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摘 要 

上世纪90年代以来，非线性输出调节问题就一直是最活跃的控制问题之一。简单 

地说，输出调节问题就是设计一个反馈控制器来让闭环系统稳定，并且让输出在有 

一组扰动信号的情况下，渐进地跟踪一组参考信号。参考信号和干扰信号都是由一 

组命名为外部系统的常微分方程产生。基于黄和陈提出来的将输出调节问题转化为 

镇定性问题的体系结构[28]，我们在此论文中考虑了两个问题：用输出反馈解决一 

类非线性标准型系统的半全局鲁棒输出调节问题，用输出调节方法解决转动-移动 

激励器系统的抗干扰问题和鲁棒抗干扰问题。 

此论文主要由两个部分組成。第一部分是关于半全局鲁棒输出调节问题。我们在解 

决这个问题的过程中主要克服了三个难题。首先，当输出调节问题被转化成为包括 

原系统和内模的增广系统的镇定性问题后’这个增广系统的镇定性问题不能套用任 

何已有的镇定性结果直接解决。通过利用Lyapunov分析和Teel，Praly两人提出的 

半全局回溯技术[53]，我们克服了这个难题。其次，通过引入陈和黄提出的非线性 

内模[8],我们去除了调节方程的解必须是多项式的限制。最后，釆用Khalil和 

Esfandiari提出的高增益观察器[41]’我们设计出了一个输出反馈控制器。 

此论文的第二部分是用测量输出反馈控制解决转动-移动激励器系统的抗干扰问题 

和鲁棒抗干扰问题。 

(1)抗干扰问题。众所周知的是，转动-移动激励器系统是一个有着非双曲零动 

态方程的非最小相位非线性系统。基于黄的处理有着非双曲零动态方程的非最小相 

位非线性系统的工作[20][24]，以及求解转动-移动激励器系统的调节方程的解的工 

作[27],我们设计控制器解决了转动-传动激励器系统的抗干扰问题。 

(2)鲁棒抗干扰问题。我们用S于鲁棒输出调节方法解决了这个问题。在这个过 

程中主要克服了两个难题：第一个是设计非线性内模来包含非多项式的非线性，第 

二个是用黄提出的参数优化技术[22]优化控制参数以得到令人满意的瞬态响应。 



Abstract 

The nonlinear output regulation problem has been one of the most active control 

problems since 1990s. Briefly, output regulation is to design a feedback control law for a 

plant, such that the closed-loop system is internally stable, and the output asymptotically 

tracks a class of reference inputs in the presence of a class of disturbances. Both the refer-

ence inputs and disturbances are generated by an autonomous differential equation called 

exosystem. Based on the existing framework proposed by Huang and Chen [28], which 

translated the robust output regulation problem into a robust stabilization problem, we 

considered two problems in this thesis: the semiglobal robust output regulation problem 

for a class of nonlinear systems in normal form via output feedback control; and, the 
/ 

disturbance rejection and the robust disturbance rejection problem for the Rotational / 

translational Actuator(RTAC) system by output regulation method. 

This thesis mainly consists of two parts. The first part is about the semiglobal robust 

output regulation problem. W e solved this problem by overcoming three difficulties. 

First, the output regulation problem can be translated into a stabilization problem of 

an augmented systems composed of the original plant and the internal model. But the 

stabilization problem of the augmented system cannot be treated directly by any existing 

stabilization result. Using the Lyapunov's direct method and the semiglobal backstepping 

technique by Teel and Praly [55], we have solved it. Second, we have eliminated the 

polynomial assumption imposed on the solution of the regulator equations by taking 

advantage of the nonlinear internal model by Chen and Huang [8]. Third, we obtain 

an output feedback controller by making use of the high gain observer by Khalil and 

Esfandiari [43 . 

The second part is about the disturbance rejection and the robust disturbance rejection 

problem of the R T A C system by the measurement output feedback control. 

i: Disturbance rejection. It is well known that the R T A C system is a nonminimum 

phase nonlinear system with nonhyperbolic zero dynamics. Based on the work handling 

nonminimum phase systems with nonhyperbolic zero dynamics by Huang [20], [24], and 

the work of solving the regulator equations of the R T A C systems by Huang [27], we get 

a design to solve the disturbance rejection of the R T A C system. 

ii： Robust disturbance rejection. W e have obtained a design based on the robust 

output regulation method by overcoming two major obstacles. First, devise a nonlinear 

internal model to account for non-polynomial nonlinearities. Second, use the parameter 

optimization technique by Huang [22] to get more desirable transient response. 
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Chapter 1 

Introduction 

More and more researchers and designers are getting interested in nonlinear control in 

many areas, such as process control, robotics, aircrafts control, biomedical engineering, 

etc. Generally, physical systems inherently contain nonlinearities, some of which do not 

allow linear approximation, such as saturation, dead-zones, backlash, etc. In these situa-

tions, linear control based on linear approximation cannot compensate for these nonlin-

earities. In some other situations that the linearization is applicable, the linear control 

cannot get good enough transient performance or large enough range of operation to 

satisfy practical requirements. Also, the traditional linear systems are founded on the 

superposition principle, but this principle does not apply to nonlinear systems. Usually, 

different classes of nonlinear systems require different control techniques. Hence, there 

exist great possibilities in the research of nonlinear systems in the future. 

In this thesis we will address the semiglobal robust output regulation problem, and 

further investigate a benchmark nonlinear control problem (robust disturbance rejection of 

the Rotational-Translational Actuator(RTAC) system) by the output regulation method 

which can be regarded as a local robust output regulation problem. In this chapter, let 

us give some introduction about the background of nonlinear control, output regulation, 

semiglobal stabilization and the benchmark problem which are preliminary knowledge of 

the problems to be solved. 

This chapter is organized as follows. In Section 1.1, introduction about the nonlinear 

control systems is given. In Section 1.2, the development of output regulation and its 

recent research directions are given. In Section 1.3, some progress on the research topic 
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of semiglobal stabilization is given, since the solvability of the semiglobal robust output 

regulation problem to be considered is finally converted into the solvability of a semiglobal 

robust stabilization problem. Section 1.4 gives an introduction to a benchmark nonlinear 

cotnrol problem, including description of the RTAC system, and the progress on the 

research of the disturbance rejection problem and the robust disturbance rejection problem 

of the RTAC system. Section 1.5 closes this chapter with the contribution of this thesis. 

1.1 Nonlinear Control Systems 

A general miiltivariable nonlinear control system is described by the following two equa-

tions 

i = my) 

y = (1.1) 

where ^ E R^ is the plant state, u G R爪 the plant input, y ^ BP the plant output, and 

f : IT X R爪—h : i?" X iT — RP. The components of are denoted, 

respectively, by 

6 yi 

、二 丨 , ； , y= ‘： 

^n Um Vp 

h 1 
f = , h = . . . . 

In hp 

For many nonlinear control systems, the function u) is linear in the input n, and 

the function u) does not depend on the input u explicitly. In this case, we can write, 

with some abuse of the notation, = and = + g{^)u for some 

functions f : — FT, g : R" ^ and h .. 一 RP. Therefore, (1.1) can be 

further simplified as follows 

i = /(O+mu 

y = " ( 0 . (1.2) 
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W e call (1.2) an affine nonlinear control system. Note that can be expanded as 

g(A) = ["1(0’ … ， . . . ， w h e r e gi : R"" — R”oj: i = 1,…，m. 

The class of nonlinear control laws takes the following form 

Zc = Zc{0) = Zco (1.3) 

where z�G BP"" is the compensator state, and k: R'x x -> g ： R^x xJRP — 

R^". The control law (1.3) is a very general form of control law. It includes the static 

state feedback control law 

u = 

as a special case when z�does not appear in the function k, and it includes the dynamic 

output feedback control law 

u = K^c^y) 

Zc = 

as a special case when ^ does not appear in the functions k and g. 

Under the above controller (1.3), the closed-loop system is like this, 

士c ~ fc[工c),工c(0) = ^cO 

y = hc{xc) 

—卜1. 
Zc 

In the following, we will give a brief description about the normal form and the con-

ditions under which the general nonlinear control systems can be transformed into this 

norm form. 

Definition 1.1 For each i = 1, • • • the output yi of the system (1.2) is said to have 

a relative degree ri at a point ̂ o if 

(i) 

L g L ' M O = (1.4) 
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for all k <ri-l, and for all ̂  in an open neighborhood of 仏 where Lfhi{^) = ^/(C), 

L'MO = ^^^/K)， 

(ii) 

+ Oixm. (1.5) 

The system (1.2) is said to have a •tor relative degree {n, •.. , rp} at a point & if 

(i) For all 1 < z < p, the i仇 output has a relative degree at and 

(ii) The p x m matrix 

LgLrMO _ 

DiO = " . (1.6) 

" ‘‘ • 

has full row rank at ̂  = ̂ o-

I 

If r = r H h Tp < n, then there exists a diffeomorphic coordinate transformation 

X 

such that system (1.2) can be transformed to a normal form as follows, 

i = h{z,x) 

• 2 % 

^li-l = r̂i 

Ki = fri{z,x)+g{z,x)u 

m = (1.7) 

where z G x] G R, :c< = (:ri’... ’ 4 」 ， ’ 工 口 ) ， i = 1,…，p, j = l,…，厂“ 

and /o : iT — i?"—、fr, : Ru 一 R,豆：R几一 FT. For convenience, we will replace /o, fr 

and g with /o, fr and g respectively in the following sections. 
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Let V be the ̂ -dimensional exogenous signal representing the reference inputs and/or 

the disturbances, which can be generated by an exosystem of the form 

V = Aiv, z;(0) = VQ, t < 0. 

And let w € R^ be the system uncertainties. Then the system (1.2) can be generalized 

into the following system 

y 二 (1.8) 

1.2 Output Regulation 

Over the past decades, the output regulation problem (also known as servomechanism 

problem) has been one of most fundamental problems in control theory. Briefly, the 

output regulation problem is to design a control law for a plant, such that the closed-

loop system is internally stable, and the output of the closed-loop system asymptotically 

tracks a class of reference inputs in the presence of a class of disturbances. Both the 

reference inputs and disturbances are generated by an autonomous differential equation 

called exosystem. 

For the class of linear systems, this problem has been thoroughly studied in the 1970s 

by Davison [9], Francis [13], and Francis and Wonham [15]. The research in this period 

has generated the salient controller synthesis technique known as internal model princi-

ple. That is, any regulator solving the output regulation problem should incorporate an 

internal model of the exosystem. The internal model principle converts the linear output 

regulation problem into an eigenvalue placement problem for an augmented linear system. 

For the class of nonlinear systems, the output regulation problem was first treated 

for the special case in which the exogenous signals are constant by Desoer and Lin [10], 

Francis and Wonham [15], and Huang and Rugh [31]. The same problem with time 

varying exogenous signals was first studied by Isidori and Byrnes [38], and Huang and 

Rugh [32], [33]. Particularly, Isidori and Byrnes [38] linked the solvability of the output 

regulation problem to that of the regulator equations, which pushed the research of output 

regulation to a new stage. 
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Since the plant inevitably contains some type of uncertainties, it is desirable to further 

require the controller be able to maintain the property of asymptotic tracking and dis-

turbance rejection in the closed-loop system regardless of the uncertainties. The problem 

of designing such controllers for the plant is called robust output regulation problem. The 

nonlinear robust output regulation problem was studied by quite a few people, such as 

Huang and Lin [29], [30], Huang [19], [21]，Byrnes, et al [1], Delli Priscoli [50] and Khalil 

39]. Various solvability conditions have been given which impose assumptions on the 

solution of the regulator equations. In particular, Huang and Lin [29], [30] found that, 

in the presence of small parameter uncertainties and when the exogenous input is time 

varying, the solution of the output regulation problem requires the internal model be not 

only able to generate inputs corresponding to the trajectories of the exosystem, but also 

a number of their higher order nonlinear deformations. 

At the beginning of the research on robust output regulation, only local asymptotic 

stability of the closed-loop system is guaranteed, and the asymptotic regulation of the 

error output of the closed-loop system can be guaranteed only when the initial state of 

the plant, the controller, and the exosystem, and the uncertain parameter are sufficiently 

small. In practice, it is desirable to design control laws that render the global asymptotic 

stability of the equilibrium of the closed-loop system, and asymptotic regulation of the 

error output of the closed-loop system for any initial state of the plant, the controller, 

and the exosystem, and arbitrarily large uncertain parameter. Such problem is called 

global robust output regulation problem. Some people have addressed this problem for 

nonlinear systems with special structures, such as Chen and Huang [7], Huang and Chen 

28]，Khallil [40], and Serrari and Isidori [51]. Especially in [28], a systematic approach was 

developed that converted the robust output regulation problem for a given plant into a 

robust stabilization problem of an augmented system composed of the given plant and an 

internal model. In particular, by utilizing the nonlinear internal model, Huang and Chen 

removed the assumption that the solution of the regulator equations is a trigonometric 

polynomial of t. 

The results of global robust output regulation are conceptually appealing, but the 

solvability of this problem needs strong assumptions, such as input-to-state stability as-

sumption. And the plants are limited to some special forms, such as lower triangular 
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form and output feedback form. In order to make the solvability conditions less restric-

tive, many people considered the semiglobal robust output regulation problem. Compared 

to its global counterpart, semiglobal robust output regulation problem only requires the 

initial state of the plant, the controller, the exosystem, and the uncertain parameter to 

be in any given compact sets, which makes the solvability conditions less restrictive. This 

problem has been studied by Isidori [35], Serrani and Isidori, et al [52], [53], Khalil [39], 

40], Mahmoiid and Khalil [49], to certain degree. 

1.3 Semiglobal Stabilization 

Stabilization problem can be regarded as the special case of the output regulation prob-

lem where the output is regulated to zero. The fundamental stabilization techniques 

contain Lyapiinov-based methods (backstepping, adaptive control), passivity-based tech-

nique, neural-network-based technique, and small gain technique based on input-to-state 

stability, etc. Generally, the solvability of the output regulation problem is translated 

into the solvability of a stabilization problem, that is why we emphasize stabilization 

techniques while we will mainly consider output regulation problems in this thesis. Re-

cently Huang and Chen [28] proposed a general framework which systematically translated 

the robust output regulation problem into a stabilization problem. In this thesis, all the 

solvability of the robust output regulation problem are based on this framework. In this 

section, we will introduce the semiglobal stabilization problem and semiglobal robust 

stabilization problem. 

So far, most results on semiglobal stabilization are concerned with the systems in 

normal form [34], 

i = fo{z,x) 

Xi = X2 

OCf—1 OCy* 

ir = fr{z,x) + g{z,x)u 

y = h{z,x). (1.9) 
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However, in Section 9.3 [34], a counter-example is given to show that the semiglobal 

stabilization problem of (1.9) may not be solvable. So some researchers consider a more 

special form with the Z subsystem modified into i = fo{Z,Xi) [34], [46], [54 . 

