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Abstract 
A large volume of data is generated daily in both the public and the private sectors. Full and 

timely utilization of this large amount of files requires efficient archival and retrieval. Coding the files 
in less space with no loss of essential information, data compression have a great impact on the 
transmission and storage problem. 

The basic problem in data compression is to determine the characteristics of the essential 
information in the original data set, and to design a compression scheme which preserves this 
essential information while maximizing the compression ratio. Employing the internal regularity of 
data, we can construct data compression models to predict data patterns in advance, or recognize 
repeated data from earlier data. This thesis shows how to find out the structure existing among the 
data and how to apply it to compression. 

Due to the strong dependency between neighboring symbols of data, prior information — 
context is an important component for estimating or finding out the redundancy. In this thesis 
context is applied in the prediction rather than probabilities estimation. It considers processing data 
as learning, which provides more information for representing the data files. A robust theoretical 
framework, content prediction, has been developed in this thesis that relies heavily on above idea, 
and relates closely to learning. Besides, some new evolutionary branch is added to the content 
prediction and source coding, by the introduction of symbol remapping, bounded length block 
sorting and locally adaptive entropy coding. Applications and properties of the prediction and coding 
are presented, and illustrated by simulations. 

The second main topic addressed in this research is context-based coding for image data. 
It is well known that image representation generally contains a lot of redundant pixels, which, if 
removed, do not affect the reconstruction fidelity of the image. Previously, all the redundant pixels 
were estimated or coded with low order conditional coding. In this work, a study on the types of 
context is performed, and some methods which using more pixels for estimation are proposed. K 
can be shown that the compression rate can be improved by these new thechniques. 

Computer simulations show that for text and image data, the proposed coding schemes 
substantially improve the results obtained by previous algorithms, and performs better than the 
classical coders. 
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1. Introduction 
A large volume of data is generated daily in both the public and the private sectors. These 

data include mammograms, scans, imagery, fingerprints, satellite imagery, commercial radar, etc. 
In addition, digital scanners and other devices are utilized to convert documents to digital arrays 
which can be represented on a computer. 

Such data need to be transmitted over various channels of communication and stored on 
computers and other large databases utilizing compatible storage devices (CD's, external disks, 
etc.). Storage and transmission of such data require large capacity and bandwidth that can be cost 
prohibitive. Hence, full and timely utilization of this large database of files requires efficient archival 
and retrieval. Data compression where files can be stored in less spaces with no loss of essential 
information will have a great impact on these problems. 

A small example will clearly illustrate the need for data compression of images and text 
data. The popularity of CD-ROM is mainly due to its high storage capacity, probably outperforming 
every other media in a cost/performance ratio. If a sequence of say, 640x480 pixel images with 
24-bit per pixel resolution and a frame rate of 24 frames per second was to be stored on a CD-ROM. 
Then 30 seconds of this sequence would fill the entire 600M bytes disk up. To store a 90 minute file 
with frames of the specification mentioned above a reduction of data to approximate 180:1 is 
required. 

So even with one of most dense storage capacity medial commercially available, the need 
for data compression of images and text data is evident. The quest is now to find proper data 
compression performing well with respect to the obtained compression ratio, the obtained image 
quality and the time usage of the encoding and decoding process. Compression for text and image 
data, it has very different approach. 

Data compression techniques are concerned with reduction of the number of bits required 
to store or transmit data without any appreciable loss of information. The process of compressing 
data sets can be classified into "lossy" or "lossless" techniques. Techniques from both these 
classes can be used in a single compression scheme to achieve high compression ratios (low 
number of bits per pixel). 

A perfect "lossless" compression scheme is one which retains all of the original data. That 
is, following the compression and decompression cycle the original data is reconstructed with no 
loss ofinformation. Lossless compression techniques are usually used for storage and transmission 
purposes. One drawback of lossless compression techniques, however, is that the compression 
ratios that can be achieved are not very high. For some important data, such as commercial 
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records, lossless coding methods are necessary. 

A lossy compression scheme, on the other hand, is one in which the compression or 
decompression cycle results in a loss of some of the original data. In addition to storage and 
transmissidn, lossy compression techniques can be utilized for denoising, removal of redundancy, 
and feature extraction. Thus, properly configured lossy compression schemes may actually 
increase the signal-to-noise ratio of the compressed data as compared to the original data, if only 
nonessential information in the data is lost. Another significant advantage of properly configured 
lossy compression schemes is that they allow much higher compression ratios than lossless 
compression techniques. 

The basic problem in data compression is to determine the characteristics of the essential 
information in the original data set, and to design a compression scheme which preserves this 
essential information while maximizing the compression ratio. The best data compression model will 
predict data patterns in advance, or recognize data repeated from earlier data. 

Although text compression and image coding have different approaches, the core of coding 
models is to find out the redundancy among the data based on its internal regularity. The strong 
dependency between adjacent symbols of data is usually expressed as a Markov model, with the 
probability of the occurrence ofaparticular symbol being expressed as a function of the preceding n 
symbols (an order-n Markov model, or a context of n symbols). 

Prior information, context, is the basic component for estimating or finding out the 
redundancy. In most compression algorithms right now, context is combined with frequencies and 
probabilities. 

The most frequent context modeling technique is Prediction by Partial Matching (see 
Chapter 2.3.1.1). For each symbol to be encoded, a typical PPM compressorwiil considers say the 
preceding 4 symbols (an order-4 context) and determines the probabilities of the symbols which it 
has already seen in that context. Ifthe desired symbol has not seen in the order-4 context, the coder 
will "escape" down to lower orders until it determines a context from which the symbol can be 
emitted. An escape to a lower order appears as a symbol to the higher order, but one whose 
probability is not easily determined. Various heuristics are available to determine the escape 
probability and these largely differentiate the different PPM compressors and determine their 
relative qualities. However the handling of escapes or notification of the correct order remains one 
of the major problems in PPM compression. The data structures to represent the known contexts 
may be quite complex and subtle and some may require large amounts of data storage and 
computing time. 

Actually, context can be applied in another field : prediction. It considers processing data as 
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learning, which provides more information for represent the data files. A robust theoretical 
framework has been developed that relies heavily on above idea, and relates closely to learning. 

1.1 Motivation 

Transformation or representation is a key component in many tasks in computer vision and 
image processing, and it has gained increasing attention on text in recent years. It consists 
generally of presenting a data in a form, different from the original one, in which desired 
characteristics are emphasized that can be more easily accessed. 

For text data, many of today's popular lossless data compression algorithms are based on 
the sequential data compression published by Lempel and Ziv in 1977 and 1978. They are extended 
by combining with statistical coding, but the fundamental algorithms remain the same. Other 
methods include "Prediction by Partial Matching" (PPM) which were first developed in the 1980s. 
Recent improvements can be found in PPMD+, PPM* and PPMZ. In image coding, the quantized 
coefficient image is encoded due to the low order context model. In all the classical methods， 

context is combined with frequencies and probabilities. Actually, context can be applied in another 
field : prediction. In this thesis, I consider context-based prediction methods for both text and image 
data. 

For text data compression, contexts are collected for content prediction. To process a 
character, the predictor first finds the best matching context, using this context index as an anchor 
into the context dictionary. Having found the anchor, it searches similar contexts for the matching 
to-be-processed symbol. If the to-be-processed symbol is found and occurs a distance d contexts 
from the anchor, the just inputting symbol is represented by d. The details information about 
prediction scheme can be found in the Chapter 3，4 and 5. 

In image coding, general compression system consists of three stages : representation, 
quantization and finally a lossless encoding. Typically the last coding procession can be divided into 
two components : modeling and entropy coding. The goal of modeling is to predict the distribution to 
be used to encode each pixel and context infromation is included into the system in this part. 
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1.2 Original Contributions 

In the compression models, symbol context can use for prediction or estimation. Both 
approaches use the relationship between context and content. Symbol context is the prior 
information that has been encoded, symbol content is the strings that will be encoded. Statistical 
coding methods are using the context to estimate the probabilities of the inputting symbols. 
Lempel-Ziv algorithms find the repeated context in the symbol content. Prediction uses the symbol 
context as a content predictor for guessing the coming symbols. 

In this thesis, context-based algorithms are proposed for both prediction and estimation 
(coding). The following are the main contributions of this thesis : 

1. Concerning the framework of context-based prediction : 

(a) A generalized framework of Content Prediction is proposed. 
(b) A framework for Content Prediction operation in Block basis, Bounded-Length Block 

Sorting, is introduced. 
(c) A new context-based model is suggested for the embedded zerotree wavelet image 

coding. 

2. Concerning the context-based coding : 

(a) Alternatively orderings on the symbol table, Symbol Remapping, are proposed for context 
collecting algorithms. 

(b) Locally adaptive frequency ordering are proposed in Bounded-Length Block Sorting. 
(c) Arithmetic Coding in 3-ary model are suggested for high skewed output distribution. 

