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Chapter 1 Overall Review 

Statistical applications in business and social sciences are growing 

rapidly. The most popular technique to analyze the causation relationship 

among variables is the regression method. Consider a simple case to research 

the relationship between a consumer's income (X) and his/her spending on a 

particular product (Y). A regression model can be formulated as: 

Yi = a + bXi + Si 

where (a, b) are parameters, 

Si is the noise and i indexes for the consumer. 

In addition to the statistical stationary assumptions on the noise term, 

the above regression model presupposes the income sensitivity parameter 'b' 

(i.e., the slope) is constant and identical for all consumers in the sample. One 

ofthe major task for marketing researchers is to use the sample information to 

divide the market into meaningful segments so that a firm can achieve better 

profits through targeting the customers with highest potential. Therefore, we 

expect 'b' will be large for some customers, but small for another group of 

customers. The research issues are: 
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1. to determine the number of groups in the sample, 

2. to identify the membership for each group, 

3. to find the income sensitivity for each group. 

One adhoc approach to address these issues is: 

1. to assume k segments in the sample, 

2. to use 'clustering analysis' to divide customers into k segments, 

3. to perform regression in each segment. 

On the surface, this approach is reasonable. However, it does not 

deliver to what we want. While our original intention is to use 'b' (defined in a 

regression model) as the basis for segmentation, the two stage procedure uses 

the distances among individuals as the segmentation base. 

In other words, the cluster analysis in stage 1 ignores the causation 

information (i.e., Y is a dependent variable and X is an independent variable) in 

the clustering process. Therefore, the clustering procedure is not performed in 

a regression context. This implies the clustering and regression results obtained 

by optimizing two different objective functions in stages 1 and 2 may not be 

consistent. 

A better approach "Clusterwise Regression" is proposed by Spath 

(1979). His algorithm (called "exchange algorithm") integrates the clustering 
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into a regression framework, so that clustering and regression can be 

performed simultaneously. However, the exchange algorithm can only be 

applied to minimize the sum of square error or absolute error. In the past two 

years, we examined the clusterwise regression model and its extensions from 

the operation research prespective. We have developed numerous 

mathematical programming models to incorporate parameter heterogeniety in 

these traditional multivariate statistical methods. This new development allows 

marketing researchers to perform market segmentation easily with standard 

mathematical programming software (e.g., GAMS). We fiirther generalize the 
t 

concept of clusterwise regression to clusterwise discriminant analysis, 

clusterwise logit and unidimensional scaling model, (see table in the next page 

for a comparison) 

The thesis consists of three applications as follows: 

Essay one: A Mathematical Programming Approach to Clusterwise 

Regression Model and its Extensions (Chapter 2) 

Essay two: A Mathematical Programming Approach to Clusterwise 

Rank Order Logit Model (Chapter 3) 

Essay three: A Mathematical Programming Approach to Metric 

Unidimensional Scaling (Chapter 4) 

In addition to these three completed essays, we have been supported by 

a university grant to research on the taste test methodology and the perceptual 
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mapping technique. These studies have not been completed and more work 

needs to be done. We report the experimental design and preliminary results 

on Chapter 5. 

Essay Model X Y Objective Existing 

Approach 

one Clustenvise Observable Continuous simultaneously Spath 1979 

Regression estimate regression 

and membership 

parameters 

one Clusterwise Observable Categorical simultaneously / 

Discriminant estimate discriminant 

and membership 

parameters 

two Rank Order non- Ranking simultaneously Croon 1989 

Logit Observable estimate desirability 

index and 

membership 

parameters 

three Unidimensional non- Continuous estimate the Simantiraki 

Scaling Observable coordinates of the 1996 

subjects Pliner 1996 

Hubert and 

Arabie 1986 
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Chapter 2 Essay one - A Mathematical Programming Approach to 

Clusterwise Regression Model and its extensions 

Abstract 

In this essay, a clusterwise regression model is used to perform cluster 

analysis within a regression framework. While the traditional regression model 

assumes the regression coefficient (P) to be identical for all subjects in the 

sample, the clusterwise regression model allows f> to vary with subjects of 

different clusters. Since the cluster membership is unknown, the estimation of 

the clusterwise regression is a difficult combinatorial optimization problem. A 

"Generalized Clusterwise Regression Model" which is formulated as a 

mathematical programming problem is proposed in this research. A nonlinear 

programming procedure (with linear constraints) is used to solve the 

combinatorial problem and to estimate the cluster membership and P 

simultaneously. Moreover, by integrating the cluster analysis with the 

discriminant analysis, a clusterwise discriminant model is developed to 

incorporate parameter heterogeneity into the traditional discriminant analysis. 

The cluster membership and discriminant parameters are estimated 

simultaneously by another nonlinear programming model. 
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2.1. Introduction 

In the past four decades, mathematical programming (MP) approaches 

to solve multivariate statistical problems have received considerable attention 

since their introduction by Charnes, Cooper and Fergusion (1955). The major 

areas of mathematical programming application in statistics include regression 

analysis (Arthanaria and Dodge, 1981; Schrage, 1991), discriminant / 

classification analysis (Freed and Glover, 1981，1986; Glover, 1990; Hand, 

1981; Koehler and Erengus, 1990; Lam, Choo and Moy, 1996; Ragsdale and 

Stam, 1991; Rubin, 1994; Stam, 1990; Wanarat and Pavur, 1996, and others), 

and cluster analysis (Aronson and Klien, 1989; Jensen, 1969; Klien, Beck and 

Konsynski, 1988; Koontz, 1975; Mulvey and Beck, 1984; Mulvey and 

Crowder, 1979; Rao, 1971; Stanfel, 1981, 1986, and others). 

These MP applications are interesting. However, they may not be very 

helpful to analyze real data. Each existing MP model is designed for solving 

only one particular statistical problem, but the analysis of real data set always 

involves simultaneous applications of several related statistical models. As an 

example, consider a simplified version of the market segmentation problem in 

business. The manager collects a sample of the sales and income data from a 

set of customers. If the customers have homogenous income elasticity (i.e., the 

regression coefficient P), P can simply be estimated by regression of sales on 

income. In real business, customers are heterogenous and income elasticity will 
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vary with customers of different clusters in the sample. The major tasks for the 

manager are: 

(i) use the income elasticity as the basis to divide customers into mutually 

exclusive segments, 

(ii) estimate the average income elasticity for each segment, 

(iii) identify the members of each segment. 

If we ignore the income elasticity differences among segments, the 

income elasticity estimated from the regression of sales on income will certainly 

be biased and inaccurate. In other words, if we want to model the parameter 

heterogeniety in the traditional regression, the appropriate statistical analysis 

will involve the simultaneous applications of the cluster analysis and regressioin 

model. One straight forward approach is the two stage method. In stage 1，we 

apply cluster analysis to the data set to divide customers into segments. In 

stage 2，we perform regression for each segment to estimate the income 

elasticity. The problem is that the functions optimized in stages 1 and 2 are 

two different objective functions which are not necessarily related. And the 

rationale behind the two analysis is different. Cluster analysis is non-criterion 

based which does not consider the causation relationship between the 

dependent and independent variables, while regression analysis is criterion 

based. 
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A better formulation is to integrate the cluster analysis into the 

regression framework, so that the income elasticities and segment membership 

parameters can be estimated simultaneously by optimizing one single objective 

function. In the literature, this integration is named as the "Clusterwise 

Regression Model". Spath (1979，1981, 1982, 1985) proposed the "exchange 

algorithm" which uses the QR-decomposition technique to minimize the sum of 

square errors in the integrated model. The exchange algorithm is further 

generalized by Spath (1986) and Meier (1987) to minimize the sum of absolute 

errors. These clever algorithms are easy to implement, but their performance is 

quite sensitive to the initial partition and outliers. DeSarbo，Oliver and 

Rangaswamy (1989) applied the simulated annealing procedure to search for 

the global optimum in the clusterwise regression. The result is encouraging, 

but the computational cost is high. Moreover, the issue of choosing the 

appropriate cooling parameter has not yet been fully resolved (Bertsimas and 

Tsitsiklis, 1993). 

Another approach is the mixture model (Aitkin and Wilson, 1980). It is 

a parametric procedure with strong distributional assumptions on the noise 

term. It does not directly classify subjects into segments; instead, it computes 

the segment membership probabilities for each subject. 

In this paper, we incorporate the parameter heterogenity in traditional 

regression and discriminant analysis. We formulate the clusterwise regression 

and its extensions as mathematical programming models. A generalized 
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clusterwise regression model will be proposed, and it will include existing 

models as special cases. We will show that the estimation of the clusterwise 

regresion model is equivalent to solving a nonlinear mixed integer 

programming model (NMIP). To estimate the proposed model, a new 

alternative is derived and it transforms the original nonlinear integer 

programming model to a simple nonlinear programming model (NLP) with 

linear constraints. We further extend the idea of the clusterwise regression 

model to "Clusterwise Discriminant Model" by integrating the cluster analysis 

into a discriminant framework. While the dependent variable in a clusterwise 

regression model must be a continuous variable, the dependent variable in the 

clusterwise discriminant model is categorical. The estimation of the clusterwise 

discriminant model is formulated as another nonlinear programming problem. 

All proposed estimation procedures can be easily implemented with existing 

mathematical programming software (e.g. GAMS). 

The paper is organized as follows. In section 1，we present the 

nonlinear programming formulation of the generalized clusterwise regression 

model, and apply the new estimation procedure to a data set of electricity 

consumption. In section 2，we extend the clusterwise regression model to the 

clusterwise discriminant model, and propose a new method to estimate the 

model. Another data set is used for illustration. The last section summarizes 

the contributions and the conclusions. 
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2.2. A Mathematical Programming Formulation of the Clusterwise 

Regression Model 

We will propose a "Generalized Clusterwise Regression Model" and 

formulate it as a mathematical programming problem. The proposed model 

will include the other clusterwise regression specifications as special cases. 