Currently, results of the semiglobal robust stabilization problem are also limited to 

systems in normal form [35], [40]，[47]，and [55] denoted as 

i = FO{Z,X,V,W) 

Xi = X2 

Xf一1 — Xf 

XR = FR(Z, X, V, W) + G(Z, X, V, W)U 

y = h[Z,X,V,W), (1 .10) 

where V and W denote the exogenous signals and plant uncertainties respectively as de-

scribed in Section 1.1. To make the semiglobal robust stabilization problem of (1.10) 

solvable, two assumptions are needed [40]，[47]，[55] ’ 

i： gi{z,x,v,w) has known sign and |"i(2；，a;, > 6“ where bi is a positive real 

number. 

ii： The subsystem i = FO{Z,X,V,W) is assumed to be input-to-state stable, and i = 

fo(Z,0,V,W) is assumed to be locally exponentially stable uniformly in V and W. 

To replace assumption ii with a less restrictive one, some people consider a more special 

system with the Z subsystem modified TO Z = FO{Z, XI,V, W) [52]. In this situation, the 

following assumption is used to replace assumption II : Z = FO{Z, XI,V, W) is assumed to 

be globally asymptotically stable and locally exponentially stable uniformly in V and W. 

1.4 A Benchmark Nonlinear Control Problem 

The following problem provides a benchmark for examining nonlinear control design tech-

niques within the framework of a nonlinear fourth-order dynamical system. 

The Rotational/Translational Actuator(RTAC) system depicted in Figure 1.1 is in-

troduced in [3]. It was originally studied as a simplified model of a dual-spin spacecraft 

to investigate the resonance capture phenomenon. Then, it has been studied to investi-
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gate the utility of a rotational proof-mass actuator for stabilizing translational motion. 

The system consists of a translational cart of mass M connected to a fixed wall by a 

linear spring of a stiffness k. The cart is constrained to have one-dimensional travel. The 

proof-mass actuator attached to the cart has mass m and centroidal moment of inertia 

I about its center of mass, which is located a distance e from the point about which the 

proof-mass rotates. Its motion occurs in a horizontal plane so that no gravitational forces 

need to be considered. N denotes the control torque applied to the proof mass, and F is 

the disturbance force on the cart. 

The problem of designing a feedback control law to achieve asymptotic disturbance 

rejection / attenuation while maintaining good transient response in the closed-loop sys-

tem is known as a nonlinear benchmark problem [3], and has been an intensive research 

subject since 1995 [3], [4], [5], [11], [18], [44], [48], [56], and [58]. In particular, the above 

problem has been formulated as an output regulation problem in [23], and it is shown 

that the RTAC system is a nonminimum phase nonlinear system with nonhyperbolic zero 

dynamics. It is well known that the nonhyperbolicity of the zero dynamics is a ma-

jor obstacle to the applicability of the output regulation theory since the solvability of 

the regulator equations associated with the problem cannot be determined by the center 

manifold theory [38]. Nevertheless, an approximation solution based on the power series 

solution of regulator equations has been given in [23 . 

Based on the work handling nonminimum phase systems with nonhyperbolic zero 

dynamics by Huang [20], [24], and the work of solving the regulator equations of the 

R T A C systems by Huang [27], we get a design to solve the disturbance rejection. With 

regard to the fact that the framework dealing with robust output regulation problem 

proposed by Huang and Chen in [28] can handle the systems whose regulator equations 

have non-polynomial solution, we address the robust asymptotic disturbance rejection 

using this framework. Moreover, we use the parameter optimization technique by Huang 

22] to get better transient response. 
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Figure 1.1: Rotational/translational actuator 

1.5 Contribution of this Thesis 

In the first part of this thesis, we address the semiglobal robust output regulation problem 

for a class of nonlinear systems in normal form via output feedback control. W e solve this 

problem by overcoming three difficulities. First, the output regulation problem can be 

translated into a stabilization problem of an augmented systems composed of the original 

plant and the internal model. But the augmented system is of the form that cannot be 

treated directly by any existing stabilization result. Using the Lyapunov's direct method 

and the semiglobal backstepping technique by Teel and Praly [55], we solve it. Second, we 

eliminate the polynomial assumption imposed on the solution of the regulator equations 

by taking advantage of the nonlinear internal model by Chen and Huang [8]. Third, we 

get an output feedback controller by taking use of the high gain observer by Khalil and 

Esfandiari [43 . 

In the second part of this thesis, we consider the disturbance rejection and the robust 

disturbance rejection problem of the RTAC system by the measurement output feedback 

control. The problem of designing a feedback control law to achieve asymptotic distur-
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bance rejection while maintaining good transient response in the closed-loop system is 

known as a nonlinear benchmark problem, and has been an intensive research subject 

since 1995. 

i: Disturbance rejection. It is well known that the RTAC system is a nonminimum 
phase nonlinear system with nonhyperbolic zero dynamics. Based on the work handling 

nonminimum phase systems with nonhyperbolic zero dynamics by Huang [20], [24], and 

the work of solving the regulator equations of the RTAC systems by Huang [27], we get 

a design to solve the disturbance rejection problem of the RTAC system. 

ii: Robust disturbance rejection. W e have obtained a design based on the robust 
output regulation method by overcoming two major obstacles: devise a nonlinear internal 

model to account for non-polynomial nonlinearities, and use the parameter optimization 

technique by Huang [22] to get more desirable transient response. 
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Chapter 2 

Semiglobal Robust Output 
Regulation of a Class of Nonlinear 
Systems via Output Feedback 
Control 

The semiglobal robust output regulation problem is a challenging problem due to the 

following two obstacles lying in the existing literatures: the solution of the regulator 

equations should be polynomials, and the semiglobal robust stabilization problem is only 

solvable for a small class of nonlinear systems. In this chapter, we establish the solvability 

conditions of the semiglobal robust output regulation problem for a special class of non-

linear SISO systems in the normal form. W e take three steps to deal with this problem 

based on a recently developed general framework for handling the robust output regula-

tion problem. First, convert the robust output regulation problem of the given plant into 

a robust stabilization problem of an augmented system composed of the original plant and 

a well defined internal model. Second, solve the semiglobal robust stabilization problem 

of the augmented system via partial state feedback. Third, solve the semiglobal robust 

stabilization problem of the augmented system via output feedback. Taking advantage 

of the nonlinear internal model, we have obtained a result that does not rely on the 

polynomial assumption of the solution of the regulator equations needed in the existing 

literatures. Also we weaken the input-to-state stability assumption imposed on the zero 

12 



dynamics. 

This chapter is organized as follows: Section 2.1 gives an introduction. Section 2.2 

introduces the semiglobal backstepping technique. Section 2.3 aims to convert the robust 

output regulation problem into a robust stabilization problem. Section 2.4 addresses 

the solvability of the semiglobal robust stabilization problem via partial state feedback. 

Section 2.5 resorts to the saturated high gain observer to estimate the state such that 

the stabilization problem can be solved via output feedback control. Section 2.6 gives an 

example. Section 2.7 closes this chapter with some remarks. 

2.1 Introduction 

The output regulation problem (also known as servomechanism problem) has been one 

of the most active control problems since 1970s. Briefly, the output regulation problem 

is to design a feedback control law for a plant, such that the closed-loop system is in-

ternally stable, and the output of the closed-loop system asymptotically tracks a class 

of reference inputs in the presence of a class of disturbances. Both the reference inputs 

and disturbances are generated by an autonomous differential equation called exosystem. 

For the class of linear systems, this problem was thoroughly studied in the 1970s by 

Davison [9], Francis [13], and Francis and Wonham [15]. The research in this period has 

generated salient controller synthesis technique known as internal model principle. The 

internal model principle converts the output regulation problem into an eigenvalue place-

ment problem for an augmented linear system. For the class of nonlinear systems, the 

problem has been extensively pursued since early 1990s. Recently, more attentions have 

been paid to the global or semiglobal robust output regulation problem [28], [35], [40], 

and [52]. In this chapter, we will consider the solvability of the semiglobal robust output 
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regulation problem for the following single-input single-output systems: 

i = fo(z,Xi,v,w) 

Xi = X2 

00 J"—1 OCip 

ir = fr{z, Xi, • • • ,Xr,V,w)+ g{v, w)u 

i) = Aiv 

e = Xi — q{v,w) (2.1) 

where z 6 Xi G R, z = 1, • • • , r, are the plant states, u e R is the control input, 

e e R is the measurable error output, v e V C W with V compact the exogenous 

signal representing the disturbance and/or the reference input generated by the neutrally 

stable autonomous system, w eW C R^ with W compact a vector of unknown constant 

parameters, /o, f” g, q are sufficiently smooth functions satisfying /o(0,0,0, w)= 

0，/r(0,0，... ,0,0,1/;) = 0 and g(v,w) > bo > 0 for allveV, we ly. 

The class of control laws considered here are described by 

u = k{zc, e) 

ic 二 Mzc,e) (2.2) 

where Zc is the compensator state vector of dimension n。to be specified later. 

Semiglobal Robust Output Regulation Problem (SGRORP): Given any compact sets 

Zo e Xo e i T ， e R��V e R"^ and W e R^ containing the origins of their respec-

tive Euclidian spaces, find a controller of the form (2.2), such that the closed-loop system 

composed of (2.1) and (2.2) with its state being denoted by Xc = col(z, x：, • • • ’ av, Zc) has 

the following properties, 

PI: for all XC(0) e ZQXXQX ZC, and for all v G V, w G W , the solution of the closed-loop 

system exists and is bounded for all t > 0; and, 

P2: the tracking error e{t) approaches zero asymptotically, i.e., 

lim e � = 0 . 
t — OO 
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Remark 2.1 System (2.1) is a special case of the so-called normal form of the SISO affine 

nonlinear systems. Under the assumption that the affine nonlinear systems 

C = f{C,v,w)-{-g{Cv,w)u (2.3) 

y 二 h(X,u,w) (2.4) 

has a relative degree r univformly in {v,w), then there exists a diffeomorphic coordinate 

transformation 

X 

such that the system (2.3) can be transformed to the normal form 

Xi 二 ：C2 

Xy—l — Xf 

Xr 二 /；(2：,：1：1，.-- ,av，̂;，？/;) + 5f(2:,a:i,.-- (2.5) 

I 

R e m a r k 2.2 When the plant (2.1) is extended to a more general form with the z subsys-

tem as i： 二 I < j < r, the semiglobal robust output regulation problem 

of the system can still be solved. For convenience, we use i 二 /o(2, :ci，"u, w;) to describe 

the design process in this chapter, i 

The semiglobal robust output regulation problem for the plant (2.1) via output feed-

back control has been studied by Serrani, Isidori and Marconi [52] under the assumption 

that the solution of the regulator equations of the system satisfy certain immersion con-

dition which essentially requires the solution of the regulator equations be a polynomial 

of v{t) or a trigonometric polynomial of t [25]. The global robust output regulation of the 

same class of systems by state feedback control is studied by Huang and Chen [28] where 

a systematic approach is developed that converts the robust output regulation problem 

for a given plant into a robust stabilization problem of an augmented system composed 
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of the given plant and an internal model. In particular, by utilizing the nonlinear internal 

model, Huang and Chen has removed the assumption that the solution of the regulator 

equations is a trigonometric polynomial of t. However, the paper requires that the zero 

dynamics be input-to-state stable which is more restrictive than the assumption needed 

in [52]. In this chapter, we will combine the framework proposed in [28] with the sta-

bilization technique used in [52], [55] to solve the semiglobal robust output regulation 

problem for the plant (2.1). By taking advantage of the nonlinear internal model, we can 

eliminate the polynomial assumption on the solution of the regulator equations needed 

in [52] and also weaken the input-to-state stability assumption on the zero dynamics of • 

the plant. It should be noted that the semiglobal robust output regulation problem is 

also studied for a class of nonlinear systems more general than (2.1) by Isidori [35] and 

Khalil [40]. However, these two papers also assume that the zero dynamics of the plant 

are input-to-state stable. 

2.2 Semiglobal Backstepping Technique 

The main stabilization technique we used here is the semiglobal backstepping technique 

introduced by Teel and Praly in [55]. For convenience, let us review the ULP assumption 

and the semiglobal backstepping technique as follows. 

ULP Assumption (Uniform Lyapunov Property) For the C^ system 

i = h�z 遍 , (2.6) 

where z G fi(t) = co\{v{t),iu) G V" x W as defined in Section 2.1, there exists an open 

set I3i in R", a nonnegative real number c < 1, a real number c > 1 , and a C^ function 

V[z) : 一 [0，oo) such that the set {z : V{z) < c + 1} is a compact subset of Ui, and 

along the trajectory of (2.6) 

彻 < -<^1⑷ 

where >̂1(2) is continuous on ？Ji and positive definite on the set I5z = {z : c < V{z) < 

c + 1}. (Notes: The number 1 in this section is arbitrary and can be replaced by any 

other positive real constant). 

Before we gives the Semiglobal Backstepping Proposition, let us first states the lemma 

55] as follows, which is important for the proof of the Proposition. 
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Lemma 2.1 Let 5 be a compact set in a product space R^ x and denote by Sz and 

Sx its respective projections, i.e., 5 G x S^. Let x(:) be a continuous real function on 

Sz which is positive definite on the set {{z, x) : x = 0 } 门 L e t il){x) be a continuous 

real function on Sx which is positive definite on Sx/^. Let (j){z, x, fi) be a continuous real 

function on 5 x (K x VF) which satisfies 

(f)(z, X, //⑴）=0 v(2，X, 11) e {{(z, rr) : X = 0} n X (V X HO. 

Let k he & function of class-î oo. Under these conditions, there exists a positive real 

number K* such that, for all K > K ” 

-X{z) - k{K)iP{x) + ip(z,x,u) < 0 eSx{VxW). 

I 

R e m a r k 2.3 In this thesis, k{K) can be selected as K. This lemma guarantees the 

existence of a high gain K” but the K^ is hard to be calculated out by this lemma, i 

Proposition 2.1 {Semiglobal Backstepping) (Lemma 2.2 of [55]) Consider the C^ non-

linear control system 

i 二 /o(2:，:r，/i⑴） 

X = f{z,x,iJ,{t)) -{- g{z,x,iJ,{t))u (2.7) 

where x e R, z £ fx{t) = co\(v{t),w) eVxW, the sign of g{z,x,ii{t)) is constant, 

and the magnitude of g is bounded away from zero by a strictly positive real number b, 

i.e., 

\g{z,x,^i(t))\ > b e R" X Rx {V xW). (2.8) 

Suppose the subsystem i = fo{z, 0, fi(t)) satisfies the U L P assumption. Given cr > 1, 

define the function 

V(z) 
队 ⑷ = 丄 “ 广 ^ ^ ^ ^ (2.9) 

and the set 

152 = {Z： V{Z) < C + 1} X {X ： .T̂  < (7+ 1} (2.10) 
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Under these conditions, Va{z, x) : 1̂ 2 —> [0, oo) is proper on U2. Further, if 

u = -Ksgn{g)x, (2.11) 

then for each strictly positive real number p, there exists a positive real number K^ such 

that, for each K > î *, the derivative of Va{z, x) along the trajectory of (2.7) satisfies 

(2.12) 

where <̂>2(2;, x) is continuous on U2 and positive definite on the set {(2;, x) ： c + p < 

Remark 2.4 Proof of Proposition 2.1 can be found in [55]. ̂ 2(2, x) can be in the form 

of = + 齿 工 2 . When the assumptions of Proposition 2.1 are all 

satisfied, and we choose V{z) as a positive definite function, then we can conclude that 

the trajectory of the system (2.7) starting from the set {{z,x) : Va{z,x) < ĉ  + + 1} 

will enter the set {{z,x) : Va{z, x) < c + p) and remain in it thereafter. By choosing 

c and p arbitrarily small, the trajectory can be arbitrarily close to the origin. If the 

equilibrium is the origin, then it is stable. However, the asymptotic stability property 

can not be guaranteed without the additional assumption that the system (2.6) is locally 

exponentially stable. 1 

2.3 Output Regulation Converted to Stabilization 

In this section, we will convert the semiglobal robust output regulation problem of the 

plant (2.1) into a semiglobal robust stabilization problem for an augmented system com-

posed of the original plant and the internal model based on the general framework recently 

proposed in [28 . 

