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Abstract of this thesis entitled: 

An Asynchronous 

SoftOutput Viterbi Algorithm Decoder 

Submitted by CHAN Wing-kin 

for the degree of Master of Philosophy in Electronic Engineering 

at The Chinese University of Hong Kong in July 2003 

This thesis presents a new asynchronous VLSI design of Soft-Output Viterbi 

Algorithm decoder. The Viterbi algorithm is already widely used in digital 

communication systems and deep space communications. A new class of 

concatenated convolutional codes is developed in the past fifteen years, which can 

give bit-error rate close to the Shannon Limit. The Soft-output Viterbi Algorithm 

(SOVA) is a modification of the classical Viterbi algorithm that allows it to be used 

as a component decoder for decoding concentrated convolutional codes. 

There is no global clock in asynchronous circuits; instead local handshakes and 

timing are employed to transfer data. Asynchronous also give out lower 

electromagnetic emission than synchronous counterpart that is preferable in many 

applications such as mixed-signal systems for reliability and lower interference. 

This work adopts an asynchronous approach and static CMOS technology is used. 

New asynchronous add-compare-select unit and novel asynchronous traceback 

P. ii 



algorithm are developed in this project. Through asynchronous circuit style and 

voltage scaling, it also gives opportunity for low-power applications like mobile 

handset for telecommunication systems. 
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摘要 

本論文介紹了一基於異步集成電路設計方法的軟式輸出維特比演算法解碼器。 

維特比演算法於數位通訊系統及太空通訊中的使用十分廣泛°近十五年來發展 

出來的迴旋鏈結編碼更可使其錯誤更正能力十分接近理論上的雪農極限°軟式 

輸出維特比演算法爲演變自經典維特比演算法’它可以用作迴旋鏈結編碼解碼 

器中的組成解碼器。 

異步電路中沒有全晶片的時脈，而數據傳送是靠聯絡電路控制°異步電路發出 

的電磁波干擾比同步電路爲低，這於混合訊號系統可靠性及減少干擾十分有 

利。 

本設計使用異步電路設計方法及靜態CMOS技術0同時開發新的異步「加-比 

較-選擇」單元及Traceback單元°以異步電路技術及電壓調整，低功率應用如 

移動電話等可以實現。 
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Chapter 1 - Introduction  

Chapter 1 Introduction 

1.1 Overview of Communication Systems 

In a communication system, the original signal sources are first converted to a bit-

stream in a source encoder (e.g. audio/video encoder). The channel encoder then 

encodes the information bits before sending to the channel by the modulator. 

Channel encoding introduces redundancy to the information bit-stream to combat 

noise and imperfection by forward error correction (FEC). The information is 

modulated with a chosen scheme and carrier frequency. 

The received signal is first demodulated and then decoded according to the coding 

scheme. Then the bit-stream is decoded to original by source decoder. The 

convolutional encoder and the Viterbi Decoder is usually used in the channel coding 

and decoding accordingly in modern communication systems such as in IS-95 

CDMA and GSM. 

Signal ^ Source ^ Channel ^ Modulator 
encoder coding  

Channal 

Signal ^ Source ^ Channel ^ Demodulator 
output decoder decoding  

Figure 1-1 - A typical digital communication system 
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Chapter 1 - Introduction  

1.2 Soft-output Viterbi Decoder and Turbo Code 

Turbo Code is an essential part for next-generation wireless communication systems 

such as Third-generation (3G) mobile communication systems[l]. It is an error-

correcting code introduced in 1993, which gives error recovery to almost at the 

Shannon's channel limit [2]. There are several popular algorithms for decoding 

Turbo Codes such as Maximum Aposteriory Algorithm (MAP), Max-log-MAP and 

Soft-output Viterbi Algorithm (SOVA). SOVA is the least complex decoder among 

the algorithms mentioned that gives opportunity for low-power applications like 

mobile handset for 3G systems. 

The Soft-Output Viterbi Algorithm [4] is a modification of the classical Viterbi 

Algorithm [7] that provides a soft output along the decoded bit. The soft output is 

then used in iterative decoder for decoding turbo codes. 

Turbo code is a kind of Parallel Concatenated Convolutional Code (PCCC). The 

turbo encoder consists of convolutional encoder and a random interleaver as shown 

in Figure 1-2. 

• � 

u ^ Vi 
encoder 1 

• 

interleaver 

• ^ V2 
encoder 2 

Figure 1 - 2 - A rate 1/3 Turbo Encoder 
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Chapter 1 - Introduction  

1.3 Iterative Decoding 

It is possible to use SOVA algorithm to decode Turbo Code. Figure 1-3 shows a 

block diagram of an iterative Turbo Decoder using SOVA as component decoder [8]. 

The first decoder produces soft output that is interleaved and used by the second 

decoder. The second decoder also produces soft output that is needed by the first 

decoder for next decoding process. 

rO 

T • 
rl SOVA ^ Inter-

^ Decoder 1 leaver  

• 

——A ~ ： ~ 
^ deinter- 

Inter- SOVA \ leaver 
~ • leaver • Decoder 2 

r2  
^ ^ deinter- ^ 

leaver 

Figure 1-3 - A Turbo Code decoder based on SOVA algorithm 

1.4 Motivation 

Currently there are many advanced VLSI implementations on the Viterbi Algorithm 

[21] [22] [23] in which both speed and power consumption is considered. Recently, 

there are also some implementations on SOVA Decoder [15] [24], in which speed is 

P. 3 



Chapter 1 - Introduction  

emphasized. There is an implementation [25] using special layout RAM for 

traceback memory to achieve low power. Particularly, there is also a VLSI 

implementation of Viterbi decoder with asynchronous circuit methodology [26], 

however the power consumption is very high in this implementation 

This thesis introduces a new asynchronous traceback memory to reduce power 

consumption by reducing data movement in the memory with a memory of ring 

topology and asynchronous controls. New design of the add-compare-select unit is 

also introduced. The Soft-output Viterbi Decoder presented in this thesis can be used 

in communication systems and as a component decoder in decoding concatenated 

convolutional code. 

1.5 Organization of the Thesis 

The organization of the thesis is as follows: Chapter 1 gives an introduction on 

communication system and channel coding and the motivation of this project. 

Chapter 2 introduces Soft-Output Viterbi Algorithm (SOVA) Theory and the 

decoding algorithm. Chapter 3 describes the asynchronous circuit design 

methodology adopted in this thesis. Chapter 4 describes the detailed design and 

implementation of the Asynchronous Soft-output Viterbi Decoder. Chapter 5 

presents the Experiment results, comparison and discussion based on the design of 

the SOVA decoder. The conclusion of the thesis is given in the last chapter. 
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Chapter 2 Self-timed Circuit Design Methodology 

Asynchronous circuit design differs from synchronous counterparts in eliminating all 

the clocks. Generally, in asynchronous circuits, data are passed through each 

processing unit controlled by handshakes rather than relying on a global clock. Based 

on handshaking protocols, asynchronous circuits can be divided into Bundled-data 

and completion-detection protocol. 

2.1 Properties of Self-Timed Design 

Self-timed circuits have been appeared since the vacuum tube era [3] and such 

circuits operate at its natural maximum speed, where performance depends on actual 

operating condition rather than worse case delay. Self-timed logic passes data from 

one stage to another by handshakes, which can be completion-detection signals. 

Unlike its synchronous counterpart, which a global clock controls all the data 

propagation, self-timed circuits pass information on data change locally, eliminating 

the clock skew problem and power-dissipation of the clock signal. However, self-

timed circuits are more difficult to design due to lack of dedicated design automation 

tools, and sometimes there is also an area overhead in such circuits. 

Self-timed circuit are usually implemented with dynamic circuits such as Differential 

Cascode Voltage Switch Logic (DCVSL) in which dual-rail encoding is used to 

detecting completion. However, DCVSL is inherently very power consuming due to 

the precharge-evaluate phase of every logic gate. Moreover, dynamic logics are not 

compatible with standard cells in most CMOS processes. Full static CMOS is 
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Chapter 2 - Self-timed Circuit Design Methodology  

preferred as it can be implemented by standard methodologies and easier to test than 

dynamic logics. 

