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Abstract 

The quantization procedure of block-based discrete cosine transform (BDCT) 

compression (such as JPEG) introduces annoying visual artifacts. In this the-

sis, we propose a novel learning-by-example method to reduce B D C T compres-

sion artifacts in high-contrast images (images with large smooth color areas 

and strong edges/outlines), for example cartoon images. Our main focus is 

on the removal of ringing artifacts that is seldom addressed by existing meth-

ods. In the proposed method, the contaminated image is modeled as a Markov 

random field (MRF). W e 'learn' the behavior of contamination by extracting 

massive number of artifact patterns from a training set, and organizing them 

using tree-structured vector quantization (TSVQ). Instead of post-filtering the 

input contaminated image, we synthesize an artifact-reduced image. Utilizing 

the proposed method, we show that substantial improvement (both statistical 

and visual) is achieved. Our method is non-iterative and hence it can remove 

artifacts within a very short period of time. 
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摘要 

量 化 過 程 是 基 於 塊 狀 離 散 餘 紘 變 換 （ B l o e k - B a t ^ e d 

D i s c r e t e C o s i n e T r a n s f o r m , ® f l B D C T ) 的 圖 像 壓 縮 

方 法 （ 例 如 J P E G ) 的 一 個 重 要 組 成 部 分 。 該 過 程 會 産 生 噪 

聲 ， 進 而 降 低 圖 像 的 視 覺 質 量 。 此 現 象 在 高 對 比 度 的 圖 像 中 尤 

其 明 顯 。 髙 對 比 度 圖 像 通 常 包 含 一 些 均 句 色 塊 和 明 顯 的 邊 緣 或 

輪 廓 錢 。 本 論 文 中 ， 我 們 提 出 一 種 薪 新 的 方 法 ， 用 於 減 少 高 對 

比 度 圖 像 中 分 佈 在 邊 緣 附 近 的 環 狀 噪 聲 。 現 存 的 方 法 基 本 不 處 

理 此 類 環 狀 噪 聲 。 此 方 法 使 用 馬 爾 哥 夫 隨 機 域 （ M a r k o v 

R a n d o m F i e l d ) 模 擬 被 壓 縮 的 圖 像 。 通 過 在 訓 練 集 合 中 提 

取 出 標 準 的 噪 聲 模 式 ， 我 們 可 以 學 習 B D C T 引 入 噪 聲 的 機 制 。 

為 實 現 快 速 索 引 大 量 的 噪 聲 模 式 ， 它 們 被 組 織 成 樹 形 向 量 量 化 

表 ( T r e e - S t r u c t u r e d V e c t o r Q u a n t i z a t i o n ) o 通 

過 本 方 法 得 到 的 圖 像 ， 即 噪 聲 被 減 弱 的 圖 像 ， 是 重 新 生 成 的 ， 

而 不 是 像 大 部 分 現 有 的 方 法 那 樣 ， 通 過 利 用 濾 波 的 方 法 來 處 理 

被 壓 縮 的 圖 像 。 使 用 我 們 的 方 法 ， 圖 像 質 量 在 統 計 和 視 覺 角 度 

上 都 有 大 幅 度 的 提 髙 。 同 時 ， 由 於 本 方 法 只 需 掃 描 整 幅 圖 像 一 

遍 ， 而 不 是 迭 代 的 方 法 ， 所 以 在 較 短 時 間 内 可 以 有 效 地 提 高 圖 

像質量。 
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Chapter 1 

Introduction 

The block-based discrete cosine transform (BDCT) is the core of many current 

image and video compression standards, such as J P E G [27] and M P E G [31]. 

In particular, J P E G has been a popular image standard since early 90’s. Even 

though we now have wavelet-based JPEG2000, there are still many existing 

images already encoded using JPEG. Unfortunately, BDCT-based J P E G in-

herits a drawback, which are annoying visual artifacts. Such artifacts are 

especially apparent in high-contrast images compressed at low bit rates. W e 

refer high-contrast images as the ones with large smooth color regions and 

strong edges/outlines. A typical example is the cartoon image (Figure 1.1(a)). 

1.1 B D C T Compression Artifacts 

Since 1992, J PEG was established as the international standard for still image 

compression. A n image is first divided into 8x8 pixel blocks and each block 

is transformed from spatial domain to frequency domain using discrete cosine 

transform (DCT) [1]. D C T can be regarded as a discrete version of the Fourier-

Cosine series. The D C T coefficients are then quantized, resulting in many 

of them becoming zero, especially for high spatial frequencies. To take the 

maximum advantage of this, the coefficients are organized in a zigzag order to 

produce long runs of zero, before run-length and Huffman encoding achieves 
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(a) a typical BDCT-encoded high-contrast image * 
(c) ringing artifacts 

Figure 1.1: B D C T compression artifacts, (a) A typical BDCT-encoded (con-
taminated) high-contrast image, with (b) blocking artifacts and (c) ringing 
artifacts. Sub-figures (b) and (c) are the blowups of two boxes in (a). 

the actual compression. 

In principle, D C T does not introduce artifacts. It merely transforms the 

original image to a domain in which it can be more effectively encoded. How-

ever, the following quantization of D C T coefficients is lossy and introduces 

visual artifacts. 

There are mainly two types of B D C T compression artifacts, namely block-

ing artifacts and ringing artifacts. Excessive quantization of low-frequency 

coefficients introduces blocking artifacts, which exhibit color discontinuity at 

the block boundary, as shown in Figure 1.1(b). Excessive quantization of high-

frequency coefficients causes ringing artifacts around strong edges [38], such 

as outlines of cartoon character (Figure 1.1(c)). Ringing artifacts may spread 

within the whole 8x8 block. As shown in Figure 1.1, ringing artifacts are 

visually more apparent. 
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1.2 Previous Artifact Removal Methods 

Both subjective and objective qualities of BDCT-encoded images can be signif-

icantly improved by reducing B D C T compression artifacts. Roughly, there are 

three categories techniques for reducing B D C T compression artifacts, which 

are post-filtering, projection onto convex sets (POCS), and learning-by-example 

methods. 

As the visual artifacts in the contaminated image are usually high-frequency 

artifacts, a straight-forward solution for reducing such artifacts is to apply 

lowpass filtering. Reeve and Lim [32] first proposed a space-invariant lowpass 

filtering method. However such filtering often causes the loss of high-frequency 

details, such as edges, in the original image. Therefore, a number of adaptive 

spatial filtering techniques [4’ 19’ 20, 25] have been proposed to overcome this 

problem. Projection onto convex sets (POCS) [6] is a theory widely used for 

artifact removal [17, 23，26’ 38’ 42’ 33]. This method updates the B D C T coef-

ficients by iteratively projecting onto several constraints, which are formulated 

by a priori knowledge of contaminated images. In recent years, learning-by-

example methods [3，29] have been proposed. These methods only process 

pixels at the block boundary and does not handle ringing artifacts within the 

block. 

Yang et al. [41] presented a maximum-likelihood approach to the ringing 

artifact removal problem. Their approach employs a parameter-estimation 

method based on the A;-means algorithm with the number of clusters deter-

mined by a cluster-separation measure. This algorithm is applied to remove 

ringing artifacts in images compressed by JPEG2000. There are also some 

techniques based on wavelet [5, 11’ 15，18’ 34, 40 . 
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1.3 O u r M e t h o d 

Existing methods mainly handle blocking artifacts. W e believe that such tech-

niques reducing blocking artifacts are not effective for ringing artifacts. Be-

cause the nature of ringing artifacts is very different from that of blocking ar-

tifacts. In this thesis, we aim at reducing ringing artifacts in BDCT-encoded 

high-contrast images. W e propose a learning-by-example method which syn-

thesizes the image with fewer artifacts, rather than post-filters the BDCT-

encoded image. A training set is first prepared to provide priori knowledge 

that assists us to reduce B D C T compression artifacts. The training set con-

sists of pairs of original images (images before compression and without any 

artifacts) and BDCT-encoded images (contaminated images). In the proposed 

method, we model compression artifacts as Markov random field. To do so, 

we extract a set of artifact patterns from the training set. These massive ar-

tifact patterns are looked up during synthesis. To manage and query such 

mass of patterns efficiently, we organize them with the tree-structured vector 

quantization (TSVQ). 

As ringing artifacts usually appears near the strong edges (Figure 1.1)，we 

divide the input contaminated image in two regions: edge region and non-edge 

region. For the edge region, we synthesize each pixel value by querying the 

T S V Q with its neighborhood as the search key; for the non-edge region where 

ringing artifacts are not apparent, we simply copy the pixel values from the 

input image. 

1.4 Structure of the Thesis 

This thesis is organized as follows. In Chapter 2, previous work in the related 

areas is reviewed. Chapter 3 explains the rationale and the basic idea of 

our method. The following 4 chapters describe the details of the proposed 
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learning-by-example method. Preparation of the training set is described in 

Chapter 4. Chapter 5 introduces artifact vectors. In Chapter 6, tree-structured 

vector quantization is explained. Chapter 7 describes the synthesis process. 

Chapter 8 evaluates the proposed method. Finally, conclusions are drawn in 

Chapter 9. 