1.3 Thesis Structure 

Chapter 2 surveys research related to the lossless compression, and partitions it into three 
areas : Information Theory, Early Compression and Modern Techniques for Compression. In the 
first part, the nature of information and entropy measure is examined. A brief history of data 
compression is given in the Early Compression, leading to the distinction between a model and a 
coder. Besides, some source codes are briefly overviewed here. A variety of modern compression 
algorithms are presented in last section. 
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Chapter 3 describes a new avenue for improving the compressibility of text. The main idea 
is that changing the ordering of the symbols for compression benefit. Different kinds of symbol 
ordering methods are testing as preprocessor on Block Sorting algorithm. Detailed introduction of 
the Block Sorting algorithm can be found here. 

Chapter 4 introduces a general framework of the Content Prediction lossless algorithm. 
Content Prediction model uses prediction and ranking scheme. It is a extensions of Yokoo's context 
coding algorithm. Basic definitions about prediction, ranking and context sorting are explained 
before the proposed method. Then a baseline version of Content Prediction is introduced in detail. 
Various basic components in Content Prediction coder are extensive analysis here. 

Chapter 5 acquaints a new algorithm based on the baseline Content Prediction and Block 
Sorting. The contexts in bounded length are used in the sorting algorithms. Thus, the system use 
less memory and processing time. Besides, some coding techniques are proposed to extend this 
algorithm. 

All of the compression techniques discussed through chapter 5 are "lossless". Lossy 
methods can be used on image and video, and they are capable of achieving dramatically higher 
compression ratios. Chapter 6 shows how lossy compression can be used on digitized image data 
with techniques like wavelet transform and zerotree structure. And a context-based lossy coding 
based on the zerotree data structure is developed here. Some experiments is conducted to show 
how the context information can be included in zerotree data structure. 
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2. Background 
Many early storage and transmission methods employed aspects of compression in a cost 

effective manner. For example, in the 1800s large codebooks were compiled listing common 
phrases and corresponding numerical codes. By transmitting the shorter codes, money was saved 
on the cost of telegrams; and as the codebooks had limited circulation some level of privacy was 
achieved. 

In this chapter the techniques of lossless data compression are surveyed. Lossy coding will 
be introduced at Chapter 6. In section 2.1，the nature of information is examined and the entropy 
measurement invented by Claude Shannon is presented. Shannon's theory provides a quantitative 
way to measure "the amount of information". A brief history of data compression and some source 
codes are given in section 2.2, leading to the distinction between a model and a coder. A variety of 
modern compression algorithms are presented in section 2.3. 

2.1 Information Theory 

Data can be compressed whenever some patterns of data symbols are more likely to occur 
than others. Compression uses a means of encoding to eliminate that redundancy, thereby 
effectively reducing the size of the data traveling over a communication link or being stored in a 
repository. The process of compressing data sets can be classified into "lossy" or "lossless" 
techniques. 

We are primarily concerned with lossless compression here; that is compression where the 
original message can be exactly reconstructed from the compressed version. Lossless 
compression is particularly appropriate for compressing natural languages, source code, program 
executables, and financial data, where they need to be reversible. 

The amount of redundancy in a source is related to its entropy. In information theory, 
entropy is used to measure the amount of uncertainty in a system, or amount of information. 
Messages that occur most frequently are most redundant, and therefore, have the highest entropy. 
These are encoded using the shortest representations. It is impossible to give a precise entropy for 
any particular message since the information content depends on the observer. Nevertheless, 
entropy is the best guide available when it comes to specifying how many bits are required to 
specify a message. 
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More generally, suppose events 1,---,n occur with probabilities Pi,---,Pn summing to one. 
Shannon established that the correct way to measure the entropy, is given by 

n 

H = " X P / ' 0 9 2 Pi bits. 
/=1 

For example suppose all n events are equally likely, p, = 1 / n，then 

n 1 1 
H = -Y,-\og2- = \og2n. 

/=i 

From this formula one can determine that the maximum number of objects that can be 
distinguished in a game oftwenty questions is 2^° =1048576. Further, to construct a block code for 
an alphabet of n symbols [l0g2 n~\ bits are needed per block. 

The formula for entropy can, at least in principle, be applied to any probability distribution (a 
slight generalization is needed to handle continuous distributions ) and gives the expected number 
of bits required to encode an arbitrary event drawn from the given distribution. The entropy formula 
does not specify how the encoding is to be carried out. The invention of arithmetic coding 
(discussed in section 2.3.1 ) solves this problem by coding events arbitrarily close to their entropy. 

2.2 Early Compression 

For lossless compression, the original file can be faithfully restored from the compressed 
file. Therefore, the smaller compressed file contains all the information in the larger original file. The 
secret of compression lies in the better organization of files — coding more frequent symbols with 
shorter codewords, and coding less frequent symbols with longer codewords* 

Morse code (Figure 2.-1) is a good example of an early compression technique. Morse 
cleverly assigned the shortest codes to the most frequent symbols based on the frequencies of 
English letters. Intuitively, if symbols which occur frequently have the shortest codes, then on 
average messages will be shorter. The disadvantages of Morse code become apparent when 
something other than English text, say a page of numbers, needs to be transmitted. In this case the 
resulting message will be long because the digits have longer representations in Morse code. The 
more powerful techniques discussed in section 2.3 overcome this limitation by adapting dynamically 

* fundamental principle oflossless compression 
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to a message. A second problem with Morse code is that symbols are considered in isolation; that 

is, without reference to the surrounding context. Better codes are produced by considering 

surrounding symbols. This is easily seen in English where the probability of a u occurring goes up 

dramatically just after coding a q. 

Letters Numbers 
~~a~~~ F k ~ ~ ~ u • • - 0  

b - . . • I . - • • V . • • - 1 • 
c - • - . m _ - w • - - 2 • . - - -
d - . . n - • X - • • - 3 • • • - -
e • 0 — y - • - - 4 -
f . . - . p . - - . z - - . . 5  
g - - • q - - . - 6 - • . • • 
h r - 7 - -
11 • • • • I • • ‘ • •“ 

i . . s . . . 8 — . . 
j . - - • t - 9 - - - - . 

Figure 2.-1 A part of the Morse-code 

In the past a variety of ad hoc techniques which took advantage of particular vagaries in the 
source were widely used. Although these techniques have been supplanted by adaptive 
compressors, a few are mentioned to illustrate the kinds of redundancy known to occur in practice. 

• Run-Length Encoding In run-length encoding, consecutive identical symbols are 
replaced by a single instance of the symbol and a count indicating the number of times the 
symbol is to be repeated. The technique works best for small alphabets, particularly binary, and 
is widely used to compress bilevel images. Direct application of run-length encoding is 
ineffective for ASCII text. 

• Differential Coding When compressing sorted records, it is often beneficial to store 
differences between consecutive records. The technique works well for static lexicons and 
consecutive lines of raster images. 

• Move to Front Coding To simulate the book-stack with a dynamic list of words. Coding 
the symbol due to the ordering in the list. The coded symbol is moved to front of the list so that 
coding for same symbol occurs soon after with smaller order. Such technique is suitable for any 
localized region of the input that contains a large number of a few distinct characters [BSTW86]. 

The formula for entropy shows that the information content of a source is determined by the 
underlying probability distribution. This in turn indicates a logical distinction between the model 
(which specifies the probability distribution) and the actual coding of events drawn from the 
distribution. 
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2.2.1 Some Source Codes 

Some source codes algorithms are introduced in followings. They apply the fundamental 
principle of data compression in different approaches. 

2.2.1.1 Huffman code 

in 1952 Huffman [HuF52] found a source code construction, ofwhich it can be proved that it 
is optimal. It is a fixed-to-variable length code, of which the rate will not always reach the entropy, 
but falls with bounds "H < L < H + 1" and no other fixed-to-variable length source code will perform 
better. 

First the algorithm computes the probability of every input sequence. It then combines the 
two least likely input sequences into one "new"-symbol. The new symbol gets a frequency count 
equal to the sum of the probabilities of the child symbols. The algorithm repeats the process until 
only one parent symbol remains. This symbol is the root of the tree. The tree is then a complete tree 
with a leaf corresponding to each input sequence. The codeword for an input sequence can now be 
found by tracing a path from the root of the tree to the appropriate leaf, and use the labels of the 
branches on the path as the consecutive codeword symbols. 

2.2.1.2 Tunstall code 

The Tunstall code [TuN68] is an optimal variable-to-fixed length for memoryless sources. 
No other variable-to-fixed length code will achieve a lower average codeword length. Comparison 
with Huffman code, Tunstall code does not map all possible sequences of source symbols to a 
sequence of codewords. It puts all codewords in a tree. Again we start in the root, and in every node 
we take the branch corresponding to the next source symbol. Ifthe tree is complete (every node has 
all its children), then the leaves of this tree are a set of all possible prefixes of the source sequence. 
Thus the leaves of a complete tree can be used to represent a set of strings of source symbols that 
fulfills this condition. 

The Tuntstall code is based on the idea of placing the sequences of source symbols in a 
tree. We will consider the binary case here. The algorithm assumes that the probabilities p^,---,p^ 
of every events 1,---,n is known. It is an easy two-step algorithm. 

1. Start with a tree with two leaves (corresponding to the source sequences 0 and 1). 
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2. Repeat until the needed amount of source sequence / codeword combinations is reached : 
expand the most likely leaf by changing it into a node and adding two leaves to it. The branches 
to the leaves will be labeled with 0 or 1. The probability in the new leaves is the probability in the 
node times the probability of the symbol along the branch. 

