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Abstract 

Dataflow Network is a model that can specify flows of dynamic data with 

various operators running in parallel. The model can be specified and solved 

by a language called Lucid. To extend the functionality of Dataflow Network, 

we have extended it to a new model called Extended Dataflow Network, and 

we have developed its corresponding language E-Lucid to model and solve 

Extended Dataflow Networks with help of a CSP solver. 



» 

數據流網絡是一個可以用各樣平行運作操作符來表述動態資料 

流的模型。這模型可用Lucid語言來表述和求解。要擴展數據 

流網絡的功能，我們把它擴展作一個稱爲厥辦敎藏德紙鄉勺新 

模型，並爲它發展了 語言。結合CSP求解程序，這語 

言可以模型化及解決延伸數據流網絡。 
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Chapter 1 

Introduction 

The most common class of programming languages, such as C [28] and Java [15], 

is based on the “von Neumann" control flow model. The model assumes that a 

program is a series of instructions, each of which either specifies an operation 

along with memory locations of the operands or specifies transfer of control 

to another instruction unconditionally or when some conditions hold. On the 

contrary, dataflow languages are based on Dataflow Network. The model does 

not consider flow of control, but considers flow of data. It assumes that a 

program is a data-dependency network (or Dataflow Network) whose nodes 

denote operations and whose arcs denote dependencies between operations. 

The programmer pays his attention in defining the data of the problem rather 

than the execution of the program. In many situations, it is more simpler and 

more intuitive to express a problem with dataflow languages. 

Dataflow Network^ [34] has been the basis of several programming lan-

guages [21, 8, 17’ 4, 16, 7, 22], among which Lucid is the first dataflow lan-

guage [34]. There are various incarnations of Lucid, including pLucid [1, 12], 

the first Lucid implementation [34]; GLU [24, 23], a hybrid of Lucid and C; 

Ferd Lucid [11, 13] and Field Lucid [2], two extensions with array as the data 

structure; Indexical Lucid [25], an extension with user-defined dimensions and 

dimensional abstraction; and RLucid [33], an extensions with time stamps. 

iWe refer Dataflow Network to pipeline dataflow network [9] from now on 
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Chapter 1 Introduction 2 

These languages are able to program dynamic problems by defining each vari-

able (flow of data) with exactly one expression in terms of other variables. 

For example, we can express x, a variable, by the statement x = y + 2 * z, 

where y and z are two other variables. 

However, none of these languages take the advantages of constraint-solving 

technique to express general constraints among the variables. The languages 

cannot define a variable on its own current value, so that a program cannot 

have the statement x = x or both the statements x = 2 * y and y = x - 2. 

The languages can only define a variable exactly once, so that a program 

cannot have both the statements x = 2 * y and x = z + 2. A statement can 

only relate a variable with an expression, so that a program cannot have the 

statement x * y = y + z. 

In this thesis, we extend both Dataflow Network and Lucid so that the 

aforementioned limitations are removed. We propose a new model called Ex-

tended Dataflow Network, which is based on Dataflow Network with addition 

of selection operators and assertion arcs. Selection operators allow the defini-

tion of possible choices of values, while assertion arcs define constraints among 

variables. The corresponding language is E-Lucid, which extends Lucid with 

additional implementation of selection operators and assertion variables. They 

correspond to selection operators and assertion arcs of Extended Dataflow Net-

work respectively. By making use of selection operators and assertion variables, 

we can express and reason dynamic problems with useful complex constraints. 

For example, solving Fibonacci sequence is a well-known dynamic problem. 

The sequence fib is defined mathematically as follows: 

t if f = 0 or f = 1 
fibt = 

fibt-i + fibt_2 otherwise 

The problem can be coded in Lucid as: 

fib = 0 fby 1 fby fib + next fib; 
We can find the whole Fibonacci Sequence by giving the initial condition 
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that the first two numbers are 0 and 1 respectively. The sequence is 0, 1, 

1, 2, 3, 5, 8, 13, and so on. However, if the initial condition is not given, 

the problem cannot be solved with the Lucid program. On the other hand, 

E-Lucid program can solve it by giving any two intermediate numbers, such 

as fib4 二 3 and fib^ = 5. 

We enhance the pLucid interpreter to obtain a prototype E-Lucid inter-

preter. It solves an E-Lucid program by constructing and solving Constraint 

Satisfaction Problems (CSPs) [27] with the help of ILOG [18] as the external 

CSP solver. 

The rest of the thesis is organized as follows. Chapter 2 introduces Dataflow 

Network and Lucid as background information, so that we can introduce Ex-

tended Dataflow Networks and E-Lucid with examples in Chapter 3. Chapter 4 

presents the implementation of the E-Lucid interpreter. Chapter 5 points out 

the differences between E-Lucid and other models of dynamic problems. We 

conclude the thesis in Chapter 6 by summarizing our contributions and shed-

ding light on possible directions of future research. 



Chapter 2 

Preliminaries 

This chapter provides the theoretical background of this work. We present 

the basic definitions of Constraint Satisfaction Problems (CSPs) [27]. In addi-

tion, we present Dataflow Networks [6, 26], which can model flows of dynamic 

data with various operators running in parallel. Dataflow networks make the 

expressions of iterations and data flows natural and simple. Lucid [3] is a 

programming language to specify and execute dataflow networks. 

2.1 Constraint Satisfaction Problems 

A constraint [31] c can be considered as a predicate that maps to true or 

f a l se . We define var(c) as the set of variables involved in constraint c. 

A valuation 0 for a set V of variables is an assignment of values to the 

variables in V. Suppose V = {^；!,... ,Vn} then 6 is written as {vi ^ c / i , . . . , 

Vn 4 dn}, meaning that each Vi is assigned the value d” 

A constraint c over variables V is given a value 0(c) over variables V. 6»(c) is 

obtained by replacing each variable by its corresponding value. If var(c) C V 

and 6>(c) holds, 6> satisfies c and is a solution of c. A constraint c is satisfiable 

if it has a solution. Otherwise it is unsatisfiable. Given a set of constraints C, 

interpreted as a conjunction, if 6' is a solution of all c G C, we abuse terminology 

by saying that 0 satisfies C and is a solution of C. A set of constraints C is 

4 
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satisfiable if it has a solution. Otherwise it is unsatisfiable. 

A constraint satisfaction problem{CSF) [31] p is a tuple (X , D, C), where 

— {冗1，• • •，3/̂  } is a finite set of variables, D is a finite or infinite set 

containing, for every x G X , an associated domain D̂： giving the set of possible 

values of x, and C is a finite set of constraints, where var(c) C X for all c e C. 

p is satisfiabk if C A G D^^ 八…八； G D^^ has a solution. Otherwise it 

is unsatisfiable. 

2.2 Dataflow Networks 

Suppose there is a sequence of points, representing discrete equally spaced 

time points, indexed hy t e Z >0. The value x associating with each of these 

points is called a datastream, and the points are called datons. We use x[t] to 

denote the {t + 1)认 daton of x, where t is the index of x[t]. A valuation 0 over 

a set U of datons is an assignment of values to the datons. Suppose U = {wi, 

..•，Un}, 0 is written as {ui ^ di, . . . , u^ ^ d^} meaning that each u, is 

assigned the value di. We use a number with a pair of double quotes to denote 

a daton which is assigned the value of the number. For example, “7” denotes 

a daton assigned the value 7. If x[i] ^ a, for alH 6 ^ > 0, we can denote the 

values of the first i + 1 datons of x hy x = { “ao，，，"ai", “<^2”, ..” …�’ 

or simply x =�a。，ai, a?’ ."，a” . . .� . For example, x i s � 4 , 1’ 4，7, 2, ...) if we 

have {x[0] 4, 1, x[2] 4 4，x[3] 7, x[4] 2}. 

Each datastream has an infinite number of datons. Each daton can take 

value from its associated daton domain, which defines the value type of the 

datons. There are various daton domains, such as integer, real, boolean, or 

any other user-defined daton domains. All daton domains must include the 

special value eod which denotes the “end of data” and marks the end of a 

datastream. For example, if a datastream x has integer daton domain, then x 

is an integer datastream and x[t] must be an integer or eod for allt e Z >0. 
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If a daton x[t] of a datastream x takes the value eod, x[t'] must take the value 

eod for all integers t' > t. 

Constant datastreams are datastreams with identical datons, which are 

denoted with boldface hereafter. For example, all datons of the datastream 7 

take the value 7, and all datons of the datastream eod take the value eod. 

A Dataflow Network is represented by a directed graph with datastreams as 

arcs. The nodes represent dataflow operators (or simply operators) for trans-

forming datastreams. Each n-ary dataflow operator defines a function with n 

incoming arcs and one outgoing arc, except that the operator split (which 

will be described later) has one incoming arc and more than one outgoing arc. 

The datastreams at the incoming arcs are called operand datastreams, datons 

of which are called operand datons. The datastreams at the outgoing arcs are 

called output datastreams, datons of which are output datons. An operator 

fires a daton to its outgoing arc(s) by evaluating the result with the operand 

daton(s) and assigning the result to the output daton(s). Each operator runs 

in parallel independently. An operator fires immediately if all the required 

operand datons are available, regardless of whether other operators have fired 

or not. The unique solution of a Dataflow Network is the valuation 0 over all 

the datons, so that the values of all the datons are the same as the result of 

the transformation of the operators. 

Figure 2.1 is a simple dataflow network. In this example, + is a binary 

operator, which is denoted by a node labelled + with two incoming arcs and 

one outgoing arc. The datastream 1 supplies infinite datons of “1”，meaning 

that a[t] h^ 1 for alH G ^ > 0. The “0” at the arc 6 is a daton meaning that 

刚 0. 

The dataflow operator + requires two datons to operate at any time. At 

the 1 站 firing of +, as a[0] 1 and 6[0] 0, + reads the datons and fires an 

output daton "1" to b. At the 2- firing, as a[l] 1 and b[l] 1, + fires 

"2" to arc b. At the firing, as a[2] 4 1 and b[2] ^ 2, + fires “3” to the 
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1 — ^ — — 
r ^ + 

0 

Figure 2.1: A simple dataflow network 

1 ^ + 
b 

0 

<0’ 1，2，3，_•.〉 

Figure 2.2: Generating a datastream with dataflow network 

arc b. The process continues as shown in Figure 2.2. We can get the solution 

U拓2〉。{刚 t + 1} by reading the arc b. 

We can use dataflow networks to generate datastreams of more complicated 

patterns. Figure 2.3 shows the dataflow network solving a simplified version 

of the "Hamming's problem", which is to generate the sequence of all numbers 

of the form 3" in increasing order without repetitions for all non-negative 

integers i and j : 1,2,3,4，6, 8, 9,12, and so on. The dataflow operators perform 

the following actions: 

• double fires output datons which are equal to the operand datons times 

2. 

• triple fires output datons which are equal to the operand datons times 

• split fires multiple identical copies of its operand datons. 

• merge fires an output datastream with datons obtained by sorting the 
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double  

— m e r g e split 一  

triple ^  

X  

1 

Figure 2.3: The dataflow network of the Hamming's problem 

operand datons in increasing order with duplicated datons removed, pro-

vided that each of the operand datastreams is in increasing order. 

Initially, all arcs are empty except the daton “1” in the arc x, implying 

that x[0] 1. At the firing of sp l i t , it makes two copies of “1” as 

operand datons of double and t r i p l e , which fire “2” and “3” to arc y and 

z respectively. The smaller daton is “2”, which is fired by merge, so that 

x[l] h^ 2. The daton “3” is waiting at the arc z. At the firing, s p l i t 

makes two copies of “2” as operand datons of double and t r i p l e , which fire 

"4" and "6" to arc y and z respectively. Recall that "3" is waiting at arc z, 

the smaller daton among “4” and "3" is “3”，which is fired by merge, so that 

x[2] 3. The datons “4” and “6” are waiting at the arcs y and z respectively. 

At the firing, s p l i t makes two copies of “3” as operand datons of double 

and t r i p l e , which fire “6，, and “9” to arc y and z respectively. Recall that 

"4" and "6" are waiting at the arcs y and z respectively, the smaller daton is 

“4”，which is fired by merge, so that x[3] 4 4. The daton “6” is waiting at arc 

y, while “6” and "9" are waiting at the arc z. At the firing, sp l i t makes 

two copies of “4” as operand datons of double and t r i p l e , which fire “8” and 

“12” to arc y and z respectively. Recall that two “6，，s are waiting at the arcs 

y and z respectively, both of them are consumed as they are the same. The 

daton “6” is fired by merge, so that x[4：] 6. The daton “8” is waiting at 
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<2, 4，6, 8 , … � double <1’ 1 3，4, 6, 8, 9, 1 2 , … � 

y\ r I 
厂 merge split  

< 3 ’ 6，9，12 … 〉 t r i p l e 〈 丄 ， 之 ’ 3’ ‘，g，g，9，12,…〉 

1 ^  
<1, 2, 3，4，6，…〉 

Figure 2.4: Generating datastreams with the dataflow network of the Ham-
ming's problem 

arc y, while “9” and “12” are waiting at the arc z. The process continues, as 

shown in Figure 2.4. We can get the sequence� 1, 2, 3, 4，6，... ) by reading 

the arc x. 

The Dataflow Network solves the simplified Hamming's problem intuitively: 

implies the usage of double and triple. In fact, the problem is difficult 

to formulate in imperative programming languages because we want all num-

bers [34]. The advantages of Dataflow Networks are that they are easy and 

natural to express iterations and data flows directly. 

2.3 The Lucid Programming Language 

Lucid [3] is a dataflow programming language for specifying and executing 

Dataflow Networks. The following example Lucid program^ gives a brief 

overview of the language, 

a = 1； 

b = a + 2; 

A Lucid program consists of statements, each of which is an equation ended 

iThe Lucid code is shown in teletype font. Variables of the same name in teletype font 
and italic font should be understood interchangeably. 
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by a semicolon “;”. There is a variable on the left hand side of an equation, and 

an expression on the right hand side. An expression is composed of constants, 

variables, operators, and functions. For example, a = 1 is a statement, where 

a is a variable, and 1 is an expression with a constant 1. Another example 

statement is b = a + 2, where a and b are variables and a + 2 is an expression 

with one operator + and two operands: a variable a and a constant 2. Detail 

descriptions of the terms are given in the following subsections. 

2.3.1 Daton Domain 

Recall that each daton of a datastream can take a value from the daton do-

main. Daton domains of datastreams in Lucid can be numbers, boolean or 

any other types. There is no explicit declaration for daton domains. They 

are implicit and determined at compile time using type analysis of the associ-

ated expressions [24]. The type analysis is based on the types of the constant 

datastreams and operators. 

2.3.2 Constants 

Lucid provides numeric constants, true, false, and the special constant eod. 

As mentioned earlier, a constant is an infinite datastream of datons where all 

the datons are identical. For example, 3.2 denotes the real constant datas-

tream with 3.2 as the values of all the datons, false denotes the boolean con-

stant datastream with false as the values of all the datons, and eod denotes 

the special constant datastream with eod as the values of all the datons. 

2.3.3 Variables 

A variable in Lucid is simply a named expression. Its name can be any alphanu-

meric identifier starting with a letter and can include the special character “_” 

(underscore). For example, root, -xmlue, etc. 
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2.3.4 Dataflow Operators 

Lucid has several predefined dataflow operators that can be divided into two 

general categories: point wise and non-point wise operators. With pointwise 

operators, computing an output daton at a certain index in the datastream 

requires only the datons at the same index from the operand datastreams. All 

operators for which this is not true are non-pointwise operators. 

An operator must have at least one incoming arcs and one outgoing arc 

regardless of its class. Lucid does not need the operator s p l i t . Instead, copies 

of a daton in an arc will automatically be made when necessary. It is achieved 

by labelling the required arc with a variable. Referring to the variable for 

multiple times will automatically make copies of the datons of the variable. 

For example, in the following program and the corresponding graph: 

7 3 1 - I y , 
X = 7; ^ 
y = 3 - X； 7__aL_  

^ H 么 
z = X + 2; + 

2 ^  

The arc with operand datastream 7 is labelled x. Variable x is referred in 

y = 3 - X and z = x + 2, so that two copies of datons of x are made. 