Self-timed or asynchronous circuits also give out lower electromagnetic emission 

than synchronous counterpart [5] that is preferable in many applications such as 

mixed-signal systems for reliability and lower interference. Another advantage of 

self-timed systems is that the supply voltage can vary to adopt different data rate 

easily. This implies we can lower the supply voltage when the data rate is low to 

gives extra saving of energy. This scenario can arise in mobile communication 

systems where the bit rate of wireless channels may vary with the handset. Figure 2-1 

shows an example of voltage scaling in self-timed circuit with synchronous 

environment which is given in [6]. The system detects if the input FIFO is nearly 

empty, the speed of the self-timed circuit is higher than enough and the supply 

voltage can be reduced. On the other hand, the supply voltage has to be increased 

when the FIFO is nearly full to accommodate higher data rate. 
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Chapter 2 - Self-timed Circuit Design Methodology  

VDD • 

H D C / D C 

i Y d d  

Self-timed 

I Data R 
— E - • I FIFO ~ • Processing ~ 斗 FIFO h » E — 

circuit L-G ^ “ 

elk L 

Figure 2-1 - An example of voltage scaling in self-timed circuit with synchronous environment 

For self-timed design, there are mainly two design methodologies, namely bundled-

data and completion-detection. 

2.2 Bundled'data Protocol 

In bundled-data protocols, the data are represented by normal Boolean values 

accompanied by separate request (req) and acknowledge (ack) signals. The sender 

puts the valid data onto the bus and then releases a req signal to indicate the data are 

ready. Then the receiver accepts the data and sends back an ack signal to tell the 

sender that it has received the data. When the sender receives the ack signal from the 

receiver, the sender is then ready to start another communication cycle. 
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Chapter 2 - Self-timed Circuit Design Methodology  

H req 

Sender Receiver 
D a t a ^ > 

^ ~ ^  

Figure 2-2 - Bundled-data Protocol 

2.3 Two-phase verses Four-phase Handshaking 

The protocol used in handshaking can be 4-phase or 2-phase. The 4-phase protocol 

uses logic level to indicate the data validity and the 2-phase protocol uses logic 

transition to indicate the validity. Figure 2-3 shows the timing diagram of the two 

protocols. The dotted arrow indicates the linkage between data and handshakes. The 

4-phase protocol needs a return-to-zero phase that is similar to the clock in 

synchronous circuits. 

req ~ ^ j ( ^ req _ ^ \  
:• ； :• / I 

. j N � "1 一 

ack ~~^ / ack H  
\ I \ \ ： 

Data X — �X Data ——>X . 
(a) (b) 

Figure 2-3 - Timing Diagram of (a) 4-phase handshake and (b) 2-phase handshake 
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Chapter 2 - Self-timed Circuit Design Methodology  

2.4 Completion-Detection and Delay Matching 

In the bundled-data protocol, the handshake signals must not arrive to next block 

before the data are ready. Therefore delays are usually inserted to match the timing 

of the handshake and the data processing logic. The delays are usually fixed, but it is 

also possible to insert delays controlled by external means [13]. 

“ ^ hand- ^ hand- ^ 
< shake ^ shake ^ _ 

• • — • 

Figure 2-4 - Bundled-delay model 

A delay element can be a chain of inverter or AND gates. A delay block built with 

AND gate is shown in Figure 2-5 which is adopted from [40]. This delay element is 

used in the design. The time for propagating the change "0 to "1 from A to Q (toi) 

is longer than that the time for “1 to “0 (tio). This is suitable in 4-phase protocol 

because it makes the return-to-zero faster. 
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t 01 tlO 
f — ^ H 

A ) - H ~ \ 1 

^ J—Q Q —— 

(a) (b) 
Figure 2-5 - Delay block built from AND gates 

In 4-phase dual-rail protocol, the request signal is encoded into the data bus. As 

shown in Table 2-1, a bit of data is represented by two-bit wire (dual rail), indicating 

the bit is "not ready" (00), "data zero" (01), or "data one" (10). Completion detection 

can be done by OR-ing the two bits. The 4-phase protocol has a return-to-zero phase, 

which can be used for pre-charging the logic. T. E. Williams has analyzed and 

improved several self-timed pipelines in his works [12], in which dual-rail pipelines 

with completion detection were used. One of the implementation of this encoding is 

using Differential Cascode Voltage Switch Logic (DCVSL) [28] with novel control 

circuits [29] [31], of which can be running at a data rate in the range of GHz [30]. In 

order to use dynamic logic, a pre-charge period between successive evaluation 

periods is required. This encoding is robust and fast, but causing 100% hardware 

overhead and large power consumption. 

iRail 0 iRail 1 

Not ready 0 0 

Data ‘0 0 1 

Data ' l 1 0 

Unused 1 1 

Table 2-1 - Dual-rail Encoding of a bit 
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Chapter 2 - Self-timed Circuit Design Methodology  

2.5 Muller Pipeline 

A Muller pipeline is a simple and elegant implementation of handshake control. It 

mainly consists of C-elements and inverters. A C-element is a state-holding device 

that changes its state (output) only when all the inputs are at the same logic level. It 

holds its previous state if the inputs differ. There are many possible implementation 

of the C-element and are investigated in [19]. 

A B Q n 

\ 0 0 ~ 0 
A ——C Q 
B ——^ G 1 Qn-l 

1 0 Qn-l 

1 1 1 
Figure 2-6 - C-element and its logical behaviour 

The Muller pipeline can be viewed as both 2-phase or 4-phase handshake protocol. 

Also, the circuit can operates in reverse direction by swapping the ack and req 

signals. Lastly, the Muller pipeline is delay-insensitive. This means the circuit works 

correctly regardless the delays in gates and wires. 

req — 

• /^aek 
/ ack out 

ac._in I _ 

req_in — H ^ � u t 

Figure 2-7 - Muller Pipeline 
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2.6 Design of the Adder 

2.6.1 Basic Structure 

The basic idea of the adder is to calculate the sum and carry independently. The carry 

chain is the critical path of an adder; the sum can be calculated in parallel while the 

carry has to propagate from one stage to another. 

2.6.2 Carry Chain and Completion Detection 

The carry chain design is based on [3] and [35], in which completion detection is 

done on the carry chain. Figure 2-8 shows the structure of the Carry Propagation 

block of the adder, where the carry is dual-rail encoded for completion-detection of 

each adder stage. The carry chain across the adder is represented by dual-rail signals 

as in Table 2-2. In practice, the CPs are implemented with complex gates. 

c,-. I > ~  

A ( z i :： ^ t r i V -
B C = > ]  

C N , . , ^ — — t ) ^ ^ 

Figure 2-8 - A Carry Propagation (CP) Block 

The operands are then taken into each stage of the adder. 
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Co CoN I Status 

0 0 Not Ready 

0 1 Carry 丨0' 

1 0 Carry T 

1 1 Not used 

Table 2-2 - Dual-rail Encoding of Carry Chain 

The carry and its complement of each stage are computed independently along the 

carry chain as in (1) and (2). 

C i = A B + Ci.i(AeB) ( 1 ) 

CNi=�(A+B) + CNi.i(AeB) (2) 

One can observe that, the carry out of an adder stage can be computed independently 

from previous stage if A equals B. Otherwise, the carry out has to be determined by 

the carry of previous stage. This dual-rail implementation can give completion-

detection of each stage by taking OR of Q and CNj. When one of the operands is 

always ’0,，which may happen when adding two data with unequal width, the carry 

chain can be simplified as Ci=ACi-i and C N i = (~A) + CNi.i which is only a one-gate 

implementation. 

The general structure of the self-timed adder is shown in Figure 2-9. Cascading the 

CP and connecting the FA together can make adder of arbitrary length. The FA in 

each adder stage is a 3-input exclusive gate, which adds the two one-bit operands and 

the carry from previous stage. Its delay should be less than the generation of the 

completion-detection signals of the whole adder that is about 3-gate delay. 
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i 

An-1 Bn-1 Ap Bp 

5 ? i i 
FA ^ FA 

• • 
Sn-1 ^n 

• • • . p • • • 
An-1 已 n-1 �" n 

OR OR OR 
^ ^ ^ ^ 

Carry Completion Sensor Carry 
(n-input AND gate) completion 

Figure 2-9 - Architecture of the Self-Timed Adder 
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Chapter 3 SOVA Theory 

3.1 Convolutional Encoder 

A convolutional encoder of rate 1/2 and a constraint length of 3 is shown in Figure 

3-1. It consists of a shift register and two modulo-2 adders. The state of the encoder 

is initialized as “00 . The state transition diagram of the encoder is shown in Figure 

3-2. 

A trellis is an extension of the state diagram that shows the state transition over time. 

For each state at every trellis stage, there are two possible preceding states and two 

possible next-states. The state transitions are governed by the data feed to the 

encoder. 