Once it finishes, the algorithm has constructed a complete tree, with M leaves. To every leaf (and 
thus to every source sequence) the algorithm assigns a codeword of length ri0g2Ml bit. These 
source sequence / codeword combinations results in the optimal variable-to-fixed length code. 

In general, the best variable-to-fixed length codes cannot always achieve the same rate as 
. the best fixed-to-variable length codes under the same conditions. But the reverse is also true. 

Variable-to-fixed length codes are in general better suited for memoryless low entropy sources, 
while the fixed-to-variable length codes are better suited for high entropy sources. 

2.2.1.3 Arithmetic Code 

Shannon's noiseless coding theorem [SHA48] only proves that it is impossible to encode 
information less than its entropy on average. In this section, arithmetic coding is introduced and it is 
possible to code information arbitrarily close to its entropy. 

Arithmetic code is used in the coding part of many modern data compressors. It is superior 
to Huffman code in compression result. Arithmetic code will always represent information at least as 
compactly as Huffman code. Huffman coding can only output an integral number of bits per input 
symbol (and at least one bit is output for each input symbol) [HuF52]. Arithmetic coding dispenses 
with this limitation by allowing fractions of bits to be output per symbol [WNC87, MNW95]. 

A brief explanation of arithmetic coding is given here, followed by an illustration of its 
operation with a static model. 

In arithmetic coding, each message is uniquely represented by a subinterval of the half 
closed interval [0,1). Although the messages can be drawn from alphabets of arbitrary symbols our 
examples will use everyday alphabets like the Roman alphabet, ASCII, or binary. Longer messages 
result in smaller intervals and it takes more bits to represent a small interval than a larger one. The 
interval used for a particular message is determined by the content of the message, and the 
probability of the message according to the model. The more likely messages result in larger 
subintervals and therefore shorter code lengths. The output of the arithmetic coder is a sequence of 
bits representing the interval which contains the message. 
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Except for short messages, it is computationally infeasible to make a direct transformation 
from a message to a subinterval, especially when the coder is used on-line. Most models encode 
the message one symbol at a time; that is, encode the message incrementally. Thus "transmit 
message m", or "encode m", etc. should be understood to mean "encode message m one symbol at 
a time". 

At each stage of the encoding (or decoding) there is a current interval [ / �h ) which consists 
of a lower bound I and upper bound h. To avoid wasting codespace the current interval is initialized 
to [0,1). 

Each symbol encoded causes the current interval to be narrowed in accordance with the 
symbol's probability. More probable symbols cause less narrowing than unlikely symbols. Knowing 
with complete certainty that a symbol will occur means no narrowing occurs (because it is 
unnecessary to transmit that symbol), whereas if a symbol with zero probability occurs, the coding 
interval width is narrowed to zero and thus takes an infinite number of bits to specify. 

Assume we have an alphabet of n symbols {so,Si,---,s^_i}. Let 0 define a total ordering 
of the alphabet, in particular we could have 6>(s, ) � i for 0 < i < n . We ignore the distinction and 
write ” symbol /••• to mean the /-th symbol in the ordering 0. Let p, denote the probability of symbol 
/•’ and let P, denote the cumulative probability of all the symbols up to but not including symbol i (the 
sum of the probability of all those symbols for which 6>(sy) < 6>(s, ) ) ; 

/-i 

Pi=T,pj-
7=0 

Let S = h -1 be the width of the current interval [/,/?). If symbol s, is encoded the new 
interval [ I,，h') will be given by 

" 4 s / � 

'^='^Po(s^f^ 
f \ 

^ ' = ^ - U - % ) J ^ -

It can easily verify that 5'= h-l'. 

To illustrate the operation of arithmetic coding we now present an example using a static 
model. Table 2.-1 is a static-model based on an alphabet set, {A15, B:7, C:6, D:6, E:5j . 
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symbol e(s,) ��� � “ … � codinginterval 
A 4 0.384615 0.615385 [0.615385, 1.000000)~~ 
B 3 0.179487 0.435897 [0.435897,0.615385) 
C 2 0.153846 0.282051 [0.282051,0.435897) 
D 1 0.153846 0.128205 [0.128205,0.282051) 
E 0 0.128205 0.000000 [0.000000,0.128205) 

Table 2.-1 A simple static model of Arithmetic Coding 

Consider coding the word "BED". The initial range is [0，1 )• After seeing the first symbol, "B", 
the interval is narrowed to [0.435897, 0.615385) which is the range allocated to this symbol. The 
next symbol to be encoded is "E_', the current range of the interval is 5=0.179487 (0.615385-
0.435897). Using the recurrence relations we discover /' =0.435897 (0.435897+0.000000J) and 
h，=0.615385-(1-0.128205) S =0.45890913. The complete coding is shown in Table 2.-2. 

symbol interval after coding  
B [0.43589700,0.61538500) 
E [0.43589700，0.45890913) 
D [0.43884727,0 .44238759) 

Table 2.-2 Illustration of the coding process 

It is not necessary for the decoder to known both ends of the interval. Any value in the final 
interval suffices. In above example, 0.44 would be sufficed. The entropy of "BED" in this model is 
- l ogpg - l ogpe -logp^^ « 1.43 (logarithm to base 10). This is why it takes 2 (2 =「1.431) decimal 
digits (44) to encode the message. In binary, 6 bits would be required which is a significant saving 
over the 24 bits used by ASCII. 

Now consider the decoding process. Assume 0.44 was transmitted. We can tell 
immediately that the first symbol was "B" because 0.44 lies within the code space allocated to 
symbol "B". The decoder now simulates the action of the encoder by narrowing the range to 
[0.43589700, 0.61538500). Proceeding like encoding, the decoder can identify the whole message. 

In the example, no mention was made of how the decoder knows when to stop. In practice 
either the message length must be transmitted prior to the actual message or a special end-of-file 
symbol must be added to the input alphabet. The latter option tends to be nicer because using an 
end-of-file character does not require the encoder to know the length of the message in advance. 

It is possible to use various statistical-code techniques to encode any file using close-to-
optimal code length, given a particular model of the data. It is desirable to use a good model of the 
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source of the data so that the statistical-code can divided into coding and modeling which used by 
Rissance and Langdon [RL81]. 

In data compression this is referred to as the model-coder paradigm [BCW90]. The idea is 
that a compressor should consist of two parts : a model which gathers statistics, uses prior 
information and heuristics to select a probability distribution; and a coder used to produce a 
compact representation of events generated by the model. 

2.3 Modern Techniques for Compression 

There are many possible models for generating the probabilities. Modern compression 
systems tend to use adaptive models (models in which the probability of a symbol can change 
during the encoding ofamessage). Adaptation makes a compressor suitable for a much wider class 
of inputs, even for messages in which the statistics vary over the course of the message. In 
contrast, a static model uses a fixed set of probabilities throughout the encoding of a message. The 
static model is useful when random access to the compressed information is needed. 

In following sections I give a brief overview of three different kinds of modeling schemes, 
statistical modeling, dictionary-based compression and block sorting. In fact, all these three are 
context-driven algorithms, but processing with context in different approaches. Statistical 
compressors develop models of the statistics of the input text and use those statistical models to 
control the final compression. Dictionary compressors build explicit or implicit dictionaries of strings 
and replace entire strings or groups of symbols. Block Sorting gather the context with sorting, and 
then reorder the input sequence to high-skewed distribution. With collection of contexts, statistical 
compressors build an explicit probability model but dictionary-based or block sorting compressors 
build an implicit probability model. 

2.3.1 Statistical Modeling 

Statistical text compressors are traditionally regarded as a combination of a modeling stage 
and a following coding stage. The model is constructed from the already-known input and used to 
facilitate efficient compression within the coder (and matching decompression in the decoder). A 
good model will contain a few symbols with high probability (and preferably one dominant symbol), 
thus allowing very compact coding of those probable symbols. 
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2.3.1.1 Context Modeling 

The idea of context modeling is based on the fact that distribution of possibilities in the 
alphabet depends on the nearest context, in other words, letters are more likely to appear in a 
particular pattern, that is, next to or near other particular letters. For this technology [CW84, 
BCW90], there also exist principal restrictions for the increase of a sliding frame, or a moving 
processor of data or letters, for which a context model is built. A small sliding frame with a 
corresponding merge context model is optimal on variable data, for which the problem of zero 
frequency is especially acute. In the course of increasing the size ofasliding frame, more and more 
various information is processed (e.g., a text in French, then a text in German and then a text in 
Russian enters this frame), with the result that the distribution of possibilities widens and the 
effectiveness of context modeling (with short context) decreases quickly. With the increase of the 
context length, costs also increase exponentially. The transition to context-mixed models has 
improved the situation to some extent; however, the absence of theoretically substantiated 
schemes of intermingling probabilities is compensated by a large number of heuristics, which takes 
us back to the times of alchemy. 

In the prediction by partial matching (PPM) compression [MoF90], each symbol is predicted 
from its preceding contexts and then used to extend existing contexts and develop new ones. The 
multiple contexts develop in parallel and the relevant contexts usually change completely as each 
symbol is processed. For any particular input symbol the encoder and decoder can develop an 
appropriate collection of contexts of various coders, predict the probabilities of each possible 
symbol, and code according to these probabilities. 