Arithmetic, Relational, and Logical Operators. The arithmetic, rela-

tional, logical, and bitwise logical operators in Lucid are similar to those in 

the C language [28] and they are all pointwise. The difference is that dataflow 

operators work on datastreams instead of scalars. The arithmetic operators 

are + for addition, - for subtraction, * for multiplication, / for division, and 

unary ~ for negation. The relational operators are > for "greater than", >= for 

"not less than", < for “less than", <= for “not greater than", eq for equality, 

and ne for inequality. The logical operators are and for conjunction, or for dis-

junction, and not for negation. The following are some example expressions, 
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in where the left hand sides of = are expressions and the right hand sides are 

the corresponding values of datons in the datastreams. 
A = { 0, 1, 2, 3, ...〉 

B = { 1, 3, 5’ 7 , . . .〉 

A-^B - ( 1’ 4, 7, 1 0 , . . .〉 

A < 2 — ( true, true, false, false,...〉 

Operators first a n d next. The first and next operators are the two sim-

plest non-pointwise unary Lucid operators. Operator first returns a datas-

tream, each daton of which is the first daton of the operand datastream. Op-

erator next returns a datastream that consists of all but the first daton of 

its operand datastream with the order preserved. In other words, the output 

datastream is the operand datastream with two modifications: (a) the first 

daton is removed and (b) the indices of the rest of the datons are shifted by 

- 1 . 

A = ( 0, 1, 2, 3，...) 

first A = 〈 0’ 0, 0， 0 ,…〉 

next A 二 〈 1, 2, 3’ …〉 

next next A 二 〈 2， 3 ,…〉 

first next next A = ( 2, 2, 2, 2, …〉 

Operator fby. The operator fby (pronounced "followed by") is a binary 

non-pointwise operator that accepts two operand datastreams and produces 

an output datastream, first daton of which is from the first daton of the first 

operand datastream and subsequent datons of which correspond to all the 

datons of the second operand datastream with order preserved. 



Chapter 2 Preliminaries 13 

w 

. fby ——-^ + 

y ^ 
0 

Figure 2.5: x = 0 fby x + 1 

A 二� 0， 1， 2, 3 , . . . ) 

B = � 11’ 21, 31, 41，...) 

A f b y B 二� 0’ 11，21, 31，41，…� 

^ f b y A = ( 11, 0’ 1， 2, 3 , . . . ) 

A f b y B fby A^B 二 ( 0, 11, 11, 22, 33，…� 

A f b y next B : ( 0, 21, 31，41’ ...) 

Figure 2.5 shows the dataflow network of the example Lucid code: 

X = 0 fby X + 1; 

The dataflow operator fby gets the operand daton “0” fired by the datas-

tream 0. Thus fby is able to fire daton “0” and x[0] 0. The operator + 

reads the daton "0" and the "1" produced by the datastream 1, so that + 

fires output daton “1”. The output is read by fby which fires “1” and thus 

x[l] 1. The operator + reads the daton “1” and the “1” produced by the 

datastream 1 to fire output daton “2”. The output is read by fby which fires 

"2" and thus x[2] 2. The process continues and we can see that x[t] t for 

alH G ^ > 0. 

Operators attime. The attime operator takes two operand datastreams, a 

base datastream and an index datastream to create an output datastream by 

using eacE daton of the index datastream as an index or a context into the 

base datastream. 
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A = 〈 1’ 1, 2， 3 , 5, 8, 13, 21, 34，55,...〉 

^ = ( 1, 2, 4, 8, 7, 0 ， 5 ， 2 ， 3 ， 9 , . . . 〉 

A attime B = 〈 1, 2，5, 34，21, 1’ 8， 2, 3’ 55，...) 

Operator if-then-else-f i. The if一then—else—fi operator takes three 

datastreams, a boolean datastream and two base datastreams: namely P, A, 

and B respectively. At the {t + 1)认 firing, i f - t h e n - e l s e fires daton of A[t] if 

P[t] is true, and B[t] otherwise. Here is an example. 

P = ( true, false, false, true,...〉 

A 二〈 10， 1， 2, 3 , … 〉 

B = ( 21, 2， 4, 8 , … 〉 

if P then A else B fi = ( 10， 2, 4, 3 , . . .〉 

Operators asa, wvr, upon. The Lucid operator asa (shorthand for "as soon 

as") accepts two operand datastreams and produces an output datastream. 

This operator can be thought of as producing an operand dependent constant 

datastream. The daton of this constant is the k仇 daton of the first operand 

datastream such that the k仇 daton of the second operand datastream is true 

and all datons prior to it are false. Here is an example. 

A = 〈 10， 11， 29’ 23, 13，...) 

P = ( false, false, false, true, true,...〉 

A asa P = ( 23， 23, 23， 23， 2 3， 2 3， 2 3 ,…〉 

Operator asa can be defined in terms of f i r s t , next and i f - t l ien-e lse . 

The statement y = x asa p can be rewritten into: 

y = first (if p then x else next y fi) ； (2.1) 

The operator wvr (shorthand for "whenever") has two operand datastreams 

and one output datastream. This operator selects those datons from the first 

operand datastream whose corresponding datons in the second operand datas-

tream are true. The output datastream, in a sense, is a filtered version of 
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the first operand datastream where the extent of filtering is determined by the 

second operand datastream. 
A = ( 11, 29， 23, 13’ 21， 34,...) 

P = ( false, false, true, true, false, true,...〉 

A wvr P = ( 23, 13， 34， ...) 

Operator wvr can be defined in terms of attime, fby, and if-ttien-else. 

The statement y = x wvr p can be rewritten into: 

y = X attime t2; 

t2 = tl fby (tl attime t2+l)； 
(z.zj 

tl = if p then time else next tl f i ； 

time = 0 fby time + 1 ； 

The binary operator upon "stretches" the first operand datastream is based 

on the second datastream. Specifically, the A:认 daton of the output datastream 

is the pth [p < k) daton of the first operand datastream such that p of the first 
k datons of the second operand datastream are true. 

A = ( 10， 11， 29, 23， 5’ 8, 13, 21’ …� 

P = ( false, false, true, true, true, false, true, false,...) 

A upon 
p = ( 10, 10， 10, 11， 29， 23， 23， 5’ …〉 

Operator upon can be defined in terms of attime, fby, and if-then-else. 

The statement y = x upon p can be rewritten into: 
\ 

y = X attime tl; 
(2.3) 

tl = 0 fby if p then tl+1 else tl fi; 

Operator iseod. Operator iseod tests if its daton operand is “eod”. It 

returns true if it is and returns false otherwise. 
X = ( 1, 4, eod, eod, eod,...〉 

iseod X = ( false, false, true, true, true,...〉 
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Associativity a n d Precedence Rules The following table gives the asso-

ciativity of infix operators in Lucid: 

Associativity Operators 

left +, /，or, and, asa, wvr, upon, if-then-else-f i 

right fby 

We list here the hierarchy of precedences amongst Lucid operators. Oper-

ators with lowest precedences are at the top of the list, and ones with highest 

precedences are at the bottom. 

fby  

asa, upon, wvr 

if-then-else-fi 

or 

and 

not 

eg, <=s >, >= 

+ ’ -

*,/ 
first, next, iseod 

2.3.5 Functions 

Other than operators, nodes of Dataflow Network can also be represented by 

Lucid functions. Lucid has several predefined functions, including sin for sine, 

cos for cosine, tan for tangent, log for logarithm, sq for square, sqr for square 

root, and pow for power. Each function must have one outgoing arc and at 

least one incoming arcs. 
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2.3.6 Expression and Statement 

An expression is comprised of constants, variables, operators, and functions. 

An expression can be just a constant datastream, e.g. 7; or a variable, e.g. 

X； or it can be operators / functions with their corresponding operands, e.g. 

a+7. A statement is an equation for a variable and an expression, e.g. x 

=a+7. In a statement 5： cc = E, s and E are the defining statement and 

defining expression of x respectively, while x is their defined variable. In a 

Lucid program, each variable has a unique defining statement and a unique 

defining expression. 

2.3.7 Examples 

We use some examples to illustrate applications that can be modelled by Lucid. 

Fibonacci Sequence 

A Fibonacci sequence fib is defined mathematically as follows: 

f t i f 力=0 or 力=1 
fibt = 

fibt-i + fibt-2 otherwise 
\ 

The problem can be coded in Lucid as: 

fib = 0 fby 1 fby fib + next fib; 

The statement states that the first and second datons of fib are 0 and 1 

respectively. The subsequent datons are computed by adding the preceding 

two datons. To compute fib[3], one needs to compute the sum of fib[2] and 

fib [1]. We know that fib [1] is assigned 1 and fib [2] is the sum of fib [0] and fib[l], 

which are already assigned values. 

From this example, we can see that the problem can be coded in Lucid 

naturally and intuitively. 
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wk  
、一乂 ‘ 

Figure 2.6: The Four Cockroaches Problem 

Four Cockroaches P r o b l e m 

There are four cockroaches at the four corners of a square, one facing another 

in a cyclic manner in the anti-clockwise direction, with corresponding start 

coordinates [0.0, 0.0]，[10.0, 0.0], [10.0, 10.0], and [0.0，10.0] as shown in Fig-

ure 2.6. Each cockroach walks towards the next cockroach in anti-clockwise 

direction, and they can move distance unit d in each time unit. We would like 

to find out the traces of the four cockroaches. We model the problem with the 

following Lucid code, where the datastreams xi and yi represent the x and y 

coordinates of cockroach i respectively. 

The step distance d is defined as: 

d = 0.01; 

The distance between cockroaches i and j is V(工J.—们尸 + {VJ 一 y印.The 

coordinates are defined as: 

xl = 0.0 fby xl + d*(x2 - xl) / sqr(sq(x2 - xl) + sq(y2 - yl))； 

yl = 0,0 fby yl + d*(y2 - yl) / sqr(sq(x2 - xl) + sq(y2 - yl))； 

x2 = 10.0 fby x2 + d*(x3 - x2) / sqr(sq(x3 - x2) + sq(y3 - y2))； 
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t I xl[t] I yl[t] x2[t] y2[t] x3[t] y3[t] x4[t] y4[t] 
~0T~ 0.0 0.0 10.0 0.0 10.0 10.0 0.0 10.0 
"1 0.01 — 0.0 — 10.0 0.01 9.99 10.0 ~ 0.0 "9.99 
" 2 0 . 0 2 ~1.0Qle-05 —9.99999 0.02 9.98 9.99999 "~l.Q01e-Q5 "9.98 

0.03 3.QQ4e-Q5 9.99997 0.03 9.97 9.99997 "~3.QQ4e-Q5 "9.97 
"T"0.0399999 6.01QQle-Q5 —9.99994 0.0399999 9.96 9.99994 ~6.01QQle-Q5 —9.96 
T"0.0499998 ~0.QQQ1QQ2 —9.9999 0.0499998 9.95 9.9999 —0.0001002 —9.95 
T " 0.0599997 0.000150351 9.99985 0.0599997 9.94 9.99985 Q.Q0Q15Q351 "9.94 
~r~Q.0699995 Q.0QQ21Q561 T99979 0.0699995 9.93 9.99979 I丽 0 2 1 0 5 6 1 

T"T.0799993 Q.0QQ28Q842 9.99972 "W^9993 9.92 9.99972 I而0280842 
~90 .0899990 .000361203 9 . 9 9 9 6 4 0 . 0 8 9 9 9 9 9 . 9 1 9.99964 O.QQQ3612Q3~ 9.91 

I I I 1 1 1 1  
Table 2.1: Generating a datastream with dataflow network 

y2 = 0.0 fby y2 + d*(y3 - y2) / sqr(sq(x3 - x2) + sq(y3 - y2))； 

x3 = 10.0 fby x3 + d*(x4 - x3) / sqr(sq(x4 - x3) + sq(y4 一 y3)); 

y3 = 10.0 fby y3 + d*(y4 - y3) / sqr(sq(x4 - x3) + sq(y4 - y3)); 

x4 = 0.0 fby x4 + d*(xl - x4) / sqr(sq(xl - x4) + sq(yl - y4))； 

y4 = 10.0 fby y4 + d*(yl - y4) / sqr(sq(xl - x4) + sq(yl - y4))； 

The solution of the coordinates at the first 10 time units are shown in 

Table 2.1. 

As shown in Figure 2.7, by plotting the solution at the first several thousand 

time units, we can find that the four cockroaches will finally meet at the center 

of the squares. 

2.3.8 Implementation 

Figure 2.8 shows the pseudo-code of the main function of the pLucid inter-

preter, LUC ID interpreter. Instead of printing the values of all variables, 

LUC ID interpreter prints only the values of variables of interest. The param-

eter of LUC ID interpreter is P, the set of variables of interest. At Line 1 in 

the algorithm, ( is the valuation consisting of assignments we have obtained, 
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Figure 2.7: Solution of the Four Cockroaches Problem 

and is initialized to { } . At the foreach block at Line 2, all datons of variables 

of interest with index t are assigned values and printed. When we mention “at 

stage i” in Dataflow Network afterwards, it means the stage when the loop 

index t of foreach block at Line 2 is i. At the stage, all variables of interest 

at index i — 1 have been assigned values, but at least one of those at index i 

have not been assigned values. 

We are unable to solve a Dataflow Network within finite time due to the 

infinite number of datons of datastreams. For example, we are unable to find 

values of the whole Hamming sequence within finite time by modelling the 

Hamming problem in Dataflow Network, as the sequence is a datastream with 
infinite number of datons. 

If the pLucid interpreter prints the solution only when the problem is com-

pletely solved, nothing will be printed and the program will run forever as 

the solution will never be found. Instead, pLucid interpreter prints partial 
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/ * • • 
P : The set of variables of interest 

t : An integer counting stage 

* / 
LUCIDinterpreter (P) 

begin 
for Vt G ̂  > 0 d o 

1 C ：= {}; 
2 foreach v e P do 

print demand {v[t]̂  t , ( ) ] 
end 

end 
end 

/ * . 
cvof : A constant, variable, operator or function 
u : The value of daton to be driven after demand 
7 
demand {cvof ^ t , ( ) 
begin 

if cvof is a variable then 
/ * if cvofit] is already assigned a value*/ 
if lvalue s . t . {cvof[t] ^ value) G C then 

u := value] 
else 

driving := the constant / variable / operator / function driving 
cvof [t]； 

u := demand [driving, t,(); 
(：二 C U {cvof[t] ^ u}; 

end 
else if cvof is an operator or function then 

/ * This is the (t + 1 产 firing of c v o f ” 
the operands of cvof are r i ,…，r几； 

foreach operand r\ do 
t' ：二 the index of ry, 
/* For example, next has one operand with f = t 一 1 */ 
valuei := demand (r,, t', C)； 

end 
u : : evaluation of cvof with operand values {valuei, ..., valuCn}] 

else if cvof is a constant then 
u value of ct;o/[0]; 

return u] 
end 

Figure 2.8: Pseudo-code of LUCIDinterpreter and demand 
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solution, which is a subset of the solution. At the foreach block at Line 2 of 

Figure 2.8, for each d G P, v[t] is printed immediately when it is assigned a 

value. We do not need to suspend the printing until v[t] is assigned a value for 

all t G > 0, as the valuation obtained must be a partial solution. 

LUCIDinterpreter assigns a value to a daton by a demand-driven schema. 

With the schema, when a constant of a Dataflow Network is demanded, it 

drives the daton waiting at the constant. When a node is demanded, the 

incoming arcs of the node are demanded. When an arc is demanded, it drives 

the daton waiting at the arc. If no daton is waiting, the node at the tail of the 

arc is demanded. 

Figure 2.8 shows the pseud-codes of demand, the function handling the 

demand-driven schema. One parameter of demand is cmf, which can be a 

constant, a variable, an operator, or a function to be demanded. The param-

eter t records the index. The parameter ( is the valuation consisting of the 

assignments we have got. The function demand stores the value of daton to be 

driven at u and returns it. If cvof is a constant datastream, its daton is driven. 