^ ^ E n c o d e d 
Data —— ^ stream 

• • " H I ] - ^ — 

I 
Figure 3-1 - A rate 1/2 convolutional encoder 

Data are shifted into the encoder and it generates two bits for every information bits. 

Hence the rate of the encoder is 1/2. The constraint length of an encoder K equals 

v+1 bits when v is the memory of the encoder. Therefore the constraint length of the 

encoder in Figure 3-1 is 3. 
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0/0^ 
Q 

0/11 1 

^ 1/00 / 
0 / l K Z 1 / 1 0 

6 
1/01 

Figure 3-2 - State Diagram of the encoder in Figure 3-1. 

At the receiver side, the decoder find the most possible state of the encoder at a 

particular time slot and hence gives out the original information bits based on the 

estimation. This is done by finding the maximum likelihood (ML) path along the 

trellis. 

。。\ v v 

^ t i m e 

Figure 3-3 - Trellis Diagram for the encoder in Figure 3-1 
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3.2 Hard verse Soft Decision Decoding 

For hard decision decoding, each noisy symbol is quantized into one bit before 

calculating the Branch metrics and the branch metric for each state is the hamming 

distance between the noisy symbol received and the ideal symbol. In contrast, soft 

decision quantizes the noisy symbol into an integer of wordlength w bits. Figure 3-4 

shows the difference between hard and soft decoding. Hard decision decoding 

digitalizes the RF symbol to 1 bit, and the soft decision decoding converts the 

symbol into a 3-bit value. 

+ 1 一 Oil j I 
010__ 

000 

眷 
眷 

110—— 
-1 一 101 — 

(a) (b) 

Figure 3-4 - (a) Hard Decision and (b) Soft Decision of RF symbol 

3.3 Soft Output Viterbi Algorithm 

3.3.1 Viterbi Algorithm 

The Viterbi Algorithm [7] finds the most possible sequence of binary codes of a 

convolutional encoder sent over a noisy channel. The algorithm recursively finds the 

survivor path over the trellis which is the closest path to the received sequence of 
P. 17 
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symbols over the channel. The received symbols may be noisy and may not give a 

valid path over the trellis. The decoding algorithm can be divided into three steps. 

3.3.1.1 Branch Metric Computation 

The Branch Metric is the distance between the received symbol and all the possible 

transition among the states in the trellis. It is the squared distance between the noisy 

symbol and the ideal symbol of the transitions. Mathematically, 

BMij,n = ( y n - C i / Equatk>n3-1 

where yn is the received symbol and Cij is the ideal output symbol of transition from 

state i to state j. 

3.3.1.2 Add-Compare-Select 

For each state S / ) at time n there is an associated state metric M( S / ) ) . The two 

branch metrics of the incoming path is added to the state metric individually and the 

results are compared. The one with smaller metric is then selected as surviving 

branch and the other one is discarded. 

M( Sn(k) ) = min{Sn-i(k) + BMii’k’n，Sn-I(k) + BMi2’ic’n } Equation 3-2 

For each state in the trellis this calculation is performed and the results are used in 

the traceback 

P. 18 



Chapter 3 - SOVA Theory  

previous new 
path path 
metr ic�^^ metric 

0 . … " v - y F 0.16 

A = 0.25-0.16=0.09 

Figure 3-5 - Add-Compare-Select Example 

The difference between the path metrics of the surviving and discarded path, A, is 

also saved for the soft output decoding as discussed later. 

3.3.1.3 Decoding Symbols 

Figure 3-6 shows a simplified four state trellis with the decisions calculated as in the 

previous section. There are no know start and end states in the trellis, as in most 

digital communication applications. At time k, there are four paths that are all 

probable correct path on the trellis for the received symbols. These paths are traced 

along the trellis with the decisions calculated and they will merge into a single state 

after a certain steps of traceback [9]. The length for the paths to merge, D，is called 

survivor depth. With this property, it is sufficient to perform traceback from only one 

state at time k, and the survivor path will gives the decoded bit at time k-D. 
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条 • •'••：： • 

\ \ ��.�.. • • • • 
\ Vx. z \ 

參 、 • V . 會 
\ •• 

• • 參 • 

correct path 

k 
k-D 

Figure 3-6 - Finding the survivor path 

The survivor path may not be the correct path as shown in the figure. However, the 

property that all paths will merge after D traceback steps makes the decoding of an 

information bitstream possible in a fixed latency D. 

3.3.2 Soft Output Algorithm 

The Soft Output Viterbi Algorithm (SOVA) described in this section was proposed 

by Joachim Hagenauer and Peter Hoeher [4]. It is a modification of the Viterbi 

algorithm where it provides the reliability measure (soft output) together with a 

decoded bit. The soft output is needed for component decoders for decoding 

concatenated convolutional codes such as Turbo Code [2]. 

For simplicity we assume a rate of 1/N convolutional code below. The number of 

states S is where v is the code memory. Further we assume that the traceback 
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length 5 is enough so that all the paths have been merged with sufficiently high 

probability. Then the SOVA [4] [9] can be described as follows. 

For binary random variable u e {-1,1} where logic '0 is -1 and logic '1 is 1. 

For each state Sk (k = time index), 

參 Compute the two incoming state metric by accumulating the current metric with 

the associated branch metric. 

• Compare the two state metric calculated above and then selects the minimum 

one. 

• Store the minimum metric found from previous step. 

• Store A equals the absolute difference between the two incoming state metric 

for soft-deciding update in following stage. 

This reliability measure (soft-output) is given out in a log-likelihood ratio (LLR) 

Lc(uk) by 

L(Uk) 二 = Equation 3-3 

where P(uk = +1) is the probability that Uk = +1 and P(uk = -1) is the probability that 

Uk = -1 

For two metric M(sl) and M(•？of the two path entering states s‘l and s'l at time k’ 

the metric difference is defined as 
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Â , = M{sl)-^(5；)>0 Equation 3-4 

The probability that the decision is correct when selecting path si and discarding 

path si is then [14] 

= S ) = — Equation 3-5 
1 +已八 * 

and the LLR is simply A'̂ . To determine the LLR of the decoded bit, the Soft Output 

Viterbi algorithm takes account on all A'̂  along the maximum likelihood path (ML 

path) for all the traceback stage. This LLR can be approximated [9] by: 

w. min 
“ "i:k".k+S ‘ Equation 3-6 

L(uk) is the LLR of decoded bit Uk at time k. wj is the value of the decoded bit of the 

discarded path at trellis stage i if it had been selected as survivor. 

The minimization in Equation 3-6 is carried out for the path merging to the 

maximum likelihood path at Uk but gives out different decision as the ML path does. 

The same hard decisions as the classical Viterbi Algorithm is obtained and the 

reliability of the decisions is obtained by taking the minimum of the metric 
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differences along the maximum likelihood path at where the decision of the 

maximum likelihood path and the merging path differs. 

Here is an example: 

Figure 3-7 shows a simplified trellis of four states and a traceback length 5. The path 

difference between the surviving path and the discarded path (not shown) is also 

calculated and stored. In the figure, the solid line represents the final survivor and its 

competing path. The decisions along the paths are also shown in the figure. 

update 

I j 严 

• \ • • , z � • 

• • / • 參 

？ 、 Z 0 

k-4 k-3 k-2 k-1 k 

survivor 
competing path 

Figure 3-7 - Soft update example 

The soft update process begins when the algorithm has identified the final survivor. 

It can be seen from the figure that the two paths gives different decisions at t = k-2 

and k-3. Only the path difference along the final survivor in which the decision is 

different from the competing path is updated. 
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Chapter 4 Proposed SOVA Decoder Design 

4.1 Overview 

The general architecture of a SOVA decoder is shown in Figure 4-1. The bottleneck 

that limits the speed of the whole decoder is the Add-Compare-Select (ACS) unit 

because it is a nonlinear operation. The ACS block needs to add pairs of path and 

state metrics, compare the results and select the path with smaller metric. It also has 

to output the differences between the two incoming state metric for soft-output in 

path metric unit. 

. . , Branch Add Path Decoded bits 

Me^ic ^ ^ compare = z = 0 Metric 
Channel Unit Select Unit ^ 

I__I t q f ^ ^ 

Figure 4-1 - General Architecture of a SOVA decoder 

The ACS unit is built with self-timed adders that compute the carry only when 

necessary and generates completion signals when calculation is done. The adder is 

also used in the subtract-and-compare stage. Therefore the ACS unit is self-timed 

and can operate at its maximum speed. 