At the outset, let us make some standard assumptions. 

Al. There exists sufficiently smooth function z{v,w) with z(0,0) 二 0 satisfying, for 

all V eV, w eW, the following equation 

圳；：)成” = ( 2 . 1 3 ) 
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Remark 2.5 Under assumption Al, the solution of the regulator equations of system 

(2.1) exists and can be solved as follows, 

xi(v,w) = q(v,w) 
dxi^i(v,w) 

Xi(v,w) = — Aiv, z = 2,--- ,r 

1 (Qyi {v Ŵ  \ 
u{v,w) 二 ——r ^ , X r ( 2 J , W ) , V , W ) 12.14) 

9{v,w) V ov ) 
W e will denote the solution of the regulator equations of (2.1) by 7.{y, w),u{v, w), 

with X(V,W) = COl(xi(v,w), • • • ,Xr{v,w)). I 

R e m a r k 2.6 The solvability of the above regulator equations is only a necessary condi-

tion for the solvability of the output regulation problem [38]. To guarantee the solvability 

of the robust output regulation problem, additional conditions have to be imposed on the 

solution of the regulator equations [1], [25] and [30]. Despite the different appearances 

of these conditions, they amount to requiring the system admit a linear internal model 

'28], which in turn essentially requires the system only contain polynomial nonlinearities. 

Recently, a much less restrictive condition is given as stated below in Assumption A2 [28 . 

To introduce Assumption A2, let us first note that, if 7r(v,w) is a polynomial function 

of or a trigonometric polynomial function of t along the trajectory of the exosystem, 

then there exist an integer r and real numbers ai，…,a^ such that 7r{v, w) satisfies a 

differential equation of the following form [25]: 

d^7r{v{t),w) d7r(v{t),w) d(�-i)7r(<0，ti;) 
——^ ai7T(v{t), w) — a2 ar ^ ^ ^ = • (2.15) 

for all trajectories v{t) of the exosystem and all w £ R^. W e call the monic polynomial 

P(A) = y — 02入一ai a zeroing polynomial of 7r(f, w) if 7r(i', w) satisfies (2.15). 

P(A) is called a minimal zeroing polynomial of u(i', w) if P{X) is a zeroing polynomial 

of 7t{v, W) of least degree. Let tt̂ {v, w), i = 1，.•.，/，for some positive integer I, be I 

polynomials in v. They are called pairwise coprime if their minimal zeroing polynomials 

Pi(A), • • •，P/(A) are pairwise coprime. i 

A 2 . There exist pairwise coprime polynomials 7TI(V, W), •. • , 7r/(v, w) with ri, • • • ,77 

being the degrees of their minimal zeroing polynomials Pi (s), • • •，P/(s), and sufficiently 
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smooth function F : …切—> R vanishing at the origin such that, for all trajectories 

v{t) of the exosystem, and w € RN , 

u(v,w) = r(ni(v,w),7ri{v,w)--' , (j 二 ( i ? —， … . ’兀切 ) ’ 介切 ) ’ . . . ， 

(2.16) 

and the pair{丑，is observable, where E is the gradient of F at the origin, and $ = 

diag{$i, • • • , $/} with 龟j,j = 1,. • • , /, being the companion matrix of the polynomial 

Pj{s), where Pj(s) = s ” 】 - - a2S^ - ... 一 广丄. 

Remark 2.7 It is shown in [28] that under assumptions A1 and A2, let 

( -1)71"1(1； vS) 
0{v,w) = TcoZ(^7ri(t;’u;)’7i"i〜，^/J)...，~改(�广丄)’，…，TTJ …,—,介/(v, u;), •.. ’ 

~ J 
a{9) = T^T-^e 

(5{9) = r(T 一 10)， (2.17) 

where T is any nonsingular matrix. Then the triple {6, a, (5} is such that 

d9 (v,w) 

= p{e {v,w)). (2.18) 

The triple {6, a, p} is called a linearly observable steady state generator of plant (2.1) 

with output u. The notion of the steady state generator leads to a dynamic system as 

follows 

7) = M?7 + N{u - _ + ET-i”) (2.19) 

where the pair {Af，7V} is controllable with M Hurwitz, and T satisfies the Sylvester 

equation T电-MT = NE. The system (2.19) is called an internal model of (2.1) with 

output u. The plant and the internal model define an augmented system. Under the 
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following coordinate and input transformation 

fj = T] - 6{v,w) 

z = z — z(v,w) 

xi = Xi — xi(v,w) = e 

Xi = Xi - yLi{v,w), i = 2,---，r 

u = u - (2.20) 

the augmented system takes the following form 

i = /o(f, xi,v,w) 

圭i =无 i + i , i = 1，• •.，r - 1 

疗 = � M + NET-yj + Nn 

^r = frirj,乏，无 I,-- - ,Sr,v,w)+g[v,wya (2.21) 

where 

M 乏,元 1 , … ， = fo{z + z{v,w),Xi + X i …，•U；)，…,Xr-{-Xr{v,w),V,w) 

-fo{z{v, W；), Xi…，̂ i；)’ . •.，Xrb, w) 

Xr + Xriv,w),v,w) + g(v,w)P{r]) 

It is further shown in [28] that if a control law of the form 

u = 

i 二 说 e), (2.22) 

where ̂  is the compensator state vector of dimension n^ to be specified later, can stabilize 

the augmented system (2.21), then the following controller 

i = w(€，e) (2.23) 

solves the robust output regulation problem of the original plant (2.1). Therefore, in what 

follows, it suffices to study the semiglobal robust stabilization problem of the augmented 

system (2.21). i 
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To make the above stabilization problem more tractable, let us perform on (2.21) one 

more coordinate transformation as follows 

fj = f} — g~^{v,w)Nxr 

Then we can get 

V = liv^z^xi, • • • ,Xr,v,w) 
(v W} 

= M f j - g - \ v , w ) N { — — + + + •«;)，•••， 

+ Xr…，w)) - ^^-^^^AivNxr + g-\v, w)MNxr + N{ET-'fi - PM) 

= M f j - + g-\v,w)Nxr + 9)- + 9)) 

Xi, • • • ,Xr,v,w) (2.24) 

where 

0(5，5i’ … ,Xr ,v ,w) 
\V W) 

二 g-i�v,w�N�~"^二 AiV - fr{z-\- z{v, w),xi + Xi(幻，w)，. • •，无；^ + Xr(^;，li；)，v’ ̂/；)) 

一 dg-i’w、Ai”Nj^r + 9-\v,w)MNxr - N剛 
ov 

-N{pi^''\g-\v,w)Nxr + e) -

Under this transformation, system (2.21) is converted into the following standard form, 

I = fQ{z,Xi,v,w) 

全i = 右 + 1 ， i = 1 , . . • ,r _ 1 

fj 二 7(々 ’乏,无1，..-

查r = • • • ,Xr,V,w) + g{v,w)u (2.25) 

where 

元 1 , … = - 切)Aiv + fr (乏+ z(v’w)’ 元1 ’ 

Xr + Xr{v,w),v,w) + g{v,w)/3{fj + g~^{v,w)Nxr + 9) 

Now, we can precisely state the semiglobal robust stabilization problem of the aug-

mented system (2.25) as follows. 
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Semiglobal Robust Stabilization Problem (SGRSP): Given any compact sets ZQ C 

Xo C Rr, Ufj C Eo C y C Rq, and W C R^ containing the origins of respective 

Euclidian spaces, where Ufj = n + • • • + 77 is the dimension of 77, find a controller of 

the form (2.22) such that the equilibrium point (2,̂ ,77,̂ ) = (0,0，0，0) of the closed-loop 

system composed of (2.25) and (2.22) is asymptotically stable with ZQ x XQ X Ufi x EQ 
being contained in its basin of attraction. 

2.4 Solvability of the Semiglobal Robust Stabiliza-

tion Problem via Partial State Feedback 

In this section, we will consider the solvability of the semiglobal robust stabilization 

problem of the augmented system (2.25) via partial state feedback control of the form 

u = /c(xi，• • • , Xr). Since the robust stabilization problem of (2.25) can not be handled 

by any existing stabilization result directly, it is a challenging problem. W e will compose 

the Lyapimov's direct method and the semiglobal backstepping technique [55] to handle 

it in the following. 

In what follows, let us make some coordinate transformation, 

丁 = Xr + + + • • • + kbr-2Xr-U (2.26) 

where /c > 0 is a parameter to be determined later, and the polynomial A卜i + 6卜2A卜2 + 

… + + 6o is Hiirwitz by carefully choosing positive numbers bo, bi, • • • , 6卜2. This 

technique proposed in [46] is widely used to solve stabilization problems. For convenience, 

denote Ur = —kf~̂ boXi — — • • • — 卜2无r—i. 

Under the above transformation, the system (2.25) can be transformed into a new 

system that has the same form as (2.7). Then, it is possible to stabilize (2.25) using 

semiglobal backstepping technique as stated in Section 2.3. 

Let Z = col{z,Xi,.. • , Xr-i). Then, the system (2.25) can be rewritten as follows, 

1? = 7(77, Z , 

十=^dZ.fjiT^v^w) + g{v,w)iL (2.27) 
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嶋 r “ 
fo{z,xi,v,w) 0 

X2 0 
where F{Z,v,w) — ’ , 

- � i b o X i — — kbr-2Xr-l 1 
• 」 L _ 

j(fj,Z,T,v,w) = Mfj - N{0{fj + g-\v,w)N{r + w,) + 9) 

—("一1(幻,W)N{T + Ur) + e)) + (f){z, 5i，• • .，Xr-UT + V, w), 

X(Z，7?, T, V, w) = fr{z + W),无i + Xi …，U；) ’ . ••’ (7" + Ur) + X” …，w),V, w) 

w)P{r} + W)N{T + Ur) 0) - ±r{V, W) 

+ k'"%X3 + . • • + kbr-2{r + Ur). 

Let y = 7" be a new output for the system (2.27)，then the zero dynamics of (2.27) 

with respect to the output y are given by 

Z = F{Z,v,w) 

疗 二 7(7)，Z’0,i;，tf；) (2.28) 

where 

7(77, Z, 0，V, w) = Mt) - + g-\v, w)Nur + 没）一w ) N u r + 9)) 

乏，Si, • . . ,Xr-l,Ur,V,w) 

Before we solve the semiglobal robust stabilization problem of the system (2.27), let 

us first make two more assumptions as follows, 

A3. The equilibrium z = 0 of the system 

t = fo{z,0,v,w) (2.29) 

is globally asymptotically stable uniformly with respect to v{t) G V, w e W, and there 

exists a C^ positive definite proper function Vo{z) satisfying: 

这ol 间 |2 < 

^^foizAvM < —a。丨丨到|2, W ⑷ GV，秘 G H / 

,,<9̂ 0(2) I , 、 卜 
I 丨 i l l < 遍 

where \\z\\ G [ 0 , a n d Oq, ao, ao,知，S are some positive numbers. 
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R e m a r k 2.8 Assumption A3 also implies that the origin is an exponential stable equi-

librium point of the system I = /。(乏，0,v,w) uniformly in {v,w). i 

A4. Let P satisfies PM + M ^ P = -/，there exists a positive number r satisfying 

-2fjTpN妒、(fj + d) — ⑷）< (1- r)fjTfj (2.30) 

where d = g~'^{y,w)Nur + 9, and (P\-) is the nonlinear part of /?(•). 

Remark 2.9 This inequality is used to restrict the growth rate of the nonlinearity of 
/?(•). When the the function /3(-) is linear or is globally Lipschitz with a sufficiently small 

Lipschitz constant, this inequality is satisfied automatically [28]. i 

Remark 2.10 In [52], the internal model is in the form ̂  = + NO. The eigenvalues 

of <l> are on the imaginary axis, so a low gain timing parameter e is taken into account 

to help to make the system stable. In this paper, after some coordinates transformation, 
our internal model is transformed into f] = Mfj — + w)N{r + Ur) 0)— 

间("-1 …’—7V(T + W」+ 的 ) • . • where M is Hurwitz. If we 

impose assumption A4 on the nonlinear part of the above equation, then the i) subsystem 

will have some desirable property for the stabilization of the overall system, i 

Lemma 2.2 Under assumption A3, given any R > 0, there exists a real number k̂ i > 0 

such that when k > k^i, the equilibrium Z = 0 of the system 

Z = F{Z,v,w) (2.31) 

can be made uniformly asymptotically stable, with domain of attraction containing any 

given compact set = {Z : ||Z|| < R}. 

Proof: W e separate the proof of this lemma into three steps. First, the equilibrium 

(f, x) 二 (2, Xi，• • • , Xr-i) is locally asymptotically stable. Second, all trajectories starting 

from jB^- I are bounded. Third, the trajectories are eventually convergent. 

Step i: Please see Section 4.4 in [34 . 

Step ii: Let & = 命 ’ i = 1, • • • ,r - 1 and denote ̂  = (G, • • • 乂r-i)，then we can 

transform the system (2.31) into the following system: 

i = k,Ai (2.32) 
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where 

0 1 … 0 0 

0 0 … 0 0 
―‘ • • • • • 

/ I — • . . . • • 

0 0 ••• 0 1 

—bo —bi — ... —br-3 —br-2 

Since A is Hurwitz, there exists a real symmetric positive definite matrix PQ satisfying 

the following equation A^PQ + PQA = —I. Pick a Lyapunov function Vo{z) satisfying 

assumption A3. Let K(乏乂) = Voiz) + (^PQI 

Since the function fo is smooth, it can be written as follows, 

/ o ( 乏 , w ) = /o(乏,0，V, w) + p(z, (2.33) 

where is a smooth function. The derivative of Va along the trajectory of 

(2.32) is given as follows, 

义(乏’ 0 = + 

= 5 {fo{z, 0，t;, w) + p(乏,6 ’ 化 + kfiA'Po + PoA)^ 

= ^ f o i z A v . w ) + — /L•旧 (2.34) 

When k > 1, we have 

Bpr-i C {(乏，旬：||乏lISi?，NSî ，i = l，...，r —1} 

C {(z, 0 ： ll̂ ll < R, led <R,i = lr-- .r-l}'^^ (2.35) 

Since K(乏，《)is continuous with respect to 乏 and ̂  on the compact set !)$+『一i, it has a 
de/ 

maximal value denoted as Cmax- The compact set Qc = {(乏,: ^ Cm.ax} satisfies 

the following property Qc 

In the following we will show that Va is negative definite along the trajectory of (2.32) 

in Qc in two cases, 

(a) e 二 0. 