In the example dataflow network shown in Figure 2.9 (a), if cvof is 7, “7” is 

driven. If cvof is an operator or a function, the operand datastreams of cvof 

are demanded and the evaluation result is driven. In the example dataflow 

network shown in Figure 2.9 (b), if cvof is next, “2” and “3” are driven at the 

1 对 and demands respectively. If cvof is a variable, the value of cvof[t] is 

driven if cvof[t] has been assigned a value; otherwise the value is obtained by 

demanding the constant, variable, operator, or function driving the daton to 

cvof[t]. In the example dataflow network shown in Figure 2.9 (c), if cvof is x’ 

x[t] is driven if x[t] has been assigned a value, or fby is demanded otherwise. 

E x a m p l e 2.1 Taking the dataflow network of Figure 2.5 as an example, we 

suppose X is the variable of interest. 

At stage 0, x demands fby to get the value of the first daton. For simplicity, 



Chapter 2 Preliminaries 23 

• 1̂，2, 3，•••〉 2, 3，•••〉 ^ 

n e x t ^ ^ “ f b y “ 
7 H  

(a) (b) (c) 

Figure 2.9: Examples of Demands 
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Figure 2.10: Demands at stage 0 

we express it as "the daton x[0] demands fby" . The operator f by demands y, 

which demands 0. The constant datastream 0 drives “0” to y, which drives 

“0” to fby. The operator fby drives “0” to x[0]. Thus w e obtain the valuation 

{x[0] 0}. The process can be represented by Figure 2.10, where the dash 

arrows represent that the nodes or arcs at the arrow tails demand datons of 

the nodes or arcs at the arrow heads. The circled numbers labelling the dash 

arrows are the order of demands. The uncircled numbers labelling the dash 

arrows are the datons to be driven as the result of the demand. 

At stage 1，x[l] demands fby , which demands w[{}]. The daton de-

mands + , which demands ^[0] and x[0]. The daton ^[0] demands 1, which 

drives "1" to 么[0]. The variable z drives "1" to +• As x[0] is already assigned 

0, "0" is driven to +. The operator + evaluates 1 + 0 and drives the result, 

””，to w[0]. The variable w drives “1” to fby , which drives “1” to Thus 

we obtain the valuation {x[0] 0, 1}. The process is as represented 

in Figure 2.11, where the repeated order numbers indicate that the demands 
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Figure 2.11: Demands at stage 1 

are invoked in parallel. The process continues and we can obtain the values of 

other datons of x. 口 



Chapter 3 

Extended Dataflow Network 

This chapter presents Extended Dataflow Network, which is an extension of 

Dataflow Network with two additional components, namely “assertion arcs" 

and "selection operators". Their usages are introduced with examples. We 

also define E-Lucid, which is a language for specifying Extended Dataflow 

Network. 

3.1 Assertion Arcs 

An Extended Dataflow Network is a Dataflow Network associated with a special 

set of boolean arcs Va, where the arcs are called assertion arcs. An assertion 

arc is satisfied if it is assigned the constant datastream true; it is unsatisfied 

otherwise. A solution of an Extended Dataflow Network is a valuation over all 

datons of all labelled arcs, so that the values of all the datons are the same as 

the result of the transformation of the operators, and all assertion arcs in Va 

are satisfied. In graphical representation of Extended Dataflow Networks, an 

assertion arc is an arrow with a hollow arrow head, whereas an ordinary arc 

is represented by an arrow with a solid head. In Figures 3.1 and 3.2, the arcs 

labelled z are assertion arcs. 

In the example of Figure 3.1, x[t] is t, y[t] is ^ + 1, and y[t] - x[t] is 1 for 

t e Z > 0. We can see that z[t] true for t e Z > 0, which means that z is 

25 



Chapter 3 Extended Dataflow Network 26 

+ 1 

1 

‘―W X 

1 • fby _ _ f _ _ 2 
— • e q > 

2 J Z ^ 
L f b y ^ 

~  

+ 1 

Figure 3.1: An Extended Dataflow Network with an assertion variable 
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Figure 3.2: An Extended Dataflow Network with an assertion variable but 
without solution 
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satisfied. Thus the only solution is ^ y[t] t + 1, z[t] i-̂  true; . 

In the example of Figure 3.2, x[t] ^ t + 1, y[t] ^^ 2t + 1, y[0] 二 x[0]， 

and y[t + 1] x[t + 1] for t G ^ > 0. We can see that ^[0] true and 

z[t + 1] false ioT t e 2 > 0. As z ^ true, z is unsatisfied. Thus there is 

no solution. 

3.2 Selection Operators 

There are four selection operators, namely the "discrete choice operator", the 

"discrete committed choice operator", the "range choice operator", and the 

"range committed choice operator”. They allow selection of datons from a 

collection of datastreams to fire. Thus they are collectively named as selection 

operators. Graphically, this class of operators are denoted by a diamond-

shaped node. In this section, we give their syntactic construction rules, and 

explain their meanings and usages. 

3.2.1 The Discrete Choice Operator 

The discrete choice operator is an n-ary commutative and non-pointwise oper-

ator, denoted by “[[]]”. The output datons are chosen from one of its operand 

datons. Suppose the operand datastreams of the discrete choice operator are 

iTi，..., Xn, and the output datastream is y. The output daton y[t] at the 

(t + 1 产 firing of the operator must be equal to one of Xi[t\, . . . , Xn[t]- In other 

words, =而W } is true. 

We use the Extended Dataflow Network in Figure 3.3 (a) to illustrate the 

idea. From the shaded part of Figure 3.3 (b), we can see that + 1 for 

t e Similarly, y[t] ^ t + 2 for ^ G ^ > 0 in the shaded part of Figure 3.3 

(c). In the shaded part of Figure 3.3 (d), a[t] can take either the value of x[t] or 

y[t] foi t e z > 0. Thus the set of solutions is ^ & 尤 , ^ 力+ 1’ 

y[t] ；̂  + 2} I A;, 二 z + 1 V A;,. 二 z + 2’ z e Z 2 0}. 
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Figure 3.3: An Extended Dataflow Network with a discrete choice operator 
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3.2.2 The Discrete Committed Choice Operator 

The discrete committed choice operator is an n-ary commutative and pointwise 

operator, denoted by “[]”. The output datastream is chosen from one of its 

operands. Note that different from the discrete choice operator, the discrete 

committed choice operator chooses an entire datastream rather than individual 

datons. It means that the operator always takes datons from the same arc once 

the arc is chosen. Suppose the operand datastreams of the discrete committed 

choice operator are Xi, . . . ， T h e output datastream y is equal to one of 

them. 

We use the example network in Figure 3.4 (a) to illustrate the idea. From 

the shaded part of Figure 3.4 (b)，we can see that x[t\ t + 1 for t € ^ > 0. 

Similarly, y[t] t + 2 for t G ^ > 0 in the shaded part of Figure 3.4 (c). In 

the shaded part of Figure 3.4 (d), a can take either the datastream x or y. It 

means that either all the datons of a are taken from x, or all of them are taken 

from y. Thus the two possible solutions are + y[A … + 2, 

a[t] + and 4 力十 1 ， + a[t\ t + 2}. 

3.2.3 The Range Choice Operators 

The family of range choice operators is a set of binary non-pointwise and 

commutative operators, denoted by “[[:]]”，“{{:]]”，“[[:}}”’ and “{ { : } }” . Each 

operator of the family has two operands, which are constant datastreams either 

both in the integer or both in the real domain, where the first operand has a 

smaller value than the second one. At each firing of the operator, an output 

daton with value lying between the values of the two operand datons is fired. 

It means that the values of the output datons of “[[:]],, at the {t + 1 产 firing of 

the operator must (1) be greater than or equal to the value of the first operand 

daton at index t, (2) be less than or equal to the value of the second operand 

daton at index t, and (3) have the same daton domain as the operand datons. 
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Figure 3.4: An Extended Dataflow Network with an discrete committed choice 
operator 
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5 ^ 

Figure 3.5: An Extended Dataflow Network with a range choice operator, of 
which operands have integer daton domains 

1 . 0 “ 

Figure 3.6: An Extended Dataflow Network with a range choice operator, of 
which operands have real daton domains 

The other three operators are similar, except that the output datons at index 

t cannot be equal to the value of the first operand daton for the operators with 

open brace “{{，，，and cannot be equal to the value of the second operand daton 

for the operators with close brace “}}，’. Suppose the two operand datastreams 

of “[[:]]” are Xi and X2 with the same daton domain U, the output datastream 

is y, and t e Z >0. If y[t] is assigned the value k, Xi[t] < k < X2[t] N k e U 

is true. If the operator "[[:]]" is replaced by “{{:]]’，，xi[t] < A: < ⑷八 A; G " 

is true. If the operator "[[:]]" is replaced by “[[:}}，’，Xi[t] <k < X2[t] eU 

is true. If the operator “[[:]]，，is replaced by “{{:}}”，Xi[t] < k < X2[t] A k e U 

is true. 

In the example of Figure 3.5, x has integer daton domain. Thus x[t] can 

take values 1, 2, 3, 4, or 5 for t G ^ > 0. In the example of Figure 3.6, x has 

real daton domain. Thus x[t] can take any real value between 1.0 and 5.0 for 
tez>0. 
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3.2.4 The Range Committed Choice Operators 

The family of range committed choice operators is a set of binary pointwise 

operators, denoted by “[:]，’’ ‘‘{:]，’，"[:}" and “{:}, , . Each operator of the family 

has two operands, which are constant datastreams either both in the integer or 

both in the real domain, where the first operand has a smaller value than the 

second one. A constant output datastream with daton values lying between 

the values of the two operands is fired. It means that the values of the output 

datons of “[:]” must (1) be greater than or equal to the value of the first 

operand datons, (2) be less than or equal to the value of the second operand 

datons, (3) have the same daton domain as the operand daton, and (4) be 

equal to the output daton at index 0. The other three operators have the 

same properties, except that the output datons must not be equal to the value 

of the first operand datons for the operators with open brace “{”，and must 

not be equal to the value of the second operand datons for the operators with 

close brace Suppose the two operand datastreams of "[:]" are Xi and X2 

with the same daton domain U, the output datastream is y, and t e Z >0. If 

y[t] is assigned the value k, Xi[t'] < k < X2[f] f\k e U 八 艺 2 0 is true. If 

the operator “[:]” is replaced by “{:]”，Xi[t'] < k < X2[f] 之 2 0 

is true. If the operator “[:]” is replaced by “[:}”, Xi[f] < k < X2[t']八 A: G f / 八 

t' e z >Ois true. If the operator “[:]” is replaced by " { : } " , Xi[t'] <k < X2[t'\ 

k 6 U /\ t丨 G 2： Q is true. 

In the example of Figure 3.7，x has integer daton domain. Thus x is 1, 2, 3, 

4, or 5. In the example of Figure 3.8，x has real daton domain. Thus x can be 

any constant datastream with daton values ranging from 1.0 to 5.0. It means 

that X is a constant datastream with real daton value k, where 1.0 < A; < 5.0. 

Different from the examples in Figure 3.5 and 3.6, x[t] must be equal to 

for any positive integer t in Figure 3.7 and 3.8. 
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Figure 3.7: An Extended Dataflow Network with a range committed choice 
operator, of which operands have integer daton domains 

Figure 3.8: An Extended Dataflow Network with a range committed choice 
operator, of which operands have real daton domains 

3.3 Examples 

We present examples of Extended Dataflow Networks with both assertion arcs 

and selection operators to illustrate their interactions. In this section, we use 

the term “at stage f, to represent the stage after the valuation of z[t - 1 

and before that of z[t]. If t is 0, “at stage t" represents the stage before the 

valuation of z[0 . 

E x a m p l e 3.1 Consider the example network in Figure 3.9. 

At stage 0, :e[0] and y[0] take the datons “1” and “3” respectively. It means 

that x[(}] 4 1 and y[0] 3 as shown in Figure 3.10. Thus y[0] — x-[0] is 2 and 

z[0] true. 

At stage 1 as shown in Figure 3.11, as z[l] can take true only if we have the 

valuation {u[0] 1,i;[0] 1} or {u[0] ^ 2,v[0] 4 2}. One of the valuations 

is chosen. For instance, the former is chosen. Thus we have x[l] 4 2, y[l] ^ 4, 

and ^[1] 4 true. 

At stage 2 as shown in Figure 3.12, as the discrete committed choice opera-

tor “[]” had chosen the daton from 1 at stage 1, it takes “1” from the same arc. 

The discrete choice operator "[[]]" chooses "1" so that z[2] can take "true". 
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2 

1 f b y ^ • z 
- 一 e q ^ 

3 f b y - | ^  

Figure 3.9: An Extended Dataflow Network with discrete choice operator, 
committed operator, and assertion variable 

u 1 

2 

1 fby _：[__ z i <1 > �JL,..., — ^ eq c>-
<2, ...> � t r u e , 

3 f b y -1 ^ • • •> 
<3, ."> 

Figure 3.10: Valuation of the network in Figure 3.9 at stage 0 
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— “ 2 

2 

1 fby ^ ” z 
< 1 2 > 

‘ ••‘ - ^ eq ^ 
^ [ <2, 2,...> ~ — ~〈 t r u e , 

fby -| ^ ^ true, 
<3’4，…> ...> 

— I ‘ h r ： ^ 2 

Figure 3.11: Valuation of the network in Figure 3.9 at stage 1, where u[0] 1 
and -̂ [0] 1. 

We then get u[l] ^ 1, 1’ x[2] G 3, y[2] ^ 5, and ^[2] true. The 

process continues, and we can get the solution ^ 1’ ^ 工， 

x[t] t + 1, y[t]…+ 3}. 

If u[0] 2 and i;[0] 2 instead, implying that x[l] ^ 3, y[l] ^ 5，and 

true as shown in Figure 3.13, another solution will be generated. At 

stage 2 as shown in Figure 3.14, “2” is chosen by the discrete committed choice 

operator “[]” from the same arc chosen last time. The daton “2” is chosen by 

the discrete choice operator “[[]]，，so that z[2] is possible to take “true”. We 

then get x[2] 5，y[2] ^ 7, and z[2] ^ true. The process continues, and we 

can get the solution Ug£>o{^W ^ 2，v[t] ^ 2, x[t] ^ + 1, y[t] ^ 2t + 3}. 
• 

Example 3.2 In Figure 3.15, it is given that x and y have integer daton 

domains. At stage 0, as ^[0] can take "true" only if x[0] < y[0], the possible 

valuations are {x[0] ^ 1, y[0] ^ 2}, {x[0] ^ 1, y[0] 3}, {x[0] ^ 1, 

y[0] 4}，{x[0] ^ 2, y[0] 4 3}, {x[0] ^ 2, y[0] ^ 4}, and {x[0] ^ 3, 

y[0] h-̂  4}. One of the valuations is chosen, for instance, {x[0] ^ 1’ y[0] ^ 2} 

as shown in Figure 3.16. Thus we have x[0] 4 1, y[0] h-> 2, and ^[0] 4 true . 
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二 - < 1 ， 1 , 2 

2 

1 二 fby ^ ^ 1__ z 
<1，2, 3’ …〉 — ^ Q q  

r <2, 2,...> ctrue, 
3 ^ fby -| ^ ^ true, 

<3’ 4,5，...> true, 
…> 

1 : ^ ^ 2 

Figure 3.12: Valuation of the network in Figure 3.9 at stage 2, where u[0] 1 
and '̂[0] i-> 1. 

——’ ——2 

2 

1 fby _ ] [ _ _ z 1 Q > 、i’ j’ ...， _ ^ eq  
<2, 2,...> —〈 t r u e , 

3 ~^ fby —I— ^ true, 

<3, 5, ...> ... > 

Figure 3.13: Valuation of the network in Figure 3.9 at stage 1, where u[0] ^ 2 
and 2. 
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< 2 , 2 ， . . . > " 2 

2 

1 fby ^ ^ i__ 1 

<1’ 3’ 5，..•> — ^ Qq o-
r <2, 2,...> <true, 

3 : f b y —I ^ • true, 
<3’ 5,7’ ...> true, 

...> 

— r ^ - < 2 ’ 2 , ? 2 

Figure 3.14: Valuation of the network in Figure 3.9 at stage 2, where w[0] 2 
and i;[0] i-> 2. 

