
Service Replication Strategy in Service Overlay
Networks

LIU Yunkai

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

© T h e Chinese University of Hong Kong

May 2004

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

统系妨書圃 N ^、

M IS j l j
. U N I V E R S I T Y 輔
、>^BRARY SYSTEJ^'^

Abstract

The service overlay network (SON) is an effective means to deploy end-to-end

QoS guaranteed content delivery services on the current Internet. W e extend

the S O N cost model and introduce a new service delivery tree model. The

original cost model only allows a S O N operator to control the bandwidth pro-

visioning, which is a static resource management scheme based on previous

traffic patterns. In our replication model we propose dynamical adaptation to

traffic variation by adding replicated servers on the internal nodes of S O N , in

this way, the resources of the S O N can be efficiently utilized. W e propose a

service replication strategy to maximize the total effective throughput as well

as minimize the QoS violation penalty of the SON. W e also present both cen-

tralized and distributed algorithms for the optimal placement of the replicated

servers. Experiments are carried out to quantify the merit, effectiveness and

the scalability of the proposed distributed algorithm service replication. In

particular, the results obtained by our algorithm is very close to the optimal.

The algorithms retain good performance even when we scale up the network

size.

i

摘要

服務覆蓋網络(Service Overlay Network)是一種在互聯網中能夠有

效提供具備端到端服務質量保證的内容傳送服務方法。在本論文中，

我們把服務覆蓋網絡的成本模型加以擴展並引入一個新的概念—服

務傳送樹模型。舊有的成本模型只考慮了覆蓋網絡管理者控制網络帶

寬的供應問題，而這是一種基於網絡歷史流量的靜態管理方式。在我

們的服務複製模型中我們在覆蓋網絡内部節點上增加複製服務器，以

此達到動態地適應網絡流量的變化，這樣便能更充分合理地利用覆蓋

網絡的資源。我們的複製模型策略能夠最大化覆蓋網络的有效输出以

及最小化違反服務質量保證時的處罰。我們還提出了集中式和分布式

算法來解決最優化的複製服務器的位置選擇。我們做了 一些實驗來量

化我們提出的服務複製算法的可行性，有效性和擴展性。結果證明我

們的算法非常接近最優化的結果，並且當網络中節點數成備擴大時我

們的算法仍然保持很好的效率°

ii

. . ' - . 、 ‘ ， . ， . ,1 ' • - . • .4 •..
. 1 . , . J,- • • M •

- ..：••• • • •
• •. , • • . i ‘ • • ’• . •

:: / - � • “ .

• • •

111

Acknowledgment

I would like to thank m y supervisor Professor John C.S. Lui for his guidance

and support throughout m y study these years. His influences to m e would be

m y priceless life-long fortune.

iv

Contents

1 Introduction 1

2 Background 4

2.1 Notations 4

2.2 Service Overlay Network Architecture 5

2.3 The S O N Cost Model 5

2.4 Bandwidth Provisioning Problem 7

2.5 Traffic Variation and QoS Violation Penalty 8

3 Service Replication Model 12

3.1 One-to-One Service Model 13

3.2 Service Delivery Tree Model 16

3.2.1 Problem Formulation 17

3.2.2 Distributed Evaluation of S D T 20

3.2.3 Approximation 22

4 Service Replication Algorithms 24

4.1 Centralized Service Replication Algorithm 24

4.1.1 Preprocessing Phase 24

4.1.2 Searching Phase 26

4.2 Distributed Service Replication Algorithm 27

V

4.3 Improved Distributed Algorithm 28

5 Performance Evaluations 32

5.1 Experiment 1: Algorithm Illustration 32

5.2 Experiment 2: Performance Comparison 34

5.3 Experiment 3: Scalability Analysis 36

5.3.1 Experiment 3A 36

5.3.2 Experiment 3B 37

5.3.3 Experiment 3C 38

5.4 Experiment 4: Multiple replications 39

6 Related Work 41

7 Conclusion 42

Bibliography 45

vi

List of Figures

2.1 An example of a service overlay network 6

2.2 An illustration of the traffic fluctuation on a S O N 9

2.3 Reduction of total profit for a S O N when traffic increases 11

3.1 Illustration of replication event in a S O N 14

3.2 Illustration of a service delivery tree (SDT) on a S O N 16

3.3 Illustrate of SDT. The value of each node is the effective through-

put {F) of the subtree rooted at that node 19

3.4 Illustration of S D T with one additional server placed at node v. 19

3.5 Illustration on the evaluation of S D T 22

4.1 Recursive update of node u of S D T T 25

4.2 Finding the node to place the replicated server 26

4.3 Distributed algorithm running at each node u 30

4.4 Add-on module for improved distributed algorithm 31

5.1 (a) The S D T before replication (b) The S D T after replication . 33

5.2 Illustration on the performance gain of our service replication

algorithm when the size of the tree grows from 100 to 2000 nodes. 37

5.3 Normalized gain obtained by our algorithm retains a certain

percentage when the network size increases 38

5.4 Average C P U time for finding one optimal replicated server. . . 39

vii

5.5 Illustration of the average gain of multiple replications on S D T

of 500 nodes 40

viii

List of Tables

2.1 Notations used for describing S O N and the bandwidth provision

problem 4

2.2 The average traffic demand and routing information for all S D

paths r en 10

2.3 The average traffic demand (pi) and bandwidth provisioned (c；*)

for each link I G C 10

3.1 Notations of Service Delivery Tree 17

5.1 The value of variables at each node after preprocessing phase . . 34

5.2 Comparison of our algorithm with random placement and opti-

mal placement, when ĝi 二 1 - Ax/ctt 35

5.3 Comparison of our algorithm with random placement and opti-

mal placement, when 如 = 1 — [DjcuY 35

5.4 Comparison of our algorithm with random placement and opti-

mal placement, when 如二 1 一（Ax/cu” 36

ix

List of Publications

Part of this research work appeared in the following publications:

• Kevin Y.K. Liu, John C.S. Lui, and Zhi-Li Zhang. Service Replica-

tion Strategy of Service Overlay Networks. In Proceedings of the 9th

lEEE/IFIP Network Operations and Management Symposium (NOMS),

Seoul, Korea. 2004

• Kevin Y.K. Liu, John C.S. Lui, and Zhi-Li Zhang. Distributed Algo-

rithm for Service Replication in Service Overlay Network. In Proceedings

of the Third International IFIP TC-6 Networking Conference (Network-

mg2004), Athens, Greece. 2004

X

Chapter 1

Introduction

The Internet is being used for many different user activities, including emails,

software distribution, video/audio entertainment, e-commerce, and real-time

games. Although some of these applications are designed to be adaptive to

available network resources, they still expect good level of services from the

network, for example, low latency and low packet loss, so as to deliver the

desired performance at the application layer. However, the primary service

provided by the Internet is the best-effort service model which does not per-

form any service differentiation, therefore, end-to-end quality-of-service (QoS)

guarantees are difficult to maintain. Another reason for the difficulty in pro-

viding end-to-end QoS guarantees is that the Internet is organized as many

different autonomous systems (ASs) wherein each AS manages its own traf-

fic, performance guarantees and internal routing decisions. These autonomous

systems also have various bilateral business relationships (e.g., peering and

provider-customer) for traffic exchange so as to maintain the global connec-

tivity of the Internet. For many network applications, the data traffic usually

traverses across multiple autonomous systems, and it is difficult to establish a

"multi-lateral" business relationship which spans many autonomous systems.

