 

roughly of the same size, no algorithms are known that can 

factor in polynomial time. However, sub-exponential time algo-

rithm exists. For example, the number field sieve algorithm[24 

has a time complexity of 0(exp(1.92 + o(l)(lnn)i/3(inlnn)2/3)). 

Definition 2.6 (Computing Square Roots Problem). Let 

n be a composite number. Given y, find x s.t. x^ = y mod n, 

providing that such x exists. 

The integer factorization problem is equivalent to the prob-

lem of computing square root. That is, suppose we have polynomial-

time algorithm which can solve the integer factorization prob-
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lem, we can use it to construct an algorithm which can solve 

the computing square roots problem and vice versa. In fact, the 

Rabin public key encryption schemes uses this computational 

equivalence to achieve the first "provably secure" encryption 

scheme. 

2.2.4 Quadratic Residuosity Problem 

Definition 2.7 (Quadratic Residue). An element a e is 

a quadratic residue modulo n if 3x such that x^ = a mod n. If 

there exist no such x E Z^； a is called a quadratic non-residue. 

The set of all quadratic residues and the set of all non-residues 

are denoted by QRn and QNRn respectively. 

We uses the Legendre symbol to keep track of whether or not 

an integer is a quadratic residue modulo a prime number. 

Definition 2.8 (Legendre Symbol). Let p be an odd prime 

number and a an integer. The legendre symbol, denoted by (芸)， 

is defined to he 0 if p\a, I if a e QRn and -1 if a e QNRn 

respectively. 

We can generalize Legendre symbol for integer n which may 

not be odd prime as follow. 

Definition 2.9 (Jacobi Symbol). Let n he an integer greater 
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than 3 with prime factorization .. and a be an inte-

ger. The Jacohi symbol, denoted by (^), is defined as follow: 

{-) = { - n - r •" i - r 

n Pi P2 Pk 

It is worth noting that (^) = 1 does not imply a is a quadratic 

residue modulo n. (^) can be computed efficiently[11] without 

factorization of n. We define Jn = {a ^ ^nl(n “ 

We are now ready to define the quadric residuosity problem 

(QRP) which is to decide if an integer is a quadratic residue 

modulo n. The security of Goldwasser-Micali probabilistic public-

key encryption scheme[19] relies on this problem. 

Definition 2.10 (QRP). Given an odd positive composite inte-

ger n and a G J^, decide whether or not a is a quadratic residue 

modulo n. 

It is obvious that if we can solve the integer factorization 

problem, QRP can be solved efficiently. On the other hand, no 

algorithm, other than random guessing, is known to solve QRP. 

If n = pq, then the probability of guessing correctly is 1/2. It is 

believed that QRP is as hard as factorization[27], although no 

proof of this is known. 
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2.2.5 Computing e-th Roots (The RSA Problem) 

The hardness of the RSA problem is the basis of the RSA[37 

encryption and signature scheme and many other schemes. 

Definition 2.11. Given n = pq, where p and q are odd primes, 

and e such that gcd(e,(j){n))=1, and an integer c, find an inte-

ger m such that rrf = c mod n. n and e are sometimes called 

modulus and exponent respectively. 

If integer factorization is easy, then so is the RSA problem. 

Whether the converse is also true is not known. We shall denote 

the RSA problem with modulus n and exponent e by RSA[n,e . 

2.2.6 Discrete Logarithm and Related Problems 

The hardness of discrete logarithm problem is the basis of many 

crypt osystems. 

Definition 2.12. Let G be a finite cyclic group of order n and 

g G G be a generator of G. The discrete logarithm problem 

(DLP) is define as follow. Given an element y ^ G, find the 

integer x, Q < x <\G\ — 1, such that y 二 g工 holds, x is denoted 

by log“y). 

The generalized discrete logarithm problem is that given a 

finite group G (not necessarily cyclic), two elements y,h in G, 
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find X such that y = h工 provided such x exists. Just as the case 

for integer factorization, we shall briefly talk about algorithm 

that solves DLP. These algorithms can be categorized into the 

following three categroies. 

• Generic Algorithms. The algorithms in this category do 

not use the properties of the underlying group besides mul-

tiplication, inversion and unique encoding of the group el-

ements. Examples include Shanks' Baby-Step Giant-Step 

method[22], Pollard's rho met hod [34]. A result of Shoup[40' 

stated that any generic methods takes at least O ( v ^ ) op-

erations to solve DLP, where n is the order of the group. 

Therefore, generic algorithms must be exponential in the 

size of the input. 

• Algorithms which work in arbitrary groups but are espe-

cially efficient if the order of the group has only small prime 

factors. An Example is the Pohling-Hellman algorithm[33:. 

• Special algorithms that exploit the representation of the 

group elements. The algorithms in this category work only 

in the group they were designed for. An example is the 

Number Field Sieve[41] for the group Z*, where p is prime. 

Running time of Number Field Sieve is 



CHAPTER 2. PRELIMINARIES 15 

0(exp((1.92 + o(l))(lnp)i/3(lnlnp)2/3)). 

We would like to point out that hardness of DLP depends 

strongly on the representation of the elements of the group. 

Groups on which no attacks other than generic ones are suit-

able for the design of DL-based cryptographic protocols. 

Closely related to the discrete logarithm problem is the com-

putational Diffie-Hellman problem (CDH). 

Definition 2.13 (Computational Diffie-Hellman Problem). 

Given a finite cyclic group G, a generator g, two elements g°', 

g\ find 

Obviously, CDH is no harder than DLP. For some groups, 

CDH and DLP are shown to be computationally equivalent [26 . 

Besides the computational Diffie-Hellman problem, there ex-

ists a weaker version called the decision Diffie-Hellman problem 

(DDH), introduced in [7:. 

Definition 2.14 (Decision Diffie-Hellman Problem). Given 

a finite cyclic group G, a generator g, three elements g\ gb, g � 

decide whether g^ = 

It is obvious that DDH is no harder than CDH. For most 

groups it is not clear whether DDH is easier than CDH. Certain 
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groups with the property that CDH is hard and DDH is easy 

are called Gap Diffie-Hellman (GDH) groups. 

2.3 Public key Cryptography 

In public key cryptography, also known as asymmetric cryptog-

raphy, each user has a key pair consisting of a public key and 

a secret key such that given the public key, it is hard to de-

rive the secret key. This is in contrast with secret key cryptog-

raphy, also known as symmetric cryptography or conventional 

cryptography, in which there is only a single key or the encryp-

tion/decryption key pair can be derived from each other easily. 

