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Abstract 

The service overlay network (SON) is an effective means to deploy end-to-end 

QoS guaranteed content delivery services on the current Internet. W e extend 

the S O N cost model and introduce a new service delivery tree model. The 

original cost model only allows a S O N operator to control the bandwidth pro-

visioning, which is a static resource management scheme based on previous 

traffic patterns. In our replication model we propose dynamical adaptation to 

traffic variation by adding replicated servers on the internal nodes of S O N , in 

this way, the resources of the S O N can be efficiently utilized. W e propose a 

service replication strategy to maximize the total effective throughput as well 

as minimize the QoS violation penalty of the SON. W e also present both cen-

tralized and distributed algorithms for the optimal placement of the replicated 

servers. Experiments are carried out to quantify the merit, effectiveness and 

the scalability of the proposed distributed algorithm service replication. In 

particular, the results obtained by our algorithm is very close to the optimal. 

The algorithms retain good performance even when we scale up the network 

size. 

i 



摘要 

服務覆蓋網络(Service Overlay Network)是一種在互聯網中能夠有 

效提供具備端到端服務質量保證的内容傳送服務方法。在本論文中， 

我們把服務覆蓋網絡的成本模型加以擴展並引入一個新的概念—服 

務傳送樹模型。舊有的成本模型只考慮了覆蓋網絡管理者控制網络帶 

寬的供應問題，而這是一種基於網絡歷史流量的靜態管理方式。在我 

們的服務複製模型中我們在覆蓋網絡内部節點上增加複製服務器，以 

此達到動態地適應網絡流量的變化，這樣便能更充分合理地利用覆蓋 

網絡的資源。我們的複製模型策略能夠最大化覆蓋網络的有效输出以 

及最小化違反服務質量保證時的處罰。我們還提出了集中式和分布式 

算法來解決最優化的複製服務器的位置選擇。我們做了 一些實驗來量 

化我們提出的服務複製算法的可行性，有效性和擴展性。結果證明我 

們的算法非常接近最優化的結果，並且當網络中節點數成備擴大時我 

們的算法仍然保持很好的效率° 
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Chapter 1 

Introduction 

The Internet is being used for many different user activities, including emails, 

software distribution, video/audio entertainment, e-commerce, and real-time 

games. Although some of these applications are designed to be adaptive to 

available network resources, they still expect good level of services from the 

network, for example, low latency and low packet loss, so as to deliver the 

desired performance at the application layer. However, the primary service 

provided by the Internet is the best-effort service model which does not per-

form any service differentiation, therefore, end-to-end quality-of-service (QoS) 

guarantees are difficult to maintain. Another reason for the difficulty in pro-

viding end-to-end QoS guarantees is that the Internet is organized as many 

different autonomous systems (ASs) wherein each AS manages its own traf-

fic, performance guarantees and internal routing decisions. These autonomous 

systems also have various bilateral business relationships (e.g., peering and 

provider-customer) for traffic exchange so as to maintain the global connec-

tivity of the Internet. For many network applications, the data traffic usually 

traverses across multiple autonomous systems, and it is difficult to establish a 

"multi-lateral" business relationship which spans many autonomous systems. 

Therefore, network services which need end-to-end QoS guarantees are still far 

from realization and the above mentioned problems hinder the deployment of 

1 



Chapter 1 Introduction 2 

many QoS sensitive services on the Internet. 

In [7], the authors advocate the notion of service overlay network (SON) as 

an effective means to address the problems of providing end-to-end services. 

A S O N is an overlay network that spans many autonomous systems. In gen-

eral, a S O N purchases bandwidth with certain QoS guarantees from all ASs 

that the overlay network spans. This way, a logical end-to-end service delivery 

infrastructure can be built on top of the existing network infrastructure. O n 

this logical service overlay network, one can provide different types of time sen-

sitive services, such as video-on-demand, Internet radio and television, VoIP, 

...，etc. A S O N offers these services to different users who pay the S O N for 

using these value-added services. 

The ultimate goal of the service overlay network is to maximize its revenue 

and minimize the operating cost. In some previous works [7, 16], the authors 

formulate this problem as bandwidth provisioning model, wherein the revenue 

of S O N comes from the fees paid by users and the costs consist of bandwidth 

provisioning cost and the QoS violation penalties. The goal is to optimally 

provision the bandwidths of S O N such that the net profit is maximized. How-

ever, one important point to observe is that once the bandwidth provisioning 

is carried out, the overlay network is committed to a topology wherein each 

link in the overlay network has a fixed bandwidth capacity. This capacity of 

each link remains unchanged until the next bandwidth provisioning instant^ • 

In general, the time scale of bandwidth provisioning can be in terms of 

weeks or months. Since traffic/service demand is time varying and stochastic 

in nature, it is possible that there will be a sudden surge on traffic due to 

some unexpected event (e.g., a popular pay-per-view sport or musical event). 

This type of traffic surge may not be well-represented or characterized in the 

iln[7]，the authors also address the dynamic bandwidth provisioning problem, however 
it is technically difficult to implement [10]. 
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original measured traffic distribution that was used for the bandwidth provi-

sioning process. In this case, the allocated bandwidth for the S O N may not be 

sufficient to provide the end-to-end QoS guarantees. This translates to lower 

profit for the S O N operator since the operator needs to pay for the penalty for 

these QoS violations. 

It is important to point out that many time-sensitive services provided by 

the S O N are in the one-to-many format, for example, services such as video-

on-demand and multi-players on-line games, wherein one "logical" server needs 

to support many users of the overlay network. As shown in [14], to delivery 

this type of service, a data delivery process is usually in the form of a tree 

topology. W h e n the user demands increase, some links of the delivery tree 

could be overloaded or even congested. Instead of delivering a low quality of 

service over these congested links, (i.e. reduction in profit of SON), we propose 

to dynamically replicate services on the service gateways of S O N so as to reduce 

the QoS penalty as well as increase the effective throughput of the S O N . The 

problem of service replication along the delivery tree is to choose among a set 

of service gateways to place the additional server for service replication such 

that the total profit can be maximized. 

