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Abstract 

Abstract of thesis entitled: 

Impulse Noise Removal by Median-type Noise Detectors and Edge-preserving Reg-

ularization 

Submitted by HO Chung Wa 

for the degree of Master of Philosophy in Mathematics 

at The Chinese University of Hong Kong in July 2004 

This thesis proposes a two-phase scheme for impulse noise removal. In the first 

phase, an adaptive median filter, or other common median-type filters, is used to 

identify pixels which are likely to be contaminated by noise (noise candidates). In 

the second phase, the image is restored using a specialized regularization method 

that applies only to those selected noise candidates. In terms of edge preservation 

and noise suppression, the restored images show a significant improvement com-

pared to those restored by using just nonlinear filters or regularization methods 

only. 

From the computational aspect, the second phase is equivalent to solving a 

one-dimensional nonlinear equation for each noise candidate. One can solve these 

equations by using Newton's method. However, because of the edge-preserving 

term, the domain of convergence of Newton's method will be very narrow. To 

overcome the difficulty, the initial guesses will be derived for these equations such 

that Newton's method will always converge. 

The thesis is based on the following two papers, which will be referred to in 

the text by Paper I and Paper II. 

Paper I. [4] R. H. Chan, C.-W. Ho, and M. Nikolova, "Salt-and-pepper noise 

removal by median-type noise detectors and edge-preserving regu-
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larization," submitted to IEEE Transactions of Image Processing. 

Paper II. [5] R. H. Chan, C.-W. Ho, and M. Nikolova, "Convergence of Newton's 

method for a minimization problem in impulse noise removal," Jour-

nal of Computational Mathematics, 2 (2004), pp. 168-177. 
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摘要 

香港中文大學碩士論文摘要 

論文題目： , 

使用具中值特性的檢波器及具邊界保存性的正則化方法去除脈衝噪聲 

何仲華 

二零零四年六月 

本論文提出去除脈衝噪聲的二階段法。在第一階段，適應中值濾波，或其 

他具有中值特性的常用濾波，會用作辨認可能受噪聲干擾的像素（稱為疑似噪 

聲）。在第二階段，向疑似噪聲運用特別的正則化方法，把圖像復原。從復原 

圖像中的細節保存及噪聲壓抑兩方面，我們提出的二階段法比只利用非線性爐 

波或正則化方法得出的復原圖像有明顯的改善。 

算法方面，在二階段法中的第二階段，壓抑每一個疑似噪聲是等同求對應 

的一維非線性方程的解。牛頓法當然可以用來解這些方程；但是，受制於正則 

化方法的邊界保存項，牛頓法的的收斂域是非常小的。要克服這個困難，我們 

要導出令牛頓法收斂的初始值。 

論文是根據以下兩篇文章寫成，在文中分別被引為文章一及文章二： 

文章一 [4] R. H. Chan, C.-W. Ho, and M. Nikolova, "Salt-and-pepper noise re-

moval by median-type noise detectors and edge-preserving regulariza-

tion," submitted to IEEE Transactions of Image Processing. 

文章二 [5] R. H. Chan, C.-W. Ho, and M. Nikolova, "Convergence of Newton's 

method for a minimization problem in impulse noise removal," Journal 

of Computational Mathematics, 2 (2004), pp. 168-177. 
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Introduction 

Denoising is an important topic in image processing. When an image is converted 

from one form to another or transmitted through a channel, different types of 

noise could be present in the image. For example, Gaussian noise in digital images 

arise during image acquisition with a CCD camera, impulse noise arise when pixel 

values are quantized to binary bits and transmitted in a noisy link. As a result, 

any further enhancement of noisy images, such as deblurring, segmentation, edge 

detection, etc., may not be performed in resulting images. In this thesis, removal 

of impulse noise is focused. 

Impulse noise is caused by malfunctioning pixels in camera sensors, faulty 

memory locations in hardware, or transmission in a noisy channel, see [3] for 

reference. In this model, only a portion of pixels, but not all, in an image will be 

corrupted as white and black dots superimposed on an image. This is a contrast 

to Gaussian noise where every pixel in the original image will be perturbed a 

little bit, see Figure 1 for the comparison. There are many works proposed to 

restore images corrupted by impulse noise, such as the nonlinear digital filters 

reviewed in [1]. Because of good denoising power and computational efficiency, 

the median filter was once the most popular nonlinear filter for removing impulse 

noise [3, 9]. The denoising principle of median filter is to replace the current pixel 

by the median of neighboring pixel values. However, it has been shown in [12: 

that when the proportion of the noise is over 50%, the details, edges and features 

6 
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n n 
(a) (b) (c) 

Figure 1: (a) The original image, (b) The image corrupted by impulse noise, (c) 

The image corrupted by Gaussian noise. 

of the original image are jittered by the filter. 

Different remedies of the median filter have been proposed to overcome the 

drawback, e.g. the adaptive median filter [10], the multi-state median filter [8:. 

The idea is to identify possible noise pixels first and then to replace the detected 

noisy pixels by using the median filter or its variants, while leaving all other 

pixels unchanged. All these filters are good in detecting the noise even at a high 

noise level, but the shortcoming is that the noisy pixels are replaced by some 

median values over their vicinity, without taking into account local features such 

as the possible presence of edges. Hence details and edges are not recovered 

satisfactorily, especially when the noise level is high. 

For images corrupted by Gaussian noise, the regularized least-squares meth-

ods, based on edge-preserving regularization functionals [2，6, 7，13] have been 

used successfully to preserve the edges and the details in the images. In this 

method, the restored image, denoted by x, will solve the minimization problem: 

mm\\Ax-y\\l + p-n{x.). (1) 
X 

Here y is an observed noisy image, ^ is a known linear blur operator (usually 

a convolution operator) arising from the modelling of image formulation. If it is 
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a denoising problem, A will be taken as an identity operator X. Then the data-

fidelity term, or data-fitting term,丨|«Ax — y||含 measures the closeness between the 

observed image and the restored image, while IZ is an edge-preserving operator 

which measures the smoothness of the restored image. And (5 is the regularization 

parameter which controls the tradeoff between the data-fidelity and the regularity 

of X . 