Therefore, network services which need end-to-end QoS guarantees are still far

from realization and the above mentioned problems hinder the deployment of

1

Chapter 1 Introduction 2

many QoS sensitive services on the Internet.

In [7], the authors advocate the notion of service overlay network (SON) as

an effective means to address the problems of providing end-to-end services.

A S O N is an overlay network that spans many autonomous systems. In gen-

eral, a S O N purchases bandwidth with certain QoS guarantees from all ASs

that the overlay network spans. This way, a logical end-to-end service delivery

infrastructure can be built on top of the existing network infrastructure. O n

this logical service overlay network, one can provide different types of time sen-

sitive services, such as video-on-demand, Internet radio and television, VoIP,

...，etc. A S O N offers these services to different users who pay the S O N for

using these value-added services.

The ultimate goal of the service overlay network is to maximize its revenue

and minimize the operating cost. In some previous works [7, 16], the authors

formulate this problem as bandwidth provisioning model, wherein the revenue

of S O N comes from the fees paid by users and the costs consist of bandwidth

provisioning cost and the QoS violation penalties. The goal is to optimally

provision the bandwidths of S O N such that the net profit is maximized. How-

ever, one important point to observe is that once the bandwidth provisioning

is carried out, the overlay network is committed to a topology wherein each

link in the overlay network has a fixed bandwidth capacity. This capacity of

each link remains unchanged until the next bandwidth provisioning instant^ •

In general, the time scale of bandwidth provisioning can be in terms of

weeks or months. Since traffic/service demand is time varying and stochastic

in nature, it is possible that there will be a sudden surge on traffic due to

some unexpected event (e.g., a popular pay-per-view sport or musical event).

This type of traffic surge may not be well-represented or characterized in the

iln[7]，the authors also address the dynamic bandwidth provisioning problem, however
it is technically difficult to implement [10].

Chapter 1 Introduction 3

original measured traffic distribution that was used for the bandwidth provi-

sioning process. In this case, the allocated bandwidth for the S O N may not be

sufficient to provide the end-to-end QoS guarantees. This translates to lower

profit for the S O N operator since the operator needs to pay for the penalty for

these QoS violations.

It is important to point out that many time-sensitive services provided by

the S O N are in the one-to-many format, for example, services such as video-

on-demand and multi-players on-line games, wherein one "logical" server needs

to support many users of the overlay network. As shown in [14], to delivery

this type of service, a data delivery process is usually in the form of a tree

topology. W h e n the user demands increase, some links of the delivery tree

could be overloaded or even congested. Instead of delivering a low quality of

service over these congested links, (i.e. reduction in profit of SON), we propose

to dynamically replicate services on the service gateways of S O N so as to reduce

the QoS penalty as well as increase the effective throughput of the S O N . The

problem of service replication along the delivery tree is to choose among a set

of service gateways to place the additional server for service replication such

that the total profit can be maximized.

In Chapter 2, we present the necessary background of service overlay net-

works. In Chapter 3, we provide our mathematical model for service replication

as well as the distributed evaluation of effective throughput for a service de-

livery tree. W e then present both centralized and distributed algorithm for

service replication in Chapter 4. In Chapter 5，we illustrate the numerical

experiment results and show the effectiveness of our algorithm. Finally we

conclude our thesis in Chapter 7.

Chapter 2

Background

2.1 Notations

For the remaining of this section, we use the notations depicted in Table 2.1

to describe the bandwidth provisioning problem.

Parameter Remarks
Q A connected graph Q = {M, L} representing a SON where M and

C are the set of nodes and the set of links of the SON respectively.
71 the set of all source-destination (SD) paths (or the traffic require-

ments) in Q.
Pr a non-negative random variable denoting the bandwidth require-

ment for a SD path r e1Z.
Pi a non-negative random variable representing the amount of traffic

flow on link I e C. pi = YIPt^^ passes through link I.

pi the average amount of traffic flow (in Mbps) on link I G C.

ci allocated capacity (in Mbps) on link I £ C.
cost per unit of time for reserving c/ amount of bandwidth for link
I e C.

er revenue for carrying one unit of traffic flow along a SD pair r eTZ.
TTr penalty of QoS violation for one unit traffic flow on SD pair r e 71.

Table 2.1: Notations used for describing S O N and the bandwidth provision

problem.

4

Chapter 2 Background 5

2.2 Service Overlay Network Architecture

A S O N ^ is a logical overlay network with a set of nodes M and a set of

links C. Each node in A/" is a service gateway which performs service-specific

data forwarding and control functions. One can view a service gateway as a

physical end host on the Internet, for example, a server which is controlled and

managed by the S O N operator. A link in £ is a logical connection between

two service gateways and the link is a network layer path provided by the

underlying autonomous systems. The advantages of the S O N architectural

framework are: 1) one can purchase different bandwidth for different links in

the S O N and, 2) one can bypass congested peering points among A S s and

thereby provide end-to-end QoS guarantees. Figure 2.1 illustrates the S O N

architecture.

W h e n a user requests for a specific QoS guaranteed service，it will connect

to the S O N through its own network domain and its request will be forwarded

to the proper service gateway. As shown in Figure 2.1’ there are two source-

destination pairs (a, 6) and (a,c), and their traffic will go through different

logical links of the S O N .

The advantage of the S O N architecture is that it decouples the application

services from the network services [17] and thereby reduces the complexity

of network control and management. Meanwhile, the S O N can provide more

diverse end-to-end QoS guaranteed services to satisfy the needs of its users.

2.3 The SON Cost Model

The formal mathematical framework for performing the bandwidth provision-

ing can be described as follows. W e are given a network topology Q, the

source-destination (SD) path requirements 尺，the stochastic traffic demand

Chapter 2 Background 6

Application J X

一 l\ I ^ ^
V … • q 0 service aatew.y
• * f 4f • Internet hosts or routers

• I I • / • * physical link on the
8.rvic. overlay f \ �“ �… “ f 舊 • • • • • \ 一 underlying network
Network (SON) ^ , ‘ / i \ % • • • • virtual link on SON

I I I ' I *
t \ ' ! I * » traffic flow in SON

> — \ / U Autonomous
S y s t e m s

Figure 2.1: A n example of a service overlay network

{p^} for each r eU, and the routing method. Assume that the traffic demand

distribution on path r is known^，then the total net income for the S O N ,

denoted by the random variable W, can be expressed as:

W[{pr}) =Y^erf)r -J^Mci) - ^ TT.p.B, ({p , }) . (2.1)
ren lec ren

where Ylrr议 ̂ rPv is the total revenue received by a S O N for carrying { p j traffic

along the S D path r G 尺；Ŷ iec ̂ K q) is the total bandwidth cost that a S O N

must purchase from all its underlying autonomous systems; 汉 7TrprBr({pr})

is the total penalty that a S O N suffered when the QoS guarantees for those

traffic demands are violated. The variable Br represents the probability that

QoS guarantees for the S D pair r is violated.

Under the independent link assumption, i.e. the statistics of traffic flow on

different links are independent from each other, we can further expand Br as:

Br{{pr}) = l-Il^l-Bi({pi}))- (2.2)

ler

^This traffic demand distribution can be obtained through long-term observation or measurement of past

traffic history.