Chapter 2 

Related Work 

2.1 Image Compression 

Image compression is a very important problem for many applications, includ-

ing facsimile transmission (FAX), televideo conference, remote sensing (the use 

of satellite imagery for weather and other earth-resource applications)，and dig-

ital image documentation. In short, an ever-expanding number of applications 

depend on the efficient transmission and storage of binary, gray-scale, and 

color images. 

Image compression addresses the problem of reducing the amount of data 

required to represent a digital image. The underlying basis of the reduction 

process is the removal of redundant data. A common characteristic of most 

images is that the neighboring pixels are correlated and therefore contain re-

dundant information. Redundancy reduction and irrelevancy reduction 

are two fundamental components of compression. Redundancy reduction tends 

to remove duplication from the signal source (image/video). Irrelevancy re-

duction omits parts of the signal that will not be noticed by the signal receiver, 

namely the Human Visual System (HVS). In general, there are three types of 

redundancy: 

• Spatial Redundancy or correlation between neighboring pixel values; 

6 
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• Spectral Redundancy or correlation between different color planes or 

spectral bands; 

• Temporal Redundancy or correlation between adjacent frames in a 

sequence of images (in video applications). 

In general, there are two kinds of compression techniques to reduce re-

dundancy mentioned above: Lossless and Lossy compression. By lossless 

compression technique, the encoded image, after compression, is numerically 

identical to the original image. However, lossless compression can only achieve 

a modest amount of compression. An image encoded by lossy compression 

contains degradation relative to the original. Often this is because the com-

pression technique completely discards redundant information. However, lossy 

techniques are capable of achieving much higher compression. Under normal 

viewing conditions, no visible loss is perceived (visually lossless). There are 

several famous image compression techniques: GIF (by reducing color depth), 

JPEG (based on BDCT), JPEG2000 (based on wavelet), TIFF and so on. In 

this thesis, we mainly explore B D C T compression. 

2.2 A Typical B D C T Compression: Baseline 

J P E G 

Since the mid-1980's, members from both the International Telecommunica-

tion Union (ITU) and the International Standard Organization (ISO) have 

been working together to establish a joint international standard for the com-

pression of multilevel still images. This effort has been known as the Joint Pho-

tographic Experts Group (JPEG). The goal of J P E G is to develop a general, 

method for image compression that meets a number of diverse requirements, 

as following [2]: 
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• Be as close as possible to the state of the art in image compression. 

• Allow applications (or a user) to tradeoff easily between desired com-

pression and image quality. 

• Work independently of the image type. That is, the method should not 

be restricted by the type of image source, image content, color spaces, 

dimensions, pixel resolution, etc. 

• Have modest computational complexity that would allow software-only 

implementations even on low-end computers. Low-complexity hardware 

implementations should also be feasible. 

• Allow both sequential coding (single scan) and progressive coding (mul-

tiple scans). 

• Offer the option for hierarchical encoding, in which a low-resolution ver-

sion of the image can be accessed without a need to decompress the 

image at full resolution. 

JPEG is not a single algorithm; instead, it may be thought of as a toolkit 

of image compression methods that may be altered to fit different needs of the 

user. The JPEG standard specifies four modes of operation: sequential DCT-

based, progressive DCT-based, lossless, and hierarchical. The J P E G standard 

also defines a minimal subset of the standard called Baseline J P E G , which 

are required to supported by all JPEG-aware applications. This baseline em-

ploys the block-based discrete cosine transform (BDCT) to achieve compres-

sion. The baseline JPEG compression scheme can be divided into the following 

five stages: 

1. Transform the image into an optimal color space; 

2. Downsample chrominance components by averaging groups of pixels to-

gether; 
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3. Apply a Discrete Cosine Transform (DCT) to blocks of pixels; 

4. Quantize each block of D C T coefficients using weighting functions opti-

mized for the human visual system; 

5. Encode the resulting coefficients (image data) using a Huffman variable 

word-length algorithm to remove redundancies in the coefficients. 
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Figure 2.1: Baseline JPEG compression and decompression. 
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In Figure 2.1, these steps are summarized. The baseline JPEG decom-

pression performs the reverse of these steps. Among the compression steps, 

downsampling chrominance components and quantizing D C T coefficients cause 

image information loss. Because of the eye's less sensitivity to chrominance 

information, JPEG uses fewer pixels for the chrominance components. Also in 

order to discard an appropriate amount of information, the compressor divides 

each D C T coefficient by a "quantizer" and rounds the result to an integer. The 

larger the quantizer is, the more information is lost. Hence compression arti-

facts are mainly caused by downsampling and quantizing. Figure 2.2 shows ar-

tifacts due to downsampling and quantizing components. Strange color labeled 

by the smaller circle, in the contaminated image, is caused by downsampling 

and quantizing chrominance components (smaller circles in (c) of Figure 2.2). 

Compression artifacts labeled by the bigger circle, in the contaminated image, 

are caused by all three compressed components (bigger circles in (b) and (c) 

of Figure 2.2). In this thesis, we only consider artifacts which are caused by 

luminance component compression, as it is more sensitive to human eyes. 

2.3 Existing Artifact Removal M e t h o d s 

In general, existing techniques for removing B D C T compression artifacts can 

be roughly divided into three categories: post-filtering, projection onto convex 

sets (POCS), and learning-by-example methods. Comparing to ringing arti-

facts, blocking artifacts are easier to reduce. Most existing methods aims at 

reducing blocking artifacts by processing pixels at the block boundary. 

2.3.1 Post-Filtering 

As visual artifacts in the contaminated image are usually high-frequency arti-

facts, a straight-forward solution for reducing such artifacts is to apply low-pass 

filtering. Reeve and Lim [32] first proposed a space-invariant low-pass filtering 



Chapter 2 Related Work 11 

(a) the contaminated image (b) the quantized luminance component 

m H W B B W H I h h h h h h i 

(c) the downsarapled and quantized chrominance components 

Figure 2.2: (a) is a contaminated image, (b) is BDCT-encoded luminance 
component, (c) is BDCT-encoded chrominance components. Strange color 
labeled by the smaller circle, in (a), is caused by downsampling and quantizing 
chrominance components (smaller circles in (c)). Compression artifacts labeled 
by the bigger circle, in (a), are caused by all three compressed components 
(bigger circles in (b) and (c)). 

method. However such filtering often causes the loss of high-frequency details, 

such as edges, in the original image. Therefore, a number of adaptive spa-

tial filtering techniques [4, 14, 16，19, 20, 22, 25, 30] have been proposed to 

overcome this problem. Kuo et al. [19] proposed an adaptive filter, which is a 

space-variant low-pass filter. It smoothes pixel values at the block boundary, 

while pixels close to edges are adaptively applied with a regional or directional 

low-pass filter. The filter coefficients change according to the local character-

istics of images and visual artifacts. Lee et al. [20] proposed a method based 
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on signal adaptive filter. The signal is edge information. The filter consists 

of an one-dimensional directional smoothing filter for edge areas and a two-

dimensional adaptive average filter for monotone areas. 

The main difficulty of post-filtering techniques is how to distinguish high-

frequency details from B D C T compression artifacts. Incorrect filtering usually 

introduces excessive blurring of details and/or exaggeration of visual artifacts. 

2.3.2 Projection onto Convex Sets 

Projection onto convex sets (POCS) [6] is a theory widely used for artifact 

removal [17’ 23, 26, 33, 38’ 42, 43]. The key idea is to represent every known 

property of the original image by a closed convex set. The solution is an image 

that is an element in all sets and can be found by alternating projections onto 

each set, starting from the contaminated image itself. These methods update 

the B D C T coefficients by iteratively projecting onto several constraints which 

are formulated by a priori knowledge of contaminated images. 

Zakhor et al. [33] proposed an iterative technique based on this theory. The 

basic idea is to impose a number of constraints on the contaminated image in 

order to restore its original artifact-free form. In their method, there are two 

constraint sets: band-limitation constraint and quantization constraint. The 

band-limitation constraint is derived from the fact that the encoded image with 

blocks contains high-frequency horizontal and vertical artifacts corresponding 

to the discontinuities at the edges of blocks. This constraint can be referred 

as a low-pass filtering constraint. The quantization constraint is derived from 

the quantizer. Because the quantization intervals for each B D C T coefficient is 

assumed to be known in decoding a BDCT-encoded image, the quantization 

constraint ensures that in restoring images with compression artifacts, B D C T 

coefficients remain in their original quantization interval. Their iterative pro-

cedure can be summarized as follows. In the first part of each iteration, they 
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low-pass filter the image that has high-frequency artifacts. In the second part, 

they apply the quantization constraint. First, they divide the image into blocks 

and take the D C T for each block. Then they project any coefficient outside 

its quantization range onto its appropriate value. Under these conditions, the 

P O C S theory guarantees that iterative projection between the two constraint 

sets results in convergence to an element in the intersection of the two sets. 

Weerasinghe et al. [38] introduced a new family of convex smoothness con-

straint sets, which allows adaptive smoothing on different regions of the image. 

The algorithm formulates region smoothness constraint by exploiting the prop-

erty of images having regions of uniform color value. 

Since methods based on P O C S are usually iterative, they are computation-

ally expensive and seldom used in interactive applications. 

2.3.3 Learning by Examples 

In recent years, some learning-by-example methods have been proposed. Chan 

et al. [3] proposed to classify small local boundary regions according to their 

pixel value distribution. Then appropriate linear predictor is selected to esti-

mate the corresponding pixels at the block boundary. One difficulty is that 

linear predictor is not accurate enough to deblock the contaminated image. 