In Chapter 2, we present the necessary background of service overlay net-

works. In Chapter 3, we provide our mathematical model for service replication 

as well as the distributed evaluation of effective throughput for a service de-

livery tree. W e then present both centralized and distributed algorithm for 

service replication in Chapter 4. In Chapter 5，we illustrate the numerical 

experiment results and show the effectiveness of our algorithm. Finally we 

conclude our thesis in Chapter 7. 



Chapter 2 

Background 

2.1 Notations 

For the remaining of this section, we use the notations depicted in Table 2.1 

to describe the bandwidth provisioning problem. 

Parameter Remarks  
Q A connected graph Q = {M, L} representing a SON where M and 

C are the set of nodes and the set of links of the SON respectively. 
71 the set of all source-destination (SD) paths (or the traffic require-

ments) in Q.  
Pr a non-negative random variable denoting the bandwidth require-

ment for a SD path r e1Z.  
Pi a non-negative random variable representing the amount of traffic 

flow on link I e C. pi = YIPt^^ passes through link I.  

pi the average amount of traffic flow (in Mbps) on link I G C.  

ci allocated capacity (in Mbps) on link I £ C.  
cost per unit of time for reserving c/ amount of bandwidth for link 
I e C.  

er revenue for carrying one unit of traffic flow along a SD pair r eTZ. 
TTr penalty of QoS violation for one unit traffic flow on SD pair r e 71. 

Table 2.1: Notations used for describing S O N and the bandwidth provision 

problem. 

4 



Chapter 2 Background 5 

2.2 Service Overlay Network Architecture 

A S O N ^ is a logical overlay network with a set of nodes M and a set of 

links C. Each node in A/" is a service gateway which performs service-specific 

data forwarding and control functions. One can view a service gateway as a 

physical end host on the Internet, for example, a server which is controlled and 

managed by the S O N operator. A link in £ is a logical connection between 

two service gateways and the link is a network layer path provided by the 

underlying autonomous systems. The advantages of the S O N architectural 

framework are: 1) one can purchase different bandwidth for different links in 

the S O N and, 2) one can bypass congested peering points among A S s and 

thereby provide end-to-end QoS guarantees. Figure 2.1 illustrates the S O N 

architecture. 

W h e n a user requests for a specific QoS guaranteed service，it will connect 

to the S O N through its own network domain and its request will be forwarded 

to the proper service gateway. As shown in Figure 2.1’ there are two source-

destination pairs (a, 6) and (a,c), and their traffic will go through different 

logical links of the S O N . 

The advantage of the S O N architecture is that it decouples the application 

services from the network services [17] and thereby reduces the complexity 

of network control and management. Meanwhile, the S O N can provide more 

diverse end-to-end QoS guaranteed services to satisfy the needs of its users. 

2.3 The SON Cost Model 

The formal mathematical framework for performing the bandwidth provision-

ing can be described as follows. W e are given a network topology Q, the 

source-destination (SD) path requirements 尺，the stochastic traffic demand 
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Application J X 
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S y s t e m s 

Figure 2.1: A n example of a service overlay network 

{p^} for each r eU, and the routing method. Assume that the traffic demand 

distribution on path r is known^，then the total net income for the S O N , 

denoted by the random variable W, can be expressed as: 

W[{pr}) =Y^erf)r -J^Mci) - ^ TT.p.B, ( {p , } ) . (2.1) 
ren lec ren 

where Ylrr议 ̂ rPv is the total revenue received by a S O N for carrying { p j traffic 

along the S D path r G 尺；Ŷ iec ̂ K q ) is the total bandwidth cost that a S O N 

must purchase from all its underlying autonomous systems; 汉 7TrprBr({pr}) 

is the total penalty that a S O N suffered when the QoS guarantees for those 

traffic demands are violated. The variable Br represents the probability that 

QoS guarantees for the S D pair r is violated. 

Under the independent link assumption, i.e. the statistics of traffic flow on 

different links are independent from each other, we can further expand Br as: 

Br{{pr}) = l-Il^l-Bi({pi}))- (2.2) 

ler 

^This traffic demand distribution can be obtained through long-term observation or measurement of past 

traffic history. 
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This net profit model summarizes the major concerns of the service overlay 

network operators, which is crucial for the design and implementation of any 

S O N networks. W e will extend this model for our problem formulation in the 

later chapters. 

2.4 Bandwidth Provisioning Problem 

The Bandwidth provisioning problem [7, 16, 8] is one of many problems that 

are related to this cost model. It is important in designing a service overlay 

network and closely related to our work. W e thus briefly explain it here. 

To guarantee the delivery of end-to-end services, the S O N needs to purchase 

sufficient amount of bandwidth from different ASs on each link I e C so that 

Q o S guarantees can be maintained. The "bandwidth provisioning problem" 

for a S O N is to determine the appropriate amount of bandwidth to purchase 

for each link in C from the underlying ASs, so that the QoS sensitive traffic 

demand for any source-destination pair in 71 can be satisfied and at the same 

time, the total net profit of the S O N is maximized. 

The problem of bandwidth provisioning can thus be formulated as to de-

termine the appropriate amount of capacity {q} for each link I G C such that 

the expected total net profit E{W) is maximized: 

m^xE{W). (2.3) 

The exact solution to this optimization problem is generally difficult to 

obtain because the objective function depends on both the particular forms 

of the traffic demand distribution {pj, as well as the service QoS violation 

probability Br. In [7], the authors derived a lower bound of the E{W) by 

introducing an additional variable: define a very small real number 6, for each 

S D pair r, define Pr > pr such that prdpr < 6. i.e., Prob{/v > Pr} < 5/pr-
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This basically says that pr is such that the probability the traffic demand along 

the SD path r exceeds pr is very small, and thus negligible. Then, E{W) is 

lower bounded by V[C,n), wherein: 

V{C,n) = ^erPr - -

re 兄 lec ren 

+ (2-4) 
ren r'^r 尸厂 

One can compute optimal bandwidth allocation d[ for all link I G such 

that 巡 = 0 . This way, one can find the optimal bandwidth to be provisioned 
dci 

of each link I E C which maximizes the least average profit for a 

service overlay network. 