Figure 3.15: An Extended Dataflow Network with range choice operator, range 
committed operator, and assertion variable 

；I3I^'<1，…〉，< 

4 • 丄 ] 少 <2，…〉1 

Figure 3.16: The valuation of the network in Figure 3.15 at stage 0, where 
x[0] 1 and y[0] 2. 
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3 — — < U ” . . �“ < z > 
2 ^ <true , t r u e , . . . > 
4 〈 [ 丄 ] � < 2 , 2 ’… � _ | 

Figure 3.17: The valuation of the network in Figure 3.15 at stage 1，where 
x[0] 4 1 and y[0] 2. 

At stage 1，as the range committed choice operator “[:]” had chosen “2” at 

stage 0, it has to take “2” again. The range choice operator “[[:]]” picks “1” so 

that ^[1] can take "true" . We then get x[l] f-f 1, y[l] ^ 2，and ^[1] 4 true 

as shown in Figure 3.17. The process continues, and we have the solution 

4 1 , 则 ^ 2，z[t] ^ true}. 

If we have {x[0] 4 1, y[0] 3, ^[0] t rue } or {x[0] 2，y[0] ^ 3, 

^[0] t rue } instead, other possible solutions will be generated. At stage 1, 

“3，，is chosen by the range committed choice operator “[:]” from the same arc 

chosen last stage. The daton "1" or “2” can be chosen by the range choice 

operator “[[:]]，，so that 么[1] can be "true" as shown in Figure 3.18. We then 

get a set of solutions {{jtezyoM^] ^ � ^ 3’ z[t] ^ t rue } | A:,. = 1 V 

h = e Z >0}. 

Moreover, if we have {x[0] ^ 1’ y[0] ^^ 4} ’ {x[0] 4 2, y[0] ^ 4}, or 

{x[(}] 3’ y[0] 4}, other possible solutions will be generated. At stage 1, 

“4” is chosen by the range committed choice operator “[:]，，from the same arc 

chosen last stage. The daton “1”, “2”, or “3” is chosen by the range choice 

operator “[[:]]’，so that z[l] is possible to take "true" as shown in Figure 3.19. 

We then get a set of solutions ^ kt, y[t] ^ 4, z[t] true} 

k^ = i\/ k, = 2 y h = 3,iez> 0}. 
• 
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2 <true, 2 <true, 

4 <3，3，..〉•[——true, 4 <3,3，…〉 true, 
. . .> • •. > 

2 <true, 2 <true, 

4 <3,3，…〉——I true, 4 <3，3,…〉取[ 'true, 

..• > . . • > 
Figure 3.18: The valuations of the network in Figure 3.15 at stage 1，where 
y[0] 3. 

A classical Dataflow Network must have exactly one solution, but an Ex-

tended Dataflow Network can have more than one solution or no solutions. 

The assertion arcs of an Extended Dataflow Network restricts the number of 

choices in firing. On the other hand, the non-deterministic operators allow 

selection of datons and datastreams, resulting in possibly greater number of 

solutions. 

3.4 E-Lucid 

This section presents E-Lucid, which is a language for specifying and executing 

Extended Dataflow Networks. E-Lucid augments Lucid with the addition of 

the selection operators and assertion variables. 

The selection operators of E-Lucid correspond exactly to those of Extended 

Dataflow Networks. The operand datastreams of the discrete choice operator 

and the discrete committed choice operator are separated by “，” and em-

braced by “[[]]” and “[]，，respectively. The operand datastreams of the range 

choice operators are separated by “:，，and embraced by "[[]]", “{{]]，'’ "[[}}", 

or " { { } } " . The operand datastreams of the range committed choice operators 

are separated by and embraced by “[]，’, “{]，，, 1}，，, or " { } " • 
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< t r u e , ^ c t r u e , 

——true, t r u e , 

...> • • • > 

2 < t r ue , 2 ^ < t r u e , 

4 <4,4，…〉——'true, 4 <4，4，…〉 ' t r u e , 
..• > . . • > 

2 < t r ue , 2 < t r ue , 

4 <4,4,...> — — — t r u e , 4 <4,4,…〉•[ t r u e , 
...> • •- > 

4 [ I ^ ] 〉 < 4 . 4 . . . . > ———' t rue , 4 <4,4,...> ^ t r u e , 
...> .•. > 

4 t r u e , 
• • • 〉 

Figure 3.19: The valuations of the network in Figure 3.15 at stage 1，where 
y[0] 4. 
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The statement on the left hand side of “=^” can be rewritten into the 
statements on its right hand side to eliminate the committed choice operators 
with the meaning preserved. The terms in italic fonts represent the following: 
1； is a variable, ê - is an expression, ki is a constant, and firstjv is a newly 
created variable. 

V = [ e i , e j ； 令 firstly = [ [ e i , e j ] ； (3.1) 
V = first JV f b y 

if (first V eq first ei) then next ei else 

if (first V eq first e几)then next e几 else 

false f i ... f i ; 

V = Iki: k2'] ； first.V = [K i tfcs]] ； (3.2) 
V = first first-V, 

V = Lki:k2}； first.V = [K i r/cs}}； (3.3) 
V = first first-”., 

V -- {hik^'] ； first.V = {{A: i:A:2]]; (3.4) 
V = first first JV., 

V = {ki: k 2 } ； � first JV = {{ki: fe}} ； (3.5) 

V = first firstJir, 

Figure 3.20: Elimination of committed choice operators 

The choice operators are built-in operators. The committed choice oper-

ators can be defined in terms of the classical Lucid operators and the choice 

operators as in Rules 3.1 to 3.5. 

Assertion variables of E-Lucid implement assertion arcs of Extended Dataflow 

Networks. To declare a variable v to be an assertion variable, a keyword assert 

is added at the beginning of the defining statement of v. An assertion variable 

is satisfied if and only if it takes the value true. We code the networks of 

Figures 3.9 and 3.15 in E-Lucid as in Examples 3.3 and 3.4 respectively to 

illustrate the idea. 
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E x a m p l e 3.3 E x a m p l e 3.4 

X = 1 fby [1,2] + X； X = [[1 : 3]]; 

y = 3 fby [[1,2]] + y; y = [4 : 6]; 

assert z = (y - x eq 2) ; assert z = (x + y eq 7); 

• • 

We give a formal semantics to E-Lucid programs. An E-Lucid program 6 

is a tuple {V, Va, E), in which V is a set of variables; ^ is a set containing, 

for every ̂； G V, an associated expression Ey； The set Va is a set of assertion 

variables, where Va C V. Given a valuation 0 over V and an expression e, 

0(e) is obtained by replacing variables in e by their corresponding values. 0 is 

a solution of S if 0{v) = 0{Ey) holds for all G V and {v[t] ^ true | ̂； € 14， 

teZ>o}co. 
— J — 

Some examples will be used to demonstrate the possible problems that can 

be modelled and solved by E-Lucid. 

3.4.1 Modified Four Cockroaches Problem 

We modify the Four Cockroaches Problem in Section 2.3.7, so that we know 

only the coordinates of cockroaches after one time unit from the initial time. 

We show how this can be specified in E-Lucid and the corresponding Extended 

Dataflow Network. 

There are four cockroaches at the four corners of a square, one facing 

another in a cyclic manner in the anti-clockwise direction, and their start x 

and y coordinates lie between 0 to 10. Their coordinates after one time unit 

are [0.01, 0.0], [10.0，0.01], [9.99, 10.0], [0.0，9.99] respectively. Each cockroach 

walks after the next cockroach in anti-clockwise direction, and they can move 

distance unit d in each time unit. We would like to find out the traces of the 

four cockroaches. 
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0.0 

< [[：]] 
10.0 

fby _ 

1 d r̂  

ilL^ _ ^ “ ~ ~ 
^ n + — • 

xl _ “ • ^  

^ — — + 叫 s q r ^ — — 

_ — " i  
0.01 H 

eq ^ 

xl _ first next H  

Figure 3.21: Part of the Extended Dataflow Network of the Modified Four 
Cockroaches Problem 

We model the problem with the following E-Lucid program, where the 

datastreams xi and yi with real domains represent the x and y coordinates 

of the cockroach z, sxi and syi represent the start x and y coordinates of the 

cockroach i. The statements marked with “*，，s at the end are represented in 

Figure 3.21 graphically, which form part of the Extended Dataflow Network of 

the problem. 

Step distance d is defined as: 

d = 0.01;* 

The coordinates are defined as: 

xl = sxl fby xl + d*(x2 - xl) / sqr(sq(x2 - xl) + sq(y2 - yl));* 

yl = syl fby yl + d*(y2 - yl) / sqr(sq(x2 - xl) + sq(y2 - yl))； 

x2 二 sx2 fby x2 + d*(x3 - x2) / sqr(sq(x3 - x2) + sq(y3 — y2))； 

y2 = sy2 fby y2 + d*(y3 一 y2) / sqr(sq(x3 - x2) + sq(y3 - y2))； 

x3 = sx3 fby x3 + d*(x4 - x3) / sqr(sq(x4 一 x3) + sq(y4 一 y3))； 
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y3 = sy3 fby y3 + d*(y4 - y3) / sqr(sq(x4 - x3) + sq(y4 - y3))； 

x4 二 sx4 fby x4 + d*(xl 一 x4) / sqr(sq(xl 一 x4) + sq(yl 一 y4))； 

y4 = sy4 fby y4 + d*(yl - y4) / sqr(sq(xl - x4) + sq(yl - y4))； 

The start coordinates are defined as follows. As only the first datons are 

considered, either the range choice operator or the range committed choice 

operator can be used. The range choice operator is chosen here: 

sxl = [[0.0 : 10.0]]；* sx3 = [[0.0 : 10.0]]； 

syl = [[0.0 : 10.0]]; sy3 = [[0.0 : 10.0]]； 

sx2 = [[0.0 : 10.0]]; sx4 = [[0.0 : 10.0]]; 

sy2 = [[0.0 : 10.0]]； sy4 = [[0.0 : 10.0]]; 

The coordinates after one time unit are defined as: 

assert axl = (first next xl eq 0.01);* 

assert ayl = (first next yl eq 0.0); 

assert ax2 = (first next xl eq 10.0); 

assert ay2 = (first next yl eq 0.01)； 

assert ax3 = (first next xl eq 9.99)； 

assert ay3 = (first next yl eq 10.0); 

assert ax4 二 (first next xl eq 0.0); 

assert ay4 = (first next yl eq 9.99); 

The solution is the same as that of the original Four Cockroaches Problem 

in Section 2.3.7, with start coordinates sxl [0] ^^ 0.0, syl [0] 4 0.0, ax2[0] 4 

10.0, ay2[0] ^ 0.0, ax3[(}] ^ 10.0, ayS[(}] ̂  10.0, ax4 [0] 4 0.0, and ay4 [0] 

10.0. 

In this problem, the coordinates of cockroaches after one time unit is given. 

Similarly, given the coordinates of cockroaches at any time unit to, we are able 

to find the coordinates at all indices t by modelling the problem in E-Lucid, 

even if t < to. Lucid is only able to find the coordinates with indices t > to. 
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We call this ability to find the values of datons by given the values of datons 

of larger indices as backward valuation，which is an advantage of E-Lucid over 

Lucid. 

3.4.2 Traffic Light Problem 

The Traffic Light Problem [14] is defined as follows. In a 4-way traffic junction 

(in Germany) with 8 traffic lights, where 4 lights {VI, VS, V4) for vehicles 

and 4 lights {PI, P它,PS, P4) for pedestrians as shown in Figure 3.22. The 

vehicle lights show colors in order of red (1)，red-yellow (2), green (3) and 

yellow (4)，and the pedestrian lights show colors in order of red (1) and green 

(3). Given integers i and j , where 1 < z < 4 and j = (1 + i) mod 4, the 

only possible signal combinations of Vi, Pi, Vj, and Pj are (1,1,3,3), (2,1,4,1), 

(3,3,1,1), and (4,1,2,1) as shown in Figure 3.23, so that the vehicles do not 

collide head-on, and the pedestrians and the vehicles do not cross the same 

road simultaneously. 

To model the problem, the variable ColorV is used to defined the order of 

light signals: 

ColorV = 1 fby 2 fby 3 fby 4 fby ColorV; 

Then the 8 traffic lights are defined using the discrete choice operator and 

the discrete committed choice operator as: 

VI = [ColorV, next ColorV, next next ColorV, next next next ColorV]； 

PI = [[1， 3]]； 

V2 = [ColorV, next ColorV, next next ColorV, next next next ColorV]； 

P2 = [[1， 3]]； 

V3 = [ColorV, next ColorV, next next ColorV, next next next ColorV]； 

P3 = [[1， 3]]； 

V4 = [ColorV， next ColorV, next next ColorV, next next next ColorV]； 

P4 = [[1， 3]]； 
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Figure 3.22: A 4-way traffic junction in Germany 
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Figure 3.23: The four possible signal combinations of adjacent traffic lights 
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The color combinations of Vi, Pi, Vj, and Pj can be expressed by using 

assertion variables to enforce safety constraints as follows: 
assert L12 = (VI eq 1 and PI eq 1 and V2 eq 3 and P2 eq 3) 

or (VI eq 2 and PI eq 1 and V2 eq 4 and P2 eq 1) 

or (VI eq 3 and PI eq 3 and V2 eq 1 and P2 eq 1) 

or (VI eq 4 and PI eq 1 and V2 eq 2 and P2 eq 1)； 

assert L23 = (V2 eq 1 and P2 eq 1 and V3 eq 3 and P3 eq 3) 

or (V2 eq 2 and P2 eq 1 and V3 eq 4 and P3 eq 1) 

or (V2 eq 3 and P2 eq 3 and V3 eq 1 and P3 eq 1) 

or (V2 eq 4 and P2 eq 1 and V3 eq 2 and P3 eq 1)； 

assert L34 = (V3 eq 1 and P3 eq 1 and V4 eq 3 and P4 eq 3) 

or (V3 eq 2 and P3 eq 1 and V4 eq 4 and P4 eq 1) 

or (V3 eq 3 and P3 eq 3 and V4 eq 1 and P4 eq 1) 

or (V3 eq 4 and P3 eq 1 and V4 eq 2 and P4 eq 1)； 

assert L41 = (V4 eq 1 and P4 eq 1 and VI eq 3 and PI eq 3) 

or (V4 eq 2 and P4 eq 1 and VI eq 4 and PI eq 1) 

or (V4 eq 3 and P4 eq 3 and VI eq 1 and PI eq 1) 

or (V4 eq 4 and P4 eq 1 and VI eq 2 and PI eq 1)； 

There are four possible solutions with different initial color combinations 

as shown in Figure 3.24. The set of the solutions is: 

{[Jtez>o{ [4力 + z mod 4] 2’ PI [4t + z mod 4] ^ 1, 

V2[4:t + I mod 4] 4, V2[4t + i mod 4] 1, 

V3[4:t + I mod 4] 2, P3[4:t + i mod 4] 1, 

V4 [4t + i mod 4] 4，V4 [At + i mod 4] 1, 

VI [4t + + 1) mod 4] 3, PI [4t + (i + 1) mod 4] 3, 

V2[At + (z + l) mod 4] 1，V2[At -f (z + 1) mod 4] h^ 1, 

V3[4t + (z + 1) mod 4] 3, + (z + 1) mod 4] 3, 
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V4 [At + (z + l) mod 4] h^ 1，V4 [At + (z + 1) mod 4] 1, 

VI [At + (z + 2) mod 4] 4, PI [it + (z + 2) mod 4] 1， 

V2[At + (z + 2) mod 4] 2, V2[At + (z + 2) mod 4] 1, 

V3[At + (z + 2) mod 4] 4, P3[At + (z + 2) mod 4] 1, 

V4 [At + (z + 2) mod 4] 2, V4 [it + (z + 2) mod 4] 1, 

VI [At + (z + 3) mod 4] 1，PI [At + (z + 3) mod 4] 1, 

V2[At + (z + 3) mod 4] 3， V 2 [ i t + (z + 3) mod 4] 3， 

V3[At + (z + 3) mod 4] 1, PS [it + (z + 3) mod 4] 1, 

V4 [it + (z + 3) mod 4] 3, V4 [4t + (z + 3) mod 4] 3, 

}\i e [0,1,2,3]} 

Classical Lucid operators is only able to express the order of the traffic 

light colors, while the interrelationship among the colors of the 8 traffic lights 

at different time units mush be expressed with the selection operators and 

the assertion variables. Moreover, E-Lucid is able to find all the four solu-

tions. This example illustrates that E-Lucid is able to model problems with 

interrelationship among variables and find more than one solution. 