Another problem is that one-dimensional line segment neighborhood provides 

insufficient neighborhood information. 

Qiu [29] proposed a learning-by-example method to postprocess block-

coded images. The technique is based on the multilayer perceptron (MLP) 

neural network. Just like [3], this method only processes pixels at the block 

boundary and does not handle artifacts within the block. Since ringing arti-

facts may appear anywhere in the image, these methods may not be able to 

handle ringing artifacts comprehensively. 

Our method is also a learning-by-example approach. W e extract a set 
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of artifact patterns from training examples. Artifact pattern is a block of 

pixels. These patterns are organized by T S V Q for efficient query (explained in 

Section 6). This tree is the priori knowledge of B D C T compression artifacts 

behavior. With this knowledge, we synthesize an artifact-reduced image, from 

the input contaminated high-contrast image. 

2.4 Other Related W o r k 

Our learning-by-example method is inspired by the previous work in texture 

synthesis [7, 8, 28, 35, 39]. When synthesizing a texture, we want the gen-

erated texture to be perceptually similar to the example texture, as shown 

in Figure 2.3. This concept of perceptual similarity has been formalized as a 

Markov random field (MRF). M R F has been studied extensively in the context 

of computer vision [21]. 

Efros et al. [8] first modeled the sample input texture as M R F and synthe-

sized larger texture seamlessly. The key idea is to copy pixels from the input 

texture by matching neighborhood. An example of texture synthesis is given 

in Figure 2.3. Sampled neighborhoods are labeled by boxes. Texture synthesis 

result is made by Efros et al. [7 . 

• B K f l K i ^ ^ W P W ^ ^ ^ K ^ K B E B 

^ H ^ ^ H ^ H sample i f l H ^ B f l B B ^ ^ B ^ B ^ V I 

• B K ~ ^ B ^ ^ E ^ B B B 

sample texture 

(b) synthesized texture 

Figure 2.3: This is an example of texture synthesis. Sampled neighborhoods 
are labeled by boxes. Texture synthesis result is made by Efros et al. [7 . 
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Hertzmann et al [13] extended the idea to a learning-by-example technique 

for non-photorealistic rendering (NPR). They gave a new framework for pro-

cessing images by example, which generalizes texture synthesis for the case of 

two corresponding image pairs. Their method is to compute a new "analogous" 

image B' that relates to B in "the same way" as A' relates to A. Here A, A', 

and B are inputs, and B' is the output. An example is given in Figure 2.4. In 

this example, A and A' are a training pair for the watercolor N P R filter. B is 

a test image. The output B' is in the style of watercolor, learned from A and 

A'. This watercolor filter result is made by Hertzmann et al. [13 • 

K H K i i ^ a H K 
unfiltered source {A) filtered source 

unfiltered target {B) filtered target {B') 

Figure 2.4: An image analogy. Hertzmann et al. [13] proposed a method to 
compute a new "analogous" image B' that relates to B in “the same way" as 
A' relates to A. Here A, A', and B are inputs, and B' is the output. In this 
example, A and A' are a training pair for the watercolor N P R filter. B is a 
test image. The output B' is in the style of watercolor, learned from A and 
A'. This watercolor filter result is made by Hertzmann et al. [13. 
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At the same time, Mese et al. [24] proposed a Look Up Table (LUT) based 

method for inverse halftoning of images. The L U T for inverse halftoning is 

obtained from the histogpam gathered from a few sample halftone images and 

corresponding original images. To determine the inverse halftone value at a 

point, their algorithm looks at the pixel's neighborhood, and depending upon 

the distribution of pixels in the neighborhood, it assigns a contone value from 

the precomputed LUT. Because halfton images are binary images, it is much 

easier to build LUT. The number of neighborhood patterns is not so large, 

which is 2", where n is the number of neighborhood pixels. As to B D C T 

artifact removal, the number of different patterns is very large. Because the 

gray level is 256’ in stead of 2, the number of neighborhood patterns is 256". 

It is impossible to build a L U T of reasonable size for B D C T artifact removal. 

Recently, Freeman et al. [9] proposed another learning-by-example method 

for super-resolution. This method is a supervised approach, learning a low to 

high resolution patch model (or rather storing examples of such maps) and 

utilizing a Markov random field. 



Chapter 3 

Contamination as Markov 

Random Field 

3.1 Markov R a n d o m Field 

In the proposed method, we model the contaminated image as a Markov ran-

dom field (MRF) [21]. First, we explain the concept of M R F . The Markov 

random field theory, a branch of probability theory, provides a foundation for 

the characterization of contextual constraints and the derivation of the prob-

ability distribution of the interacting features. 

Let S index a discrete set of m sites 

S = {1，...，m} 

in which 1,... ,m are indices. A site often represents a point or a region in the 

Euclidean space such as an image pixel. The inter-relationship between sites 

is maintained by a so-called neighborhood system. A neighborhood system for 

S is defined as 

TV = (A/； I Vz G S} 

where is the set of sites neighboring i. The neighboring relationship has 

the following properties: 

17 
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(1) a site is not neighboring to itself: i • Ni \ 

(2) the neighboring relationship is mutual: i G J\fi' i' 6 . 

Let F = {Fi,..., Fm} be a family of random variables defined on the set of 

S, in which each random variable Fi takes a value of fi. The family F is called 

a random field. The probability that random variable Fi takes the value fi is 

denoted P(Fi = fi), abbreviated P(fi). F is said to be a Markov random field 

on S with respect to a neighborhood system N if and only if the following two 

conditions are satisfied: 

P[f) > 0, V / g F (positivity) 

Pih\fs-{i}) 二 m I /m) (Markovianity) 

where {z} is the set difference. The positivity is assumed for some technical 

reasons and can usually be satisfied in practice. The Markovianity depicts 

the local characteristics of F. In MRFs, only neighboring labels have direct 

interactions with each other. W e will explore the Markovianity of B D C T 

contamination in the following section. 

3.2 Contamination as M R F 

To reduce visual artifacts due to BDCT-ericoding, we need to understand its 

source. During BDCT-encoding, a 8x8 block of pixel values, f{u,v), is trans-

formed to frequency domain by the following discrete cosine transform: 

FM = lciu)Civ)[亡亡则 c 。 s i ? i : ^ c 。 s i ^ ^ l ’ (3.1) 
Li=0 j=0 -

where 

( 1 
— = if u^v = 0 

C(u), C(v) = V2 
1 otherwise, 

\ 
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and F\u,u),s are 64 D C T coefficients to be stored. Each D C T coefficient is 

then quantized according to a fine-tuned quantization table in J P E G standard. 

D C T itself does not introduce error, but the following quantization does. 

During D C T , the block of pixel values is transformed in a deterministic 

manner. Moreover, since D C T coefficients are quantized by predefined quan-

tization table in JPEG standard, the introduced error is also deterministic. 

In other words, given the same input image and compression ratio, the same 

visual artifacts will be obtained. 

After inverse discrete cosine transform (IDCT), a quantization error in one 

D C T coefficient may affect every pixel in the 8x8 block. In other words, once a 

pixel is error-contaminated, its local neighborhood is very likely to be contam-

inated as well. This observation suggests us to model the contaminated image 

as Markov Random Field (MRF) [21]. M R F is the 2D expansion of Markov 

Random Chain. It has been widely used in image processing and analysis. In 

M R F , the probability that a pixel takes certain value is determined by the 

values of its local neighbors. This local property is known as Markovianity. As 

contaminated image is subdivided into 8x8 pixel block and each block is en-

coded independently, visual artifacts must also be localized. Hence it conforms 

to the spirit of M R F . 

Our method is different from the traditional M R F techniques which are 

usually iterative. Instead, it is inspired by the previous work in texture syn-

thesis [7, 8，28, 35, 39]. Efros et al. [8] first modeled the sample input texture as 

M R F and synthesized larger texture seamlessly. The key idea is to synthesize 

a pixel value q by looking up the pixel value p in the sample texture with p's 

neighborhood matches g's neighborhood. Hertzmann et al. [13] extended the 

idea to a learning-by-example technique for non-photorealistic rendering. At 

the same time, Mese [24] proposed a Look Up Table (LUT) based method for 

inverse halftoning of images. Recently, Freeman [9] proposed another learning-

by-example method for super-resolution. All these methods are based on M R F . 
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contaminated artifact-reduced 

Figure 3.1: The basic idea. Instead of post-filtering the contaminated image 

B', we try to synthesize an artifact-reduced image B based on the knowledge 
learned from the training pairs of the original error-free (A) and the contami-
nated images 

Intuitively speaking, the basic idea of our method is to learn the relation-

ship between the original error-free (A) and the error-contaminated images 

{A') from a training set (Figure 3.1). The training set contains pairs of the 

original and contaminated images. With the learned knowledge, we try to syn-

thesize an artifact-reduced image (B) instead of post-filtering artifacts in the 

contaminated image {B'). The synthesis is performed in a pixel-by-pixel man-

ner. W h e n synthesizing a pixel q in image B based on the contaminated image 

B'、the corresponding local neighborhood Uq in B' is used to search within the 

training set. When the best matching block u is found in the contaminated 

image A', its corresponding center pixel p in the original image A is copied to 

the synthesized image B. This process is applied to every pixel in the edge 

region where ringing artifacts usually appear. Since we learn how artifacts are 
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introduced in the examples from the training set, we called our method the 

learning-by-example based artifact-removal algorithm. 