The accurate prediction of probabilities and especially of the probability of escaping into 
lower order contexts is the crux of successful PPM compression. Improvements generally follow 
from improved prediction of these probabilities. Most importantly, with PPM processing the input 
sequentially we always have precise knowledge of all possible contexts. 

The order of a model is the maximum number of symbols used to predict the next symbol. In 
practice an order-A? model will sometimes base its prediction on less than n symbols. By convention 
the order-(-1) model predicts each symbol with equal probability and the order-0 model predicts 
each symbol with probability proportional to the number of times it has occurred previously. 

The general PPM method requires the predictions ofall orders (up to some maximum) to be 
blended together to give an overall probability for the next symbol. The most general approach is 

n 

Pr(sy =¢) = Y,WiP,•{¢), 
i=-^ 
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where the w,- are a set of weights normalized to sum to 1，Sj is the next symbol, and jD, (̂ z>) is the 
probability of symbol • according to an order-/ model. Calculating the sum is computationally 
expensive and there is no single "right" way to determine the weights to use. The probabilities p,[¢) 
are rational and based on the frequency counts : 

p M = f ^ where F , = X ^ / M . 
� / 中 

However, the formula for p, (̂ zJ) just given leads to the zero-frequency problem, citeWB, 
since symbols not previously encountered are given zero probability [WB91]. The formula for Pj [^) 
must be modified so that symbols not previously encountered in a given context can be 
represented. Ifthe context itself has never been seen before then all ofthe � / ( � )a n d F； will be zero. 
However, we are guaranteed that some shorter context has been seen before; in the worst case the 
order-(-1) model can be used. The order-(-1) model always predicts every symbol. 

In practice full blending is not used; instead each context assigns a probability, called an 
escape probability, to a novel symbol occurring. The PPM variants differ in the way escape 
probabilities are assigned. When a novel symbol is seen the escape probability is used followed by 
the prediction of the next shorter context. Several escapes may be made before a context is 
reached which predicts the symbol. In the worst case the order-(-1) model makes the prediction. In 
other hands, escape probabilities are equivalent to weighting. We now mention how the probabilities 
are determined in few popular variants. 

• PPMC : In this method no prediction is made unless the symbol has occurred more than once in 
the current context. This is done by subtracting one from all counts with the subtracted counts 
being combined to give the escape probability. The idea tries to filter anomalous event. Symbols 
are not predicted until they are seen twice. Thus, e, = - ^ ^ where ¢/, is the number of different 
symbols seen in the given context. The probabilities for the remaining symbols become 

pM = i r ^ -

• PPMD : This method is a small modification to PPMC where each count is incremented by ^ . It 

sets e , - = � and p, ( 》 = � : | _? . Besides, using of deterministic scaling also leads to better 
performance. 

The PPM method can be bounded if some maximum order is specified in advance or 
unbounded [TEA95] if contexts are allowed to be arbitrarily long. A tree representation is suitable for 
both approaches. Each node in the tree contains a frequency count f,- [¢) for the given context. To 
prevent overflow it is on occasion necessary to re-scale the frequency counts. Scaling often actually 
leads to improved compression as it gives increased importance to recently encoded text. Scaling is 
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appropriate for most text where the subject matter varies slowly over the course of the document. 

Recent experiments have found that PPMC is better suited to the unbounded approach, 
whereas the PPMD is more effective with the bounded approach [CTW95]. Two new variances of 
PPM, PPM* of C method and PPMD+ of D method, are developed based on the experiments. 

2.3.1.2 State Based Modeling 

State-based modeling is another large class of statistical compression techniques. In 
principle this approach is more powerful than the context modeling used by PPM or dictionary 
coding as the general finite-state machine is able to capture some regularities (particularly those 
involving counting) that context models cannot. 

One adaptive approach is dynamic Markov coding (DMC) which starts with a small initial 
model and expands by the addition of new states as they are required [BM89]. Probabilistic models 
with a finite number of states can be described by a finite automate. A set of states S(/) and a set of 
probabilities of transition Pr(/, j) from the state i into the state j are called Markov's models. 
Frequency counts are maintained for each transition and new states are cloned when a transition 
becomes sufficiently popular (as governed by a heuristic). 

Dynamic Markov Coding (DMC) is of practical interest, in that it works adaptively, starting 
from a simple initial model and adding, if necessary, new states. PPM technology is a particular 
case of the DMC approach. DMC allows the construction of context models not only for single 
symbols (as with PPM and consideration of letters of the alphabet), but also for phrases or lines. 

2.3.2 Dictionary Based Compression 

Statistical modeling is not the only popular approach to adaptive data compression. Another 
kind of compression uses a specially constructed dictionary to achieve compression. Comparison 
between two kinds of methods, statistical methods usually achieve better compression, dictionary 
methods use memory and processor time more efficiently. 

In a dictionary based compression scheme, groups of consecutive symbols, called 
phrases, are replaced with indices into some dictionary. The dictionary is constructed so as to 
contain a list of phrases expected to occur frequently. To achieve compression the indices must 
occupy less space than the phrase they encode. Dictionary coding is also called macro coding and 
codebook coding. Since the number of bits used in indices can be chosen to align with machine 
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words efficient implementations are possible. Typically a multiple of four or eight bits is chosen for 
the indices. Since in some schemes the number of phrases can grow without bound it is necessary 
to be able to encode arbitrarily large integers. Methods for doing this are discussed in [Eu75]. 

These systems achieve good compression because a single dictionary reference may 
represent many characters. For every dictionary scheme there is an equivalent statistical scheme 
achieving the same compression [BCW90]. Eventually, dictionary methods will probably be 
completely replaced by statistical approaches. Dictionary schemes are currently still widely 
because they offer rapid decompression. 

The construction of the dictionary is one of the more important aspects of the system. A 
dictionary that closely matches the text to be compressed will yield good compression. The 
dictionary can be static, semi-adaptive, or adaptive. The maximum length of phrases stored in the 
dictionary may be fixed or unbounded. Better compression is achieved by having an adaptive 
dictionary which allows longer phrases. 

DEFINITION 2.1 : A dictionary D = (M, C) is a finite set of phrases M and a function C that maps M 
onto a set of codes, where M c A * for an alphabet A. Without loss of generality the 
output codes are assumed to be over {0,1} *. 

DEFINITION 2.2 : The set M is complete if every infinite string over the input alphabet A is also in M* ； 

that is, any input string can be formed by the concatenation of phrases from M. 

DEFINITION 2.3 : The function C obeys the prefix property if no string C[m) is a prefix of another 
string C(s)，for s,m eM and s * m. 

For reversible compression of any input to be possible the set M must be complete and C 
must obey the prefix property. 

Aside from constructing the dictionary there is also the problem of matching the input to the 
dictionary. Optimal parsing is hard: it sometimes requires the entire input to be examined before 
anything can be output. There are reasonable heuristics which approach optimal parsing; 
frequently, greedy parsing is used. In greedy parsing the next longest match is found. The extra 
compression gain obtained by using optimal parsing is minimal and is at the expense of increased 
execution time. 

Static dictionaries are constructed by considering a sample of representative text prior to 
actually compressing any messages. Such a static dictionary is assumed to be available prior to 
transmission to both the encoder and decoder. A semi-adaptive dictionary is constructed for the text 
to be compressed in an initial pass. Determining the optimal dictionary is NP-complete in the size of 
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the text. Further, the dictionary itself must be transmitted along with the compressed text. Most 
modern dictionary systems use adaptive dictionaries which are constructed incrementally (by both 
the encoder and decoder) as the message is transmitted. 

The most popular dictionary schemes are from the Lempel-Ziv family of compressors. In 
the LZ77 coding scheme, text is compressed by providing references to earlier text. In fact, there 
are many variants of the LZ77 coding scheme. The coding scheme presented in LZ77 differs in 
several respects to the later scheme LZ78. In this section a brief overview of the different forms of 
Lempel-Ziv coding are given. 

2.3.2.1 LZ-compression 

Lempel-Ziv has two basic modifications, LZ77 and LZ78 along with a large number of 
variations. At present LZ models are widely used. The theoretical approach for LZ models was 
suggested in 1977 by Lempel A. and Ziv J., with software realization in the early eighties. 

LZ-compression substitutes the initial text with references to a dictionary; it seems that this 
scheme resembles the methodology used by two interlocutors. 

However, with the growth ofthe dictionary, the number of bits necessary forformulating the 
reference grows proportionally by a binary logarithm to the size of the dictionary. The length of the 
phrases in the dictionary (in the simplest case, a binary tree) at the beginning considerably 
surpasses the growth of the length of the references, but after some saturation, the speed of their 
growth asymptotically tends to logarithmic dependence. The optimal size of the dictionary varies for 
different types of data; the more variable are the data, the smaller the optimal size of the dictionary. 

� LZ77 : The first form of Lempel-Ziv coding [ZL77]. Pointers are used to denote phrases in a 
fixed-size window that precedes the coding position. Thus the window is essentially the phrases 
of the dictionary. There is a maximum length for sub-strings that may be replaced by a pointer 
(usually about twenty). The window is initially spaces. Matches may overlap with the text. The 
longest match is coded as a triple (A/, K,'A') where N indicates where in the just-encoded 
window to start copying, K is the length of the string to copy, and 'A' is the next symbol after 
copying. The window size is typically about eight kilobytes. 