Symmetric key encryption schemes have been known for ages. 

Commonly used symmetric-key encryptions include Data En-

cryption Standard (DES), Advanced Encryption Standard (AES), 

IDEA, etc. They are efficient and secure, provided that the en-

cryption /decryption key is unknown to adversary. However, the 

problem of symmetric key encryption schemes is that it is dif-

ficult to find an efficient way for two parties to exchange the 

secret key securely. 

Public key cryptography was only invented in 1977 by Diffie 

and Hellman[14]. In public key cryptography, each user U has 

a key pair {pk, sk) consisting of a public key and a secret key. 
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Given pk, it is computationally hard to find sk. In an encryption 

scheme, other parties uses ITs public key pk to encrypt message 

for U. Only U, who know the secret key sk, can decrypt the 

message. The development of public-key cryptography is consid-

ered a revolution in cryptography: while the key for conventional 

cryptography must be exchanged securely, the public key only 

need to be exchanged authentically. 

Public key cryptography also make it possible to realize the 

digital counterpart of handwritten signature: digital signature 

for electronic files. 

2.3.1 Encryption 

As mentioned before, each user in an a public key encryption 

scheme possess a key pair. In fact, a public key encryption 

scheme is a oneway trapdoor function f with trapdoor infor-

mation t. A oneway trapdoor function is some function that is 

easy to compute but hard to invert without the trapdoor infor-

mation. The idea is that f is used as the public key, and t is use 

as the secret key. Suppose Bob wants to encrypt a message m 

to Alice with public key / , Bob computes ciphertext c = f{m) 

and transmit c to Alice. Alice decrypt by computer m = 

using her trapdoor information t. Only Alice can do so because 
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of the oneway trapdoor property of f . 

Formally speaking, an encryption scheme 五 is a 3-tuple 

(Keygen, Encrypt, Decrypt). Keygen takes security parameter A 

to output {pk^sk) where pk is a public key and sk is a secret 

key. We write {pk, sk) <— Keygen(1^). The encryption algo-

rithm Encrypt output a ciphertext c on input message m and 

public key pk] we write c <— Encryptp^(m). The decryption 

algorithm Decrypt output message m or reject on input cipher-

text c and secret key sk; we write x <— Decryptgj^(c), where x 

can be m or reject. We required that V(pk, sk) Keygen(1^), 

Decryptg^(Encrypt^^(m)) = m for all message m. Keygen, En-

crypt, Decryptare all polynomial time algorithms. 

There are several concepts of security in public-key encryp-

tion. The most basic one being one-way secure which means 

that given a ciphertext, no polynomial time adversary should 

be able to obtain the plaintext m from the given ciphertext. 

This security is called OW-CPA. We are going to consider se-

mantic security and chosen ciphertext security here. That latter 

is sufficiently strong for most applications and is thus and ac-

ceptable notion of security for public key encryption schemes. 

For a detailed description of security notions, refer to [1 . 

We say that a public key encryption scheme E is semantic 
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secure against chosen plaintext attack if it is hard to find any 

(partial) information on message m from ciphertext c. This 

notion is closely related to indistinguishability against chosen 

plaintext attack (IND-CPA), which is described as follows. 

For IND-CPA security, we consider a game between the dealer 

and an adversary. Suppose the dealer gives an adversary a ran-

dom public key. The adversary then comes up with two mes-

sages. The dealer chooses one of which randomly and encrypted 

it as a challenge (gauntlet) ciphertext. If the adversary correctly 

guesses which one, he wins the game. An encryption scheme is 

said to be IND-CPA secure if no polynomial time adversary can 

win the game with probability non-negligibly more than a half. 

For chosen ciphertext security, we consider a similar game. 

Only this time, the adversary is allowed to issue a number of 

decryption queries to the dealer. We say the adversary is given 

access to the decryption oracle. That is, the adversary present 

a ciphertext of his choice to the dealer and the dealer responds 

with the decryption of that ciphertext under the secret key cor-

responding to the public key given to the adversary. Of course, 

the adversary is not allowed to query the gauntlet ciphertext. A 

public key encryption scheme is said to be IND-CCA2 secure if 

no polynomial time adversary can win the game with probability 
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non-negligibly more than a half. Intuitively, IND-CCA2 security 

means that even if the adversary has access to the decryptions 

of a number of his choice, he still cannot learn anything about 

the plaintext of a given ciphertext. 

2.3.2 Digital Signature 

Digital signature scheme is the analogue of handwritten signa-

ture. Intuitively, a digital signature must be hard to forge and 

easy for everyone to verify. A digital signature is in essence a 

bit string that related the message to the signer's public key. 

Formally speaking, a digital signature scheme 5 is a 3-tuple 

(Keygen, Sign, Verify). Keygen takes security parameter A to out-

put {pk,sk) where pk is a public key and sk is a secret key. We 

write {pk, sk) — Keygen(l^). The signing algorithm Sign out-

put a signature a on input message m and secret key sk] we 

write a — S\gngĵ {m). The verification algorithm Verify output 

0 or 1 on input message m, signature a and public key pk] we 

write X — Verify�左(cr, m), where x can be 0 or 1. We required 

that V(p/c, sk) <r- Keygen(lA)，Verifypjt(Signs/j(m)’ m) = 1 for all 

message m. In addition, it is required that a signature scheme 

must be unforgeable. This means that is must be infeasible to 

compute a signature of a message with respect to a public key 
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without knowing the corresponding secret key. Keygen, Sign, 

Verify are all polynomial time algorithms. 

The acceptable notion of security for digital signature scheme 

is existential unforgeability against chosen message attack (uf-

cma). We consider a game between the dealer and an adversary 

as follow. The dealer gives an adversary a random public key. 

The adversary is allowed to issue a number of signing queries to 

the dealer. We say the adversary is given access to the signing 

oracle. That is, the adversary present a message of his choice to 

the dealer and the dealer responds with a valid signature of that 

message corresponding to the public key given to the adversary. 

The adversary wins the game if he could deliver a valid signa-

ture and message pair under the public key given by the dealer. 