2.5 Traffic Variation and QoS Violation Penalty 

Note that the previously mentioned bandwidth provisioning method is only 

practical in an off-line manner. That is, once bandwidth is provisioned, it 

cannot be changed until the next bandwidth provisioning instant. However, 

due to difficulties in implementation and in adjusting the multi-lateral agree-

ments, the period between two bandwidth provisioning instants may be long 

(e.g., weeks or even months). During this period, the traffic demand of a 

S O N could fluctuate. This is especially true for a S O N that spans a large 

geographical area wherein the time-of-day effect is significant, e.g., some part 

of the network is congested during rush hours, while other part of network is 

very lightly loaded because it is at a different time zone. Also, it is possible 

that there may be a surge in traffic demand due to some unexpected events, 

e.g., a popular pay-per-view sport or musical event that attracts many users. 

The variation of traffic flow will increase the QoS violation probability Br. 

Therefore, it is crucial for the S O N to have the adaptive capability to traffic 
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flow fluctuation. In this paper, we propose to dynamically replicate services 

within a S O N so as to reduce the traffic demands on "overloaded" links and 

to maximize the net income of an S O N operator. 

V O D Server 

Hjik id 

0 © 

© o 
Figure 2.2: An illustration of the traffic fluctuation on a S O N 

To illustrate the reduction of profit due to traffic fluctuation, consider a 

S O N with a tree topology as depicted in Figure 2.2. Node a is a service 

gateway with a video-on-demand service and it has five sets of clientŝ  at 

nodes d, e,g, h and i. The average traffic demand of these five clients are 200 

unit (Mbps) each. The source-destination path 7^ and routing information are 

illustrated in Table 2.2. 

Using the static bandwidth provisioning model in [7], the capacity to be 

provisioned for each link I is depicted in Table 2.3. 

Now suppose that there is a popular pay-per-view movie which increases 

the traffic demands along the traversed links. This increase in traffic demand 

will cause some links to be overloaded and thus the S O N will suffer from the 

QoS penalty and a reduction in the total profit. Figure 2.3 illustrates the 

2 A set of client may represent many users within the same network domain. 
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Src-Dest Routing Path pr 

"77 a - ^ d 1-3 200 

h a ^ e ^ 1-4 200 

a - ^ h 2 - 5 - 7 200 

"77" a->2 2-5-8 200 

a ^ g 2 - 6 200 

Table 2.2: The average traffic demand and routing information for all S D paths 

r en. 

— link: 2 link: 1,5 link: 3 , 4 , 6 , 7 ^ 

" t e T ^ (600,888) (400，617) (200,310)一 

Table 2.3: The average traffic demand (pi) and bandwidth provisioned (q*) for 

each link I € C. 

reduction in the expected net income when the traffic demands from all these 

five sets of clients are increased uniformly by some small percentages. 

From the figure, one can observe that the total profit of a S O N will decrease 

by as much as 40% when the traffic demand increases by only 20%. Since one 

cannot change the allocated link capacity until the next provisioning instant, 

instead of suffering from this traffic overload, we propose to dynamically repli-

cate services within the S O N . In the following two chapters, we describe the 

replication strategy to reduce the traffic loading. 
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Figure 2.3: Reduction of total profit for a S O N when traffic increases 



Chapter 3 

Service Replication Model 

From the previous example, we notice that the time scale of two consecutive 

bandwidth provisioning instances is generally long, while the traffic demand 

could change during this period due to some unexpected events, therefore, it 

is crucial for an overlay network to have the adaptive ability to such traffic 

demand fluctuation. One way to solve this problem via the static bandwidth 

provisioning method is to provision more bandwidth for each link in the S O N 

(e.g., having a smaller value of S and larger value of pr in Equation (2.4)). 

However, the drawback of this approach is that one has to pay a much higher 

cost for bandwidth provisioning. In this paper, we propose service replication 

approaches that make the S O N more flexible and adaptive to traffic variation 

without purchasing extra bandwidth resource from the underlying autonomous 

systems. 

Note that the service gateway inside a S O N is a network host managed by 

the S O N operator. The service gateway has sufficient storage and processing 

power to perform the basic packet forwarding function as well as some service-

specific functions (e.g., video-on-demand service). The replication strategies 

make use of these service gateways and extend their functionalities. Therefore, 

each service gateway can be a potential server and deliver the content to users 

in the S O N . 

12 



Chapter 4 Service Replication Algorithms 13 

3.1 One-to-One Service Model 

Let us start with a simple case of a single source, single destination service 

replication model. Given the source-destination paths in TZ, the stochastic 

traffic demands {pr} for all r eU, one has to choose a set of demands in U to 

replicate. An SD path r eU consists of a source node s” a destination node 

dr, and its stochastic traffic demand pr along the path r. It is important to 

point out that a destination node may consists of a large number of users, i.e., 

a set of users within the same network edge who wants to receive a video-on-

demand service. 

In the following context, we use 7 to denote one replication event. W e also 

introduce the following notations: 

/oc(7) the node which 7 chooses to install the replicated service. 

target{j) the SD path that 7 chooses to replicate for.  

pat"(7) the new path taken by 7 to deliver the replicated service. 

" ( 7 ) the fraction of traffic shift from target{^) onto pa力"(7). 

Consider Figure 3.1’ suppose the replication event 7 is for a SD path r ell 

and we choose node i e M to install the replicated service, then tar get�力=r 

and Zoc(7) = i. Let the average traffic demand on r be Pr- After the replication 

process, the traffic demand on r will decrease because Zoc(7) is serving some of 

the clients in r. Therefore, the average traffic demand on r after the replication 

process is 八(1 - /3(7)). The replication process 7 will create a new path{'y) 

with source node in Zoc(7) and destination node in dr for the replicated service. 

The traffic on this new path needs to deliver, on the average, amount 

of traffic to a set of users in r. 

Let V denote the set of all replication events 7 . Let denote the set of all 
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target{y) 
path (Y) 

^ m loc(y) 

Figure 3.1: Illustration of replication event in a SON. 

source-destination paths of the S O N after the replication events V. The single 

source, single destination replication is to find a set of replication events V 

which maximizes the increase in (the lower bound V of) the total net income 

E{W) of S O N by performing service replication, i.e., to maximize the following-

objective function: 

m 身 - V{n) 

subject to: 

loc(j) € N 

tar get (j) G Sioc{j) 

0 < m < 1 

Since the replication will not change the sum of all the traffic demands for 

the S D paths in TZ and the total bandwidth cost, we have, 

V{n') - Vill) = Y^T^rPrBr{Pr) " '^rPrBr[Pr) 
ren rGT?/ 

+ + (3.1) 

ren \ T�丰T 内) rew \ r'̂ r̂ 竹 J 
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The motivation of our replication is as follows. Note that although the 

replication strategy cannot alter the capacity of each link in SON, it may 

change and divert part of traffic demands from some of the highly congested 

links and redirect them to a replicated server. A key observation is that for a 

given link I, the total net income is more sensitive to the change of total traffic 

demand on this link if ~ is large. In other words, a small decrease in the 

traffic demand on link I can cause a large drop in the total net income of the 

S O N . 

