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Abstract 

A route assignment algorithm for circuit switching in quantized Clos network un-

der multirate traffic is proposed in this thesis. The advantage of using multirate 

circuit switching in broadband digital network is that it guarantees the Quality 

of Services (QOS) of each connection as sufficient bandwidth is reserved. How-

ever, previous works show that without connection splitting, the Clos network 

will be non-blocking only if external link utilization j3 is restricted or otherwise, 

the number of central module will increase. In addition, routing algorithm has 

never been proposed because of the unmanageable continuous scale of band-

width. To tackle this problem, we have transformed this continuous scale to a 

finite, discrete scale of bit rate levels by bandwidth quantization. With connec-

tion splitting and bandwidth quantization, we have derived in this thesis the 

non-blocking conditions for the Clos network without imposing restriction on 

|3. In this thesis, we have also proposed a splitting and routing algorithm for 

-rearrangeably non-blocking quantized Clos network, based on edge-coloring of a 

weighted bipartite multigraph. The algorithm is a generalization of the one in 

the classical circuit switching. 

Keywords — Clos network, Circuit switching, Multirate, Bandwidth quantiza-

tion, Connection splitting, Non-blocking, Routing algorithm. 
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Chapter 1 

Introduction 

The past few decades have experienced the merging of computer and commu-

nication technologies due to the various demands of communication services. 

Wide-area and local-area computer networks have been deployed to intercon-

nect computers distributed throughout the world. In addition to transmission 

resources, a communication network consists of switching resources. Imagine 

that there are N terminals in a network without switching facilities, C$ unique, 

independent transmission lines will be required to connect every pair of termi-

nals. When N is large, there will be a huge number of transmission lines. On 

the other hand, switching makes it possible to change the terminal connectivity 

dynamically and increase the utilization of the shared resources. As a result, a 

switching facility and N transmission lines , as shown in Figure 1.1, are sufficient 

to fulfill any connection request. 

Classically, communication network design mainly concerned about circuit 

switching in the telephone network, or what in this thesis called the classical 

circuit switching. A dedicated circuit will be established between two users 
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Figure 1.1: Communication networks without and with switching facility 

when requested. The transmission rate of each circuit is fixed to the same 

basic rate. Once established, the circuit will not be shared with other users. If 

sufficient network resources, either inside and outside the switching facility, are 

not available to setup a circuit, the corresponding request will be blocked. One 

of the objectives in switch design is to establish non-blocking connections with 

minimum switch complexity. 

X X X X -�^^<^>^…+ 
- ^ ^ > ^ > ^ … 々 -一 -^V^)^-^x-

- N - 1 ^ ^ K ^ ^ - � X -

0 1 2 . . . N-1 
1 i I I 

Outputs 

Figure 1.2: N x N cross-bar switch 

Figure 1.2 shows a N x N internally non-blocking switch called cross-bar 

switch. In this switch structure, a path can always be found to connect an 

idle input to an idle output. However, the requirement of N^ 2-by-2 switching 
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Chapter 1 Introduction 

elements makes it impractical to construct switches with large N. 

In early 50's, Clos [1] has proposed to construct a large switch by intercon-

necting smaller switch modules. The smaller switch modules are arranged in 

stages and a N x N symmetric three stage Clos network C(m, n,p) is shown in 

Figure 1.3. Each module in the network is interconnected with every modules in 

the adjacent stage via a unique link. There are p = N/n switching modules of 

sizes n x m and m x n in the first and third stage (or, input and output stage) 

respectively. The m second stage (or, central stage) switching modules are of 

size p X p. 

0 = ^ T " " ^ P X P ^̂^̂ !̂̂"""̂""̂ "̂̂:：̂  ^ 0 

n X m \\\̂ ^̂ ^̂  j "̂\̂^̂^̂ !̂̂ X̂̂ "̂"̂  m ^ “ 

n=^ -̂"YrV^ PXP hV^ ^" 
n X m \ / )\ k \ / m x n 

a f . f 
(m-1)xn U \^ / \ ——（m-1)xn 

n X m \v J/ mxn 
M _ 1 ^ N - 1 

\ ^ pxp ^^^^ 
p-1 ^ \ ^ ^ ^ - ^ p-1 

m - 1 
Stage 1 stage 2 stage 3 

Figure 1.3: N x N synnetric three-stage Clos network C(m, n,p) 

Assuming the switching modules are internally non-blocking, routing in Clos 

network is to choose one of the central module for each connection such that 
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Chapter 1 Introduction 

no two connections will share the same internal link. An important parameter 

of the network is the number of central modules, m. Obviously, the larger the 

value of m, the more alternative paths will be available to establish a connection. 

However, network complexity increases with m. 

If there are sufficient central modules such that a connection can always 

be setup between any idle input and output without rearranging the paths of 

existing connections, the network is said to be strictly non-blocking. It has been 

shown in [1] that the Clos network will be strictly non-blocking if it satisfies the 

condition m > 2n — 1. 

On the other hand, Benes [2] has proved that if the condition m > n is 

satisfied, the Clos network will be rearrangeably non-blocking in which a con-

nection can always be setup, although it may be necessary to rearrange existing 

connections. 

It should be noted that rearranging existing connections is not a trivial task 

and requires a centralized rearrangement algorithm. A classical implementation 

of the routing algorithm in Clos network is by Paull's connection matrix [3，4], 

based on the edge-coloring problem of a bipartite multigraph. We will briefly 

present the algorithm in the next chapter. 

With the advancement in technology, new services with widely varying char-

acteristics in transmission rates are available. For example, from low speed, 

bursty file transfer to high speed, non-bursty multimedia services like constant 

bit-rate video transmission. In contrast to the telephone network, the modern 

digital network systems are therefore designed to support connections with such 

a wide range of bandwidth requests. 

In this multirate environment, each connection can consume an arbitrary • 
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Chapter 1 Introduction 

fraction of the bandwidth of the link carrying it. In order to improve the ef-

ficiency of the shared transmission and switching resources, a number of con-

nections will share one transmission link given that the total data rate of the 

connections does not exceed the link's capacity. Typically, information is di-

vided into blocks called packets. Packets from different connections are carried 

in multiplexed format for resources sharing. 

For the Clos network under such environment, any new connection from input 

A to output B with bandwidth request co is defined to be blocked externally with 

respect to the Clos network and will be rejected if 

Y^ ^Aj + ^ > lA or J2 XiB + ^ > Os 
j i 

where Xij is the total aggregate data rate from input i to output j. / ] and 

Os are the available capacities of input A and output B respectively. Once 

a connection is accepted, the Quality of Service (QOS) can be guaranteed as 

sufficient bandwidth is reserved. 

Many researches studying this multirate network environment have been 

performed. For example, Melen and Turner in [5], Ross and Chung in [6], Hwang 

and et. al. in [7], etc. They have derived various conditions for the Clos network 

to be non-blocking under different traffic conditions and assumptions. Melen and 

Turner have shown in [5] that the Clos network will be strictly non-blocking if 

m > 2n — 1, with the restriction that external link utilization (5 must be less 

than or equal to 0.5. External link utilization in Clos network is defined as 

the fraction of bandwidth consumed in an input or output link. It can also be 

calculated from Theorem 4.3 of [5] that a Clos network with N 二 n] and j3 < 0.5 

will be rearrangeably non-blocking if m > n (by putting N 二 n? and P/B = 1 
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into Theorem 4.3 of [5]). The restriction on j3 comes from the assumption that 

connection splitting is prohibited. Without connection splitting, a single path 

inside the network will be used by all packets belonging to the same connection. 

This will lower the internal link utilization because there may be cases that 

fragmented bandwidth on internal links is insufficient to accommodate any new 

connection. As a result, fi has to be restricted as shown above to avoid internal 

blocking or otherwise, the number of central modules will increase. However, 

limiting the value of j3 will sharply increase the external blocking probability. 

On the other hand, if connection splitting is allowed, the residual bandwidth 

can be filled up by splitting connections appropriately. The restriction on [5 

can then be released as the internal link utilization increases. However, packets 

belonging to the same connection may reach their destination in wrong sequence. 

Packet re-sequencing must be performed to restore the correct packet order. 

Another important issue in this multirate environment is route assignment 

inside Clos network. Although upper bound of the non-blocking conditions have 

been derived, routing algorithm has never been proposed for rearrangeably non-

blocking Clos network under multirate traffic condition. A major difficulty is the 

continuous scale of bandwidth request of the connections. For an internal link, 

the optimal arrangement of connections resembles a fractional knapsack problem 

8] which is NP-complete. With more than one internal links and connection 

rearrangements between links, route assignment becomes even more intractable. 

Lea and Alyatama have also stated in [9] that continuous bandwidth requirement 

implies an infinite dimensional analytical model for the routing problem and 

makes routing unmanageable. They have suggested to overcome the problem 

using bandwidth quantization technique in which only a finite, discrete set of 

6 



Chapter 1 Introduction 

data rates will be supported by the network. They have also shown that the 

throughput degradation due to quantization is negligible [9 . 