Chapter 4 

Training Set Preparation 

The first step of the proposed method is to setup a training set. W e employ 

several pairs of original images and their corresponding BDCT-encoded images 

(contaminated images) to form the training set. 

4.1 Training Images Selection 

There are two ways to obtain the training set. The first one is to randomly 

select images from any image library. Since our application is on high-contrast 

images, the image pairs we choose are mainly cartoon images. One training 

set generated by this way is shown in Figure 4.1. For simplicity, we only show 

one image for each pair. 

Randomly selected images cannot provide sufficient represent ability, and 

cannot cover all cases. It is impracticable that the number of training images 

is too large. So we try to generate a typical training set to tailor for our 

purpose. As ringing artifacts appear near the sharp edges, we prepare the 

training set by generating images containing two basic types, circle and corner 

(Figure 4.2). Although circle looks simple, it captures most edge information, 

and almost any curve can be formed by connecting pieces of circular arcs. The 

corner type images are mainly used to tackle sharp changing outlines like the 

star shape. Multiple instances of these two basic types are generated, each 

22 
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with different foreground intensity, background intensity, and line width. 

Figure 4.1: One training set consists of image pairs randomly selected from 
one cartoon image library. For simplicity, we only show one image for each 
pair. 

4.2 Bit Rate 

W e need to consider the problem of bit rate, since it is one of the most impor-

tant parameters of B D C T compression. In image compression study, bit rate 

("bits per pixel") is the number of bits of information stored per pixel of an 

image. B D C T compression versus different bit rates will introduce different 

ringing artifacts, as shown Figure 4.3. Even though given the same training 

images, when compression bit rates are distinct, different training sets may 

be generated. In the proposed method, training images are all compressed 

with a specified bit rate. If we generate a training set combining many bit 

rates, the size of this training set will be greatly increased, which further more 

degrades the efficiency of our method. In the Chapter 8, we will vary bit 
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Figure 4.2: We generate this typical training set tailored for our purpose. 

rates for both our training set and the test set, to verify the feasibility of our 

leaxning-by-example method when bit rates are different. 
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(a) a typical image 

• • • 
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(b) the original (c) 1.224 bpp (d) 0.948 bpp 

MMMMWSM • • • 
— H H mBSBBM 

(e) 0.666 bpp (f) 0.576 bpp (g)0.480 bpp 

Figure 4.3: The original image (a) is compressed to different bit rates, (b) is 
the blowup of the original image, (c)-(g) are the blowups of the compressed 
images with different bit rates shown below. 



Chapter 5 

Artifact Vectors 

5.1 Formation of Artifact Vectors 

Given training image pairs, we extract distinct artifact vectors from them. The 

most computational expensive part of our method is the query of matching 

neighborhood. Naively searching the best matching block in the training set 

images is obviously impractical, especially when the size of training set is 

large. Our approach is to extract distinct artifact patterns from the training 

set and we only search within these artifact patterns. An artifact pattern is a 

block of pixels (neighborhood) lj in the contaminated image A'. Each artifact 

pattern implies a corresponding center pixel value p in the original counterpart 

A (Figure 3.1). Since the artifact pattern is linearized and stored in a vector 

form, we usually called it artifact vector. From now on, we shall use the two 

terms, artifact pattern and artifact vector, interchangeably. 

Selecting an appropriate size of artifact vector (the size of neighborhood) 

is a trade-off between the computational cost and the accuracy. Larger neigh-

borhood in general provides more local information and hence returns better 

result, but the computation is more expensive. Since 8x8 blocks are used in 

B D C T , the size of neighborhood should not exceed 8x8. From our experi-

ence, a 5x5 neighborhood provides adequate local information and tractable 

computation. 
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(c) (d) 

Figure 5.1: Extraction of artifact vectors from edge blocks, (a) The con-
taminated image, (b) Edge detection, (c) The tagged edge blocks. The 5x5 
neighborhood of each pixel in the edge block is used to form an artifact pattern 
in the training set. (d) Edge region in the contaminated image. 

Since ringing artifacts mainly appear at the region with strong edges, we 

only need to extract distinct artifact patterns from edge region. This can 

drastically reduce the number of distinct artifact patterns. Therefore, the 

first step to identify the edge region. The identification process is shown in 

Figure 5.1. W e first apply "Sobel" edge detection to the contaminated image 

(Figure 5.1(a)) in the training set and edge pixels are marked (Figure 5.1(b)). 

The reason we did not apply the edge detection to the original image is because 

the original image is not available during artifact removal. Next, we check each 

non-overlapping 8x8 block in the BDCT-encoded image to see if it contains 
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any edge pixel. If so, the corresponding 8x8 block in the original image is 

tagged as an edge block (Figure 5.1(c)). From Figure 5.1(d), we can see that 

almost all artifacts appear within the edge region. So we only synthesize new 

value for the pixels in the edge region. 

^ H j 

the contaminated image>4' the original image 

b b i s i h ^ i 

fjgijpmmfi • • I ^ H 

^ ^ 0) artifact pattern counterpart in the original image 

A^'y^linearize 

(0 [ T ^ ^ ^ i i B K l S I H H I I i l l ^ ^ H H H ^ H H I I I ^ ^ ^ ^ I H 

* * ‘ pixel values associated 
artifact vectors with left artifact vectors 

Figure 5.2: Formation of artifact vectors. The original image A (top left) and 
its contaminated counterpart A (top right) are shown on the top row. The 
current pixel p and its corresponding neighborhood cj in A' are blown up in 
the second row. The 25 pixels in cu are linearized and stored together with p. 

For each pixel p in the edge block of the original image, we look up its cor-

responding 5x5 neighborhood uj in the contaminated counterpart (Figure 5.2). 

This neighborhood is then linearized to form the artifact vector. If the artifact 

vector is distinct, it is stored together with p. W e say lo implies p, and denoted 

as, 
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LU p. 

Note that only to is searched and matched during synthesis. The implied 

pixel value p is the data to retrieve. During the extraction of artifact vectors, 

the pixels near the image boundary may not be able to form artifact vectors 

due to the clipping by the image boundary. 

5.2 Luminance Remapping 

To further generalize the extracted artifact patterns, we normalize them. This 

allows the algorithm to focus on the patterns rather than the absolute gray 

values. One way to normalize the pattern is to use histogram equalization. 

However, it is computational intensive because we have to handle half million 

of artifact patterns. Instead, we apply the luminance remapping [13], a linear 

mapping that matches the means and variances of the luminance distributions. 

If p is the luminance of a pixel in artifact pattern, and p' is the remapped 

luminance, luminance remapping is described by: 

V j z J h ^ t ^ ^ (5.1) 

CTp Gn 

where 〜 a n d ap are the mean luminance and the standard deviation of the 

original pattern respectively; /in and (7„ are the mean luminance and standard 

deviation of the normalized pattern and predefined as 0.5 and 0.3 respectively. 

These normalized patterns are then stored. Note that this luminance remap-

ping is also needed during the artifact removal. 

5.3 Dominant Implication 

Theoretically, one artifact pattern uj may not imply (be associated with) a 

unique pixel value p. An artifact pattern may in fact imply a set of k possible 
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pixel values, each with different probability. 

and 
k 

Probfe) 二 1 
i=l 

where Prob⑷ is the probability of pi. 

The probability of each Pi can be obtained from the training set. During the 

extraction of artifact patterns, we can record the occurrences of each possible 

Pi. The normalized count of each pi will then be its probability. This proba-

bility distribution should be stored together with the artifact pattern. During 

synthesis, the pixel value should be synthesized according to this probability 

distribution. 

Interestingly, we observed a phenomenon that there is always a dominant 

pixel value p* associated with each artifact pattern. One reason is related to 

the deterministic properties of D C T and quantization. Another possible reason 

is because we focus on high-contrast images which usually have less variation 

in pixel values. High-contrast images usually have large smooth color regions 

and strong edges/outlines. 

To verify our finding, we test this problem on the training set generated 

by ourselves, which contains two basic types, circle and corner, as shown in 

Figure 4.2. W e plot the probabilities of the dominant pixel values of all artifact 

patterns from our training set in Figure 5.3’ with 0.735 bpp. In this training 

set of 112 image pairs, there are 377,520 distinct artifact patterns. The average 

probability of dominant pixel value, associated with these patterns, is 99.98%. 

Among these artifact patterns, 377,420 patterns (99.97%) are associated with a 

unique pixel value. Only 100 patterns associate with two or more pixel values. 

In Figure 5.3, we sort the artifact patterns according to the probabilities of 

their dominant pixel values, so that the smallest is on the left. The non-unique 

dominant pixels occupy a tiny portion only. 
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Figure 5.3: Probabilities of dominant pixels in our training set with the bit rate 
of 0.735 bpp. For illustration purpose, artifact patterns are sorted increasingly 
according to the probabilities of dominant pixels. 

This observation of dominant implication suggests us a way to simplify and 

speed up the process. W e can simply keep the dominant pixel value p* and 

discard all other pixel values {pi,p2,... ,Pk} — {p*}- Hence, there is no need 

to store the probability distribution. 