� LZSS : The same as LZ77 except pointer and characters are distinguished by a flag bit. Each 
codeword consists of (f,N, K,'A') or (f , 'A'). The one-bit flag f = 0 is indicating "copy", f = 1 is 
indicating "no copy". This avoids the presence of an explicit character in each triple. 

19 



• LZ78 : The second form of Lempel-Ziv coding [ZL78]. The input text is broken into phrases 
where each phrase is the longest matching phrase seen previously plus one character. Each 
phrase is encoded as an index to its prefix plus the extra character. The number of phrases can 
grow unboundedly. In practical implementations when memory is exhausted the coding starts 
again from scratch. The LZ78 scheme is asymptotically optimal for a stationary ergodic source 
although convergence is relatively slow. 

• LZW : Like LZ78 but the output consists solely of pointers [WEi84]. This is achieved by 
initializing the dictionary to contain every character in the alphabet. The LZW approach is 
perhaps the most common LZ variant in practice. 

2.3.3 Other Compression Techniques 

2.3.3.1 Block Sorting 

A new class of compression technique uses sorting as the context collector. The algorithm 
works by applying a reversible transformation to a block of input text. The transformation does not 
compress the data, but reorders the input text and makes it easy to compress with simple algorithms 
such as move-to-front coding plus simple statistical coding. 

This algorithm achieves speed comparable to algorithms based on the techniques of 
Lempel and Ziv, but obtains compression close to the best statistical modeling techniques. The size 
of the input block must be large (a few kilobytes) to achieve good compression. 

More detailed reviews on such type algorithm (Block Sorting [BW94] and Context Sorting 
[YOK96]) will be presented in Chapter 3.1 and Chapter4.2. 

Why the transformed string compress well ？ 

Using the Block Sorting or Context Sorting as a front end for data compression has a result 
similar to that of simple statistical modeling programs. An order- n statistical model simply uses the 
previous n characters to predict the value of the next character in a string. Compression programs 
based on statistical modeling can give good results, at the expense of high memory requirements. 

Because of the sorting method used, characters hundreds of bytes downstream can have 
an effect on the ordering of the sorting output. This characteristic of the sorting has another side 
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effect. It means that in general, the bigger the block size, the better the compression. As long as the 
data set is homogenous, bigger blocks will generate longer runs of repeats, leading to improved 
compression. Of course, the sorting and searching operations needed at the front end of the Block 
Sorting and Context Sorting will usually have 0(A/ x log(A/)) performance, meaning bigger blocks 
might slow things down considerably. 

2.3.3,2 Context Tree Weighting 

Yet another approach, Context Tree Weighting algorithm [WST95, WST96, VOL96], is an 
another important approach of data compression. In the recent results, Context Tree Weighting 
achieves some best compression results on the files of Calgary Corpus [WB]. 

Context Tree Weighting algorithm is a sequential universal data compression procedure for 
binary tree sources that performs the "double mixture". Using a context tree, this method weights in 
an efficient recursive way the coding distributions corresponding to all bounded memory tree 
sources, and achieves a desirable coding distribution for tree sources with an unknown model and 
unknown parameters. Computational and storage complexity of the proposed procedure are both 
linear in the source sequence length. Because of the shortage of t ime,� have not investigated this 
algorithm. However, Context Tree Weighting is another important algorithm as the Block Sorting. 
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3. Symbol Remapping 
In this chapter, I describe a new avenue for improving the compressibility of text. I consider 

remapping the symbol set so that a representation of a character reflects its properies as a predictor 
of future text. In this chapter, I use this idea in conjunction symbol remapping method with block 
sorting algorithm. Then, symbol remapping method will be operating as a preprocessor of block 
sorting algorithm. This enables us to use an estimator from a restructed class to map contexts to 
predictions of upcoming characters. 

3.1 Reviews on Block Sorting 

Michael Burrows and David Wheeler released the details of a transformation function 
(Block Sorting [BW94])' on the text data set in 1994 that opens the door to some revolutionary new 
data compression techniques. The algorithm was improved in the work by Peter Fenwick on the 
locally adaptive entropy coding for output sequence [FEN95A, FEN95B, FEN95c, FEN96], Ziya 
Arnavut and Spyros S. Magliveras also extended the algorithm for optimization choices on the 
permutation [AM97]. 

The Block Sorting Algorithm has received considerable attention. Since it achieves as good 
compression rates as context-based methods, such as PPM, but at speeds comparable to those of 
algorithms based on Lempel-Ziv techniques. 

Normal Permuted Ranked 
text text symbols 

1 f 1， ^ , I 
Input > Block Sorting > Move-To-Front > - Compress > Output 

4 \ * k 4 \ 

Variable Local Global 
& high order-0 order-0 
context context context 

Figure 3.-1 Data flow in Block Sorting Compression 

* also called as "block reduction" or "Burrows-Wheeler Transform". 
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The method is really a composite of three different algorithms: the Block Sorting main 
engine (a lossless, very slightly expansive preprocessor), the locally adaptive non-compressive 
coder (move-to-front coding method is used in original Block Sorting illustration) and a simple 
statistical compressor (first order Huffman is mentioned as a candidate) eventually doing the 
compression： Among three methods only the first one is discussed here as it is what constitutes the 
heart of the algorithm. The Block Sorting is based on a reversible sorting operation that brings 
together symbols standing in the same or a similar context. Since such symbols do correlate often 
this correlation can be utilized by simple coding algorithms. Intuitively speaking, the method 
transforms slack in the higher order probabilities of the input block (thus making them more even, 
whitening them) to slack in the lower order statistics. 

3.1.1 Forward Transformation 

Briefly, the algorithm transforms a string S of N characters by forming the N rotations (cyclic 
shifts) of S, sorting them lexicographically, and extracting the last character of each of the rotations. 
A string L is formed from these characters, where the y-th character of L is the last character of the 
y-th sorted rotation. In addition to L, the algorithm computes the index / of the original string S in the 
sorted list of rotations. Surprisingly, there is an efficient algorithm to compute the original string S 
given only L and /•• The sorting operation brings together rotations with the same initial characters. 
Since the initial characters of the rotations are adjacent to the final characters, consecutive 
characters in L are adjacent to similar strings in S. If the context of a character is a good predictor for 
the character, L will be easy to compress with a simple locally-adaptive compression algorithm. 

The forward transformation can be described as — 

1. Sort the input symbols, using as a key for each symbol, to whatever length is needed 
to resolve the comparison. Key is symbols which immediately follow the symbol-to-
be-sorted. The symbols are therefore sorted according to their following contexts. 

2. Take as output the sorted symbols, together with the position in that output ofthe last 
symbol of the input data. 

To illustrate the operations of block sorting algorithms we consider the S = [good, very 
good] be a given permutation as shown in Figure 3.-2. Constructing the matrix of consecutive cyclic 
left-shifts of the sequence S to form successive rows of M. By sorting the rows of M lexically, we 
transform it to M. 
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Figure 3.-2 The Forward Transformation of Block Sorting 

The original sequence S appears in the i = 7̂ ^ row of M. Let F be the first, L be the last 
column vector of M, For reconstruction the original sequence S uniquely, we should transmit the 
pair { 7, [y,doovd oogge r ] } to decoder. 

3.1.2 Inverse Transformation 

Using the output (i,L) of the Forward Transformation to reconstruct the original input, the 
string S of length N, we requires the rules that defines the order in which the rotated strings are 
scattered throughout the rows of the matrix M. As F in M has an important characteristic: it contains 
all of the characters from the input string in sorted order. Since L also contains all the same 
characters, we can determine the contents of F by simply sorting L. Linking the correspond symbol 
of F and L and breaking ties by recency. Then receiver can construct the original sequence S by 
using the following procedure : 

S[A7] = L[/", 

For j = 1,...,/7-1，let S[n - j] = Js[A? - j +1]1 • 

A inverse transformation of the example is shown as following. Applying the linkage 
between L and F, and primary index i, into the above reconstruction procedure, the receiver can 
rebuild the original sequence. 
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Figure 3.-3 The Inverse Transformation of Block Sorting 

3.2 Ordering Method 

In this section,� describe a new avenue for improving the compressibility of text. The main 
idea is that changing the representation of symbols may prove beneficial for compression. 

For the Block Sorting algorithm, lexical sorting is used due to the convenience for 
comparison. Alternatively ordering on the symbols is attempted as following. The first ordering 
method I have used is the empirical frequency-ordering. Therefore, a < b ^ c < - - - is instead by 
e ^ t ^ 0 ̂  a ^ / ^---. 

The Block Sorting algorithm works in three stages : first it try to reorder the symbols in a 
block (a list) based on a reversible sorting, and then proceed the ranked list with locally adaptive 
non-compressive coder, finally it uses a simple statistical compressor doing the compression. 
Symbol ordering (or mapping) method is focused on the second step. Analysis the Move-To-Front 
coding (in Chapter 2.2)，we can find that the main factor to the compression performance is cost for 
the symbol changing. For each symbol changing, the cost is relied on the position of the new symbol 
in the MTF list. 