Motivated by these arguments, we have studied the symmetric three-stage 

Clos network under multirate environment based on connection splitting and 

bandwidth quantization. In this thesis, we will derive the non-blocking condi-

tions for the Clos network under these assumptions. In addition, we will propose 

a route assignment algorithm for multirate circuit switching in the rearrangeably 

non-blocking quantized Clos network. 

For the quantized Clos network C{m, n,p) under multirate traffic condi-

tion, we will show that the network will be strictly non-blocking and rear-

rangeably non-blocking for externally non-blocked connections if the conditions 

771 >「謝二-1"| and m > n are satisfied respectively. M is the number of band-

width quantization levels. Both conditions impose no restriction on external 

link utilization (3. Consider the special case when M 二 1, the situation reduces 

to the classical circuit switching case and the conditions match the well known 

results. For M > 1, only 2M central modules will be sufficient for the network 

to be strictly non-blocking. 

The development of the proposed routing algorithm bases on edge-coloring 

of a weighted bipartite multigraph representing the connection configuration in 

the quantized Clos network. It is a generalization of the algorithm in classical 

circuit switching. To represent the connection configuration, each vertex in the 

weighted bipartite multigraph is equivalent to an input or output module of the 

Clos network. A connection is represented by a weighted edge with the weight 

equals to the quantized bandwidth request of that connection. According to the 

rearrangeably non-blocking condition derived, n colors, each representing one 

7 



Chapter 1 Introduction 

central module, will be sufficient to edge-color the graph. , 

There are three major steps to color an uncolored edge in the weighted bi-

partite multigraph. The first step tries to color it using a single color and 

corresponds to route the connection through a single central module. If it fails, 

the second step will split the edge into several new edges and colors them using 

distinct colors. It is equivalent to split the connection through several central 

modules. Otherwise, the final step will color the edge by rearranging existing 

color assignments, or equivalently, existing connections. In the proposed algo-

rithm, connection rearrangements are performed in a recursive manner. A ma-

trix called capacity allocation matrix has been specially designed to implement 

the routing algorithm based on the edge-color principle. 

This thesis is organized as follow: Chapter 2 reviews the routing problem in 

classical circuit switching Clos network. In Chapter 3, the non-blocking condi-

tions will be derived and the principle of the proposed routing algorithm will be 

studied. Chapter 4 presents the details of the proposed algorithm. Simulation 

results will be given in Chapter 5 and Chapter 6 concludes this thesis. 

8 



Chapter 2 

Preliminaries - Routing in 

Classical Circuit Switching Clos 

Network 

In classical circuit switching, the route assignment in Clos network is equiva-

lent to the edge-coloring problem of a bipartite multigraph. This formulation 

was proposed by Lev, Pippenger and Valiant in [10]. In this chapter, we will 

describe the details of this equivalence relationship and how routing is imple-

mented through Paull's connection matrix [3, 4 . 

9 



Chapter 2 Preliminaries - Routing in Classical Circuit Switching Clos Network 

2.1 Formulation of route assignment as bipar-

tite multigraph coloring problem 

2.1.1 Definitions 

{The materials given in this subsection are from [11]) 

A graph G is defined to be a combination of a set of vertices V{G) and a 

set of edges E{G). An edge {i,j) G E{G) joins a pair of vertices i G V{G) and 

J G • • 

Suppose that the set V(G) can be split into two disjoint sets Vi and V2, in 

such a way that every edges in E{G) join a vertex in Vi to a vertex in V2 (see 

Figure 2.1). G is then defined as a bipartite graph, denoted by G{Vi, V2). As 

shown in the figure, G can be redrawn in such a way that vertices in Fi and V2 

are arranged in two separate columns. 

,x) 0 # 
^ -̂1^ ‘ "\̂  y^ 

\ \ \ Q \ � � M 

6 、 \ 、:\、6 / > . X 〇 vertex in V , 

、 ’ 言 C j ^ ~ ^ ® vertex in V , 

Figure 2.1: Example of bipartite graph 

- T h e degree of a vertex v of G is the number of edges incident to v. If the 

maximum vertex-degree of G is d, G is then said to be with maximum degree d. 

A subgraph H of G is simply a graph with vertices V{H) C V{G) and edges 

E{H)CE{G). 

10 
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A walk in G is a finite sequence of edges of the form 

(^'0,^l), (^l,^2), . . • , (^m-l,^m) 

If the vertices t'o, ̂ i, • •., Vm in a walk are distinct (except possibly, Vo = Vm), 

then the walk is called a path. If in addition t>o = Vm, the path is closed and is 

called a cycle. 

Theorem 1 IfG{Vi, V2) is a bipartite graph, then every cycle has even length. 

Proof : Let Vi — V2 ~> . . . — Vm ~^ vi be a cycle and assume that vi G Vi. 

Then since G(Vi, V2) is bipartite, V2 G V2, V3 G Fi, and so on. It follows that Vm 

must be in V2 and hence the cycle has even length. 口 

A graph is connected if, given any pair of vertices v, w of G, there is a path 

from V to w. 

A component of G is the subgraph determined by a vertex v, together with 

the set of vertices which are connected by a path to v. 

A graph G is k-edge-colorable if its edges can be colored with k distinct colors 

such that no two edges connecting to the same vertex have the same color. If G 

is A:-edge-colorable but not {k — l)-edge-colorable, it is said to be k-chromatic. 

A multigraph is simply a graph in which a pair of vertices may be connected 

through multiple edges. It retains all properties of a graph described above. 

2.1.2 Problem formulation 

With reference to Figure 2.2, given a set of connection requests in the three stage 

Clos network, the connection configuration can be represented using a bipartite 

11 
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multigraph as follow. The input and output modules can be considered as 

vertices in Vi and V2 of G(Vi, V2), respectively. Each central module can be 

regarded as one color. An edge connecting vertices x G Vi and y G V2 is 

equivalent to a connection from input module x to output module y. Since each 

input or output module can accommodate at most n connections, the maximum 

degree of the bipartite graph equals to n. 

For the above connection (edge), one central module (color) must be assigned 

so that no other connections (edges) in modules (vertices) x or y will share 

the same central module (color). In the other words, we can obtain a route 

assignment in the Clos network from edge-coloring of the corresponding bipartite 

multigraph. 

I 1 a :—‘ 
\ / \ z — 、、 / 

MX^H �:/; 
一“"厂 � \ l z z Z — v Q � 0 \ - � 

^ \ H ^ X 
^ : : : h ^ : ^ ^ : h # d' ^ W 

Figure 2.2: Bipartite multigraph representation of the connection configuration 
in a Clos network 
2.2 Edge-coloring of bipartite graph 

(The materials given in this subsection are from [11]，[12] and [13]) 

Before showing how a bipartite graph can be edge-colored, several theorems 

have to be introduced. 

12 
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Define a two-colored subgraph Hab of an edge-colored bipartite graph G(yi, V2), 

consisting of all vertices in V{G{Vi, V2)) and all edges in E{G{Vi, V2)) with colors 

a or b. Hab will then be a bipartite graph with maximum degree 2. See Fig-

ure 2.3(a) for an example. Each component in Hab can be a cycle or a path as 

shown in Figure 2.3(b). From Theorem 1, the cycles must contain even number 

of vertices and edges. 

觀T:x 
Q f - 售 Q j - w non-cycle path cycle 

Graph G Subgraph H ^̂  
color a 
color b 

— - - — - colorc 
(a) Construction of H ^̂ , from G (b) Components of H b̂ 

Figure 2.3: A two-colored bipartite subgraph Hab 

Theorem 2 In any component ofHab, each edge must has the same color with 

edges which are 2k vertices away from it, and must has distinct color with edges 

which are 2k + 1 vertices away from it for k > 1, if such edges exist. 

Proof: As shown in Figure 2.3(b), adjacent edges must have distinct colors. 

Therefore, an edge must has the same color with the one that is two vertices 

away. By transitive closure, the theorem is true. 口 

13 
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Theorem 3 For any pair of vertices {x, y) of Hah where x G Vi and y G V2, if 

they are incident to edges of different colors, they are disconnected. That is, x 

and y are on different path. 

Proof: Suppose the two vertices z, j from Vi and V2 are connected. Since 

adjacent vertices in this path must be from Vi and V2 respectively, there are 

even number of vertices between i and j. Hence, the edge incident to j is 2k 

vertices away from the one incident to i, for some k > 0. From Theorem 2, the 

two edges must have the same color. In the other words, if vertices i and j are 

incident to edges of different colors, they must be disconnected. 口 

Theorem 4 A bipartite graph G{Vi, V2) with maximum degree d is d-chromatic. 

Proof: By induction on the number of edges in G{V1,V2), it is sufficient to 

prove that if all but one edges of G{V1,V2) have been colored with at most d 

colors, there exists a c/-edge-coloring of G{Vi, V2). 

Suppose that each edge of G{V1,V2) has been colored, except edge (v,w). 