Chapter 2 Background 7

This net profit model summarizes the major concerns of the service overlay

network operators, which is crucial for the design and implementation of any

S O N networks. W e will extend this model for our problem formulation in the

later chapters.

2.4 Bandwidth Provisioning Problem

The Bandwidth provisioning problem [7, 16, 8] is one of many problems that

are related to this cost model. It is important in designing a service overlay

network and closely related to our work. W e thus briefly explain it here.

To guarantee the delivery of end-to-end services, the S O N needs to purchase

sufficient amount of bandwidth from different ASs on each link I e C so that

Q o S guarantees can be maintained. The "bandwidth provisioning problem"

for a S O N is to determine the appropriate amount of bandwidth to purchase

for each link in C from the underlying ASs, so that the QoS sensitive traffic

demand for any source-destination pair in 71 can be satisfied and at the same

time, the total net profit of the S O N is maximized.

The problem of bandwidth provisioning can thus be formulated as to de-

termine the appropriate amount of capacity {q} for each link I G C such that

the expected total net profit E{W) is maximized:

m^xE{W). (2.3)

The exact solution to this optimization problem is generally difficult to

obtain because the objective function depends on both the particular forms

of the traffic demand distribution {pj, as well as the service QoS violation

probability Br. In [7], the authors derived a lower bound of the E{W) by

introducing an additional variable: define a very small real number 6, for each

S D pair r, define Pr > pr such that prdpr < 6. i.e., Prob{/v > Pr} < 5/pr-

Chapter 2 Background 8

This basically says that pr is such that the probability the traffic demand along

the SD path r exceeds pr is very small, and thus negligible. Then, E{W) is

lower bounded by V[C,n), wherein:

V{C,n) = ^erPr - -

re 兄 lec ren

+ (2-4)
ren r'^r 尸厂

One can compute optimal bandwidth allocation d[for all link I G such

that 巡 = 0 . This way, one can find the optimal bandwidth to be provisioned
dci

of each link I E C which maximizes the least average profit for a

service overlay network.

2.5 Traffic Variation and QoS Violation Penalty

Note that the previously mentioned bandwidth provisioning method is only

practical in an off-line manner. That is, once bandwidth is provisioned, it

cannot be changed until the next bandwidth provisioning instant. However,

due to difficulties in implementation and in adjusting the multi-lateral agree-

ments, the period between two bandwidth provisioning instants may be long

(e.g., weeks or even months). During this period, the traffic demand of a

S O N could fluctuate. This is especially true for a S O N that spans a large

geographical area wherein the time-of-day effect is significant, e.g., some part

of the network is congested during rush hours, while other part of network is

very lightly loaded because it is at a different time zone. Also, it is possible

that there may be a surge in traffic demand due to some unexpected events,

e.g., a popular pay-per-view sport or musical event that attracts many users.

The variation of traffic flow will increase the QoS violation probability Br.

Therefore, it is crucial for the S O N to have the adaptive capability to traffic

Chapter 2 Background 9

flow fluctuation. In this paper, we propose to dynamically replicate services

within a S O N so as to reduce the traffic demands on "overloaded" links and

to maximize the net income of an S O N operator.

V O D Server

Hjik id

0 ©

© o
Figure 2.2: An illustration of the traffic fluctuation on a S O N

To illustrate the reduction of profit due to traffic fluctuation, consider a

S O N with a tree topology as depicted in Figure 2.2. Node a is a service

gateway with a video-on-demand service and it has five sets of clientŝ at

nodes d, e,g, h and i. The average traffic demand of these five clients are 200

unit (Mbps) each. The source-destination path 7^ and routing information are

illustrated in Table 2.2.

Using the static bandwidth provisioning model in [7], the capacity to be

provisioned for each link I is depicted in Table 2.3.

Now suppose that there is a popular pay-per-view movie which increases

the traffic demands along the traversed links. This increase in traffic demand

will cause some links to be overloaded and thus the S O N will suffer from the

QoS penalty and a reduction in the total profit. Figure 2.3 illustrates the

2 A set of client may represent many users within the same network domain.

Chapter 2 Background 10

Src-Dest Routing Path pr

"77 a - ^ d 1-3 200

h a ^ e ^ 1-4 200

a - ^ h 2 - 5 - 7 200

"77" a->2 2-5-8 200

a ^ g 2 - 6 200

Table 2.2: The average traffic demand and routing information for all S D paths

r en.

— link: 2 link: 1,5 link: 3 , 4 , 6 , 7 ^

" t e T ^ (600,888) (400，617) (200,310)一

Table 2.3: The average traffic demand (pi) and bandwidth provisioned (q*) for

each link I € C.

reduction in the expected net income when the traffic demands from all these

five sets of clients are increased uniformly by some small percentages.

From the figure, one can observe that the total profit of a S O N will decrease

by as much as 40% when the traffic demand increases by only 20%. Since one

cannot change the allocated link capacity until the next provisioning instant,

instead of suffering from this traffic overload, we propose to dynamically repli-

cate services within the S O N . In the following two chapters, we describe the

replication strategy to reduce the traffic loading.

Chapter 2 Background 11

] � I
一 5500- \

i \
i 500。- \ -i \

4500 • \

I \
4000. -

3*5001 1 1 1 1 1 1 1 « ‘

0 2 4 6 8 10 12 14 16 18 20
traffic increase (%)

Figure 2.3: Reduction of total profit for a S O N when traffic increases

Chapter 3

Service Replication Model

From the previous example, we notice that the time scale of two consecutive

bandwidth provisioning instances is generally long, while the traffic demand

could change during this period due to some unexpected events, therefore, it

is crucial for an overlay network to have the adaptive ability to such traffic

demand fluctuation. One way to solve this problem via the static bandwidth

provisioning method is to provision more bandwidth for each link in the S O N

(e.g., having a smaller value of S and larger value of pr in Equation (2.4)).

However, the drawback of this approach is that one has to pay a much higher

cost for bandwidth provisioning. In this paper, we propose service replication

approaches that make the S O N more flexible and adaptive to traffic variation

without purchasing extra bandwidth resource from the underlying autonomous

systems.

Note that the service gateway inside a S O N is a network host managed by

the S O N operator. The service gateway has sufficient storage and processing

power to perform the basic packet forwarding function as well as some service-

specific functions (e.g., video-on-demand service). The replication strategies

make use of these service gateways and extend their functionalities. Therefore,

each service gateway can be a potential server and deliver the content to users

in the S O N .

12

Chapter 4 Service Replication Algorithms 13

3.1 One-to-One Service Model

Let us start with a simple case of a single source, single destination service

replication model. Given the source-destination paths in TZ, the stochastic

traffic demands {pr} for all r eU, one has to choose a set of demands in U to

replicate. An SD path r eU consists of a source node s” a destination node

dr, and its stochastic traffic demand pr along the path r. It is important to

point out that a destination node may consists of a large number of users, i.e.,

a set of users within the same network edge who wants to receive a video-on-

demand service.

In the following context, we use 7 to denote one replication event. W e also

introduce the following notations:

/oc(7) the node which 7 chooses to install the replicated service.

target{j) the SD path that 7 chooses to replicate for.

pat"(7) the new path taken by 7 to deliver the replicated service.

" (7) the fraction of traffic shift from target{^) onto pa力"(7).