Of course, the adversary is not allowed to submit message that 

has been queried to the dealer for signature. A digital signa-

ture scheme is said to be uf-cma secure if no polynomial time 

adversary can win the game with probability non-negligibly. In-

tuitively, uf-cma security means that even if the adversary has 

access to the signer for a number of message of his choice, he 

still cannot forge a new signature that the signer has not signed. 
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2.3.3 Identification Protocol 

An identification protocol allows a prover Peggy to convince a 

verifier Victor of her identity. Victor is given the public key 

belongs to Peggy. If someone could prove to Victor that she 

knows the secret key corresponding to the Peggy's public key, 

Victor can concluded that this entity must be Peggy. 

Informally speaking, an identification protocols (sometimes 

known as standard identification protocols SI) is a 3-tuple (Keygen, 

Prover, Verifier). Keygen takes security parameter 入 to output 

(pk,sk) where pk is a public key and sk is a secret key. We write 

{pk, sk) Keygen(1^). (Prover, Verifier) is an interactive pro-

tocol for prover Peggy and verifier Victor. The protocol must 

satisfy three properties. 

• Completeness. Peggy, knowing the secret key, must be able 

to convince Victor for his identity. 

• Soundness. Entity not knowing the secret key must not be 

able to convince Victor that she is Peggy. 

• Zero-knowledgeness. Victor should not be able to learn 

anything about Peggy's secret key. 

In this dissertation, we only consider three-move identifica-

tion protocols, commonly known as canonical. It means that the 
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interactive protocol between (Prover, Verifier) is of the following 

form. 

1. Prover sends a commitment t to Verifier. 

2. Verifier returns a challenge c which is randomly chosen from 

some set. 

3. Prover provides a response z. 

4. Based on the input (p/c, i, c, z), Verifier output Accept or 

Reject. 

Identification protocol should be secure against imperson-

ation. An adversary succeeds in an impersonation attack if it 

interacts with the verifier in the role of a prover and can con-

vince the verifier to accept. We consider three types of attackers, 

namely, passive, active and concurrent attacker. We consider the 

following two-phase game between the dealer and the adversary. 

In phase I, adversary is given a random public key for imperson-

ation. Adversary is allowed to make some transcript query (for 

passive attack) or request to act as a (cheating) verifier (for ac-

tive and concurrent attack). For transcript query, dealer return 

a complete communication transcript between a prover and veri-

fier. The difference between active and concurrent attack is that 

in the former case, request for being (cheating) verifier must be 
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sequential. An identification protocol is imp-atk-secure, where 

atk6{pa,aa,ca} if it is secure against impersonation under pas-

sive, active or concurrent attack. That is, no polynomial time 

adversary can win in the above game. 

Identification protocol can be used to construct digital signa-

ture schemes by the Fiat-Shamir transform[15]. For such con-

structions, it is often argued that the resulting signature scheme 

is uf-cma secure if the underlying identification protocol is imp-

pa-secure and a secure one-way hash function is used. The re-

sulting signature scheme is said to be secure in the random oracle 

model [3 . 

2.3.4 Hash Function 

A hash function H is a transformation that takes a variable-

size input m and returns a fixed-size string, which is called the 

hash value h (that is, h = H{m)). Usually, it has to be easily 

computable. 

Hash functions employed in cryptography have at least one 

of the following properties. 

• one-way. For a given /i, it is difficult to find x such that 

H{x) = c 

• weak collision resistant. For a given x, it is hard to find an 
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^x s.t. H(x) = H{x') 

• strong collision resistant. It is hard to find a pair {x,x'), 

X + x', such that E{x) = E(x') 

In digital signature schemes, hash function can be used to 

reduce message size. It can also be used to turn interactive 

proofs of knowledge protocols into digital signature schemes by 

taking the place of the verifier. Currently MD5 and SHA-1 

are most popular choice of hash functions. Recently, collision of 

MD5 has been found [21]. A Chinese research team also claimed 

that SHA-1 is vulnerable and they have developed algorithm to 

find collision for full SHA-l(whose output is 160 bit) with 

calculations. Their result has not been published yet at the 

moment. We will not discuss the issue in further detail in this 

thesis. 

• End of chapter. 



Chapter 3 

Paillier Cryptosystems 

Summary 

This chapter introduces Paillier Cryptosystem [32]. Sev-

eral relevant schemes are also outlined. This chapter 

provides building blocks for the identification schemes 

described in the next chapters. 

3.1 Introduction 

Goldwasser and Micali started the work on trapdoor mecha-

nism based on quadratic residuosity [19] in 1984. Their scheme, 

however, is bandwidth inefficient. Benaloh and Fischer[12] uses 

higher order resides to improve the bandwidth efficiency but the 

decryption is inefficient. In 1998, Naccache and Stern[29] pro-

26 
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posed a variant of the Benaloh-Fischer scheme with better band-

width efficiency. Their scheme make use of residuosity of smooth 

degree in Z*^. At the same time, Okamoto and Uchiyama[31 

proposed to use residuosity of prime degree p in the group 

The scheme has similar bandwidth efficiency as Naccache-Stern 

but with improved decryption efficiency. 

In 1999, Paillier[32] brought re-vigored interests to this trap-

door mechanism in the group of II种.Since then, it has found 

uses in verifiable encryption [9] and double trapdoor decryption[8 . 

Several variants of Paillier's cryptosystem have been proposed 

recently [10, 17 . 

3.2 The Paillier Cryptosystem 

Let n = pg be an RSA modulus and g an element having order 

an with a > 1 in the multiplicative group Z*2. To encrypt a 

message m e Z*2, Paillier proposed the following mechanism. 

(mi, 7712) i-» g饥im2几 mod 

where m = mi + nv^N and he proved that: 

• is a bijection between Z^ x Z* and Z*2. 
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• £g is a one-way trapdoor permutation equivalent to RSA[n,n 

• the above is one-way if and only if RSA[n,n] is hard. 

For any w G Z*2, there exists unique {x,y) € (Z^, Z*) such 

that w = £g(cc,y). Paillier called x the class of w relative to 

g(denoted by [ti；]̂) and informally, computing [w]g given w and g 

is called the computational composite residuosity class problem. 

If w e< g >, computing [w]g is called partial discrete logarithm 

problem (PDL). Paillier assume both of them are hard. Note 

also that inverting Sg is equivalent to RSA[n,n]. We also have 

the following definition with regard to class. 