2.2.1. The Generalized Clusterwise Regression Model 

To illustrate the generalized clusterwise regression model, consider a 

sample of n subjects with measurements on two variables Y (a continuous 

dependent variable, e.g., sales) and X (an independent variable, e.g., income). 

We are asked to divide the sample into two mutually exclusive segments (1, 2) 

according to the impact o f X on Y. 

Let the membership parameters for subject i be \Z\ and 2¾ defined as follows: 

jZ. = 1 if subject i belongs to segment 1 , (1) 

= 0 otherwise • 

2 Z. = 1 if subject i belongs to segment 2 , 

= 0 otherwise. 

Since subject i is a member of either segment 1 or segment 2，\Z\ + 2¾ = 1. 
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Then, the specification of the two segments are: 

Segment 1: Yi = ai + bi Xj + iSi if , ¾ = ! (2) 

Segment 2: Y； = a2 + b2 X； + 28i if 2 ¾ = ! (3) 

where a = (ai, a2), b = (bi, b2) are segment parameters and 8 = (i8i，2 î ) are 

noises. 

The membership parameters Z = (iZi, 2Zi)i = 1，..，„, are unknown. The 

research objective is to estimate Z and segment parameters (a, b) 

simultaneously. 

The original clusterwise regression model (Spath, 1979) is a 

nonparametric procedure. However, a more rigorous model can be derived if 

we impose distributional assumption on the noise term e. For simplicity, let us 

assume 8 to follow the normal distribution, i.e., 

i 
/|i(i〜）= ^ ^ ? � ' 2 . if iZ i= l (4) 

V2;rcr, 

1 i 
/,|2(2。）= ̂ ^ 一 � 2 . if 2Z,= l (5) 

V27nJ2 

where % is density function of jSi 

ai is standard deviation of iSi 

G2 is standard deviation of 2Si 
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The joint likelihood function of jSi (denoted as L) and the joint log-likelihood 

ftmction (denoted as LL) are: 

^ = f l ( / | i ) iz ' ( / |2)( i - iz ' )， (6) 
1=1 

LL = j](,Z^ l og ( / , ) + ( l - , ^ ) l o g ( / , J ) . (7) 
;=i 

Let ^1 = (a j , b\, ai) and Q: = (<¾, ^ , 02) be segment parameters. 

We substitute (2) and (3) into (7) which is maximized with respect to (9!, Q: 

and the membership parameters (iZi)i = i，..，n, i.e., 

max LL 
^lA>(l^i)i = l,..,n 

^ z ( 1¾(- ^ ¾ ^ - i � g � i ) + 
' " ( 1 ) , (8) 

(Y-h-h,X,f , �� 
(1-1¾)(- ^ ‘ ’ 2; ' , — — 2 ) ) 

(2o-2 ) 

subject to 

(,Z. )i=i,...,n are binary (i.e. 0 or 1) variables. 

Since ^Z. is restricted to be binary, (8) is a nonlinear integer 

programming model which is very difficult to solve. It will be interesting and 

helpful if the combinatorial optimization can be replaced by a smooth and 

continuous optimization. In appendix A, we will show that the binary variable 
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restrictions on (iZi)i=i，..，n are sufficient but not necessary to derive the estimates 

on 9̂  and 0^. Therefore, we can formulate the clusterwise regression as 

follows: 

max LL 二 X i � （ _ 7 ^ — log … ) + 2 ^ , ( " 7 r ^ " log a , ) (9) 
e, 2̂,(1Zi,2Zi)i = ,..,,, ^ (2o"i ) (20"2 ) 

subject to 

y.= a^ +a^X^+^s^ i = 1,...., n 

；；,=b,+b^X.+,s, • 

, ^ + 2 ^ , = l 

1^, ^ 0 

2Z, > 0 . 

The differences between (8) and (9) are: 

(i) We incorporate an additional constraint j Z. + 2 Z, = 1 in (9). 

(ii) (^Z., 2Z.) are not restricted to be binary. They can take any values 

between zero and one. 

The formulation in (9) is classified as the nonlinear programming model 

with all linear constraints, and we name it as the "Generalized Clusterwise 

Regression Model" which includes other versions of the existing clusterwise 

regression as special cases. In appendix A, we will prove: 

13 



(i) Even though (j Z.，之 Z.) are not restricted to be binary, the optimization 

in the nonlinear programming model (i.e. (9)) will automatically drive 

j Z. and 2 Z. to be either zero or one. 

(ii) The nonlinear integer programming model (i.e. (8)) and the nonlinear 

programming model (i.e. (9)) are structurally equivalent, and they have 

the same global optimum. 

While (8) involves the combinational optimization and its solution 

heavily relies upon heuristics (e.g. simulated annealing, or branch and bound 

algorithm), (9) is a continuous constrained optimization easily implemented 

with any existing mathematical programming software. Similar to any other 

nonlinear optimization models, solution to (9) may be sensitive to the choice of 

starting points. The procedure to choose starting points for the proposed 

model is given in Appendix B. 

2.2.2. Clusterwise Regression Model (Spath, 1979) 

The conditional density functions of ^s. and 2^. usually have different 

variances. If the variances are equal which is assumed in the model proposed 

by Spath (i.e., ai^ = a2^ in (4) and (5)), maximizing LL in (9) is equivalent to 

minimizing the total sum of square errors and the formulation becomes: 
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n 
min 2：14(1一）+24如 /2) (10) 

/=1 

subject to 

X= ^i+^2^,+i^, i= l , . . . . , n 

X= b,+b^X.+^s, 

1 ^ + 2 ^ , = 1 , 1^,, J u > 0 . 

(10) is a nonlinear programming model which solves the original clusterwise 

regression model proposed by Spath (1979). 

2.2.3. A Nonparametric Clusterwise Regression Model 

The generalized clusterwise regression model (9), which relies upon the 

distributional assumption on the density function of ê̂  and ^s., is a 

parametric procedure for clustering and estimating segment parameters 

simultaneously. If the distribution of the noise term is not known, most 

researchers appeal to the robustness by minimizing the sum of absolute errors, 

instead of the sum of square errors in (10). This can also be formulated as: 

n 

min 2 ^ 1 Z , ( 1 < + 1 ( ) + 2 Z , . ( 2 < + 2 ( ) (11) 
7 = 1 

subject to 

^ = « i + « 2 ^ , + i < - i ^ r i=l,....，n 

^ = 4 + M > 2 S , + - 2 ( 

1 ^ + 2 ^ = 1 

1 ^ 1 ‘ 2 ^ 1 ‘ 1 ^ / > 1 ^ / ？ 2 ^ 1 , 2 〜 - 0 . 
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In the above formulation, we decompose (̂  s-, 2^, ) into the difference 

of two positive components ( , ^ / - ^ s '，^e^ _2S , ) . Schrage (1991) showed 

that minimizing the sum of absolute errors is equivalent to minimizing the sum 

of these components. In (11), the objective function is quadratic and the 

constraints are all linear. 

In addition to the mathematical programming solutions, the exchange 

algorithm in Spath (1979) or its generalizations (Spath 1986; Meier, 1987) can 

also be used to optimize the objective functions in the original clusterwise 

regression and the nonparametric clusterwise regression (see (10) and (11)). 

However, the exchange algorithm will fail to optimize the objective function in 

the generalized clusterwise regression model (see (9)). 

2.2.4. A Mixture Approach to Clusterwise Regression Model 

The primary objective of the proposed mathematical programming 

models (i.e., (9), (10), (11)) or the exchange algorithm (Spath, 1979) is to 

simultaneously estimate the membership parameters Z (i.e., clustering) and 

segment parameters (i.e., regression). From the estimates on Z, we are able to 

classify a subject to either segment 1 or segment 2. Therefore, they are 

referred as the "Classification Approach or Classification Model" (CeIeux and 

Govaert, 1986) to solve the clusterwise regression problem. Another approach 

is the mixture model (Aitkin and Wilson, 1980) which is a parametric 
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procedure. Instead of estimating the membership parameters Z directly, the 

mixture model is used to estimate the mixing proportion P defmed as: 

n 

P = Y . \ ^ i l n (12) 
1 

l - ^ = Z 2 ^ / " 
1 

P can be interpreted as the prior probability of an object to belong to segment 

1. The mixture model assumes the noise term (e) in the regressions (2) and (3) 

to follow the normal distribution f (see (4) and (5)). Then, the segment and 

mixing parameters can be estimated by maximizing the joint log-likelihood 

function of s, i.e., 

max “ 
( « 1九〜氏力 5 1。 8 (户乂 | 1 ( 1小 ( 1 —尸).《2。） (13) 

where fi|i is the density function of jSi, and fip is the density function ofjSi. 

The E-M algorithm (Dempster, Laird and Rubin, 1977) is useful to 

optimize the likelihood function in (13). The posterior membership 

probabilities can be calculated from the parameter estimates and used to assign 

subjects into segments as follows: 
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Prob(iZ, = 1 I (]；，X,.)) = p / , / (pf„ + (1 - p ) f , , ) (14) 

Assign subject i to segment 1 if 

P r o b ( i & = l | ( ] ; j Q ) > 0 . 5 (15) 

The objective function in the mixture approach (i.e., (13)) is different 

from that in the classification approach (i.e., (9)). Therefore, they cannot be 

compared directly. The assignment rule between these two approaches is also 

different. The rule is “all or nothing (i.e., either segment 1 or segment 2)" for 

the classification model, and the rule becomes probabilistic for the mixture 

model. Moreover, the classification model estimates more paraemeters than 

the mixture model. 