Chapter 6 

Tree-Structured Vector 

Quantization 

Even though we only extract artifact patterns from the V component of color 

images, there are still enormous number of patterns from the training set. 

Management of such huge number of artifact patterns is crucial to fast query, 

hence fast synthesis. Naive searching among the sea of artifact patterns is 

obviously impractical. Therefore, an indexing scheme is needed to achieve fast 

query. Furthermore, even though we have a lot of extracted artifact patterns, 

we may not find an exact match in some cases. This is especially true when the 

training set is small or it contains images with less diversity. In case no exact 

matching exists, the indexing scheme should allow us to locate the closest 

artifact pattern. To solve this problem, we employ the indexing technique 

called tree-structured vector quantization (TSVQ) [10 . 

6.1 Background 

6.1.1 Vector Quantization 

Vector quantization (VQ) [10] is a generalization of scalar quantization to the 

quantization of a vector, an ordered set of real numbers. V Q is usually , but 

not exclusively, used for the purpose of data compression. 

32 
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A vector quantizer Q of dimension k and the size TV is a mapping from a 

vector (or a "point") in /c-dimensional Euclidean space, IZ^, into a finite set C 

containing N outputs or reproduction points, called code vectors or codewords. 

Thus, 

Q :尺 " — C , 

where C = (yi，y2’ •. • ’ y") and G 7̂左 for each i G {1’ 2，...，iV}. The set 

C is called the codebook or the code and has size N, meaning it has N distinct 

elements, each a vector in K^. 

6.1.2 Tree-Structured Vector Quantization 

Tree-structured vector quantization (TSVQ), one of the most effective and 

widely-used techniques for reducing the search complexity in V Q is to use a 

tree-structured codebook search. The search complexity of normal V Q is N . 

If the codebook tree is an m-ary tree, the search complexity is reduced to 

log^ N. In an m-ary tree, each non-leaf node has m children. In T S V Q , the 

search is performed in stages. In each stage a substantial subset of candidate 

code vectors is eliminated from consideration by a relatively small number 

of operations. In an m-ary tree search with a balanced tree, the input code 

vector is compared with m predesigned test vectors at each stage or node of 

the tree. The nearest (minimum distortion) test vector determines which of m 

paths through the tree to select in order to reach the next stage of searching. 

At each stage the number of candidate code vectors is reduced to 1/m of the 

previous set of candidates. 

The algorithm of a standard T S V Q design is as follows [10]: 

Step 1. Use the training set T to generate a code book C* of 

size m test vectors for the root node (level 0) of the 

tree. Partition the training set into m new subsets 

Tqi 冗)• • • ) ^m—l) 
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Step 2. For each i, design a test codebook Ci of size m using 

(We thus obtain the test codebooks for the m 

nodes at level 1 of the tree.) 

Step 3. Partition each training set % into m training subsets 

Tij and use these new training sets to design the w? 

test codebooks Cij for level 2; 

Step 4. Continue Step 3 until the level d - 1 is reached, 

where d is the maximum depth of this tree structure. 

(The test vectors in the test codebooks obtained for 

the nodes at this level are actually code vectors for 

the terminal nodes of level d. The collection of all 

these test vectors at this level constitute the code-

book.) 

In the following subsection, we will introduce how to generate a codebook 

C, given the training set T. In fact, we use the K-Means clustering algorithm 

to generate the codebook. 

6.1.3 K-Means Clustering 

In the proposed method, a codebook C is generated using the K-Means clus-

tering [12] applied to the given training set T. The K-Means method is known 

as a clustering method since the user must first define the number of clusters, 

after which the algorithm partitions the data iteratively until a solution is 

found. The algorithm of the standard K-Means clustering is as follows: 

Step 1. Randomly initialize m cluster centers C ⑶={yf^，yf，. •., y 识)), 

for iteration j = 0; 

Step 2. Assign each data vector in T to the cluster % with 
(j) 

the nearest center yj , 
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Step 3. Set new cluster center (The center is the average 

of all vectors in %、at iteration j.) of each 

Step 4. Goto Step 2 until convergence. 

By K-Means clustering, the codebook is updated iteratively, until conver-

gence. Convergence is defined by the change of codebook. If after one iteration, 

the codebook does not change at all, the convergence is reached. 

After introducing these basic technologies, we will explain how to employ 

T S V Q in the proposed artifact removal method. 

6.2 T S V Q in Artifact Removal 

T S V Q is usually used in data compression. It also has a nice feature that 

allows efficient searching of the nearest pattern when the exact match does 

not exist. Because of its hierarchical tree structure, an artifact pattern can be 

rapidly looked up. 

In the proposed method, the construction of T S V Q tree is as follows. 

Firstly, the centroid of all artifact vectors is computed, and this centroid rep-

resents all artifact vectors. A node holding this centroid is formed and is 

assigned as the root of T S V Q tree. Then we divide the vectors into 丁爪 groups, 

where r^ is user-defined constant. For each group, we compute the centroid 

and let it be the representative of that group. To do so, we create a node 

for each centroid and connect it as a child node of the root node. Each child 

node is actually the root of the subtree representing the corresponding group. 

Each group (subtree) is then recursively subdivided (branched) until one of 

the stopping criteria is reached. 

To subdivide the set of artifact vectors into groups, we need a metric to 

measure the similarity among vectors. W e employed the Euclidean distance 
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function. 

De{uJâ UJb) =11 UJa-^b (6.1) 

where Ua and ujb are artifact vectors being compared. 

There are also two user-controllable stopping criteria: the number of sub-

divided groups Tm, and the maximum tree depth Td- If any one of them is 

satisfied, the subdivision should be stopped. Constant 丁m controls the number 

of groups after subdivision. That is, it controls the number of children of each 

interior node. If the number of vectors in the current group is less than t爪， 

the subdivision should be stopped. Constant r^ controls the maximum depth 

of tree, excluding the root level. If the depth of current group is equal to r^, 

further subdivision of the current branch should be prohibited. 

Figure 6.1 illustrates an example. For visualization purpose, the artifact 

vectors are not linearized. In this example, r^ = 3 and r^ = 2. There are 10 

artifact vectors, {û i,. •. ,a;io}. The centroid of these patterns {ĉ i,... ,cJio} is 

computed as lou and assigned as the root of tree. During the first iteration, 

these vectors are subdivided into 3 (r^) groups {uji.uj^, 0；6}, {^2,^4, ^lo} 

and according the Euclidean distance function D^. The centroid of 

{ô i, 0；3，cuq} is denoted as coyz and connected as the child node of cJn. Similarly, 

the centroids of and {cj8,cj9} are ̂ 13 and c^u respectively. 

They are then connected as the child nodes of lou. Nodes W12, CJ13 and uJu are 

then the roots of 3 corresponding subtrees. 

During the second iteration, the group represented by U u contains 3 vec-

tors, that is equal to Tm- Further subdivision is done by subdividing the group 

into 3 subgroups, each contains one vector. These 3 leaf nodes are denoted as 

the cji, cjs and uq, same as the notation of 3 vectors. The group represented 

by cc;i4 contains only 2 vectors which is less than t爪.Subdivision is terminated 

and u u becomes a leaf node holding vectors {cjs’—}. In the middle, the group 

represented by 0̂ 13 is further subdivided into 3 subgroups. Each of the first 
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2 subgroups contains only 1 vector while the last subgroup ĉ is holds 3 vec-

tors. As lui5 contains r^ vectors, further subdivision can be done. However, 

cjis is already at the maximum allowed depth level of the tree, r^ = 2. The 

subdivision should be stopped at this level. 

To query a pattern in the tree, we start the comparison with the child 

nodes of the tree root. The closest child node is then located and its branch 

is traversed. The process is continued until a leaf node is encountered. The 

closest vector in the leaf node is matched and returned as the query result. 

The time complexity of querying a vector is O(log^^n), where n is the total 

number of artifact patterns. In Section 7.2, we go through an example of query. 
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Figure 6.1: The construction of an example T S V Q tree. uJi-Uio are artifact 
patterns. The artifact patterns are recursively subdivided into groups during 
the construction. 



Chapter 7 

Synthesis 

7.1 Color Processing 

Once the T S V Q tree is constructed, we can perform the artifact removal. The 

constructed T S V Q tree is actually the priori knowledge of BDCT-encoding 

artifacts. 

So far, we haven't mentioned how we handle the multiple color components 

in color images. W e did not perform artifact removal in R G B color space. 

Instead the color images are processed in Y U V color space. As JPEG utilizes 

Y U V color model in representing color images, processing in Y U V color space 

avoids the overhead of color transformation. More importantly, the luminance 

component Y holds the human-sensitive visual information while chrominance 

components U and V hold the color differences which are less sensitive to 

human [36]. This suggests that we can treat different components in different 

ways. 

As illustrated in Figure 7.1, we apply the proposed artifact-removal algo-

rithm on the V component only, while components U and V are retained. 

Original U, V components and processed V component are then combined. 

W e decide not to touch U and V components because the observable visual 

artifacts are mainly due to the quantization error in Y component. This het-

erogeneous strategy reduces both memory consumption and computational 

39 
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Figure 7.1: Heterogeneous strategy for different color components. For visu-
alization purpose, U and V components are shifted to [0,1]. W e apply the 
proposed artifact-removal algorithm on the Y component only, while compo-
nents U and V are retained. 

cost due to searching, hence it shortens the time for artifact removal while 

retaining the visual quality of the recovered images. 