Above formulation fails in the presence of impulse noise because of ^2-norm 

in data-fidelity term, and then when the impulse noise is smoothed, all pixels in 

the image, including those pixels which are not corrupted by the impulse noise, 

will be altered. To avoid such problem, the modified minimization formulation 

min||x —y||l+/^7^(a;)’ （2) 
X 

is proposed to deal with impulse noise [11]. The critical change from smooth 

^2-norm to non-smooth £i-norm in data-fidelity term results in a different aspect 

of the regularization method. In formulation (1), the restored image x and the 

observed image y is close, but all pixels, including uncorrupted ones, are still 

perturbed, and this perturbation is sensitive to the impulse noise. On the other 

hand, there is no such phenomenon in formulation (2). This means that except 

for some uncorrupted pixels, most impulse noise (no matter how large the pixel 

intensity is) will be removed and restored to fit the features of the image. In other 

words, most uncorrupted pixels are fitted exactly while the outliers are removed. 

This formulation is well-suited to the denoising problem. 

However, when the noise level is high, the corrupted noise pixels will be con-

nected and formed as neighbors, and appeared as patches of noise. These will be 

called as 'noise patches'. In order to smooth out such noise patches, one should 

increase the regularization parameter (5 in (2). Consequently, pixels at the edges 

of an image will be unavoidably altered too. As a result, removal of noise patches 

will be a difficult task in denoising problem. To overcome the drawback, a pow-
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erful two-phase scheme which combines the variational method proposed in [11], 

i.e., the formation (2)，with the adaptive median filter [10] is proposed in Paper I 

4]. Denoting x = {xj} and y = {？/̂ }, the resulting formulation is to solve 
f 
mm ^ I x i ^(xi - Xj), 

< X i i jeVi (3) 

subject to Xi = yi i i i • N , 
< 

where p̂ is an edge-preserving function which preserves the edges of an image by 

considering the neighboring pixels Xj^ j € H, of Xi, and AMs a noise candidate 

set obtained from adaptive median filter. This means if a pixel Uj is detected by 

the filter as noise, i.e. j G this pixel will be considered as a noise candidate. 

The constrained minimization approach is much better than just using either the 

variational method or the adaptive median filter only. In particular, salt-and-

pepper noise with noise ratio as high as 90% can be cleaned quite efficiently. 

From the computational aspect, solving (3) is equivalent to solving a system of 

nonlinear equations for the pixels in an image. As shown in [11], the root finding 

can be done by relaxation method, and it results in solving a one-dimensional 

nonlinear equation for each noise candidate in N . However, the presence of the 

edge-preserving regularization term introduces difficulties in solving the equations 

because the highly nonlinear functions involving (p can have very large derivatives 

in some regions, see Figure 2. In particular, the convergence domain can be very 

Figure 2: The resulting nonlinear equation that has to be solved. 
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small if Newton's method is adopted. As a result, an algorithm is developed 

in Paper II [5] to locate the initial guess such that Newton's method always 

converges. 
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:�aper I: Salt-and-Pepper Noise Removal by 

Median-type Noise Detectors anc. 

"ildge-preserving Regularization * 

Abstract 

This paper proposes a two-phase scheme for removing salt-and-pepper 
impulse noise. In the first phase, an adaptive median filter is used to 
identify pixels which are likely to be contaminated by noise (noise can-
didates) . I n the second phase, the image is restored using a specialized 
regularization method that applies only to those selected noise candidates. 
In terms of edge preservation and noise suppression, our restored images 
show a significant improvement compared to those restored by using just 
nonlinear filters or regularization methods only. Our scheme can remove 
salt-and-pepper-noise with noise level as high as 90%. 

Keywords. Impulse noise, adaptive median filter, edge-preserving regulariza-

tion. 

1 Introduction 

Impulse noise is caused by malfunctioning pixels in camera sensors, faulty memory 

locations in hardware, or transmission in a noisy channel, see [4] for reference. 

*Paper I is a joint work with Raymond H. Chan and Mila Nikolova. 

13 
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There are mainly two types of impulse noise: salt-and-pepper noise and random-

valued noise. For images corrupted by salt-and-pepper noise, the noisy pixels 

can take only the maximum and the minimum values in the dynamic range. In 

contrast, the noisy pixels in images corrupted by random-valued noise can take 

any random values in the dynamic range. In this paper, we propose a method for 

recovering images corrupted by salt-and-pepper noise with noise ratio as high as 

90%. 

There are many works proposed to restore images corrupted by impulse noise, 

see for instance the nonlinear digital filters reviewed in [1]. The median filter was 

once the most popular nonlinear filter for removing impulse noise, especially the 

salt-and-pepper noise, because of its good denoising power [4] and computational 

efficiency [14]. However, it has been shown in [18] that when the noise level is 

over 50%, the details and edges of the original image are jittered by the filter. 

Different remedies of the median filter have been proposed, e.g. the adaptive 

median filter [15], the multi-state median filter [9], or the median filter based on 

homogeneity information [10, 19]. The idea is to identify possible noise pixels first 

and then to replace only the detected noisy pixels by using the median filter or 

its variants, while leaving all other pixels unchanged. This is why these filters are 

said to be "decision-based" or "switching". All these filters are good in detecting 

the noise even at a high noise level, but the main drawback is that the noisy 

pixels are replaced by some median values over their vicinity, without taking into 

account local features such as the possible presence of edges. Hence details and 

edges are not recovered satisfactorily, especially when the noise level is high. 

For images corrupted by Gaussian noise, regularized least-squares methods, 

based on edge-preserving regularization functionals [3, 6, 8, 20] have been used 

successfully to preserve the edges and the details in the images. These methods 

fail in the presence of impulse noise because the noise is heavy tailed, and the 

restoration will alter considerable amount of pixels in the image, including those 

pixels which are not corrupted by the impulse noise. Recently, non-smooth data-
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fidelity terms (e.g. £i) have been used along with edge-preserving regularization 

to deal with impulse noise [17 . 

In this paper, we propose a powerful two-stage scheme which combines the 

variational method proposed in [17] with the adaptive median filter [15]. More 

precisely, the noise candidates are first identified by the adaptive median filter, 

and then these noise candidates are selectively restored using an objective func-

tion with an data-fitting term and an edge-preserving regularization term. 

Since the edges are preserved for the noise candidates, and no changes are made 

to the pixels that are not the noise candidates, the performance of our combined 

approach is much better than just using either one of the methods. Salt-and-

pepper noise with noise ratio as high as 90% can be cleaned quite efficiently. 

The outline of the paper is as follows. Review of the adaptive median filter 

and the edge-preserving method are described in Section 2. Our denoising scheme 

is presented in Section 3. Experimental results and conclusions are presented in 

Sections 4 and 5 respectively. 