In general, the choice between the classification and the mixture 

approach depends upon the research objectives and the validity of the model 

assumptions. The mixture approach is chosen if the objective is to perform 

inference on segment parameters, and the classification approach is more 

appropriate if the objective is to maximize the goodness of fit. For a more 

detailed comparison, see Celeux and Govaert (1986). 
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2.2.5. An Illustrative Application 

To illustrate the empirical differences between the mixture model and 

the proposed nonlinear programming (NLP) model, we apply both models to 

the electricity consumption data (McCormick, 1993) which is given in Table 

lA. In this data set, the subjects are fifty states. The dependent variable is the 

per capita electricity consumption by state (Y) and the independent variables 

include price of electricity (Xi), per capita income (X2) and price of gas (X3). 

We assume two mutually exclusive segments and the i-th state belongs to either 

one of the following regression models: 

Segment I : Ŷ  = a^ +a iXy + h1X2i + q ^ + iS| ifiZi = 1 

Segment E : Y| = ^¾ + ¾ ¾ + ¾ ¾ + ¾ ¾ + 2 ,̂- if2Zi = 1 

where 

ai, a2 < 0 (i.e. demand curve is downward sloping)， （16) 

bi, b2 > 0 (i.e. electricity is the normal goods), (17) 

Ci, C2 > 0 (i.e. electricity and gas are substitutes). (18) 

The mixture model and the NLP model are compared for the general 

case (i.e. cJi 本 02) and the restricted case (cji = 02). The formulation of the 

mixture model is given in equation (13) with fin(i80 and fi|2(2ei) defined in 

equations (4) and (5). The mixture model is estimated through the E-M 

algorithm. Since the constrained E-M algorithm is not easy to handle, we 

Ignore the restrictions on the parameters ((16) - (18)) in the E-M 
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implementation. We also generate 1000 sets of starting points randomly for the 

E-M algorithm and report the best E-M results in the tables lB to lD. On the 

other hand, the generalized clusterwise regression (9)，clusterwise regression 

(Spath, 1979) (10)，and the nonparametric clusterwise regression model (11) 

with all parameter restrictions are estimated by the proposed "nonlinear 

programming procedure". The findings are summarized below: 

(i) In table lB, the conditional density functions of ŝ̂  and ŝ̂  are 

assumed to have different variances ( i.e. ai^ 本 Q^ ). The likelihood 

value of the NLP model is -69.151 which is larger than -87.614 of the 

likelihood value of the mixture model. Moreover, the likelihood value 

of the two segment models (either the mixture or NLP approach) is 

much better than that of the one segment homogenous model. The 

income parameter (i.e. a2, b2) are supposed to be positive for electricity 

to be normal goods. However, b2 of the mixture model is negative. 

Due to the constraints from the parameter restrictions in the NLP 

model, b2 is zero. 

(ii) In table lC, ai^ = ^ i are imposed. Therefore, maximizing the 

likelihood function is equivalent to minimizing the sum of square errors 

(SSE). SSE is sharply reduced from 1042.875 (one segment 

homogenous model) to 369.94 (two segment mixture model) and to 

310.907 (two segment NLP model). Again, the SSE ofthe NLP model 
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is significantly lower than that of the mixture model. While the sign of 

b2 in the mixture model is wrong, b2 is zero in the NLP model. 

(iii) In table ID，we consider the nonparametric procedure. The objective is 

to minimize the sum of absolute errors. Since the mixture model does 

not apply in a nonparametric case, we only compare the one segment 

homogenous model with the two segment NLP model. The signs of all 

segment parameters of the NLP model are correct. The sum of 

absolute errors is reduced from 181.124 (one segment homogenous 

model) to 93.393 (two segments NLP model). 

(iv) In all NLP models, the size of segment 1 is quite close to the size of 

segment 2 regardless of the objective function that we optimize (i.e., 24 

vs 26 (table lB), 22 vs 28 (table lC) and 23 vs 27 (table lD)). 

However, the segment size ratio in the mixture model changes 

dramatically from 44/6 = 7.3 (when ai 本 cj2) to 32/18 = 1.7 (when cji = 

a2). This suggests the mixture approach to segmentation is quite 

sensitive to model specification. 

2.3. Mathematical Programming Formulation of the Clusterwise 

Discriminant Analysis 

In the original clusterwise regression model, the dependent variable Y 

nuist be restricted to be continuous. In many situations, Y is categorical. As 
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an example, consider the data set in Table 2A about the mortality due to 

simulated side impact car collisions (Hardle and Stoker, 1989). The categorical 

dependent variable Y = 1 indicates mortality, and Y = 0 means survival. The 

three independent variables are age (Xi), velocity (X2) and acceleration (X3). 

For convenience, (Xi, X2, X3) are standardized to have E(X) = 0 and Var(X)= 

1 (i.e., the standardized variable = (X - X) / cr̂  where X and cr̂  are sample 

mean and standard deviation). If the subjects are homogenous, one 

discriminant function is sufficient and it applies to all subjects in the sample. 

Under this assumption, the discriminant function can be estimated using the 

MSD (i.e., minimize sum of deviations) formulation ofthe discriminant analysis 

(Ragsdale and Stam, 1991) as follows: 

min X d i + Z ^i (19) 
ie{Yi=l} ie{Yi=()} 

subject to 

a xii + b X2i + c X3i + di > 8 for all Yi = 1, 

a xii + b X2i + c X3i - di < -s for all Yi = 0， 

where s is a very small positive constant (e.g. 0.001), di is the deviation (noise 

term), and (a, b，c) are parameters. 

In most real cases, the subjects are heterogenous. Let us simply assume 

two clusters of subjects in the sample. The relationship between Y and X 二 

(Xi，X2, X3) in cluster 1 is different from that in cluster 2. Therefore, we need 
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two discriminant functions for two clusters. Let (j Z., ^Z.) be the cluster 

membership parameters, i.e., 

jZ. = 1 if subject i belongs to cluster 1, (20) 

= 0 otherwise; 

2 Z. = 1 if subject i belongs to cluster 2, 

= 0 otherwise. 

Let Vi be the discriminant function that applies to members in cluster i, and it is 

specified below: 

Cluster 1: Vi = aiXn + b1X2i + C1X3i for all , Z, = 1, (21) 

Cluster 2: Vj = a2Xii + b2X2i + C2X3i for all 2 Z. = 1, 

where a = (ai, a2), b = (bi, b2) and c = (ci, c2) are parameters of the 

discriminant functions. 

The cluster membership parameters Z = (! Z.，^ Z, )； = 1，...，„ are unknown. 

The research objective is to estimate Z (i.e., clustering), and (a, b, c) (i.e., the 

discriminant parameters) simultaneously. Therefore, we need to integrate the 

cluster analysis into a discriminant framework. We name this integration as the 

"Clusterwise Discriminant Model". To incorporate the cluster analysis into the 

MSD discriminant model, we propose a simple nonlinear programming 

procedure for the simultaneous estimation o f Z and (a, b, c) as follows: 
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min Y^ (iZi(idi) + 2Zi(2di)) + X (lZi(idO + 2Zi(2di)) (22) 
ie{Y,=l} ie{Y.=0} 

subject to 

aiXii + b1X2i + C1X3i + idi > 8 for all Yi = 1, 

a2Xii + b2X2i + C2X3i + 2di > 8 

and 

aiXii + b1X2i + C1X3i - idi < -s for all Yi = 0, 

a2Xii + b2X2i + C2X3i - 2di < -s 

and 

, ^ , + 2 ^ = l 

l 4 ， 2 Z , � 0 . 

In the above formulation, we do not restrict (, Z., 2 Z.) to be binary. 

The formulation itself will automatically force ( j Z., 2 Z.) to be either zero or 

one, and the proof is similar to the proof for the clusterwise regression model 

(see appendix A). The first two constraints apply to subject with Yi = 1. If jdj 

< 2di, j Z. = 1 and the subject is classified as a member of cluster 1. Similarly, 

the subject is assigned to cluster 2 if idi > 2di (i.e.义 Z. = 1). The third and forth 

constraints apply to subjects with Yi = 0，and the classification rule will depend 

upon the values of (, Z., ^ Z.). 
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We analyze the mortality data set (table 2A) with the traditional 

discriminant model and the clusterwise discriminant model. The results are 

summarized in tables 2B and 2C. If we assume the subjects are homogenous 

and fit the data set with traditional discriminant analysis, we find that the 

parameter estimates are all positive with (bi, ci) to be very small. This implies 

X2 and X3 are not good predictors of Y. The total deviations (i.e., error) is 

0.026 which produces 6 misclassifications and 3 ties in table 2C. Ifthe subjects 

are heterogenous and the data set is fitted with the clusterwise discriminant 

model, the sign of parameter estimates in cluster 1 is just the opposite to that in 

cluster 2. Since Ci and a2 are the largest in clusters 1 and 2 respectively, the 

most important predictors are X3 in cluster 1 and Xi in cluster 2. 19 

observations are assigned to cluster 1 and the remaining 37 observations are 

classified as members of cluster 2. The total deviation is zero which gives us 

100% correct classification. As a conclustion, we get a better picture of the 

data when we use the clusterwise discriminant model. 

2.4. Conclusion 

The analysis of real data set always involve simultaneous applications of 

several related statistical models. The mathematical programming model may 

not be very helpful if it is designed to solve only one particular statistical 

problem. Traditional mathematical programming formulation of regression 

model assumes the regression coefficient ((3) to be identical for all subjects in 

the sample. This homogeneity assumption is not realistic. The clusterwise 
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regression model assumes identical P for members within a cluster, but 

different p for members of different clusters. In this paper, we focus on the 

mathematical programming formulations of the clusterwise regression model 

and its extensions. 

The clusterwise regression is basically a tough combinatorial problem. 

It is difficult to solve and implement when the sample size is large. To reduce 

the computational complexity, we propose a simple nonlinear programming 

model with linear constraints to solve the complicated combinatorial problem. 

The proposed procedure simultaneously estimates the cluster membership 

parameters and the regression parameters for each cluster. The implementation 

can be well supported by existing mathematical programming software (e.g. 