Definition 3.1 (Decisional Composite Residuosity Class 

Assumption (D-Class) [32]). Given prime product n, and 

W e Z*2, r e ILn, it is infeasible to decide with probability over 

random guessing, in polynomial time, if there exists y G Z* such 

that W = {1 + n)Y"(modn2). 

Given c = g^y^ mod n?, x, y can be found as follow. Define 

L{u) = {u — l)/n 
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Then compute, 

I = 1cm (p, q) 

X = (L(c^ mod mod n^)) mod n 

y = ( c r ” � - i m � d / m o d n 

We outline several Paillier-related encryption schemes. De-

note (c, m) as (ciphertext, plaintext) pair. Denote r as random 

number from Z^. 

CATALANO, ET A L . [ 1 0 ] . C = mod where (e,入(n))= 

1. Its one-wayness is reducible to R S A [ n , e . 

GALINDO, ET AL . [17]. c = r̂ ® + mn mod n\ where (e,入(n))= 

1. Its one-wayness is reducible to factorization (n = pq^ V — <1 — 

3 mod 4). 

KUROSAWA ET AL. [ 2 3 ] . c = (r + a/r)® + mn(modn^), where 

e is a prime between n/2 to n and {a/p) 二（a/g) = —1. Its one-

wayness is reducible to factorization. In all these encryption 

scheme, the randomness r is recovered during decryption. 

• End of chapter. 



Chapter 4 

Identity-based Cryptography 

Summary 

The idea of Identity-based (ID-based) cryptography was 

proposed by Shamir[39] in 1984. In this new paradigm, 

users' identifying information such as email or IP ad-

dress can be used as public key for encryption, signature 

or identification. ID-based cryptography avoid the need 

to link users to their public keys. Thus, it reduces sys-

tem complexity and the cost for establishing and man-

aging the public key authentication framework known 

as Public Key Infrastructure (PKI). In this chapter, we 

describe ID-based cryptography and review related re-

sults. 

30 
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4.1 Introduction 

In 1984, Shamir suggested a new idea for public key encryp-

tion scheme in which the public key can be an arbitrary string. 

The original motivation for such a scheme was to simplify cer-

tificate management. Since then several identity-based signa-

ture (IBS) and identity-based identification (IBI) schemes have 

been proposed. These include the Fiat-Shamir scheme [15], 

the schemes included in Shamir's paper introducing identity-

bsaed cryptosystem[39], the Guillou-Quisquater scheme[20] and 

T. Okamoto scheme [30]. [2] provide detailed analysis on 14 

existing IBI and IBS by providing a framework that reduces 

proving security of IBI and IBS schemes to proving security of 

an underlying SI scheme. 

On the other hand, efficient Identity-based encryption (IBE) 

scheme did not appear until 2001, when Boneh and Franklin[6 

proposed an IBE based on the bilinear Diffie-Hellman prob-

lem with respect to a pairing, such as the Weil pairing, and 

Cocks[ll] based on the quadratic residuosity problem. Boneh 

and Franklin's scheme is considered much more efficient, and 

since then ID-based cryptography has been a very popular re-

search topic. 

Boneh and Franklin's scheme is secured in the random oracle 
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model. Later, Canetti et. al. [36] describe a weaker model of 

security for IBE that they called the Selective-ID model. They 

proposed an IBE that is secure in this model without using the 

random oracle methodology. Boneh and Boyen [4] improve upon 

this result by describing an efficient scheme that is secure in the 

Selective-ID model. Recently, Boneh and Boyen [5] proposed 

another scheme that is fully secure without random oracles. Fi-

nally, a more efficient scheme is proposed by Waters[43 . 

4.2 Identity-based Encryption 

An IBE is a four-tuple (setup,extract,encrypt,decrypt), setup 

takes security parameter 入 to output system parameters pa ram 

and master key pair master key. extract takes param, masterkey, 

and ID G {0，1}*，to output a user private key d. encrypt takes 

param, ID, and message M to output ciphertext C. decrypt 

takes param, C, private key d, to output message M. [6] defined 

semantic security of IBE as a form of IND-CPA security of the 

encryption system. 

4.2.1 Notions of Security 

Chosen Ciphertext Security. An identity-based encryption 

scheme S is semantically secure against an adaptive chosen ci-
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phertext attack (IND-ID-CCA) if no polynomially bounded ad-

versary A has a non-negligible advantage against the Challenger 

in the following IND-ID-CCA game: 

Setup; The challenger takes a security parameter \ and runs 

the Setup algorithm. It gives the adversary the resulting 

system parameters params. It keeps the master-key to itself. 

Phase 1: The adversary issues queries …qm where query qi 

is one of: 

• Extraction query (IDi). The challenger responds by 

running algorithm Extract to generate the private key 

di corresponding to the public key (IDj). It sends di to 

the adversary. 

• Decryption query (IDj, Ci). The challenger responds by-

running algorithm Extract to generate the private key 

di corresponding to ID .̂ It then runs algorithm Decrypt 

to decrypt the ciphertext Q using the private key di. 

It sends the resulting plaintext to the adversary. 

These queries may be asked adaptively, that is, each query 

Qi may depend on the replies to qi . . .qi. 

Challenge (Gaunt let): Once the adversary decides that Phase 

1 is over it outputs two equal length plaintexts MQ, Mi e M 



CHAPTER 4. IDENTITY-BASED CRYPTOGRAPHY 34 

and an identity ID on which it wishes to be challenged. The 

only constraint is that ID did not appear in any private key 

extraction query in Phase 1. The challenger picks a random 

bit b E {0 ,1 } and sets C 二 Encrypt(params’ ID, Mb). It 

sends C as the challenge to the adversary. 

Phase 2: The adversary issues more queries gVn+i’ …，QVi where 

query qi is one of: 

• Extraction query (ID) where IDj + ID. Challenger re-

sponds as in Phase 1. 

• Decryption query {\Di,Ci) * {ID,C). Challenger re-

sponds as in Phase 1. 

These queries may be asked adaptively as in Phase 1. 

Guess: Finally, the adversary outputs a guess M G {0 ,1} . The 

adversary wins the game if 二 

We refer to such an adversary A as an IND-ID-CCA adversary. 