Consider Figure 3.1’ suppose the replication event 7 is for a SD path r ell

and we choose node i e M to install the replicated service, then tar get�力=r

and Zoc(7) = i. Let the average traffic demand on r be Pr- After the replication

process, the traffic demand on r will decrease because Zoc(7) is serving some of

the clients in r. Therefore, the average traffic demand on r after the replication

process is 八(1 - /3(7)). The replication process 7 will create a new path{'y)

with source node in Zoc(7) and destination node in dr for the replicated service.

The traffic on this new path needs to deliver, on the average, amount

of traffic to a set of users in r.

Let V denote the set of all replication events 7 . Let denote the set of all

Chapter 4 Service Replication Algorithms 14

target{y)
path (Y)

^ m loc(y)

Figure 3.1: Illustration of replication event in a SON.

source-destination paths of the S O N after the replication events V. The single

source, single destination replication is to find a set of replication events V

which maximizes the increase in (the lower bound V of) the total net income

E{W) of S O N by performing service replication, i.e., to maximize the following-

objective function:

m 身 - V{n)

subject to:

loc(j) € N

tar get (j) G Sioc{j)

0 < m < 1

Since the replication will not change the sum of all the traffic demands for

the S D paths in TZ and the total bandwidth cost, we have,

V{n') - Vill) = Y^T^rPrBr{Pr) " '^rPrBr[Pr)
ren rGT?/

+ + (3.1)

ren \ T�丰T 内) rew \ r'̂ r̂ 竹 J

Chapter 4 Service Replication Algorithms 15

The motivation of our replication is as follows. Note that although the

replication strategy cannot alter the capacity of each link in SON, it may

change and divert part of traffic demands from some of the highly congested

links and redirect them to a replicated server. A key observation is that for a

given link I, the total net income is more sensitive to the change of total traffic

demand on this link if ~ is large. In other words, a small decrease in the

traffic demand on link I can cause a large drop in the total net income of the

S O N .

Therefore we focus on those links for which is large and attempt to

reduce the traffic demands on these links by service replication. In deciding

which path r to select for service replication, we use the analogy from the

optimal routing problem [1] and introduce the following notion.

Definition 3.1 Let a path r having n > 1 links l^h, • • • Jn- The "negative

first derivative sum" (NFDS) of the path r is
Tl OT r

n f d s w 二 -

In deciding which path to replicate, we choose a path r that has the most

negative N F D S value.

To determine which node (i.e., service gateway) to place the replication,

we adopt the following strategy. For all the traffic going to a certain user,

they must go through the link connecting that user to the S O N (the "last-

mile" link). So to place a replication whose target is path r, we only consider

those nodes along path r. The rationale for this approach is that if one sets up

replication on nodes not along the path in r, it will increase the traffic demands

on other links (which may in turn increase the probability of violating the QoS

requirements for those links). Therefore, our replication strategy only targets

those nodes along path r.

Chapter 4 Service Replication Algorithms 16

3.2 Service Delivery Tree Model

Real-time content delivery is one of the major applications of S O N , many

QoS sensitive services can be deployed on the SON's infrastructure, such as

V〇D, Internet radio and television. However, most time it doesn't fit into the

single-source single-destination model. As illustrated in [14], the optimal data

delivery topology for these applications is a tree topology. Therefore, in the

rest of the paper, we will focus on this tree model, and we name it as service

delivery tree (SDT) model.

The root node of S D T is an application level service gateway, for example,

a V〇D server wherein the continuous media are stored. All the leaf nodes of

a S D T are client nodes which are the access points for different users within

the same network domain. The formulation of delivery tree can be different

for different applications [14，11, 4, 6], however, our model is generic for any

tree topology.

To illustrate, consider an example in Figure 3.2 where node r is the root

(or server) node; the darkened nodes are the client nodes of the S D T , thick

lines represent links of the SDT.

• client node ® L f) ^

® server node j
• service gateway /

— l o g i c a l links on SDT \ / \ J
links of SON but are not \ / ^ ^ ^ ^
used by the SDT

uplink of node v

Figure 3.2: Illustration of a service delivery tree (SDT) on a S O N

Chapter 4 Service Replication Algorithms 17

3.2.1 Problem Formulation

To formally describe the service replication problem, let us first define the

following notations:

丁 the service delivery tree.

Tu subtree of T rooted at node u.
Su all child nodes of u.
pu traffic demand from node u.
Du total traffic demand from all client nodes of subtree T^.

Cu bandwidth of the uplink of node u.
QU{DU,CU) probability of QoS guarantee on the uplink of node u, given

that the bandwidth is Cu and traffic demand is D^.

F{Tu) total effective throughput of subtree Tu.

Table 3.1: Notations of Service Delivery Tree

In the original S O N bandwidth provisioning model [7, 8], the QoS violation

on link I is defined as piBi{pi) where Bi is the QoS "violation" probability. In

our service replication problem on SDT, we use an alternative metric. In the

original model, the first two terms of the objective function in Eq. (2.1) are the

total revenue (total income leveraged from all users) and the total bandwidth

cost (total cost paid to purchase the bandwidth from underlying ASs) of the

S O N . Note that for the service replication process, the values of these two

terms will not change. Therefore, in formulation of the service replication

problem, we only need to focus on the third term of Eq. (2.1), namely, the

total QoS violation penalty.

As stated in Section 2, the derivation of the expression of QoS violation is

difficult due to the functional dependency on the joint traffic distribution and

the violation probability B. Instead of directly evaluating the QoS violation

penalty, we define a new function F{Tu) to evaluate the effective throughput,

Chapter 4 Service Replication Algorithms 18

which in fact quantifies the level of QoS guarantee of any subtree T^ rooted at

the node u.

First, we denote the generic link QoS guarantee probability function as

following:

qu{Du, Cu) = l - Bi, where I is uplink of u. (3.2)

This probability function is independent of any particular form of QoS violation

function B. Thus, similar to the QoS violation penalty in Eq. (2.1)，F{Tu) can

be defined as:

F{Tu) = Pv U (li(Di,Ci), (3 . 3)

V ^ Lu iepath{u,v)

where Lu denotes the set of leaf nodes of the subtree Tu and path[u, v) denotes

all the nodes along the path from u to v. F(T„) can also be expressed in a

recursive form:

p„ if node li is a leaf node,
= (3.4)

J2yeSu F(Ty) . qy{Dy, Cy) otherwise.

Using the above recursive function, we can compute F{Tr), i.e. the total

effective throughput of the S D T with the root node r.

Figure 3.3 illustrates an example of computing F(Tr). The number inside

each node represents the F value of the subtree, while the number besides

the link represents the probability of QoS guarantee {q function). Using the

above formulation, the effective throughput of the root node r is equal to the

effective throughput of its two children nodes, weighted by the probability of

QoS guarantees, therefore, F(7；) = 500(0.6) + 460(0.5) = 530. Suppose now

we have an additional continuous media server resource and we can place this

extra server at node v in Figure 3.4. The two children nodes of node v are

then served by this additional media server, while the remaining client nodes

along the S D T are still served by the original media server r. The direct

Chapter 4 Service Replication Algorithms 19

effective throughput / ^ r probability of QoS
of the sub-tree (F) guarantee (q) of the link

(500] I 460]

T^so) (200T Uooj

Figure 3.3: Illustrate of SDT. The value of each node is the effective throughput

(F) of the subtree rooted at that node.

gain in effective throughput of placing an extra server at node v is equal to

580(1 - 0.5) = 290. Since there will be no traffic going through the uplink of

Figure 3.4: Illustration of S D T with one additional server placed at node v.