2 Adaptive median filter and edge-preserving 

regularization 

2.1 Review of the adaptive median filter 

Let Xij, for (i,j) G A = {1,…，M} x {1,…，N}, be the gray level of a true 

M-hy-N image x at pixel location (z, j ) , and [smin, Smax] be the dynamic range 

of X. Denote y a noisy image. In the classical "salt-and-pepper" impulse noise 

model, the observed gray level at pixel location (i, j ) is given by 

Smin； with probability p, 

Vij = \ Smax) with probability q, 

Xij^ with probability 1 — p — q, 
\ 
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where r = p + q defines the noise level. Here we give a brief review of the filter. 

Let S^j be a window of size w x w centered at (i, ji), i.e. 

S^j = {(k, I) : l/c — S and \j -l\<w} 

and let Wmax x tt̂ max be the maximum window size. The algorithm tries to identify 

the noise candidates � ’� and then replace each yij by the median of the pixels 

in Sfij. 

Algorithm I (Adaptive Median Filter) 

For each pixel location (i, j ) , do 

1. Initialize w = 3. 

2. Compute and which are the minimum, median and 

maximum of the pixel values in S�respectively. 

3. If sjj’也 < ŝ T̂ ’叨 < s^p"", then go to Step 5. Otherwise, setw = w + 2. 

4. If w; < Wmax go to Step 2. Otherwise, we replace yij by 

5. If < Uij < sj"广’切，then yi,j is not a noise candidate, else we replace 

yi,j by Sij . 

The adaptive structure of the filter ensures that most of the "salts" and "pep-

pers" are detected even at a high noise level provided that the window size is large 

enough. Notice that the noise candidates are replaced by the median sĵ jd’叨,while 

the remaining pixels are left unaltered. 

2.2 Variational method for impulse noise cleaning 

In [17], impulse noise corrupted images are restored by minimizing a convex 

objective function Fy : RMxtv —股 of the form 

Fy(U)= Y1 I 叫 j . l j . l + f YL 咖 , j - Um,n), (1) 
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where Vij is the set of the four closest neighbors of (i , j), not including (z, j) . It 

was shown in [16] and [17] that under mild assumptions and a pertinent choice 

of /?, the minimizer u of Fy ensures that Uij = yij for most of the uncorrupted 

pixels yi,j. Furthermore, all pixels Uij such that Uij + yi,j are restored so that 

edges and local features are well preserved, provided that if is an edge-preserving 

potential function. Examples of such functions are: 

(p{t) = V o T ^ , a > 0, 

ipif) = I亡广，1< a < 2, 

see [2，3，8, 12]. The minimization algorithm works on the residuals z = u — y. 

It is sketched below: 

Algorithm II 

1. Initialize zjj^ = 0 for each (i,j) G A. 

2. At each iteration k, calculate, for each {i,j) G A, 

忍 ) = 3 Y^ T'�yi,j -之m,n - ym，n), 

{m,n)eVi,j 

where Zm,n^ for (m, n) G Vij, are the latest updates and ip' is the derivative 

of ip. 

3. If f!》）< 1，set zl̂ j = 0. Otherwise, solve for z:’二•) in the nonlinear equation 

P E + y^^^ - - ym,n) = ^Ig^^^])' � 

The updating of 乂》)can be done in a red-black fashion, and it was shown in [17 

that z(知）converges to z = u —y, where the restored image u minimizes Fy in (1). 

If we choose (p{t) = 产，the nonlinear equation (2) can be solved by Newton's 

method with quadratic convergence by using a suitable initial guess derived in 

5 . 
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3 Our method 

Many denoising schemes are switching median filters, see for example, [9, 10, 22 . 

This means that the noise candidates are first detected by some rules and then 

replaced by the median output or its variants. For instance, in Algorithm I, the 

noise candidate yij, (ij) e N\ is replaced by s™®̂ ''̂ . Switching schemes are a 

good approach because the uncorrupted pixels will not be modified. However, 

the replacement methods in these denoising schemes cannot preserve the features 

of the images, in particular the edges are jittered. 

In contrast, Algorithm II can preserve edges during denoising but it has prob-

lem in detecting noise patches, i.e., when many noise pixels are connecting with 

each other. If one wishes to smooth out all the noise patches, one has to increase 

/?, see [7] for the role of (3. As a result, some signal pixels at the edges will be 

distorted. 

Combining both methods will avoid the drawbacks of either one of them. 

Replacing the noise pixels with the correct one and keeping the edge is the aim 

of our method. In the following, we denote the restored image by x. 

Algorithm III 

1. (Noise detection): Denote y the image obtained by applying an adaptive 

median filter to the noisy image y. Noticing that noisy pixels take their 

values in the set {smin�Smax}, we define the noise candidate set as 

J^ = {(i，j) G A ： l/ij + Vij and yi,j G {Smin’ 5mao<}} • 

The set of all uncorrupted pixels is = A\Af. 

2. (Replacement): Since all pixels in N�are detected as uncorrupted, we natu-

rally keep their original values, i.e., Xij = yi,j for all (z, j ) G Af^. Let us now 

consider a noise candidate, say corresponding to (z, j ) G J\f. Each one of its 

neighbors (m, n) G Vi，j is either a correct pixel, i.e., (m, n) G and hence 
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Xm,n = "m’n; or is another noise candidate, i.e., (m,n) G N, in which case 

its value must be restored. The neighborhood Vi,j of { i , j ) is thus split as 

Vi’j = {Vij U (Vi’j 门 AO. Noise candidates are restored by minimizing 

a functional of the form (1)，but restricted to the noise candidate set J\f: 

… E I 以 + 書(氏 + >̂2) (3) 

where 

Si = ^ 咖’j — ym,nh 
(m’n)eVi’j_rWc 

= ^ - Um,n)-

(m,n)eVi,jfW 

The restored image x with indices (ij) e J\f is the minimizer of (3) which 

can be obtained by using Algorithm II but restricted onto J\f instead of onto 

A. As in (1), the £i data-fidelity term \uij — yij\ discourages those wrongly 

detected uncorrupted pixels in Af from being modified to other values. The 

regularization term {Si + S2) performs edge-preserving smoothing for the 

pixels indexed by Af. 