Then there is at least one color missing in both vertices v and w. If the same 

color is missing, the result follows by coloring {v,w) with this color. Otherwise, 

suppose colors a and b are missing in v and w respectively. A subgraph Hab can 

then be obtained. A path starting from w can be found in Hab. By theorem 3， 

interchanging colors a and b on this path will not affect v. The edge {v,w) can 

now be colored using a and complete the coloring of G{Vi, V2). 口 

Since an input or output module of the Clos network can accommodate at 

14 
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most n connections, the maximum degree of the corresponding bipartite multi-

graph will be n. From the above theorem, the graph will be n-chromatic. In the 

other words, the well-known results that "a symmetric three-stage Clos network 

will be rearrangeably non-blocking with at least n central modules" can also be 

proved using this theorem. 

From the proof of Theorem 4, a bipartite graph with maximum degree d can 

be edge-colored using d different colors as follow. 

Initially, we can color an edge arbitrarily. 

Suppose now we want to color an uncolored edge (f, w), there are two possible 

cases. 

1. If there exists a color that has not been used in both vertices v and w, 

edge-color {v, w) using this missing color. 

2. Otherwise, suppose a and b are unused colors in v and w respectively, we 

can obtain an alternate path starting from w, constituting colors a and b. 

By interchanging a and b on the alternate path, (^, w) can then be colored 

using color a. 

Since a bipartite multigraph is essentially a kind of bipartite graph, it can he 

edge-colored similarly. 

2.3 Routing algorithm - PaulPs matrix 

A classical implementation of the routing algorithm is the connection matrix 

devised by Paull [3, 4 . 

Figure 2.4 shows how the network can be represented by the connection 

15 
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0 1 ... w ... p-1 

^ ^ 'Mf^ -
NT" _ � � l Z . 

^ ^ ^ = ^ 二 - 一 一 -

� \ X w 
^ ^ p-1 ‘ 

Figure 2.4: Paull's connection matrix of the three-stage Clos network 

matrix. Row v corresponds to input module v and column w corresponds to 

output module w. Obviously, the size of the matrix is p x p. Entry {v,w) is 

associated with the central modules. As shown, if there is connection joining 

modules v and w via module a, then entry {v,w) = {a}. Note that each entry 

may contain multiple symbols. 

There are two major constraints in this matrix, 

1. Symbols within each row or column must be distinct. 

2. Each row (column) can have at most n symbols as each input (output) 

module contains n input (output) ports. 

Suppose now we want to establish a new connection between input module 

V and output module w. If there exists any symbol which does not appear in 

both row V and column w, the new connection can be setup directly. However, 

if it is not the case, rearrangement in the matrix is needed. For example in 

Figure 2.5(a), all symbols except a occur in row v and all symbols except b 

occur in column w. If the symbol a in (v',w) is change to b, symbol a can be 

entered into entry {v,w). However, contradiction to constraint 1 will occur in 

16 
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row V' if there is already a symbol b in row v'. Here, symbol b in (v',w') must 

be changed to a to avoid such contradiction. Further contradictions may occur 

after each change and so, the procedure must be performed until constraint 1 

can be satisfied. Figure 2.5(b) shows the result after rearrangement. 

w w' w w' 

V' a ——• b V, b ——• a 
a 丨 b I 

——^ r - — ^ ^ -
V b I 丨 V b 丨 a 

1 1 I i I b ̂ t a a ̂ 1 b 

(a) Search path in Paull's matrix (b) Connection setup after 
before rearrangement rearrangement 

Figure 2.5: Rearrangement in Paull's connection matrix 

Note that this algorithm has implemented the edge-coloring principle de-

scribed in previous section. The rearrangement chain in the matrix is equivalent 

to the alternate path in the bipartite multigraph. According to Theorem 4, the 

rearrangement chain must exist. 

In the next chapter, principle of a new routing algorithm in Clos network 

under multirate traffic condition will be given. The algorithm bases on edge-

coloring of a weighted bipartite multigraph and is a generalization of the one in 

classical circuit switching described in this chapter. 

17 



Chapter 3 

Principle of Routing Algorithm 

With bandwidth quantization and connection splitting, the route assignment 

problem in the Clos network under multirate environment is equivalent to an 

edge-coloring problem of a weighted bipartite multigraph with edge-splitting. In 

this chapter, we will describe the details of this equivalence relationship, which 

is the basis of the construction of our algorithm. 

3.1 Definitions 

In this section, the two fundamental concepts, bandwidth quantization and con-

nection splitting, will be introduced. 

3.1.1 Bandwidth quantization 

As mentioned in chapter 1，the continuous scale of bandwidth in a multirate 

environment, such as ATM network, can be converted to a finite, discrete set of 

bit rate levels by bandwidth quantization. 

18 



Chapter 3 Principle of Routing Algorithm 

Without loss of generality, suppose the maximum available bandwidth of 

every links in the network are the same and are all normalized to one. This 

implies that bandwidth request cu of any connection must satisfy the constraint 

0 < cj < 1 

Using uniform quantization with M quantization levels, the quantized value uu 

of u is defined as 
~ ^ -r ^ — 1 ^ ^ ^ 
UJ =—— 11 , ^ < cu < — 

M M - M 

for 1 < i < M. Sufficient bandwidth satisfying cu is guaranteed by the condition 
CO > CO. 

By multiplying all link bandwidth by M, a virtual quantized Clos network 

model can be obtained. In the virtual model, the capacities of every input and 

output links will be equal to M and all connections will request for integer 

bandwidth u 二 i, where i = l , 2 . . . M . Each central module can supply M 

units of bandwidth between each pair of input and output modules. 

Similar to the classical circuit switching, the connection configuration in the 

virtual quantized Clos network can be represented by an bipartite multigraph 

G{V1,V2). Again, each vertex in Vi (½) of the graph represents one input 

(output) module of the network. A connection from input module I to output 

module 0 with u) = i, will be represented using i edges connecting vertices I and 

d . With each of the n ports in an input or output module providing M units 

of bandwidth, the maximum degree of the graph equals to Mn. The bipartite 

multigraph representation will be used to prove the non-blocking conditions of 

the network in section 3.2. 
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3.1.2 Connection splitting 

Connection splitting allows traffic from the same connection to travel through 

different central modules inside the network. The internal link utilization can 

be increased since splitting new connections appropriately can fill up the "frag-

mented" bandwidth on the internal links. With the same number of central 

modules used in the Clos network, a direct consequence will be the improve-

ment of the external link utilization (5. Releasing the restriction on P helps 

directly in reducing the external blocking probability. 

However, connection splitting has its own disadvantages. To store the central 

module assignments in the routing table, more memory will be needed for a split 

connection than a non-split one. Therefore, the number of split connections 

should be kept minimum to minimize the amount of memory required. This 

needs a specially designed control algorithm. The algorithm proposed in this 

thesis tries to reduce the number of split connections and simulation result in 

chapter 5 shows a low connection splitting probability. 

Connection splitting may also cause the out-of-sequence problem. By pro-

viding buffers for each connection in the output ports, the problem can be solved 

by performing additional works to re-sequence the packets. 

3.2 Non-blocking conditions 

With bandwidth quantization and connection splitting, we have derived the 

non-blocking conditions for the Clos network under multirate traffic condition. 

These conditions will impose NO restriction on the external link utilization p. 
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3.2.1 Rearrangeably non-blocking condition 

The following theorem states the rearrangeably non-blocking condition for the 

Clos network. In the theorem,�a;] is the smallest integer greater than or equal 

to X. 

Theorem 5 (Rearranageably Nonblocking) With bandwidth quantization and 

connection splitting, a symmetric three-stage N x N Clos networkC{m,n,p) will 

be rearrangeably nonblocking under multirate traffic if 

m > n 

provided that 

Y^ Xij < M Vz and Y1 Xij < M Vj j ‘ 

where Xij is the total aggregate quantized traffic from input link i to output link 

j, and is equal to the sum of all u，s from i to j. 

Proof : Given that the connections are externally non-blocked after bandwidth 

quantization, that is, the two conditions in the theorem are satisfied, central 

module assignment is equivalent to edge-coloring of the corresponding bipartite 

multigraph G{Vi, V2) in Section 3.1.1. The maximum degree of the graph equals 

to Mn and according to Theorem 4, Mn colors are sufficient to edge-color the 

graph. Since each central module can provide M units of bandwidth for each 

input or output modules, that is, M different colors, \MnlM~\ 二 n central 

modules will be sufficient for the network to become rearrangeably nonblocking. 

Note that m must be an integer. To complete the proof, connection splitting 
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must be employed in routing since the uj edges of a connection may have their 

edge-colors provided by different central modules. 口 

With bandwidth quantization and connection splitting introduced, the in-

ternal links can be fully utilized and therefore, the above theorem has imposed 

no restriction on the external link utilization |3. In addition, the condition is the 

same as the one in classical circuit switching for all values of M. 

3.2.2 Strictly non-blocking condition 

To derive the strictly non-blocking condition for the Clos network, the following 

theorem is needed. 