GAMS). It is more general than the exchange algorithm because it is not 

restricted to minimize the sum of square errors or absolute errors. It can be 

used to optimize any objective function (e.g. (9)). While the stochastic 

optimization algorithm (e.g. simulated annealing) is designed to search for the 

global optimum, the proposed procedure may generate local optimum. 

However, the computation cost is much lower than that of the simulated 

annealing. 

The mixture approach to estimate the clusterwise regression model is 

quite different from the proposed procedure. They differ in terms of the 

objective functions, number of parameters and the assignment rules. Therefore, 
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they cannot be directly compared. The choice between these two approaches 

depend upon the research objectives and the validity of the model assumptions. 

We also extend the idea of the clusterwise regression model to address 

the heterogeniety issue in the discriminant analysis. A "Clusterwise 

Discriminant" model is proposed by integrating the cluster analysis into the 

MSD discriminant framework. A nonlinear programming procedure is 

formulated to simultaneously estimate the cluster membership parameters and 

the disciminant parameters for each cluster. 

In this research, the clusterwise regression and clusterwise discriminant 

model is illustrated with the case of two clusters (i.e., two segments). 

Generalization of the proposed formulation to include any number of clusters is 

quite straight forward. More applications will be needed to validate the 

usefulness of these mathematical programming formulations of clusterwise 

regression and clusterwise discriminant models, and we leave them for future 

research. 
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Appendix A: Nonlinear programming formulation of the General Clusterwise 

Regression model 

LL in (9) can be maximized in two sequential stages. In stage 1, we 

choose (1Z., 2Z,) to maximize subject i's log-likelihood function (i.e. 

,Z. I0g(/.|i)+2Z,. l0g(/|2) ) conditional on segment parameters a = (a,, a^) and 

b = (b” h^), a = (cTi, a2). In stage 2，we choose (a, b, a) to maximize the 

conditional log-likelihood function for all subjects, i.e., 

n 

,,max LL = max ^]max(,Z, log(/ . | , )+,Z, l0g( .4)) ) (A.1) 
a,fc,o-,(]2/,2Z/);=i,„.,N "'^'^ K ,_j (1̂ (.2¾) ‘ 

Since jZ,log(/n)+2Z,log(/|2) is linear in (̂  Z., 2 Z.) with coefficients 

(log(/i ,) , l0g(/|2)) which are fixed for given (a, b, a) in stage 1, ( ,Z, , ^Z,) 

will have corner solutions, i.e., 

max (,Z. l0g(/.|,)+2Z. log(/|2)) = max ( log/ |” log/ |2) (A.2) 
1̂ / >2̂/ 

and 

iZ, = l if / | i > / |2 (A.3) 

= 0 otherwise 

2 ; = 1 if / | 2 > / | , (A.4) 

= 0 otherwise 
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In the derivation of (A.2) - (A.4), we allow 0 < ( !Z" ^Z.) < 1. In 

other words, we do not restrict ( jZ., 2 Z.) to be binary. The optimization with 

constraints j Z. + 2 ^, = 1 and , Z., 2 Z. > 0 will force them to be either zero 

or one. 
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Appendix B: Choice of the Starting Points 

The solution to the nonlinear optimization models in (9), (10) and (11) 

may be sensitive to the starting points. A two-stage procedure using "ZERO" 

as starting points is proposed below to address this issue. We use the NLP 

model in (9) as an example for illustration. 

A. Stage 1: 

We solve the nonlinear programming model (9) with one additional 

constraint restricting the size of segment 1 (i.e. number of members in segment 

1) to be ni, where ni is arbitrarily chosen by the researcher. Since (!Z,, ^Z^) 

will be forced into zero or one, the segment size constraint can be written as: 

n 

Z i ^ ' = "1 . (B.1) 
i=l 

In summary, we solve the following model in stage 1: 

max LL = ^ ( , 2 , l0g(/.|,)+2Z, log( / , ) ) (B.2) 
1=1 

subject to 

yt = ^1+^2^,+1^; i= l , . . . . , n 

少 , . = ^ , + ^ Z . + 2 ^ . 

1 ^ , + 2 ¾ = ! 

1Z"2Z,. > 0 

n 
Z i ^ = n , . 
i=l 
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(B.2) is solved with ZERO starting points (i.e. the default values) for all 

parameters including (,Z,, ^7.,), Let the optimal LL conditional on n, be 

Z X * ( n i ) . 

B. Stage 2: 

We vary the size of segment 1 (i.e. n!) systematically from 1 to n with 

step 's' to maximize LL*(ru), i.e., 

max LL*(ni) . (B.3) 
«1 

where s is arbitrarily chosen by the researcher. 

The log-likelihood function may fiirther improve if we use the solution 

to (B.3) as the starting points to optimize (9). The above procedure may not 

guarantee a global optimum, but it is simple and reasonable results are obtained 

from our experimentation. 
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Table lB Estimating the general clusterwise regression model when cJi 本 ci2 

one segment two segment two segment 

homogenous model mixture model NLP model^ 

segment 1 

~^ 39.219 35.728 18.576 

~^ -6.926 -6.509 -2.110 

^ 0.483 0.720 0.936 

~^ U 4 8 1.410 ^ 

c7i 4.567 4.363 1.596 

size2 50 44 ^ 

segment 2 

~̂ o 70.041 43.289 

bi -14.164 -5.780 

b2 -0.679 ^ 

bs 3.097 0.687 

a2 0.040 3.549 

size^ 6 ^ 

log likelihood value -100.941 -87.614 -69.151 

Notes: 

1. NLP is the proposed Nonlinear Programming Model. 

2. The size of segment s (s=l, 2) in the mixture model is computed by 

multipling the mixing parameter with the total sample size. 
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Table lC Estimating the parametric clusterwise regression model (Spath) 
when <Ji = G2 

one segment two segment two segment 

homogenous model mixture model NLP model 

segment 1 
J ^ 39.219 23.063 — 20.650 
_aj -6.926 -5.676 -5 .14^ 
J 2 0.483 1.893 2 . 0 i 
_^ 1.348 1.304 0.34T 
size 50 32 22 
segment 2 

_ ^ 51.372 46.557 
_^ - 7 A W -6.840 
_ ^ -0.445" 0.0 
h 0.855 一 0.845 
size j^ 28 

~sum of square errors 1042.807 369.94 310.907 

Table lD Estimating the nonparametric clusterwise regression model 

one segment two segment 

homogenous model NLP model 

segment 1 
_a2 38.742 ~ 27.757 
_^ -6.636 -6.536 
_ ^ 0.421 — 1.418 
_^ 1.391 1.426" 
size 50 23 
s e ^ e n t 2 一 

_bo 39.329 
_^ -7.8 
_ ^ 1.529 
_ ^ 0.859 
_si^ 27 
sum of absolute errors 181.12T 93.393 
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Table 2A Data on mortality due to simulated side impact car collisions 

^ X 2 X 3 Y X i X 2 X 3 Y 

~ 2 50 98 — 0 30 45 95 0 
Tl 49 160 一 0 一11 ~^ 96 一 1 

T o 50 134 — 1 一15 TT" 106 — 0 
H 50 — 142 1 l F 44 86 "l 
l 3 51 — 118 1 64 — 45 65 1 
l s 51 — 143 - 1 ~54 45 103 "o 
^ 51 一 77 0 l T 45 102 "l 
^ 51 一 184 0 ~36 45 108 "l 
l 7 " 51 “ 100 1 27 一 45 140 ~0 
l 9 51 — 188 ‘ 1 7 ? " 45 94 "l 
~Y2 50 162 一 0 ~A9 7 o " 77 — 0 
~ ^ 51 — 151 1 ^ 40 101 "0 
^ 50 — 181 1 ~ ^ 40 82 "l 
~ ^ 50 — 158 1 63 一 51 169 1 
^ 51 — 168 1 1 ^ 40 82 "0 
~ 8 41 128 — 0 ^ 0 ^ 83 — 1 
“ ^ 61 — 268 1 7 7 45 103 1 
l s 41 — 76 0 ~ ^ 44 104 "l 
l 0 61 一 185 1 ^ 44 139 "o 
^ 41 一 58 0 T T 45 — 128 1 
7 o 61 — 190 1 7 7 46 138 "l 
32 50 94 - 0 ~4\ ^ 102 — 0 

~ ^ 47 — 131 0 U 44 — 90 "o 
7 4 50 — 120 1 ~50 44 — 88 "l 
T s 51 107 - 1 -53 ~50 128 — 1 
Ye 50 97 — 0 ~62 ~W 136 — 1 
l T 53 — 138 1 23 一 50 108 ~0 
T T 41 — 68 1 27 一 60 176 ~ 
“ ^ 42 78 1 19 60 191 0 

Notes: 
1. Y = 1 indicates mortality, and Y = 0 means survival. 
2. Xi is the age. 
3. X2 is the velocity. 
4. X3 is the acceleration. 

Source: Hardle W. and Stoker T. M. (1989), "Investigating Smooth Multiple 
Regression by the Method of Average Derivatives," Journal of the America 
Statistical Association 84，986 - 995. 

38 



Table 2B Comparison of the homogenous discriminant model and the 
clusterwise discriminant model 

Parameters homogenous clusterwise 

discriminant model discriminant model 

(i.e., one cluster) (two clusters) 

cluster 1 

ai 0.002 -0.008 

bi 0.00059 -0.004 

Ci 0.00047 0.01 

size 58 19 

cluster 2 

" ^ 0.007 

b2 0.003 

C2 -0.004 

size 37 

total error 0.026 0~ 

Percentage of correct 84.482% 100% 

classifications 

Table 2C Classification results of the homogenous discriminant model 

Predicted Group 

Actual Group 1 tie 0 

i ^ 3 4 

0 2 0 n 
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Chapter 3 Essay two - A Mathematical Programming Approach to 

Clusterwise Rank Order Logit Model 

Abstract 

In traditional rank order logit model, individual is assumed to come 

from a homogenous group. However, it is unlikely to be true in reality. In this 

essay, we propose a clusterwise rank order logit model which is used to 

identify members of latent segments and estimate parameters simultaneously. 