Current methods do not consider geometric information for prediction purposes. For 
instance, the letter e tends to predict the letter "space", r, n and d. However, in the ASCII Table, the 
distance among those character are very difference. Be a pre-processor, empirical frequency-
ordering method reorders all the symbols in the block based on their frequency. The basic idea 
behind it is to keep the cost of the ranks changing in the MTF list minimize. As the highest frequency 
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symbol has been assigned with smallest value, the cost for the ranks changing in the Move-To-

Front Coding part can be smaller. 
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Figure 3.-4 Empirical Frequency Ordered Block Sorting 

Checking the above Figure 3.-4 or Table 3.-1 in Appendix A, the Block Sorting Lossless 
Compression Algorithm can be improved by a Empirical Frequency Ordering preprocessor. With the 
simple preprocessor, the gain in the compression rate is particularly significant when the block size 
is small. When the block size is large, this advantage vanishes. Our result is useful because its 
advantage can be combined with the lower complexity of smaller block sizes. One thing needs to be 
focused is that the improvement on compression rate* owing to the empirical frequency ordering 
becomes worse with increasing the block size. 

As empirical frequency ordering filter is helping in the symbol ranking compression, a 
further development can be centered on the high order context frequency ordering, or a fixed, pre-
set ordering type for saving the header. 

There are two methods can adapt the fixed ordering type. Either a grouping method collects 
the symbols with the similar properties together, or re-order the symbols with appearance frequency 
of the natural language. Both methods give almost same phenomenon on the files (Figure 3.-5) as 
empirical frequency ordering method mentioned before. In Figure 3.-5, a relative compression rate 

* compression rate = bits per input symbol 
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based on lexical ordering is used. Grouping method has a better performance than the Language 

Style method (pre-set frequency ordering) in small block size. 
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Figure 3.-5 Alternatively Frequency Ordering in Block Sorting Compression 

As the baseline Content Prediction method (see Chapter 4.2) do the similarjob as the high 
order modeling, we can use the baseline Content Prediction as the pre-processor of the Block 
Sorting. Reference to the results on the empirical frequency ordering method, we know the 
improvement only appears in the small block size, but worse case appears in the large block size. A 
high order frequency ordering enlarges such phenomenon. On the other hand, such phenomenon 
can be a good choice for helping the block sorting algorithm to compete with other compression 
methods under the limited resource environment. 

3.3 Discussion 

In the above sections, I have reviewed the Block Sorting lossless data compression 
algorithm. The basic idea of the system is to do ranking (reversible sorting) on a list and then 
operate with a simple statistical compression algorithm. The Block Sorting Algorithm has received 
considerable attention. Since it achieves as good compression rates as context-based methods, 
such as PPM, but at speeds comparable to those of algorithms based on Lempel-Ziv techniques. 

27 



Further improvements on the Block Sorting algorithm, some alphabet remapping methods 
are suggested for reducing the cost of symbol changing in MTF. With a simple preprocessor, Block 
Sorting can perform better at the limited memory situation. 
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4. Content Prediction 
In this chapter, I present a general-purpose text compression algorithm. It is a codebook 

based algorithm where the codebook is derived from a combination ofsliding windowed context. By 
suitable adjustment of design options, this algorithm includes both the LZ77 algorithm and the 
context coding algorithm by Yokoo as extreme special cases. The codebook is derived from a 
fixed-length window of the just-encoded text at any given time. The symbol content predictor and 
symbol ranking scheme are the main structure in this algorithm. Thus, I will introduce the concept 
about the prediction and ranking schemes at section 4.1. Then a reviews on the Yokoo's Context 
Sorting algorithm will be given in section 4.2. Finally, I will acquaint my proposed Content Prediction 
method. 

4.1 Prediction and Ranking Schemes 

A simple concept about the prediction and ranking schemes is explained at this section. 
Prediction and ranking is a finite context modeling method. It is based on the observation that a 
symbol in a sequence is often determined by the symbols that immediately precede it. For example, 
in English text, the letter q determines that the next symbol is most likely to be u. In a less extreme 
example, the letters th usually precede the letter e, but may also precede a, /’ o, u, or r. In fact, the 
most successful predictors used for data compression schemes are based on this principle. 

The prediction and ranking scheme can be divided into two parts, prediction and ranking. 
The idea is learning to do the prediction. At first, a symbol predictor determines a probable next 
symbol, which may be accepted or rejected by a compactor which can see the incoming text. The 
correct answer is either guessing by the predictor or providing by compactor after several 
unsuccessful attempts which is controlled by ranking scheme. 

4.1.1 Content Predictor 

For the prediction, the modeling system usually predicts future events based on past events 
in the same context. PUSS is a prediction system that was developed by Andreae in 1977. PUSS 
stands for Prediction Using Slide and Strings, the 'slide' referring to the window of context preceding 

• the current prediction, and 'strings' to the table of previous contexts and subsequent symbols. PUSS 
predicts future events based on past events in same context [ANo77]. 
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The form of this system is very similaras LZ-77 compression method. Instead offinding the 
repeated phrases, it uses the context for prediction of coming symbols. The text is processed 
sequentially; as learning proceeds the predictor builds a sorted dictionary of all encountered 
context. Each context is followed in the input text by its corresponding symbol. Prefixes of the to-
be-processed symbol are tested against sorted dictionary to find matching phrases. 

Assume we predict the coming symbols context |guess 
after we read the string "good, very go". Use the .__.__ i......, 

i g � 0 � 0 � 
method describes above, we can find the same r ^ h r j";v-i 

l_0j_0_ i d i 

pattern as the current context. Matching more in the |……’ 
context, more correctness of prediction. Prediction Style of PUSS 

4.1.2 Ranking Technique 

Symbol ranking method is essentially a transformation of the input symbols, with the 
transformation usually dynamic according to the symbol context. There is an output symbol for each 
input symbol, and compression relies on the very skew output distribution, with most output symbols 
being 0 and able to be emitted with very short codes. 

A simple example of symbol ranking is Move-to-Front coding. MTF coding assumes that 
symbols can be ranked according to the closeness of their last occurrence (see Chapter 2.2). The 
effect is that more frequently-used symbols stay closer to the front of the list, while less frequently-
used symbols drift to the back of the list. Smaller list ranks tend to be more frequent and can be 
emitted with shorter codes, while the less frequent larger ranks require longer codes. 

In general the transformation produces an output symbol for each input symbol, with the 
output alphabet being dominated by a few symbols. It is the responsibility of the following 
compressor to handle the transformed data as efficiently as possible. Block Sorting algorithm (in 
Chapter 3.1) is one of the best of such transformation nowadays. 

As the result of prediction is an ordered list of symbols, from the most probable to least 
probable. Each input symbol is re-coded into its rank in the list and that rank is output as the code for 
the symbol. Input string is just re-coding at prediction stage, and no compression is done. Then 
ranking scheme control the output of predictor that making the re-coded alphabet has a highly 
skewed frequency distribution, implying good compressibility. 
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4.2 Reviews on Context Sorting 

Context Sorting [YoK96] is a method more related to the Block Sorting algorithm by Burrows 
and Wheeler. The only difference between two algorithms is the style of sorting. Block Sorting does 
not process its input sequentially, but instead processes a block of text as a single unit. Context 
Sorting does this by adjusting sorting on the fly, based on prediction and sliding. Context Sorting 
preprocessor can be separated into two different parts. One is a prediction operation and another is 
a ranking method. The concept about the prediction and ranking schemes can be found in section 
4.1. Actually, Context Sorting can be counted as a application of PUSS on compression. 

4.2.1 Context Sorting basis 

The basis structure of Context Sorting is similar as the Lempel-Ziv 77. Both algorithms are 
using context as a content predictor. However, LZ77 uses context for the longest matching on the 
content and Context Sorting uses context as a hint to guess an inputting symbol. The goal of 
Context Sorting is to sort a set of contexts in ascending order. Yokoo's context coding method is 
given by: 

1. sorts the so far observed contexts in lexical ordering 
2. finds the best matching context, using this context index as an anchor into the context 

dictionary 
3. searches neighboring (similar) contexts of anchor for matching to-be-processed symbol 
4. If to-be-processed symbol is found and occurs a distance d contexts from the anchor, 

the just inputting symbol is represented by d 
5. compresses the ranks with statistical coding 

In spite of the simplicity of Yokoo's Context Sorting mechanism, the performance of 
algorithm is worse than GZIP for the same situation (memory consumed). In the following sections, 
some more extensions are suggested for improving the Context Sorting mechanism. 

4.3 General Framework of Content Prediction 

A general framework of extended context sorting mechanism [WWY97] is introduced here. 
To distinguished from the Yokoo's context sorting algorithm, this extended context sorting algorithm 
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is named as Content Prediction. With using sorted context codebook, the Content Prediction system 
predicts more symbols in content rather than one symbol prediction in Yokoo's coding method. 