V, the total traffic on the uplink of node u will decrease, thus, improving the

probability of QoS guarantee of that uplink, say from 0.6 to 0.8. As a result,

the remaining tree (T^ - Ty) also benefits from this additional placement of

server in node v. As shown in the figure, the total effective throughput is equal

to F{Tr-Ty)-\-F{Ty) = 398 + 580 = 978. In other words, there is around 85%

gain in effective throughput by placing an additional server at node v.

Finally, given a S D T T” the service replication problem is formally defined

Chapter 4 Service Replication Algorithms 20

as 1 :

max{F(T, - T,) + F(T,)}. (3.5)
veVr

where Vr is the set representing the descendant nodes of the root node r. In

other words, find a node v under the S D T % such that we have the maximum

gain in the effective throughput.

3.2.2 Distributed Evaluation of SDT

One way to find the optimal solution to the above problem in Eq. (3.5) is to

perform an exhaustive evaluation at every nodes in the tree Tr and choose

the node which maximizes the objective function in Eq. (3.5). However,since

runtime of this approach is O(n^), it is computational prohibitive when the size

of S D T is large. Another disadvantage of this exhaustive evaluation approach

is that it requires a centralized entity which has the view of the whole network

topology, as well as all the traffic information and probability of QoS guarantees

of all the links and nodes of the SDT. Thus, this approach suffers from the

potential of single point failure problem and it is not scalable as the network

size grows.

In the following, we propose a distributed approach to solve the service

replication problem. In our approach, each node only maintains three variables

that summarize the characteristics of the subtree which rooted at that node.

This way, the information can be recursively evaluated from the leaf nodes up

to the root node. Since only a small amount of information is maintained at

each node, the decision making can be carried out very efficiently in a top-down

evaluation method.

W e require that each node u of the S D T T maintains three variables,

iHere, for simplicity, we do not consider the cost of adding the replicated server. In
Section 5, we illustrate the effect of replication cost in the final performance gain.

Chapter 4 Service Replication Algorithms 21

namely, Du, Qu and Fu. The first variable Du represents the total traffic de-

mand of the subtree and it can be recursively evaluated using the following

expression:
(
pu if u is leaf node

Du = (3.6)

EveSu Dv otherwise

The variable QU is the probability of QoS guarantee on the uplink of node u to

its parent node. This probability is computed at node u and it only depends on

the traffic Du and the allocated capacity c^. It is important to point out that

our approach can be applied to any general form of QoS guarantee probability

function, as long as it is an increasing function of Du. Lastly, the variable Fu

is the total effective throughput of the subtree T^. One can use the recursive

expression in Eq. (3.4) to update these three variables and thereby obtain the

effective throughput of the SDT.

Our evaluation scheme begins with all leaf nodes. Each leaf node, say u,

will send the values of {Du,qu,K} to its parent node v. The node v, upon

receiving all the information from all its children nodes, will then update its

own variables {Dy,qy,Fy} accordingly, and then send these values to its parent.

Consider an example which is illustrated in Figure 3.5 where each node

maintains three local variables. After receiving the updated values from all its

children, node 0 will then update its own values as follows:

Do = A + +

Qo =

Fo = qiFi + q2F2 + qsF^.

All the other nodes are updated accordingly in a bottom-up manner. This

process will continue until the root node r computes its effective throughput Fr.

The above distributed approach is used to evaluate the effective throughput

Chapter 4 Service Replication Algorithms 22

D - ^ ^ J ^ ^ \

Figure 3.5: Illustration on the evaluation of S D T

of a S D T only. To find the proper node for service replication, we require

each node, say node u, to maintain an extra variable Gu in order to find the

optimal placement efficiently. The Gu is defined as the gain of total effective

throughput if the additional server is placed at node u. The variable Gu can

be expressed as:

Gu = F(Tr - Tu) + F(TJ - F{Tr) (3.7)

In other words, after placing the additional server at node u, the additional

server will serve all the users of the subtree Tu only, while the original server

r will serve all users from the remaining tree % - Tu. Therefore, the sum of

the first two terms in Eq. (3.7) is the total effective throughput after service

replication at node u and Gu represents the gain in the effective throughput if

the replicated server is placed at node u.

3.2.3 Approximation

In general the problem of finding the optimal set of replicated server to max-

imize the total gain is NP-hard. It is not difficult to show that when we

restrict the (/-function to a constant function, this problem is equivalent to

Chapter 4 Service Replication Algorithms 23

the well-known p-median problem [13, 9]. In the following, we will propose an

approximation solution with near-optimal result and much better efficiency.

Note that during the updating process, the update of the G function at

node u is not so easy as the updating the D oi F values. For each node n, we

need to evaluate the F{Tr - T^) value. However, placing the additional server

at node u will affect the QoS guarantee probability along all the links between

root node r and node u. Thus we need to re-evaluate the F value of each node

along that path. To address this difficulty, we take the following approach.

W e calculate the G function at node u simply by using the uplink probability

only, i.e. Gu = F{Tu){l - Qu) instead of calculating F{Tr - Tu), because the

F{Tu) and QU are directly available information at node u. In other words, the

Gu of node u is the minimum guaranteed gain of the total effective throughput

of S D T T . Though we lose accuracy in the computation, we improve the

efficiency of the algorithm, which is crucial for the real implementation.

Chapter 4

Service Replication Algorithms

In this section, we present the algorithm for selecting a node for service repli-

cation. To enhance the readers' understanding, we first present a centralized

service replication algorithm, then we extend the concept to a distributed ap-

proach of service replication.

4.1 Centralized Service Replication Algorithm

The centralized algorithm has two phases, the preprocessing phase and the

searching phasing.

4.1.1 Preprocessing Phase

The preprocessing phase can be carried in a recursive manner. Figure 4.1

illustrates the pseudocode of the recursive update of node u. Starting at the

root node of S D T T , this procedure is invoked recursively at each node. All

the nodes of T are visited in a postorder sequence, and their D, F and G

values are updated accordingly.

Lemma 4.1 Assuming the average degree of S D T is constant, the runtime

complexity of preprocessing phase is 0(n).

24

Chapter 4 Service Replication Algorithms 25

UPDATE-NODE (U)

1 if = 0

/* if u is leaf node */

2 Dû Pu
3 Fu — Pu

4 G u ^ Pu-(^-qu(Du,Cu))

5 else

/* if u is internal node */

/* update each child v of node u */
6 for V e S u d o UPDATE-NODE (?；)

7 Du^Eves^D,

9 Gu max{G^}, (W G Su)
10 if parent{u) + 0

1 1 Gu — max{G以’ • (1 - g“Ax，c^))}

Figure 4.1: Recursive update of node u of S D T T

Proof: During the preprocessing phase (i.e. the U P D A T E - N O D E procedure),

each node needs to gather all the information from all of its children nodes,

therefore, the runtime for each node is proportional to the degree of that node,

thus the total complexity is 0{n • d), if d is the average degree. However, for

the deployment on a service overlay network, because of the constraint of ser-

vice gateway's restricted resources, the average degree of S D T will not be very

large, and we can safely assume that it is a small constant. Therefore, the

total complexity for the preprocessing phase is 0(n), where n is the number

of nodes in the S D T . I

Chapter 4 Service Replication Algorithms 26

4.1.2 Searching Phase

W h e n the preprocessing phase is completed, each node will obtain the updated

information of {D^, Gu}- Then one can search for the optimal server place-

ment in a top-down manner starting at the root node of S D T T. Figure 4.2

illustrates the procedures. The searching algorithm will output the node which

maximizes the gain of effective throughput.