. dVo -
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Assumption A3 guarantees that it is negative definite. By continuity, there exists a 

neighborhood DQ containing the set { ( z , : ||z|| < R, = 0} such that Va{Z,() is 

negative definite for all (乏，0 ^ ^o-

(b) ^ 0. Set k̂ i = 61/62，where 61 = 62 = 

m i n ( 乏 ， W h e n k > max{l, Va is negative definite in f}。 

Hence, every trajectory starting from Qc will remain in That is to say, the trajec-

tory is bounded. 

Step iii: Since A is Hurwitz, liirif—亡)=0. That is to say, the trajectory starting 

from 卜 1 will eventually enter the set DQ. Next, we will use the idea from LaSalle's 

Invariance Principle to prove that the trajectory will eventually converge to the origin. 

Since the solution ̂ {t) is bounded, the positive limit set of ̂ {t) is nonempty, and 

denoted as L+. Moreover, ^{t) approaches L'^ as t 00. Obviously, L+ C DQ. 

As stated in step i, the equilibrium (0,0) is locally asymptotically stable, so there 

exists a neighborhood of (0’ 0) denoted as J\fi such that any trajectory starting from this 

neighborhood will approaches the equilibrium (0,0) asymptotically. Let (乏(0),0) be an 

arbitrary point in L+. If we can prove that any trajectory starting from this point will 

enter in finite time, then we complete the proof. 

Let (^,0) be the transition function of the system (2.32). The assumption A3 

guarantees limf—00 乏(亡)二 0 when 乏(0) is sufficiently small, so there exists a 亡丄〉0 such 

that (乏(0)，0)) e jVi- By continuity, there exists a neighborhood N2 of (乏(0),0) 

such that any trajectory starting from the neighborhood will enter A/i, i.e., (乏乂 )） G 

A/i, V(乏，G A/2. By definition of positive limit point, there exists a > 0 such that 

( 乏 ( 亡 亡 2 ) ) G A/2- Hence, $(亡2，(乏(0)，0)) G M，that is to say, the trajectory from any 

point in L+ will enter A/i, and will converge asymptotically to the equilibrium thereafter. 

With regard to the relation between the systems (2.31) and (2.32), we conclude that 

the equilibrium of (2.31) is uniformly asymptotically stable, with domain of attraction 

containing any given compact set 

I 

Remark 2.11 When we design the parameter k̂ i, we would like it to be as small as 

possible. The selection of the open set DQ can determine the value of /c*i. The larger the 

set DQ is, the smaller the parameter k“ can be. 1 
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L e m m a 2.3 Under assumptions A3 and A4, for any compact set n^j (巧(0) G E^), and 

any compact set Uz (^(0) G H^), when k > /c*i where /c*i is determined in Lemma 
2.2, the system (2.28) is uniformly asymptotically stable, with its domain of attraction 

containing the compact set 1 1 x n̂ j. 

Proof: Consider the system 

= M f j - N(jd�(ij + g-i{v’w)Nur + 的 一 + 6)) 

乏’无1，•.. ’5卜1, Wr,幻，wO (2.36) 

Let Vi{fj) = ^fj'^Pfj, where P is defined in assumption A4. Then there exists two positive 

definite matrices P and P such that 2fi'^Pfj < Vi(f}) < Pfi. The derivative of Vi(^) 

along the trajectory of (2.36) is as follows, 

^ ^ = -^^M^Pfj - - + rf) _ pm(d)f N^Pii + -ci^Pfi 

db T" T* T* 

+�fPM巧-I矛PN 间(î  + d)- � ) + ^ffP小 

= A f f i - ^fPN + d)- "[21 � ) + ’Tp小 

Under assumption A4, there exists a positive number r < 1 satisfying 

-2fPN(JP、{fl + d)- (…）< (1-

where d 二 g-i(v, w)Nur + 0. Then, 

— T H < -2? ] ' 7 7 + - 7 7 ' P(T) at r 

< -2Tffj + fĵ fj + 4| Xi, • • • 

= - | | 引 |2 + 4 | 卜 乏 ’ 无 1 ， . . . ， • ’ i；，—||2. 

Find R > 0 such that Uz x U^^ e 召̂”+“广 1 = {[Z,fj) : \\{Z,fi)\\ < R}. Then, 

Ylz G 卜 1. By Lemma 2.2 we can find > 0 such that, when k > /c*i，the 

Z subsystem can be made uniformly asymptotically stable. When k is fixed, denote 

\r~^P(f){z, xi, • • • ,Xr-i,Ur,v,w)\\ = Obviously, = 0 and 

is C^，then we have 

\\r~'^P(f){z,Xu--- ,Xr-uUr,v,w)\\ =机Z�”,w) < \\Z\\a{Z,v,w), 
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where a{Z,v, w) > 1 is a real valued function. 

When {Z,v,w) GHz x V x W, a{Z,v,w) has a maximum amax- Then, 

響 < - _ 2 + 4‘』别2 

Thus Vi(^) is an ISS Lyapunov function for the system (2.36). Then we can conclude that 

(2.36) is input-tostate stable with fj as state and Z as input. When the Z subsystem is 

made uniformly asymptotically stable, we can get i){t) —> 0 as ̂  —> oo. i 

Theorem 2.1 Under assumptions A3 and A4, for any e > 0, there exists K^i > 0 such 

that, for any k > k^i, K > K^i where k^i is determined in Lemma 2.2, the trajectory 

(Z, 77, r) of the closed-loop system composed of (2.27) and the controller u = —Kr starting 

from initial conditions (Z(0),'̂ (0)) G x and initial condition r(0) G ！！了’ where H,-
\ 

is determined by k and Uz, is bounded, enters in finite time the set 5广叫'+” and remains 

in 力 t h e r e a f t e r , where = : < e}. 

Proof: Let Zi = col{Z, fj). The system (2.27) can be transformed into the following 

system, 

念 1 = Fi(Zur,v,w) 

十=x{Zur,v,w) + giv,w)u (2.37) 

, �r 
where FI {ZI, T,V,W)= . 

7(巧,Z’ r,v,w) 
The closed loop system composed of (2.37) and the controller u = —Kr is as follows, 

Zi = FI(ZI,T,V,W) 

十=x{Zur,v,w) - g{v,w)KT (2.38) 

With respect to the output y = r, the zero dynamics of (2.37) is as follows, 

. F(Z,v,w) 
Zi = (2.39) 

7(巧’ Z’0，?;’w;) 

W e take two steps to solve this theorem. Step i is to show that the zero dynamics (2.39) 

of the plant (2.37) satisfies the ULP assumption. By semiglobal backstepping technique 

we can reach the desired conclusion, but it is hard to compute the design parameter iCi. 
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Step ii is to use the Lyapunov's direct method to get a systematic method of computing 

iCi. 
Step i: Please see [52]. For convenience, it is also listed in the following. 

It has been shown in Lemma 2.3 that the equilibrium of the zero dynamics (2.39) is 

uniformly asymptotically stable, with domain of attraction which includes the compact 

set. IIz X Uf). In other words, Hz x H^ is a subset of the domain of attraction A of 

(2.39). Pick k > /c*i，in the flow of (2.39) with initial conditions t'(O) = 0，there is a 

diffeomorphism to an open ball around the origin which is diffeomorphic to R^+r+nij-i 

57]. Denote the diffeomorphism with 

少 ： 八 j ^ n + r + n r j - l 

— Zi 

with 屯(0) = 0. Then 少 maps 么=Fi(ZuO,v,w) defined on A into = Fi(Zi,v,w) 

defined on 7^"+”+1，for which the equilibrium Zi is globally uniformly asymptotically 

stable for every (v, w) G V x W . Hence, by the converse theorem, there exists a smooth, 

positive definite and proper function V(Zi), such that 

dVfZi)—— ~ 
— ^ F ( Z u v , w ) < 0 , VZ： ^ 0. 

oZi 

Under the mapping 屯，the image H of n^ x Hfj is a compact set. Therefore, there exists 

a number Ci > 1 such that {Zi : V{Zi) < ci}〕ft. Let V(Zi) = and define 

the set Qci by Qa = • Vi^i) < Ci}, such that x C ^^ C Qci+i C A. In 

particular, V{Zi) is proper on A such that, 

< - m i \ ) . VZi G f̂ ci+i, + 0 ， e V X 

OZj\ 

for some class-function Thus, the ULP assumption is satisfied. By the semiglobal 

backstepping technique there exists a K^i > 0 satisfying our need. But the computation 

method given in the technique is hard to use. W e will use the Lyapunov's direct method 

to get a proper /Ci as follows. 

Step ii: Find R>0 such that H ^ x H ^ C 叫汁卜 i where 计卜 i t^ {z, ： ||Zi|| < 

R}. Let c = max||Zi||</? V[Zi) and fi^ = ： < c}, then x c 计卜丄 c 

Qc C r̂ c+i- Then 

< R, 
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and 

T | 二 \Xr + + k''-%X2 + ••• + kbr-2Xr-l\ < | 1 + k'^'^bo + + • • • + kbr-2\R-

Pick k satisfying k > k^i where /c*i is defined in Lemma 2.2. Letting 

a 二 |1 + k'-X + k'-Hi + ••• + kbr-2\^R^ 

gives T^ < a. Without loss of generality, assume > 1, then a > I. 

Define a Lyapunov function candidate for the closed loop system (2.38) as follows, 

in the set {Zi : V{Zi) < c + 1} x {r : r^ < a + 1}. 

Assuming Vb(Zi,r) < ĉ  + cr̂  + 1 gives, 

V(Zi) 2 2 1 

k ) ^ � + 1 

V T ^ ^ 〜 + 1. (2.41) 

The above two inequalities imply 

叩 1) <-(… 

^ 二 . (2.42) 

Thus, 

V{Zi) < c + l , 7*2 <(7 + 1， (2.43) 

also, we can get the following inequalities, 

c c(c+ 1) (c2 + + 1 + c)2 

^ + T - ( c + 1 - - c(c+l) 

(7 < a(a + l) < (ĉ  + + 1 + af 

a + 1 - (d + l - 丁〒 cr(cr + l) • 

The derivative of Vb(Zi, r) along the system (2.38) is as follows, ‘ 

+ ^/j'l t ^1)22t(X(Zi’ T,仏 ̂；) - g(v, W)KT). (2.44) 
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The function FI(ZI^T,V,W) can be put in the following form 

where r, v, w) is a smooth function. 

Define the set G)c2+<t2+i by 

G)c2+a2+i = {(ZUT) : V,(ZUT) < Ĉ  + + 1}. 

If (Zi,t) e 6c2+^2+i, then, 

+ ( 二 二 1么产 (倘 , T , 叫)-"…，切)"^力 

^ I ^ ^ S ^ I I 狐 。 ’ — -

+ (''+工广)22|(X(Zi’r, —||T|) (2.45) 

Choose any arbitrarily small number p > 0 satisfying 6p C 〜'+『• Define two sets S, 

5oby 

So = {(Zi，T) :7" = 0}nS". 

Since 14(Zi’ r) < ĉ  + + 1 gives V{Zi) < c + 1, and r^ < a* + 1, then 

SOC{{ZUT):V{Z,)<C+1,T = 0}. 

By the ULP assumption, Vb{Zi,T) < 0 when (Zi,r) G So. 

By continuity, there exists some open set 5i such that Si D Sq and Vb{Zi,T) < 0 when 

(Zi,r) € Si. Consider the compact set 82 = S\Si. Since r / 0 at each point of S2： then 

there exists m > 0 such that 

t2 > m, V(Zi,t) G S2. 

Also, there exists M > 0 such that V(Zi,r) G S2, G K x VK, 

/(c2 + a2 + l + c)2 樹（q �I (c2 + 0-2 +1 +a)2 X H 
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Hence, 

Vb{Zi,T) < -2-^boKm + M. 
cr + 1 

Letting K^i =(【二gives when K > K^I, VB{ZI,R) < 0. Therefore, the trajectory of 

(2.37) starting from any given compact set x H^ x 11,- is bounded, enters in finite time 

any given arbitrarily small compact set 力+、and remains in it thereafter, i 

Lemma 2.4 Under assumptions A3 and A4, there exists k*2 > 0 and > 0 such that 

when k > /c*2 and K > the closed loop system (2.38) is locally exponentially stable. 

Proof: Let & = i = 1, • • • ,r — 1, denote ^ == Ki’... ,̂ r-i), then we can 

transform the system (2.38) into the following system: 

、 = 一 為 

十 = - g{v,w)KT (2.46) 

where 

0 1 ••• 0 0 0 
0 0 ••• 0 0 0 

A = ： ： ： ： ： , = ； 

0 0 ••• 0 1 0 
— bo —bi —… —br-3 —W-2 1 

Since A is Hurwitz, there exists a real symmetric positive definite matrix PQ satisfying 

the following equation A^PQ + PQA = -I. 

Pick a Lyapunov candidate 

r I 

where e\ is a positive number to be determined, Vo(^) is defined in assumption A3, r and 

P are defined in assumption A4. 

Since the function /o is smooth, it can be written as follows, 

= fo{z, 0, V, w) + p{z,^uv, (2.47) 
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where is a smooth function. Since the function X(仏乏’f t,it;) is smooth, 

we have 

where a{r,v,w) > 1 and b(fj, > 1 are smooth functions (see [42]). 

Along the trajectories of (2.46), and when 2 G [0, (5], fj,《，v and w are in their compact 

sets respectively, 

K = 61 ̂  (/o(z, 0, ̂；, w) + piz, 6 , + k^iA^Po + 

+ 召 了 + fPoB) - - f v - -fPN + d)- "[2�(d)) 
r\j T T 

+�扩P•、乏,+ 4- rxiv, z, r, v, w) — g{v, w)Kt^ 

< -aoeil间|2 + - mW + f^H丨旧I 

A 
7 I - 2 , - 2 , ^ O P m ^ 2 7 广 2 I P O m / 2 _ 广 2 � ~ 2 

< -aoei |2『 + eiaoPWii 2」+ ei ——If | - A：!? + I^Z^V + € ) - 々 
Ml K 

^ I ^ 2 \ - 2 n (^oPm POm 2 \ t 2 
< -(aoei - eiaoPmMi - - o,mU2) z - [k - ei y^ - c”, 一 a爪€ 

fJ'i 扣 

—(1 - a,nU2)\m' - { b o K W | t | 2 

AC U2 

where Prn is the maximum value of pom is determined by PQ and B, 

c{z, r, V, w) > 1，dm is the maximum value of a(r, f, w), b^ is the maximum value of 

, Cm is the maximum value of fii and //2 are two positive 

numbers to be determined later, d = W)N{T + Ur) + 0. 