At time t, let the just-encoded window (JEW) is consisting of the source symbols 
x (_^xsh i , . . . , x , _ i . The remaining source symbols to be encoded (TBE) are x(,x,+i,Xf+2,."- At 
this time, the compressor outputs the token is (Go back to the n-th longest context match, copy k 
symbols) or, equivalently, (n, k )• 

Let me explain the meanings of token entries. The context of the TBE is the suffix of the 
JEW. The suffices of the JEW below a certain length have appeared in the JEW before. We rank 
these prior appearances according to the length of the suffix, and breaking ties according to 
recency. Assume the n-th context is 

{^t-e，^t-M ’ • •. ’ ^t-e+s-^) = {^t-s ’ ̂ f-s+i ’ •. • ’ ^t-i) (4 ,1 )• 

Furthermore, assume that 

(X(_hs, X t-£+s+1, • • • ’ X t-f+s+k-1) = (Xf, ^f+i ’ • • • ’ ^t+k-1) (4.-2). 

Then the token (n,k) means go back to the n-th context, which (4.-1), and copy the subsequent k 
symbols, which are (4.-2). For practical implementation, I restrict k < K and the context length to 
less or equal to N. 

The context ranking is completely determined from the JEW. Therefore, the decoder can 
reconstruct the context ranking and retrieve the n-th context, then copy the subsequent k symbols. 

The Context Sorting algorithm is a symbol ranking based compression algorithm. It re-
encodes the input symbol s^ into an alphabet set with different frequency distribution. The skew of 
the frequency distribution is mainly depended on the accurate of predictor. More accurate 
prediction, higher skewed in frequency distribution. In the extreme case, as N = 0，(no context), then 
our algorithm reduces to Lempel-Ziv 77 (LZSS variant) with the same token streams. Ifwe fix N = 0 
and k = 1, then the algorithm reduces to Move-To-Front coding (and its equivalents). 

4.3.1 A baseline Version 

In the baseline version, I try to do a simplest testing by fixing K to be 1. Then Content 
Prediction algorithm predicts only one symbol as Yokoo's scheme at this time. 
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Assume Sf_^^_M^^,^••,St.w+^r^^,St_^ are the W + M - ^ most recently encoded source 
symbols, and s^SM,s(+2,..., are the source symbols to be encoded. For i = X2,---,W, let S, be 
the M-symbol word 

Si = V / S f _ , - i . . . v , - i i (4.-3). 

Sort the words Si,S2,".,S^^ in alphabetical order. Ties are broken by chronology. Denote 
the sorted result by 

S—1) < S—2)々• • ̂  S — � (4.-4). 

Note that cr(*) is a permutation on the set of integers {l,2,---,H/j . 

Let p be such that o-(p) = 1, or equivalently p = o-"^(l). Let r be such that the symbol Ŝ  
is the r-th distinct symbol to appear in the list of symbols 

Sf+1-CT(P-1) ’ Sf+1-0"(P+1) ’ ^f+1-o-(p-2), ^t+^-a{p+2) ’ ^t+^-a(p-3) ’ ^t+^-a(p+^) ’. •. (4.-5). 

Note that these are exactly the symbols immediately "following" the words 

^cr(p-l) ’ ^a(p+l) ’ ^a(p-2) ’ ^cr(p+2) ’ ^a(p-3)，^a(p+3),. • • (4.-6). 

in the just-encoded window of source symbols. Note that the list (4.-5) is known to the decoder. 

The Content Prediction algorithm re-codes the symbol Sf into a binary sequence which is 
the Bias coding of the integer r. In the event that the symbol s( is not found in the List (4.-5), the 
encoder outputs an escape token, such as r = W +1. Then the window of just-encoded symbols 
are shifted by one symbol, and the algorithm iterates. 

Instead of the simple alternate merge use in (4.-6), other principles of merging the two lists 

^a(p- l ) ' ^a (p-2) '^cr (p-3) ' " - (4.-7), 

Sc^(p+1)'SWp+2)'Sr(p+3)"" (4.-8). 

can be used. We will in fact use one such variation in the proof of theorems concerning asymptotic 
information-theoretic compression performance. 
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When Sf is not found in List (4.-5), one method is to output an escape code, say the token 
r = W +1，followed by the symbol Sf uncompressed. A more efficient method is maintaining a 
move-to-front list, MTFL, of the all possible symbols. As we proceed down List (4.-5), perform 
move-to-front of the "new symbols" we encounter as v\^proceed down the List (4.-5) until we find 
Sf. If the Sf cannot be found in List (4.-5), then the rank of s^ in MTFL at that time is outputted by 
the compressor. 

4.3.2 Context Length Merge 

During the operation of the prediction, we get a list of probable symbol for guessing. To 
order the list of symbols from the most probable to least probable, our ordering scheme select the 
symbol due to the similarity of its context and context of to-be-processed symbol. Therefore, 
matching more in context, guessed symbol assumes be more probable. The probable symbol is no 
longer relied on the frequency as the order compression models. Then, this scheme uses less 
memory and processing time. Followings are the details about our scheme. 

Let the function contextlen( X ) return the length of the prefix match between 

X = {xi,x2,---XA^) and S^ = (s^_ i ,V2 , - " , s^_M) - l e. 

contextlen( X ) = i , such that x^ =Sf_^,X2 =St_2,---,Xg = V ^ - and x^+^ ^ V ^ - i • 

Note that either list (4.-7) or list (4.-8) is already sorted in the order of non-increasing values of 
contextlen. 

Instead of the simple alternate merge in (4.-6), we use the following merge of two lists (4.-
7) and (4.-8) : Merge according to contextlen, where ties are broken by preferring list (4.-7) 
members to list (4.-8) members. The merge result is denoted by 

S41) <"S"(2) < � < 5一 1 ^ _ 1 ) (4.-9). 

where S (̂,-) < 3乂力 if and only if 

/ 

contextlen(Sy,-)J > contextlen ĵ Ŝ ŷ̂  ； or 

contextlen(Sy,)) =contextlen(S"(A) , S"(,) in List (4.-7) and S ^ in List (4.-8) ； or 

contextlen(Sy,) = contextlen S^y))，Sy,) in front of S^y) in same List. 
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Note that //(*) is a permutation on the W/ -1 integers {2,3,---,W}. In each iteration, the encoder 
transmits integerrsuch that ŝ  is the r-th distinct symbol to appear in the list 

^f+1-Ml) ’ ^M-Mi2) ’ Sf+1-^，• • • （4 • -1 0). 

Note that these exactly are the symbols that immediately "follow" the words of (4.-9) in the encoder's 
input sequence. 

In the above, a sub-list from (4.-7) consisting of words of the same contextlen value is 
entirely in front of its counterpart sub-list from (4.-8) with equal contextlen value. A variation is to use 
simple alternate merge on such a pair of counterpart sub-lists. 

The rules for context merge can be summary as three steps : 1.) long&rcont8xt matching 
gets a smaller rank, 2.) break ties by lexicography, and 3.) break further ties by recency. Compared 

with Burrows-Wheeler Transform, one more rule, "longer context matching gets a smaller rank", are 
included. Such addition makes the Content Prediction processing with an adaptive model. The 
algorithm is suitable for a much wider class of inputs. 

Therefore, baseline version of Content Prediction algorithm can be describe as : 

1. sorts the so far observed contexts in lexical ordering 
2. finds the best matching context, using this context index as an anchor into the context 

dictionary 
3. searches neighboring (similar) contexts of anchor for matching to-be-processed symbol 
4. context length merge 

a. longer context matching gets a smaller rank, 

b. break ties by lexicography, 

c. break further ties by recency. 

5. If to-be-processed symbol is found and occurs a distance d contexts from the anchor, 
the just inputting symbol is represented by d 

6. compresses the ranks with statistical coding 

For prediction more than one symbol, some more rules are needed to include in the context length 
merge scheme. For example, an additional rule is "longer context matching gets a smaller rank". 

The baseline version of Content Prediction algorithm with the context length merge is used 
in proving information theoretic results as Figure 4.-1. 
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Figure 4.-1 Performance of Content Prediction for Different Buffer Size 

Table 4.-1 in Appendix A shows up the context length is not the main factor in compression 
results. Along the context length, compression results are almost similar. Changing the option ofthe 
context length is only works at extreme cases (context length = 1，2). The main influence for Content 
Prediction is appeared in the memory provided. Increasing the memory buffer, the compression 
rate* of Content Prediction are also increasing. In above results, For same memory consumed as 
GZIP, baseline Content Prediction versions leads GZIP for text data. 

4.4 Discussions 

In the above sections,丨 have presented the concept of the prediction and ranking schemes, 
and have introduced a general framework of Content Prediction lossless compression algorithm. 
The basic idea of the system is attempted to do learning and prediction like humans. Working in a 
sliding-window model, a simple Content Prediction implementation performs better than the GZIP 
algorithm. I think it is possible to achieve the result like PPM compressor by including more coding 
skills in Content Prediction algorithm. 

There are three main approaches to improve compression performance of Content 
Prediction. These approaches rely on the modeling, prediction and coding. All these three 

* compression rate = bits per input symbol 

36 



approaches have relations with each other. For modeling, the type of block sorting algorithm can be 
used in our algorithm and more detail is presented in next chapter. Another possible modeling 
choice is enlarger the prediction range, we can predict more than one symbol in each guess. More 
correct prediction, then we can reduce more redundancy. The methods of prediction are highly 
depended on the modeling. 