4.2 SOVA Decoder Architecture 

As discussed in §3.3，the operation of the SOVA decoder is based on finding the 

maximum likelihood path along the trellis over time. Ideally the time for finding the 

maximum likelihood path should be infinity long that is not possible in real 
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implementation. Previous findings [34] show that tracing back length of 5 times the 

constraint length is enough for most applications. 

The implementation of the SOVA decoder is based on a trellis of 8-state as in Figure 

4-2，corresponding to an encoder with generating polynomials Go= 1+D^+D^ Gi= 

\+D+D\ G2= 1+D^+D^+D^ 

ooomrrr^——>m 

lOl iT j X J i . 
n O ^ > > I n p u t b i t i s O 

111 各 > Input bit is 1 

k k+1 

Figure 4-2 - The Trellis that the SOVA decoder based on. 

The Branch Metric Unit generates the metrics of the incoming symbol against all the 

states of the trellis at each time slot. The smaller the branch metric associated to a 

state, the higher the probability the symbol is corresponding to that particular state. 

The ACS unit calculates the accumulative state metric of all the state in the trellis at 

a time slot by adding the branch metric and the previous state metric for the two 

incoming paths of a state. The path with smaller metric (the survivor) is saved for 
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next iteration. The difference between the survivor and the discarded path is fed to 

the Traceback unit for soft update. 

4.3 Branch Metric Unit 

4.3.1 Branch Metric Generation 

The branch metric of a given state transition in the trellis is defined as the squared 

distance between received noisy symbol and the ideal output symbol of the encoder. 

According to [18], the branch metric can be represented by 

BMij ,n = ( y n - C i j ) ' = y n ' - 2 Yn C i j + ( C i j ) ' Equation 4-1 

where yn is the noisy symbol received at time n and Cjj is the output symbol for 

transition from state i to state j of the encoder. As all the branch metrics contain the 

yn̂  term, it can be eliminated without altering the difference among the branch 

metrics. Therefore 

B M i j , n = - 2 y n C i j + ( C i j ) ' Equation 4-2 

For output binary symbol a and -a , Cjj is in the set {-a, a}. Then 

0 ifCij = Ckj 

BMijn-BMkjn = { 
， ’ - 2 y n C i j + 2yn Ckj i f Q j 丰 Ckj Equation 4-3 
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Since dividing all branch metric by a constant does not alter comparison results, the 

branch metric can be further simplified to: 

-yn if Cij = a 

yn if C i j 二-a Equation 4-4 

For a rate 1/3 decoder with soft decision input yo, yi and y:，the branch metric for the 

state transition producing output (1,1,0) is (-yo) - yi + yi. 

4.3.2 Implementation 

The structure of the branch metric is shown in Figure 4-3. The minus sign indicates 

negation is taken before addition. For 3-bit soft decision, 5-bit is needed for the 

branch metrics. The adders are the self-timed adders discussed in §2.6. 

y2  
y l — — r  
yO 1 

" " " 1 ^ 1 ^MOOO p i I ^MIOO 

I ^MQOl I _ _ ^ M l O l 

- - - 〕 • 广 1 0 - - - � • ^MllO 

H ^ • ^ • 
Figure 4-3 - Architecture of the Branch Metric Unit (BMU) 
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4.4 Add-Compare-Select Unit 

4.4.1 Basics 

The basic structure of the add-compare-select block is shown in Figure 4-4. The 

adders and subtracters are built with the self-timed adder described in previous 

section. Light lines represent handshake controls while heavy lines stand for data 

flow. The C-element in between waits for the two adders to complete calculations 

and then propagate the request to the subtractor-comparator. Registers are placed in-

between adders and subtractor-comparator to reduce glitch-propagation. Transistor 

level simulation shows a 7% power saving with the register added. Matched-delays 

are used to ensure the timing of handshake signals behaves correctly. 

Ai ^  

Ri Ro C \_J delay L_ ^ A . ^ 
r L J ^ ~ h R� 

丄 Ao 

BMO • 一 _ [ _ n   
SMO _ 一 

Ltri  

Ri Ro "“" w _ 1. 
Sub abs _ J Delta J • & 1 “ 

I ‘ ‘ compare - decision BMI  
SM1 — ^^^^^ I I delay "j  

[ > [ ] ~ SM 

Figure 4-4 - Structure of the ACS block 

4.4.2 Self-timed design 
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As mentioned in section 3.3，the output of an ACS unit have to feed back to its input 

for calculations of next state-metric. Therefore its speed limits the performance of 

whole decoder. The critical path of the adder is the carry chain. For wide operand, 

algorithms like carry-lookahead is suitable to reduce the length of carry chain. 

However, it is not efficient for small operand (8-bit here) as the area overhead is 

relatively large. 

The expected value of the length of the carry chain of an adder is log2N [32]. The 

self-timed adder takes the advantages of propagating the carry only when necessary 

and therefore its average length of carry chain is also logiN. For the synchronous 

counterpart, ripple carry adder is usually used and the designer has to tolerate the 

longest carry chain which is N bit long. For an 8-bit adder, the speed can be 

increased about 2.6 times in statistical sense. 

The outputs of the ACS unit not only drive the Path Metric Unit but also feedback to 

the inputs of the ACS in "butterfly" configuration, which implies the outputs have to 

drive large capacitive loadings of routings and input capacitance of logic gates. 

Glitching on these outputs cause unnecessary switching which waste power. 

Therefore reducing glitches of the outputs are important for low-power design. In the 

ACS block, flip-flops are used to reduce glitch propagation between adder and the 

subtract-compare block. 
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4.4.3 Metric Normalization 

Metric normalization schemes are adopted for the ACS unit to ensure the path metric 

registers not to overflow. There are mainly two methods for normalization, namely 

subtracting the minimum state metric and modulo normalization. 

For subtracting minimum state metrics, it first determines the minimum state metric 

of all the states. Then all the ACS processing elements will subtract the minimum 

metric from its path metric. This method needs global communication between all 

the ACS processing elements, which is a relatively large computation overhead. 

Therefore it is suitable for low throughput application or software implementation. 

BM=Branch Metric 
B M O l ^ s . SM=State Metric 

S N ^ _ "I n 

^ ^ ^ � ^ecision 

BMi r ^ 

S M I _ ^ 

卞 P J ^ 

^ r - ^ 
min SM > 

Figure 4-5 - Metric normalization by subtracting minimum state metric 

To eliminate the extra comparison and subtraction, we can add one more bit in the 

path metric registers so that Modulo Normalization [17] can be used. 

If the maximum possible difference between path metric is Dmax，then the path metric 

register is of length 2Dmax- Two's complement representation is used for branch and 

state metric calculation in this case. 
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This situation can be viewed as two points running on a circle as shown in Figure 4-6. 

For I mi - m2 I < Dmax，we have mi <012 if and only if a<n . 

Therefore the comparison is based on the 2 s complement subtraction of the two 

metrics. 

Figure 4-6 - Modulo comparison of metrics 

4.4.4 ACS Unit Implementation 

The ACS unit adopts state-parallel design, in which one ACS processing element 

described in section 4.4.2 is mapped to a state of the trellis. The state-parallel design 

simplified the data flow of the ACS unit and allows adequate processing speed in 

low-voltage operation in the cost of area. The ACS unit consists of eight ACS 

processing element which map the eight states of the trellis. Each ACS processing 

element calculates the state metric of the two incoming path of a state and select the 

smaller metric as survivor. It also gives out the path metric difference of the two 
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incoming path for each state which is needed to calculate the "soft-output" in the 

traceback unit. 

From Branch Metric Unit 
,5bi t X 8 
r  

h ^ � 
T ^ ACS  

8 ^ 
ACS  

一 PE 

ACS  
— P E 

Shuffle apq 
PE — To Traceback 

exchange . ” . 
r — — • • • P Unit 

network  
ACS  

一 PE 

_ ACS  
— P E  

ACS  
“ 一 PE  

ACS  
r 一 PE — 

——=L_J— — • y 

Figure 4-7 - The ACS unit implementation 
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The routing of the shuffle exchange network in Figure 4-7 corresponds to the 

topology of the 8-state trellis as in Figure 4-2. 

4.5 Traceback Unit 

4.5.1 Viterbi Algorithm Traceback 

For each state at each stage in the trellis, the state metrics is calculated for all the 

possible incoming paths to that stage in the ACS unit. The path with the minimum 

sum is chosen as the survivor path and a pointer to the previous state along the 

survivor path is stored. 