3.4.3 Old Maid Problem 

Old Maid [32], or “cim wu gwai" in Cantonese，is a card game which can be 

played by two or more players. From a standard 52 cards pack, remove one 

queen leaving 51 cards. Deal and play in clockwise fashion. 

The dealer deals out all the cards to the players (generally some will have 

one more card than others - this does not matter). The players all look at 

their cards and discard all pairs they have (a pair is two cards of equal rank, 

such as two sevens or two kings). 

The dealer begins. At your turn you must offer your cards spread face 

down to the player to your left. That player selects a card from your hand 
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Figure 3.24: The possible solutions of the traffic light problem, where t e Z > 
0，% G {0，1’ 2, 3} 
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without seeing it, and adds it to her hand. If it makes a pair in her hand she 

discards the pair. The player who just took a card then offers her hand to the 

next player to her left, and so on. 

If you get rid of all your cards you are safe - the turn passes to the next 

player and you take no further part. Eventually all the cards will have been 

discarded except one queen (the old maid) and the holder of this queen loses. 

We can model the game with an E-Lucid program, solutions of which 

are all possible plays. For simplicity, players do not discard any card at the 

first round. The assumption can be relaxed by adding more statements with 

if一then—else—fi. 

We use constants 1，2, 3，4 to represent the 4 players. The variable seq 

represents the order of play. For example, if seq[t\ is equal to 3, the 力认 turn is 

Player 3，s turn. The variable is defined as: 

seq = 1 fby 2 fby 3 fby 4 fby seq; 

Variables dA, d2, ..” dK, cA, c2, ..” cK, L4, h2, ..” hK, s2, ..” sK 

represent the holders of the cards. For example, if d2 is equal t o � 3，3, 4, 1， 

1, eod, ...〉，the card diamond 2 is held by player 3 for two turns and passed 

to player 4 and player 1 in the next term. The later keeps it for one turn and 

then discards it. Except the Queens, the rules can be represented by: 

dA = [seq, next seq, next next seq, next next next seq] upon pass_dA; 

sK = [seq, next seq, next next seq, next next next seq] upon pass_sK; 

Similarly, the Queens are defined in similar way, except that they may take 

eod at the first turn: 

dQ = [seq, next seq, next next seq, next next next seq, eod] 

upon pass_dQ ； 
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sQ = [eod， seq, next seq， next next seq, next next next seq] 

upon pass—sC); 

One Queen is discarded at the beginning, therefore one of dQ, cQ, hQ，and 

sQ is equal to eod: 

assert discardQ = (dQeod + cQeod + hQeod + sQeod eq 1)； 

dQeod = if iseod(dQ) then 1 else 0 fi; 

sQeod = if iseod(sQ) then 1 else 0 fi; 

Variables pass-dA, pass^d2, ..., passsK represent the status of the corre-

sponding cards. Value true means passing, value false means keeping, and 

value eod means discarding. For example, if pass 一 d2 is equal to ( f a l se , true, 

true, f a l s e , eod,...), the card diamond 2 is kept for one turn, which is passed 

to next two players in the subsequent two turns. It is kept for one turn and 

discarded in the next turn. 

One card is discarded if it makes pairs with another card of the players, 

otherwise it may be kept or passed. For example, if dA is equal to one of 

cA, hA, or sA, diamond A makes a pair with one of them and is discarded. 

Otherwise dA is equal to true or false. The rule is represented by: 

pass—dA = if (dA eq cA or dA eq hA or dA eq sA) then 

eod else [[true, false]]； 

pass_sK = if (sK eq dA or sK eq cA or sK eq hA) then 

eod else [[true, false]]； 

Exactly one card is passed to next player at each time, therefore exactly 

one of pass—dA, passsK is true: 

assert onepass = (numpass—dA + . . . + immpass_sK eq 1)； 
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numpass_dA = if pass—dA then 1 else 0 fi; 
• 

numpass_sK = if pass_sK then 1 else 0 f i ； 

A player can pass his cards only in his turns, therefore pass-dA is equal to 

true only if dA is equal to seq: 

assert holderpass_dA = (not pass—dA or (dA eq seq))； 
• 

assert holderpass_sK = (not pass—dA or (dA eq seq)); 

Taking diamond A as an example, the following values of the variables on 

the right hand side indicates that the diamond A is passed from player 1 to 

player 2 at the first turn: 
dA 二 〈 1， 2, 2, 2, 2 , …〉 

pass-d A = ( true, false, false, false,...〉 

seq = 〈 1’ 2, 3， 4, 1,...) 

While the following values of variables are impossible, as player 1 cannot 

pass his diamond A at the turn of player 2: 
dA = ( 1， 2, 2， 2, 2 , …〉 

pass.d A = ( false, true, false, false, •..〉 

seq = { 1, 2， 3, 4’ 1， ...〉 

When the game ends, only one Queen is kept by one player. All the other 

cards are discarded and other players have no more cards. Therefore, datons 

of cL4，... ’ sK will take eod finally, except the variable representing the "Old 

Maid" will be equal to the ID of the loser. In each solution, the values of dA, 

...，sK represent a possible play. Therefore this problem has huge numbers 

of solutions. 
The player sequence of the cards can be expressed with the classical Lucid 
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operators, while the rules such as "only one card can be passed each time" and 

"a pair should be discarded" mush be expressed with the selection operators 

and the assertion variables. This example has illustrated that E-Lucid is able 

to express complicated rules. 



Chapter 4 

Implementation of E-Lucid 

In this chapter, we introduce our prototype E-Lucid interpreter by showing and 

discussing the pseudo-code of the functions of the interpreter with examples. 

Section 4.1 gives an overview of the interpreter. Section 4.2 defines new terms 

used in this chapter. Sections 4.3 to 4.8 introduce the functions used in the 

implement at ion. 

4.1 Overview 

The prototype E-Lucid interpreter is an extension of the pLucid interpreter. 

Different from the pLucid interpreter, the valuation obtained may not be a 

partial solution. 

Figure 4.1 is an example of Extended Dataflow Network. The value of 

daton x[0] is 1, which is less than 3. Thus, z[(}] takes the value true and 

we obtain the valuation {x[0] 4 1, ^[0] true}. The value of daton x[l 

is 2, which is less than 3. Thus z[l] takes the value true and we obtain the 

valuation {x[0] ^ 1， [̂0] true, x[l] ^ 2, ^[1] true}. The value of daton 

x[2] is 3. Thus z[2] takes the value false. As the assertion variable is not 

satisfied, there is no solution. 

The interpreter does not realize that the problem has no solution until z[2] is 

assigned a value. If we modify the problem by replacing the datastream 3 with 

54 
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Figure 4.1: An Extended Dataflow Network 

10000, the interpreter will not realize that the problem has no solution until 

z[9999] is assigned a value. Generally speaking, given an E-Lucid program 

with at least one assertion variable, the interpreter cannot ensure that the 

program has solution or not, even if the first n datons of assertion variables 

are true, given that n is a finite number. 

In this and all other examples of Extended Dataflow Network, we use the 

phrase “at stage t" (t > 0) to represent the stage after all variables of interest 

and assertion variables at index t - 1 are assigned values and some of those at 

index t are not assigned values yet. "At stage 0" represents the stage before 

all variables of interest and assertion variables at index 0 are assigned values. 

At stage t, if all daton with index < t of assertion variables pick the value 

true, the valuation ( obtained is called the solution up to stage t, which may 

be a partial solution. In the example, {x[0] 4 1，z[(}] ^ true} is the solution 

up to stage 0, while {x[0] ^ 1， [̂0] true, 2, 2r[l] true} is the 

solution up to stage 1. However, they are not partial solutions as there is no 

solution. 

ELUCIDinterpreter is the main function of the prototype E-Lucid inter-

preter, which is an extension of LUCIDinterpreter in Figure 2.8. ELUCIDinterpreter 

invokes functions transformD, Edemand, constructCSP, and back七rack. Func-

tion transf ormD transforms statements to daton statements, which are state-

ments expressed in terms of datons. Function Edemand is the modification 
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of demand in Figure 2.8 with additional codes for handling selection opera-

tors. It invokes constructCSP to construct CSPs, which is done by invoking 

f indC and transf ormD to transform daton statements to constraints. Func-

tion backtrack performs backtracking to instruct selection operators to fire 

alternate datons and explore other possible partial solutions. 

4.2 Definition of Terms 

We define new terms for use in subsequent sections. The variables expressed 

in terms of datons are called daton variables. Expressions expressed in terms 

of daton variables are called daton expressions. In a daton statement s: u = e, 

s and e are the defining daton statement and defining daton expression of u 

respectively, while u is their defined daton variable. In an E-Lucid program, 

each daton variable has a unique defining daton statement and a unique defin-

ing daton expression. For example, in the daton statement 5： x[3] = 1 +y[2], 5 

and 1 + y[2] are the defining daton statement and defining daton expression of 

x[3] respectively, while x[3] is their defined daton variable. We define sta(u) 

as the defining daton statement of daton variable u. In the example, sta(:E[3]) 

is s. We abuse terminology by saying that sta.{U) is the set of defining daton 

statements of daton variables in U. 

We define the variables labelling output datastreams of selection operators 

to be selection variables. For example, in statement x = [ [3，y] ] , ^ is a 

selection variable. We define the daton variables labelling output datons of 

selection operators be selection daton variables. For example, in daton state-

ment x[l] = [[3, y[l]}}, x[l] is a selection daton variable. We define the daton 

variables of assertion variables be assertion daton variables. 

Recall that S is defined as a tuple (V, Va, E) previously. With the daton 

statements, we can redefine an E-Lucid program as a tuple {U, Ua-> F), 

in which U 二 {̂ [̂t] | v[t] G var (y) , t G ^ > 0} is an infinite set of daton 
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variables. F is a set containing, for every G V, an associated daton expression 

F^it] = Ey[t]. The set Ua = {v[t] \ v e Va, t e Z > 0} is an infinite set of 

assertion daton variables, where Ua ^ U. Given a valuation 6 over U, it is a 

solution of S if 0{u) 二 FU holds for all u G and {u true | u G Ua} Q 0. 

A valuation ( is a solution up to stage to if = � )h o l d s for all 

v[t] G U where t < to and {u[t] true | u[t] G UA,t < to} C 

4.3 Function ELUC ID interpreter 

This section introduces the main function ELUCIDinterpreter of the proto-

type E-Lucid interpreter with pseudo-code shown in Figure 4.2. Firstly, it 

transforms statements to daton statements. The variables of interest and as-

sertion variables are demanded by the function. If selection operators are 

demanded, some daton statements are transformed to constraints to construct 

CSPs, solutions of which determine the datons fired by the operators. If nec-

essary, the system backtracks to find alternate partial solutions. 

Compared to LUCIDinterpreter in Figure 2.8, ELUCIDinterpreter con-

tains extra parameters and variables. Va is the set of assertion variables. E 

is the set of statements. Sol is an array of sequences of solutions, where Sol[t 

denotes the sequence of solutions at stage t. As Sol[t] may consist of more than 

one solution, sollndex is defined as an array of indices, where the solIndex[tY^ 

solution, Sol[t][solIndex[t]], is picked at stage t. We use a boolean flag back 

to indicate whether backtracking is required. For example, given that the so-

lutions at stage 0 are {a 0} and {a ^ 1} and at stage 1 are {6 0} and 

{b 1}. If solIndex[{}] is 1，Sol[0][solIndex[0]] is {a ^ 1}. If solIndex[l] is 0， 

Sol[l][solIndex[l]] is {b 0}. 

The numbered lines in Figure 4.2 show the main differences between the 

two interpreters. At Line 1, transfoririD is invoked to transform the set of 
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ELUCIDinterpreter (P, Va, E); 
begin 

t := 0; 
Sol[t] := {}; 
Ua {v[T] I ” e Va}] 

1 S transformD [E); 
repeat 

foreach 6 P U do 

2 value := Edemand {v[t], t, S, Ua, Sol, sollndex, back); 
if back then exit; 
else print value] 

end 

3 if the user requests backtracking or back 二二 true then 

4 t := backtrack (t, sollndex, Sol,(); 
else 

t t + 1; 
Sol[t] := {}; 

end 
until t < 0; 

end 

Figure 4.2: Pseudo-code of ELUCIDinterpreter 

statements to the set of daton statements S. At Line 2, variables of inter-

est and assertion variables are demanded by the function. Edemand instead 

of demand is invoked to handle the demand-driven schema with selection op-

erators and assertion variables. At Lines 3 and 4, backtrack is invoked to 

perform backtracking if the user requests it or back is set to true by Edemand. 

4.4 Function Edemand 

This section introduces function Edemand with pseudo-code shown in Fig-

ure 4.3. The function extends demand with additional abilities to handle se-

lection operators and assertion variables. Compared to demand, Edemand has 

additional lines which are numbered and contains extra parameters which are 
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defined in the same way as in ELUCIDinterpreter. 

Line 1 sets back to true to perform backtracking if it finds an unsatis-

fied assertion variable. The other numbered lines handle firings of selection 

operators. When a selection operator is demanded at stage t. Line 3 checks 

whether there was CSP constructed at stage t. If there was not, a CSP aCSP 

is constructed by invoking constructCSP at Line 4. The CSP is solved by 

ILOG Solver 4.4, which is a CSP solver. At Line 5, the solutions are projected 

to the selection daton variables and stored in Sol[t]. At Line 6, the solution 

counter sollndex [t] is initialized to 0. At Line 7, if there is no solution, back is 

set to true to perform backtracking. At Line 9, the solution is applied to the 

output daton of cvof if back is false. 

4.5 Function transf ormD 

Function transf ormD transforms the input set of statements to a set of daton 

statements. In the pseudo-code of transforinD shown in Figure 4.4, there 

are five transformation steps, which will be detailed in each of the following 

subsections. 

4.5.1 Labelling Datastreams of Selection Operators 

Each varaible labels a datastream. However, there are some unlabelled datas-

treams which are not labelled with any variable. For example, in a = f i r s t (b 

+ c ) , (b + c) is an unlabelled datastream. We can label it by assigning it a 

new variable n, so that we have the statements a = first n and n = b + c. 