Theorem 6 To edge-color a bipartite graph G{V1,V2) with maximum degree d 

without rearranging existing color assignments, a sufficient number of colors is 

2d-l. [14] 

Proof: Suppose that each edge of G{V1,V2) has been colored, except {v,w). 

With maximum degree d, each of the vertices v and w has at most d - 1 colored 

edges. In the worst case, colors on these edges are all different from the other 

and so, 2d-2 colors would have been used. To edge-color {v, w), another distinct 

color is needed. The total number of color needed is therefore 2d — 1. 口 

Theorem 7 (Strictly Nonblocking) With bandwidth quantization and con-

nection splitting, a symmetric three-stage N x N Clos network C{m,n,p) will 

be strictly nonblocking for multirate traffic if 

, 2 M n - l , 
m > — 

— M 
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provided that the conditions in theorem 5 are satisfied. — 

Proof: Given that the connections are externally non-blocked after bandwidth 

quantization, assigning central modules without rearranging existing connec-

tions is equivalent to edge-color G{V1,V2) without rearranging any colors already 

assigned. With maximum degree Mn, 2Mn 一 1 colors will be sufficient here ac-

cording to Theorem 6. Therefore, m must be greater than or equal to \^^^~^ 

as m must be an integer. Connection splitting is also required to complete the 

proof. 口 

Consider the special case when M 二 1，that is, the traffic environment 

reduces to classical circuit switching case. The condition becomes m > 2n - 1 

which matches the well known results. F o r M > 1，only 2M central modules 

will be sufficient. Again, no restriction has been imposed on /3. 

3.3 Formulation of route assignment as weighted 

bipartite multigraph coloring problem 

From the proof oftheorem 5, route assignment in the rearrangeably non-blocking 

Clos network can be performed by edge-coloring of the bipartite multigraph 

G{Vi, V2) using colors 0，1，. •., Mn - 1. The central module assignment, k, of 

the edge with color i can then be given by 

k 二 i mod n 

Although this method can solve the route assignment problem, it has the draw-

back that the number of split connections is difficult to control. Trying to assign 
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colors such that the u) edges of the same connection can obtain the same k after 

the above modulus operation is unmanageable, especially when M is large. 

Instead of using the bipartite multigraph, the route assignment problem can 

be formulated as an edge-coloring problem of a weighted bipartite multigraph 

WG{V1,V2) which also represents the connection configuration in the virtual 

network model. To obtain WG{V1,V2) from G{V1,V2), simply replace the cor-

responding cu edges of a connection by a single edge with weight u. 

Define E^ be the set of edges connected to vertex x, E :̂,i be the set of edges 

connected to x using color i and cOk be the weight on an edge k • The following 

constraint must be satisfied in each vertex x of WG{Vi, V2) since the summation 

in the left hand side is equivalent to the degree of x in G{Vi, V2). 

E � k < Mn (3.1) 
keEx 

From theorem 5, n central modules are sufficient for the network to be rearrange-

ably nonblocking. Combining with constraint 3.1, the route assignment problem 

can then be formulated as edge-coloring of the weighted bipartite multigraph 

WG{Vi, V2) using n colors, each represents one central module, such that 

^ Uk < M V 0 < i < n - 1 (3.2) 

k^Ex,i 

Constraint 3.2 must be satisfied as each central module can provide at most M 

uhits of bandwidth for each input or output modules. Obviously, it requires 

edge-splitting during the edge-coloring process in order to satisfy constraint 3.2 

for all time. 
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3.4 Edge-coloring of weighted bipartite multi-

graph with edge splitting 

Before describing how to edge-color the weighted bipartite multigraph, some 

quantities have to be defined. The amount of color i available at vertex z is 

defined as 

Rz,i - M - Y^ uJk 
keEz,i 

which is equal to the total available amount M minus those being used. Let u 

be an uncolored edge with weight cj^, connecting vertices x e Vi and y G V2. 

The amount of color i available to edge u is then equal to 

Su,i — m i n ( J ^ , i , Ry,i) 

3.4.1 Procedures 

In this section, we presents the edge-coloring procedures of the weighted bipar-

tite multigraph. A full example will be given in Section 3.4.2. The coloring 

procedures of an uncolored edge u involve three major steps. 

1. If there exists a color i such that Su,i > ^u, color u using i. Otherwise, 

goto step 2. 

• 2. For every color 0 < i < n - 1 with Su,i > 0, split an edge Ui from u with 

Uui = Su,i, and color Ui using i until Uu = 0 or all colors are examined. 

3. If all colors are examined and still, cOu > 0, these remaining tOu must be 

colored by rearranging existing color assignments. 
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Step 1 in the above procedures is equivalent to setup the new connection through 

a single central module without splitting. Step 2 splits the connection and step 

3 setups the remaining unsatisfied bandwidth requests by rearranging existing 

connections. 

The basic idea of rearranging existing color assignment in WG{V1,V2) is 

a direct extension of the alternate path concept in classical circuit switching. 

Instead of an alternate path, a weighted alternate tree will be obtained from 

the graph. After interchanging the two colors in the weighted alternate tree, 

sufficient color will be available for u. 

Due to the operations in step 2, Su,i will equal to zero for all colors i or 

equivalently, either R$,i or Ry,i will equal to zero. Without loss of generality, 

suppose i4,a > uJu, Ry,a 二 • and Ra:,b = 0, Ry,b >�u, a weighted alternate tree 

starting from vertex y, constituting colors a and b, can be obtained by: 

1. Add a set of edges E'y,& C Ey,a to the root node of the tree such that 

Y^ uJk = min(i^^，a, Ry,b, ^u) 
keE'y^, 

Split any edge in Ey,a to satisfied the equality, if necessary. 

2. At each "leaf-edge" e, 

(a) Terminate the corresponding branch of the tree if e is using color a, 

and at the end vertex v of that branch, 

î <u,7 > cOe where (a, 7) = (a, b) or (b, a) 

that is, sufficient color 7 is available at v for changing e from using 

color a. 
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(b) Otherwise, attach a set of edges E '、， C Eŷ ^ to e such that 

y~] ^k — ^e — Rva 
k&E'w 

that is, edges in E'%) will be changed to use color a and free out 

sufficient 7 in vertex v for e. Split any edge in K,i to satisfy the 

equality, if necessary. 

3. Repeat (2) until all branches of the tree are terminated. 

Since R̂ â > ^u and Ry,b > ^n, then 

min{Rx,a, Ry,b,⑴从)=^u 

After interchanging colors a and b in the tree, Ry,a will equal to ⑴从 and therefore, 

Su,a > ^u SO that edge u can be colored using a. 

For the case that no color pair (a, b) satisfies the conditions i4，a > (^u and 

Ry,b > Uu, the operations are similar and the only different is that several 

weighted alternate trees will be constructed. After performing color rearrange-

ments in every trees, edge u can be colored with edge-splitting. Details can be 

found in the algorithm listed in Section 4.2.3. 

In the special case with M = 1, weights on all edges of the weighted alternate 

tree will equal to one and the tree will degenerate into the alternate path in the 

classical circuit switching. 

3.4.2 Example 

The following example will illustrate the edge-coloring procedures of a weighted 

bipartite multigraph. Figure 3.1 shows the weighted bipartite multigraph repre-

senting a rearrangeably non-blocking Clos network with m 二 n = 2 and M = 4. 
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In the other words, there are two colors available and a maximum of four units 

of each color can appear in each vertex according to constraint 3.2. 

The existing color assignments and an uncolored edge u, connecting vertices 

/2 and Oi with ⑴让 二 1, are shown in the figure. According to step 1, u can be 

colored using color 0 since 

Su,o 二 m in ( i ^ /2 ,o , ^ i , o ) 二 1 > ⑴让 

Parameters R!2,o and R02,0 are updated accordingly. 

p ~ 4 R ,.-4 R, ,, ^̂  4 ^ _ ^ 只〜《 - 4 

#，%1 lo#^~~2——^Oo e%^ � U l '0 # V " ' ^ " < - ' 
’ \ … \ 

& : “ • ^ > 々 ; = : < ： - ' . ^ > ° . :̂:: = 3 

“ � > 7 � y / \ / \ 
^:： .. # ^ - -3- - ^ 0 . S - : J ^:： .. # ^ - - 3 . 、 0 2 2-：： 

Before coloring of After coloring of 
edge (f^, 0^, 1) edge (l^, 0^, 1) 

Color 0 
Color 1 

Figure 3.1: Example of edge-coloring without splitting edge 

Based on the resulting graph in Figure 3.1, a new uncolored edge u ,connect-

ing /1 and Oi with ⑴从 二 4，is added as shown in Figure 3.2. As Su,o = 5'w,i 二 

3 < Uu, step 1 fails to color u. According to step 2 in the procedures, u is split 

into two edges, Uo and iii, with weights cUuo : 3 and Uui 二 1 respectively. The 

edge-coloring result is shown in the figure. 