When and 112 is small enough, k and K is large enough, ei is proper chosen, the 

coefficients of ||別2 and |rp can all be made negative. That is to say, there 

exist /ii* > 0, /i2* > 0，/c*2 > 0, > 0 and ei* > 0 such that when < yUi*, /J2 < M2*, 

k > ^ > and ei > ei*，the closed loop system (2.46) is locally exponentially 

stable, so is (2.38). 
I 

Remark 2.12 With the local exponential stability property of the closed loop system 

(2.38), we can build the following theorem on the basis of Lemma 2.4 and Theorem 2.1 

36]. I 
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Theorem 2.2 Under assumptions A3 and A4, when k > k^ and K > K* where k* = 

max{/c*i, A:*2} and K^ = the equilibrium {Z,fj,T) = (0,0,0) of (2.38) is 

asymptotically stable, with its domain of attraction containing the set H^ x x ！！̂-. The 

partial state feedback controller takes the following form 

u = -K(xr + k^'-^boxi + k''-\x2 + • •. + B”—2 无 r-i). ( 2 . 4 8 ) 

I 

2.5 Design of the Output Feedback Regulator 

The controller (2.48) depends on Xi,. • • ,Xr, where 二 e is measurable and therefore 

can be used in the feedback controller, but the other states X2, ... , Xr can not be used. 

In order to obtain an output feedback controller depending only on Xi. W e can use the 

saturated high-gain observer [12] to generate the estimates of .. •，无r’ and to ensure 

the semiglobal stabilization of the interconnected system by careful choice of the design 

parameters. Denote x = col(xi, • • • , Xr), then the observer is as follows, 

i = Ax + Be (2.49) 

where A^ + Cr-iA""^ H h ciA + cq is hurwitz, Z > 0 is to be determined later, 

-ICr-l 1 0 • •. 0 ICr-l 

-fCr-2 0 1 ... 0 l'^Cr-2 

A = ： ，and B = … . 

-r-^ci 0 0 ••• 1 r•一ici 

- r co 0 0 ••• 0 广Co 
_ 」 L • 

As in [12], in order to get rid of the peaking phenomenon, a saturation function sat(-, •) 

is used to saturate the control, 

a if |a| < ao, 
sat(a,ao)= 

命ao if |a| > Go-

Then the new controller is as follows, 

u = -/CsatCf’？。） 

i = Ax-hBe (2.50) 
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where f = Xr + + + h kbr一2Xr~h and 干q is the set value to saturate 

the control. 

With the new controller (2.50), the closed loop system can be written as follows, 

Zi = Fi{Zi,T,v,w) 

十=x{Zi,T,v,w) - g(v, 'u;)î sat(f, tq) 

i = Ax + Be. (2.51) 

Theorem 2.3 Under assumptions A3 and A4, for any £〉0 there exist K〉0，/C*〉0, 

“ 〉 0 and To > 0 such that, for any /c* > 0, K > K^ and I > /*, the trajectory 

of the closed loop system (2.51) starting from the compact set H^ x H^ x 11,- x EQ is 

bounded, enters in finite time the set 召广"计2” 肌」remains in 拔 t h e r e a f t e r , where 

B?+_2r = {(Z，7̂，T,5):KZ’7)，T，5)|S 吐 

Proof: Let & =广-乂Si — Xi), z = 1, • • • , r, and《=col(^i,.. •， T h e n the closed loop 

system (2.51) can be rewritten as follows, 

十=X{Z\ - g{v, W)KT + (j)I (r, 0 

i = + (2.52) 

where 

MZi,T,t”,w�= fr%2,无1 广 ' - g{v,w)Ksa.i(f,fo) 

Cr-i 1 0 … 0 0 

c卜 2 0 1 ••• 0 0 

i = : ，and B = : . 

ci 0 0 ••• 1 0 
Co 0 0 … 0 1 

By Theorem 2.2，there exists K*〉0 such that when K > K” the derivative of 14(Zi,t) 

along the trajectory of (2.37) satisfies the following inequality, 

< -a2(H(Zi，T))，V(Zi,T) G S 
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where «2(.) is a class K^o function and S = {(Zi, r) : p < r) < + Choose 

K satisfying K > K” and choose the saturation level as 干q = max(Zi,T)e€)c2+。2+i H - Notice 

that, for all (Zi，t,0 G Qc^+^^+i x _/?『， 

I W ⑶丨 S d, 

I<Mt，<OI < 7(1 印 

< d2 

where di, 6,2 are positive numbers, and 7(.) is a continuous function satisfying 7(0) = 0. 

The derivative of Vi{Zi, r) along the trajectory of (2.52) satisfies the following inequality, 

+ ( 二 么 ’ 丁’ % 切 ） - + 01 (T, 0 ) 
/ 2 2 -1 \ 2 

< -吻04(Zi,t)) + 2(c 二、+ …MI0I(T，OI 
<J{CT + ij 

< —a2(H(Zi，T)) + 2Midi (2.53) 

where M , = max^ee,.,^.,, (二广)。丨丁丨. 

Let P2 satisfies P2A + A^P2 = -/, and let 二 (^Pil Then, 

Mo = + P2A)i + + eP2H2) 

< -m\\'+2\eP2\d2 

< —(z-么)i旧|2+贝办2 w 

w 
where w is any positive number, and ds, d^ are two positive number determined by P2. 

Letting = {I-尝) 
gives 

< + (2.54) 

If I is large enough, d^ is a positive number. 

Claim that there exists a time T > 0 (independent of I) such that, for every initial 

state (Zi(0),t(0)) € (11̂  x Hfj) x 11” the solution of the closed loop system (2.52) is 

defined for all t G [0,T], and (Zi⑷，t⑴）G 9̂ 2+̂ 2+1, Vt G [0,7]. By (2.53)，we have 

V U Z i � ’ T⑴）-H(^i(0),t(0)) < 2M,d,t. 
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Let T < then 

⑷’T⑷）< H(Zi(0),r(0)) + 1 < + + 1. 

That is, 

( • ， R ⑷ ） E E C 2 + 邮 Vt G [0,T]. 

Claim that for any positive number e\ there exists a number > 0 such that if I > 

then ||̂ (T)|| < Moreover, if (ZI(0),T(0)) G {UZ X H^) X 11” then for all t > T, 

(Zi(t),T(t)) G 9c2+CT2+i and < €i. The proof is similar to Lemma 3 [37], and it is 

also given as follows. By comparison arguments, (2.54) gives 

1 _ p-dst 
< + 办2), 

"5 

where de > 0 is a real number depending only on P2. 

Choose w to satisfy 2dewd2^ < and choose > 1 to satisfy 而〉1 when I > I山 

then 

( 2 .闹 

Because 

lim c/ee一办了||e(0)||2 = lim 尝)山了||《0)||2 < lim dee—)'—尝)山了厂||封0) - x{0)\\̂  = 0, 
l—*oo /—>00 >00 

lim dee一缺丨|《0川2 二 0. 
l-^OO 

Since x{0) and 5(0) range over a compact set, there exists a real number U2 > 0 such that 

(2.56) 

Then, ||̂ (T)|| < £i for I〉I, = max(“i’“2)- By (2.55), obviously, we have \\^{t)\\ < £i. 

When (Zi,r) G S and \\^{t)\\ < ei, 

M Z u r ) < -a2(H(^i,r)) + 2Mi7(£i). (2.57) 

Choose £1 so that 

< p, (2.58) 
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then H(Zi,t) < -f. Therefore, (Zi{t),r{t)) e 0^2+^2+1. 

Claim that the trajectory of the closed loop system is bounded, enters the set 

in finite time and remains in it thereafter. W e use contradiction to prove it. Assume 

T4(Zi，T) is always decreasing and converges to a nonnegative limit Vboo, and Hoo > P- Let 

L+ denote the positive limit set of the trajectory of {Zi{t),T{t)). Then r) = Hoo 

at every point of L+. Pick initial condition in L+, then Vb(Zi,r) = 0. From the inequality 

(2.57), 0 < -a2(\4oo)+2Mi7(£i)，then p < “！̂⑷ < which is a contradiction 

against inequality (2.58). Therefore, the trajectory enters Since r) is negative 

at each point of the boundary of Gp, the trajectory remains in Qp after entering it. Since 

Xi = Xi —弊,when I > 1 and t is large enough, we have \\x{t)\\ < e. 

I 

Since the closed loop system under partial state feedback (2.38) is locally exponentially 

stable. Hence, the trajectory of the closed loop systems (2.52) is convergent [41]. As a 

result, the semiglobal robust output regulation problem of (2.1) is solvable by the output 

feedback control law of the following form, 

u = (5{ri) — i^sat(f,fo) 

1) = Mr} + N{u - (3{r}) 4- ET'^i^) 

i = Ax^Be (2.59) 

where f = + K^'^BQXI + k'^~%iX2 H h and 干Q is the set value to saturate 

the control. 

2.6 An example 

Consider the plant as follows, 

i = —2 + Xi + ZXi — ViZ + V2 

Xi = X2 

±2 = wz — Xi-\- 0.1 sm'^(wxi) + u 

e = Xi -vi (2.60) 
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with the exosystem 

= V2 

V2 = —Vi. (2.61) 

where v{t) G V = {vf vj < 1}, w £ W = { H < 1}, ̂ (0) G Zq = {|z(0)| < 1}, 

a:(0) G Xq = {|a:(0)| < 1}. The objective is to design a controller to solve the output 
regulation problem. 

The solution of the regulator equation is 

z{v,w) = Vi 

Xi{v,w) = Vi 

= V2 

u{v,w) — —wvi — 0.1 

Let 7ri(v, w) = wvi. The minimal zeroing polynomial of 7ri{v, w) is Pi{s) = s^ + 1, 
0 1 「 1 

盃二 ， = _1 0 . The pair {E, is observable, thus the generator is 
— 1 0 L J 

linearly observable. 

� - 1 0 ] � 1 ] 
Choose M = , N = , which are controllable. Solving the Sylvester 

0 -2 J [ 2 

厂-0.5 0.5 1 
equation MT + NE = gives T = . Under the above design, 

[-0.8 0.4 

TTi{v,w) WVi —O.bwVi + 0.5wV2 
0 ^ T — T — ’ 

7TI{v,w) WV2 -O.SwVi + 0AWV2 

and 

_ = -2没1+ 2.5没2-0.1sin2(2没1 — 2.5没2). 

The internal model is as follows, 

'n = Mr]-h N{u- _ + (2.62) 
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Performing on the plant and the internal model the following coordinates transformation: 

fj = T] — 9 

Z = Z — z{v,w) = Z — Vi 

Xi = — Xi(̂ ;，u») = rci — 二 e 

X2 = X2 - X2(tS w) = X2- V2 

u = u - _ (2.63) 

gives 

2 = —2 + + ZXi + ViXi 

fj = (M + NET-^)f] + Nu 

圭 1 = X2 

= wz - xi + 0.1 + + + /̂ (v) + (2.64) 

Letting fj = fj — Nx2 gives 

^ = Mr]- iV ( 沪 + NX2 + 没 ） 一 + 9)) + 化 w) (2.65) 

where 

(p{z,Xi,X2,v,w) = -N(wz - + 0.1 sin̂ (w;:ri + wvi) - 0.1 sm'^{wvi)) + MNx2 

Let T — X2 + kboXi where bo > 0 such that A + 6o is Hurwitz. Here, Uj. = —kboXi. 

Letting Z = col(乏gives 

i = F(Z,”,w) + GT 

= Mfi - + N(t - kboXi) +e)- - kboXi) 4- 0)) 

+0(2, Xi,T - kboXi,V, w) 

十=wz-{l-{- k'^bDxi 4- 0.1 + wvi) + wvi + /?(77) + kboT + u, (2.66) 

- 2 + + ZXi + ViXi 0 
where r (Z, v, w) = ,Cr 二 ’ 

—kboXi 1 

xi, (r — kboXi),v,w) = —N(wz - Xi + 0.1 s'm'^{wxi + wvi) — 0.1sm'^{wvi)) 

+MN{r — kboxi) - - + 0) - "[2](没)). 
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If we define a new output for the above system as y = t, then the zero dynamics with 

respect to the output y are given by 

； -Z + Xi-\-ZXi-\-ViXi 

Z = F[Z,v,w) 二 
—kh^xi 

i) = Mfj - - Nkboxi + - + 6)) 

-\-(j){z,Xi, —kboXi,v,w), (2.67) 

where 

Xi, —kboXi,v,w) = -N(wz — Xi + 0.1 + wvi) - 0.1 sm^{wvi)) 

-MNkboXi - N{P^^\-NkboXi + 的一(約）. 

Since u(v, w) = —wvi — 0.1 sm^{wvi) is not a polynomial, and the z subsystem 乏 = 

—z + xi + zxx + ViXi is not input to state stable, the semiglobal output regulation of this 

example can not be handled by any existing techniques. 

To verify assumption A3, note that the equilibrium 乏 = 0 of the following system 

玄=fo{z,0,v,w) = -z 

is globally asymptotically stable and locally exponentially stable, uniformly with respect 

to v{t) G V, w G W, and there exists a Lyapunov function Vo(̂ )=乏之 such that, 

dVoi^. . . . � -2 

To verify assumption A4, letting P M + M ^ P = -I and solving the Lyapunov equation 

[0.5 0 1 
gives P = . Further 

[ 0 0.25 

-2f 0.5 0 1 |/3i[2](� + d ) - � i l 2 �� I 
0 0.25 2 

=0.1|(77i + 2々) (sin2(277i - 2.5772 + 2di — 2.5̂ 2̂) — sin2(2c?i - 2.5cy) | 

< | 0 . 1 (力 i+f)2) (2m — 2.577*2)1 

< 0 . 2 7 5 丨引 2. 

Thus, -2々Tpw("i[2j (巧 + - "1 间(d)) < (1 - is satisfied when 0 < r < 0.725. 
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To get k* according to the algorithm in Lemma 2.2. Taking Xi) = Vo(^) + ^xj 

and bo = 1, then 

K(乏’无 1) = -2乏2 + 2乏(1 + f + - kxl. 

W h e n xi = 0, 

Vaiz.xi) = -22^ < 0. 

By continuity, there is an open set D�containing the set {{z, Xi) : |乏| < 1, xi = 0} such 

that Va is negative definite. 

When Xi and {z, Xi) G HDQ�we have, 

Va(z,xi) < + + 2(1 + vi)zxi - kxj 

< -z"^4\z\\xi\- kxj 

< 4x1 - k^l 

Taking /c*i = 4, when k > 14 is negative definite. 