Therefore we focus on those links for which is large and attempt to 

reduce the traffic demands on these links by service replication. In deciding 

which path r to select for service replication, we use the analogy from the 

optimal routing problem [1] and introduce the following notion. 

Definition 3.1 Let a path r having n > 1 links l^h, • • • Jn- The "negative 

first derivative sum" (NFDS) of the path r is 
Tl OT r 

n f d s w 二 -

In deciding which path to replicate, we choose a path r that has the most 

negative N F D S value. 

To determine which node (i.e., service gateway) to place the replication, 

we adopt the following strategy. For all the traffic going to a certain user, 

they must go through the link connecting that user to the S O N (the "last-

mile" link). So to place a replication whose target is path r, we only consider 

those nodes along path r. The rationale for this approach is that if one sets up 

replication on nodes not along the path in r, it will increase the traffic demands 

on other links (which may in turn increase the probability of violating the QoS 

requirements for those links). Therefore, our replication strategy only targets 

those nodes along path r. 
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3.2 Service Delivery Tree Model 

Real-time content delivery is one of the major applications of S O N , many 

QoS sensitive services can be deployed on the SON's infrastructure, such as 

V〇D, Internet radio and television. However, most time it doesn't fit into the 

single-source single-destination model. As illustrated in [14], the optimal data 

delivery topology for these applications is a tree topology. Therefore, in the 

rest of the paper, we will focus on this tree model, and we name it as service 

delivery tree (SDT) model. 

The root node of S D T is an application level service gateway, for example, 

a V〇D server wherein the continuous media are stored. All the leaf nodes of 

a S D T are client nodes which are the access points for different users within 

the same network domain. The formulation of delivery tree can be different 

for different applications [14，11, 4, 6], however, our model is generic for any 

tree topology. 

To illustrate, consider an example in Figure 3.2 where node r is the root 

(or server) node; the darkened nodes are the client nodes of the S D T , thick 

lines represent links of the SDT. 

• client node ® L f ) ^ 

® server node j 
• service gateway / 

— l o g i c a l links on SDT \ / \ J 
links of SON but are not \ / ^ ^ ^ ^ 
used by the SDT 

uplink of node v 

Figure 3.2: Illustration of a service delivery tree (SDT) on a S O N 
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3.2.1 Problem Formulation 

To formally describe the service replication problem, let us first define the 

following notations: 

丁 the service delivery tree. 

Tu subtree of T rooted at node u. 
Su all child nodes of u. 
pu traffic demand from node u.  
Du total traffic demand from all client nodes of subtree T^.  

Cu bandwidth of the uplink of node u.  
QU{DU,CU) probability of QoS guarantee on the uplink of node u, given 

that the bandwidth is Cu and traffic demand is D^. 

F{Tu) total effective throughput of subtree Tu.  

Table 3.1: Notations of Service Delivery Tree 

In the original S O N bandwidth provisioning model [7, 8], the QoS violation 

on link I is defined as piBi{pi) where Bi is the QoS "violation" probability. In 

our service replication problem on SDT, we use an alternative metric. In the 

original model, the first two terms of the objective function in Eq. (2.1) are the 

total revenue (total income leveraged from all users) and the total bandwidth 

cost (total cost paid to purchase the bandwidth from underlying ASs) of the 

S O N . Note that for the service replication process, the values of these two 

terms will not change. Therefore, in formulation of the service replication 

problem, we only need to focus on the third term of Eq. (2.1), namely, the 

total QoS violation penalty. 

As stated in Section 2, the derivation of the expression of QoS violation is 

difficult due to the functional dependency on the joint traffic distribution and 

the violation probability B. Instead of directly evaluating the QoS violation 

penalty, we define a new function F{Tu) to evaluate the effective throughput, 
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which in fact quantifies the level of QoS guarantee of any subtree T^ rooted at 

the node u. 

First, we denote the generic link QoS guarantee probability function as 

following: 

qu{Du, Cu) = l - Bi, where I is uplink of u. (3.2) 

This probability function is independent of any particular form of QoS violation 

function B. Thus, similar to the QoS violation penalty in Eq. (2.1)，F{Tu) can 

be defined as: 

F{Tu) = Pv U (li(Di,Ci), ( 3 . 3 ) 

V ^ Lu iepath{u,v) 

where Lu denotes the set of leaf nodes of the subtree Tu and path[u, v) denotes 

all the nodes along the path from u to v. F(T„) can also be expressed in a 

recursive form: 

p„ if node li is a leaf node, 
= (3.4) 

J2yeSu F(Ty) . qy{Dy, Cy) otherwise. 

Using the above recursive function, we can compute F{Tr), i.e. the total 

effective throughput of the S D T with the root node r. 

Figure 3.3 illustrates an example of computing F(Tr). The number inside 

each node represents the F value of the subtree, while the number besides 

the link represents the probability of QoS guarantee {q function). Using the 

above formulation, the effective throughput of the root node r is equal to the 

effective throughput of its two children nodes, weighted by the probability of 

QoS guarantees, therefore, F(7；) = 500(0.6) + 460(0.5) = 530. Suppose now 

we have an additional continuous media server resource and we can place this 

extra server at node v in Figure 3.4. The two children nodes of node v are 

then served by this additional media server, while the remaining client nodes 

along the S D T are still served by the original media server r. The direct 
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effective throughput / ^ r probability of QoS 
of the sub-tree (F) guarantee (q) of the link 

(500] I 460] 

T^so) (200T Uooj 

Figure 3.3: Illustrate of SDT. The value of each node is the effective throughput 

(F) of the subtree rooted at that node. 

gain in effective throughput of placing an extra server at node v is equal to 

580(1 - 0.5) = 290. Since there will be no traffic going through the uplink of 

Figure 3.4: Illustration of S D T with one additional server placed at node v. 