FIND-REP-NODE (T)

1 u — root �

2 V <r- maxi;{Gu}, Vi; G Su
3 while Gv > Gu and 0 do
4 U <R- V

5 V - f - MAXT;{GV},V?; G SU

6 return u

Figure 4.2: Finding the node to place the replicated server

Lemma 4.2 The average runtime complexity of searching phase is 0(log(n)).

Proof: During the searching phase (i.e. the F I N D - R E P - N O D E procedure), the

searching starts from the root node and at the worst case, it will stop at the

leaf node. At each node, it just chooses one child of the maximum G value.

Thus the total complexity is proportional to the height of the tree. Although

the worst case complexity is 0(n), for a practical deployment, the construction

of a S D T is usually balanced, therefore the average complexity is 0(log(n)).

I

Chapter 4 Service Replication Algorithms 27

4.2 Distributed Service Replication Algorithm

Although the above centralized algorithm is simple to implement, it requires

a centralized entity in the S O N for execution. This requires extra resources

and also has the potential of a single-point-failure problem. These problems

will become significant when the size of the S O N is large. W e propose the

following distributed algorithm, which can be concurrently executed on each

node inside the SDT. Thus, no centralized management is required and the

server replication can be carried in a more efficient manner.

The distributed algorithm achieves the same result as the centralized al-

gorithm by sending messages among the nodes of SDT. Figure 4.3 illustrates

the distributed service replication algorithm. It is divided into five parts. The

first two parts (lines 1-15), correspond to the preprocessing phase, while the

rest three parts (lines 16-24) correspond to the searching phase.

The DISTRIBUTED-NODE-UPDATE() procedure can be implemented as an

event-driven program running at each node. The information exchange be-

tween nodes can be implemented as a simple protocol with the following set

of of messages: {request-update), {reply.update), {execsearch), (jrequest—G),

{reply-G).

The root node will initiate the distributed algorithm by sending the

{request-update) to all its child nodes. Upon receiving this message, these

nodes will send the same message to their children (line 6), and this mes-

sage will be propagated till the leaf nodes. The leaf nodes will then send

the (reply.update) to their parents with the updated values of D , F, G (line

5). Each node, upon receiving {reply-update) message will then update its

own D, F,G values (line 8-10). When it receives the updates from all its

children, the processing phase on that node is finished, and it will send the

(reply-Update) message to its parent (line 14). When the root node finally

Chapter 4 Service Replication Algorithms 28

receives all the updates from its children and updates its own D,F,G, the

whole preprocessing phase is terminated.

The root node will then start the searching phase (line 15). It will ask the G

values of all its children by sending the (request-G) message. Upon receiving

the reply, it will pick the child node with the G value not less than the G value

of itself, and then send the (execsearch) message (line 22). This process will

stop when there is one node in which the G value of all its children are less

than itself (line 23). At this moment, the searching phase is terminated and

that node will be picked to place the replication.

For the distributed service replication algorithm, the preprocessing phase

can be executed in a parallel fashion, in which case the total running time

of the preprocessing phase can be improved to 0(log(?i)) (proportional to the

height of the tree). Therefore, the total running time of our algorithm is also

improved to 0(log(n)). It is much faster than the exhaustive searching method

(0(71^)), when the total number of node (n) is large.

4.3 Improved Distributed Algorithm

The centralized and distributed algorithms discussed above are easy to im-

plement on top of S O N . However, one may provide a better solution (e.g., in

terms of finding a closer-to-optimal gain in the effective throughput) if each

node is allowed to stored more information. In the following, we provide an

improved version of the distributed algorithm which can find a better solution

at the cost of extra computational resources.

In the previous algorithms, to determine the minimum possible gain in

the total effective throughput {Gu) of placing a replicated server at node u,

we consider the uplink QoS guarantee probability (QU) only. However, in this

improved distributed algorithm, we use the total QoS guarantee probability

Chapter 4 Service Replication Algorithms 29

along the path from the root node r to the node w, and we denote this total

probability to be Qu for each node u. W e can define Qu recursively as:
(

1 u is root node
Qu = (4.1)

qu . Qparentiu) Otherwise
\

Therefore, we redefine the Gu to be:

Gu = F(Tu)(l-Qu) (4.2)

To deploy this new algorithm, each node needs to maintain an extra variable

Qu, and the following procedure NODE-IMPROVE which serves as an add-on

module to the basic distributed algorithm, can be invoked, if necessary, after

the preprocessing phase and before the searching phase. To use this add-on

module, we only need to modify the (line 15) of D I S T R I B U T E D - N O D E - U P D A T E

to:

15 else send {improve-Q : 1) to self

Then the root node, before starting the searching phase, will first initiate the

updating of the Qu as well as the Gu value of each node.

Figure 4.4 illustrate the add-on module where line (1-7) updates the Qu of

each node, and line (8-15) updates the Gu of each node.

Chapter 4 Service Replication Algorithms 30

DISTRIBUTED-NODE-UPDATE (W)

1 upon receiving {request.update)
2 if = 0
3 Du — Pu, Fu Pu
4 Gu ^ - qu{Du,Cu))
5 send {reply-update : Du,Fu,Gu) to parent{u)

6 else send {request-update) to all v e Su

7 upon receiving {replyjupdate : Dy,Fy,Gv) from child v
8 Du — Du + Dy
9 Fu^Fu+Fyqy(Dy,Cy)
10 Gu — max{Gu, Gy)
11 if received {reply-update) message from all children

12 if parent{u) + 0
13 Gu — max{G„, Fu(l 一 qJJDu, c„))}
14 send {reply.update : Du,Fu,Gv) to parent{u)
15 else send{exec-search) to self

16 upon receiving {execsearch)
17 if 二 0 output u
18 else send {request-G) to all v £ Su

19 upon receiving�request JT)
20 send {reply-G : Gu) to parent{u)

21 upon receiving {replyJG : Gy) from child v
22 if Gy > Gu send (execsearch) to node v
23 else if received {replyJG) messages from all children
24 output u

Figure 4.3: Distributed algorithm running at each node u

Chapter 4 Service Replication Algorithms 31

NODE-IMPROVE (U)

1 upon receiving {improve-Q : Qp)
2 Qu ^ qu{Du,Cu) • Qp
3 if = 0
4 Gu^ Fu{l - Qu)
5 send {improve.G : Gu) to parent{u)
6 else
7 send {improve-Q : Qu) to all v e Su

8 upon receiving {improve-G : Gy) from child v
9 Gu ^
10 if received {improve.G) message from all children
11 if parent{u) / 0
12 Gu — max{G„, i V U -
13 send {improve.G : Gu) to parent(u)
14 else
15 send�eccec一search) to self

Figure 4.4: Add-on module for improved distributed algorithm

Chapter 5

Performance Evaluations

In this section, we perform three experiments so as to evaluate the performance

and effectiveness of the service replication algorithm. The first experiment

provides some understanding of our replication algorithm and shows the benefit

of performing service replication. The second experiment evaluates the quality

of the results obtained by our algorithm as compares to random selection and

exhaustive selection of the replication. The third experiment illustrates the

scalability of the service replication algorithm when we increase the size of the

SDT.