Let us emphasize that Step 1 of our method can be realized by any reliable 

salt-and-pepper noise detector, such as the multi-state median filter [9] or the 

improved detector [22], etc. Our choice, the adaptive median filter, was motivated 

by the fact that it provides a good compromise between simplicity and robust 

noise detection, especially for high level noise ratios. The pertinence of this choice 

can be seen from the experimental results in [11] (where the noise level is 50%) 

or Figures 4(b) and 6(b) (where the noise level is 70%). 
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4 Simulations 

4.1 Configuration 

Among the commonly tested 512-by-512 8-bit gray-scale images, the one with ho-

mogeneous region {Lena) and the one with high activity {Bridge) will be selected 

for our simulations. Their dynamic ranges are [0,255]. In the simulations, tested 

images will be corrupted by "salt" (with value 255) and "pepper" (with value 0) 

noise with equal probability. Also a wide range of noise levels varied from 10% 

to 70% with increment step of 10% will be tested. Restoration performances are 

quantitatively measured by the peak signal-to-noise ratio (PSNR) and the mean 

absolute error (MAE) defined in [4, p. 327]: 

9552 
PSNR = 1 0 l o g , _ 

MN 丄W) 

where rij and Xij denote the pixel values of the restored image and the original 

image respectively. 

For Algorithm I (the adaptive median filter)，the maximum window size w^ax 

should be chosen such that it increases with the noise level in order to filter out 

the noise. Since it is not known a priori, we tried different Wmax for any given 

noise level, and found that w^ax given in Table 1 are sufficient for the filtering. 

We therefore set w^ax = 39 in all our tests. We remark that with such choice of 

Wmax, almost all the salt-and-pepper noise are detected in the filtered images. 

For Algorithm II (the variational method in [17]), we choose (p{t) = as 

the edge-preserving function. We observe that if a is small (1 < a < 1.1), most 

of the noise is suppressed but stair-cases are found at the fine details; and if a is 

large (a > 1.5), the fine details are not distorted seriously but the noise cannot be 

fully suppressed. The selection of a is a trade-off between the noise suppression 

and details preservation [17]. In the tests, the best restoration results are not 



Paper I: Salt-and-Pepper Noise Removal 21 

noise level Wmax x w^ax 

r < 25% 5 x 5 

25% < r < 40% 7 x 7 

40% < r < 60% 9 x 9 

60% < r < 70% 13 X 13 

70% < r < 80% 17 X 17 

80% < r < 85% 25 x 25 

85% < r < 90% 39 x 39 

Table 1: Maximum window size w^ax in Algorithm I. 

sensitive to a when it is between 1.2 and 1.4. We therefore choose (p{t) = |力 

and (5 is tuned to give the best result in terms of PSNR. 

For our proposed Algorithm III, the noise candidate set M should be obtained 

such that most of the noise are detected. This again amounts to the selection 

of Wm&x- As mentioned, Wmax = 39 can be fixed for most purposes. Then we 

can restore those noise pixels y^j with (z, j ) G TV. As in Algorithm II，the edge-

preserving function � =| 亡 � 3 will be used. That leaves only the parameter 

(3 to be determined. Later, we will demonstrate that our proposed algorithm is 

very robust with respect to (5 and thus we fix = 5 in all the tests. 

For comparison purpose, Algorithm I, Algorithm II, the standard median 

(MED) filter, and also recently proposed filters like the progressive switching me-

dian (PSM) filter [21], the multi-state median (MSM) filter [9], the noise adaptive 

soft-switching median (NASM) filter [10], the directional difference-based switch-

ing median (DDBSM) filter [13], and the improved switching median (ISM) fil-

ter [22] are also tested. For MED filter, the window sizes are chosen for each 

noise level to achieve its best performance. For MSM filter, the maximum center 

weights of 7, 5 and 3 are tested for each noise level. For ISM filter, the convolu-

tion kernels K�, Kj and Kg and filtering window sizes of 9 x 9 and 11 x 11 are 
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Figure 1: Results in PSNR and MAE for the Lena image at various noise levels 

for different algorithms. 

used. The decision thresholds in PSM, MSM, DDBSM, ISM filters are also tuned 

to give the best performance in terms of PSNR. 

4.2 Denoising Performance 

We summarize the performance of different methods in Figures 1 and 2. From 

the plots, we see that all the methods have similar performance when the noise 

level is low. This is because those recently proposed methods focus on the noise 

detection. However when the noise level increases, noise patches will be formed 

and they may be considered as noise free pixels. This brings difficulties in the 

noise detection. With erroneous noise detection, no further modifications will be 

made to the noise patches, and hence their results are not satisfactory. 

On the other hand, our proposed denoising scheme achieves a significantly 

high PSNR and low MAE even when the noise level is high. This is mainly 

based on the accurate noise detection by the adaptive median filter and the edge-

preserving property of the variational method of [17 . 

In Figures 3 to 6，we present restoration results for the 70% corrupted Lena 
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Figure 2: Results in PSNR and MAE for the Bridge image at various noise levels 

for different algorithms. 

and Bridge images. Among the restorations, except for our proposed one, Al-

gorithm I gives the best performance in terms of noise suppression and details 

preservation. As mentioned, it is because the algorithm locates the noise accu-

rately. In fact, about 70.2% and 70.4% pixels are detected as noise candidates 

in Lena and Bridge respectively by Algorithm I. However, the edges are jittered 

by the median filter. For Algorithm II，much of the noise is suppressed but the 

blurring and distortion are serious. This is because every pixel has to be exam-

ined and may have been altered. Compared with all the algorithms tested, our 

proposed Algorithm III is the best one. It has successfully suppressed the noise 

with the details and the edges of the images being preserved very accurately. 