Figure 3.3 shows an example of color rearrangement using weighted alter-

nate tree. An uncolored edge u, connecting vertices /• and O2 with tOu = 4, 
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H, .«4 • ^ R�,,«4 R. ^ xs 4 « 0 ̂  4 
# : . 1 'o # ^ ~ 2 • 0 � ( 二 , f/r: . I 'o # ^ ~ 2 • 0�, , : . 2 ‘ 

-。" X ¾̂' ^" >v "• 

\ \ 
V = 3 • 血 , \ ^ o V = 3 V = � • f - 3 ^ o ^r" = ° 
«;,=4 丨1#̂ 4 ; ^ ° i <,=3 <,=3 'i ^ 1 f O i � , 2 

�1 . ̂  �1 / \/ \ / 
/ < / 

J：：：丨2 “二 -3-^^0. fe:; S-：：： , #^- 3--^^0. 2：：：： h ‘ •‘ -'2: - 2” ‘： 

Before coloring of After coloring of 
edge (l^, 0^, 4) edge (f^, O” 4) 

Color 0 
Color 1 

Figure 3.2: Example of edge-coloring with splitting edge 

is shown in Figure 3.3(a). After going through steps 1 and 2 of the coloring 

procedures, color rearrangement is needed in order to color the remaining edge 

as shown in Figure 3.3(b). Without loss of generality, suppose color 1, which 

is not available at vertex /o, will be used for the uncolored edge. A weighted 

alternate tree starting from !o is obtained according to the procedures in Sec-

tion 3.4.1. Figure 3.3(c) shows the tree before and after interchanging the two 

colors. The resulting color assignment is shown in Figure 3.3(d) and notes that 

constraint 3.2 is still satisfied in every vertices. 

3.4.3 Validity of the color rearrangement procedure 

In- the weighted alternate tree, termination of all branches must be guaranteed in 

order to make the rearrangement procedure valid. However, there are possibili-

ties that infinite branches may occur during the construction of weighted alter-

nate tree. Therefore, pre-caution must be made to avoid such infinite branches. 

Infinite branch will be constructed if two edges connecting the same pair of 
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k ^ - 0 ^ 2 _ • � � ; ; - Zj；：：： l � Y ~ • O o S ； ； ： ： ̂ ‘ 

I：：：： Ii tiL^ Oi fe- |::S 丨1 口 ^ ^ Oi ̂:：° 

:¾ 駕 
%：： . . # ^ - 3 - ^ 0 , ¾ ; : : : :̂：： . . # ^ - 3 - ^ 0 , ¾ -

a) Before coloring of (l„, 0^, 4) b) After Step 2 of coloring 

2 Z ¥ : : | o ( - 2 - - . O o k = 
S ^ i \ \ 、 1 

\ \ \ ^ - � H, ,..s f3-Nj ^ 0 \,�= o 
^2^ < :3 '1 ^ 1 V »°i"v=^ 

, 、 i 、 < 1 ¾ 

\ > : l l , # ^ - 3 - ^ 0 , ^ ^ ; : J ColorO 
^ ‘ Color 1 

c) WAT before and after rearrangement d) After color rearrangement 

Figure 3.3: Example of edge-coloring using weighted alternate tree 

vertices in WG{Vi, V2) are included in a branch consecutively and repeatedly. In 

the other words, if any edge k in E'�] shares the same pair of vertices with the 

"leaf-edge" e, infinite branch may occur. Figure 3.4 shows an example. Starting 

from vertex O2, ifthe two edges connecting /2 and O2 are selected repeatedly, an 

infinite branch will be resulted. Obviously, this kind of looping can be avoided 

by excluding from E:,] those edges that share the same pair of vertices with the 

"leaf-edge" e. 

-Observed that if each edge k is decomposed into cUk unweighted edges, the 

tree will become an unweighted alternate tree. With the above pre-caution, 

each branch will then be equivalent to an alternate path in the bipartite multi-

graph G{Vi, V2) described in Section 3.1.1. As all alternate paths will terminate 

in a bipartite graph, termination of branches in the weighted alternate tree is 
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k ^ l o V " 4 ~ # 0 0 ¾ = < ^ 
\\ 2 , 2 ^ 2 - . 
\2 ^ . 
\ \ 丨2 '2 

符,4 • 赢 > \ • 。 〜 。 = 4 lnfinitebranch 
1(.厂4 l i ^ 2 \ y ^ ^ 1 < r = 2 

X ^ < 2 X ^ 

. ^ A v ^ 
V = 2 • ^ — 2 - ~ \ ^ 0 "o,,o = 0 2 
\i = 0 _2 « 2 ^ ^2 T\’1 = 2 Branch terminated at 0^ 

Color 0 
Color 1 

Figure 3.4: Example of infinite branch in weighted alternate tree 

guaranteed and hence, makes the rearrangement procedure valid. 

In the next chapter, details of the routing algorithm will be given. The 

proposed algorithm uses a specially designed matrix call Capacity Allocation 

Matrix to implement the edge-coloring principle described in this chapter. 
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Routing Algorithm 

Based on edge-coloring of the weighted bipartite multigraph representing the 

connection configuration, a routing algorithm for the quantized Clos network has 

been implemented using a specially designed matrix called Capacity Allocation 

Matrix. Instead of minimizing the number of split connections, the proposed 

algorithm provides a sub-optimal connection splitting control which tries to 

reduce splittings during connection release process. A faster connection setup 

can be achieved. In this chapter, we will present the details of the routing 

algorithm. 

4.1 Capacity allocation matrix 

To implement the edge-coloring principle, a specially designed matrix called 

Capacity Allocation Matrix (CAM) has been employed in the routing algorithm. 

Figure 4.1 shows a CAM in which each row of the matrix represents an input 

or output module. The matrix is divided into two parts, the resources matrix 
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R and the allocation matrix A. , 

In the resources matrix, each column represents one central module. Central 

modules are numbered from 0 to n - 1. Entries i^(4,C^) and R{Oa:,Cy) are 

equivalent to Rî Ĉy and R o ^ in the weighted bipartite multigraph model 

respectively. The value of Su,i can then be calculated from entries of R for any 

connection u and central module i. Initially, all entries are set to M. 

In the allocation matrix, each column represents one connection. In our 

algorithm,, any connection c from input link i to output link o is represented by 

c = (p, q, uj) where 
i 0 p 二 一 , q_ 二 — 

L ^ 」 L ^ 」 

are the input and output modules of c respectively. [fJ is the integer part of 

a/6, and cj is the virtual quantized bandwidth requested by c. Entries A{Ip,c) 

and A{Oq,c) will be occupied by connection c with value 仏 The contents of 

these two entries must always be the same. 

Connection 1 Central Module 0 
「 C o n n e c t i o n 2 「 C e n t r a l Module 1 

J/ V V _ _ _ _ V 

1 2 3 . • • C 。 C i Cg •• • 

lnputModuleO 1。4。。 6 10 

Input Module 1 1̂  SC^ 3 ^ 

. • • 

. • • 
Output Module 0 0 。 4 0 ^ 7 ^ 

• Output Module 1 0^ 3C^ 5 7 

. • • 

. • • 

Allocation Matrix, A Resources Matrix, R 

Figure 4.1: Capacity Allocation Matrix 
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4.2 Connection setup 

To setup an externally non-blocked connection c = (p, q, cj), one or more central 

modules must be assigned to A{Ip, c) and A{Oq, c) to satisfy the capacity request 

6j. Connection setup consists of three stages: Non-splitting stage, Splitting stage 

and Recursive rearrangement stage, according to the three steps in edge-coloring 

of the weighted bipartite multigraph. Figure 4.2 shows the flow diagram. 

，r 

Arrival of new connection c = (p,q,w) 

7 上 、 
^^s it externally non-~^\ 

No ~ < ^ blocked ？ z Z 

Yes 
T 

,/Does non-splitting"^\ Yes 
^ " \ ^ g e success 1^^^^^^^ 

\丫’ 

No 

^Does^itting staĝ ~̂\̂ ^̂ ^̂  yes 
\ \ \ success ？ / ^ 

\ z 
No 
I 

Recursive rearrangement stage 

，r 

Connection setup complete < 

Figure 4.2: Flow diagram for connection setup 
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4.2.1 Non-splitting stage 

The non-splitting stage try to assign exactly one central module to setup con-

nection c and is the counterpart of step 1 in the edge-coloring procedures in last 

chapter. 

Non-splitting Stage 

1. X ^ 0 

2. If mm{R{Ip, C,) , i^(0, , C；)) > ĉ， 

A{Ip,c) — uCx 

A{Oq,c) ^CbC:, 

R{Ip,C,)i-RiIp,C,)-Cj 

R{0,,C,)^R{0,,C,)-u 

Exit 

3. X [ X + 1 

If X > n — 1，non-splitting setup fails. 

Else goto step 2. 