The survivor path length L is the traceback step needed for a survivor path from a 

state to converge with very high probability [20]. L is usually chosen to be five times 

the constraint length for optimum performance [34]. Therefore one can traceback 

from any arbitrary state and reach the most likely state after (L-1) step. This path 

from the start of traceback to the final most likely state is called maximum likelihood 

path. Figure 4-8 shows a simplified trellis with traceback path of for state and 

survivor path length of 6. 

O 、 < / x / 〇 〇 

^ Traceback Direction 
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Figure 4-8 - Traceback with error 

For an error occurred when receiving the bitstream from the channel (as the square in 

Figure 4-8). The traceback follows the wrong path (the dotted line). However, the 

error is corrected by the decision of each individual state in the trellis and reaches the 

same state as the original path eventually. The decoded bit is hence the same as if all 

the symbols received are not corrupted. 

4.5.2 Two Step SOVA 

In the original SOVA algorithm, it is required to construct all the competing paths of 

all the states and the update procedure have to be carried out along the paths. 

However, only the final survivor and the associated reliability are outputted. 

Therefore, to discard the unnecessary calculation, the two-step SOVA traceback [37] 

[38] is used to reduce the calculation complexity. In this method, regular Viterbi 

Algorithm is used to find the maximum likelihood path. The soft update is then 

carried out over the maximum likelihood path and its competitor. Therefore the 

traceback can be divided into two parts. 

In the first part a hard decision traceback is employed to find the maximum 

likelihood path and the update process is postponed to the second part. This part is 

equivalent to the classical Viterbi algorithm. 
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In the second part, only the competing path against the maximum likelihood path is 

constructed and the reliability of the final decision is updated with respect to it. Now 

only a single path comparison is required instead of path in the original algorithm 

because the final survivor is known. 

SOVA Update VA Traceback 
< > < > 

Fo……….•• 

• v 參 參 ， ， • 、 - - - • • • 、 - _ _ • 、 - _ _ • 

• K ^ • … … • : : : � • � � : • 

• i • • 眷 • � • 
m、.…............• 參 眷 • • r # 
k-D-U k-D k 

final survivor path 

competing path 

Figure 4-9 - Two Step SOVA Example 

In Figure 4-9, the right hand side shown the regular Viterbi Algorithm where the 

maximum likelihood path is determined. The left hand side shows the comparison 

between the survivor and the competing path at each step. The reliability is initiated 

as infinity at step k-D. Then the bit decisions of the two paths at each step are 

compared. If the decisions differ (i.e. one is ‘0 while the other is ‘1 ), the minimum 

between the path metric difference of the survivor path at that step and the reliability 

of previous step is taken as the updated reliability. If the decision equals, the 

reliability measure is not updated and the value of previous step is used. Therefore, 

in the example, the reliability update is only performed at the step indicated by the 

dotted rectangle. 
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The survivor path traceback length is D while the SOVA update length is U. The 

length of D is usually five times the constraint length and the length of U can be 

twice of the constraint length should be optimum [39]. 

4.5.3 Past Designs 

There are mainly two categories of Viterbi Algorithm traceback architecture, namely 

Register Exchange and Memory Traceback. 

The register exchange traceback consists of a two-dimensional array of registers and 

multiplexers. The connections among registers have the same topology as in the 

trellis. A hardware implementation of the register traceback network for a rate 1/2， 

constraint length of 3 and 4-state decoder is shown in Figure 4-10. The multiplexers 

are controlled by the corresponding decision bits from ACS unit and the registers are 

controlled by the global clock. 

decision  
from ACS 

Figure 4-10-An Example of Register Exchange Traceback 
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The throughput can be very high in this architecture, in the cost of high power 

consumption due to high memory bandwidth needed. 

For SOVA implementation, the register exchange method is used to find the most 

likelihood path and then the delayed symbol from ACS unit and the path differences 

A \ are then used to calculate the soft output at the second step. This architecture can 

achieve high decoding rate as 500 M Symbol/s in a recent implementation [15] using 

advanced CMOS process. However, it needs much memory for storing the path 

information and the data are moving along the path, costing high power consumption. 

Another traceback architecture is called Memory Traceback. In this method, a vector 

of path decision is written to the survivor memory (RAM) for every iteration of the 

ACS unit. In other words, each cell in memory array stores a pointer to the previous 

state. The data are then read back in the opposite direction. One can imagine the 

survivor memory as a circular ring shown in Figure 4-11. The WRptr is the address 

to write the vector from ACS. The TBptr is the memory location to start traceback. 

^ 产 

^ ^ ^ 

个个 个个 
traceback TBptr WRptr traceback TBptr WRptr 
direction direction 

(a) (b) 

Figure 4-11 - Traceback memory (a) at time k, (b) at time k+1 
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After one traceback iteration, both the TBptr and WRptr move one memory location 

opposing the traceback direction, new data are written to the memory pointed by 

WRptr and new traceback iteration starts over again. Therefore the traceback always 

starts from the most recently stored data to the oldest data in the memory. This 

method is slower than the register exchange method, but gives more efficient use of 

memory and hence lowers power consumption in general. Garrett and Sten use an 

orthogonal memory (write by rows read by columns) in SOVA traceback [25] to 

reduce read operations to the memory. 

4.5.4 New Traceback Architecture 

4.5.4.1 Overview 

An architecture where all of the data are stored in memory and do not propagate 

through a pipeline is considered. The advantage is the majority of the data is static in 

the memory and does not move around as in register exchange method. For every 

iteration the oldest data is overwritten by the newest data. However, the traceback 

starts at different position and a pHead pointer is needed to locate the starting point 

of the Viterbi traceback and a pSOVA pointer to locate the SOVA traceback, and a 

bus is needed to write the new data to the corresponding memory block. 

The overview of the Traceback unit is shown in Figure 4-12. It is a modification of 

the memory traceback as discussed in previous section. Register is used instead of 

RAM as the timing of RAM is undetermined in low-voltage operation for which this 

asynchronous circuit implementation is not suitable. 

P. 38 



Chapter 4 - Proposed SOVA Decoder Desisn  

The Traceback Unit is composed of identical Traceback cells (TBcell)，which are 

connected as a ring. The handshake topology of the Traceback Unit is borrowed from 

[26], but the operation is very different. The pHead pointer, generated by a ring 

counter, will activate one of the TBcell as the first cell of the ring and the cell just 

before it in the ring becomes the last cell of the ring. Data from the ACS unit are 

written to the first cell where information for current time slot is saved. The memory 

used are registers instead of RAM, which eliminates address decoding and 

undetermined behaviour of RAM at low voltage. 

Head pointers 

Data from 
ACS  

• • 

•TBce l l • r B c e l l - - • 參 鲁 參 • r B c e l l  

> > ——"> > 
~ < < — < 

time k time k-1 time k-D-U 
s 

$ 

—— > 
I 

I 

^ < 

I — ^ 4 
control / / 
(handshake) Data 

Figure 4-12 - Overview of the Traceback unit 

The traceback will go through each TBcell by each TBcell. Finally the traceback will 

reach the first cell and then the traceback is completed. Then the Traceback Unit will 

generate a "Ro" signal indicating that the decoded bit and the reliability information 
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are ready. It will hold the decoded information until it receives the acknowledge 

signal "Ao" from outside the decoder. 

4.5.5 Traceback operation 

In Figure 4-13 and Figure 4-14, the rectangles represent the storage for the decision 

and path metric differences from ACS unit. These storages are connected in a ring 

topology to resemble memory traceback architecture. The data are stored in the 

memory and does not move around until it is not needed and overwritten. 

pHead pSOVA 

\|/ 
From 

Result 
A C S U — • — • • — • • • — • 

k k-1 k-D+1 k-D k-D-U+1 k-D-U 

Figure 4-13 - Traceback at time j 
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pSOVA From pHead 
Acsy  

V 

—• — • — ^ — • — — 1 ^ • 

k k-1 k-D+1 k-D k-D-U+1 k+1 

Result 

Figure 4-14 - Traceback at time j+1 

The traceback is based on the two-step SOVA approach. In Figure 4-13，new data are 

written to the memory pointed by pHead. Then the VA traceback is started from time 

k to time k-D as indicated by pSOVA. This will find out the maximum likelihood 

path as in the first step of two-step SOVA. After that the SOVA updated is 

performed from time k-D to time k-D-U. Finally the decision and the reliability (soft-

output) are given out. 

Before starting next traceback, the pHead and pSOVA pointers move one memory 

location opposite to the traceback direction as in Figure 4-14. This essentially slides 

the decoding window one step, overwritten the oldest data with the new one from 

ACS unit. The traceback then starts again from pHead as before. 

In conclusion, the data are hold in the memory and not moved. Instead the starting 

point of traceback and the point for collecting results changes at every traceback. 