Finally, to demonstrate the excellent performance of our proposed filter, 90% 

corrupted Lena and Bridge are restored by Algorithm I and by our Algorithm III， 

see Figure 7. We can clearly see the visual differences and also the improvement 

in PSNR by using our algorithm. 
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Figure 3: Restoration results of different filters: (a) Corrupted Lena image with 

70% salt-and-pepper noise (6.7 dB), (b) MED filer (23.2 dB), (c) PSM filter (19.5 

dB), (d) MSM filter (19.0 dB), (e) DDBSM filter (17.5 dB), (f) NASM filter (21.8 

dB) 
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Figure 4: Restoration results of different filters: (a) ISM filter (23.4 dB), (b) 

Algorithm I (25.8 dB), (c) Algorithm II (24.6 dB), (d) Our proposed algorithm 

(29.3 dB), and (e) Original image. 
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Figure 5: Restoration results of different filters: (a) Corrupted Bridge image with 

70% salt-and-pepper noise (6.8 dB), (b) MED filer (19.8 dB), (c) PSM filter (17.0 

dB), (d) MSM filter (16.4 dB), (e) DDBSM filter (15.9 dB), (f) NASM filter (19.9 

dB) 
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Figure 6: Restoration results of different filters: (a) ISM filter (20.1 dB), (b) 

Algorithm I (21.8 dB), (c) Algorithm II (21.1 dB), (d) Our proposed algorithm 

(25.0 dB), and (e) Original image. 
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Figure 7: Restorations of 90% corrupted images: (a) Lena by Algorithm I (21.1 

dB), (b) Lena by Algorithm III (25.4 dB), (c) Bridge by Algorithm I (18.1 dB), 

and (d) Bridge by Algorithm III (21.5 dB). 
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Figure 8: PSNR of restored images by our Algorithm III for different (5\ (a) Lena 

image and (b) Bridge image. 

4.3 Robustness with respect to f3 

For Algorithm II, the choice of (5 is crucial in the restoration. To show that our 

Algorithm III is robust with respect to /?, 0.5 < < 10 are tested for noise 

levels 30%, 50% and 70%, see Figure 8. From the plots, we see that the PSNR 

is very stable when 1 < < 10. Hence one can set 卢二 5 for all denoising 

problems in practice. If one further use ip{t) = as we did in our tests, and 

set Wmax = min{M, N} (which will be able to detect all salt-and-pepper noise), 

then our algorithm is parameter free. 

4.4 Computational Complexity 

We end this section by considering the complexity of our algorithm. Our algo-

rithm requires two phases: noise detection and replacement. Noise detection is 

done by Algorithm I. Like other median-type filters, Algorithm I can be processed 

very fast. Although Wmax may be quite large, the loop in Algorithm I is automat-

ically stopped at Step 3 when the noise level is not high. The replacement step 
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is the most time-consuming part of our algorithm as it requires the minimization 

of the functional in (3). It is equivalent to solving the nonlinear equation (2) 

for each pixel in the noise candidate set, see [5]. For example, for 50% noise 

corrupted images, the replacement step takes around 50 to 100 times more CPU 

time than Algorithm I. 

We emphasize however that the main contribution of our paper is a method 

that is capable of restoring images corrupted by salt-and-pepper impulse noise 

with extremely high noise ratio. The timing can be improved by better imple-

mentations of minimization routines for solving (3). One can view our method as 

a post-processing procedure that improves the images obtained by fast algorithms 

such as Algorithm I. 

5 Conclusion 

111 this paper, we propose a decision-based, details preserving restoration method. 

It is the ultimate filter for removing salt-and-pepper noise. Experimental results 

show that our method performs much better than median-based filters or the 

edge-preserving regularization methods. Even at a very high noise level (< 90%), 

the texture, details and edges are preserved accurately. One can further improve 

our results by using different noise detectors and regularization functionals that 

are tailored to different types of images and noises. These extensions will be 

discussed in our future works. 
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�aper II: Convergence of Newton's Method for a 

Minimization Problem in Impulse Noise Removal * 

Abstract 

Recently, two-phase schemes for removing salt-and-pepper and random-

valued impulse noise are proposed in [6，7]. The first phase uses decision-

based median filters to locate those pixels which are likely to be corrupted 

by noise (noise candidates). In the second phase, these noise candidates 

are restored using a detail-preserving regularization method which allows 

edges and noise-free pixels to be preserved. As shown in [18], this phase is 

equivalent to solving a one-dimensional nonlinear equation for each noise 

candidate. One can solve these equations by using Newton's method. How-

ever, because of the edge-preserving term, the domain of convergence of 

Newton's method will be very narrow. In this paper, we determine the 

initial guesses for these equations such that Newton's method will always 

converge. 

Keywords. Impulse noise denoising, Newton's method, Variational Method. 

1 Introduction 

Impulse noise is caused by malfunctioning pixels in camera sensors, faulty memory 

locations in hardware, or transmission in a noisy channel. Some of the pixels in 

*Paper II is a joint work with Raymond H. Chan and Mila Nikolova. 
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the images could be corrupted by the impulse noise while the remaining pixels 

remain unchanged. There are two types of impulse noise: fixed-valued noise and 

random-valued noise. For images corrupted by fixed-valued noise, the noisy pixels 

can take only some of the values in the dynamic range, e.g. the maximum and the 

minimum values in the so-called salt-and-pepper noise model. In contrast, the 

noisy pixels in images corrupted by random-valued noise can take any random 

values in the dynamic range. 

There are many works proposed to clean the noise, see for instance the schemes 

proposed in [2, 17, 1, 12, 13, 19, 18, 6, 7]. In particular, decision-based median fil-

ters are popular in removing impulse noise because of their good denoising power 

and computational efficiency, see [16，15，22，9，20, 14]. However, the blurring 

of details and edges are clearly visible when the noise level is high. In compari-

son, the detail-preserving variational method proposed in [18] used non-smooth 

data-fitting term along with edge-preserving regularization to restore the images. 

The variational method can keep the edges. But when removing noise patches— 

several noise pixels connecting each other, the distortion of some uncorrupted 

image pixels at the edges cannot be avoided. To overcome the drawbacks, the 

two-phase schemes recently proposed in [6, 7] combine decision-based median 

filters and the detail-preserving variational method to clean the noise. 

The first phase in the methods proposed in [6，7] is based on the adaptive 

median filter [15] or the adaptive center-weighted median filter [9] to first locate 

those pixels which are likely to be corrupted by noise (noise candidates). Because 

of computational efficiency of median filters, this phase can be processed in a 

short time. The second phase is to restore those noise candidates by variational 

method given in [18]. It is to minimize the objective functional consisting of a 

data-fitting term and an edge-preserving regularization term. It is equivalent to 

solving a system of nonlinear equations for those noise candidates. As shown 

in [18], the root finding can be done by relaxation, and it results in solving a 

one-dimensional nonlinear equation for each noise candidate. The presence of the 
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edge-preserving regularization term introduces difficulties in solving the equations 

because the nonlinear functions can have very large derivatives in some regions. 

In particular, the convergence domain can be very small if Newton's method is 

used. In this report, we give an algorithm to locate the initial guess such that 

Newton's method always converges. 