Figure 4.3 shows an example of non-splitting connection setup. Connections 

in this example can be represented by the weighted bipartite multigraph in 

Figure 3.1. Here, (p, q, cj) = (2,1,1) and since 

— m i n T O , C o ) , i ^ ( O i , C 7 o ) ) = l > ^ , 

connection 5 will be setup using central module 0. 
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1 2 3 4 5 II C。Ci 1 | 2 3 4 5 C。C, 
~i72C, 1C, 4 _ _ ] _ lp 2C, 1C, 4 _ _ ^ 

li 一TC„ 3 ~ ~ r T " i £ ^ 一 3 _ _ _ 4 _ 

I, ^ l ^ " i J ^ T J a 3 〇 。 7 ^ . ;彰： 4 

Op 2C, 4 2 Op 2Ci 4 2 
0, 1 ^ ' r ^ - ^ ^ 0, 1C, ^ . a ； 3 
0, |lC。|3C。| l | o 4 O3 |1。。|3。。| 11 0 4 

Before connection setup After connection setup 

Figure 4.3: Example of non-splitting connection setup 

4.2.2 Splitting stage 

The splitting stage tries to setup connection c using more than one central mod-

ules, according to the edge splitting procedure in edge-coloring of the weighted 

bipartite multigraph. 

Splitting Stage 

1. X 卜 0 

2. A{Ip ,c ) i -mm{R{Ip ,C, ) ,R{0 , ,C , ) ,C j )C , 

A{0,, c) — mm{R{Ip, C,), R{0,, C,)，a))C, 

R{Ip, Cg — R{Ip, C,) — mm{R{Ip, C,),R{0,, C,),cj) 

R{0,, Cg — R{0,^ Oc) - mm{R{Ip, C,), R{0,, C,),u) 

u <- u 一 mm{R{Ip, Cg,i^(C>g, a),^) 

If cj = 0, exit. 

3. X ^ X + 1 

If X > n - 1, unsatisfied bandwidth request remains. (Connection rear-

rangements are required.) 

Else goto step 2. 
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Figure 4.4 shows the example of connection setup corresponding to the 

weighted bipartite multigraph in Figure 3.2. The splitting setup procedure has 

gone through two passes of step 2 and the details of each pass are also shown in 

the figure. 

1 2 3 4 5 6 II C � C i 1 2 3 4 5 6 11 C � C , 
I � 2 C i 1 ^ 一 ~ ~ - ~ 4 ~ 丁 lp 2C, 1C, 4 1 

I = = K = = _ 5 g H j j i ^ _ J M S S i ^ ^ 
" l ^ 3C, i c „ ~ " 0 _ _ A _ . J 2 3C„ 1C, 0 _ _ A _ 
" o 7 ^ 4 2 Op 2C, __4__2^ 
^ 1 ^ l^;,4:^||-fe%^ ^一Ĵ  1 C � :：；^ ^胸；释‘釋 

• 2 |lC。|3C。| I. 11 0 4 | O 2 | | l C 0 | 3 c J |.... | | o | 4 — 

Before connection setup After connection setup 

Pass X min(R( lp ,CJ, R(Og,CJ , co) Assignment coafter step 2 

^ " " 1 0~" min(3, 3, 4) = 3 ^ 1 

" ~ 2 「 min(4,3, 1) = 1 1Ci 〇 

Details of splitting connection setup 

Figure 4.4: Example of connection setup with splitting 

4.2.3 Recursive rearrangement stage 

If the splitting stage cannot satisfy all bandwidth request of c, unsatisfied band-

width request will be fulfilled by rearranging existing connections. The proposed 

algorithm takes the recursive approach to traverse the weighted alternate tree 

and interchange the two colors simultaneously. Recursive algorithm is a classical 

solution for problems involving tree structure. 

Before describing the procedures, two sets have to be defined. 

Si 二 {i I R(Ip, Ci) > 0, R{Oq, Ci) 二 0, sorted in decreasing order of R(Ip, Ci)} 

:usable central modules for input module p but not output module q 
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So = {i I R(Ip, Ci) = 0, R{Oq, Ci) > 0, sorted in decreasing order of R{Oq, Q ) } 

=usable central modules for output module q but not input module p 

Recursive Rearrangement Stage 

1. X — first element in Si 

Y ^ first element in So 

UJmin — mm{R{Ip, Cx),R{Oq, Cy),(I;) 

2. Rearrange(^X,Y,uJrnin, Ip,c) 

3. Delete X from Si if R{Ip, Cx) 二 0 

Delete Y from So if BJfiq, Cy) 二 0 

4. UJ i - U — Umin 

If uj — 0, exit. 

Else goto step 1. 

For the cases that color assignments on several weighted alternate trees are 

needed to be altered, the way that (X, Y) being chosen minimizes the number 

of trees involved. 

The recursive procedure Rearrange{x,y,uo,r,c') is shown below. 

Rearrange{x, y, u, r，d) 

‘ 1 . (a) Remove uC^ from A{r, c') and, R�r, C^) <- R{r, C^) + � 

(b) A(r, c,) — uCy 

(c) R(r, Cy) i - R{r, Cy)-⑴ 

2. Search vertically in column c for non-empty entry A{r', c') 
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(a) Remove uC^ from A{r', d) and, R{r', C^) <- R{r', C^) + o; , 

(b) A(r , c') — ujCy 

(c) R{r',Cy)^R{r',Cy)-u 

3. If R{r',Cy) > 0, return. 

Else �—-R{r',Cy) 

\ 4. Search horizontally in row r' for fewest entries A{r', Ci) with UiCy s.t. 

J2(^i = � 
i 

Exclude Q's with UiCy in entry A(r, Ci). Split any Q if necessary. 

5. For each A{r',Ci) in (4), performs Rearrange{y,x,Ui,r',Ci). 

Note that for the first layer of recursion, that is, Rearrange{X, Y, uj—n, Ip, c), 

steps 1(a) and 2(a) must be ignored since nothing has been assigned to A{Ip, c) 

and A{Oq,c), except those being assigned in non-splitting and splitting stages. 

Those assignments are not subjected to rearrangements according to the edge-

coloring principle. 

To obtain an upper bound on the time complexity of the rearrangement 

algorithm, consider the case that all connections are with Cb = 1. In the worst 

case, there will be MN — 1 existing connections in the CAM and connection 

rearrangement is needed for the remaining new connection. At most MN — 1 

connection rearrangements will then be performed. Hence, the time complexity 

of the rearrangement algorithm is upper bounded by MN — 1 rearrangements. 

Figure 4.5 shows an example and the arrows in the figure indicate the se-

quences of recursive search in Rearrange{x,y,uj,r,c'). Again, the weighted al-

ternate tree representing this example is shown in Figure 3.3. 
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1 2 3 I 4 1 ¾ ¾ 6 f;^7$'^ Co .C, : ¾ ¾ ¾ 3 4 ^ S- j 6 ' / / 〇。C, ^ « 1 ^ ^ » L.. Kti,；,.̂, l< ;:.;V!̂ ^ ° 1... ： " , ' ' � 4 ^ ‘ .; , 
I。2C, 1C,——•——f-2H 1 1C,3 4 0 l。|2C。1C。 | 40 , | 1 0 j 
I, 1 1Co 3C„1C, 0 3 I, 1Co I 3C<,1C, ! 0 3 | 
1̂  4 ^ 3C„ 1Co 0 4 ^ 1̂  3C„ 1C, 1 3 
0。2Ci j, t 4 2 0。2C。 2 4 
0, 1C,-- '——"ic�3CQlCi 0 2 0, 1C„ 1Ci 3CJC,j j 0 j 2 
0 , ‘ 1Co 3Co 1C,3 0 3 0 , 'ICo.SC。 4C, 0 0 

Before rearranging After rearranging 
connections connections 

Sequence in recursive search 

(3C 1 will be assigned to connection 7) 
1. Search vertically for value 3 
2. Search horizontally for 3C ^ and connections 1 ( 2C^)’ 2 (1C^) are found 
3. Search vertically for 2C ^ 
4. Search vertically for 1C ^ 
5. Search horizontally for 1C。and connection 5 ( 1C ̂ ) is found 
6. Search vertically for 1C^ 

Figure 4.5: Example of connection rearrangements 

4.3 Connection release 

When any connection CR 二 [s,t,CoR) is released, the algorithm will examine 

existing split connections and will re-route them through a single central mod-

ule to make them non-splitting, if possible. Due to the structure of the Clos 

network, additional central module capacities are only available through switch-

ing modules Is and Ot. Therefore, the algorithm will only consider those split 

connections sharing the same input or output modules with CR. 

Before presenting the procedures for connection release, the following items 

are defined. 

SR = {i I central module(s) i used by ^]-

c 二 split connection (n, v, cb) with u 二 s or v = t 

=split connection sharing the same input or output module with CR 

S 二 { j I central modules j used by c, with capacity u)j s.t. E j ^ j = ^ } 
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Sc = {c } , the set containing all c's ‘ 

Connection Release 

1. Delete column CR from A. Update R according to CR. 

2. For every c G Sc 

(a) Get next i from SR. If none is available, re-route fails and goto step 

2. 