Therefore a multiplexer is needed to select the right output from the memory. 
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— • 

Figure 4-15 - Multiplexer for reading out results 

4.5.6 Traceback Implementation 

4.5.6.1 State Memory and Path Metric Difference Memory 

The state memory is an array of pointers. Both the width of address and the memory 

content are 3 bits, which represents the eight states of the encoder. The address 

represents the current state and the content at that address is a pointer to the 

estimated next state. This information is written from the ACS unit when a TBcell is 

selected by pHEAD. Therefore one of the content of the memory will be selected as 

the current state for next stage according to the state of previous stage in the 

traceback unit. Figure 4-16 illustrates the structure of the state memory. 
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addr content 

(current state) (next state) 

111  

001 

QQQ pNextState 

Figure 4-16 - Structure of State Memory 

The path difference memory is similar to the State Memory, with the 3-bit address is 

the state and the 6-bit data is the path metric difference calculated from the ACS unit. 

4.5.6.2 The Start of the Traceback 

At the beginning of the traceback (pointed by pHead), the decisions and the path 

metric differences of each state are written to the memory respectively. 
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Figure 4-17 - Beginning of the traceback 

As in Figure 4-17, the memory for the state and the path difference (delta) are written 

to the beginning of the traceback memory. Through the data bus is connected to all 

the blocks of the traceback memory, only the block pHead points to can be 

overwritten. 

4.5.6.3 VA Traceback 

For VA traceback, the process begins at the pHead location. It then follows the 

decision of the current survivor state and the pointer to the previous survivor state in 

time so that to construct the survivor path till the location pointed by pSOVA. 

Figure 4-18a shows an example of memory traceback of four states and traceback 

length of 5. Figure 4-18b illustrates the corresponding trellis. There are four rooms in 
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a survivor state memory block, each of the room stores the paths of the 

corresponding states. Starting from state “00 on left hand side, the content of 

memory for state is "00" and it is used to locate the survivor path to next stage. At 

the next stage the memory content of state "00 is "10 , which tells the survivor path 

travel to state “10 at next step. The survivor path is then constructed in this way. 

State  
00 00 • l O � OOl r O O l r 00 
01 H E ! " T T X ^ F ^ z ^ Z K . 

10 互 H E 五 
11 r r n r ^ r ^ r o r i r ^ 

(a) 

State 
00 9 ^ • … • 令 

11 參 0 m • 

(b) 

Figure 4-18 - VA Traceback example: (a) Survivor Path Memory (b) Survivor Path in the Trellis 

In the implementation, the memory is built with registers and the memory content is 

selected by a multiplexer as shown in Figure 4-19. Within a traceback stage, the 

surviving state of previous stage is used to select the current surviving state; the 

corresponding memory content is used by the next stage to determine the surviving 

state. 
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Figure 4-19 - VA Traceback Implementation 

4.5.6.4 SOVA Traceback 

At the memory location pointed by pSOVA, the VA traceback ends and the SOVA 

traceback starts. Now there are two traceback paths, one continues the VA traceback 

and the other is the competing path of it. The competing path is created according the 

trellis based on the surviving state (as "comp" in Figure 4-20). The S (survivor) and 

S' (competitor) are selected with the multiplexer controlled by the previous surviving 

state. Both S and S，are forwarded to next stage traceback for constructing the two 

paths. The path difference is initiated as infinity ("111111 ) for the starting of 

SOVA traceback. 
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Figure 4-20 - SOVA Traceback Implementation 

The state of surviving path, competing path and the path differences are then 

advanced to next stage. The pSOVA pointer is not pointing to it so that the 

competing path multiplexer takes the previous S' as input. The multiplexers then 

select the next S and S' as output. Now the two path traceback independently, 

however, sharing the same memory content in the stage. 

The path differences As and Ap of the survivor and traceback paths are selected by 

multiplexers and compared. The minimum one is then propagate to next traceback 

stage. If the decision of S and S' are the same (indicated by the XNOR gate), the soft 
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update procedure is skipped and the soft output of that stage is copied from the 

previous stage. The traceback is said completed when the traceback reach the 

memory cell just before the starting of traceback. 

4.5.7 Control Signals 

4.5.7.1 Overview 

The control signals of the traceback unit are shown in Figure 4-21. The data from 

ACS is written to the TBcell pointed by pHEAD (the white TBcell in Figure 4-21). 

This is the current state and delta information. After receiving data from ACS Unit, 

the TBcell will send back an "Ai" to the ACS Unit indicating the data have been 

received. Then the delta of this TBcell is set to “111111 (infinity) and the starting 

state is "000 . 

HF.An 
Ri ^ R o 

” Ao 

) • 
• • • • 

i> I 
1> ——cjial 4�>——m]__[> . £val_|> - £val ^ ——1> 

< 1 _ t o k e n < ] _ _ _ lokf i f l � j okea iokeo _ _ 

V  

Figure 4-21 - Control signals in Traceback Unit 

The pHead pointer and the request signal from ACS unit to the Traceback Unit 

initiate the traceback at the first TBcell of the traceback ring. This TBcell finds the 

estimated next state stored at address “000 and the reliability. This information is 

passed to next TBcell together with the "eval" signal. The "eval" signal initializes 
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traceback in the next TBcell. The next TBcell then finds the estimated next state and 

calculate the soft-update if needed as discussed in section 4.5.6.1. The next time-slot 

will issue back a "token" signal when it completes receiving the data from previous 

slot. This process is repeated one by one through the ring until the HEAD TBcell 

receives the "eval" signal. 

H E A D _ 
Ri �̂ ^ 
Ai ^ An 

^ • 
L ^ — _.〜厂〉」 

t » I 
»» I 
* I « • 

I 
11應 
» t I 
• \ I 

fiiial ! > - _ - ‘ • ^ 1 > 
^ _ l o k e n ^ J ： … ~ t o k e n  

Figure 4-22 - HEAD TBcell and the handshake control 

When the HEAD TBcell receives the "eval" signal from the last TBcell in the ring, 

the traceback process is completed. The HEAD TBcell sends out the "Ro" signal, 

which indicates the decoded bit and the reliability information are ready. The 

decoded bit is the LSB of the estimated state and the reliability information is the 

delta from last TBcell. 

4.5.7.2 Implementation of Control Signals 

There are two groups of control signals: one is for communication between the whole 

traceback unit and the other units in the decoder; the other is the handshake for 
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communication between traceback memory cells. Figure 4-23 shows the control 

signals: (a) is the handshake for whole traceback unit; (b) is the handshake between 

memory cells. The four-phase handshake protocol is employed and C-elements are 

used as handshake controls. 

PHead___~N . __. 
Ri I c Y v Ro 

r < L ^ j i l / ^ 
evalj 

A 丨 f  

< AO 

(a) 

pHead 

Rj H W - r ^ ~ � 
evalj ____q V C ^elav —J C ——eval—o 

n p ^ r o L j n L ^ u ^ p c p ^ 
tokenj i j 

|n < < token_o 

(b) 

Figure 4-23 - Handshake Control circuit of the traceback memory cell 

The handshake circuit for the Traceback unit (in Figure 4-23a) is built into every 

memory cell but only one of them operates. This is controlled by the AND gate and 

pHead. The C-element is disabled unless pHead is '1 . The pHead then defines and 

activates the start of traceback and the associated handshake signals in that particular 

memory cell. 

Consider when pHead equals '1，that is when the memory cell is the start of 

traceback. When Ri goes from '0 to '1', the output of the first C-element becomes 

‘ 1 and it triggers the memory cell to save the data from ACS unit. It also generates 
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Ai signal which is the acknowledge signal from the Traceback Unit to the ACS unit. 

The Ri will also trigger the traceback inside the Traceback Unit as discussed later. 

pHead  

Rl I 1 I  

AI I 1  

e v a l j I  

Ro  

Ao I I  

Figure 4-24 - Timing Diagram for Figure 4-23(a) 

When the traceback completes, eval_i (which is the eval_o of the last traceback cell) 

becomes ‘ 1 and Ro becomes '1 . At this point the decisions of the decoder is ready 

and wait for the Ao signal outside the decoder. The traceback will repeat once when 

it receives the Ao signal. However, the start of traceback is moved one stage 

backward as controlled by pHead. Therefore the handshakes in Figure 4-23a are kept 

idle when pHead is '0 . 

Figure 4-23b shows the handshake control for communication between the traceback 

memory cells. Since the eval signals are connected in a ring as the memory cells, 

there should be a point on the ring that acts as the start and end of the traceback and 

initiate the traceback handshake. The pHead is used to indicate the start/end position. 