The outline of this report is as follows. In §2, we review both two-phase 

denoising schemes proposed in [6] and [7] for cleaning impulse noises. The initial 

guess of Newton's method for solving nonlinear equations is discussed in §3. 

Numerical results and conclusions are presented in §4 and §5 respectively. 

2 Review of 2-Phase Denoising Schemes 

Let be the gray level of a true image x at pixel location (z, j ) , and 

Smin, Smax] be the dynamic range of x. Denote y the noisy image. The observed 

gray level at pixel location (i, j ) is given by 

, � 
rij, with probability p, 

Vij = 
Xij，with probability 1 — p, 

\ 

where p defines the noise level. In salt-and-pepper noise model, r̂ j take either 

5min o r Smaxj i .e. U j G {smin，Smax}, See [15]. I l l r a n d o m - v a l u e d no ise m o d e l , 

Vij G [Smin，<5max] are raiidom numbers, see [9. 
2.1 Cleaning salt-and-pepper noise 

A two-phase scheme is proposed in [6] to remove salt-and-pepper noise. The first 

phase is to use the adaptive median filter (AMF) [15] to identify the noise candi-

dates. Then the second phase is to restore those noise candidates by minimizing 

the objective functional proposed in [18] which consists of an ii data-fitting term 

and an edge-preserving regularization term. The algorithm is as follows: 
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Algorithm I 

1. (Noise detection): Apply AMF to the noisy image y to get the noise can-

didate set TV. 

2. (Refinement): If the range of the noise is known, we can refine Af to Nt' 

For example, 

7V"t = Â  n {(i，3) : Smin < Vij < Smm + T 01 Smaa - T < yij < Ŝ ax}, 

where T > 0 is a threshold. Or we can choose T such that 

！^ J). 
MxN ^ 

In the case of salt-and-pepper noise we can take T close to zero. 

3. (Restoration): We restore all pixels in Nt by minimizing the convex objec-

tive functional Fy\ 

^y(x ) = ^ \xij —讲 I + 書 （ X I W“工幻• 一 I漏） 

{i,3)eMT {i,j)eMT {m,n)eVij 

+ ^aiVmn-Xij)̂ , (1) 
(m,n)eVArr (i，j)ev„̂„ CWt 

where cpa is an edge-preserving potential function, /? is a regularization 

parameter, Vij denotes the four closest neighbors of (i,j) not including (z, j ) , 

and Vmt = (U(i，j)eA/V Hz) W t - Also we let % = yij for (z,j)多 Mr. The 

minimizer x of (1)，which is the restored image, is found by Algorithm A 

which will be given later. 

As mentioned in [18], in order for the minimization method in Step 3 above to 

be convergent, the function ip̂  should satisfy (i) ^p^^C^, and (ii) ipa is strongly 

convex on any bounded intervals. Examples of edge-preserving functions 如 that 

satisfy these requirements are: 

= l̂ r, 1< a < 2, (2) 
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(Pe.W = l + - - l o g ( l + - ) , a > 0 , (3) 
a a ' 

(^aW = log (cosh a > 0 , (4) 

(Pa(t) = Va-ht^, a > 0 , (5) 

see [10, 4，5, 3，8:. 

2.2 Cleaning random-valued noise 

To clean the random-valued noise, an iterative two-phase scheme is proposed in 

7]. The first phase is to use the adaptive center-weighted median filter (ACWMF) 

9] to identify the noise candidates. Then the second phase is to restore those 

noise candidates by the same variational method proposed in [7]. These two 

phases are applied iteratively to the image. The basic idea of the method is that 

at the early iterations, we increase the thresholds in ACWMF so that it will only 

select pixels that are most likely to be noisy; and then they will be restored by 

the variational method. In the later iterations, the thresholds are decreased to 

include more noise candidates. The algorithm is as follows: 

Algorithm II 

1. Set 二 0. Initialize y(r) to be the observed image y. 

2. Apply ACWMF with the thresholds i f ) to the image y(r) to get the noise 

candidate set 

3. = 

4. We restore all pixels in A / " � by minimizing the same objective functional 

Fy in (1) over The corresponding minimizer x will be denoted by 

y(r+i). Again the minimizer will be found by Algorithm A given below. 

5. If r < Vmax, set r = r + 1 and go back to Step 2. Otherwise, output the 

restored image x = y(rmax+i). 
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In Step 2, the thresholds are of the form 

= s . M A D � + 4 + 2 0 ( w — r)， 

for 0 < /c < 3, 0 < r < rm狀，and 0 < s < 0.6. Here [知’ Si, 62,如]=[40,25，10,5], 

and the robust estimate MAD denotes the "median of the absolute deviations 

from the median", see [11, 2], i.e. 

M A D � =m e d i a n { j y t l j . , — 试 ;、 \ : - h < u , v < h j 

and 

贫;)=median j^ / t l j -^ : -h<u,v Kh^, 

where {2h + 1) defines the window length. In practice, 7 *丽 = 3 is enough for 

satisfactory results. 

The minimization algorithm in Step 3 of Algorithm I and in Step 4 of Algo-

rithm II is given in [18]. It is a Jacobi-type relaxation algorithm and works on 

the residual z = x — y. For convenience, let V be Nt in Step 3 of Algorithm I or 

A A � in Step 4 of Algorithm II. We restate the minimization algorithm in [18] as 

follows. 

Algorithm A (Minimization Scheme) 

1. Initialize = 0 for each (z, j ) in the noise candidate set V. 

2. At each iteration k, do the following for each (z, j ) G V: 

(a) Calculate 

d f = P ^'aiVij - :mn - ？/mn), 
{m,n)eVij 

where 之画’ for (m, n) G Vij, are the latest updates and ip'̂  is the 

derivative of (pa-
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(b) If I总知)| < 1, set zlj^ = 0. Otherwise, find zjj^ by solving the nonlinear 

equation 

â ( 4 �+ yij - r̂nn — ?/mn) = Sgn(4幻). (6) 
(m,n)eVij 

3. Stop the iteration when 

r (fc+1) ( i t � , F y ( y + z W ) - F y ( y + z ( W i ) ) , 
" I f 114 and Fy(y + z(^)) ^ 

where ta is some given tolerance. 

It was shown in [18] that the solution ẑ ĵ  of (6) satisfies 

sgn(4)) = -sgn(裙))， （7) 

and that z(知）converges to z = x — y where x is the minimizer for (1). 

3 Algorithm for Solving (6) 

It is well-known that the edges and details are preserved better if the potential 

function (pa(t) is close to \t\一the celebrated TV norm function developed in [21]. 