(b) If (1) i • S and mm{R{Iu, Ci) ,R{0^, Q)) > u 

or (2) i = j G S and min(i^(/^, Q),R{0^, Ci)) > {u — u^), 

Change A{h,c) and A{0^,c) to CoCi. Update R according to the 

changes. Re-route successes and goto step 2. 

Else goto step (a). 

Figure 4.6 shows an example of successful re-routing. Connections 5 and 6 

in Figure 4.5 are released and re-routed, respectively. In this example, 

CR 二 5 ， S n = { 1 } , c 二 6 , 

S = {0 ,1 } with cJo = 3 , cJi 二 1 , 5̂ c = {6 } 

1 2 3 4 5 6 7 C。Ci 1 2 ‘ 3___4__6__7 Ĉ  C, 

1。2C。7̂  I Z I j ^ 工工 V ^ ^ —î -J_„_••__̂  
1 = = ^ ^ = = ¾ ¾ ; = ¾ ¾ J^ ic。i ^ 一 ^ ¾ 

• ^ = — ^ 1__±_ j 2 ^ ^__ i_ 
I ； ^ = = = = ^ ^ = H A _ ^ —一—丄二 
^ “ ^ 一一 3C,1C, 0 3 _ ^ i C ^ ^ — : J T 2 f i 

o J | i c j 3 c j h c J o . | T ^ O2 |lC。|3C。| | 4 C ; | ^ | o 

After releasing connection 5 After rerouting connection 6 

Figure 4.6: Example of re-routing split connection 
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4.4 Realization of route assignment in packet 

level 

{Materials given in this section concerning TSI and time-space switching are 

from [15].) 

Although the routing algorithm is performed in connection base or the so-

called call level, the resulting assignments have to be realized in the time-slotted 

packet level in reality. A combination of time and space switching called time-

space switching can be employed. 

A major component in time-space switching is the time-slot interchanger 

(TSI) shown in Figure 4.7. As the name suggests, a TSI interchanges the time 

slots occupied by different packets within one packet frame. Switching is per-

formed directly in the time domain. Note that there must be an initial delay 

equal to one frame time in the TSI. Switching can be performed only after a 

whole frame of packets is read in. The next frame will be read in while the 

previous frame is being switched. 

I Frame i 
^ length ^ 

^̂ ^̂ ^̂ ^ I 
丨:_丨11證1丨議 ^^^^8 ^̂ HH;ili;;;iiiŝ i j ^m^^^i ^ <̂>ŵ^̂"̂^̂"*"̂"*"<̂' ' ' T : “ 

TSI 
mput packets Output packets 

Figure 4.7: Time slot interchanger 

By attaching a TSI to each input link of a space-domain switch, packets 

within a frame can be scheduled by the TSI's such that output contentions can 

be totally eliminated. Packets can then be switched to their destination by the 

space-domain switch running different input-output mappings in different time 
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slots. Figure 4.8 shows an example. , 

^ Frame • 
1,2 1,2 1,1 I 1.2 I 1,2 I 1 , lH 

4 ^ h- - {TsTl^=^ h-
丨2’2丨2’3丨2’1丨‘ 3X3 — ^ m - ^ ^ ^ 3X3 一 

I 3 , 3 l 3 , 3 | 3 , 1 | ^ ; ; ^ j : _ ^ g ^ ^ ^ L -
i,j I Packet from input i to output j 

(a) Scheduling of packets using TSI_s 

1,2 I 1,2 I LLj_ 
.2,3 I 2，1 1 ^2,2 I Time slot 1 

3,1 I 3,3 I I 3,3 

35n j2,1 I 1,1 ‘ 
2,3 I \ < [ 1,2 I 2,2 I Time slot 2 

3,1 I [3,3 I 3，3 

J 3 , l I 2,1 I 1,1 “ 

\〉/^丄1，2 I 1,2 I 2’2 I Time slot 3 

\'力、\、I 2 , 3 I 3 , 3 I 3 , F 

(b) Switching of packets using space-domain switch 

Figure 4.8: Time-space switching 

Defining frames with length equals to M time slots, the route assignments 

of the Clos network can be realized in packet level by replacing all switching 

modules with time-space switches as shown in Figure 4.9. Any connection with 

quantized bandwidth request cj will occupy any (J time slots in a frame in the 

corresponding input link. With a localized packet scheduling performed in each 

time-space switching module, packets can be switched through the modules and 

eventually, the entire network. In the first, second and third stages, packets 

are scheduled according to their central module assignments, destinated output 
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modules and destinated output links, respectively. Changes in packet schedule 

will only occur whenever the connection configuration changes. 

Time-Space Switch ^ ^ ^ ^ * ^ ^ ^ ^ 
——Fq^:pyr^^ / TS Switch \ ^ : ; ; : ; i 

p - fTsn- -^|v / 1 i \ / TS Switch 

_̂ ^55:U^^><y^——^Y—— 
L V V ^ TSSwitch ^ - V ^ ^ 

TS Switch ^ / 1 1 \ / TS Switch ^^^ 
TS Switch M y TS Switch 

L ^ ^ ^ TS Switch ^ ~ — 
Figure 4.9: Time-space switching Clos network 

Note that an initial delay of 3M time slots will be experienced due to the 

three stages of TSI inside the network. 
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Chapter 5 

Performance Studies 

The performance of the quantized Clos network under multirate traffic and the 

proposed routing algorithm have been studied through simulations. In this chap-

ter, we will present the simulation results and will discuss their implications. 

In all simulations in this chapter, a 16 x 16 rearrangeably non-blocking quan-

tized Clos network with m = n = 4 is used. Call arrival in any input link is 

a Poisson process with rate A. Call duration is exponentially distributed with 

mean l//x. Uniform traffic distribution is assumed. It means that each call will 

destinated for any output link with equal probabilities. Unquantized bandwidth 

request a; of a call is uniformly distributed in the interval (0，1]. Network loading 

is defined as A//x. 

5.1 External blocking probability 

The quantized Clos network in this thesis can be considered as a special case of 

a multi-service circuit switching loss network in which the loss probability can 
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be approximated using reduced load approximation [16, 17]. In this section, we 

will briefly present the approximation and will give simulation results. 

5.1.1 Reduced load approximation 

[The materials given in this subsection concerning reduced load approximation 

are from [16] and [17].) 

Consider a network consisting of J links, with link j having capacity of Cj. 

The network supports K classes of services. Associated with class-A: calls is a 

Poisson arrival with rate A ,̂ an exponential holding time with mean l/^fc, a 

bandwidth request ^ and a route Rk C {1, •.., J} . Offered load of class-A: calls 

is pfc = Xj,/fik- A class-A: call is admitted if and only if bk units of bandwidth are 

free in each link j G Rk- Blocked calls are lost. Such a network is referred as a 

multi-service circuit switching loss network. 

Denote Qk{C;p) be the "blocking probability of a class-A: call, with offered 

load p, on a link with capacity C”. Also denote Ljk be the approximated prob-

ability that “a class-A; call will be blocked on link f . Intuitively, 

Ljk = Qk{CfPk) Vj,A: 

However, reduced load approximation states that blocking probability on trans-

mission link j should be approximated by reducing pk so that blocking on the 

links other than j can be taken into account. With the assumption that blockings 

are independent from link to link, class-A; calls should arrive to link j according 

to a Poisson process with a reduced offered load equals to 

Pk n (1 — Lik) 
ieRk-{j} 
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and hence, ‘ 

Ljk = Qk{Cj;Pk n (1 - Lik)) Vj,/c 
ieRk-{j} 

This gives rise to a set of fixed-point equations whose solution supplies ap-

proximations for call blocking probabilities. For a given set of k, C and p, 

Kaufman has proposed an algorithm in [17] to obtain Qk{C]p). Using Kauf-

man's algorithm, Ljk can be solved numerically by repeated substitutions with 

a set of initial values on Ljk. The existence and uniqueness of the solution have 

been proved in [16]. The overall blocking probability of a class-A: call can then 

be approximated by 

Bk 二 1 - n (1 - Ljk) 
jeRk 

To approximate the external blocking probability using reduced load approx-

imation, the quantized Clos network can be considered as a special case of such 

a multi-service network with two transmission links having capacities M and M 

classes of services. The two transmission links include one of the input links and 
one of the output links of the Clos network. 

In the input link, connections that request for k units of bandwidth are con-

sidered as a class-A: call. With uniform quantization on the uniformly distributed 

bandwidth request, a connection will be classified as one of the M classes with 

equal probabilities, l / M . Hence, arrival of class-A: calls in the input link will 

be a Poisson process with rate A/M for all k. This comes from the fact that 

splitting a Poisson process of rate A with probabilities pi where TdPi 二 1 will 

result in a set of Poisson processes with rates piX [18 . 