Labelling unlabelled datastreams is a prepare step to transform statements to 

daton statements, we will use the technique in the subsequent subsections. As 

it is useless to label constant datastreams, they are not labelled in our implmen-

tation. W h e n we refer to "unlabelled datastream", the constant datastreams 

are excluded. 
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Edemand (cvof , t, UA, Sol, sollndex, back) 
begin 

if NOT back then 
if cvof is a daton variable then 

/ * if cvof is already assigned a value*/ 

i f lvalue s . t . {cvof ^ value) G ( t h e n u ：二 value� 

else 

driving := the constant / operator / variable driving cvof at 
stage t] 
u := Edemand {driving, t, S, Ua, Sol, sollndex, back)] 
/* cvof is an assertion daton variable and it is assigned f a l s e 

7 
1 if cvof E UA and u = 二false then back := true; 

end 

C := C U {cvof ^ u}] 

else if cvof is an operator with n operands then 
foreach operand ri do 

valueI ：二Edemand (R” t, S, UA, Sol, sollndex, back); 
if back then 

return eod; 

end 
end 

2 if cvof is a selection operator with selection daton variable d 
then 

3 if Sol[t][solIndex[t]] 二 = {} then 

4 aCSP := constructCSP (t, S, UA, C ) ； 

5 Sol[t\ the solutions of aCSP projecting on selection 
daton variables; 

6 sollndex [t] ：二 0; 
7 if |5'o/[t]| 二 = 0 then back := true; 
8 / * apply the valuation of d in Sol[t][solIndex[t]] to w* / 

9 if NOT back then u := Sol[t][solIndex[t]]{d)] 

else u evaluation of cvof [value ..., value n)., 

else if cvof is a constant then u := cvof] 
return u\ 

end 
end 

Figure 4.3: Pseudo-code of Edemand 
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transformD (E) 
begin 

S ：二 

foreach 5 G 5 do 

labelling datastreams of selection operators; 
end 

foreach s ^ S do 
removing committed choice operators; 

end 

foreach 5 G 5 do 
removing asa, wvr, and upon; 

end 

foreach 5 G 5' do 

labelling datastreams of i f 一 t h e n - e l s e - f i ; 
end 

foreach s ^ S do 
transforming statements to daton statements; 

end 

foreach s G 5 do 

transforming daton expressions recrusively; 
end 

end 

Figure 4.4: Pseudo-code of transf ormD 
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For each s e S/ii s consists of 皿labelled output datastreams of selection 

operators, we label them with new selection variables. It is done by creating 

a variable for each of the unlabelled datastreams with its defining statement 

the expression of which is the selection operator with its corresponding 

operand datastreams. We create one more statement 52, which is the same as 

5 except the selection operator is replaced by the new variable. The statement 

6 in 5' is replaced by Si and 52. For example, the statement: 

5： X = 1 + [7, 8]; 

is replaced by the following statements with new variable n: 

si： n = [7, 8] ; 52： X = 1 + n; 

4.5.2 Removing Committed Choice Operators 

For each s e S/if s consists of committed choice operators, 5 is replaced by two 

statements by Rules 3.1 to 3.5 to eliminate the operators. The two statements 

together are equivalent to 5. For example, the statement: 

n = [ X， y , z]； 

is replaced by the following statements by Rule 3.1: 

first_n = [[X， y, z]]； 

n = first_n fby if (first n eq first x) then next x else 

if (first n eq first y) then next y else 

if (first n eq first z) then next z else 

eod fi fi fi； 

4.5.3 Removing asa, wvr, and upon 

For each s e S\ if s consists of operators asa, wvr, or upon, 5 is replaced by 

equivalent statements by Rules 2.1, 2.2, and 2.3 to eliminate the operators. 
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4.5.4 Labelling Output Datastreams of i f - t h e n - e l s e - f i 

For each s e S/ifs consists of unlabelled output datastreams of i f - t h e n - e l s e - f i , 

we label them with new variables. It is done by creating a variable for each 

of the unlabelled datastreams with its defining statement the expression of 

which is if-then-else-f i with its corresponding operand datastreams. We 

create one more statement 62, which is the same as 5 except i f 一 t h e n — e l s e - f i 

is replaced by the new variable. The statement 5 in 5 is replaced by 5i and 

S2. For example, the statement: 

5： X = if y then 1 else if z then a else 7 fi fi; 

is replaced by the following statements with new variable n: 

si： n = if z then a else 7 fi; <$2: x = if y then 1 else n fi; 

4.5.5 Transforming Statements to Daton Statements 

For each 5 G S, its defined variable and expression are transformed to da-

ton variables and daton expressions by Rule 4.1. In the following example, 

Statement 4.9 is transformed into Daton Statements 4.10 in Example 4.1. 

Example 4.1 Given variables a, b, c, and d. Statement 4.9 is transformed to 

Daton Statement 4.11. 

a 二 next (b fby (first (c + d))) (4.9) 

今 a[t] 二 (next(6 fby(first(c + d))))[t] Vt G 2： > 0 by Rule 4.1(4.10) 

a[t] 二 {b fby(f i r s t (c + d)))[t + 1] Vt G ^ > 0 by Rule 4.4 

� a[t] = (first (c + d))[t] Vt G ^ > 0 by Rule 4.5 

令 a[t] = (c + (i)[0] yteZ>0 by Rule 4.3 

a[t] = c[0] + d[0] Vt G ^ > 0 by Rule 4.2 (4。11) 

• 
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Transformation Rules 

The Rule 4.1 is derived from the definition of daton statement. The Rules 4.2 
to 4.7 are directly derived from the definition of the operators. The (daton) 
expressions on the left hand side of the arrows can be transformed into the 
daton expressions on the right hand side, where ê - represents an expression, 
and PT represents an n-ary pointwise operator {e.g., + , -, and, eq). 

ei 今 ei[t] ytez>0 (4.1) 
( P T ( e i , . . . , e , ) ) [ t ] � PT(e i [ t ] , . . , e4t ] )VtG^>0 (4.2) 

( f i r s t e i ) �令 ei[0] Vt G > 0 (4.3) 
(next ei)[t]今 ei[t+ 1] Vt G 2： > 0 (4.4) 

( 、⑴ f ei[0] if t = 0 
( e i f b y e 刺 | J 丄 i] , > Q (4.5) 

(ei attime e2)W ei[e2[t]] Wt e Z > 0 (4.6) 

(if ei then e] if ei[t] then 63[t] . ) 

else 63 fi)[t] else 63 [t] fiVt eZ>0 卜 ） 

imi ((ei[t] = 62⑷）or , 、 
eiW 二 令 = esm ^t e Z > 0 … 
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4.5.6 Transforming Daton Expressions Recursively 

For each 5 G 5, 5 is in the form of w = e. Depends on the operator of e, e is 

transformed into another daton expression by one of the Rules 4.2 to 4.7. The 

arguments of e are transformed by the rules recursively until all the arguments 

are daton variable or constants. For example, Statement 4.10 is transformed 

into the set of Daton Statements 4.11 in Example 4.1. 

4,5�7 An Example 

Given the following statement, we transform it to daton statements by the 

algorithm of transf ormD. 

a = [b, c] asa d; 

Step 1: Labelling datastreams of selection operators 

nl = [b, c]； 

a = nl asa d; 

Step 2: Removing committed choice operators 

first.nl = [[b, c]]； 

nl 二 first_nl fby if (first nl eq first a) then next a else 

if (first nl eq first b) then next b else 

eod fi fi； 

a = nl asa d; 

Step 3: Removing asa, wvr, and upon 

first.nl = [[b, c]]； 

nl = first一nl fby if (first nl eq first b) then next b else 

if (first nl eq first c) then next c else 

eod fi; 
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a = first(if d then nl else next a fi)； 

Step 4: Removing if-then—else—fi 

first_nl = [[b, c]]； 

nl = first.nl fby n2; 

n2 = if n3 then n4 else n5 fi; 

n3 = first nl eq first b； 

n4 = next b; 

n5 = if n6 then n7 else eod fi； 

n6 = first nl eq first c; 

n7 = next c； 

a = first n8； 

n8 = if d then nl else n9 fi； 

n9 = next a; 

Step 5: Transforming statements into daton statements by Rule 4.1: 

first.nl [t] = ([[6, c]])[t] Vt G ^ > 0 

nl [t] 二 (first_nl fby n2)[t] \/t e Z > 0 

n2[t] = (if nS then n4 else n5 fi)[力] t̂ e Z > 0 

n3[t] = (first nl eq firstb)[t] Vt G ^ > 0 

n4 [t] = (next b)[t] \/t e Z > 0 

n5[t] = (if n6 then n7 else eod fi)⑷ Vt G ^ > 0 

n6[t] 二 (first nl eq first c)[t] Wt e Z > 0 

n7[t] = (next c)[t] Wt e Z > 0 

a[t] = (first n8)[t] Vt G ^ > 0 

n8[t] 二 (if d then nl else n9 fi)⑷ ^t e Z > 0 

n9[t] = (next a)[t] Vt G ^ > 0 

Step 6: Transforming daton expressions recursively: 
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first.nl [t] = ([[6, c]])[t] \/t e Z > 0 

�{{first.nl [t] = b[t]) or {first.nl [t] = c[t])) Vt G 2： > 0 by Rule 4.8 

nl [t] = {first.nl fby n2)[t] Vt G ^ > 0 

nl [01 = first-nl fO 
{ ^ ̂  L J by Rule 4.5 

[nl [t + 1] n2[t] \/te Z>0 

n2[t] = (if nS then n4 else n5 fi)[t] Wt G Z > 0 

n2[t] = (if n3[t] then n4 [t] else n5[t] fi)[t] Vt G ^ > 0 by Rule 4.7 

n3[t] = (first nl eq firstb)[t] Vt G ^ > 0 

n3[t] = (first nl)[t] eq {firstb)[t] Vt G 2： > 0 by Rule 4.2 

n3[t] 二 nl [0] eq 6[0] Vt G 2： > 0 by Rule 4.3 

n4 [t] = (next b)[t] \/t e Z > 0 

n4 [t] = + 1] Vt G > 0 by Rule 4.4 

n5[t] = (if n6 then n7 else eod fi)[t] \/t e Z > 0 

令 n5[t] = (if n6[t] then n7[t] else eod⑷ fi)[t] Vt G ^ > 0 by Rule 4.7 

今 n5[t] : (if n6[t] then n7[t] else eod f i) Vt G ^ > 0 

n6[t] = (first nl eq first c)[t] Vt G ^ > 0 

� n6[t] 二 (first nl)[t] eq (first c)[t] Vt G ^ > 0 by Rule 4.2 

令 n6[t] nl [0] eq c[0] Wt e Z > 0 by Rule 4.3 

n7[t] = (next c)[t] \/t £ Z > 0 

� n7[t] - c[t + 1] Vt G ^ > 0 by Rule 4.4 

a[t] = (first n8)[t] Vt G ^ > 0 

� a[t] = n8[{}] \/te Z>(} by Rule 4.3 

n8[t] = (if d then nl else n9 fi)[^] Wt e Z > 0 

令 n8[t] = (if d[t] then nl [t] else n9[t] f i) Vt G ^ > 0 by Rule 4.7 
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n9[t] = (next a)[t] Vt e Z > 0 

� n9[t] = a[t + 1] Vt G ^ > 0 by Rule 4.4 

4.6 Functions constructCSP, f indC, and transf ormC 

In this section, we introduce the algorithm of the Functions constructCSP, 

f indC, and transf ormC with Example 4.2. 

The function constructCSP constructs CSPs to ensure that the assertion 

daton variables at time t are satisified by assigning values to some selection 

daton variables. We give an example with the following parameters: 

t = 3 

Sail = I {a[0] = 2，alt + 1 ] = 2b[t], b[t] 二 [ [ - 1 , 1 ] ] ’ 

tG-Z>0 

^[0] = true, z{t + 1] = {a[t + 1] > b[t])} 

UA = [J {冲]} 
tez>o 

where 

t is the construction stage of CSP 

Sail is the set of all daton statements 

Ua is the set of assertion daton variables 

First we find the set of daton statements Sexpand C Sail with which we can 

assigning values to the ^[3]. Sexpand shall be 

{a[3] = 26[2], 

b[2] 二 [[-1,1]], 

么[3] = (a[3] > b[2])} 

We convert them to the set of constraints C 
expand • 

{a[3] 二 26[2], 

(6[2] = 一 1) or {h[2] 二 1)， 

^[3] 二（a[3] > b[2])} 



Chapter 4 Implementation of E-Lucid 69 

constructCSP (T, Sail, Ua, C ) 
begin 

/ * assign defining daton statements of unassigned assertion daton variables 

to C * / 

1 U {u[t] I w⑷ G UA}� 

2 Sexpand := findC {U, Sail)� 

3 ^ expand •— 
transformC {Sexpand)] 

4 Ca ：= {v[t] = true I 1；⑷ eV ^ to}； 

5 Csol Cexpand UCa； 
6 Xsol Vdir{Csol)� 

7 D := a set containing, for every x G Xsoh an associated domain D^ 
which is the daton domain of x] 

8 return、〈Xsoi, D,Csoi))., 
end 

Figure 4.5: Pseudo-code of constructCSP 

To ensure that the assertion daton variable is asserted, we add one more 

constraint ^[3] = true. Finally we construct a CSP {Xsoi, D, Csoi), where 

Xsol 二 {̂ [̂3]，6[2]，2：[3]}, Ax[3] = A > [ 2 ] = 之 ， = {true, f a l s e } , a , / is 

{a[3] 二 2b[2], 

{b[2] = 一 1) or (6[2] = 1)， 

^[3] 二（a[3] > 6[2])， 

z[3] = true} 

The pseudo-code of constructCSP is shown in Figure 4.5. The parameters 

of constructCSP are the construction stage t of CSP, the set of all daton 

statements Sail, the set of assertion daton variables Ua, and the valuation we 

have obtained At Line 1, the set of unassigned assertion daton variables 

with index t is assigned to the set U. With U, we can identify which daton 

statements in Sail can help us to solve the problem by invoking findC at 

Line 2, where Sexpand is the set of helpful daton statements. Daton statements 

in Sexpand are transformed to a set of constraints Gexpand at Line 3. Ca at 

Line 4 is a set of constraints to ensure that assertion daton variables are equal 
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to true. The set of constraints we need is Csoi at Line 5 which is the union 

of CEXPAND and Ca- The set of variables XSOI at Line 6 is equal to vdir[CSOI)-

The set of domain D at Line 7 is a set containing, for every x G Xsoi, an 

associated domain D^ which is the daton domain of x. The CSP {Xsoh D, 

Csoi) is returned at Line 8. 

Given set of daton variables U, f indC is responsible for finding a set of 

daton statements S with which can determine the possible valuations over 

v a r ( S ' ) �U . We give an example with the following parameters: 

U =沖]} 

( = { a [ 0 ] 1, ^[0] true} 

Sail 二 1 1 = 2, a[t + 1] = 2b[t], b[t] = [[—1,1]]， 

tez>o 
z[0] = true, z[t + 1] = {a[t + 1] > b[t])} 

where 

U is the set of daton variables to be assigned 

( i s the valuation we have obtained before the function is invoked 

Sail is the set of all daton statements 

To determine the possible valuations over U, we need to find S -- C(sta(t / ) )= 

{C(sta(^[3]))}. If sta(2:[3]) were “z[3] z[OY\ we would know that S 二 

{^[3] = true} from ( and {z[3] i-̂  true} is the possible valuation, so that S 

would be returned by the function. However, as sta(^[3]) is "^[3] = a[3 > 

6[2]，，，where a[3] and h[2] are unassigned any value, S is not the set to be 

returned. This can be checked by finding whether var(5') C U, or simply 

var(S') = U diS va.r{S) must be a subset of U. If it is true, S is returned; 

Otherwise another set of daton statements S, should be found, with which the 

valuation over the set of unassigned daton varaibles can be determined. This 

is done by invoking f indC recursively. 

At the second recursive call of f indC, we add a slash “'” to each variable to 

denote that it is a variable of the second recursive call. Two slashes are added 
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at the third call and so on. The notation is used in the subsequent sections. 

At the second recursive call, we add a[3] and h[2] to U and get U, 二 

{^[3], a[3], 6[2]}, while C, = C and = Sail. S' is C({sta(^[3]), sta(a[3]), 

sta(6[2])}), it is: 

{^[3] = a[3] > 6[2], a[3] = 2b[2] + 1, b[2] 二 [[一1，1]]} 

As var(S") 二 {<3], a[3], b[2]} 二 U, S' is the result. We can determine 

that the possible valuations are {h[2] -1，a[3] - 1 , [3] false} and 

{b[2] ^ 1, a[3] 3, ̂ [3] true}. 

S is expanded to S' at the recursive call. We called that S' is the expansion 

of S. Our algorithm is based on expanding S 二 sta(t/) by recursive calls until 

we obtain an extension where = at the (n + 1 产 recursive call. 