7.2 Artifact Removal 

Just like the formation of artifact vectors, given an input contaminated image, 

we need to identify the edge and non-edge blocks. The same identification 

method as in Section 5.1 is used to identify edge blocks (Figure 7.2). All 

pixels in the non-edge blocks of the contaminated image are simply copied to 

the output as illustrated on the upper path of Figure 7.2. The non-edge blocks 

contain no recognizable strong edge and hence they rarely contain ringing 

artifacts. On the other hand, all pixels in the edge blocks have to be synthesized 

by querying the T S V Q tree. 

The query process is illustrated in Figure 7.3. Given a contaminated image 

B', we try to synthesize an artifact-reduced image 5 in a pixel-by-pixel manner 

for each pixel in edge blocks. For each pixel being synthesized, we form a query 
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Figure 7.2: Pixels in the contaminated image are classified into two types. 
Pixels in the non-edge blocks are copied directly as ringing artifacts are not 
apparent. Pixels in the edge blocks are synthesized by querying the TSVQ. 

pattern Uq by linearizing its corresponding 5x5 neighborhood in image B'. The 

example contaminated image B' in Figure 7.3 contains only edge blocks. Image 

B is initialized with a frame of width of 2 pixels. The reason is that pixels on 

this frame cannot form a 5x5 neighborhood for query. Therefore, these pixels 

are simply copied from the contaminated image B'. This is one restriction of 

our current approach. 

W e then query the artifact pattern Uq, by traversing the TSVQ tree, as 

illustrated in Fig 7.4. Firstly, we compare the query vector ujq with every child 

node of the root. The one with the smallest Euclidean distance (Equation 6.1) 

is selected. The search continues to the next level of the branch until a leaf 

node is encountered. Since the closest pattern should be inside this leaf node, 

we sequentially compare with all patterns ({0；1,0；2,0；3} in this example). This 

sequential matching process does not take much time as the number of patterns 
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Figure 7.3: Artifact removal. Given the edge region in contaminated image 
B', we synthesize the artifact-reduced image 5 in a pixel-by-pixel manner. For 
illustration purpose, artifact vectors are drawn as a block of pixels. 

inside a leaf node is very likely to be bounded by constant t•爪.In this specific 

example, uj2 is the closest pattern. Its implied pixel value p2 is returned and 

copied to image B. The synthesis continues until the whole image B is filled. 

7.3 Selective Rejection of Synthesized Values 

During experiment, we find that if we accept every returned value, the pro-

posed method will introduce error to the synthesized image. An example is 
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Figure 7.4: The query process. By traversing TSVQ tree, we locate the leaf 
node containing the nearest pattern. For illustration purpose, artifact vectors 
are drawn as pixel blocks. 

shown in Figure 7.5. When there is no rejection, some errors are introduced 

in the synthesized image. If a proper threshold is applied, a better image is 

synthesized. To get a proper threshold, we study the change of the original 

image and the contaminated image to find the nature of B D C T compression. 

Especially, we want to know how much B D C T compression changes the pixel 

value. Our synthesis procedure modifies the pixel value and tries to recover 

the information destroyed by B D C T compression. This procedure should not 

change the pixel value too much. Prom the training set, we want to find 

the maximum accepted change that our method can introduce. Then we can 

decide a threshold for pixel value change. 

W e employ our training set to study the pixel value change introduced by 

B D C T compression. Figure 7.6 shows the absolute change of pixel value after 
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⑷ 

Figure 7.5: (a) A contaminated image, (b) The blowup of the boxed area in 

(a), (c) The synthesized result without rejection, (d) The synthesized result 

when applying a proper rejection threshold. 

BDCT compression versus different bit rates, ranging from 0.480 bpp to 1.224 

bpp. As we can see, while increasing the bit rate, we get the histogram with a 

higher peak and a larger gradient. That is, when we increase the compression 

bit rate, more and more pixels get less absolute change and we get the image 

with better quality. This phenomena tells us that for different bit rates we 

should apply different thresholds for the pixel value change. This threshold 

should bound the change of most pixels. By experiment, we find that, if this 

threshold bounds the change of a large portion (99.5%) pixels, a better result 

can be gained. Table 7.1 shows the average pixel value change, the maximum 

pixel value change and the suggested threshold for different bit rates. For 



Chapter 7 Synthesis 45 

Bit rate 

(bpp) Average Maximum Threshold 

0.480— 0.032 0.443 0.188 

0.533 0.027 0.412 ~ 0.157 

0.576 0.023 0.310 ~ 0.137 

0.614 0.021 0.286 ~ 0.122 

0.666 0.018 — 0.286 ~ 0.102 

0.735 0.014 0.224 0.082 

0.863 0.010 0.137 0.055 

1.224 0.004 0.039 0.020 

Table 7.1: In this table, the first column shows bit rate. From the second 

to the last column, the average pixel value change, the maximum pixel value 

change and the suggested threshold for different bit rates, are listed. The pixel 

value ranges within [0,1. 

example, after B D C T compression to 0.480 bpp, the change of most pixels 

(99.5%) ranges from 0 to 0.188. The average change is 0.032 and the maximum 

change is 0.443. Figure 7.7 plots the average and the maximum change of 

pixel value after B D C T compression versus different bit rates, together with 

the suggested rejection threshold. 

Because of above reasons and experiment data, during artifact removal, we 

will test the absolute change between the return value and the contaminated 

value (pixel value in BDCT-encoded image). If the change is larger than a 

threshold, we will retain the current contaminated pixel. This method solves 

the problem of introducing error very well. 
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Figure 7.6: The absolute change of pixel value after B D C T compression versus 
different bit rates, ranging from 0.480 bpp to 1.224 bpp. 
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Figure 7.7: The change of pixel value after B D C T compression versus different 
bit rates. 



Chapter 8 

Experimental Results 

8.1 Image Quality Assessments 

In the following experiments, to objectively measure the quality of synthesized 

images by the proposed method, we use two assessments: peak signal-noise 

ratio (PSNR) and Mean Structural SIMilarity (MSSIM) [37:. 

8.1.1 Peak Signal-Noise Ratio 

P S N R is a very common quality assessment in image processing. A sample 

use is in the comparison between an original image and an encoded image. 

P S N R is one of the most widely used image quality assessments. Assume 

that we have an original image X(z, j) that contains M x N pixels and an 

assessed (contaminated) image Y(i,j). P S N R is computed on the luminance 

component and the pixel values range between black (0) and white (255). 

First, we compute the mean squared error (MSE) of the contaminated image 

as follows: 

• 二 E 陶 ) - Y 謂 2 
MxN ‘ 

where, the summation is over all pixels. The root mean squared error (RMSE) 

is the square root of M S E , as follows: 

RMSE = VMSE . 

48 
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Then P S N R in decibels (dB) is computed by 

PSNR = (8.1) 

8.1.2 Mean Structural SIMilarity 

However, P S N R does not fully capture the perceptual quality. Hence, besides 

PSNR, we will utilize another assessment called MSSIM [37] to measure our 

training set experiment results. MSSIM is a particular implementation of the 

philosophy of structural similarity. MSSIM follows a strategy of modifying the 

M S E measure so that errors are penalized in accordance with their visibility. 

Suppose X and Y are the original image and the assessed image, respec-

tively. Then the mean SSIM (MSSIM) will be employed to evaluate the overall 

image quality: 

1 M 
M 5 5 / M ( X , Y ) = ， 

where Xj and yj are the image contents at the j-th local window; and M is 

the number of samples in the quality map. The local statistics are computed 

within a local square window which moves pixel-by-pixel over the entire image. 

For simplicity, Xj and yj are linearized to vectors. The local statistics include 

mean /！工-,contrast and correlation cr̂ y, which are defined as 

N 

Mx =〉 : ) 
i=l 

/ N \ "2 

(Jx = ^WiiXi - /Xa；)̂  ， 

\i=l / 

N 

(^xy = Wi{Xi — - My), 
i=l 

where w = {wi\i = 1,2’ •.., TV} is a Gaussian weighting function. 
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Given local jUx, ̂ x and Oxy, the local SSIM is defined as 

QQTMf^、,、 i-Ci){2a^yC2) /o 
ss释,y) = + + 曜 + ’ （8-2) 

Here the constants Ci and C2 are included to avoid instability when + 

and (jl + al are very close to zero, respectively. Prom this definition, we can see 

that a larger SSIM value implies better image quality. The maximum SSIM 

value is 1. 

To illustrate the advantages of MSSIM over PSNR, an example (from [37]) 

is shown in Figure 8.1. The original image "Boat" is altered with different 

distortions, each of which is adjusted to yield nearly identical P S N R relative 

to the original image. Despite this, the images can be seen to have drastically 

different perceptual qualities. By the philosophy of MSSIM, it is easy to explain 

why contrast-stretched image ((b) in Figure 8.1) and mean-shifted image ((c) 

in Figure 8.1) have higher MSSIM than the JPEG compressed image ((d) in 

Figure 8.1) and the blurred image ((e) in Figure 8.1). Because in contrast-

stretch and mean-shift procedures, nearly all the structure information of the 

original image is preserved. On the other hand, some structural information 

from the original image is permanently lost in the JPEG compressed image and 

the blurred image. In the salt-pepper impulsive noise contaminated image, the 

structural information is destroyed moderately, so this image gets a medium 

M S S I M value. 