5.1 Experiment 1: Algorithm Illustration

In this experiment, we show the benefit of the replication algorithm. Fig-

ure 5.1(a) illustrates a simple yet illustrative topology of the SDT, as well

as the traffic demand of each client node and the capacity of each link. In

this experiment, the QoS guarantee probability function q is expressed as the

following linear equation^ :

qu{Du,Cu) = l - ^ (5.1)

Cu
iThe probability function is only used as an illustration, the algorithm can accommodate

general forms of probability function.

32

Chapter 5 Performance Evaluations 33

link capacity (c)

QoS guarantee
probability (q>

3000 (0

1000(0. X̂̂ OOCO.S)

@ @ traffic demand (D,

(a)
link capacity (c)

QoS guarantee
probability (q)

3000 (0 (0

1 0 0 0 (0 . 5)

@ 0 漏 ； 5 ⑷

traffic 一 a (D)

(b)

Figure 5.1: (a) The S D T before replication (b) The S D T after replication

In Table 5.1, we illustrate the variables of each internal node after running

the distributed service replication algorithm. It finds that the node v has the

maximum G value and the additional server will be placed at node v.

After placing the additional service node at node v, the original S D T is

split into two subtrees, as shown in Figure 5.1(b). Since there is no longer any

traffic going through link {u,v), the F value of node u and r will be changed

to 330 and 525 respectively. Therefore, the total effective throughput after

replication is Fr + = 525 + 740 = 1265 and the gain of placing a replication

at node v is 1265-600=665, which is a 110% gain as compare to the original

S D T with no replication.

Chapter 5 Performance Evaluations 34

Node \ D q F G
V 1000 0.5 740 370

u 1500 0.5 700 370

w 1000 0.5 500 250

r 2500 — 600 370

Table 5.1: The value of variables at each node after preprocessing phase

5.2 Experiment 2: Performance Comparison

In this experiment, we show the quality of the proposed distributed algorithm

with other two algorithms, namely, the random selection algorithm and the

exhaustive search algorithm. The random selection algorithm will randomly

select an internal node of S D T for service replication and obviously, it has the

least computational overhead as compared to other algorithms. The exhaustive

search algorithm will exhaustively search through the whole S D T tree and

will find the optimal node for replication. This algorithm has the largest

computational complexity and it cannot be scaled as we increase the size of

the S O N .

In this experiment, we use a random tree generator to generate 100 random

SDTs with 500 nodes each, and the average number of children of each internal

node is three (e.g., average degree is 3). Each client node also has a random

traffic demand which is uniformly distributed with a range from 1 to 1000 unit.

The link capacity is provisioned [7] in the way such that the loading on each

link {D/c) is a constant. W e then vary this constant, and compare the gain of

placing a replicated server on the SDT.

Table 5.2，5.3 and 5.4 illustrate the result of our experiments. W e compare

the results using three different q functions. The second column is the gain of

placing service replication at a randomly chosen node. The next two columns

Chapter 5 Performance Evaluations 35

are the gains of placing a server at the node obtained by our basic distributed

algorithm and the improved distributed algorithm. The rightmost column is

the gain of placing the replication at the optimal node using the exhaustive

search (which is obtained by exhaustively evaluating all the nodes). From

D/c Random Basic Improved Exhaustive
selection Distributed Alg Distributed Alg selection

~ 0 4 2.21% 19.45% 21.29% 22.33%

0.6 7.90% 35.71% 40.56% 42.61%

0.8 46.34% 84.51% 87.80% 91.76%

Table 5.2: Comparison of our algorithm with random placement and optimal

placement, when QU = I - Du/cu-

D/c Random Basic Improved Exhaustive
selection Distributed Alg Distributed Alg selection

" T i 0.61% 6.43% 7.10% 7.79%

0.6 1.99% 16.93% 18.93% 20.97%

0.8 11.27% 40.33% 47.17% 53.62%

Table 5.3: Comparison of our algorithm with random placement and optimal

placement, when QU = I — [Du/CuY-

these three tables, we can conclude that our improved distributed algorithm,

which has a much lower computational complexity than the exhaustive search,

has a performance result which is very closed to the optimal. Another obser-

vation can be made from these tables is that when the average loading on each

link {D/c) is high, it is more beneficial to perform the service replication.

Chapter 5 Performance Evaluations 36

D/c Random Basic Improved Exhaustive
selection Distributed Alg Distributed Alg selection
0.19% 0.94% 1.05% 1.37%

0.6 0.60% 5.11% 5.69% 6.73%

0.8 3.10% 20.09% 22.90% 27.95%

Table 5.4: Comparison of our algorithm with random placement and optimal

placement, when q^ = I — {Du/cu)^.

5.3 Experiment 3: Scalability Analysis

In the following 3 experiments, we illustrate the performance of our algorithm

when the size of the S D T increases. For each size of the SDT, we generate 100

instances of random SDTs with link capacity set to the value such that the

loading D/c is 0.8.

5.3.1 Experiment 3A

In this experiment, we illustrate the percentage of average performance gain

obtained by our algorithm for SDTs from 100 to 2000 nodes.

As shown in Figure 5.2, although there is a little fluctuation when the S D T

size is small, the average gain of our replication algorithm still remains at a

certain percentage when the network size grows.

W e also test on SDTs of different average degrees. When the average degree

increases, the average gain decrease. The reason is that when the average

degree of tree is small, the height of tree is larger, i.e. the average path length

from client node to the root node is longer. This means the QoS guarantee

are much harder to preserve for the client nodes, therefore doing replication

at S D T of small average degree will have more benefit. Meanwhile, because of

the constraint of resources at each service gateway of S O N , the average degree

Chapter 5 Performance Evaluations 37

2001 1 . .

——avg deg = 2 I
avg deg = 3

I avg deg = 4 I

I fv -
O " ^
o 100 -
BS) • •2 c <D
&

5 0 - •. 一 -

O—e—€>-…..<? 0 0 0 0 • • e — e - - - e . — (>
* — 一 „ ,(M.....)‘ “ „)(„ „ „

o' 1 1 ‘
0 5 0 0 1 0 0 0 1500 2 0 0 0

number of nodes

Figure 5.2: Illustration on the performance gain of our service replication
algorithm when the size of the tree grows from 100 to 2000 nodes.

of S D T in real situation will not be a big number, so our service replication is

suitable for SDT.

5.3.2 Experiment 3B

In this experiment, we illustrate the percentage of average normalized gain

(with respect to the optimal gain) obtained by our algorithm for SDTs from

100 to 1000 nodes.

W e repeat this experiment for three different kind of QoS guarantee func-

tion (g-function). As shown in Figure 5.3, for the more loading-sensitive q-

function, our algorithms obtain lower performance gain, which is predictive

because the entire S O N is more easily to suffer QoS penalty when congestion

happens.

Chapter 5 Performance Evaluations 38

I j I I I 1 1 1 1 1

0.9 - ® e e -

0 . 8 - -

0.7 - -

•io.6- -
•S
.a 0.5 - -

1
O 0 .4 - -a

0.3 - -

0 . 2 - -

q=l - (D/c”
0.1 - q=l-(D/c)^ -

•—X-q=l- (D/c)
n i I I 1 I I I 1 1
100 200 300 400 500 600 700 800 900 1000

number of nodes

Figure 5.3: Normalized gain obtained by our algorithm retains a certain per-

centage when the network size increases.