When pHead is '1，the memory cell becomes the start of the traceback and Ri 

initiates the eval/token handshake. The delay element in Figure 4-23b is used to 
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match the delay of the logic for looking up survivor state and soft update. The eval 

signal is then propagates to next memory stage controlled by the next C-element. The 

next stage will send back a token signal indicating the stage has taken the data. The 

eval/token signals propagate back to the first memory stage (where pHead = ‘ 1 ) as 

eval一i in the figure, after passing through the ring. The eval_i signal triggers Ro and 

also redirected as token back to the previous memory stage. 

pHead J I  

Ri J 1__I  

e v a l j I I I"“~  

t o k e n � I I I""""I  

eval-O I I I " " " 

tol<en_o I""""I I ” “ ” I  

4) 
traceback 
time 

Figure 4-25 -Timing Diagram for Figure 4-23(b) 

When pHead returns '0，Ri is not involved in the handshaking of the memory stage. 

It then becomes an ordinary stage in the traceback. 

Figure 4-26 shows the connection of the control signals of the whole Traceback Unit. 

pHead and pSOVA are generated by ring counters to avoid glitching in these signals. 

The Ri and Ao signals are connected to all the cells. The Ro and Ai signals are 

generated by OR-ing the Ro and Ai of individual cells as only one of them operates 

at a time. The eval and token signals control the traceback flow inside the Traceback 
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Unit. Ri triggers both the counters and the traceback. Therefore a delay element is 

necessary to keep the start of traceback well after the output of the counter. 

ring counter 

"1 (pHead) ^ 

J ring counter ^ ^ ^ ^ ^ ^ ^ ^ 

\ (pSOVA) 7 

Ri — L ^ ^ — — > n I • 〉 R o 

\ ^ — • • • _ � 

I I / Ao 

Figure 4-26 - Control signals of the whole Traceback Unit 
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Chapter 5 Implementation Result and Discussion 

5.1 Overview 

In this chapter, the simulation, implementation results and performance of the SOVA 

Decoder design is presented. Comparison with other SOVA decoder will also be 

given. 

5.2 Simulation 

The tools used in simulation are Verilog-XL and Spectre form Cadence; and Hspice 

from Avant! (and later Synopsys). Simulation models and timing information are 

from the foundry AustriaMicroSystems, HitKit v3.40. 

5.2.1 Branch Metric Unit 

The Branch Metric Unit as described in section 4.3, is built with self-timed adders as 

in section 2.6. 

In Figure 5-1, / / i s an active-high signal derived from request-in signal indicating the 

inputs Go, G1 and G2 are ready. When the input data are ready, the internal adders 

will start calculate the Branch Metrics and indicate calculation complete by a cc 

signal. When all the cc signals are ‘1，the calculation is said completed and a 

request-out is generated by the BMU. The next calculation starts when the next stage 

(ACS unit) generates a acknowledge signal to BMU and next symbol is ready 

(indicated by request in of the decoder). 
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Figure 5-1 - Simulation Waveform of the Branch Metric Unit 

5.2.2 ACS Unit 

Figure 5-2 shows a simulation of the Add-Compare-Select Unit as described in 

section 4.4. In the figure, Ri and Ai are the request and acknowledge signal to and fro 

the Branch Metric Unit; Ro and Ao are the request and acknowledge signal to the 

Traceback Unit respectively. When Ri changes from '0 to ‘1，it indicates the output 

from BMU is ready. The ACS unit then calculates the state metrics and the delta of 

all the states. The Ro, which is an AND function of the Ro's of all individual ACS 

blocks, changes from ‘0 to '1 to show the calculation is completed. However, the 

Ro of the ACS unit will be delayed if it has not received the acknowledge signal Ao 
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from the next block, Traceback Unit. The Ro of the ACS unit will be issued only 

when its last output data has been acknowledged. 
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Figure 5-2 - Simulation Waveform of the Add-Compare-Select Unit 

5.2.3 Traceback Unit 

Figure 5-3 shows the major handshake signals of the Traceback Unit. As discussed in 

section 4.5.7，the handshakes are divided into two parts: one is controlling the data in 

and out the traceback unit; the other is the traceback path inside the traceback unit. 

First the state metrics are fed into the Traceback unit, with the request signal Ri 

indicates its readiness. The Traceback unit will then acknowledge the receive data 
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via Ai, and internally start traceback controlled by eval (as shown in Figure 5-3) and 

token (not shown in the figure). 
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Figure 5-3 - Simulation Waveform of the handshake signals of Traceback Unit 

Figure 5-4 shows the handshake signals of a traceback cell in the Traceback Unit. 

The handshake signals of data to and fro traceback unit is activated only when it 

becomes the head of traceback (head == '1 ). For the other times, the traceback is not 

started from a particular cell if it is not the head even the request signal (Ri) comes in 

for every traceback in the Traceback unit. 
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Figure 5-4 - Simulation Waveform of the handshake signals of a traceback cell in the Traceback 
Unit 

5.3 Chip Fabrication 

The test chip consists of the SOVA decoder, a convolutional encoder and a Linear 

Feedback Shift Register (LFSR). The LFSR generates a pseudo-random bitstream 

that is encoded by the convolutional encoder. The SOVA decoder is configured so 

that it can decode the bitstream from the internal encoder or outside the chip. 

The SOVA decoder accepts three 3-bit soft input symbols and gives out 6-bit soft 

output along the decoded bits. Table 5-1 summarizes the specification of the SOVA 

Decoder. 
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Number of state 8 state 

Coding Rate r = 1/3 

Generator Polynomials G0=1+D^+D^ 
gi=I+D+D3 
G2=1+D1+D2+D3 

External Input Symbol 3-bit soft-input symbol 

Path-Metric 8-bit Modulo Arithmetic 

Soft output decision level 6-bit 

Table 5-1 - Specification of the SOVA Decoder 

The design schematics were captured in Cadence Virtuoso Schematic Editor. The 

standard cell library used was AMS CSI 0.35um HRDLIB standard cell library. 

Verilog-XL was used in gate level simulation and SpectreS was used in transistor 

level simulation. Cadence Silicon Ensemble was used in placement and routing of 

the chip. The timing of all the individual building blocks are simulated in SpectreS 

for correct timing at 3.3V and 1.2V in typical conditions. 

The chip was fabricated using AMS CSI 0.35um 3-layer metal CMOS technology 

through CMP France and was packed in a 40-pin dual-in-line package. The size of 

the core is 2.5 mm^. One functional flaw was found in the chip causing the soft 

update performed on the whole traceback path instead of the original form. The 

decoded bit is not affected while the soft output tends to be underestimated; yet the 

power of the chip still serves as a good power estimation for the decoder design as 

the calculation complexity is about the same. 
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Figure 5-5 - The whole SOVA Decoder test chip architecture. 

Technology AMS 0.35 |Lim 3-layer metal CMOS 

Chip Size 2.5 x 2.5 mm^ 

Core Size 1.6 x 1.6 mm^ 

Gate count 28k 

Power Dissipation (excluding Pad) 6.23mW (2 M Symbol/s，3.3V), 

Table 5-2 - Chip Summary 
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• 
Figure 5-6 - Micrograph of the SOVA test chip 

The layout of the test chip is core-limited, as the I/O of the test chip are mainly in 

serial form. Core utilization of the test chip is about 60%. Cadence Silicon Ensemble 

DSM is used in place-and-route, and Cadence Diva is used in DRC and LVS of the 

test chip before the chip was taped-out. 

5-4 Measurements 

5.4.1 Measurement Setup 

Figure 5-7 shows the measurement setup for testing. The chip was tested with 

HP16702B logic analyzer mainframe. Test pattern is generated from pattern 

generator and encoded with the on chip built-in encoder. The encoded bitstream is 
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then decoded with the SOVA decoder and the output waveforms are captured by the 

logic analyzer. Delay element is used to provide the time-delayed request—out signal 

as acknowledge signal at decoder output. The delay element is built with several 

logic buffers from 74HC4050. The delay time is about half of the period of Ro signal. 

Power measurement is done at 3.3 V Vcc with RMS current measurement by Fluke 

189 multimeter. 

pattern ^ Ri Ro 1 delay I — i 
generator Aj Ao 

• 

•丄 bit out � 
一 ^ 

+ delta � data output  

^ Finput 

Figure 5-7 - Measurement Setup 

The input signal Ao, which is a delay version of Ro, act as an acknowledgement 

signal to the decoder indicating the data is taken and the decoder can change the 

output data for next decoded symbol. The Ao signal will trigger Ro to be '0 and next 

decoded symbol is prepared when Ro is '0 internally at output stage of the decoder. 