Since 

fo{z,Xi,v,w) = -z-\-Xi -\-zxi 

= 一 乏 + (1 + 5 + 无 1 

=/o(5，0，t)’—+ ?)(乏”无1’ 仏无 1 

where 

p{z,xi,v,w) = 1 + 乏+ 1>1， 

then 

Prnax = niax(^’5i VK (I …(乏，，^^ …11) = 3. 

Since 

Vaiz^Xi) < -22^ + 2(z + 1 + Vi)zxi - kxl 

< + Q\z\\xi\- kxl 

< -z^ + (9 — 
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taking k > = 10, 

Therefore, 

k本=max{l, K2} = 10. 

Let 

where 62 is a positive real number to be determined later. 

Recall that 

xi, —kboXi,v,w) = —N(wz - + 0.1 + wvi) - 0.1 

-MNkboXi — N{P^'^\-NkboXi + 6)-�[2](沒)）. 

The derivative of Vi(77) along the 77 subsystem of (2.67) is as follows, 

Since 

-\-\\PMNkboXi\\ + ||PAr(/?l2l(-Ar/c6o无1 + 約 - 没)）||) 

< ^ 乏 I + + 0.1\/2|xi| + 5\/5|xi| + 3N/2|XI|) 

< -(1.4|f| + 17|xi|) 
r 
24 

< - i m i , r 

taking r = 0.7，then 

—竺 
^max — — 

r 
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The derivative of V{Zi) along (2.67) is as follows, 

< —life无 1)丨|2-62|| 训 2 + 4e2aLjP，5l)||2 

< 一 all(乏,5i,f7)||2 

where 63 = = 0.00011 and a = min{i = 0.00011. Hence, 

V{Zi) = z'^ + hi + 0.00031^^P77 

Taking R = \/2 such that H^ x Hj, G Bj^. Let c = max\\Zi\\<Ry(Zi) = 2, then cr = 8, 

and 

= 2 卿 + 8 丄 
3 - V ( Z ： ) 卞 9 - 7 * 2 

Obviously, 

0 

Pi(ZI,t,v,W)T = 丁 , 

MNT - (巧 + N(T - LOXI) + 9 ) - 间(F? - LONXI + 9)) 
- \ / -

x{Zi,T, V, w) = wz — lOlxi + + wvi) + wvi + P{r]) + lOr 

Letting p = 0 and Si = {(Zi,r) : |t| < 0.5}门 S gives 

• 16 1 

Letting K* = 20 gives 

14(^1, r) <0. 

Hence, the controller can be listed as follows, 

u = P{r]) — î sat(f,fo) 

rj = Mr) + N[u - (5{ri) + ET-^ri) 

xi = —IciXi + X 2 + Icie 

全2 = -l^coXi + /̂ Coe (2.68) 
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where f = X2 + kboXi, 二 20， k = 10，60 = 1, I = 1 0 0 , CQ 二 1, ci = 2,干Q — 1. 

The performance of the controller is simulated with initial conditions z(0) = 1，xi(0)= 

0，3:2(0) = -1，？;1(0) = 1, ?；2(0) = 0, w = 1,77(0) = 0’ 5i(0) = 52(0) = 0，and is shown 

in Figure 2.1, 2.2 and 2.3. 

2.7 Concluding Remarks 

In this chapter we established the solvability conditions of the semiglobal robust output 

regulation problem for a class of nonlinear SISO systems in normal form. W e solved this 

problem by mainly getting rid of three drawbacks. First, the output regulation problem 

can be translated into a stabilization problem of an augmented systems composed of the 

original plant and the internal model. But the stabilization problem of the augmented 

system can not be treated directly by any existing stabilization result. Using the Lya-

piinov's direct method and the semiglobal backstepping technique by Teel and Praly [55], 

we solve it. Second, we eliminate the polynomial assumption imposed on the solution of 

the regulator equations by taking advantage of the nonlinear internal model by Chen and 

Huang [8]. Third, we get an output feedback controller by taking use of the high gain 

observer by Khalil and Esfandiari [43 . 

46 



0.81~7 1 1 I 
A F ^ 

0.6 - -

0.4 - -

0.2 - -

. 0 -
2 0) 
E -0.2 - V -
o 
CO 

H 
-0.4 - -

- 0 . 6 - -

V 

-0.8 -

- 1 -

-1.2' ‘ 1  
0 5 10 15 

Time(sec) 

Figure 2.1: Profile of the tracking error of the system 
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Chapter 3 

Disturbance Rejection of the RTAC 
system 

The problem of designing a feedback controller to achieve asymptotic disturbance rejection 

/ attenuation while maintaining good transient response in the RTAC system is known 

as a benchmark nonlinear control problem, which has been an intensive research subject 

since 1995. In this chapter, we will give some introduction about this system, and design 

a controller based on some related work by Huang [20], [22] [23], [24] and [27] to solve 

the disturbance rejection problem of the RTAC system. This chapter will be the basis 

for further investigating the solvability of the robust disturbance rejection problem of the 

RTAC system in the next chapter. 

This chapter is organized as follows. Section 3.1 formulates the disturbance rejection 

problem of the RTAC system as the output regulation problem. Section 3.2 presents a 

solution for this problem. Section 3.3 gives design process of the control parameters and 

simulation results. Section 3.4 closes the chapter with some concluding remarks. 
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3.1 Disturbance Rejection Problem Formulated into 

Output Regulation Problem 

The motion equations of RTAC are derived in [3] and are given below, 

C + C = e(々 2sin 没-知OS約+ F 

e = -eC'cos^ + w (3.1) 

where ̂  is the one-dimensional displacement of the cart, 6 is the angular position of the 

proof body, and F and u are the disturbance and control input. The coupling between 

the translational and rotational motion is captured by the parameter e which is defined 

by 

_ me 
石-V(/ + me2)(M + m) 

where e is the eccentricity of the proof body. 

Letting x = col[xi X2 Xs X4] = col[C (9 6] and y = C yields the following state space 

representation of (3.1)， 

i = f{x)-\-gi{x)u-\-g2{x)F 

y = (3.2) 

where 

0：2 0 0 

sin 3:3 -ecosx3 1 

fix) = 1-細 2 0:3 ,仍⑷=l-e2c�s2a:3 ， … � 

X4 0 0 

€cos x3(xi-ex^ sinx3) 1 -ecosxs 

_ 1—ê  coŝ  X3 J [_ 1—ê  coŝ  X 3� L 1—coŝ  X3 _ 
(3.3) 

where 1 — ê  coŝ  — 0 for all X3 since 0 < e < 1. 

The basic objective is to design a partial state (xi and X3) feedback controller such 

that, under a sinusoidal disturbance F(t) = A m sin cjt where A ^ is unknown, for all 

sufficiently small initial state of the plant and the control law, and all sufficiently small 

Am, the solution of the closed-loop system exists and is bounded for all t > 0, and the 
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cart position Xi asymptotically approaches 0. This problem has been formulated as an 

output regulation problem in [23] and is repeated here. Introduce the following system 

V = Aiv, t > 0, == vo (3.4) 

with 
_ —. — I— — 

vi 0 0； � 0 , \ 
V = , , 1；(0)二 . （3.5) 

V2 -LJ 0 Am 

Clearly, the solution of (3.4) satisfies vi{t) = Am sinujt. W e will call (3.4) as an exosystem 
in the sequel. Let f{x,u,v) = f{x) + gi{x)u + ff2(小i and h(x,u,v) = Xi. Then we can 

define a composite system as follows 

i = f{x,u,v) 

V = AiV 

y = h{x,u,v). (3.6) 

Thus the disturbance rejection problem described above can be formulated as looking 

for a controller of the form 

i = 2̂(2;, a；!, X3) 

u = k{z) (3.7) 

where z G R"' for some integer n: is the state of the controller, k and QZ are sufficiently 

smooth functions satisfying k{0) = 0 and 仏(0，0，0) = 0’ such that for all sufficiently small 

initial state x{0), 2(0), and ;̂(0)，the trajectories of the closed-loop system composed of 

(3.6) and (3.7) are bounded and y approaches zero asymptotically. 

Since Xi and 2:3 are considered as measurable output, the controller described by (3.7) 

is called measurement output feedback control. 

In reality, the value of e is not precisely known. If the controller is required to maintain 

the above asymptotic disturbance rejection property in the presence of the variation of the 

parameter e, then the problem of designing such a controller is called the robust output 

regulation problem, which will be addressed in the next chapter. 

52 



3.2 Solvability of the Output Regulation Problem via 

Measurement Output Feedback Control 

In this section, we will solve the disturbance rejection problem of the RTAC system 

formulated in Section 3.1 via output regulation method. For this purpose, consider the 

composite system consisting of the RTAC system and the exosystem as follows 

X2 
• —x\+ex\ sinxa+tJi—e(cos0:3)tx  
2 1—ê  coŝ  X3 

工4 

• e cos xz (ji — €3：4 sin 3:3)一e(cos 3:3)t>i  
4 1—ê  coŝ  X3 

Vl UJV2 

V2 —UJVI 

e = XI. (3.8) 

It is known from the standard output regulation theory that the above problem is solv-

able only if the regulator equations associated with the composite system (3.6), i.e, the 

following equations, 

樂 Aiij = /(xW,u ⑷,… 

0 = /z(x ⑷，u ⑷ ( 3 . 9 ) 

are solvable for a pair of sufficiently smooth functions x(v) and u(f) satisfying x(0) = 0 
and u(0) 二 0. The solvability of the regulator equations is related to the zero dynamics 

(3.10) of the composite system (3.6). 

Differentiating the error output e twice gives 

e = xi = X2 
‘ .. . -xi + exl sin x^-^-vi- e(cos Xs)u 

e = X2 = 2~~~i • 
1 — cosz Xs 

Thus the composite system has a well defined relative degree 2 at the origin with 

Daix,v) = - 了 =3 
1 — ê  coŝ  X3 

E.i.^v)=卞n『3 +巧 
1 — ê  cos」xs 

X\ 
Haix.v)= . 
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Since 

r a n k ， (工々 = 2 

then we have the partition x = with x'^ = col(a:i,X2) and = col(x3,X4) and 

the following functions 

1 , 2 、 [ 0 X = cr[x , V)= 
0 

( . _ Ea{x,v) — -Xi + ex\ sin x^ + Vi 
V)=—"-— -= 

Da{x,V) —e COS Xs 
I 、I sinxa + Vi 

- e COS xz 

as well as the zero dynamics of (3.8) 

±3 = 0：4 

• 2 

X4 = XA tan Xz H  
e cos Xz 

Vi = UV2 

V2 = -ujvi. (3.10) 

The first two equations of (3.10) with = 0 are 

Xs = X4 

X4 = X4 tan X3 (3.11) 

which is actually the zero dynamics of the RTAC system when the disturbance F is set 

to zero. It is known that if the equilibrium of (3.11) is hyperbolic, then the regulator 

equations associated with the composite system admit a solution [25], [38]. However, the 

Jacobian matrix of the zero dynamics at (0,0) is 

, 厂�Ve 
J = . 

0 0 

The system is clearly not hyperbolic. Thus, the existing theory cannot determine the 

solvability of the regulator equations. Nevertheless, by taking advantage of the special 
t 

s t ruc tu re of (3.10), we can actually solve (3.9) as follows. 
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First, expand (3.9) as follows: 

axi � 

_ dx2(v) _ -Xi(v) + exj(v) sinx3�  

dvi dv2 1 —e2cos2x3(?;) 
-ecosx3(v) , � 1 

+ 1 — 2 2 r r u M + i — — 2 2 r r ^ i 
1 — ê  cos」xŝ f) 1 — ê  cos」X3(t») 

彻3 ⑷ 

机 ⑷ —彻4 …) _ ec0SX3 ⑷(Xi ⑷ - ⑷ sinx3(t;)) 
dvi dV2 1 _ e2cos2:X3(l；) 

1 , � 一ecosx3(v) + 1 2—9TTUM + 1 2—2rr^i 
1 — 6^ COS^ X3(1>) 1 — e^ COS�X3(t；) 

0 = Xi(t;) 

where = col(xi(v), X3(i»)，X4(t；)). 

By a mere inspection, the regulator equations can be partially solved as follows 

xi(i;) = 0 

X2 � = 0 

+ ) = + (3.12) 

with and X4(t*) satisfying 

f Ai” = x�Wtanx3W + ^ ^ . (3.13) 

Equations (3.13) can be viewed as the invariant manifold equation associated with the 

zero dynamics (3.10). 

It suffices to solve (3.13) in order to solve (3.9). To this end, note that equations (3.13) 

hold if and only if, for all sufficiently small trajectories v(t) of the exosystem, 

学 = ( 3 . 1 4 ) 

dt X4("̂ )cosx3(i;) + ecosx3(D) (3.15) 

(3.15) can be written as 

cosx3(z;)"x丄(…-X4(^)sinx^iv) 二 — • ( 3 . 1 6 ) 

at 6UJ cLt 
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Using the identity 

d((cOS X3)X4) X dxs dX4 、2 ,, 、机 
=-(sinX3)X4— + (cos2:3)-— 二 一(sin:c3):Ej + (cosX3)-— 

at at at at 

in (3.16) gives 

d((COSX3(̂ ;))X4(V)) 1 dv2 = 

dt euj dt 

which further leads to, upon noting X4(0) = 0, 

€U cos :x.3{v) C0SX3(?；) dt • (3.17) 

Combining (3.14) and (3.17) gives 

c?sinx3(t；) 1 dvi — 

dt euj"^ dt 

which yields, upon noting X3(0) = 0, 

sinxsiv) = (3.18) 

which further yields 

X3(t») = arcsin~-. (3.19) 
ecj'^ 

Substituting (3.19) into (3.17) gives 

X 4 ( v ) = —— ^ t t 二 1 (3.20) 
fcosxsW euj -(哉)2 、 ) 

where -eu"^ < Vi < eu?. 

Next, a simple calculation gives 

0 1 0 0 

a/(o，o’o) — -1 / (1 -62 ) 0 0 0 
彻 0 0 0 1 ' 

e / ( l - e 2 ) 0 0 0 

0 0 0 

df (0,0,0) 二 a/(o,o，o) = lii 0 

加 一 0 , 彻 — 0 0 . 

_ 1/(1 _一) J o_ 
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It can be easily verified that the pair (射($0,0),明y) ĝ controllable for all e > 0，but 

the pair 

f[i(0,0,0) t(0,0,0)], f 鈔，o’o)鈔’0,0)1) V L 0 」乂 

is not detectable. Thus the asymptotic disturbance rejection problem can be solvable by 

the state feedback but not the output feedback control [38 . 

Nevertheless, since the angular position of the proof-mass actuator 0:3 is also measur-

able. W e can define a measurement output as y饥=hm{x, u, v) = col(a:i,X3). Then it can 

be verified that the following pair 

/ 「a/(o,o,o) a/(o,o,o) 1 \ 

^(0,0,0)智(0,0,0)，"工 ‘‘ 

V L ° 成 J乂 

is detectable. Thus the problem can be solvable by a dynamic measurement output 

feedback control. 