V, the total traffic on the uplink of node u will decrease, thus, improving the 

probability of QoS guarantee of that uplink, say from 0.6 to 0.8. As a result, 

the remaining tree (T^ - Ty) also benefits from this additional placement of 

server in node v. As shown in the figure, the total effective throughput is equal 

to F{Tr-Ty)-\-F{Ty) = 398 + 580 = 978. In other words, there is around 85% 

gain in effective throughput by placing an additional server at node v. 

Finally, given a S D T T” the service replication problem is formally defined 
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as 1 : 

max{F(T, - T,) + F(T,)}. (3.5) 
veVr 

where Vr is the set representing the descendant nodes of the root node r. In 

other words, find a node v under the S D T % such that we have the maximum 

gain in the effective throughput. 

3.2.2 Distributed Evaluation of SDT 

One way to find the optimal solution to the above problem in Eq. (3.5) is to 

perform an exhaustive evaluation at every nodes in the tree Tr and choose 

the node which maximizes the objective function in Eq. (3.5). However,since 

runtime of this approach is O(n^), it is computational prohibitive when the size 

of S D T is large. Another disadvantage of this exhaustive evaluation approach 

is that it requires a centralized entity which has the view of the whole network 

topology, as well as all the traffic information and probability of QoS guarantees 

of all the links and nodes of the SDT. Thus, this approach suffers from the 

potential of single point failure problem and it is not scalable as the network 

size grows. 

In the following, we propose a distributed approach to solve the service 

replication problem. In our approach, each node only maintains three variables 

that summarize the characteristics of the subtree which rooted at that node. 

This way, the information can be recursively evaluated from the leaf nodes up 

to the root node. Since only a small amount of information is maintained at 

each node, the decision making can be carried out very efficiently in a top-down 

evaluation method. 

W e require that each node u of the S D T T maintains three variables, 

iHere, for simplicity, we do not consider the cost of adding the replicated server. In 
Section 5, we illustrate the effect of replication cost in the final performance gain. 
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namely, Du, Qu and Fu. The first variable Du represents the total traffic de-

mand of the subtree and it can be recursively evaluated using the following 

expression: 
( 
pu if u is leaf node 

Du = (3.6) 

EveSu Dv otherwise 

The variable QU is the probability of QoS guarantee on the uplink of node u to 

its parent node. This probability is computed at node u and it only depends on 

the traffic Du and the allocated capacity c^. It is important to point out that 

our approach can be applied to any general form of QoS guarantee probability 

function, as long as it is an increasing function of Du. Lastly, the variable Fu 

is the total effective throughput of the subtree T^. One can use the recursive 

expression in Eq. (3.4) to update these three variables and thereby obtain the 

effective throughput of the SDT. 

Our evaluation scheme begins with all leaf nodes. Each leaf node, say u, 

will send the values of {Du,qu,K} to its parent node v. The node v, upon 

receiving all the information from all its children nodes, will then update its 

own variables {Dy,qy,Fy} accordingly, and then send these values to its parent. 

Consider an example which is illustrated in Figure 3.5 where each node 

maintains three local variables. After receiving the updated values from all its 

children, node 0 will then update its own values as follows: 

Do = A + + 

Qo = 

Fo = qiFi + q2F2 + qsF^. 

All the other nodes are updated accordingly in a bottom-up manner. This 

process will continue until the root node r computes its effective throughput Fr. 

The above distributed approach is used to evaluate the effective throughput 
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D - ^ ^ J ^ ^ \ 

Figure 3.5: Illustration on the evaluation of S D T 

of a S D T only. To find the proper node for service replication, we require 

each node, say node u, to maintain an extra variable Gu in order to find the 

optimal placement efficiently. The Gu is defined as the gain of total effective 

throughput if the additional server is placed at node u. The variable Gu can 

be expressed as: 

Gu = F(Tr - Tu) + F(TJ - F{Tr) (3.7) 

In other words, after placing the additional server at node u, the additional 

server will serve all the users of the subtree Tu only, while the original server 

r will serve all users from the remaining tree % - Tu. Therefore, the sum of 

the first two terms in Eq. (3.7) is the total effective throughput after service 

replication at node u and Gu represents the gain in the effective throughput if 

the replicated server is placed at node u. 

3.2.3 Approximation 

In general the problem of finding the optimal set of replicated server to max-

imize the total gain is NP-hard. It is not difficult to show that when we 

restrict the (/-function to a constant function, this problem is equivalent to 
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the well-known p-median problem [13, 9]. In the following, we will propose an 

approximation solution with near-optimal result and much better efficiency. 

Note that during the updating process, the update of the G function at 

node u is not so easy as the updating the D oi F values. For each node n, we 

need to evaluate the F{Tr - T^) value. However, placing the additional server 

at node u will affect the QoS guarantee probability along all the links between 

root node r and node u. Thus we need to re-evaluate the F value of each node 

along that path. To address this difficulty, we take the following approach. 

W e calculate the G function at node u simply by using the uplink probability 

only, i.e. Gu = F{Tu){l - Qu) instead of calculating F{Tr - Tu), because the 

F{Tu) and QU are directly available information at node u. In other words, the 

Gu of node u is the minimum guaranteed gain of the total effective throughput 

of S D T T . Though we lose accuracy in the computation, we improve the 

efficiency of the algorithm, which is crucial for the real implementation. 
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Service Replication Algorithms 

In this section, we present the algorithm for selecting a node for service repli-

cation. To enhance the readers' understanding, we first present a centralized 

service replication algorithm, then we extend the concept to a distributed ap-

proach of service replication. 

4.1 Centralized Service Replication Algorithm 

The centralized algorithm has two phases, the preprocessing phase and the 

searching phasing. 

4.1.1 Preprocessing Phase 

The preprocessing phase can be carried in a recursive manner. Figure 4.1 

illustrates the pseudocode of the recursive update of node u. Starting at the 

root node of S D T T , this procedure is invoked recursively at each node. All 

the nodes of T are visited in a postorder sequence, and their D, F and G 

values are updated accordingly. 