The estimation requires a solution to a tough combinatorial problem. In this 

research, we propose a new formulation to transform the nonlinear integer 

programming problem (i.e. a combinatorial problem) to a nonlinear 

programming procedure. The proposed procedure can be easily implemented 

with existing mathematical programming software and it can further be 

extended to achieve fast convergence with ZERO (the default value) as starting 

points. Empirical results suggest that the proposed procedure is a viable 

alternative to existing algorithms in estimating the classification model for 

market segmentation. 
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3.1. Introduction 

Traditional rank order logit model is applied to the rankings observed in 

a random sample of respondents from a particular population. It is implicitly 

assumed that all members of the population perceive and evaluate the stimuli in 

essentially the same way. This strong assumption of complete homogeneity in 

the population is certainly untenable in marketing. Since market segmentation 

is a very important topic in current market research, people consistently differ 

in their stimulus evaluation. If an analysis which does not leave room for these 

interindividual differences to show up, it is doomed to fail and to misrepresent 

the data. 

In this paper, we propose a classification model which modifies the 

traditional rank order logit model to incorporate latent structure analysis. The 

classification model is applied to rank order data reported by Croon (1989). 

The respondents of the data are sampled from a non-homogeneous population. 

We assume that the non-homogeneous population can be partitioned in several 

subpopulations, each of them being homogeneous with respect to the stimulus 

evaluations. In this way each subpopulation defines a latent class which is 

characterized by a particular set of stimulus scale values. 

However, classifying each individual into a latent class is a tough 

combinatorial problem which is difficult to solve. In the proposed method, we 

transform the integer programming model into a nonlinear programming model. 
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As a result, the estimation can be implemented with standard mathematical 

programming software (e.g. GAMS). The proposed procedure is more general 

because it is not restricted to minimize the sum of square errors only. 

Moreover, the computation cost is lower than that of some popular 

optimization methods, such as, simulated annealing. Compared with the E-M 

algorithm for the estimation of the mixture model, the proposed procedure is 

more flexible which does not require any closed form solution in the estimation 

process and it can incorporate any constraints on the parameters. Since the 

estimates of most nonlinear statistical models are quite sensitive to starting 

points, the proposed procedure is further extended to achieve fast convergence 

with ZERO (the default value) as starting points for all parameters. 

The paper will be organized as follows. In sections 1 and 2，we 

formulate the estimation of the classification model as a nonlinear programming 

model and apply the new procedure to rank order data. The last section 

summarizes the contributions and the conclusions. 

3.2. Clusterwise Rank Order Logit Model 

In marketing research, researchers sometimes ask individuals to rank a 

set of product according to their favourability. In our model, we assume, for 

simplicity, that there are two mutually exclusive segments in the data set. It is 

easy to extend the model to more segments. Assume that there are p products, 
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and let (ai)i=i,...,p and (bi)i=i’...，p be the average desirability index of goal i in 

segments 1 and 2 respectively, i.e., 

Segment 1: (ai, ... , ap), 

Segment 2: (bi, ..., bp). 

(,Z.，2 ^i) are segment membership indicators which is unknown and 

defined as: 

jZ. = 1 if subject i comes from segment 1 

= 0 otherwise. 

jZ. = 1 if subject i comes from segment 2 

= 0 otherwise. 

Since each subject must be a member of either segment 1 or segment 2, 

thus j Z. is a binary variable. Then it is a nonlinear integer programming model 

which is very difficult to solve. However the binary variable restrictions on 

(iZi)i=i,..,n are only sufficient but not necessary 
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We replace the hard combinatorial optimization by a smooth and 

continuous optimization by adding some constraints: 

(i) We incorporate an additional constraint j Z. + ^ Z. 二 1. 

(ii) ( j Z.，2 ̂ , ) are not restricted to be binary. They can take any values 

between zero and one. 

The optimization with constraints , Z. + 2 Z. = 1 and j Z., ^ Z. > 0 will 

automatically force them to be either zero or one. The individual desirability 

index on goalj for subject i (denoted by D..) is modeled as: 

Dij = ,Z. • aj + 2Z. . bj + s ĵ i = 1,..., n; j = 1，..., p � 

where £•,) is the noise term with the extreme value distribution. 

If subject i prefers goal j to k to 1 to m, his/her rank order probability 

(Chapman and Staelin, 1984) conditional on segment s (denoted as 而—⑷） 

is: 

, ^ ; . J l ) = P r ( Z ) , > A , > Z ) , > i ) J 

= ( eaj ) ( e-- e-' � 

e'^ + e ' ^ + e ' ' + e ' - e'^ + e ' ' + e ' ^ e ' ' + e ' -

e^j ebk eb| 
� � = ( e b j + gb, + ^b, + e � ) ( e � + e^, + e ' . ) ( e ^ i + e ' . ) 
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The individual likelihood function of subject i (i.e. iLc) is: 

, ,C = ( 而 』 ) ” ( 而 - ( 2 ) ” 

or thejoint log likelihood function is: 

LLc = t 1 ^ log(, ^;./.(l))+2^, log(, 7 V j - m (3) 
1=1 

Then, the MLE of a = (ai，...，ap), b = (bi，...，bp), and Z = (jZ, , ^Z, )i=i,...,n can be 

obtained by maximizing LL^, i.e., 

max LLp (4) 
a,b,Z L 

subject to 

1 ^ , + 2 ^ = 1 

1 ^ . 2 ^ ^ 0 

2 X = 2 X = o 

where ^ a ^ = ^h^^ = 0 is the normalization constraint. 
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3.3. Numerical Illustration 

Consider a rank order data set reported by Croon (1989). In his paper, 

2262 subjects were asked to rank order the following four political goals 

according to their desirability: 

1. Maintain order in the nation 

2. Give people more say in the decisions of the government 

3. Fight rising prices 

4. Protect freedom of speech 

The survey results are reproduced in table lA. Croon (1989) proposed 

a mixture model implemented with E-M algorithm to estimate the desirability 

index of each goal for each segment. His estimation results can be found in 

tables lB and lC. 

To illustrate the application of the classification model to rank order 

data, we assume two mutually exclusive segments. Let (ai)i=i，...，4 and (bi)i=i,...,4 

be the average desirability index of goal i in segments 1 and 2 respectively, i.e., 

Segment 1: (ai, a2, a3, a4), 

Segment 2: (bi, b2, b3, b4). 
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(1 Z,., ^Z.) are segment membership indicators defined in the earlier 

section. The individual desirability index on goal j for subject i is represented in 

equation (1). We use the mathematical programming software GAMS 

(General Algebraic Modelling Systems) to optimize the log likelihood function 

in equation (4). 

We apply the classification model (4) to Croon's rank order data set 

(see table lA). The estimation is implemented with the two stage nonlinear 

programming procedure using ZERO as starting points. We also compare our 

estimates with the results of Croon's mixture model in tables lB and lC. In 

table lB, the log likelihood value of two segment to four segment classification 

model is compared to that of the mixture model. The log likelihood value of 

the mixture model does not improve too much when the number of segments 

increases. As for the classification model, the log likelihood value is sharply 

reduced from -6427.05 (one segment case) to -5250.54 (two segments case), 

to -4364.6 (three segments case), and to -4020.7 (four segments case). This 

suggests the classification model fits the data better than the mixture model. 

Croon only reported the estimates on the 3 segment mixture model. Therefore, 

the comparison in table lC is limited to the three segment case only. From 

table lC, we find that the order of goals according to the estimated desirability 

index in all 3 segments of the classification model is the same as that of the 

mixture model (i.e. ai > a3 > a2 > a4 in segment 1; b3 > bi > b2 > b4 in segment 

2; C2 > C4 > C3 > Ci in segment 3). 
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3.4. Conclusion 

In this paper, we propose a clusterwise rank order logit model to allow 

the mixture parameters to vary across different subjects. However, estimating 

the model implies solving a highly nonlinear integer programming problem. To 

reduce its computational complexity, we develop a new procedure which 

transforms the nonlinear integer programming model to the nonlinear 

programming model. Since solutions to most nonlinear models are sensitive to 

starting points, the new procedure is further extended to achieve fast 

convergence with two stage optimization process using ZERO (the default 

value) as starting points. The two stage procedure is applied to a published 

rank order data, and empirical results suggest that the nonlinear programming 

approach is a viable alternative to the existing algorithms in estimating the 

classification model. 

The proposed procedure has certain nice features. It is more general 

because it is 越 restricted to minimize the sum of square errors only. While 

the stochastic optimization algorithm (e.g. simulated annealing) is designed to 

search for the global optimum, the proposed procedure may generate local 

optimum. However, the computation cost is much lower than that of the 

simulated annealing. To estimate the traditional mixture model using the E-M 

algorithm, we need to optimize the objective function in the M step ofthe E-M 

algorithm. If the closed form solution does not exist or some inequality 

restrictions are imposed on the parameters, the E-M algorithm may be quite 

48 



complicated to implement. The proposed procedure does not require any 

closed form expression in the implementation and it is flexible enough to 

incorporate any equality or inequality constraints. Finally, the E-M algorithm, 

which requires distribution assumptions, is a parametric method. The proposed 

procedure easily implemented with existing mathematical programming 

software can be parametric or nonparametric. 