We define adversary 乂，s advantage in attacking the scheme S 

as the following function of the security parameter 入（入 is given 

as input to the challenger): Advs^A{k) 二 I^Mb 二 的一臺U s i n g 

the IND-ID-CCA game we can define chosen ciphertext security 

for IBE schemes. 
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Definition 4.1. An IBE system 8 is semantically secure against 

an adaptive chosen ciphertext attack if for any polynomial time 

IND-ID-CCA adversary A the function Advs^Ai^) is negligible. 

As shorthand, we say that S is IND-ID-CCA secure. 

Note that the security requirements of an IBE was first form-

lized by Bohen and Franklin [6]. Interested readers may refered 

to the paper for detailed description. 

4.2.2 Related Results 

We review the IBE from Cocks [11 . 

• Setup. Generate two primes p and q, such that p = q = 

3 mod 4，compute N = pq. {mpk.msk) = ((n), (p, q)). 

Define a hash function Hi : {0,1}* — ILn 

• Extract. Compute Q = Hi{- • • ( F i ( I D ) . . . ) ’ where hash-

ing Hi is applied repeatedly until the first result whose 

Jacobi symbol equals 1. Either Q or -Q is in QRn- Com-

pute r such that r^ = Q oi r'^ = -Q. The user secret key 

is r. 

• Encrypt. Message m £ { - 1 , + 1 } : Choose t,t, G Zn with 

= (•) = m. Send c = (t + Q/^)(modn) and c , = 

— Q/t'){modn). as the ciphertext. 
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• Decrypt, Message m jf q ^ QR^ and m = 
c'+2r mod n\ 

n ) 

The scheme is IND-CPA-secure if quadratic residuosity prob-

lem is hard. 

4.3 Identity-based Identification 

An IBI scheme is a tuple XB:Z:=(Mkg, UKg, P, V). Mkg takes 

in security parameter A and return master public and secret 

key pair (mpk^msk). Ukg on input msk, and an identity I, 

output user secret key usk. In the interactive identification pro-

tocol, P(initialized with usk, I) interact with V(initialized with 

/, mpk). The protocol ends when V either accept or reject. [2 

defined an IBI is imp-atk-secure, where atk G {pa, aa, ca} if it is 

secure against impersonation under passive, active or concurrent 

attack. 

In this dissertation, we only consider three-move identifica-

tion protocol of the following form. 

1. P sends a commitment t to V. 

2. V returns a challenge c which is randomly chosen from some 

set. 

3. P provides a response z. 
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4. Based on the input (mpk, c, z), V output Accept or Re-

ject. 

4.3.1 Security notions 

We consider three types of impersonation attack, namely, pas-

sive, active and concurrent attack, in the following game. 

To model the attack scenario, we provide the adversary with 

the following oracles. 

• JCSO. On input ID, output usk for the corresponding ID. 

• CO. On input ID, output a conversation transcript of the 

interactive protocol between P, V) for that identity. 

• VO (Prover Oracle). On input ID, act as the prover P to 

carry out the interactive identification protocol. 

Game IB-IMP 

1. Setup Phase: Dealer V runs Mkg(l^) to obtain {mpk,msk). 

2. Probe Phase: Adversary A issue queries to the oracles. The 

queries can be interleaved. 

3. At some point, A chooses a gauntlet ID, ID^ on which it 

wishes to impersonate and A act as the cheating prover 

now, trying to convince the verifier 
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The following restrictions applied. Passive attacker cannot 

query VO. Active attacker can query VO only in a sequential 

manner. A wins the game if it can successfully convince the 

verifier and IDG has never been input of K £ 0 . 

Definition 4.2. An ID-based identification scheme is ib-atk-

imp-secure (atk G {pa, aa, ca] which stands for passive, active 

and concurrent) if no polynomial time adversary can win the 

above game with non-negligible probability. 

For detailed description of the security model for IBI, readers 

are recommended to [2 . 

4.4 Identity-based Signature 

An ID-based signature (IBS) scheme is a four-tuple (Mkg, Ukg, 

IBSS, IBSV) specified as follow. Mkg, Ukg are the same as 

IBI. (a) <— \BSS(ID, mpk,usk,m) is a PPT algorithm which, 

on input ID, mpk, usk and message m, generate a signature 

a. Accept/Reject IBSV {ID, mpk, m, a) is a PPT algorithm 

which, on input ID, signature a, message m, output Accept or 

Reject. 

An IBS should satisfy two properties, namely, completeness 

and soundness. 
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(Completeness.) A legitimate signature should be accepted. 

Formally, for all security parameter 入 and VID G {0,1}*, (mpk, msk) E 

•Mkg(l^)], and usk G [Ukg(ID, mpk^ ms/c)], Accept <~ IBSV(ID, mpk, m, cr) 

with overwhelming probability if cr 卜 IBSS(ID, mpk^ usk^ m). 

(Soundness.) An invalid signature should be rejected. For-

mally, for all security parameter A and VID e {0，1}*’ (mp/c, msk) G 

Mkg(l^)], and usk E [Ukg(ID, mp/c, msA:)], Reject — IBSV(ID, mpA:, m, cr) 

with overwhelming probability if cr IBSS(ID, mpk^ usk^ m). 

4.4.1 Security notions 

The accepted security notion for IBS is existential unforgeability 

against adaptive chosen ID and message attack (ib-uf-cma). We 

consider the following game. 

To model the attack scenario, we provide the adversary with 

the following oracles. 

• KLSO defined before. 

• Signing Oracle (SO )\ a — SO{lD,mpk,m). Upon inputs 

ID G { ID} , mpk and message m, output a signature a such 

that Accept IBSV(ID, mpk, m, a). 

Game I B - U F - C M A 

1. Setup Phase: Dealer V runs Mkg(l入）to obtain {mpk, msk). 
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2. Probe Phase: Adversary A issue queries to the oracles. At 

some point, A chooses a gauntlet ID, IDG, to forge a sig-

nature with on any message of its choice. A cannot submit 

IDG to JCSO and it must be returned from lO. 

3. Delivery Phase: At the end, A submit a signature a for 

message m of ID^. m and IDq pair must not be submit-

ted to SO before. V outputs either Accept (if Accept 卜 

IBSV(ID, mpk, m, a)) or Reject (otherwise). 

The advantage of adversary is defined as the probability that 

Dealer output Accept. 

Definition 4.3. An IBS scheme (Mkg, Ukg, IBSS, IBSV) is uf-

cma-secure if no PPT adversary has non-negligible advantage in 

Game IB-UF-CMA. 