Lemma 4.1 Assuming the average degree of S D T is constant, the runtime 

complexity of preprocessing phase is 0(n). 

24 
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UPDATE-NODE (U) 

1 if = 0 

/* if u is leaf node */ 

2 Dû  Pu 
3 Fu — Pu 

4 G u ^ Pu-(^-qu(Du,Cu)) 

5 else 

/* if u is internal node */ 

/* update each child v of node u */ 
6 for V e S u d o UPDATE-NODE (?；) 

7 Du^Eves^D, 

9 Gu max{G^}, (W G Su) 
10 if parent{u) + 0 

1 1 Gu — max{G以’ • (1 - g“Ax，c^))} 

Figure 4.1: Recursive update of node u of S D T T 

Proof: During the preprocessing phase (i.e. the U P D A T E - N O D E procedure), 

each node needs to gather all the information from all of its children nodes, 

therefore, the runtime for each node is proportional to the degree of that node, 

thus the total complexity is 0{n • d), if d is the average degree. However, for 

the deployment on a service overlay network, because of the constraint of ser-

vice gateway's restricted resources, the average degree of S D T will not be very 

large, and we can safely assume that it is a small constant. Therefore, the 

total complexity for the preprocessing phase is 0(n), where n is the number 

of nodes in the S D T . I 
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4.1.2 Searching Phase 

W h e n the preprocessing phase is completed, each node will obtain the updated 

information of {D^, Gu}- Then one can search for the optimal server place-

ment in a top-down manner starting at the root node of S D T T. Figure 4.2 

illustrates the procedures. The searching algorithm will output the node which 

maximizes the gain of effective throughput. 

FIND-REP-NODE ( T ) 

1 u — root � 

2 V <r- maxi;{Gu}, Vi; G Su 
3 while Gv > Gu and 0 do 
4 U <R- V 

5 V - f - MAXT;{GV},V?; G SU 

6 return u 

Figure 4.2: Finding the node to place the replicated server 

Lemma 4.2 The average runtime complexity of searching phase is 0(log(n)). 

Proof: During the searching phase (i.e. the F I N D - R E P - N O D E procedure), the 

searching starts from the root node and at the worst case, it will stop at the 

leaf node. At each node, it just chooses one child of the maximum G value. 

Thus the total complexity is proportional to the height of the tree. Although 

the worst case complexity is 0(n), for a practical deployment, the construction 

of a S D T is usually balanced, therefore the average complexity is 0(log(n)). 

I 
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4.2 Distributed Service Replication Algorithm 

Although the above centralized algorithm is simple to implement, it requires 

a centralized entity in the S O N for execution. This requires extra resources 

and also has the potential of a single-point-failure problem. These problems 

will become significant when the size of the S O N is large. W e propose the 

following distributed algorithm, which can be concurrently executed on each 

node inside the SDT. Thus, no centralized management is required and the 

server replication can be carried in a more efficient manner. 

The distributed algorithm achieves the same result as the centralized al-

gorithm by sending messages among the nodes of SDT. Figure 4.3 illustrates 

the distributed service replication algorithm. It is divided into five parts. The 

first two parts (lines 1-15), correspond to the preprocessing phase, while the 

rest three parts (lines 16-24) correspond to the searching phase. 

The DISTRIBUTED-NODE-UPDATE() procedure can be implemented as an 

event-driven program running at each node. The information exchange be-

tween nodes can be implemented as a simple protocol with the following set 

of of messages: {request-update), {reply.update), {execsearch), (jrequest—G), 

{reply-G). 

The root node will initiate the distributed algorithm by sending the 

{request-update) to all its child nodes. Upon receiving this message, these 

nodes will send the same message to their children (line 6), and this mes-

sage will be propagated till the leaf nodes. The leaf nodes will then send 

the (reply.update) to their parents with the updated values of D , F, G (line 

5). Each node, upon receiving {reply-update) message will then update its 

own D, F,G values (line 8-10). When it receives the updates from all its 

children, the processing phase on that node is finished, and it will send the 

(reply-Update) message to its parent (line 14). When the root node finally 



Chapter 4 Service Replication Algorithms 28 

receives all the updates from its children and updates its own D,F,G, the 

whole preprocessing phase is terminated. 

The root node will then start the searching phase (line 15). It will ask the G 

values of all its children by sending the (request-G) message. Upon receiving 

the reply, it will pick the child node with the G value not less than the G value 

of itself, and then send the (execsearch) message (line 22). This process will 

stop when there is one node in which the G value of all its children are less 

than itself (line 23). At this moment, the searching phase is terminated and 

that node will be picked to place the replication. 

For the distributed service replication algorithm, the preprocessing phase 

can be executed in a parallel fashion, in which case the total running time 

of the preprocessing phase can be improved to 0(log(?i)) (proportional to the 

height of the tree). Therefore, the total running time of our algorithm is also 

improved to 0(log(n)). It is much faster than the exhaustive searching method 

(0(71^)), when the total number of node (n) is large. 

4.3 Improved Distributed Algorithm 

The centralized and distributed algorithms discussed above are easy to im-

plement on top of S O N . However, one may provide a better solution (e.g., in 

terms of finding a closer-to-optimal gain in the effective throughput) if each 

node is allowed to stored more information. In the following, we provide an 

improved version of the distributed algorithm which can find a better solution 

at the cost of extra computational resources. 

In the previous algorithms, to determine the minimum possible gain in 

the total effective throughput {Gu) of placing a replicated server at node u, 

we consider the uplink QoS guarantee probability (QU) only. However, in this 

improved distributed algorithm, we use the total QoS guarantee probability 
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along the path from the root node r to the node w, and we denote this total 

probability to be Qu for each node u. W e can define Qu recursively as: 
( 

1 u is root node 
Qu = (4.1) 

qu . Qparentiu) Otherwise 
\ 

Therefore, we redefine the Gu to be: 

Gu = F(Tu)(l-Qu) (4.2) 

To deploy this new algorithm, each node needs to maintain an extra variable 

Qu, and the following procedure NODE-IMPROVE which serves as an add-on 

module to the basic distributed algorithm, can be invoked, if necessary, after 

the preprocessing phase and before the searching phase. To use this add-on 

module, we only need to modify the (line 15) of D I S T R I B U T E D - N O D E - U P D A T E 

to: 

15 else send {improve-Q : 1) to self 

Then the root node, before starting the searching phase, will first initiate the 

updating of the Qu as well as the Gu value of each node. 