If there are some variables which depend on their "future values", there will be 

an infinite recursion. For example, if the program has the statement a = next 

a, = a[力 + 1]} will be a subset of Sail. When U consists of a[0], S 

will be expanded infinitely to S"^'〕（J压々o{sta(aM)}. The interpreter will 

check and report the error. 

The pseudo-code of findC is shown in Figure 4.6. The parameters of 

f indC are the set of daton variables U, the valuation (，and the set of all 

daton statements Sail. The set of defining statements of unassigned assertion 

daton variables with index t is assigned to the set S at Line 1. At Line 2, the 

function checks whether var(S') is equal to U. If it is true, S' is the required 

set of daton statements and returned at Line 3. Otherwise, f indC is invoked 

recursively to expand S at Line 4. The recursion terminates when var(5') 二 U 

at Line 2. 

Function transformC transforms a set of daton statements to a set of 

constraints. Most operators of daton statements can be directly mapped to 

operators of constraints with a few exceptions: discrete choice operators, range 
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f indC {U, C, SAIL) 
begin 

1 S := {C(sta(u))|Vt/ e 八 sta(u) G Sail f\u • var(C)}； 
/ * if S consists of all defining daton statements of v a r ( 6 ' ) * / 

2 if var(S') == U then 
3 return (5); 

else 

/ * expand S otherwise * / 

4 return (f indC (var(S'), (，Sail ) ) � 

e n d 
end 

Figure 4.6: Pseudo-code of f indC 

choice operators, i f - t h e n - e l s e - f i, and “二”. The statements with the ex-

ceptions are transformed to constraints by logical operators. The pseudo-code 

of transformC is shown in Figure 4.7. The parameter of transformC is the 

set of daton statements S. 

We use Example 4.2 to demonstrate the collaboration of constructCSP, 

findC, and transformC. 

E x a m p l e 4.2 Function constructCSP is invoked with the following parame-

ters: 

t 二 1 

Sail 二 M {a[t + 1] 二 c[t + 1]〉d[t], b[t + 1] = d[t + 1] eq e[t], 
tez>o 

c[0] 二 [[5,6]], c[t + 1] = c � + 1, 

d[t] = if e[t] > 0 then e[t] else — e[t] fi, 

e[t] 二 3, f[t] 二 d[t] + c[t]} 

Ua = [ j 綱 ， 刚 } 
t£Z>0 

( = { a [ 0 ] ^ true, 6[0] true, c[0] 6, d[0] ^ 3, e[0] ̂ ^ 3, /[O] h^ 9} 
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transformC {S) 
begin 

/ * if S consists of all defining daton statements of v a r ( 5 ' ) * / 

foreach s £ S do 
if 5 is u — [[ri,…，Vn]] then 

replace s hy u = ri or ... or u = Vn] 

else if s is u = [[ri : r〗]] then 

replace 5 by u > ri and u < r2； 

else if 5 is u = {{ri : 7̂ 2]] then 
replace 5 by u > ri and u < r2； 

else if is w 二 [[ri : r〗}} then 

replace s hy u > ri and u < r2； 

else if 5 is u — {{ri : r〗}} then 

replace s hy u > ri and u < r<2; 

else if 5 is u = if ei then 62 else 63 f i then 
replace 5 by (not ei or u eq 62) and (ei or u eq 63); 

Change all assignment operator “=” of 5 to eq; 
end 

return (S'); 

end 

Figure 4.7: Pseudo-code of transformC 
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a[l] = c[l] > 3, b[l] = d[t] eq 3 

c[l] = 6 + 1, 对 1] = i f e[l] > Q then e[l] e l se - e[l] f i 
e[l] = 3 

Table 4.1: Expansion of S 

U at Line 1 of Figure 4.5 consists of two 皿assigned assertion daton vari-

ables, a[l] and 6[1], with indices equal to t. U is passed to f indC at Line 2. 

At Line 1 of Figure 4.6, as C(sta(a[l])) is "a[l] = c[l] > 3" and C(sta(6[l])) 

is “6[1] = d[t] eq 3”，S' is {a[l] = c[l] > 3, b[l] = cf⑷ eq 3} and var(5')= 

{a[l], 6[1], c[l], d[l]}. At Line 4，S is passed to f indC recursively. 

At the second recursive call of f indC, S is expanded to S' 二 {a[l] = c[l > 

3，b[l] = d[t] eq 3，c[l] = 6 + 1, d[l] = i f e[l] > 0 then e[l] e l se - e [ l ] f i } . 

Similarly, as var(S") = {a[l], b[l], c[l], d[l], e[l]}’ S' is further expanded to 

S" 二 = c[l] > 3, b[l] = d[t] eq 3，c[l] = 6 + 1，d[l] = i f e[l] > 0 then 

e[l] e l se —e[l] f i , e[l] � 3} at the third recursive call. The expansion is 

accomplished as var(S"') 二 U". The set to be returned, S", is Sexpand-

The expansion can be simply represented by Table 4.1. The daton state-

ments at the column represent S, while S' is represented by the daton 

statements at the and 2— columns collectively, and S" is represented by 

the daton statements at the P亡，2几and 3厂“ columns collectively. In general, 

columns 1 to n represent the set of daton statements at the n expansions. The 

whole table represents the set of daton statements Sexpand-

At Line 3 of Figure 4.5, Sexpand is passed to transformC. We obtain the set 

of constraints Cexpand = {«[ ! ] eq c[l] > 3, b[l] eq d[t] eq 3, c[l] eq 6 + 1, 

not e[l] > 0 or d[l] eq e[l], e[l] > 0 or d[l] eq - e[l], e[l] eq 3}. 

At Line 4, we find that Ca = {«[!] eq true, b[l] eq true}. With Cexpand-, 

we find that CSOI = CEXPAND u Ca at Line 5. At Line 6, we find that X,oi = {^[1], 

6[1], c[l]’ d[l], e[l]}. At Line 7, we find that D = {Da[i], 

where Ba[i] 二 = {true, f a l s e } and Dc[i] = 二 � � ' 
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The CSP obtained at Line 8 is {Xsoh D, Csoi)• 口 

4.7 An Example 

To give a whole picture before discussing backtrack in the next section, 

we give an example run of ELUCIDint erpret er to show the collaboration 

of ELUCIDinterpreter, Edemand, transformD, constructCSP, findC, and 

transf ormC by Example 4.3. 

Example 4.3 Function ELUC ID int erpr et er is invoked with the set of vari-

ables of interest I and the set of statements E: 

I = {x, y} 
丑={x = 1 fby [1， 2] + X; 

y = 3 fby [[1,2]] + y; 

z = y - x e q 2 ; } 

At Line 1 of pseudo-code of ELUCIDinterpreter at Figure 4.2, E is trans-

formed to a set of daton statements S by transformD. S is: 

+ 1] = a[t\ + x[t], y[t + 1] = b[t] + y[t], a[0] 二 [[1，2]], 

a[t + 1] = if a[0] eq 1 then 1 else n[t] fi， 

n[t] — - if a[0] eq 2 then 2 else eod fi, 

b[t] 二 [[1, 2]], z[t] = {y[t] - x[t] eq 2)} 
where a[t] and b[t] for t G ^ > 0 are newly created selection daton variables. 

At stage 0, x[0], y[0], and ^[0] are demanded at Line 2. Without construct-

ing any CSP, we obtain the solution up to stage 0: ( = {^[0] ^ 1，y[0] ^ 3’ 

^[0] ̂  true}. 

At stage 1, x[l] is demanded first. It drives a[0] and its selection operator, 

so that constructCSP is invoked at Line 4 of Figure 4.3. Sexpand at Line 2 of 

Figure 4.5 is obtained by expansion shown in Table 4.2. At Line 3, Cexpand is ： 
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^[1] = {y[l] — x[l] eq 2) 

圳 二 a[0] + 1 y[l] = b[0] + 3 
a[0] = [[1, 2]] 5[Q] 二 [[1,2]] 

Table 4.2: Expansion of S at stage 1 

{z[l] eq {y[l] — x[l] eq 2), 

x[l] eq a[0] + 1, y[l] eq b[0] + 3, 

(a[0] eq 1) or (a[0] eq 2)， (6[0] eq 1) or (6[0] eq 2)} 

Csoi at Line 5 is the union of Cexpand and Ca = {^[1] eq true}. D at 

Line 7 is simply obtained from the daton domains of daton variables. The 

CSP constructed is〈var((7扣/), D, Csoi), which is returned by constructCSP 

at Line 8. It is solved and the solutions are projected on the selection daton 

variables, a[0] and 6[0] at Line 5 of Figure 4.3. The possible solutions of the 

CSP are Sol[l][0] = {a[0] 1, b[0] ̂  1} and Sol[l][l] = {a[0] 2, 6[0] ^^ 2}. 

As solIndex[l] is 0, 5o/[l][0] is chosen. We obtain ( 二 {x[0] 1，y[0] 3, 

^[0] true, a[0] ^ 1, 6[0] 1}. As a[0] and x[0] are assigned values already, 

x[l] is assigned a[0] + x[0] = 1 + 1 = 2. Then y[l] and b[l] are demanded. As 

6[0] and y[0] are assigned values already, y[l] is assigned 6[0] + y[0] = 1 + 3 = 4. 

Similarly, z[l] is demanded and true is obtained. We obtain the solution up 

to stage 1: C = ^ 1, y[0] 3，z[0] ^ true, a[0] 1, b[0] ̂  1, x[l] 2, 

y[l] 4, ̂ [1] true}. 

At stage 2, x[2], y[2], and z[2] are demanded. As a[l] and x[l] are assigned 

values already, x[2] is assigned a[l] + x[l] 二 1 + 2 = 3. On the other hand, b[l 

and its selection operator are demanded and constructCSP is invoked. Cexpand 

is obtained by expansion shown in Table 4.3. Cexpand is ： 

{z[2] eq {y[2] — 1 eq 2), 

y[2] eq 6[1] + 4, 

(6[1] eq 1) or (6[1] eq 2)} 
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z[2] = (y[2] - 1 e q " ^ 
y[2] 二 h[l] + 4 —  

~b[l] = [[1,2]] 

Table 4.3: Expansion of S at stage 2 

Csoi is the union of Cex— and Ca = {^[2] eq true}. The set of domain 

D is simply obtained from the daton domains of daton variables. The CSP 

constructed is (var((7,o/), D, Csol�. It is solved and the solutions are projected 

on the selection daton variables, a[l] and 6[1]. The solution of the CSP is 

6W[2][0] = {b[l] 1}. 
L J L J L L � J 
As solIndex[2] is 0, Sol[2][0] is chosen and added to As b[l] and y[l] are 

assigned values already, y[2] is assigned b[l] + y[l] 二 1 + 4 = 5. Similarly, 2：[2 

is demanded and true is obtained. Finally {a[l] ^ 1，b[l] ^ 1’ x[2] 3， 

y[2] 5, z[2] ^ true} is added to which is the solution up to stage 2. 

The process continues, and more assignments are added to ( with increasing 

stage. 口 

4.8 Function backtrack 

The function backtrack tries to find alternative solutions upon user request 

or when a CSP without solution is constructed. Considering this E-Lucid 

program: 

X = [[1，-1]]; 

y = X fby 2y; 

assert z = (y < 3); 

The statements are transformed to the following daton statements: 
[jt^z>oi = 1 � r x[t] = - 1 , y[0] = x[0], 

y[t + 1] = z[t] = {y[t] < 3)} 
The corresponding selection operator of x fires “l”s at the and the 
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firings, so that we have the solution up to stage 1 as {x[0] i-> 1，y[0] 1, 

^[0] true, x[l] 1, y[l] 2，^[1] i-> true}. However, we are unable to 

assign value to y[2] as 2y[l] = 4 ^ 3 . 

But it is obvious that there is a solution if x[0] is assigned -1. We can 

find the solution by the technique of backtracking as following. We undo the 

valuation at the previous stage and let the selection operator(s) fire(s) alterna-

tive datons. If we are still unable to find a solution, we undo more valuations 

until we find a solution. If it cannot be found after undoing all valuations, the 

program has no solution and the function prints "No further backtracking". 

In the example, we undo the valuation done at stage 1 and the selection 

operator fire “-1” at the 2打̂  firing, so that we have the solution up to stage 

1 as {x[0] 1，y[0] 1, z[0] ^ true, (-> —1, y[l] ^ 2, ^[1] ^ true}. 

However, we are still unable to assign value to y[2] as 2y[l] = 4 ^ 3 . 

We undo the valuation done at stage 1，but the selection operator has no 

alternative daton to fire at the 2几“ firing. Therefore we undo the valuation done 

at stage 0 also and the selection operator fire "-1" at the firing, so that we 

have the solution up to stage 0 as {x[0] i-̂  - 1 , y[0] - 1 , ^[0] ̂  true}, and 

we will get y[l] - 2 and y[l] —4, with which both ^[1] and z[2] will be 

assigned true. The process continues and no more backtracking is required. 

Backtracking is invoked when there is no solution with the valuation we 

have. Moreover, a user can request backtracking at each stage. Continuing 

the example, the selection operator fire "1" at the firing, so that we have 

the solution up to stage 1 as {x[0] —1, y[0] - 1 , ^[0] ^^ true, :r[l] ^ 1, 

y[l] —2, z[l] true}. A user can request backtracking at stage 1, so 

that the valuation done at stage 1 is undone. The selection operator fire "-1" 

at the firing, so that we have the solution up to stage 1 as {x[0] ^ - 1 , 

y[0] 一1’ ^[0] true, -1, y[l] -2, ̂ [1] true}. 

The pseudo-code of backtracking is shown in Figure 4.8. The parameters 

of the function are the invoking time sta/rtt, the array of solution counters 
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backtrack [startt^ sollndex^ Sol,() 
begin 

exit := false; 
t :— startt; 
repeat 

1 if t < 0 then 

2 print “No further backtracking"; 
exit := true; 

3 else if sollndex [t] < — 1 then 

/ *p ick the next solution. As sollndex[t] can be 0 to indicate the 

solution is picked, Sol[t] is decreased by 1 * / 

4 sollndex [t] := solIndex[t] + 1; 
exit true; 

else 

/ * no more solution * / 

5 remove the valuations from ( at stage t — 1; 
6 Sol[t][solIndex[t]] := {}; 
7 t :二 t 一 1; 

end 
until NOT exit] 
return ⑷； 

end 

Figure 4.8: Pseudo-code of backtrack 

sollndex, the array of sequence of solutions Sol, and the valuation has been 

obtained If we find that solIndex[t\ < \Sol[t]\ - 1 at Line 3, the counter 

solIndex[t] is increased by 1 to pick up the next solution at Line 4. Otherwise 

assignments of selection daton variables at stage t are removed from ( at 

Line 5 and 6, and the stage number is decreased by 1 at Line 7. At Line 1, 

if t is decreased to —1, CSPs of all stages have no solution and "No further 

backtracking" is printed at Line 2. Example 4.4 shows the algorithm. 

E x a m p l e 4.4 We are given the set of variables of interest I and the set of 

statements E, with corresponding Extended Dataflow Network shown in Fig-

ure 4.9. 
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Figure 4.9: Backtracking example 

I = {x, y} 
E = {x = 1 fby (x + [1, 2]) ; y = 3 fby (y + [[1，2]]); 

assert z = (y - x eq 2); assert u = (x < 5)-

E is transformed to a set of daton statements S by transf ormD. S is: 

\Jtez>o {工[0] = 1，4力 + 1] = + «[0] 二 [[1, 2]]， 

a[t + 1] = if a[0] eq 1 then 1 else n[t] fi, 

n[t] = if a[0] eq 2 then 2 else eod fi, 

y[0] 二 3，y[t + 1] 二 y[t] + b[t], b[t] 二 [[1，2]]， 

z[t] 二 {y[t] — x[t] eq 2), u[t] 二 {x[t] < 5)} 
where a[t], b[t] for t G ̂  > 0 are newly created selection daton variables. 

At stage 0, x[0], y[0], ^[0], and u[0] are demanded. We obtain the solution 

up to stage 0: C = 1, y[0] 3, z[0] ^ true, w[0] true}. 