The Ro indicates the output symbol is ready by changeing to ‘ 1 . 

5.4.2 Performance 

The dataflow of the decoder has been shown in Chapter 4. The decoder requires a 

circular traceback which limits the highest speed of the decoder. This circular 

traceback also introduce a relative long latency before data can be given out. On the 

other hand, the traceback ring does not move data around the traceback ring and 
P. 62 



Chapter 5 - Implementation Result and Discussion  

therefore much power can be saved. However, the area of the traceback is larger than 

ordinary memory traceback decoders as register is required to store the intermediate 

traceback data instead of using RAM. This also affect the place-and-route of the 

implementation on silicon for the more complicated datapath routing, which is 

reflected by a core utilization of 60% for this 3-metal layer area-routing 

implementation. 

The measurement has shown that the power consumption of the decoder is only 6.23 

mW at 3.3 V. The reduced power consumption is traded by the speed of the decoder 

and silicon area. Figure 5-8 shows a sample waveform of decoded data and 

handshake signals. 
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Figure 5-8 - Decoded output with data stream "1010 ” 
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The speed of the design is deliberately only high enough for mobile application to 

tradeoff between speed and power, in which power is the major concern in this 

design. The maximum decoding rate of the decoder is 5 M Symbol/s. This decoding 

rate is sufficient for channel decoding in current 3GPP specification [1]. Figure 5-9 

shows the analog waveform of the output of the decoder at 5 M Symbol/s, which is 

relatively low for a 0.35 um CMOS technology implementation. 
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Figure 5-9 - Analog waveform of decoded bit and Ro 

From Figure 5-9，it can be observed that the data is hold valid through the Ro is ‘1， 

and take changes when the Ro is ‘0 . The Ro goes to ‘ 1 again when the data is valid 

again. The four-phase handshaking used in this design can be through as in 

synchronous digital designs, in which the Ro acts like clock and the data is ready at 

the rising edge of Ro. Hence normal flip-flops, rather than special two-phase latches, 

are used in this implementation. 
P. 64 



Chapter 5 - Implementation Result and Discussion  

5.4.3 Comparison with other Design 

Table 5-3 shows performance comparison of different implementations of SOVA 

decoder. One functional flaw was found in the fabricated device by Garrett and Stan 

[25] and the power consumption is their estimation with another similar chip. Since 

the designs are implemented in different technology, the performance cannot be 

compared directly. However it is still a good reference to this design. The calculation 

complexity is dominated by the decoding state. The greater number of decoding state, 

the more complex of the calculations. 

Design Year T e c h . D e c o d i n g Traceback Data Power 
State Type rate Consumption 

Joeressen f j lm 16-state~ Register 40 M 1600 mW 
and Meyr Exchange Symbol/s 

JMl  
Garrett and 2001 1.2 \im 4-state Memory 2.5 M 23 mW 
Stan [25] Traceback Symbol/s (estimated) 
E. Yeo, et. 2 0 0 2 0 . 1 8 |im 8-state Register 400 M 400 mW 

[15] Exchange Symbol/s  
This work 2003 0.35 îm 8-state Asynchronous 2.0 M 6.23 mW 

Memory Symbol/s (at 3.3V) 
Traceback  

Table 5-3 - Performance comparison of different SOVA implementations 

It can be seen that the register exchange type traceback can reach a high decoding 

rate while lower power consumption is archived by memory traceback. High 

decoding rate is necessary in applications such as magnetic storage devices while the 

low power approach is suitable in portable device such as cell phones. 
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Chapter 6 Conclusion 

The Viterbi Algorithm is used to find the optimum state transition in a trellis of 

binary convolutional codes and has been employed widely in digital communication 

systems. Convolutional coding and Viterbi decoders are used in various situations for 

their forward error correction capability over a noisy channel. The Soft output 

Viterbi algorithm can produce the reliability of the decision along the decoded bit 

and it can be used as component decoder of concatenated convolutional codes, which 

is used in next-generation digital communication systems such as third generation 

(3G) mobile phones. 

Several Asynchronous circuit techniques have also been discussed, and a new 

asynchronous design of the add-compare-select unit and traceback algorithm is also 

presented. Based on the asynchronous traceback architecture, a soft output Viterbi 

algorithm (SOVA) decoder is designed and implemented in AMS CSI 0.35 ji m 

technology. 

The design of the SOVA decoder adopts an asynchronous logic style where local 

handshakes are used instead of a global clock to control data flow. An asynchronous 

memory traceback unit is also developed. The majority data are static in the 

traceback memory which reduce the switching and hence the power consumption of 

the decoder. Voltage scaling can further reduce the power consumption of the 

decoder. 
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The drawback of this traceback design is only low decode rate can be archived which 

is common among other memory traceback design. Therefore this design is not 

suitable in high throughput application such as magnetic storage device. However, it 

is appropriate for portable devices where the data rate is relatively lower and low 

power consumption is essential. 
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Appendix  

Appendix 

Pin Assignment of the SOVA test chip 

VDD3RP 1 40 GND3RP 
ResetN 2 39 VDD3IP 
NForceO 3 38 GND3IP 
NO 2 4 37 VDDOP 
NO 1 5 36 GNDOP 
NO 0 6 35 dta out6 
Finput 7 34 dta out5 
Force 8 SOVA 33 dta out4 
req 9 … �̂  32 bit out 
ack feed 10 DIL40 31 Ao 
NForcel 11 30 Ro 
N1 2 12 29 dta out3 
N1 1 13 28 dta out2 
N1 0 14 27 dta outl 
NForce2 15 26 dta outO 
N2 2 16 25 VDD3RP 
N2 1 17 24 GND3RP 
N2 0 18 23 LFSRout 
GND30P 19 22 VDD3IP 
VDD30P 20 21 GND3IP 
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Pin Number Pin Name Direction Description 

1 ~ VDD3RP INOUT VDD for PAD 
Y ~ ResetN IN Global Reset 
3 NforceO IN 0: The decoder accept symbol 

from internal encoder 
1: The decoder accept symbol 

from NO  
4 ~ NO 2 IN 丽 2 of NO 
5 m 1 IN Bit 1 of NO 
6 ~ m 0 IN Bit Oof NO 
7 Finput IN Bitstream to internal encoder  
8 Force IN 0: The internal encoder encodes the 

bit stream from LFSR 
1: The internal encoder encodes bit  

stream from Finput  
9 r ^ IN Request in  
1 0 ack OUT Acknowledge in  
U Nforcel IN 0: The decoder accept 2"�symbol 

from internal encoder 
1: The decoder accept symbol 

fromNl  
T ^ N1 2 IN B i t 2 o f N l 
13 N1 1 W Bit 1 of N1 -
14 N1 0 IN Bi tOofNl 一 
15 Nforce2 IN 0: The decoder accept 3*"�symbol 

from internal encoder 
1: The decoder accept symbol  

from N2  
16 N2 2 Bit 2 of N2 
T7~ N2 1 IN 丽 1 of N2 
T8~ N2 0 IN B i t 0 o f N 2 
1 9 ~ ~ G ^ 3 0 P INOUT GND for PAD 一 

VDD30P INOUT VDD for PAD 
2 1 ~ GND3IP INOUT GND for core 
n ~ VDD3IP INOUT VDD for core “ 
^ LFSRout —OUT Output from the internal LFSR — 
24 "GND3RP INOUT GND for PAD  
25 VDD3RP INOUT VDD for PAD 
26 —dta outO OUT bit Oof soft output  
27 dta outl 一 OUT 一 bit 1 of soft output  
28 —dta out2 OUT bit 2 of soft output  
29 — dta out3 OUT bit 3 of soft output  
30 — R o IN Request out  
3 1 ^ OUT Acknowledge out  
^ |b i t o u t I O U T I P e c o d e d b i t 
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^ Idta out4 |OUT Ibit 4 of soft output 
dta out5 — OUT bit 5 of soft output  

35 ~d ta out6 — O U T bit 6 of soft output  
36 " g N D O P i n p u t G N D for P A D  
37 VDDOP INPUT VDD for PAD 
38 GND3IP INPUT GND for core 
39 VDD3IP INPUT VDD for core 
40 |gND3RP I i N O U T | G N D f o r P A D 
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Appendix 

Schematic of module BMO 11 
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Schematic of module BM III 
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Schematic of ACSU 
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