In conclusion, the nonlinear programming approach to estimate the 

model seems to be quite successful. Extensions of this model (e.g. to 

determine the number of segments endogenously) are possible, and its 

applications to more complicated data structure (e.g. MDS data or conjoint 

data) are numerous. We will leave them for future research. 
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Table lA Observed frequencies of the 24 rankings in Croon's sample 

No. Ranking Frequency No. Ranking Frequency 

~ i 1 ^ U7 U 3U4 3^ 
2 1243 29 14 3142 294 
3 1324 309 15 3214 117 
4 1342 255 16 3241 69 
5 1423 52 17 3412 70 
6 1432 93 18 3421 34 
7 2134 48 19 4123 21 
8 2143 23 20 4132 30 
9 2314 61 21 4213 29 
10 2341 55 22 4231 52 
11 2413 33 23 4312 35 
12 2431 59 24 412] 27 

Table lB Comparison of the log likelihood values between the rank order 
mixture model and the rank order classification model 

Number of segments Log Likelihood value 

mixture model classification model 

1 -6427.05 - -6427.05 “ 
2 -6384.89 ~ -5250.54 
3 -6373.05 — -4364.60 

_ 4 -6367.76 -4020.70 

Table lC Comparison of parameter estimates between the rank order 
mixture model and the rank order classification model for 3 
segments case 

Parameters mixture model classification model 

Desirability Index for segment segment 

n ^1 3 n r | r 

goal 1 1.99 ~ ~ 0 ^ -0.69 2.462 ~0~221 -1.784 
goal2 -0.92 ~ ~ T 0 7 " 0.63 -1.016 -1.358 ~ 1 . 0 3 0 
goal3 0.06 1.73_ -0.01 -0.194 2.764 ~ 0 . 0 9 8 
goal4 -1.13 -1.25 ~ ~ a o 7 -1.252 -1.627 0.655~ 

mixing parameter 0.33 0.45 0.22 
size of the segment 997 9 ^ 353 
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Chapter 4 Essay three : A Mathematical Programming Approach to Metric 

Unidimensional Scaling 

Abstract 

Classical unidimensional scaling provides a difficult combinatorial task. 

In essay three, a procedure formulated as a nonlinear programming (NLP) 

model is proposed to solve this problem. The new method can be implemented 

with standard mathematical programming software. Unlike the traditional 

procedures that minimize either the sum of squared error (L2 norm) or the sum 

of absolute error (Li norm), the proposed method can minimize the error of Lp 

norm for 1 < p < 00. Extensions of the NLP formulation to address the 

multidimensional scaling problem are also discussed. 
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4.1. Introduction 

The classical metric unidimensional scaling problem is to place n objects 

on the real line, so that the interpoint distances best approximate the observed 

dissimilarity between pairs of objects. Formally, the problem is to minimize the 

objective function: 

^ i W = Z H - K - ^ ; D ' � 
i<J 

over the parameter x = (xi, ... , Xn), where Xi is the coordinate of object i, dy is 

the observed dissimilarity between objects i and j. We assume that the 

dissimilarity matrix (dy) is symmetric with positive elements for all i 本 j and dii 

= 0 for all i = 1，...，n. It is known that this problem is equivalent to an NP-hard 

combinatorial problem and can be solved exactly only for fairly small n. 

Various approaches to this problem can be found in the literature: Defays 

(1978), Guttman (1968), Hubert and Arabie (1986, 1988), de Leeuw and 

Heiser (1977，1980)，Oslon (1984), Pliner (1984，1986), and others. 

Recently, Simantiraki (1996) used a mixed integer programming (MIP) 

model to minimize the sum of absolute error (instead of the sum of squared 

error): 
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0 " 2 W = Z K _ K - ^ y l l (2) 
'<j 

As the author mentioned in the paper, it took several hours on a Sun 

Workstation to solve a MIP model of 17 objects. Therefore, the MIP approach 

is not feasible for large n. Pliner (1996) proposed an iterative smoothing 

algorithm to minimize the sum of squared error CTi(x) in (1). This algorithm 

works remarkably well for large n. However, the solution depends on the 

choice of smoothing parameter, and the method may not be easily extended to 

minimize the absolute error objective function (i.e., a2(x) in (2)). 

In this paper, a nonlinear programming (NLP) formulation for the 

unidimensional scaling problem is proposed. While the MIP approach must 

restrict many decision variables to be binary and the smoothing algorithm is 

limited to minimizing the sum of squared error, the proposed NLP model is free 

of such restrictions and limitations. Moreover, the proposed model can be 

generalized to solve the multidimensional scaling problem. It can be 

implemented with existing mathematical programming software. The paper is 

organized as follows. Details of this NLP formulation are given in Section 2. 

In Section 3，two examples from Robinson (1951) (the Mani and Kabah 

collection of archaeological deposits) are used to illustrate this method. These 

examples are also considered by Hubert and Arabie (1986), Pliner (1996), and 

Simantiraki (1996). The extension of the NLP model to address the 

multidimensional scaling problem is discussed in Section 4. Finally, the 

conclusions are summarized in Section 5. 
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4.2. Nonlinear Programming Formulation 

We first consider the problem of minimizing the sum of squared error 

cTi(x) in (1). if Xi > Xj, the error is [dij - (xi - xj)]^. Similarly, the error is [dij - (xj 

-Xi)]^ if Xi < Xj. Therefore, minimizing ai(x) is equivalent to minimizing the 

sum of the minimum between [dij - (xj - xj)]^ and [dij - (xj - Xi)]^, i.e., 

mmY^(d.j-\x.-Xj\y 
^ i<J 

= m i n X m i n ( [ ^ . - (x, — x.)f,[d, - (x^ - x,)]'}. (3) 
X i<j 

To solve (3), we define two variables (wiy, W2ij) with values restricted 

to be binary (i.e., zero or one). Then, the mathematical programming 

formulation of (3) is: 

min Y, Wĵ . {e\i j) + w^.. (e\i j)， (4) 
i<j 

subject to: 

< = i , - \ + 〜 ， 

d,j = x.-x.^e^.., 

^Mj+M^2ij = ^ctnd 

^ i y . ^ ^ O . 

where enj is the error if Xi > xj and e^ is the error if Xi < xj. 
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Since (wnj, W2ij) are restricted to be zero or one, (4) is a nonlinear 

integer programming model which is equivalent to an NP-hard combinatorial 

problem. Fortunately, such binary variable restrictions on (wiy and w2ij) are 

sufficient but not necessary. Conditional on a given x with enj and 6¾ fixed, 

the objective function in (4) is linear in wi" and w2ij. The conditional 

minimization will result in wnj = 1 if|eiij| < |e^| (i.e.，Xi > xj), and w^ = 1 if|eiij| 

> |e2ij| (i.e., Xi < Xj). Therefore, we do not restrict (wnj, w2ij) to be binary, and 

(4) is simply a nonlinear programming (NLP) model with cubic objective 

function and all linear constraints. This NLP formulation will automatically 

force (wiij, W2ij) to be either zero or one. In other words, we replace a 

complicated combinatorial model by a continuous nonlinear programming 

model. 

To minimize the sum of absolute error (i.e., a2(x) in (2)), we express 

each error Cij as the difference between two nonnegative components, e+ij and e" 

ij. For example, enj = e+iij - e"iij, where 

+ J%-, if^v^ ^ 0; 
e \ij = < 

0，otherwise, 
- J 0, i f^ > 0; 

e \ij = <̂  
-e^.j,oiherwise, 

The above implies |e!ij| = e+iij + e"iij. Furthermore, |eiij| is minimized 

when either e+uj or e"iij is zero. Therefore, the NLP formulation to minimize 

the sum of absolute error is: 
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min2>i".(e+iij + e'nO + ^2rM^^ î + e"21j), (5) 
'<j 

subject to: 

d.j = X. - X. + e+iij + e"i,j, 

d.j = Xj. - X. + e+2ij + e'2ij, 

w,,^^w^,j = X,and 

e^ij,e"iij,e%.j,e'2ij,Wiy,W2y > 0. 

In (5), the objective function is quadratic, and all constraints are linear. 

The variables (wnj, W2ij) are n ^ restricted to be zero or one. If the objective is 

to minimize the error of the Lp norm (where 1 < p < 00)，(5) will be changed to 

minX>i" . ( e+ i i j + Q v , Y + w ^ . ( e 2 , , + e2ij)^ (6) 
'<； 

We implement the NLP model using the GAMS (General Algebraic 

Modeling) software (Brooke, Knodrick and Meeraus, 1992). GAMS is a very 

popular mathematical programming software in the operation research 

discipline. It solves the optimization problem using a reduced-gradient 

algorithm (Wolfe, 1962) combined with a quasi-Newton algorithm (Davidon, 

1959). This generally leads to superlinear convergence. 

Due to the multiextremal nature of the objective functions in (1) and 

(2), the number of local optima increases sharply with the sample size. The 
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solution produced by the gradient method is always sensitive to the choice of 

starting points. This applies to most of the existing methods for the 

unidimensional scaling problem. Therefore, the solution is not necessarily a 

global optimum unless a good starting point is used. The traditional approach 

for global optimization using the gradient method is to solve the model with 

numerous sets of random starting points. This may also be computationally 

expensive, and we suggest the following alternative to choose good starting 

points for the NLP models in (4) - (6). 

[1] first, we impose an additional constraint: ^ w,̂ .. = k into the NLP 
' . < • / . 

model, where k = 0, s，2s, ... , t. (t is the integer part of (n^ - n)/(2s), n is the 

sample size and s is the step size). That is, we restrict the number of Xi > xj 

equal to k. Conditional on each value of k, we solve the NLP model with 

zeroes (default values) as starting points for all x. We solve the model t times 

for t solutions and objective function values. 

[2] We then choose the best solution x* which corresponds to the 

smallest among these t objective function values. This x* will be a good 

starting point for the original NLP problem. 

[3] Therefore, we use this x* as our starting point and solve the original 

NLP (i.e., with the additional constraint ^ w,,̂ . = k removed) and obtain the 
'<； 

final solution. 
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In summary, we solve the NLP model totally (n^ - n)/(2s) + 1 times. 