For ipa in (2), this means that a should be chosen close to 1. For (p̂  in (3)—(5)， 

we should choose a close to 0. Notice that all will have a steep increase near 

zero and that will have a large value at zero—in fact it is infinite for (p̂  in 

(2). The function (6) therefore will have very large slopes in some regions which 

makes the minimization difficult. Although Newton's minimization is preferable 

to speed up the convergence, its use is delicate since the convergence domain can 

be very narrow. In this section we discuss how to find the initial guess such that 

Newton's method is guaranteed to converge. We will focus on how to solve (6) 

when cpa{t) = with a > 1. With some modifications, similar techniques can 

be applied to other edge-preserving ipa too. 

According to Step 2(b) of Algorithm A, we only need to solve (6) if > 1. 

We first consider the case where 结)> 1. When solving (6), Zmn + ymn - Vij, for 
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(m,n) e Vij, are known values. Let these values be denoted by dj, for 1 < j < 4, 

and be arranged in an increasing order: dj < dj+i. Then (6) can be rewritten as 

4 

H{z) = - 1 + - dj)\z - djl""-^ = 0. (8) 
3=1 

» 

Since each term inside the summation sign above is a strictly increasing func-

tion on R, H{z) is a strictly increasing function on R. Clearly H{di) < 0 and 

lim^_»oo H{z) = oo. Hence (8) has a unique solution > di. By evaluating 

we can check that if any one of the dj, 2 < ji" < 4, is the root z*. If 

not, then 2* lies in one of the following intervals: 

(di’c/2)，(d2’ci3)’(^,cW’or (̂ 4,00), (9) 

We first consider the case where 2;* is in one of the finite intervals (dj, dj^i). 

For simplicity, we give the details only for the case where z* G (<̂ 2, ds). The other 

cases can be analyzed similarly. 

Let ； G (d2, ds), i.e. H(d2) < 0 and > 0. Then we compute H 

Without loss of generality, let us assume that H > 0. Our aim is to find 

an initial guess z(o) e (d2 + d3)/2) with if(2;(o)) < 0. Unfortunately, we cannot 

use 0̂2 as the initial guess as H'{d2) is undefined. We will prove in Theorem 2 that 

Newton's method with 2(0)三 + £ can solve (8), where e > 0 is given below. 

Lemma 1. Let 1 

‘ = . (10) 

Then H{d2 + e) < 0. As a result, z* G [<̂ 2 + £, (0̂ 2 + 而)/2). 

Proof. First let e = min{{d^ — d2)/2,e} > 0. By (8), we have 

H{d2 + e) = - l + aP [ { d 2 e ^ - ' + -(而-(k — e)""' — (d, -d:- £~广—丄.. 

For 1 < a < 2, we can easily verify the inequalities: 

(c + 6 广 1 < c “ + f 1， for all c,(5 > 0, 
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(c -句 a - i > 1 - P - I ’ for all c > ^ > 0. 

Since e < {ds — c y / 2 < {ds — ^2) < (<̂ 4 一 ^W，we obtain 

H{d2 + €) < - 1 + a/?|(d2 - d i ^ - ' + 产-1 + 产-1 - [{ds - 32广-1 - 1] 

-[id4 - d2r-'- e^-']] 

= + 4a 々 产-1. 

By (10), we have 

H{d2 + £) < H{d2) + 4a/?产—1 < H{d2) + 4a衡“一'=0. 

However, because H{{d2 + d �2 �> 0 and H is strictly increasing, we must have 

e < {ds - d2)/2. As a result, e = £ and H{d2 + e) < 0. • 

Theorem 2. Let 2(0) = <̂2 + £ be the initial guess where e is defined in (10). 

Then the sequence generated by Newton's method, i.e. 

converges to the root z* of H{z). 

Proof. Consider the Taylor expansion of H{z) at z = z*. We have 

H{z) = H[z*) + { z - z*)H'[z) 二（；2 — z')H'{z), 

where z lies strictly between z and ；z*. Hence by (11), 

觀 ) ( “ ⑷ ) ， （12) 

where lies strictly between and z*. We note that dk < ẑ ^̂  < 乏(。）< z* < 

{d2 + ds)/2. 

We need the following facts to complete the proof: 

Fl. Clearly from the definition (8), H'(z) = a (a - k — > 0 for 

all z £ {d2,ds). 
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F2. Since H…�z) = a{a - l){a - 2)(a - 3)/31；'=1 k — ^^“一‘ > 0 for all z e 

ds), H"{z) is strictly increasing in (<̂ 2, ds). 

F3. Define W{z) = a{a - k " Clearly Wiz) < H'{z) for all 

z. Moreover, W'{z) < 0 for 2 G (^2, (d�+ 而)/2). Hence W{z) is a strictly 

decreasing function in (d2, (c/2 + 4 ) /2 ) . 

We divide the convergence proof in two cases: 

(i) H"iz*) < 0; F2 implies that H"{z) < 0 in (^2,2*). Hence H'{z) is decreas-

ing in {d2,z*). Therefore, H'{z) < H'{z) foi d2 < z < z < z\ Together 

with Fl, we have 
JJ! (Z\ 

0 < 1 - < 1, for Q\\d2<z<z< z\ — H'{z) 

Therefore, from (12)，we have 

2 刚 < ；̂* - 2⑷，n 二 0,1’...， 

i.e. the sequence {；converges monotonically to >2；* from the left. 

(ii) > 0; For all z e (^2,(而 + 而)/2)，since 

z - 2 < 而|"""2 and — "4广-2 < 

we have 
3 

H'{z) < = 2Wiz), for all z e (^2, (^^2+而)/2). 
j=2 

Here W{z) is defined in F3. Since W{z) is a strictly decreasing function in 

(d2, (d2 + c?3)/2) and W(z) < H'{z) for all z, we have 

H'{z) < 2W{z) < 2W(z) < 2H'(z), for all < ^ < 2 < 

Hence 

1 - ^ [^l < 1, for all d2< z <z < z*. 
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Therefore by (12), as long as < <2̂(打）< 2；*, we have 

丨,一之(n+i)丨 < I , 一 ” ， 

i.e. the sequence converges to z* as long as 2；(打）< z* for all n. 

But what if after some iterations, z^^^ > z*? Since H"{z*) > 0, by F2, we 

have H"{z) > 0 in [z*,ds). This implies that H'{z) is increasing in [；2；*，而). 