8.2 Performance 

As mentioned in Section 4，we setup a training set by ourselves. As shown in 

Figure 4.2, we create 112 images to setup such training set. These images are 

originally not contaminated with any B D C T compression artifacts. They are 

then compressed by the B D C T compression. Then 112 original images and 

112 contaminated images are generated. The T S V Q tree is constructed with 
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Figure 8.1: Images from [37]. Comparison of "Boat' images with different 

types of distortions, all with PSNR = 24.9 dB. (a) Original image; (b) Contrast 

stretched image, MSSIM = 0.9168; (c) Mean-shifted image, MSSIM = 0.9900; 

(d) JPEG compressed image, MSSIM = 0.6949; (e) Blurred image, MSSIM = 

0.7052; (f) Salt-pepper impulsive noise contaminated image, MSSIM = 0.7748. 

TVn = 9 and r^ = 7, as we found that this configuration maintains a balance 

between the query efficiency and the complexity of tree. 

We tested our method with 20 typical cartoon images. The control images 

are the original non-contaminated images. Our method obtains an average 

PSNR improvement of 2.07dB and an average MSSIM improvement of 0.019. 

The average time of synthesizing each image is 0.86s. 

Figure 8.2 visually compares three input contaminated images with the 

corresponding synthesized images. Parts of the images are blown up for com-

parison. The images in (a), (d) and (g) of Figure 8.2 are in the resolution of 

200 X 232，200 x 256, and 200 x 159, respectively. According to Table 8.1，our 

method improves the image quality in terms of both PSNR and MSSIM. 
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Figure 8.2: Examples of artifact removal: bomb, hat, and bag. (a), (d) and 
(g) are the contaminated images, (b), (e) and (h) show the blow-up of the 
boxes in the corresponding contaminated images, (c), (f) and (i) blow up the 
corresponding parts in the synthesized images. 

8.3 H o w Size of Training Set Affects the Per-

formance 

It is nature to expect that the performance is directly affected by the size of 

the training set. To observe the effect of the size of training set, we conduct 

another experiment. During this experiment, we enlarge the size of training set 

gradually, from 50,000 to 200,000 (the number of distinct artifact patterns). 

W e then measure the average PSNR improvement between contaminated input 

images and the synthesized images. The result is shown in Figure 8.3. As the 
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“ PSNR (dB) MSSIM TE^T 
image - j ^ Proposed JPEG P r o p o ^ (s) 

bomb 35.76 38.08 0.968— 0.992 0.87 
hat T8.19 40.73~ 0.976 “ 0.993 o F T 
bag 33.74 36.22 0.958 0.991 

Table 8.1: Statistical performance of our method. 
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Figure 8.3: The average PSNR improvement as the number of artifact patterns 
increases from 50,000 to 200,000. 

number of artifact patterns increases, the PSNR improvement increases. 

The size of training set affects not only PSNR improvement but also the 

synthesis time. Obviously, a larger training set produces a larger TSVQ tree. 

The time of synthesis depends on the size of TSVQ tree, the resolution of 

input image, and the image content. Copying of non-edge block takes very 

little amount of time. The major computation is spent on the synthesis of 

pixels in the edge blocks. 

To measure the time of synthesis, we compute the average query time for a 

pixel, which equals to the total time of synthesizing edge pixels divided by the 

total number of edge pixels. W e plot a graph of this average query time against 
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the number of distinct artifact vectors in TSVQ tree in Figure 8.4. Obviously, 

the time slightly increases as the number of artifact patterns increases. It 

confirms with the n) running time property of TSVQ. Since only a 

portion of the image requires query, the total time for artifact removal is usually 

smaller than the multiplication of the total number of pixel and the average 

query time per pixel. As an example, the time for synthesizing a 256x256 

artifact-reduced image takes only 0.8 second. 
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Figure 8.4: The average query time per pixel. In general, the average query 
time slowly increases as the number of artifact patterns in TSVQ increases. 

8.4 H o w Bit Rates Affect the Performance 

As mentioned in Section 4.2，different bit rates will produce different ringing 

artifact patterns. If the bit rate of our training set does not match with that 

of the input image, our method still works well. In this experiment, we vary 

bit rates for both our training set and the test set to verify the feasibility of 

our learning-by-example method. The objective is to find the well working 
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area of our method. In this experiment, our training set and the test set are 

compressed to different bit rates ranging from 0.480 bpp to 1.224 bpp. W e 

employ our training set (Figure 4.2). The test images are 39 typical cartoon 

images. 

In Figure 8.5 and Figure 8.6’ the average P S N R and MSSIM improvements 

are shown, respectively. The feasibility surface is built by 10 x 10 key points. 

The two horizontal axes are the bit rates of the training set and the test set, 

respectively. The vertical axis is the average improvement. These data are 

shown in the above tables ((a) in Figure 8.5 and Figure 8.6). The proposed 

method works well in the bright red (peak) part of the surface. All red points 

represent the positive values. All blue points stand for the negative values. 

The brighter the color is, the higher the improvement is. 

In Figure 8.5, obviously there is a red peak along the diagonal, where the 

bit rates of the training set and the test set are similar. Also the left top is 

higher than the right bottom. W e believe that the reason is as follows. The 

top (farthest) curve represents the P S N R improvement of the test images with 

the lowest bit rate, whose qualities are the worst. With this lowest base, these 

images can be improved easily, so they can get higher P S N R improvements. 

On the other hand, for input test images with the highest bit rate, whose 

qualities are already very nice, it is difficult to improve them further. By the 

training sets with similar bit rats, these high quality images can be improved a 

little. And by the training sets with widely different bit rates, image qualities 

are even degraded. Prom P S N R improvement table ((a) in Figure 8.5), we can 

find some details. In fact the red peak shifts left a little. That means, a certain 

training set works best on the test set with a bit rate, which is a little smaller 

than the bit rate of this training set. W e believe that images with lower bit 

rates are relatively easier to improve, can be considered as an answer. 

In Figure 8.6，the average MSSIM improvement is given. The main dif-

ference between MSSIM and P S N R improvement is that, the diagonal peak 
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Bit rate Bit rate of training set (bpp) 

of test image with the most with the most 

(bpp) P S N R improvement MSSIM improvement 

0.480 0.576 0.533 ~~ 

0.533 0.614 0.614 

0.576 ~~ 0.614 0.614 一 

0.614 0.666 0.614 — 

0.666 0.735 0.666 “ 

0.735 0.735 0.735 “ 

0.863 — 0.948 0.863 ~~ 

0.948 1.038 0.863 “ 

1.038 1.224 0.948 — 

1.224 1.224 1.224 “ 

Table 8.2: The suggested training set for the test images with different bit 

rates. 

descends when the bit rate grows. W e believe that it is because of the defi-

nitions of M S S I M and PSNR. The definition of MSSIM (Equation 8.2) deter-

mines that MSSIM converges to 1 when the image quality is improved. Hence, 

when the bit rate of the test set is large, even synthesized by the training 

set with the same bit rate, the MSSIM improvement is limited. The defini-

tion of P S N R (Equation 8.1) is different, because the P S N R can go to infinity 

when the image quality is improved. Another difference is that most MSSIM 

improvements are positive, while almost 1/3 of P S N R improvements are nega-

tive, which means that the proposed method can usually visually improve the 

quality of the contaminated image, even though the P S N R descends. 

From the above statistic data, we can suggested a specified training set 

with a certain bit rate to apply to a given test image with a bit rate. Table 8.2 

gives the suggested training sets. 

8.5 Comparisons 

In order to evaluate the performance of the proposed method, we compare 

it with the method proposed in [33], which is one the most famous P O C S 
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methods. This method applies a low-pass filter to the contaminated image, 

and constrains the change of each pixel by the given quantization table. Details 

are described in Section 2.3.2. The test set is compressed to different bit rates. 