Compared with the "random starting point" approach, the proposed alternative 

reduces the number of times that the model needs to be solved. However, 

there is no guarantee that this method will always produce global optimum. 

We illustrate the whole procedure with two numerical examples in next section, 

and the result is quite encouraging. The step size s is set to one for more 

accurate results in the illustration. 

4.3. Numerical Examples 

To test our method described in Section 2, we consider two examples 

from Robinson (1951): the 8 x 8 dissimilarity matrix for the Mani collection of 

archaeological deposits, and a 17 x 17 matrix for the Kabah collection. These 

examples were also used as a test cases by Hubert and Arabie (1986), Pliner 

(1996)，and Simantiraki (1996). 

We first use the sum of squared error as our objective function to 

compare our NLP solutions with solutions from the dynamic programming 

(DP) algorithm (Hubert and Arabie 1986) and the smoothing algorithm (Pliner 

1996). The results are summarized in Tables lA and lB. Then we use the sum 

of absolute error as the criterion to compare our NLP solution with the MIP 

solution (Simantiraki 1996). The results are reported in Tables 2A and 2B. In 

the NLP implementation, we do not incorporate the centering constraints. 
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In Table lA (the Mani data set) and Table lB (the Kabah data set), the 

optimal objective function values produced by all the three procedures (DP, 

smoothing algorithm and NLP) are the same, and the solutions (i.e., value ofx) 

are structurally equivalent. 

In Table 2A (the Mani data set), the MIP and NLP procedures generate 

the same optimal objective function value. In Table 2B (the Kabah data set), 

the NLP outperforms the MIP with smaller objective function value. This 

suggests the branch and bound algorithm of the MIP model does not produce 

global optimum in this case. 

The NLP method is solved using GAMS on a Pentium PC. It takes less 

than 30 seconds to run the NLP model for the Kabah data set of 17 objects 

with starting points chosen by the method by Section 2. 

4.4. Possible Extensions 

In principle, the NLP model can be generalized to solve a 

multidimensional scaling problem. Let (xi, yi) be the coordinate ofobject i. The 

relationship between the observed distance and the coordinates of object i andj 

is assumed to be: 

dij 二 |xi - Xj| + |yi - yj| + Cy (7) 

where Cy is the error term. 
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Depending upon the signs of Xi - xj and yi - yj, Cy may have four 

different values, i.e., 

'% = dij-(x.-xj)-{y^ -y^), ifx, > x^. andy. > y/, (S) 

V^ij =(^ij-{^i-^j)-{yj-yi), ifx, >x^ mdy, <y/, (9) 
e” - 1 3̂y = 4 — (^ ; — A ) - (少 , - y j ) , i f ^ i < X�and_v , > 少广 （10) 

^ J = d ^ j - { ^ j - ^ i ) - ( y j - y i l //x,<x)and_y,<_yp (11) 

Let (wiij, W2ij, W3ij, W4ij) be four binary variables to represent the above 

four cases (e.g., wnj = 1 if(xi > xj, y! > yj), and wuj = 0 otherwise). Then, the 

mathematical programming formulation to minimize the sum of squared error 

is: 

• 1 少 1 ^ 2 ] 〜 ) . ( 它 2 1 0 ) + 狄 2 乂 & ' ) ) + " » % 0 % ) + 计 4 0 . ( 6 % ) ( 1 2 ) 

subject to 

wiij + W2ij + W3ij + W4ij = 1 and equations (8) to (11). 

We do not need to restrict there Wij's to be zero or one, the 

optimization will automatically drive them to be binary. Therefore, (12) is a 

nonlinear programming model with all linear constraints. The challenge is to 

get good starting points leading to a global optimum. 
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4 • 5. Conclusion and Extensions 

In this paper, we proposed a NLP approach to the metric 

unidimensional scaling problem. This NLP problem can be solved by standard 

mathematical programming software. Furthermore, the NLP approach is 

flexible and can deal with a sum of squared error as well as the absolute error 

objective function. In principle, the NLP can be generalized to solve 

multidimensional scaling problem as well. 

On the other hand, the proposed NLP model is not free of limitations. 

There is no guarantee that the NLP procedure will produce a global optimum. 

It ultimately depends on the quality of the starting points. The difficulty to get 

good starting points increases, when the sample size is large or we try to 

generalize the NLP model to deal with the MDS problem. This starting point 

issue is common for most of the statistical models, and we leave it for future 

research. 
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Table 1: Results from minimizing the sum of squared error (ai(x)) 

Table lA Mani collection 
— X DP* Smooth* NLP* 
xi T H -1.506 0.000 
X2 -1.10 -1 .100 0.406 
X3 -0.67 -0.671 0.835 
X4 0.16 0.157 1.640 
X5 0.34 0.340 1.846 
X6 0.91 0.905 2.411 
X7 0.93 0.927 2 .434 

_2^ 0 ^ 0.947 2 .454 
l j i ( x ) 2.765 2.765 2.765 

Table lB Kabah collection 
— X DP* Smooth* NLP* 
^ T T s -1.129 - 0.000 
X2 -0.86 -0.856 0 .274 
X3 -0.51 -0 .514 0.616 

X4 -0.43 -0.433 0.697 
X5 -0.23 -0 .226 0.903 
X6 -0.15 -0.146 0.983 
X7 -0.08 -0.081 1.048 

X8 -0.01 -0.011 1.119 
X9 0.01 0.012 1.142 
Xio 0.10 0.102 1.231 
xii 0.17 0 .174 1.304 
xi2 0.29 0 .292 1.422 
xi3 0.43 0.427 1.557 
xi4 0.48 0.485 1.614 
xi5 0.55 0.553 1.682 
xi6 0.65 0.645 1.775 
xi7 0 ^ 0.706 1.835 

^ i ( x ) 5 .475** 5.472 5.472 

Notes: 
*DP = Hubert and Arabie's Dynamic Programming 

Smooth = Pliner's Smoothing Algorithm 
NLP = Nonlinear Programming 

** The value is different because of round off error. 
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Table 2: Results from minimizing the sum of absolute error a2(x) 

Table 2A Mani collection 
— X MIP* NLP* 
l q -1.549 0 ^ 
X2 -1.009 0.54 
X3 -0 .749 0.80 
X4 0.061 1.61 

X5 0.341 1.89 
X6 0.951 2.50 
X7 0.961 2.51 

J ^ 0.991 2.54 
"^2(x) 5.85 5.85 

Table 2B Kabah collection 
一 X MIP* NLP* 
~ 1 T o 3 0.00 
X2 -0.87 0.20 
x3 -0.49 0.54 
X4 -0.48 0.52 
X5 -0.26 0.77 
X6 -0.16 0.99 

x7 -0.13 0.87 
x« 0.00 1.07 
x9 0.04 1.02 
Xio 0.06 1.12 
xii 0.18 1.19 
x12 0.25 1.28 
xi3 0.45 1.45 
xi4 0.51 1.54 
xi5 0.60 1.64 
xi6 0.66 1.68 
xi7 0 ^ 1.56 

V 2 ( x ) 20.26 20.06 

Notes 
*MIP = Simantiraki's Mixed Integer Programming 
NLP = Nonlinear Programming 
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Chapter 5 Research Project in Progress 

5.1. Project 1 ~ An Integrated Approach to Taste Test Experiment Within 

the Prospect Theory Framework 

5.1.1. Experiment Procedure 

The product used in all taste test experiments are Coke and Pepsi. The 

taste test experiments are conducted in mid-Nov 1996. The details are below: 

Part 1: 

Each respondent is first given $20 as a start up capital and he/she is 

asked to enter bets on four different games as follows: 

Game #ofDice Outcome for Winning Bet Ratio Bet Amount 
a win Prob 

T 1 1 ,2 ,3 0.50 — 2.5 
~2 1 — 1 , 2 , 3 , 4 — 0.67 2.0 — 
J 1 1, 2, 3, 4，5 "0.83 Ts 
1 2 2 - 10 0.92 1.4 

The respondent is also told that only one of the above 4 games is real. 

The real game will be determined by a random draw from the four games. In 

addition to the given $20，he is allowed to borrow from us up to an amount of 

$20. Thus the bet can be in the range from $0 to $40，and the payoff to the 

respondent is: 

Payoff= 20 + (odd - 1) x bet ifthe respondent wins 

PayofF= 20 - bet if the respondent losses 
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Part2: 

If the payoff to a respondent in part 1 is less than $30, we will give him 

extra money to increase his total payoff to $30. We denote the asset value of 

the respondent by P2. 

Then three cups of cola drinks are presented to the respondent. They 

have no difference in the appearance. A standard triangle test is conducted. 

After tasting the products, each respondent is asked to choose the odd product 

and enter a bet for his pick. The bet ratio is fixed at 2 (i.e., payofF = 2*bet -

bet). The respondent is allowed to borrow up to a maximum of $20 from us. 

The bet is between $0 to P2 + $20. 

After entering the bet, we will ask two questions: 

1. Which one do you prefer? Odd one or Others 

2. What is the brand of the odd product? 

The respondents are divided into two groups: "reveal outcome" group 

and "not reveal outcome" group. 

For the "reveal outcome" group, the respondent will know their payoff 

after the outcome is revealed, their asset value can be updated as follows: 

Current Asset Value (P3) = P2 + bet ifthe respondent wins 

Current Asset Value (P3) = P2 - bet ifthe respondent losses 
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Part3: 

Reveal Outcome Group: 

Each resondent is given another $30 free as startup capital. The current 

asset value (P4) is equal to P3 + 30. Similar to part 2, three cups of cola drinks 

are given to the respondent. Then the respondent is asked to taste the 

softdrinks，pick the odd one and enter the bet for his pick. The bet ratio is also 

fixed at 2. The respondent is allowed to borrow up to a maximum of $20 from 

us. The bet for the respondent in this group can range from $0 to P4 + $20. 

After entering the bet, we will ask the two same questions as in part 2. 