As a result, H'{z) < H'(z) for all z* < z < Therefore, 

H'(z) 

0 < 1 — — H - < 1, for all 2* < 5 < z. 

Hence, from (12), we have 

0 < - z * < … n = m, m + 1，..., 

i.e. the sequence {之⑷}二爪 converges monotonically to from the right. 
• 

This finishes the proof for the case when H � 0 . If H < 0, 

then we locate 2(0) € ((c/2 + c?3)/2，cy. More precisely, =ds - s with e = 

H{ds) / {AaP)] '^. The rest of the proof will be similar. 

The same result holds when z* lies in other finite intervals (dj,dj+i), j = 

1,2,3. If Hid^) < 0, this means z* G ( ^ 4 , 0 0 ) . Since 
4 

H"{z) = a{a — l ) (a - - dj)\z 一 djl""-^ < 0, for all z G ( ^ 4 , 0 0 ) , 

j=i 
we are in a situation similar to case (i) in Theorem 2. In fact, as li ' {z) is 

strictly decreasing in (0^4,00), 0 < 1 - H'{z)/H{z) < 1 for all < 2; < 5 < 2*. 

Therefore it suffice to choose an initial guess ̂；⑴）=ck + £ such that if (2(0)) < 0. 

(Again we cannot choose 2：(。）= dj as 丑 i s undefined.) Similar to Lemma 

1, we can choose e = [—F(d4)/(4a/?)] 口 . Then one can show from (12) that 

0 < 2* — 2；…+1) < — ；2；(几）,for n = 0 , 1 , . . . , i.e. {2；(打）} converges monotonically 

to 2;* from the left. 
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We remark that since we are considering the case that 结、> 1, by (7), 

sgn(2；*) = —sgn(总〜）二 —1. Hence z* < 0. Thus we may not need to check 

all the intervals in (9) for 2；*. In fact, if df < 0 < d^+i, then we only have to 

check the intervals This can simplify the algorithm (see Step 1 in 

Algorithm B below). 

Finally, we turn to the case where 给）< —1. The nonlinear equation in (8) 

becomes: 
4 

1 + - dj)\z - c^�—i = 0, 

where the left-hand-side function is still a strictly increasing function in z, and 

that 2；* > 0 by (7). The convergence proof is almost the same with minor modi-

fications. 

We summarize the results into the following algorithm. It works for both 

^ > 1 and 錄 ) < - 1 . 

Algorithm B (Newton's Solver for Solving (6)) 

1. Check the signs of H{dj), 1 < j < 4. (One may not need to check all four 

points by taking into account the sign of using (7).) 

2. If H(di)�0 or H(M < 0, let 

卿 1)>0’ 

� “4 + { - 榮 广 ， i f 丑 ⑷ < 0 . 

3. Else locate the interval {dj,dj+i) which contains the root z*, and let 

卜 1 - { 書 〈 。 ’ 

4. Apply Newton's method to obtain z* up to a given tolerance tb. 
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mmm 
Figure 1: (Left) The original Lena image. (Middle) The noisy image corrupted 

with 50% salt-and-pepper noise. (Right) The noisy image corrupted with 40% 

random-valued noise. 

4 Numerical Results 

In this section, we stimulate the restoration of the 256-by-256 gray scale image 

Lena corrupted by 50% salt-and-pepper noise and 40% random-valued impulse 

noise with dynamic range [0,255], see Figure 1. Here the salt noise (i.e. s^ax) 

and the pepper noise (i.e. Smin) are of equal probability and the random-valued 

noise are uniformly distributed in the dynamic range. We clean the salt-and-

pepper noise by Algorithm I with threshold T = 5 and the random-valued noise 

by Algorithm II with s = 0.1. In both algorithms, we use windows of size 9-by-9 

for noise detection. 

We test our Newton's method with different magnitudes of a and choose 

/? = 2 for all settings. The tolerances in Algorithms A and B are chosen to be 

ta = (smax 一 Smin) X lO—̂  aiid T^ = 5 X lO—^ respectively. In Table 1, we give, 

for different values of a, the maximum number of inner iterations (i.e. maximum 

number of Newton's iterations in Step 4 of Algorithm B), and the total number 

of outer iterations (i.e. maximum k in Algorithm A). 

From the table, we see that around 5 to 9 iterations are sufficient for Newton's 

method to converge. The smaller a is, the more iterations requires. But in 

practice, there will be stair-case effects in the restored image if a is too small. 
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a inner iterations outer iterations 

1.3 5 117 

1.2 6 201 

1.1 9 290 

a inner iterations outer iterations 

1.3 5 319 

1.2 6 512 

1.1 9 1208 

Table 1: The number of iterations in restoring noisy image corrupted by (top) 

salt-and-pepper noise and (bottom) random-valued noise. 

To restore the best image, 1.25 < a < 1.40 is sufficient. We give the restored 

images in Figure 2. We see that the noise are successfully suppressed while the 

edges and details are well preserved. 

5 Conclusions 

In this report, we first give an overview of denoising schemes for cleaning salt-

and-pepper and random-valued impulse noise. Experimental results show that the 

images are restored satisfactory even at very high noise level. Then we present 

an algorithm for solving the variational equations resulting from the denoising 

schemes. It is the essential step in the restoration process. To overcome the 

difficulty in finding the convergence domain, we have derived a formula for the 

initial guess; and proved that with it, Newton's method is guaranteed to converge. 
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HH 
Figure 2: (Left) Restoration from image corrupted by salt-and-pepper noise using 

a = 1.3 and (3 = 2.5. (Right) Restoration from image corrupted by random-

valued noise using a = 1.3 and P = 2.3. 
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Concluding Remark 

We have developed a powerful method for denoising impulse noise. It is a two-

phase method. In phase one, a suitable median-type filter, tailored to a priori 

known noise model such as salt-and-pepper noise or random-valued noise, will be 

chosen to locate the noise accurately. Then the detected noise will be removed 

in phase two by a recently proposed regularization method which is equipped 

with fi-norm data-fidelity term. Numerical results have shown that the second 

phase is much better than those methods which just use median values to replace 

the noise pixels. Practically, the proposed denoising method is equivalent to 

solving nonlinear equations iteratively and this can be solved by Newton's method 

with the derived initial guess to achieve quadratic convergence. As a result, this 

two-phase denoising scheme may be a first practical method to restored highly 

corrupted images, even when the noise level is as high as 90%. 
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