However, the gain obtained by our algorithm for each QoS guarantee func-

tion is independent from the network size. Even the network size increases 10

times, it still remains at almost the same level.

5.3.3 Experiment 3C

In this experiment, we shows the average C P U time used by our algorithm as

compared to the exhaustive search method for the network size increases from

100 to 1000 nodes. The time measurement is averaged over 100 instances for

each network size.

In Figure 5.4，we illustrate the real C P U time for our algorithm as com-

pared to the time used by exhaustive search method. It is a further proof the

complexity of our algorithm is linear time and is scalable for bigger network

topology.

Chapter 5 Performance Evaluations 39

0 • 71 I I 1 1 1 1 1 1

our algorithm | j>
exhaustive search | /

0 . 6 - / -

一 。 5 /
I /
I 0.4 - /

f " /
0.1 -

^ ^ ^
pttî r I I I : 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

number of nodes

Figure 5.4: Average C P U time for finding one optimal replicated server.

5.4 Experiment 4: Multiple replications

In this experiment, we try to do multiple replications on the S D T by slightly

modifying our algorithm to maintain a priority queue of potential nodes for

the placement of replicated server. W e then compute the gain of total effective

throughput of putting various numbers of replicated servers. Figure 5.5, shows

the average gain of 100 random generated SDTs of 1000 nodes each.

In the previous experiments, we didn't consider the cost of doing replica-

tion, however in reality, there will be some cost of placing one cost, and it will

affect the result when we want to do multiple replications. Thus we set the

cost of adding one more replicated server to be 0.1% of the total traffic demand

D of the SDT. As shown in the figure, because of this replication cost, when

the number of replications increases, the percentage gain will diminish at some

point and eventually we can not gain more by adding extra replications.

Chapter 5 Performance Evaluations 40

25 r 1 1 1 1 1 1

g 1 0 - -

J 5- \ -

! 。 _ \
<D \

卜 \ -
- 1 0 - \ 棚

\
Pn I 1 1 1 1 1 3 5 7 9 11 13 15

number of replications

Figure 5.5: Illustration of the average gain of multiple replications on S D T of

500 nodes

Chapter 6

Related Work

The Service Overlay Network has attracted a lot of interests from researchers

recently. One major category of overlay network research is concerning the

content distribution, caching and replication where our work resides in. Vari-

ous authors have suggested that it is important to consider replicated service

in the S O N [5, 6，2, 12] so as to maximize the profit and reduce the operational

cost. They are all based on the basic setting that the S O N is a topology with

fixed link cost (distance, delay, etc). However, in our model, the link cost is

a dynamic function of the total traffic traversing that link, which makes the

problem much more difficult to solve. Low et al [3], proposed a novel approach

for the relevant server placement problem. They model the candidate nodes as

source and replicated server nodes as code and thus formulate a source coding

problem that minimize the coding distortion. Though their solution fits any

general graph, their high-density nodes assumption may not always be valid in

S O N . Krishnan et al [15], proposed a dynamic programming algorithm to solve

the cache placement problem. They also achieve near-optimal result, however,

their problem is based on the network delay cost model, which is also different

to our effective throughput metrics.

41

Chapter 7

Conclusion

Previous works have studied the bandwidth provisioning problems and optimal

distribution tree formulation on SON. However, since the bandwidth is fixed

after provisioning and the topology is static, the S O N is inflexible to traffic

demand variation, and when there is sudden increase of traffic demand, the

QoS guarantee probability will decrease on links, therefore the total effective

throughput will decrease and that means the reduction in total profit of SON.

W e proposed to address this problem by service replication in the service

delivery tree model. W e have presented both centralized and distributed algo-

rithms to find the placement of a replicated server, which maximize the total

effective throughput of SDT. The distributed algorithm requires very little re-

source at each node, and can be implemented as a simple protocol among all

the service gateways of SON. The complexity of the algorithm is much lower

than the brute-force exhaustive search method, but still achieve a near-optimal

result. Furthermore, it has a good scalability and can be deployed in large scale

S O N networks.

42

Bibliography

1] D. Bertsekas and R. Gallager. Data Networks, chapter 5.5’ pages 451-455.

Prentice Hall, 2nd edition, 1992.

2] J. Byers, J. Considine, and M . Mitzenmacher. Informed Content Delivery

Across Adaptive Overlay Networks. In ACM SIGCOMM, Aug. 2002.

3] C. W . Cameron, S. H. Low, and D. X. Wei. High-density model for server

allocation and placement. In IEEE Infocom, 2002.

4] Y. Chu, S. G. Gao, S. Seshan, and H. Zhang. Enabling conferencing

applications on the internet using an overlay multicast architecture. In

ACM SIGCOMM 2001, Apr. 2001.

5] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-

to-Peer Networks. In ACM SIGCOMM, 2002.

6] Y. Cui, Y. Xue, and K. Nahrstedt. Optimal resource allocation in overlay

multicast. In "IEEE 11th International Conference on Network Protocols

(ICNPW)", Nov. 2003.

:7] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service Overlay Networks: SLAs,

Q o S and Bandwidth Provisioning. In IEEE 10th International Conference

on Network Protocols (ICNP'02), Paris, France, Nov. 2002.

43

Chapter 7 Conclusion 44

8] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service Overlay Networks: SLAs,

QoS and bandwidth provisioning. Technical report, Computer Science

Department, University of Minnesota, Feb. 2002.

9] M . R. Garey and D . S. Johnson. Computers And Intractability: A Guide

to the Theory of NP-Completeness. W . H . Freeman, 1979.

10] J. Jannotti. Network Layer Support for Overlay Networks. P h D thesis,

Department of Electrical Engineering and Computer Science, MIT, Aug.

2002.

11] J. Jannotti, D. K. Gifford, K. L. Johnson, M . F. Kaashoek, and J. W .

O'Toole, Jr. Overcast: Reliable Multicasting with an Overlay Network. In

the Fourth Symposium on Operating System Design and Implementation

(OSDI), pages 197-212, Oct. 2000.

12] J. Kangasharju, J. Roberts, and K. W . Ross. Object Replication Strate-

gies in Content Distribution Network. Computer Communications, 25,

2002.

13]〇• Kariv and S. L. Hakimi. A n Algorithmic Approach to Network Lo-

cation Problems - Part II:p-medians. SIAM J. Appl. Math., 37:539-560,

1979.

14] M . S. Kim, S. S. Lam, and D.-Y. Lee. Optimal Distribution Tree for

Internet Streaming Media. In 23rd IEEE ICDCS, May 2003.

15] P. Krinshnan, D. Raz, and Y. Shavitt. The Cache Location Problem.

IEEE/ACM Transactions on Networking (TON), 8:568-582, Oct. 2000.

Chapter 7 Conclusion 45

16] D. Mitra and Q. Wang. Stochastic traffic engineering, with applications

to network revenue management. In IEEE Infocom 2003, San Francisco,

USA, 2003.

"17] Z.-L. Zhang, Z. Duan, Y. T. Hon, and L. Gao. Decoupling QoS Control

from Core Routers: A Novel Bandwidtg Broker Architecture for Scalable

Support of Guaranteed Services. In ACM SIGCOMM, Aug. 2000.

•

關

CUHK Libraries

ODMlMMfiia