Let K：, be such that ̂ ^ ^ + is Hurwitz, and L be such that 

1^(0,0,0) 1^(0,0,0) 1 「 1 
' — L 警(0，0，0) f f (0,0,0) (3.21) 
0 L J 

is Hurwitz, and z = col(21,22) with z^ € 况̂  and Z2 € Then a dynamic measurement 

output feedback controller that solves the output regulation problem for R T A C system 

can be given as follows: 

u 二 A:(2I’ 22) = 11(22) + - X(2;2)) 

i 二 "(2，"771) 

/(之 1) 财〜幻）+"2(2i)[1，0]Z2 L , 、 、1 

3.3 Parameters Design and Simulation Results 

To evaluate the performance of this controller by computer simulation, let us give the 

specific gains K^ and L for the case where e = 0.20，and u) = 3. First, letting K^ = 

-16.52 -83.52 -15.4 -20.7] places the eigenvalues of + at [(—0.848士 

2.52j), (—1.25±0.828j)]. The above eigenvalues are based on ITAE (integral of the time 

57 



multiplied by the absolute value of the error) prototype design with cutoff frequency equal 

to 1 [14], 

Next, letting the eigenvalues of (3.21) be given by 

—0.1871 ±3.0918j -0.7065 士 1.1866j —1.3627 -12.6325 

gives 

3.4152 -3.0473 

1.9628 5.5501 

-3.4819 11.6188 
L = . 

-4.5875 1.6509 

-3.3591 -1.0914 

-1.0312 -1.7223 

Simulation has been run for the initial state x(0) = col(0.1,0,0,0), z(0) = 0，and 

various values of the amplitude Am- With cj = 3，Figure 3.1 shows the profile of the 

displacement Xi of the closed-loop system. It can be seen that this controller is able to 

completely eliminate the affect of the disturbance on the output as the time tends to 

infinity. 

Next we take a look at what will happen if the parameter e undergoes perturbations. 

Figures 3.4 shows the profiles of the displacement Xi of the closed-loop system under the 

same controller with the parameter e being equal to 0.18, 0.20 and 0.22, respectively. It can 

be seen that when the parameter e deviates from its nominal value 0.20, the displacement 

Xi displays a sizable non-decaying oscillation. Thus we have seen that the performance of 

this controller is not robust with respect to parameter variations. It is desirable to have a 

regulator that can maintain its performance in the presence of small parameter variations. 

Such a regulator is called a robust regulator, and will be introduced in the next chapter. 

3.4 Concluding Remarks 

In this chapter, we considered the disturbance rejection problem of the RTAC system via 

the output regulation problem. Using the explicit solution of the regulator equations [27], 

we got a controller to solve the disturbance rejection problem. 
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Figure 3.1: The profile of the displacement Xi with e = 0.2, a; = 3 and A n = 0.5. 
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Figure 3.2: The profiles of the state variables (x2, Xs.x^) with e = 0.2, uj = 3 and Am. = 0.5. 
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Chapter 4 

Robust Disturbance Rejection of the 
RTAC System 

In this chapter, we will further investigate the solvability of the robust disturbance re-

jection problem of the RTAC system by the measurement output feedback control based 

on the robust output regulation method. W e have obtained a design by overcoming the 

major obstacle: devise a nonlinear internal model to account for non-polynomial non-

linearities. Also, we have improved the transient response of the system by using some 

parameter design and optimization methods. 

This chapter is organized as follows: Section 4.1 gives an introduction. Section 4.2 

summarizes a new framework developed recently for handling the robust output regulation 

problem of uncertain nonlinear systems in [28]. Section 4.3 gives the solution of the robust 

disturbance rejection problem of the RTAC system using a measurement output feedback 

control. Section 4.4 describes the parameter optimization method and the ITAE prototype 

design method. Section 4.5 shows effect of the optimization method and the simulation 

results. Section 4.6 closes the chapter by some remarks. 

4.1 Introduction 

In this chapter, we will further take into account the model uncertainty of the RTAC 

system, and solve the robust disturbance rejection problem of the RTAC system based on 

a new framework for handling the robust output regulation problem developed recently 
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in [28]. In order to solve this problem, we need to overcome the major obstacle: the com-

plexity of the solution of the regulator equations. The current robust output regulation 

theory can only handle systems whose regulator equations admit a solution which is a 

polynomial in the exogenous signals [1], [19], [21] and [29]. This limitation is caused by 

the employment of the linear internal model. However, as will be seen in Section 4.2, 

that the solution of the regulator equations of the RTAC system involves non-polynomial 

nonlinearities such as sinusoidal functions or non-rational functions. By employing a non-

linear internal model technique developed very recently, we have also circumvented this 

difficulty. Finally, we note that the current robust output regulation theory only offers 

the full information feedback and error output feedback control strategies. However, for 

RTAC system, it is unrealistic to assume the availability of the information on the un-

known disturbance. On the other hand, certain observability condition does not hold to 

warrant an error output feedback control. To deal with this dilemma, a measurement out-

put feedback control is introduced which only utilizes two measurable variables, namely, 

the displacement of the cart, and the angular position of the proof body. Comparing with 

all previous work on the benchmark control problem, the major novelty of the approach 

of this chapter is that it results in a measurement output feedback controller that can 

completely eliminate the influence of a sinusoidal disturbance to the output of the RTAC 

system in the presence of the model uncertainty. 

4.2 A General Framework for Robust Output Regu-

lation 

As we have seen in Chapter 3 that the controller designed based on the output regulation 

theory performs poorly when the true value of the parameter e is unknown. Designing a 

controller that can maintain its performance in the presence of parameter uncertainties is 

called the robust output regulation problem which has been studied in [1], [19], [21], and 

29], to just name a few. Such a controller should not depend on e since e is unknown. 

Let us denote the nominal value of e by eo, Then we can write e = €o + w where w is an 

unknown parameter modelling the deviation of the true value of e from its nominal value 

eo. To emphasize the reliance of the solution of the regulator equations on the unknown 
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parameter w^ we use u{v, w) and x{v, w) to denote the solution of the regulator equations, 

i.e., 

xi(f,i(；) = 0 

X2{v,w) 二 0 

X 3 (— = arcsin 

, 、 — 他 ( 1 \ 

(e 一 ) 々 — ( 命 ) 2 乂 

u — ) = x ? — ) t a n x 3 ( — + ( 一 ) c : x 3 (— . 

The robust output regulation problem is handled by the so-called internal model prin-

ciple which is completely different from the technique for handling the output regulation 

problem. As a result, the solvability of the robust regulation problem is much more 

challenging than that of the output regulation problem. In fact, the existing results on 

the solvability of the robust output regulation problem not only require the solvability 

of the regulator equations, but also require that the solution of the regulator equations 

be a polynomial of the exogenous signal v{t) [1], [19], [21], and [25]. This requirement 

is imposed due to the employment of linear internal models. It can be seen that the 

solution of the regulation equations of the RTAC system is clearly not polynomial in v{t), 

and therefore the existing approach cannot solve the robust output regulation problem 

of the R T A C system. Recently, a general framework is developed for handling the robust 

output regulation problem. This framework can convert, under a set of conditions, the 

robust output regulation problem for a given plant into a robust stabilization problem of 

an augmented system. In order to apply this framework to the RTAC system, we need 

to verify that the R T A C system indeed satisfies the conditions of the conversion, and the 

augmented system is stabilizable by the measurement output feedback control. For these 

purposes, let us summarize in this section the framework developed in [28 . 

Consider a plant described by 

X = /(a;’ w，̂;，ii；)，x(0) == rro 

y = h{x, u, V, w), t >0 (4.1) 
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and an exosystem described by 

i) = a{v), v{0) =Vo (4.2) 

where x is the n-dimensional plant state, u the m-dimensional plant input, y the p-

dimensional plant output representing the tracking error, v the ̂ -dimensional exogenous 

signal representing the disturbance and/or the reference input, and w the iV-dimensional 

plant uncertain parameter whose nominal value is 0. The functions /，h and a are suffi-

ciently smooth satisfying / ( 0 , 0 , = 0 and h[Q, 0,0， /̂;) = 0 for all w, and a(0) = 0. 

Let us first list two standard assumptions. 

A l : The equilibrium of the exosystem (4.2) at = 0 is stable. 

A2: There exist sufficiently smooth functions x(v,w) and u(v,w) with x(0,0) = 0 and 
u(0,0) = 0 satisfying, for all v e V, and w e W where V is an open neighborhood of the 

origin of 况。and W an open neighborhood of the origin of 况",the following equations 

ov 
0 = h{-x.{v, w),u{v, w),v, w). (4.3) 

Definition 4.1 Let g。:况"+爪 况！ be a mapping where 1 < / < n + m. Under 

Assumptions A1 and A2, the nonlinear system (4.1) and (4.2) is said to have a steady 

state generator with output go{x, u) if there exists a triple [9, a, /?}, where 0 :况什"f~> 况〜 

a :况s ^况5，and (3 : W ^ ^^ for some integer s are sufficiently smooth functions 

vanishing at the origin, such that, for all trajectories v{t) G V of (4.2) and all w ^W, 

dt 
g,{x{v{t)MMv{t),w)) = 處 (4.4) 

If, in addition, the linearization of the pair {p{9),a{9)} at the origin is observable, then 

{6', is called a linearly observable steady state generator with output go{x,u). i 

R e m a r k 4.1 Equations (4.3) are called regulator equations. If the mapping g�takes the 

form go{x, u) = col(x, u), then the steady state generator is simply a dynamic system that 

can produce the solution of the regulator equations. In the sequel, we assume g。(x, u)= 

col(xij,Xi2, • • • where 1 < zi < Z2 < • • • < id < for some integer d satisfying 
0 < 0? < n, and, without loss of generality, we can always assume ij = j for j = 1, • • • , d 

66 



since the index of the state variable can be relabelled to have this assumption satisfied. 

Existence of the steady state generator depends on some specific property of the solution 

of the regulator equations, and is discussed in detail in [28]. i 

The definition of the steady state generator leads to a general characterization of the 

internal model as follows. 

Definition 4.2 Under assumptions Al and A2, suppose the system (4.1) and (4.2) has 
a steady state generator with output go{x,u). Let 7 :况s+n+m 1•̂况s be a sufficiently 

smooth function vanishing at the origin. Then we call the following system 

77 = j(ri,x,u) (4.5) 

an internal model with output go{x, u) if, for all trajectories v{t) G ^ of (4.2) and all 

w eW, 

7 {0 (v ⑴{t),w),u {v ⑷,w))) = a{e (v (t) ,w)). 

I 

Remark 4.2 It is clear that a steady state generator itself qualifies to be an internal 

model; therefore, some internal model for system (4.1) and (4.2) always exists if the 

system admits a steady state generator. However, the general characterization given in 

(4.5) offers more flexibility to render the augmented system defined below some desirable 

property to be elucidated in Remark 4.4 1 

Remark 4.3 Attaching the internal model to the given plant yields the following aug-

mented system 

X = f{x, u, 7〉= 7 (77, x,u), y = h�x, n, v, w). (4.6) 

Performing on (4.6) the following coordinate and input transformation 

= Xi-

Xi = Xi — Xi{v,w), i = d 1, • • • , n 

fj = r] — 6 (v,w) 

u = u- (5u{ri) = u- [pd+i (")，…•，Pd+m {r])f (4.7) 
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gives a new system denoted by 

去= / ( x , fj, fj = 7(5, fj, y = h{x, fj, v, w) (4.8) 

where x = col(xi, • •. ,Xn)- It can be verified that the system has the property 

f(0,0,0,v,w) = 0 

7(0,0,0,-^,^;) = 0 

/i(0，0’0，̂ ;,w;) 二 0. (4.9) 

I 

Theorem 4.1 Suppose system (4.1) and (4.2) satisfies Assumptions A1 and A2, and has 

a steady state generator with output go(x,u) 二 c o l ( : c i ,… a n d an internal model 

described by (4.5). Then if a controller of the form 

u = A;(无 1,. ••，无 d，0 

i = g俱•、似,y) (4.10) 

where ̂  € R�for some integer n^, and k and g^ are sufficiently smooth functions vanishing 

at their respective origins stabilizes the equilibrium point (x,fj) 二 (0，0) of (4.8), then the 

following controller 

u = + 功，.••- Ai(功，0 

力 = 7 0,"，w) 

i 二 g“Jh-piW},— ,0Cd-PdM^y) (4.11) 

solves the robust output regulation problem for the original plant (4.1) and the exosystem 

(4.2). I 

Remark 4.4 In order to apply Theorem 4.1, we need to check whether or not the sys-

tem (4.1) and (4.2) admits a steady state generator, among other things. An extensive 

discussion on the existence of the steady state generator is given in [28). If the system 

does admit a steady state generator with output go{x,u), then we can always find some 

internal model so that the robust output regulation problem of a given plant can be con-

verted into a stabilization problem of the augmented plant. Clearly, whether or not the 
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augmented system is stabilizable depends not only on the given plant but also on the 

particular internal model used. If the steady state generator is taken to be the internal 

model, i.e., ?) = a{ri), then the augmented system cannot be stabilized by any feedback 

control if the internal model itself is not a stable system. Therefore, it is important to find 

a particular internal model such that the stabilization problem of the augmented system 

is solvable. In Section，we will show that, the RTAC system does admit a steady state 

generator with output go{x,u) = co\{xi,xs,u) and a specific internal model is available 

so that the augmented system is stabilizable by measurement output feedback control, i 

4.3 Robust Asymptotic Disturbance Rejection of the 

RTAC System 

Assuming the displacement Xi of the cart, and the angular position X3 of the proof body 

are measurable output variables, we will first show that the conditions of Theorem 4.1 is 

satisfied. Indeed, let go{x,u) = col(xi,0:3, u), 7r{v,w) = 7r{v,w) = then 

xi {v, w) = 0 Fa；, (tt, tt) 

/ � . f —”l \ . /-7r\ def „ ( . � 
X3(v,w) = arcsin -~~；—^ 二 arcsm = Lx̂ {7r,7r) 

• 2 一TT 

Now let e 况2x2 be any nonsingular matrix, and 

TT 1 「 0 1 
e = T , (4.12) 

TT J [ 0 

越 

a ⑷ = T ^ T - ' e , m = T i T - ' O ) = 隨 (4.13) 

_ Pu{0) _ 

where 

1̂x3 (tt'C'̂, W)^ 7r(v, w)) • 
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Then it is ready to verify that the triple {6^ a{9)^ (5{6)} is a steady state generator of 

the RTAC system with output u). Moreover, the steady state generator is linearly 

observable since the pair (屯权，盃)is observable where "̂ u = [1 0] is the Jacobian of F^ 

at the origin. 

Corresponding to the above steady state generator, we can define a dynamic system 

as follows. Let M G 况2x2 be any Hulwitz matrix, and N G 况2xi be such that (M, N) 

is controllable. Then there is a unique nonsingular matrix T that is the solution of the 

Sylvester equation T龟-MT = N屯u since (屯̂ ,̂<1>) is observable (Theorem 7-10 of [6]). 