• End of chapter. 



Chapter 5 

Identity-Based Cryptography 

from Paillier System 

Summary 

In this chapter, we present several identity-based identi-

fication (IBI) schemes in the Paillier setting, and reduce 

their security to RSA-related assumptions in the random 

oracle model. The Fiat-Shamir paradigm can be used 

to turn them to identity-based signature (IBS) schemes. 

Next, we reformat Cocks'[11] IBE in the Paillier setting. 

41 



CHAPTER 5. IDENTITY-BASED CRYPTOGRAPHY FROM PAILLIER SYSTEM42 

5.1 Identity-based Identification schemes in 

Paillier setting 

In schemes below, hash function H mapping arbitrary string to 

random element of QR^i is used. However, in practice, how it 

can be implemented is unclear since deciding whether an element 

is a quadratic residue is hard without factorization. We adapt 

the technique by Cocks [11]. Hc{-.. {Hc{seed)...) = w mod n? 

until the hash output has Jacobi Symbol equal to 1. Note Jacobi 

Symbol can be computed without knowing the factoring of n. 

By our setting, either w or —w is in QRn^. 

5.1.1 Paillier-IBI 

We present Paillerl,2-IBI, motivated by [32 . 

MKg: Generate two safe primes p and q, compute n = pq. 

Generate g of order an where a is any integer. (mp/c,ms/c)=((n,g),(p,q)). 

UKg: For identity I, denote Q = H{I), compute {x,y) e 

(Zn X QRn) such that g �孔= Q ( m o d n ^ ) . 

(P,V): (Commit, challenge, response)二(力,c, 2;) where t = 
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G�gV mod n^) , for randomly generated r and u. c is ran-

dom challenge, z = (2̂ 1,2:2) = (r — cx,uy~^) G (Z x Z*). Verify 

t =外 Qcf z2lmodn2)). 

In paillierl-IBI, 0 is the identity mapping while in Paillier2-IBI, 

9 is the random oracle. 

Theorem 5.1. Paillierl-IBI is imp-pa-secure if the RSA[n,n] 

assumption holds, in the Random Oracle Model 

Theorem 5.2. Paillier2-IBI is imp-aa, ca-secure if the RSA[n’n] 

assumption holds, in the Random Oracle Model. 

We outline three other IBIs in Paillier setting below. 

5.1.2 C G G N - I B I 

We present CGGN1,2-IBI , motivated by the scheme from Cata-

lano et al.[10 . 

Key pairs: (mpk,msk):((ji,e),q)), where e is any public ex-

ponent relatively prime with (^(n). (uski)=(cc,y)G (Z^ x QRn) 

s.t. / / ( / ) = Q = (1 + n )工m o d n 2 ) . Also, denote by ^ = 1 + n. 

(P,V): (Commit, challenge, response)=(力’ c, 2;) where t = 

mod n^) , for randomly generated r and u. c is random 
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challenge < e. z = (2:1,2:2) = {r - cx, G (Z^ x Z*2). Verify 

t =…(jc 力 22e(modn2)). 

In CGGNl-IBI, 6 is the identity mapping while in CGGN2-IBI, 

9 is the random oracle. 

Theorem 5.3. CGHNl-IBI is imp-pa-secure if the RSA[n,e] 

assumption holds, in the Random Oracle Model. 

Theorem 5.4. CGHN2-IBI is imp-aa,ca-secure if the RSA[n,e] 

assumption holds, in the Random Oracle Model. 

5.1.3 G M M V - I B I 

GMMV-IBI is motivated by the scheme from Galindo, et al.[17:. 

Key pairs: {mpk,msk):{{n,e,K),{p,q)). {uski�=(^3:k)yk)6 [QRnX 

Zn) S.t. xf + VkTi = Hk{I) for /c = 1 ’ . . . ’ Denote Qk = Hk{I) 

for /c = 1，...， 

(P,V): (Commit, challenge, response)=(t, c, z) where t = 

(r2e + lin(modn^)) , for randomly generated r and u. c = 

( C i , … , c k ) is random binary vector challenge, z — (^1,^2)= 

( r n 工 r ' , 以 广 - E c m z f e ) e X Z , ) . Verify t = (1 + 

nY'zi^'YlQki^odn^) 
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Theorem 5.5. GMMV-IBI is imp-aa,ca-secure if Factorization 

is hard, in the Random Oracle Model 

5.1.4 KT- IBI 

KT-IBI is motivated by the scheme from Kurosawa et al.[23 . 

Key pairs: {mpk,msk):{Nwhere (a/p) = (a/q)= 

- 1 . 

{uski)={xk,yk)^ {QRn X Zn) s.t. Xk + a/xk + Vkn = HjJJ) for 

k = 1,... ,K. Denote Qk = Hk { I ) for k = 1 , . . . , X . Denote 

Ak = + Oi/xk and Bk = Xk - Oi/xk-

(P,V): (Commit, challenge, response)=(t, c, z) where t 二 r � . 

un(modn^) , for randomly generated r and u. c = ( c i , . . . , ck) 

is random binary vector, z =(之i，勾)={rYlB^^''-

E Ck2ykAkB-^) e (Z^2xZn). Verify t = ( 1 + n )幻之 [ ] {Ql - mod 

n2). 

Theorem 5.6. KT-IBI is imp-aa,ca-secure if Factorization is 

hard, in the Random Oracle Model 

Remarks: In using the Cocks technique, either H( / ) or -H( / ) 

is in QRn^. Prover should inform verifier which one is the case. 
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In the above protocols, we assume H(/) is the case. 

5.1.5 Choice of g for Paillier-IBI 

For Paillier 1,2-IBI, there are several choice of g for the relation 

((x,y),H(ID)) s.t. H{ID) = The only restriction 

is order of g has to be multiple of n. For the simplest case, 

g = 1 n whose order is n can be used. The response zi in the 

identification protocol can then be computed in Moreover, 

(1 + n ” = 1 + 2;n(modn^) and this improves efficiency. We can 

also have the choice such that p is a generator of QRn，, in which 

order of g is ncpiji), unknown to public. This choice would af-

fect the range of the randomly number during the identification 

protocol and is briefly explained as follow. 