Figure 4.4 illustrate the add-on module where line (1-7) updates the Qu of 

each node, and line (8-15) updates the Gu of each node. 
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DISTRIBUTED-NODE-UPDATE (W) 

1 upon receiving {request.update) 
2 if = 0 
3 Du — Pu, Fu Pu 
4 Gu ^ - qu{Du,Cu)) 
5 send {reply-update : Du,Fu,Gu) to parent{u) 

6 else send {request-update) to all v e Su 

7 upon receiving {replyjupdate : Dy,Fy,Gv) from child v 
8 Du — Du + Dy 
9 Fu^Fu+Fyqy(Dy,Cy) 
10 Gu — max{Gu, Gy) 
11 if received {reply-update) message from all children 

12 if parent{u) + 0 
13 Gu — max{G„, Fu(l 一 qJJDu, c„))} 
14 send {reply.update : Du,Fu,Gv) to parent{u) 
15 else send{exec-search) to self 

16 upon receiving {execsearch) 
17 if 二 0 output u 
18 else send {request-G) to all v £ Su 

19 upon receiving�request JT) 
20 send {reply-G : Gu) to parent{u) 

21 upon receiving {replyJG : Gy) from child v 
22 if Gy > Gu send (execsearch) to node v 
23 else if received {replyJG) messages from all children 
24 output u  

Figure 4.3: Distributed algorithm running at each node u 
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NODE-IMPROVE (U) 

1 upon receiving {improve-Q : Qp) 
2 Qu ^ qu{Du,Cu) • Qp 
3 if = 0 
4 Gu^ Fu{l - Qu) 
5 send {improve.G : Gu) to parent{u) 
6 else 
7 send {improve-Q : Qu) to all v e Su 

8 upon receiving {improve-G : Gy) from child v 
9 Gu ^ 
10 if received {improve.G) message from all children 
11 if parent{u) / 0 
12 Gu — max{G„, i V U -
13 send {improve.G : Gu) to parent(u) 
14 else 
15 send�eccec一search) to self 

Figure 4.4: Add-on module for improved distributed algorithm 
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Performance Evaluations 

In this section, we perform three experiments so as to evaluate the performance 

and effectiveness of the service replication algorithm. The first experiment 

provides some understanding of our replication algorithm and shows the benefit 

of performing service replication. The second experiment evaluates the quality 

of the results obtained by our algorithm as compares to random selection and 

exhaustive selection of the replication. The third experiment illustrates the 

scalability of the service replication algorithm when we increase the size of the 

SDT. 

5.1 Experiment 1: Algorithm Illustration 

In this experiment, we show the benefit of the replication algorithm. Fig-

ure 5.1(a) illustrates a simple yet illustrative topology of the SDT, as well 

as the traffic demand of each client node and the capacity of each link. In 

this experiment, the QoS guarantee probability function q is expressed as the 

following linear equation^ : 

qu{Du,Cu) = l - ^ (5.1) 

Cu 
iThe probability function is only used as an illustration, the algorithm can accommodate 

general forms of probability function. 

32 
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link capacity (c) 

QoS guarantee 
probability (q> 

3000 (0 
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QoS guarantee 
probability (q) 
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Figure 5.1: (a) The S D T before replication (b) The S D T after replication 

In Table 5.1, we illustrate the variables of each internal node after running 

the distributed service replication algorithm. It finds that the node v has the 

maximum G value and the additional server will be placed at node v. 

After placing the additional service node at node v, the original S D T is 

split into two subtrees, as shown in Figure 5.1(b). Since there is no longer any 

traffic going through link {u,v), the F value of node u and r will be changed 

to 330 and 525 respectively. Therefore, the total effective throughput after 

replication is Fr + = 525 + 740 = 1265 and the gain of placing a replication 

at node v is 1265-600=665, which is a 110% gain as compare to the original 

S D T with no replication. 
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Node \ D q F G 
V 1000 0.5 740 370 

u 1500 0.5 700 370 

w 1000 0.5 500 250 

r 2500 — 600 370 

Table 5.1: The value of variables at each node after preprocessing phase 

5.2 Experiment 2: Performance Comparison 

In this experiment, we show the quality of the proposed distributed algorithm 

with other two algorithms, namely, the random selection algorithm and the 

exhaustive search algorithm. The random selection algorithm will randomly 

select an internal node of S D T for service replication and obviously, it has the 

least computational overhead as compared to other algorithms. The exhaustive 

search algorithm will exhaustively search through the whole S D T tree and 

will find the optimal node for replication. This algorithm has the largest 

computational complexity and it cannot be scaled as we increase the size of 

the S O N . 

In this experiment, we use a random tree generator to generate 100 random 

SDTs with 500 nodes each, and the average number of children of each internal 

node is three (e.g., average degree is 3). Each client node also has a random 

traffic demand which is uniformly distributed with a range from 1 to 1000 unit. 

The link capacity is provisioned [7] in the way such that the loading on each 

link {D/c) is a constant. W e then vary this constant, and compare the gain of 

placing a replicated server on the SDT. 

Table 5.2，5.3 and 5.4 illustrate the result of our experiments. W e compare 

the results using three different q functions. The second column is the gain of 

placing service replication at a randomly chosen node. The next two columns 
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are the gains of placing a server at the node obtained by our basic distributed 

algorithm and the improved distributed algorithm. The rightmost column is 

the gain of placing the replication at the optimal node using the exhaustive 

search (which is obtained by exhaustively evaluating all the nodes). From 

D/c Random Basic Improved Exhaustive 
selection Distributed Alg Distributed Alg selection 

~ 0 4 2.21% 19.45% 21.29% 22.33% 

0.6 7.90% 35.71% 40.56% 42.61% 

0.8 46.34% 84.51% 87.80% 91.76% 

Table 5.2: Comparison of our algorithm with random placement and optimal 

placement, when QU = I - Du/cu-

D/c Random Basic Improved Exhaustive 
selection Distributed Alg Distributed Alg selection 

" T i 0.61% 6.43% 7.10% 7.79% 

0.6 1.99% 16.93% 18.93% 20.97% 

0.8 11.27% 40.33% 47.17% 53.62% 

Table 5.3: Comparison of our algorithm with random placement and optimal 

placement, when QU = I — [Du/CuY-

these three tables, we can conclude that our improved distributed algorithm, 

which has a much lower computational complexity than the exhaustive search, 

has a performance result which is very closed to the optimal. Another obser-

vation can be made from these tables is that when the average loading on each 

link {D/c) is high, it is more beneficial to perform the service replication. 
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D/c Random Basic Improved Exhaustive 
selection Distributed Alg Distributed Alg selection 
0.19% 0.94% 1.05% 1.37% 

0.6 0.60% 5.11% 5.69% 6.73% 

0.8 3.10% 20.09% 22.90% 27.95% 

Table 5.4: Comparison of our algorithm with random placement and optimal 

placement, when q^ = I — {Du/cu)^. 