For each bit rate, we take an average of improvements. Figure 8.7 shows the 

comparison of P S N R improvement. By P S N R assessment, the method [33 

even degrade the image quality high-contrast images, while our method can 

improve the quality very well. The MSSIM comparison results are shown in 

Figure 8.8. The proposed method achieves much better MSSIM improvements, 

especially at lower bit rates. 
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PSNR 
improvement Bit rate of training set (bpp) 

0.480 0.533 0.576 0.614 0.666 0.735 0.863 0.948 1.038 1.224 
0.480 1 .755~2.069 2 . 0 8 3 2 . 0 5 2 1 . 7 7 0 1 . 3 4 5 0 . 6 3 6 0 0 3 9 " 
0.533 1.320 1.952 2.062 2.178 2.009 1.593 0.798 0.476 0.213 0.057 
0.576 0.709 1.507 1.809 2.050 2.014 1.729 0.942 0.592 0.268 0.073 

Bit rate 0.614 0.028 1.027 1.441 1.822 1.952 1.814 1.077 0.691 0.336 0.095 
of test 0.666 -0.976 0.183 0.805 1.322 1.701 1.791 1.245 0.856 0.444 0.135 

set 0.735 -2.642 -1.278 -0.499 0.280 0.942 1.470 1.455 1.104 0.645 0.221 
(bpp) 0.863 -5.811 -4.225 -3.347 -2.259 -1.325 -0.266 1.077 1.313 1.062 0.482 

0 . 9 4 8 -7.922 - 6 . 2 6 3 - 5 . 3 4 8 - 4 . 1 5 0 - 3 . 1 2 4 - 1 . 9 0 6 0 . 0 1 7 0 . 8 4 9 1 .156 0 . 7 1 8 
1.038 -10.175 -8.484 -7.557 -6.309 -5.145 -3.860 -1.614 -0.361 0.757 0.932 
1.224 -13.489 -11.735 -10.817 -9.473 -8.194 -6.844 -4.346 -2.869 -1.075 0.566 

(a) 

_ 

1 X \ 

^•^X ^^^^^ ^ 。.6 
1.2 

Bit rate of test image (bpp) Bit rate of training set (bpp) 

(b) 

Figure 8.5: W e vary bit rates for both our training set and the test set. (a) 
is the table of the average PSNR improvement, (b) is the surface plotted by 
data in (a). The redder (peak) part of this surface is the well working area 
of the proposed method. That means, training set with a certain bit rate can 
work well on the contaminated images with corresponding bit rate. 
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MSSIM Bit rate of training set (bpp) 
improvement 0.480 0.533 0.576 0.614 0.666 0.735 0.863 0.948 1.038 1.224 

0.480 0 . 0 3 2 8 0 . 0 3 3 5 0 . 0 3 3 3 0.0330 0.0305 0.0258 0.0148 0.0092 0.0045 0.0013 
0.533 0.0277 0.0292 0.0292 0.0296 0.0283 0.0248 0.0157 0.0103 0.0053 0.0017 
0.576 0.0236 0.0254 0.0260 0.0267 0.0260 0.0237 0.0160 0.0111 0.0060 0.0020 

Bit rate 0.614 0.0198 0.0220 0.0226 0.0235 0.0233 0.0218 0.0157 0.0112 0.0063 0.0022 
of test 0.666 0.0155 0.0178 0.0186 0.0198 0.0201 0.0193 0.0149 0.0112 0.0067 0.0025 

set 0.735 0.0097 0.0125 0.0135 0.0150 0.0156 0.0157 0.0134 0.0107 0.0070 0.0028 
(bpp) 0.863 0.0014 0.0045 0.0056 0.0076 0.0084 0.0090 0.0092 0.0084 0.0065 0.0033 
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Figure 8.6: W e vary bit rates for both our training set and the test set. (a) 
is the table of the average MSSIM improvement, (b) is the surface plotted by 
data in (a). The redder (peak) part of this surface is the well working area of 
the proposed method. 
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Figure 8.7: The method in [33] versus the proposed method by PSNR improve-

• merit. 
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Figure 8.8: The method in [33] versus the proposed method by MSSIM im-

provement. 



Chapter 9 

Conclusion 

By modeling the contaminated image as M R F , we propose a learning-by-

example method for reducing ringing artifacts in contaminated high-contrast 

images, such as cartoon images. Instead of post-filtering the contaminated 

image, we synthesize an artifact-reduced image. Using our method, the image 

quality of all test cases is substantially improved, not only subjectively but also 

objectively. Our method can effectively handle ringing artifacts which cannot 

be effectively solved by previous methods. Like other learning-by-example 

methods, the size of training data affects the performance. In general, more 

training samples will give better improvement. W e should find out how the 

accuracy of the approach can be improved with better edge detection algo-

rithms. 

One limitation of our current method is illustrated in Figure 9.1. In this ex-

ample, the edge detection cannot detect the edge in the circle of Figure 9.1(c). 

Therefore that particular block is tagged as non-edge block and no synthesis is 

performed. A partial solution is to make use of multiple edge detectors. How-

ever, no matter what kind of edge detection filter is used, it is still possible 

that some edges are missed. 

Another limitation of the proposed method is that artifacts caused by 

61 
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R^MMWM 

(a) (b) (C) 

Figure 9.1: Some edges (in the circle of (c)) may not be identified and hence 
cannot be synthesized. 

chrominance components cannot be reduced. Because we only apply the pro-

posed method on the luminance component, while the chrominance compo-

nents are retained. 

Currently, in the proposed method, training sets are classified by different 

bit rates. An obvious direction for future work is to mix training sets with 

different bit rates, in proper proportion. Such composite training set can 

improve the quality of images with different bit rates. Prom Table 8.2, we can 

see that the training set with 0.614 bpp works well on the input image with 

lower bit rates, and for the input image with higher bit rates, the training 

set with 0.735 bpp can give a better result. W e may mix these two training 

sets to get an optimal training set, which works well in most cases. Also we 

should find out if the training set can be reduced for increasing efficiency of 

the approach without sacrificing its accuracy. 

Another direction is to explore a patch-based version of the proposed 

method. Our method synthesizes images in a pixel-by-pixel manner. W e 

believe the speed can be substantially increased if a patch-based approach is 

used. However whether the quality of synthesized images is still preserved 

requires further investigation. 



Appendix A 

Color Transformation 

Images and videos are usually displayed in the R G B color space. While com-

pressed and stored, the original data are typically in some type of a luminance-

chrominance color space, such as Y U V . Y is the luminance component and U 

and V are the chrominance components. 

Given R G B inputs (R, G and B in [0’ 1]), 

/ y \ / 0.299 0.587 0.114 \ (R^ 

U 二 -0.148 -0.289 0.437 G • 

^vj 0.615 -0.515 —0.100乂 \Bj 

Given Y U V inputs {Y in [0’ 1] and Uy in [-0.5’ 0.5])’ 

/r\ f i 0 1.140 ] fy^ 

G = 1 -0.395 -0.581 U • 

^Bj 2.032 0 y yl/^ 
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Appendix B 

Image Quality 

Almost all JPEG-related applications allow an end user to "tune" the quality 

of a JPEG encoder using a parameter sometimes called "image quality". The 

"image quality" ranges from 1 to 100 typically. The value of 1 produces the 

smallest, worst quality image and the value of 100 produces the largest, best 

quality image. The optimal "image quality" factor depends on the image con-

tent and is therefore different for every image. The art of JPEG compression 

is to find the lowest factor that produces an image which is visibly acceptable, 

and preferably as close to the original image as possible. 

B.l Image Quality vs. Quantization Table 

In JPEG, typical quantization tables are given, and the user input factor, "im-

age quality", scales these quantization tables. Typical luminance quantization 
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table is: 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

and typical chrominance quantization table is: 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

These typical tables are scaled by "image quality". The process is as fol-

lows: 
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Clamp quality to [1,100]; 

Linearize quality: 

if(quality < 50) 

quality = 5000/quality; 

else 

quality = 200 — quality * 2; 

Scale the typical table by quality: 

myQ(i j ) 二（typQ(i，j) * quality + 50)/100 . 

When "image quality" equals to 1’ elements of the result table are all 255; 

when "image quality" equals to 100, elements of the result table are all 1; and 

when "image quality" equals to 50’ the result table is same as the typical one. 

B.2 Image Quality vs. Bit Rate 

W e employ a typical image software ACDSee to do B D C T compression. In 

image compression study, the bit rate ("bits per pixel") is the number of bits 

of information stored per pixel of an image. It is more understandable and 

technological. So we find the relation between "image quality" and bit rate 

(bpp). Since the original image is a graylevel image, its bit rate is 8 bpp. W e 

apply B D C T compression to the training original images, by "image qualities" 

of 25,35,... ,95. Then we calculate bit rates for all compressed images, and 

get an average. The bit rates after compression range from 0.480 bpp to 1.224 

bpp. The relation between "image quality" and bit rate is shown in Figure B.l. 



Appendix B Image Quality 67 

1.31 1 1 1 1 1 1 1  

1.2 - T 

： J : 
g O . 9 - / 

I z 
- 0 . 8 - / 

0 .7 -

0 .5 -

04I 1 1 ‘ ‘ 1 ‘ ‘ 
2 0 3 0 4 0 50 6 0 70 80 9 0 100 

Image quality 
Figure B.l: The relation between "image quality" and bit rate. 



Appendix C 

Arti User's Manual 

The program "Arti" demonstrates the ability to perform real-time B D C T ar-

tifact removal in the contaminated image. 

g j a n a U H U i m i — — — H P — 麵 和 ： .• - ： ：•：：,：- ：：. •v.vtî jiagia 

M _ 

I»ll <lltMXIf I Vl\tAvm IM INlVt； M>N<： . J , 
Z . Clean I 

n a v i g a t i o n �s m o o t h non-edge area 

3. Save output | 

input clean 

Zooming  

Figure C.l: User interface of Arti. 

Figure C.l shows the user interface of "Arti". The input (contaminated) 

image and the clean (synthesized) image are displayed side by side. Navigation 
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image shows the current position of the displayed part. By pressing PageUp 

('a'), you can zoom in the displayed part, and PageDown ('d') for zooming 

out. Left, Up, Down and Right ('z', 's', 'x' and 'c') are used for translation. 

Synthesis procedure is as follows: 

(a) Click the button of "Load" to load the contaminated image, 

and then it is initialized and displayed in the left window; 

(b) Click the button of "Clean" and after a few seconds, the syn-

thesized image is displayed in the right window; 

(d) Click the button of "Save". The synthesized image can be 

saved by B M P format. 
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