Commit Randomly generate r G 芯[̂ /4」，n G Z*, compute 

t 二 

Challenge. Randomly choose a challenge from Z^ ,̂ where q� 

is a prime smaller than the smallest prime factor of n. 

Response. Compute zi = r — cx e Z and Z2 = uy~^{modn). 

Verify. Verify t = e{H{IDYg''Z2''{modn^)). 

In order to simulate the transcript, simulator first generate 

Zi from ，L几2/4�} and Z2 from Z^. Then it randomly gen-

erate c from Zgc and compute t = mod n?. To 
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prove the simulated transcript is indistinguishable from the ac-

tual transcript, one has to consider the probability distribution 

of the responses. For it is obvious that the two distribu-

tion are both uniform. Consider the probability distribution of 

Pzi(^i) of the responses of the prover and the probability dis-

tribution Pz[(^i) according the the way simulator chooses z[. 

Pz{(^i) is uniformly distributed across {0,...，L?^V4�}. It can 

be shown that the two distribution are indistinguishable if Qc is 

small enough. 

We have in mind if p, q are 512-bit, then Qc is 80 bit. 

5.2 Identity-based signatures from Paillier sys-

tem 

We can apply Fiat-Shamir transform [15] to the above IBI's and 

yield several IBS's. The resulting IBS's can be easily proven 

to be existentially unforgeable under adaptive chosen-message 

attack {uf-cma-secure) under the corresponding assumptions of 

the IBI's. 
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5.3 Cocks ID-based Encryption in Paillier Set-

ting 

We reformat Cocks' IBE [11] in Paillier setting so that the same 

setting of keys can be used for both IBS and IBE. Its security 

is equivalent to the security of Cock's original IBE. 

Paillier-IBE 

Setup: Generate two safe primes p and q, compute n = pq, 

and an element g whose order is multiple of n. 

Extract: compute Q = H认…(ifi(ID)...), where hashing Hi 

is applied repeatedly until the first result whose Jacobi symbol 

equals 1. The secret key is {flag, x,y) where (Case 1) flag = 1， 

g工2/2n = Q, if Q e Q i ^ ; or (Case 2) flag 二 —1, g � = - Q , if 

-Q € QNRn. 

Encrypt: Message m e { - 1 , +1} : Choose t,t' e Zn with 

(^) 二 （€) = m. Randomly generate r,r'. Send c = + 

Q / 0 ( m o d n 2 ) and c' = g— {f — Q/力')(modn2). 

Decrypt: If flag = 1, then compute message=(c+2""打modn). 

Else, compute 

The following theorem can be proved easily. 

Theorem 5.7. Paillier-IBE is IB-OW-CPA secure if QRP Prob-
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lem is hard, in Random Oracle Model 

There are well-known methods to convert an OW-CPA en-

cryption to an IND-CCA encryption[3, 13, 32]. They can be 

used to convert Paillier-IBE to an IB-IND-CCA-secure IBE with 

multi-bit messages. We demonstrate by using 0AEP[3]. Let m 

be a multi-bit message, G and H be secure hashing functions. 

Randomly generate r. Let s = (m||0̂ ) ® G{r), t = H{s) © r, 

ctxt be the bit-by-bit Paillier-IBE encryption of (s||t). Then the 

scheme is IB-IND-CCA secure in ROM, provided the padding 

length £ is sufficiently large. 

The particular conversion in Cocks [11] can also be used. But 

it comes without a formal proof of security. 

We make the observation that Paillier-IBE (resp. Cocks' 

IBE) can be used as an oblivious transfer (0T)[1Q]. In a 1-2 

OT, Alice sends Bob two messages, Bob receives at most one, 

and Alice does not know which one. In a chosen 1-2 OT[28], Bob 

gets to choose which one he receives. Paillier-IBE (resp. Cock's 

IBE) can be used as a chosen 1-2 OT as follows: Alice and Bob 

both know n, and Bob may know its factoring. Bob generates 

TT, (^) == 1, and sends it to Alice. Alice verifies (云）=1, then 

encrypts multi-bit message mo to the case TT G QR bit-by-bit, 

and she encrypts multi-bit message mi to the case - t t G QR 



CHAPTER 5. IDENTITY-BASED CRYPTOGRAPHY FROM PAILLIER SYSTEM50 

bit-by-bit, using Paillier-IBE (resp. Cocks' IBE). This is indeed 

a chosen 1-2 OT: Alice is assured Bob can only decrypt one 

message, but she does not know which one. But its bandwidth 

efficiency is poor. 

• End of chapter. 



Chapter 6 

Concluding Remarks 

We have presented 4 different IBI schemes from Paillier system 

and extended them to IBS. We reduce their securities to RSA 

or Factoring Problem, in the random oracle model. Finally, we 

present Cocks IBE in Paillier setting with some discussions. 

We recommend the following future research directions for 

this thesis. 

Secure IBI without random oracle model. So far all of the 

results presented in this thesis are proven secure only under 

the random oracle model. As with ID-based encryption 

scheme, research direction could be to construct scheme 

secured in the standard model. 

Extension to blind signature. Extension of the result to 

blind signature should be quite straight forward, especially 

51 
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for Paillierl-IBI. 

Extension to ring signature and linkable ring signature. 

Following the generic construction in [38], it is straight for-

ward to construct identity-based ring signature from our 

results. Trying to construct identity-based linkable ring 

signature may be possible by following the technique from 

42；. 

• End of chapter. 



Appendix A 

Proof of Theorems 

Summary 

Proofs of the theorems are given in this section. 

A . l Proof of Theorems 5.1, 5.2 

Proof of Theorem 5.1. 

Our argument goes as follow. Suppose Paillier 1-IBI is not imp-

pa-secure. Then there exists an impersonator X which can im-

personate the prover after observing a number of communication 

transcripts. We are going to show that if such X exists, then we 

can construct a simulator S which can solve the RSA[n,n] prob-

lem. This completed the proof of our theorem because we as-

sume that no one can solve the RSA[n,n] problem. The existence 

53 



APPENDIX A. PROOF OF THEOREMS 54 

of the impersonator X leads to the solution of the RSA[n，n] prob-

lem, which is a contradiction. The assumption that RSA[n,n 

is hard is reasonable,since at present, no one can solve and it is 

widely believed to be hard. 

Now we go through our argument by constructing such a 

simulator S which can solve the RSA[n,n] problem with the 

help of I. We assume there is a fair dealer V which gives S a 

fair instance of the RSA[n,n] problem. 