5.3 Experiment 3: Scalability Analysis 

In the following 3 experiments, we illustrate the performance of our algorithm 

when the size of the S D T increases. For each size of the SDT, we generate 100 

instances of random SDTs with link capacity set to the value such that the 

loading D/c is 0.8. 

5.3.1 Experiment 3A 

In this experiment, we illustrate the percentage of average performance gain 

obtained by our algorithm for SDTs from 100 to 2000 nodes. 

As shown in Figure 5.2, although there is a little fluctuation when the S D T 

size is small, the average gain of our replication algorithm still remains at a 

certain percentage when the network size grows. 

W e also test on SDTs of different average degrees. When the average degree 

increases, the average gain decrease. The reason is that when the average 

degree of tree is small, the height of tree is larger, i.e. the average path length 

from client node to the root node is longer. This means the QoS guarantee 

are much harder to preserve for the client nodes, therefore doing replication 

at S D T of small average degree will have more benefit. Meanwhile, because of 

the constraint of resources at each service gateway of S O N , the average degree 
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Figure 5.2: Illustration on the performance gain of our service replication 
algorithm when the size of the tree grows from 100 to 2000 nodes. 

of S D T in real situation will not be a big number, so our service replication is 

suitable for SDT. 

5.3.2 Experiment 3B 

In this experiment, we illustrate the percentage of average normalized gain 

(with respect to the optimal gain) obtained by our algorithm for SDTs from 

100 to 1000 nodes. 

W e repeat this experiment for three different kind of QoS guarantee func-

tion (g-function). As shown in Figure 5.3, for the more loading-sensitive q-

function, our algorithms obtain lower performance gain, which is predictive 

because the entire S O N is more easily to suffer QoS penalty when congestion 

happens. 
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Figure 5.3: Normalized gain obtained by our algorithm retains a certain per-

centage when the network size increases. 

However, the gain obtained by our algorithm for each QoS guarantee func-

tion is independent from the network size. Even the network size increases 10 

times, it still remains at almost the same level. 

5.3.3 Experiment 3C 

In this experiment, we shows the average C P U time used by our algorithm as 

compared to the exhaustive search method for the network size increases from 

100 to 1000 nodes. The time measurement is averaged over 100 instances for 

each network size. 

In Figure 5.4，we illustrate the real C P U time for our algorithm as com-

pared to the time used by exhaustive search method. It is a further proof the 

complexity of our algorithm is linear time and is scalable for bigger network 

topology. 
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Figure 5.4: Average C P U time for finding one optimal replicated server. 

5.4 Experiment 4: Multiple replications 

In this experiment, we try to do multiple replications on the S D T by slightly 

modifying our algorithm to maintain a priority queue of potential nodes for 

the placement of replicated server. W e then compute the gain of total effective 

throughput of putting various numbers of replicated servers. Figure 5.5, shows 

the average gain of 100 random generated SDTs of 1000 nodes each. 

In the previous experiments, we didn't consider the cost of doing replica-

tion, however in reality, there will be some cost of placing one cost, and it will 

affect the result when we want to do multiple replications. Thus we set the 

cost of adding one more replicated server to be 0.1% of the total traffic demand 

D of the SDT. As shown in the figure, because of this replication cost, when 

the number of replications increases, the percentage gain will diminish at some 

point and eventually we can not gain more by adding extra replications. 
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Figure 5.5: Illustration of the average gain of multiple replications on S D T of 

500 nodes 



Chapter 6 

Related Work 

The Service Overlay Network has attracted a lot of interests from researchers 

recently. One major category of overlay network research is concerning the 

content distribution, caching and replication where our work resides in. Vari-

ous authors have suggested that it is important to consider replicated service 

in the S O N [5, 6，2, 12] so as to maximize the profit and reduce the operational 

cost. They are all based on the basic setting that the S O N is a topology with 

fixed link cost (distance, delay, etc). However, in our model, the link cost is 

a dynamic function of the total traffic traversing that link, which makes the 

problem much more difficult to solve. Low et al [3], proposed a novel approach 

for the relevant server placement problem. They model the candidate nodes as 

source and replicated server nodes as code and thus formulate a source coding 

problem that minimize the coding distortion. Though their solution fits any 

general graph, their high-density nodes assumption may not always be valid in 

S O N . Krishnan et al [15], proposed a dynamic programming algorithm to solve 

the cache placement problem. They also achieve near-optimal result, however, 

their problem is based on the network delay cost model, which is also different 

to our effective throughput metrics. 
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Chapter 7 

Conclusion 

Previous works have studied the bandwidth provisioning problems and optimal 

distribution tree formulation on SON. However, since the bandwidth is fixed 

after provisioning and the topology is static, the S O N is inflexible to traffic 

demand variation, and when there is sudden increase of traffic demand, the 

QoS guarantee probability will decrease on links, therefore the total effective 

throughput will decrease and that means the reduction in total profit of SON. 

W e proposed to address this problem by service replication in the service 

delivery tree model. W e have presented both centralized and distributed algo-

rithms to find the placement of a replicated server, which maximize the total 

effective throughput of SDT. The distributed algorithm requires very little re-

source at each node, and can be implemented as a simple protocol among all 

the service gateways of SON. The complexity of the algorithm is much lower 

than the brute-force exhaustive search method, but still achieve a near-optimal 

result. Furthermore, it has a good scalability and can be deployed in large scale 

S O N networks. 
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