Then we will reveal the result, and calculate the final asset of the 

respondent as follows: 

Final Asset Value = P4 + bet if the respondent wins 

Final Asset Value = P4 - bet if the respondent losses 

Not Reveal Outcome Group: 

Another $30 is given to the respondent free as the startup capital. 

Similar to part 2，three cups of cola drinks are given to the respondent. Then 

the respondent is asked to taste the softdrinks, pick the odd one and enter the 

bet for his pick. The bet ratio is also fixed at 2. The respondent is allowed to 
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borrow from us up to an amount of $20 plus bet in part 2. We implicitly 

assume the respondent wins in part 2. Therefore, the maximum bet is equal to 

P2 + bet (part 2) + $30 (extra gift in part 3) + $20 (max. borrow amount). 
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5.2. Project 2 ~ An Integrated Approach to Multi-Dimensional Scaling 

Problem 

5.2.1. Introduction 

A key element of competitive marketing strategy is product positioning. 

Product positioning has been defined as the act of designing the image of the 

firm's offering so that target customers understand and appreciate what the 

product stands for in relation to its competitors. Each brand within a set of 

competitive offerings is thought of as occupying a certain position in a 

customer's "perceptual space". Perceptual mapping refers generally to 

techniques used to represent this product space graphically. One of the most 

frequently used perceptual mapping techniques is multidimensional scaling 

(MDS). MDS is a class of multivariate statistical methods developed in the 

behavioral sciences to describe subjects' perceptions of objects (stimuli) vis-a-

vis multidimensional spatial structures (Wedel and DeSarbo, 1996). A variant 

of traditional MDS is to include the preference or choice data in it. The major 

types of this kinds of models are called unfolding and vector models. For a 

comprehensive discussion, please see (Davison, 1983). In this research, we 

propose a new design to collect data of preferences，product similarity, and 

purchase intention. A new estimation procedure is developed to estimate 

product positions， ideal points and purchase intention thresholds, 

simultaneously. 
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5.2.2. Experimental Procedure 

The experiment was conducted in mid-Nov 1996. The experiment 

consists of four rounds of comparisons. Totally four pictures of products (A, 

B, C, D) are used in the experiment. In each round, one product is used as a 

reference product, then the individual is given two other products and is asked 

to choose one out of the two to see which one is more similar to the reference. 

Then the respondent is asked which one of the two is more preferred. After 

using all of the four products as the reference, i.e, totally 12 similarity 

comparison questions and 12 preferenc questions, then the respondent is asked 

about the purchase intention of each of the four products. He can answer yes, 

no, or undecided. 

For example, use brand A as the reference, the individual is firstly given 

with the products B and C. He is then asked to compare and choose the one 

which is more similar to A. And he is also asked to pick the one which is more 

preferred from B and C. The same two questions are repeated for the product 

pair (B, D) and (C, D). Then another product is used as the reference, say B， 

Then the respondent is asked to answer the same two questions for the product 

pair (A, C), (A，D) and (C, D). The process keeps going until all of the four 

products have been used as the reference. Then the purchase intention 

questions are asked. 
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The order of appearance of the product is randomized to avoid time and 

order effect. A copy of the questionnaire is attached in the appendix. 
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5.2.3. Questionnaire 

Reference Product Which one is more similar to the Which one do you prefer? 
reference? 

B C 
A B D 

C D 
A C 

B A D 
C D 
A B 

C A D 
B D 
A B 

D A C 
B C 

Are you intended to purchase? 
A Undecided Yes ^ 
B Undecided Yes ^ 
C Undecided Y ^ ^ 
D Undecided Yes ^ 

5.2.4. Experimental Results 

Simi arity Data 
Reference Product 

1 I 2 I 3 I 4 
Product pairs being compared with the reference product 

^ 2,3 2,4 3，4 1,3 1:4 3,4 1’2 1,4 2，4 1’2 1，3 2,3 

1 2 2 4 1 1 4 _ 2 1 1 ~ 2 1 " 1 ~ 
2 _ 2 4 1 3 ^ 3 2 4 2 2 ~ 3 1 

1 2 ~2 4 3 1 3 ~2 1 2 2 3 ~2 

4 2 _ 2 4 1 ~ 4 ~ 4 ~ 1 1 ~ 4 ~ 1 ~ 2 ~ 

1 ~ 3 ~4~ 4 1 ~ 4 3 ~2~ 1 2 2 1 3 ~ 

~6 2~~2~~3 i i 3 i i ^ T Z l Z X Z 
2 _ j _ J _ 1 ~ 3 1 ~ 4 2 4 2 2 — " ~ T 7 
^ 3 2 3 1 ~4 3 1 1 4 1 \ 1 

9 2 4 _ 3 1 1 3 ~2 1 ~4 ~2 \ 2 
10 2 _ J ^ z m ^ T Z ! ^ X Z ! ^ Z I Z Z ! X Z l I I l Z ! 

l ^ X Z Z Z l H l Z Z Z ! ^ X Z ^ Z ] Z Z ^ ^ j _ 1 _ 
12 3 4 4 _ j 3 3 Z Z Z Z 3 X Z 5 Z Z 5 Z Z l Z Z l Z ^ l Z Z 

! ^ ^ Z I X Z Z Z l Z ^ ^ I Z Z ^ I Z ^ X Z l Z I T Z j _ j _ 
14 3 4 4 3 4 _ 4 1 1 ~ 4 ~\ ~ 3 ~1 ~ 
15 2 2 4 3 4 3 |2 4 ~ 2 2 “ 3__ 飞 ~ 
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l 0 8 I 3 I 4 I 3 I 1 I 4 I 4 I 1 I 4 | 4 | 1 | 3 | 3 

Preference Data 
Products being compared in preference question 

j d 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 
T 2 • 3 1 3 '4 3 — 
~2 1 “ 1 1 2 '4 4 — 
1 1 一 1 T 2 “ 2 T 
1 2 — 3 T 3 - 2 T 
~5 1 一 1 T 3 — 2 T 

~6 1 — 1 T 2 — 2 T 

~ 1 - 1 1 3 '4 4 — 
~8 1 “ 1 1 3 "2 3 — 
~9 1 — 1 T 2 - 2 T 
To 1 - 1 1 3 "4 3 — 

JJ 1 1 1 "2 2 一 3 

~2 1 - 1 1 3 '4 3 — 
T s 2 - 1 1 2 "2 3 — 
J 4 1 1 1 "3 2 — 3 

Ts 1 - 3 1 3 "2 3 一 

T 6 1 - 3 1 3 "4 3 — 

J7 2 1 4 "2 2 一 3 

T s 1 - 1 1 2 "4 4 — 

T 9 1 “ 1 1 2 "2 4 — 

_20 2 1 — 4 2 4 4 

_2j 1 1 1 ~2 2 一 3 

T2 1 “ 1 1 2 _4 1 

T 3 1 “ 1 1 2 ' 4 4 — 
_24 2 1 1 "2 2 - 3 

^ 5 2 ‘ 1 1 ~ 2 2 4 
26 1 1 1 2 2 3 

T ? 1 “ 1 1 2 ' 2 3 — 
^ 2 1 1 — 2 2 3 
2 ^ 2 1 1 "2 ~i 3 
l0 2 — 1 T 2 - 2 1 
Tl 2 T 1 "3 2 - 3 

32 1 1 1 2 4 4 
^ 3 1 "1 1 “ 2 4 4 
34 2 1 1 2 2 3 

^ 2 一 3 J ' j A ^ Z j 
J 6 J_ ; 1 1 2 "2 4 
37 1 1 i 2 1 3 
38 1 1 1 _1 2 3 — 
39 1 1 1 1 2 3 — 

_40 2 3 4 一 2 4 4 

^ 1 3 1 3 2 3 
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一88 1 1 1 2 2 4 
'89 ~ 1 - 1 2 2 — 3 0̂ 1 “ 1 1 2 2 3 — 
~9\ 2 "l 1 - 2 2 — 3 
~92 1 — 1 1 2 _ 4 ~ 
93 T" 3 - 4 1 4 4 

~94 1 — 1 “ 1 3 4 4 

^ 5 2 - 3 1 3 4 3 — 
~96 1 1 1 — 2 2 3 
~97 1 — 1 1 3 - 4 3 
98 ~ 3 - 1 ~2 2 3 

~99 1 一 1 “ 1 3 4 4 

Too 1 - 1 1 2 4 3 — 

~01 1 - 1 1 3 4 3 — 

" l02 1 — 1 “ 1 ~2 2 4 

103 T ~ 1 - 1 ~2 2 3 

l 0 4 2 一 1 ~ 2 - 2 3 

T05 1 1 1 — 3 4 4 ‘ 
~106 1 一 1 ~ 2 - 2 4 

"l07 1 一 1 “ 1 1 4 4 
"l08 2 3 4 2 2 4 

Preference Data 
Products being compared in preference question 

J d 1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4 
_1 2 — 3 4 3 _ 4 3 

~2 1 "l 1 — 2 4 — 4 
J 1 1 — 1 2 2 3 
4 1 3 1 3 “ 2 3 

~5 1 — 1 1 3 — 2 3 
_6 1 1 1 "2 1 ~ 3 
^ 1 "1 1 — 2 4 — 4 
_8 1 1 — 1 3 2 3 
_9 1 1 1 “ 2 ~ 3 -
10 1 一 1 1 "1 4 3 

Tl 1 - 1 1 2 2 1 
l 2 1 ~ 1 3 2 - 3 

13 1 1 1 2 一 2 3 

J 4 1 1 1 "3 1 3 

J 5 1 1 1 ~3 2 — 3 

J 6 _ r 3 "1 1 2 1 
17 2 3 4 2 — 2 3 

18 1 1 1 — 2 2 4 

19 1 1 1 2 “ 2 3 

^ 0 2 - 1 1 2 4 1 

^ 1 1 1 12 U 3 
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