• Setup Phase. S received an instance of the RSA[n,n] prob-

lem from V. That is, S is given (n, Q) and is asked to find 

y such that y^ = Q mod n. S then gives n and g = 1 + n 

as mpk to impersonator X. 

• (Simulating the oracles.) Recalled that to model the attack 

scenario, X is given access to a number of oracles. Now J, 

a passive attacker, can listen to communication transcript 

and ask for the secret key for any identity 1. This is mod-

eled by the oracle CO and JCSO respectively. In the random 

oracle model, every hash function is also treated as oracle 

which the impersonator have access. The process that S 

handle the oracle query from I is called simulating the or-

acles or oracles simulation. Next we continue to show how 

S simulate the oracles for I. 
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• H oracle. Suppose X makes qh queries to the H oracle and 

let li denote the i — th query. S randomly chooses r and 

return Q = H{Ir). For other i ^ r, generate 工“ yi and 

compute H{Ii) = g^'yi^ mod 

• JCSO. Suppose J query the secret key for / � . S returns Xi, 

yi. Suppose it query a new identity then set H { r ) = 

g^'y'^ mod v? and return (x,, y'). This is called backpatch 

the random oracle H. The simulation failed if X query the 

secret key for Ir. 

• CO is stimulated by randomly generate zi, z^, c and com-

pute the commitment t = z^^ mod t? . Return the 

transcript {t, c, Zi, Z2). It can be shown that statistical dis-

tance between the simulated transcript and actual tran-

script is negligible. 

• (Gauntlet phase.) In the gauntlet phase, X chooses an iden-

tity Ig for impersonation. It is argued that I must choose 

one identity it has queried the H oracle. Otherwise the 

success probability is negligible. This argument is called 

the lunchtime argument. With probability 1/収，X chooses 

Ig = Ir. If Ig is not Ir, then we also say the simulation fails. 

• (Rewind Simulation.) Now suppose X can impersonate Ig 
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successfully. That is, X interactive with S in the identi-

fication protocol and is accepted. Let the communication 

transcript be (t, c, (^i, Z2)). Now, since X is a computer 

program, we can reset the environment back to the point 

where X just issue the commitment t. At this point, S issue 

a challenge d + c and T impersonate successfully again. We 

let the transcript of the second-run be (t,c,, 之 T h e 

process of resetting the environment (or state) of J is called 

rewind simulation. 

• (Witness Extraction.) S can then compute some useful 

information from the two transcripts. This is called witness 

extraction. Assume t = gV mod n? and Q = g^y^. 

= g_(yCz2y" mod U^ 

g % = 产 、 广 m o d n2 

X = {z[ - ZI)L{c — d) m o d n 

The last equation come from the fact that [t]g is unique 

modulo n and [1]夕=0. S can compute y as follow. 

t = mod n 

t = 广 mod n 

= ( 4 /幻广 mod n 
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Denote by s z^jz^ mod n. S then compute (d, /ci, k�)such 

that d = gcd(n, c — c') and kin + /c2(c - = d. If d ^ 1, 

then S successfully factorize n (since 0 < c, c' < n). Hence, 

/cin + A:2(c_c') = 1. u = 一 1 〜如(c-c') = mod n. 

Thus, y = u^'s^^ mod N. 

• S compute y such that y几=H{Ig) mod n and successfully 

solved the RSA[n,n] problem. 

• Probability of success depends on the simulation not failed. 

With probability I /qh , ^ choose Ig = Ir and it also im-

plies that Ig is not input of JCSO. Since qn is of poly-

nomial complexity, probability of successful simulation is 

non-negligible. 

Remarks: The proof required that gcd(n，c，-c)=l，thus, the chal-

lenge should be smaller than the smallest prime factor of n. By 

using g = 1 + n, efficiency can be improved. Also noted that 

order of 1 + n is n, the response zi will be in Z^ instead of in Z. 

Proof of Theorem 5.1. Now we can proceed to prove the imp-

ca-security of Paillier2-IBL It is in essence the same as Paillierl-

IBI with the simulator now having to simulate the Prover Oracle. 

We only outline how the prover oracle is simulated here. 

(Stimulating the prover oracle.) It is stimulated in Paillier2-
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IBI by backpatching the 6 oracle. Commitment t is randomly 

generated. After receiving the challenge c, backpatch 6{ 

The response is (2:1,2:2). 

A.2 Proof Sketch of Remaining Theorems 

{Proof Sketch of Theorems 5.3,5.4) 

• (Simulating the oracles.) JCSO, CO straight forward. VO 

is stimulated in a similar manner as in Paillier2-IBI. 

• (Witness Extraction.) Given two conversation transcripts 

by (Z, c, (zi, 22)) and (力,c'，（z;, 4 ) ) . Denote H{I) = Q. 

yc = Q mod N and y��二（22/4) mod N. Let 1 = /cie + 

k2�c丨-c), then y = Q̂ ^ (2:2/4)^^ mod n. It successfully find 

the e-th root of Q modulo N and thus solves the RSA[n,e 

problem. 

{Proof Sketch of Theorems 5.5) 

• (Simulating key extraction oracle.) Simulating JCEO is 

straight forward by backpatching the H oracles. 

• (Simulating Prover Oracle) GMMV-IBI employ witness in-

distinguishable technique, simulator possess one set of wit-

ness and the prover oracle can be simulated using the wit-

ness. 



APPENDIX A. PROOF OF THEOREMS 59 

• (Witness Extraction.) Given two conversation transcripts 

denoted by (t, c, (2；!, 2:2)) and (t, c'，(z[, 4 ) ) . 

{z[/zi)^ =(ncfc=i 而/11(4=1 而)2 (modAO. With probability 

1/2, the two square roots differ and gcd of their difference 

leaks the factorization of N. 

{Proof Sketch of Theorem 5.6) 

• (Simulating the oracles.) K£0 and VO are stimulated in 

a similar manner as in GMMV-IBI. 

• (Witness Extraction.) Given two conversation transcripts 

(t, c, (zi,z2)) and (t, c'’（:i，4))，it is straight forward to 

show (z[/zi)'^ = ( r U = i ^i? ( mod N). With prob-

ability 1/2, the two square roots differ and gcd of their 

difference leaks the factorization of N. 

• End of chapter. 
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