At stage 1，x[l] is demanded. Thus a[0] and its selection operator are 

demanded and constructCSP is invoked. The CSP constructed is〈var((7灿')’ 

D, Csoi), where Csoi is： 

{z[l] eq true, u[l] eq true, 

^[1] eq {y[l] - x[l] eq 2), u[l] eq {x[l] < 5), eq 1 + a[0], 

y[l] eq 3 +刚， (a[0] eq 1) or (a[0] eq 2), _ eq 1) or _ eq 2)] 
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There are two solutions: Sol[l][0] = {a[0] ^^ 1, 6[0] 1} and Sol[l][l = 

{a[0] 2, b[0] 2}. We choose 5'o/[l][0]. Thus valuation gets additional 

elements: x[l] 2, y[l] ^ 4, ̂ [0] 4 1，d[(}] 1, z[l] ^ true, and u[l] 

true. 

At stage 2, a[l] is assigned 1 and x[2] is assigned 3. The selection operator 

of b[l] is demanded. The CSP constructed is�var(C糾/)，D, Csoi), where Csoi 

is: 

{^[2] eq (y[2] - 3 eq 2), u[2] eq (3 < 5), 

y[2] eq 3 + 6[1]， (6[1] eq 1) or {b[l] eq 2)， 

z[2] eq true, u[2] eq true} 

There is one solution 5W[2][0] = {b[l] ^ 1}. Valuation gets additional 

elements: x[2] 4 3, y[2] ^ 5, a[l] ̂  1, b[l] ^ 1, ̂ [2] 4 true, and u[2] ^ 

true. 

At stage 3, a[2] is assigned 1 and x[3] is assigned 4. The selection operator 

of b[2] is demanded. The CSP constructed is {vd.r{Csoi), D, Csoi), where Csoi 

is: 

{^[3] eq (y[3] - 4 eq 2), u[3] eq (4 < 5), 

y[3] eq 5 + 6[2], {b[2] eq 1) or {b[2] eq 2), 

eq true, u[3] eq true} 

There is one solution 5o/[3][0] = {b[2] ^ 1}. Valuation gets additional 

elements: x[3] 4 4, y[3] 6, a[2] 1, b[2] ^ 1, z[3] h-> true, and w[3] ^ 

true. 

At stage 4, a[3] is assigned 1 and x[4] is assigned 5. The selection operator 

of 6[3] is demanded. The CSP constructed is (var((7,o/), D, Csoi), where Csoi 

is: 
何4] eq {y[A] - 5 eq 2), u[4] eq (5 < 5)， 

y[4] eq 6 + 6[2], {b[3] eq 1) or (6[3] eq 2), 

zl4] eq true, u[A] eq true} 
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There is no solution. The function backtrack is invoked with startt as 

4. At Line 3 of Figure 4.8, as sollndex [4] = |6W[4]| 二 0, “ s decreased 

from 4 to 3 at Line 7. As solIndex[3] = |5W[3]| = 0, t is decreased to 2. 

As solIndex[2] = |5W[2]| = 1，t is decreased to 1. As solIndex[l] = 1 and 

Sol[l]\ = 2, solIndex[l] is increased to 1 at Line 4. Then at stage 1, we 

pick 5o/[l][l] = {a[0] 4 2, 6[0] 2}. We obtain the solution up to stage 1: 

(二 {x[Q] ^ 1, y[0] 3, z[0] ^ true, w[0] true, x[l] 3，y[l] ^ 5, 

a[0] 4 2, 6[0] ^ 2, z[l] true, u[l] t rue} . 

At stage 2, a[l] is assigned 2 and x[2] is assigned 4. The selection operator 

of b[l] is demanded. The CSP constructed is�var((7卯 /) , D, Csol), where C^oi 

is: 

{^[2] eq (y[2] - 4 eq 2), u[2] eq (4 < 5), 

y[2] eq 3 + 6[l], (6[1] eq 1) or (6[1] eq 2), 

z[2] eq true, u[2] eq t rue } 

There is no solution. The function backtrack is invoked with startt as 2. 

As \Sol[2]\ = 0’ 力 is decreased from 2 to 1. As solIndex[l] = \Sol[l]\ = 2, t i s 

decreased to 0. As \Sol[0]\ = 0, t is decreased to -1. At Line 2, the message 

"No further backtracking" is printed and the program ends. 口 
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Related Works 

We can model dynamic problems by various kinds of systems. In this chapter, 

we survey some of them and compare them with Extended Dataflow Network 

and E-Lucid. 

Difference equations and dynamic systems [30] define a variable, which is a 

sequence of values, by exactly one equation, so that it is impossible to define 

extra constraints for the variable. For example, if we want to define x to be 

y and 3，E-Lucid can specify them with two statements x = y and assert b 

= ( X eq 3). However, a difference equation can only specify x{i) 二 y{t) or 

x(t) 二 3, but not both. Therefore they cannot model problems specified with 

extra constraints, such as Traffic Light Problem. In addition to equations 

defining the colors of the light, its E-Lucid program needs to use assertion 

variables to define extra safety constraints. 

Dynamic programming [5] can specify extra constraints. However, a dy-

namic programming model can have only one control variable for decisions. On 

the other hand, E-Lucid programs support arbitrary number of selection op-

erators for non-deterministic decisions. For example, the E-Lucid program of 

Traffic Lights Problem uses 8 selection operators to define the possible signals 

of the lights. 

E-Lucid is extended from Lucid. As a dataflow language, Lucid is intuitive 

to express dynamic problems. With the operator first and attime, Lucid 
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can specify equations with fixed time points, which means that the indices 

of datastreams can be specified as constants in an equation. For example, a 

Lucid statement x = y attime 8 represents that x[t] : y[8] for alH G ^ > 0. 

E-Lucid shares the same feature, which is important in modelling the Modified 

Four Cockroaches Problem to specify the indices of coordinates we would like 

to find. This is not true for the dynamic systems mentioned before, which 

can only express the indices in terms of t, the current time. For example, we 

may find x{t + 1), or x{t — 2) but not x(8), or x(5) in a difference 

equation. On the other hand, however, Lucid is not able to specify any extra 

constraints. 

Theoretically, we can model a dynamic problem with a CSP. It is done by 

expressing a variable v in E-Lucid program by a set of variables {咖]， 

...}, and a constraint c in E-Lucid program by a set of constraints {c[0]’ c[l]’ 

...I. However, the sets are infinite. 

Dynamic CSP [10] extends classical CSP so that a Dynamic CSP can be an 

infinite sequence of classical CSPs. By splitting a dynamic problem into infinite 

stages with finite set of variables and constraints, the problem can be modelled 

with Dynamic CSP. However, it is often tedious to express dynamic problems 

with constraints. For example, the infinite set of constraints 二 U 

can be easily expressed by just one E-Lucid statement x = 1. 

Using Constraint Logic Programming (CLP) [19], the dynamic problem 

can be modelled by expressing a variable v in E-Lucid program as a list of 

variables, and a constraint c in E-Lucid program as a recursive rule. For ex-

ample, the Modified Four Cockroaches Problem can be modelled with CLP(7^) 

as following: 

cockroach(•，[]，•，[]，[]，•，•，[]，0). 

cockroach([J, [ J , [ J , [ J , [ J , [ _ ]， [ J , [-]，-，D-

cockroach([XlA,XlB|XlT], [YIA,YIBIYIT], [X2A,X2BIX2T], 

[Y2A,Y2BIY2T]，[X3A，X3BIX3T]，[Y3A，Y3BIY3T]， 
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[ X 4 A , X 4 B | X 4 T ] , [ Y 4 A , Y 4 B | Y 4 T ] , D , L ) 

cockroach([XlB|XlT], [YlBlYlT], [X2BIX2T], 

[ Y 2 B I Y 2 T ]， [ X 3 B丨 X 3 T ] ， [ Y 3 B I Y 3 T ] ， 

[ X 4 B I X 4 T ]， [ Y 4 B丨 Y 4 T ] ， D ， L - 1 ) ， 

XIB = XIA + D * ( X 2 A - X I A ) / 

pow(pow(X2A - XIA, 2.0) + pow(Y2A - YIA, 2.0), 0.5), 

Y I B = YIA + D * ( Y 2 A - Y I A ) / 

pow(pow(X2A - XIA, 2.0) + pow(Y2A — YIA, 2.0) , 0.5)， 

X2B = X2A + D * ( X 3 A - X2A) / 

pow(pow(X3A - X2A, 2.0) + pow(Y3A - Y2A, 2.0) , 0.5)， 

Y2B = Y2A + D * ( Y 3 A - Y2A) / 

pow(pow(X3A - X2A, 2.0) + pow(Y3A - Y2A, 2.0) , 0 . 5 )， , 

X3B = X3A + D * ( X 4 A - X3A) / 

pow(pow(X4A - X3A, 2.0) + pow(Y4A - Y3A， 2.0)， 0.5), 

Y3B = Y3A + D * ( Y 4 A - Y3A) / 

po¥(pow(X4A — X3A, 2.0) + pow(Y4A - Y3A, 2.0) , 0.5)， 

X4B = X4A + D * ( X 1 A - X4A) / 

pow(pow(XlA - X4A， 2.0) + pow(YlA - Y4A， 2.0)， 0.5), 

Y4B = Y4A + D 氺（YIA - Y4A) / 

pow(pow(XlA - X4A, 2.0) + pow(YlA - Y4A, 2.0) , 0.5). 

The first eight arguments of cockroach are lists, which represent the xy-

coordinates of the four cockroaches. The ninth argument D is the distance a 

cockroach can walk within one time unit. The tenth argument L is the time 

limit for the cockroaches to walk. The query is: 

? - c o c k r o a c h ( [ X l S , 0 . 0 1 | X l ] , [ Y I S , 0 | Y 1 ] , [ X 2 S , 1 0 | X 2 ] , 

[ Y 2 S , 0 . 0 1 | Y 2 ] , [ X 3 S , 9 . 9 9 | X 3 ] , [ Y 3 S , 1 0 | Y 3 ] , 

[ X 4 S , 0 I X 4 ] , [ Y 4 S , 9 . 9 9 | Y 4 ] , 0 . 0 1 ， 7 ) . 

XIS is the x-coordinate of the first cockroach at time 0. XI is a list of the 
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^^-coordinates of the first cockroaches from time unit 2 to L 二 7. Similarly, 

other variables represent the xy-coordinates of the cockroaches. 

E-Lucid represents a sequence by a datastream with infinite datons, while 

CLP represents it by a list with finite elements as CLP programs should not 

be intended for perpetual execution for semantic reason [29]. Therefore we 

need to specify the length of each list in a CLP model. In the example, the 

time limit L is equivalent to the lengths of the lists. However, if there are 

non-linear constraints, CLP(7^) may not be able to solve it^ For example, in 

solving the Modified Four Cockroaches Problem, CLP(冗）prints “Maybe” to 

indicate that it cannot determine the satisfiability [20] and the solution shown 

is just a rephrasing of the constraints. 

iBy using lazy mechanism, CLP(7^) is able to solve some problems with non-linear con-
straints, but some are still not solvable. 



Chapter 6 

Conclusion 

We conclude the thesis in this chapter by giving our contributions and possible 

directions of future works. 

First, we have proposed an extension of Dataflow Network, Extended Dataflow 

Network, by introducing selection operators and assertion arcs. We can define 

the possible values with selection operators, that only fire datons with which 

the assertion arcs are satisfied. With the mechanism, Extended Dataflow Net-

work can model dynamic problems with constraints. Second, we have pro-

posed its corresponding language E-Lucid with a formal definition. Third, we 

have implemented a prototype E-Lucid interpreter by extending the pLucid 

interpreter [1, 12] with help of a CSP solver to solve E-Lucid programs. The 

pLucid interpreter can solve the dataflow network part while the CSP solver 

can implement the idea of selection variables and assertion variables. With 

backtracking, we are able to find all finite desirable solutions. Fourth, we have 

expressed several problems in E-Lucid to show the expressive power of the 

language. We can perform "backward valuation", express complicated interre-

lationship among variables, and find multiple solutions by E-Lucid programs. 

Our work shows a possible way to make use of constraint solving techniques 

in dataflow network. There is plenty of scope for future work. First, we 

construct and compile ILOG programs on-the-fly in our implementation. The 

compilation accounts for large amount of execution time, which slows down 
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the whole process. It would be worth to construct a parser so that only a 

single compilation is required. 

Second, our implementation does not support user-defined functions. Al-

though the feature does not enhance the expressiveness, it is worth to develop it 

to facilitate programming. For example, we can define the function l ight (Vi， 

Pi, Vj，Pj) for Traffic Light Problem as follows, 

light(Vi, Pi, Vj, P j ) = 

(Vi eq 1 and Pi eq 1 and Vj eq 3 and Pj eq 3) 

or (Vi eq 2 and Pi eq 1 and Vj eq 4 and Pj eq 1) 

or (Vi eq 3 and Pi eq 3 and Vj eq 1 and Pj eq 1) 

or (Vi eq 4 and Pi eq 1 and Vj eq 2 and Pj eq 1)； 

With the function, we can redefine L12, L23, L34 ’ and L4I in Section 3.4.2 

as follows，which are simpler and clearer than the original ones, 

assert L12 = light(VI, PI, V2, P2)； 

assert L23 = light(V2, P2, V3, P3); 

assert L34 = light(V3, P3, V4， P4); 

assert L41 = light(V4, P4, VI, PI)； 

Third, the E-Lucid language is based on the the original Lucid. It is worth-

while to extend the other variants of Lucid to develop other dataflow languages 

supporting Extended Dataflow Network, so that they can take the advantages 

of the variants. For example, we can introduce an extension of Indexical Lu-

cid [25] to support Extended Dataflow Network, so that we can deal easily 

with multidimensional data structures such as arrays and trees [25 . 

Fourth, in Traffic Light Problem, it is obvious that the colors of the lights 

cycle with period of 4. It would be interesting to study new algorithms to 

identify such kind of dynamic problems and solve them completely, that is, to 

find the solution up to stage 00. For example, by detecting the cycle of Traffic 
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Light Problem, we can completely solve the problem by finding the solution 

up to stage 8. The idea is explained in the following. 

In Traffic Light Problem, there is a set of constraints C o / o r + 

4] = ColorV[t]}. It has a pattern that all constraints of which are the same but 

different in the indices of daton variables. Given that " Co/or F [4] = (7o/orV[0]" 

holds, it is obvious that ''ColorV[S] = Co/orF[4]" holds if ColorV[S] and 

ColorV[4] are assigned the same values as ColorV[i] and ColorV[0] respec-

tively. The sufficient condition can be checked by finding the solution up to 

stage 8. In general, given that ''ColorV[n^A] = ColorV[nY' holds, "(7o/orF[n+ 

4 + p] = ColorV[n + p]’，holds if ColorV[n + 4 + and ColorV[n + p] are 

assigned the same values as ColorV[n + 4] and ColorV[n] respectively. The 

sufficient condition can be checked by finding the solution up to stage n + 4+p. 

We put p 二 4, and we can find that ColorV[t] is assigned the same value as 

ColorV[t mod p] with 0 <t < n. We would like to prove that the valuation of 

ColorV[t] cycles with period p 二 4 by mathematical induction. Similarly, by 

observing the patterns of other sets of constraints in the problem, we would 

like to prove that the valuations of all daton variables are cyclic, it is, v[t i- p 

is assigned the same value as v[t] for all variables v and all positive integer t. 

With the proof, we can find a complete solution of the program. 

We define that a solution 0 of an E-Lucid program has a period p since 

index to if and only if 0{v[t^p]) = 0{v[t]) \/v e V.^t e Z > to, where V is the 

set of variables of the program. If such period exists, 0 is cyclic. For example, 

all the four solutions of Traffic Light Problem are cyclic with period 4 since 

index 0. 

If a solution is cyclic with period p since index to, we can find the complete 

solution 0 by finding the corresponding solution up to stage (2p + to), The 

solution 0 is equal to C U [j,ev^tez>pHt] ^ C ( 州 ( 力 — 力 0 ) mod p) + 碰 . 
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