Let 

r] = Mrj + N{u- pjjl) + 屯uT-i?]) (4.14) 

where rj G R"^. Then, 

Me + 7V(uCu’ w) - P(fi{v, w)) + w)) 

二 M 0 + m ^ T - i e = T虹-le 二 (4.i5) 

Thus (4.14) is an internal model of (3.6) with output go{x,u). 
\ , r 1 「 -

0 1 0 
Let M = with ai < 0 and a2 < 0, N = . T is the solution of the 

ai a2 1 
Sylvester equation T^ — MT =卿u. Since M is Hurwitz, and (M, N) is controllable, 
the Sylvester equation has a unique nonsingular solution T as follows: 

- — 

_ _ —1 —02 f 
til tl2 , 2 , ai+u;2 11 

T == U = 一 2 + 办 . 
力 21 力 22 - ^ t n tn 

L 」 ai+CLi2 u 丄上 _ 

Denoting _ = co\{(3：,, iv), PxM^ Pu{v)) and performing the following coordinate 

and input translation 

= - Ari (") 

X2 = X2 - yi2{v,w) 

= - Pxsiv) 

X4 = X4 — :K4{V,W) 

fj = T] — 6{v,w) 

U = U - Pu{r]) 
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on the augmented system consisting of the RTAC system and the internal model (4.14) 

gives 

凌 1 = X2 
二 ——无1 + (6o + w){X4 + X4(t>’ w))2sin(无3 + (3x3 {fj + 6)) 

一(eo + w) COS(办 + PxA” + e)) •."、彳 

+ 

丄 . ^ - i f 、 礼 ( 巧 + 没）二 
X3 = Xs-PxAV-^0) =X4-\-My. V ^ ^ 

_ , -V2 1 
—qTA -I—  
- i^O + W)UJ I / , n2 

•丄 -

+ [1 0]T-\M + N 句 uT—i)f} + [1 0]T-1A/•权 + [1 0](I>T—i 没 

— — ( 陣 : ” )2 

二 — (6o + w) cos(:r3 + Px^jfj + 没))(无 1 - (gp + w){x4 + X4(”,̂ 0)2sin(̂ 3 + + 9))) 

+：：( 1 �2 I f - ^R i m �( �+ _ + + 
1 - (eo + wy C0S^(X3 + P:cAri + 9)) 
-jeo-^w) + + r -灼w + (:?二 

1 —(eo +切)2cx)s2(办+ /U巧 + 沒)广,,,:"、,r. 1 暑 
(eo + W)UJ 1 一 ( 二 

fj = ( M + + Nu. (4.16) 

By Theorem 4.1，it suffices to (locally) stabilize the equilibrium point at the origin 

of (4.16) with = 0 and w = 0 hy a, controller depending on Xi and Xs only. To this 

end, linearizing the augmented system (4.16) with v and w being set to zero and noting 

屯 u = [1,0] gives 

全 1 = X2 
二 _ 1 - 丨 一 - , — 如 , T , rr-l-

丄 一 e o 丄 _ eo 丄 — 

圭 3 = + + + 

U^ UJ 么 

丄一€〇 丄 _ fo 丄 _ Co 

f] = [M + + Nu. 
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The above system can be put into the following matrix form as follows 

t = Ax-{- B”fj + Bu 

n = + 屯 uT-i)77 + iV 公 (4.17) 

where 

0 1 0 0 0ix2 0 

^ 二 合 B = 1-^0 B = 1 一亡。 

0 0 0 1 ‘ -hN^uT-') ’ ； • 

_ t ^ � � G _ I [ li^TJ-i J [ l i ? -
Moreover, let 

X 
Um — Cm. 

_ ” 一 
where 

1 0 0 0 0 0 
Cm — • 

0 0 1 0 0 0 

Then it can be verified that the linear system with col(x, ff) as the state, u as the input, 

and Um as the output is both stabilizable and detectable. 

Now let K and L be such that the two matrices 

、 B ” (4.18) 
0 M + iVKT-i J [ N 

and 

‘ - L C m (4.19) 
0 M + N^uT-^ 

are Hurwitz. Then a linear output feedback controller that stabilizes (4.16) can be given 

as follows: 

u = K^ 

. 1 「应 1 「 - , 、 
1 = ‘ fi + L (4.20) 

0 M + N 无3 - & 
L J L J L 
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4.4 Algorithms to Design and Optimize the Param-

eters Kx and L 

W e use the ITAE Prototype method (See Appendix A.) and one parameter optimization 

method to design and optimize the parameters Kx and L. 

Our optimization method is revised from the optimization technique proposed by 

Huang [22], which is based on the pole assignment result given by Bhattacharyya and 

De Souza [2]. The pole assignment result is as follows, given three matrices A e 1{似\ 

B e i^xm，and Ac e where {A, B) is controllable, B is full rank, A^ is Hurwitz, 

and a{A)f]a{Ac) = 0, then for any matrix G G the following Sylvester equation 

AT - TAc = -BG (4.21) 

has the unique solution T and T is nonsingular. 
Equation (4.21) can be transformed into the following equation 

A + BGT-i = TVlcT-i (4.22) 

which shows that can be regarded as the gain matrix. For convenience, we list the 

steps to get the gain matrix K satisfying A + BK = Ac as follows. 

Step 1: Form a Hurwitz matrix Ac which has the desirable eigenvalues. 

Step 2: Pick an arbitrary nonzero matrix G of dimension mx n. 

Step 3: Solve (4.21) for T, and get K = GT'^ 

From the above steps, we can see that is a function of G, i.e., K(G) = 

However, the gain matrix K gained by the above algorithm is not the best solution. In 

order to get better transient response, we will use a parameter optimization method to 

optimize the gain matrix K. First of all, let us define the performance function as follows 

Q{G) = = Y ^ i q . 
\ 

where Kij is the zth row and jth column element of the matrix K. Many gradient based 

parameter optimization techniques can be used to solve the problem. For convenience, 

we will take use of the following iterative steps [22] based on the steepest descent method 

to minimize the performance function Q{G). 
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Step 1: Arbitrarily choose a nonzero GQ G and let /c = 0. 
Step 2: Solve the following Sylvester equation for Tk 

ATk - TkA, = —BGk. 

Step 3: Let Kk = GkTfi and r^ = gradQ(Gy. Stop if ||1\|| is sufficiently small. 

Otherwise, goto Step 2. 

In detail, the computation process is as follows. Let gij be the zth row and jth column 

element of the matrix Gk- Taking the partial derivative over gij of the two sides of the 

equation (4.21) gives 

dT dT 
V - ‘ 4 = - 冊 (4.23) 

where H is a matrix with only the zth row and jth column element equal to 1 and others 

equal to 0. 

Denote the pth row and qth column element of r^ as {Tk)pq =召实『:),denote T。. as 

the Ith. row and jth column element of the matrix Tk, and denote as the lib. row and 

jth column element of the matrix T^^. The performance function Q{Gk) can be given by 

QiG,) = \^{j29iiTif'r. (4.24) 
ZJ = 1 1=1 

Taking the partial derivative over gij of the two sides of (4.24) gives 

W - 由 濃 O g - T � ’ *每 0 + E ( 碎 i g p O y _ 
Since TuT^^ = /’ taking the partial derivative over g^ of the two sides of this equation 

gives 

dTk 1 dTk"^ 
OQij OQij 

Hence, 

dTk _ i 

— —J-k o~Ik 
OQij OQij 

Step 4: Find Sk such that Q(Gk - s左 1\’) = mins>o Q{Gk - SkTk). 

Step 5: Let Gk+i = Gk + SfJ\, k = k-\- 1, and goto Step 2. 
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4.5 Parameters design and Simulation Results 

By Theorem 4.1, the controller that solves the robust output regulation problem of the 

original system is given as follows, 

u = K �J r f ) 

. A B„ B XI - 6 

0 M + N^UT-' \ [ N J 

77 = Mri + N(^u - iSuijl) + 句uT—iyi). (4.26) 

A specific controller has been synthesized with the various parameters as follows. 

O i l [ 0 1 0 1 
u 二 3’ eo = 0.2,少二 = , M = , and T = 

-cj2 0 - 9 0 J [ - 3 - 2 

一0.0833 -0.0278 

0.2500 -0.0833 
一 r -

Also, K = 5.9374 -3.4198 -0.9555 -2.5082 5.9333 -1.7874 J which is such 

that the eigenvalues of the matrix (4.18) are 

1.2 X -0.3099 士 1.2634j -0.5805 士 0.7828j_ —0.7346 士 0.2873j . 

W e can see the optimization effect from the following comparison results, also shown in 

figure 4.1. Without the optimization method, the performance function Q{G) = 2094.7, 

and the corresponding parameter 

0.0032 -0.0574 

-0.0183 -0.3872 

0.0004 0.0156 
L = 1000 X . 

0.0554 1.4210 

-0.0145 0.1807 

0.1195 1.4713 

Under the optimization algorithm of iterating 500 times, the performance function Q{G)= 
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341.3, and the corresponding parameter 

10.5527 -8.2521 

31.4243 -55.4722 

-0.7366 8.1973 
L= • 

-125.6199 212.9719 

-37.5606 26.2688 

-69.5350 210.0203 

Computer simulation has been used to evaluate the performance of the closed-loop sys-

tem with the initial state being x{0) = col(0.1,0,0,0), 77(0) = 0，and ̂ (0) = 0. Although 

both the two L's place the eigenvalues of the matrix (4.19) at 

—1.50±1.50j -2.25 -3.75 —4.50 -5.25 j , 
. J 

the transient response under optimized design parameter L is much better. Figures 4.2 

and 4.3 show that the transient response under unoptimized L is even unstable, which is 

in sharp contrast with figure 4.4 and 4.5 under optimized L. As expected, the parameter 

variations do not affect the steady state response of the output, as can be seen in figure 4.6. 

This is in sharp contrast with the nonlinear servo-regulator designed in chapter 3 where 

the same amount of parameter variations significantly affect the steady state response of 

the output. 

If we arbitrarily place the eigenvalues of the matrix (4.19) at some other values with 

negative real parts, in most of the cases, the transient response under unoptimized L is 

unstable, but stable under optimized L. If we put the eigenvalues of the matrix (4.19) at 

the carefully chosen values 

一16.50 土 4.50j -6.75 -11.25 -15.75 -13.50 , 
• J 

then the transient response under unoptimized L happens to be stable, but the perfor-

mance is still worse than that under optimized L, as can be seen in the comparison of 

figures (4.7) and (4.8). 

4.6 Concluding Remarks 

This chapter has presented a solution of the robust asymptotic disturbance rejection 

problem for the R T A C system through the measurement output feedback control. The 
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solution is obtained by circumventing two major difficulties. Simulation shows superior 
performance of the robust output regulation method in comparison with the output regu-

lation method. Also, we used the ITAE prototype method and a parameter optimization 

method based on the steepest gradient technique to design and optimize the control pa-

rameters L and Kx, which led to much better transient response. 
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Figure 4.1: The profile of the performance function. 
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Figure 4.2: The profile of the displacement Xi with e = 0.2, a; = 3 and A ^ = 0.5 under 

unoptimized parameter L . 
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Figure 4.3: The profiles of the state variables {xi,x2, xs) with e 二 0.2, a; = 3 and Am = 0.5 

under unoptimized parameter L. 
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Figure 4.4: The profile of the displacement Xi with e = 0.2, o; = 3 and Am = 0.5 under 

optimized parameter L. 
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Figure 4.5: The profiles of the state variables (0:1,3:2,0:3) with e = 0.2’ o; = 3 and Am 二 0.5 

under optimized parameter L. 
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Figure 4.6: The profiles of the displacement Xi with e 二 0.18,0.2,0.22’ uj = 3 and 

Am = 0.5 under optimized parameter L. 
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Figure 4.7: The profile of the displacement Xi with 6 = 0.2, o; 二 3 and A^ = 0.5 under 

unoptimized parameter L. 
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Figure 4.8: The profile of the displacement Xi with e = 0.2, cj 二 3 and A爪.=0.5 under 

optimized parameter L. 

85 



Chapter 5 

Conclusions 

In the first part of this thesis, we solved the semiglobal robust output regulation problem 

for a class of nonlinear systems in normal form via output feedback control. W e have 

overcome three drawbacks and got the following three results at the same time. First, 

only weak assumption imposed on the zero dynamics, i.e., globally asymptotically stable 

and locally exponentially stable. Second, the polynomial assumption on the solution of 

the regulator equations is weakened, i.e., the solution can be non-polynomial. Third, we 

have obtained a output feedback controller. 

In the second part, we investigated the solvability of the disturbance rejection problem 

and the robust disturbance rejection problem of the RTAC system by the measurement 

output feedback control based on the robust output regulation method. W e have obtained 

a design by overcoming two obstacles: devise a nonlinear internal model to account for 

non-polynomial nonlinearities, and improve the transient performance by using the pa-

rameter optimization design methods. 

M y future work contains the following problems: 

1. Address the semiglobal robust output regulation of a wider class of systems, i.e, 

extend the z subsystem i = fo�z, Xi,v, w) to z = fo{z, Xj,v, w), or to a more general 

form i = fo{z,工1，•.. ,Xr,v,w). It is stated in [34] that when the z subsystem is in 

the form of i = fo{z,Xi,.. • , Xr,v,w), the whole system may be unstabilizable, so 

the output regulation problem of this system is challenging. 

2. Consider global or semiglobal robust output regulation problem for uncertain non-

linear systems via output feedback control. 
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Appendix A. 

ITAE Prototype Design 

A convenient way to select the desirable pole locations for a closed-loop system is 

to make a member of a set of the so-called prototype polynomials as the characteristic 

polynomial of the closed-loop system. There are several sets of prototype polynomials 

one of which is shown in Table A.l. 

This table is worked out by Graham and Lathrop [17] based on the criterion of min-

imizing integral of the time multiplied by the absolute value of the error (ITAE), that 

is， 

poo 
P= / t\e\dt. 

Jo 

In Table A.l, the nominal cutoff frequency is cjq = 1 rad/sec. Pole locations for other 

values of ujq can be obtained by substituting s/ujo for s everywhere [16 . 

k Pole Locations for UQ = 1 rad/sec  

1 s + 1  

2 s + 0.7071 土 0.7071j  

3 (s + 0.7081)(s +0.5210 士 1.068j)  

4 {s + 0.4240 土 l.2630j)(s + 0.6260 土 (Uldlj)  
5 (s + 0.8955)(s + 0.3764 土 1.2920j)(s + 0.5758 土 O.SSSgj)  

6 {s + 0.3099 土 1.2634i)(s + 0-5805 土 0.7828j)(s + 0.7346 士 0.2873j  

7 (s + 0.6816)(5 + 1.2123 土 1.0070j)(s + 0.2492 土 1.0707j)(s + 0-4214 士 0.5579j)  

8 {s + 2.0782)(s + 0.6675)(s + 0.2031 土 1.1774j)(s + 0.3945 土 0.7479j)(s + 0.6296 土 0.5567j) 

Table A.l: Pole locations of ITAE prototype design. 
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