In the output link, arrival of class-A: calls from a particular input of the 

N X N network will be a Poisson process with rate X/MN due to uniform traffic 

distribution. Another property of Poisson process states that aggregating a set 
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of Poisson processes with rates \ gives another Poisson process with rate Y4 Xi 

18]. Therefore, the overall arrival of class-A; calls in the output link will also be 

a Poisson process with rate A/M for all k. 

10� 1 1 1 T r̂̂  1 1 1 ‘ 

• • • ' ' ^ " ' ^ ^ ^ ^ - ^ ^ 
： ？ X A X X X X X X X X X ^ X X 

.....。:丨………'………厂 i \ •……….: 
\: :• : : : : : : ; 
0、、 • 

^ : cT - ~ 、 _ 二 ： 
~ .v...0...o-•. n ~ A- ~>:r-.，二“ V — 一 ― . • — • — •—• .‘一. - • — •—•• — • — ― ‘ -

•9 “ 0 o 0 0 0 0 0 0 0 0 0 0 0 

CD •9 
0 • . 
u. Q-o) -’ ., ： : : ： ； c 2 o 
m X Simulation, load = 2.5 

Approx., load = 2.5 
1 o Simulation, load = 0.5 ..._ 

10 - ： 
——Approx., load = 0.5 

* • • • • 

\ \ :.. ： ： ： ： : ..... 
： ：‘ : ： ： ... 

. I i • 1 1 1 1 1 
0 2 4 6 8 10 12 14 16 18 20 

Quantization Level, M 

Figure 5.1: External blocking probabilities, approximation and simulation 

With this set of parameters, external blocking probability can then be ap-

proximated by averaging the set of Bk solved. Figure 5.1 shows the results from 

both approximation and simulation. It can be observed that the link indepen-

dence assumption holds well and the approximations always stay closely with 

the simulation results. 

5.1.2 Comparison of external blocking probabilities 

In Theorem 5, no restriction has been imposed on the external link utilization 

|3 and the network will be rearrangeably non-blocking with m 二 n. Without 
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bandwidth quantization and connection splitting, Clos network with N = n? 

and m = n will be rearrangeably non-blocking only if f3 < 0.5 as mentioned in 

Chapter 1. Under the same connection arrival process, the external blocking 

probability will obviously be higher in this case as the usable bandwidth in 

input and output links are restricted. Figure 5.2 shows the simulation results 

comparing these blocking probabilities with m 二 n 二 4 and N = n^ 二 16. 

Throughput degradation due to bandwidth quantization was negligible when 

compared with the gain in connection splitting. 

10° 1 1 1 1 

: : : : ^ ^ ^ ^ ^ ^ ^ ¾ " ^ " ^ ^ ; ^ 
^ ^ : • . 一 . 一 . - . - . - 一 一 - - 一 丨 : . . : . ;〈.二二二.一 : .一. .一. - . : 

¾̂̂  -z ^ 

t .:-::,̂ .<r 
•| , " Z 
_Q . z , 
2 ： y Z 
CL ; / / 
cn " : 7 ； 
.E / • , 
乂 . / 

o / ^ ： ； o “ ‘ : 
山 / / Turner 

i | - _ - M = 20 
“ ‘ M = 5 
i' ： ^ 
i' : 
•/ . 
'/ : '/ • 

化 - 1 i_ 1 1 I 1 
1。0 0.5 1 1.5 2 2.5 

Loading 入/̂t 

Figure 5.2: Comparison of external blocking probabilities 
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5.2 Connection splitting probability 

As mentioned in Chapter 4, the proposed algorithm only tries to reduce the 

number of split connections and hence provides a sub-optimal memory require-

ment in the routing table. Figure 5.3 shows the connection splitting probability 

against the number of quantization levels M. The low splitting probability im-

plies that the sub-optimal connection splitting control provided by the proposed 

algorithm can still be acceptable in reducing the memory requirement in the 

routing table. 

0.05| 1 1 ~ i 1 1 1 I I ‘ 

0.045 - :• ； ； ： : : ： “‘ 

0.04- :• : : ： ： : 

i i : H i = l : . 2 5 

0.035 - ； : : : : •； — 

： :都=0.8 

0.03- ： ： : : : ： 

§0.025 - .: ： ； 

Ql 
0 . 0 2 - ； ： : ； 

0.015 - ； :• ： : : : 

0 . 0 1 - ：• ..: : : : : 

厂 . . . . ~ ^ ~ ^ ^ - ^ — — ^ - x ^ 
0.005 - -... j \ 

n 卜 i : ； 一 i J 1 1 1 ‘ 
0。 2 4 6 8 10 12 14 16 18 20 

Quantization levels, M 

Figure 5.3: Connection splitting probability 

5.3 Recursive rearrangement probability 

Compared with non-recursive algorithms, recursive algorithms are usually with 

higher complexity. Instead of analyzing the complexity, we justify the use of a 
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recursive rearrangement procedure in the proposed routing algorithm through 

simulation. Figure 5.4 shows the probability of connection setup through re-

cursive rearrangement against the number of quantization levels M. From the 

extremely low probabilities, the recursive rearrangement procedure can still be 

considered as a good solution in spite of its probably higher complexity. 

0.025 1 1 1 1 1 1 1 I I 

1 丨 ： 丨 丨 丨丨 J . . . . . . . . . ： . . . . . . . . _ 

0.02-….1-; : 
1 ； i !:A/^-i;.25 

j i : ： ； : ?̂ 1̂ = 0.8 
^0 .015- .….H ； ； : -

I ； ca ： 

善 ： 
°" 0.01 -……•;• — 

\ 1 丨丨丨丨丨... . .丨.. . . . . . . .：.. . . . . . . .丨.. . . . . . . _ 
0.005 -……-\ \ 

LikyXLJ=û  
°0 2 4 6 8 —10 12 14 16 18 20 

Quantization levels, M 
Figure 5.4: Probability of connection setup using recursive rearrangement 
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Conclusions 

In this thesis, we have investigated the Clos network under multirate traffic 

environment. With connection splitting and bandwidth quantization, we have 

derived the non-blocking conditions for the Clos network. A routing algorithm 

has also been proposed for the rearrangeably non-blocking Clos network. 

In classical circuit switching, non-blocking conditions and routing algorithm 

have been derived for Clos network. With the appearance of services with widely 

varying bandwidth requests, researches have been performed on Clos network 

under such multirate environment. Without connection splitting, non-blocking 

conditions with restricted external link utilization /3 have been derived. How-

ever, this limitation has sharply increased the external blocking probability. In 

addition, no routing algorithm has been proposed for the Clos network due to 

the difficulties in handling the continuous scale of bandwidth requests. Thus, 

it is necessary to study the Clos network under multirate environment with the 

employment of connection splitting and bandwidth quantization. 

In Chapter 2, routing in Clos network in classical circuit switching has been 
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reviewed. By representing the connection configuration using a bipartite multi-

graph, route assignment can be formulated as an edge-coloring problem. A 

classical implementation of the routing algorithm based on the graph coloring 

principle is by Paull's connection matrix. 

In Chapter 3, the two major assumptions, connection splitting and band-

width quantization, have been studied. Connection splitting improves the in-

ternal link utilization and thus releases the limitation on /?, although it may 

be necessary to re-sequence the split traffic. Bandwidth quantization converts 

the continuous scale of bandwidth requests into a discrete, finite scale which 

makes route assignment manageable. With these assumptions, we have proved 

that the network will be strictly and rearrangeably non-blocking for the ex-

ternally non-blocked connections if the conditions m >�^^=^1 and m > n 

are satisfied respectively. We have also presented the principle of the proposed 

routing algorithm in this chapter. By representing the connection configura-

tion with a weighted bipartite multigraph, routing can also be formulated as an 

edge-coloring problem. The proposed algorithm is a generalization of the one in 

classical circuit switching. 

To implement the proposed algorithm, a specially designed matrix called 

capacity allocation matrix has been presented in Chapter 4. With this matrix, 

connection setup in the routing algorithm consists of three stages: non-splitting 

stage, splitting stage and recursive rearrangement stage, according to the edge-

coloring principle. Instead of optimizing the memory requirement in the routing 

table through minimizing the number of split connections, the algorithm only 

provided a sub-optimal connection splitting control to achieve a faster connection 

setup. 
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As shown in Chapter 5, the external blocking probability of the quantized 

Clos network can be approximated using reduced load approximation. After 

releasing the restriction on (5 through connection splitting, it has been shown 

from the simulation that external blocking probability has been reduced sub-

stantially. Throughput degradation due to bandwidth quantization was com-

paratively negligible. In addition, the uses of sub-optimal connection splitting 

control and recursive rearrangement procedure have also been justified by the 

low connection splitting and rearrangement probabilities respectively. 

Finally, some related directions for further research are outlined below. In 

this thesis, bandwidth requests are assumed to be uniformly distributed. It 

will be worthwhile to study the determination of optimal quantization schemes 

for different bandwidth distributions. Another issue that is worthy of study is 

optimization of connection splitting as the proposed algorithm only provides a 

sub-optimal splitting control. 
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