As the result of prediction is an ordered list of symbols, from the most probable to least 
probable. Each input symbol is re-coded into its rank in the list and that rank is output as the code for 
the symbol. The quest now is to select symbol building the skewed frequency distribution, implying 
good compressibility. There are several methods which can be used to build the skewed frequency 
distribution. Shannon's results on English symbol prediction by human can be a good reference for 
further development [SHA51]. 

Guesses 1 2 3 4 5 > ^ 
Probability 79% 8% 3% 2% 2% 5% 

Table 4.-3 Shannon's results on human guess 

According to Shannon's result, the first guess always does a very good prediction. For a 
less accuracy guess, the first answer is enough. Then no more prediction will be going on after the 
first prediction. The output is "true", or "false" plus the correct answer. 

In a highly accuracy model, few more predictions can be proceeded for the correct answer. 
Failure of last guess causes the predictor output the correct answer. Reference to Shannon's result, 
two to five guesses are enough. The ranking scheme mentioned before uses all possible symbols. 
Maybe another ranking method based on the accuracy of predictor can improve the coding 
performance. Besides, some coding techniques for ranking list are proposed in next chapter. 

PS. Some experiments for enlarge the prediction range have done. The system sets N = 17，K = 
8，and uses ranking method that further prediction is going on until the correct answer be 
obtained. The compression results is similar as the baseline version. For better result on the 
case that enlarge the prediction range, we need to find a cutting-edge on the content 
matching and prediction. 
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5. Bounded-Length Block Sorting 
At this chapter,丨 attempt to make a linkage between Content Prediction algorithm and 

Burrows-Wheeler Transform. Mixing the modeling schemes of such two algorithms, I use a 
bounded context length sorting as a context collector. 

In following sections, I will describe the Block Sorting with a bounded context length. Such 
algorithm is a similar method to the static Content Prediction in block basis. Next section, I will 
present some ideas to improve the compression rate with symbol remapping in alphabet set, which 
are also applicable to the Burrows-Wheeler Transform. 

5.1 Block Sorting with Bounded Context Length 

Using a bounded context length sorting as a context collector, the system can use few 
memory and processing time. Before describing the operation of coding and decoding of the 
Bounded Length Block Sorting, I analyze the effect of context on the compression performance. 

In normal statistical compression we consider each symbol of the file in relation to its 
preceding symbols or context. The inter-relations between symbols in the file mean that it is 
possible to predict most symbols with a high degree of confidence. The limited choice of possible 
symbols within the context means that few bits are needed for the encoding and considerable 
compression is achieved. In general, increasing the context (or number of preceding symbols being 
considered) narrows the choice of possible symbols and improves the compression. A maximum 
context of about 4-8 symbols is appropriate for most files. Above that length, any improvement in the 
actual coding of the symbols tends to be offset by the overheads in controlling and specifying the 
context; the compression remains constant or even deteriorates slightly. 

Moreover, symbol context is scanned from right-to-left in most compression algorithms. But 
sometimes, it is possible to reverse the direction of scanning, left-to-right. These two scanning 
methods wi" consider in the following sections. 

5.1.1 Forward Transformation 

Following is the coding part of Block Sorting with a bounded context length. Block Sorting 
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with a bounded context length proceeds in the same pattern as the Burrows-Wheeler Transform. 
The only difference appears in the sorting preprocessor. Rather using the whole string as context, 
Bounded-Length Block Sorting use context in a bounded length. Therefore, the system can operate 
faster with less memory consumed. 

For a bounded context length, system will order symbols due to their preceding context and 
recency. Compared with Content Prediction ranking scheme, Bounded-Length Block Sorting only 
misses the rule, "longer context matching gets a small rank". This is because Content Prediction is 
on-line adaptive context-driven algorithm and needs to reorder the codebook dictionary after each 
encoding, but it's static version in a block basis treat a block as a unit. 

According the properties, Block Sorting with a bounded context length is a special case in 
Burrows-Wheeler Transform or static Content Prediction in block basis, and vice versa. Rather 
sorting all elements in block, Bounded-Length Block Sorting is possible using the context in any 
length. However, such additional characteristic causes the prefect reconstruction rule of Burrows-
Wheeler Transform algorithm no longer works. 

The forward transformation of Block Sorting with a bounded context length can be described as — 

1. Sort the input symbols, using as a key for each symbol, to a fixed length is needed to 
resolve the comparison. Key is a bounded length context of the symbol-to-be-sorted. 
The symbols are therefore sorted according to their preceding contexts. 

2. Take as output the sorted symbols, together with the position in that output of the 
second symbol of the input data. 

5.1.2 Reverse Transformation 

The decoding operation of Bounded Length Block Sorting is explained here. Before 
introduction the reverse transformation of Bounded-Length Block Sorting, I will introduce its 
extreme case, Block Sorting. To illustrate the operation of encoding and decoding we consider the 
string "good, very good" as shown in Figure 5.-1. 

In Figure 5.-1，Block Sorting is implemented as static Content Prediction in block basis, 
encoding uses the whole block as the context. But in Figure 5.-2, normal case of Bounded-Length 
Block Sorting, much shorter context is used. The output of Block Sorting and the output of 
Bounded-Length Block Sorting are much simiIarto each other. However, using the context less than 
the length of block, Bounded-Length Block Sorting cannot reconstruct by using the simple rule likes 
Burrows-Wheeler Transform. 
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Figure 5.-1 The operation of coding and decoding of right-to-left scanning Block Sorting Algorithm 

Analyzing the reconstruction rule of Burrows-Wheeler Transform algorithm, the main 
elementary property is that reverse transformation requires the character following each context 
can be uniquely identified. Using contexts less the length of block, the uniqueness of each context 
can be guaranteed if and only if we known all these contexts at decoding. In the following, I will 
introduce a method to find out contexts used in coding with the primary index and the copy of the 
ranked list. 
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Figure 5.-2 Block Sorting with an order-2 context 

Finding out all contexts of the transmitted symbol, we can starting at column 1. As all 
elements of permutation are sorted in this column. It is easier for us to rebuild it by sorting 
transmitted symbols. The order-1 contexts plus transmitted symbols, bi-symbol pairs are formed. 
Actually, these bi-symbol pairs in sorted order are the order-2 contexts of transmitted symbols. By 
using the same method to find out the column 2, we can find out all contexts used in the coding. With 
the knowledge ofcontexts oftransmitted symbols and index to the starting point oforiginal string, we 
can construct the original string. During the decoding, we should output the early symbol first if 
same context is using among symbols. It is because Bounded-Length Block Sorting will keep the 
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early symbol ahead for same context cases. 

Alternatively, the decoding can also operate in another approach. The differences between 
output of Burrows-Wheeler Transform and output of Bounded-Length Block Sorting are appeared 
only in cases that same context are used in coding. Although this discover cannot help to change 
the output of Bounded-Length Block Sorting to the output of Burrows-Wheeler Transform, it tells us 
a fact that the prefect reconstruction rule in Burrows-Wheeler Transform can use backward rebuild 
the context used in coding correctly. 
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Figure 5.-3 Context rebuilding by the reconstruction rule of Burrows-Wheeler Transform 

Same as decoding method mentioned above, we use the index to the starting point of 
original string and output symbols rely on their contexts. Another method also can be used. Since 
the prefect reconstruction rule only has error in cases that same context are used, symbols that not 
following same context are still correct by using this rule. 

As shown in Figure 5.-3, the prefect reconstruction rule is still work in some cases. After the 
generation of contexts, we mark same context cases be wrong and do not further processing in the 
rule. Some partial sequences of the original string still can be reconstructed by passing the rule on 
unmarked cases. After processing unmarked cases, just left the first one to be a pointer on that 
sequence and erase the others. Plus correct elements in the context of marked row that reverse by 
prefect reconstruction rule. Then we can start at the index that indicated the original string. We go 
into a site either marked wrong relationship row, or a partial sequence of the original string. Meeting 
the partial sequence, we get a short cut in the decoding, just output that sequence. At the marked 
wrong relationship row, with elements in the context, output the symbol due to the order of sorted 
directory. 

In short, the reverse transformation of block sorting with a bounded length context can be 
summary as following steps. 
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1. Generate all contexts used in forward transformation with the prefect reconstruction 
rule in Burrows-Wheeler Transform. 

2. The further procession is divided into two cases. 

a. more than one symbol use the same context in coding 

Find the symbol due to its context, and break ties by recency. 
b. the context is only appeared one in coding 

Reconstruct the symbol by rule in Burrows-Wheeler Transform. 

Actually, two steps can be combined together and operated in parallel. Therefore, the system can 
check the context and rebuild the original sequence during generation of the contexts. One 
illustration is shown in Figure 5.-4. 
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Figure 5.-4 Partially reverse transformation by the reconstruction rule 

In Figure 5.-4, decoding with the sorted directory, the starting point is 8 and "go" is output. 
Based on the context "go", "o" is output. Then "d" is output. At the row with context "od", "，" should 
output first, so sequence"’ very go" will copy out. Following "go", "o" and "d" can be decoded. 

Prediction of symbol ranking is essentially what the context collection (sorting) algorithms 
do, although with a permutation of the input text to increase locality effects. The Move-To-Front list 
approximates an ordering in symbol frequency, and the emitted index is simply an error indication. 
The Bounded-Length Block Sorting compressor with MTF processing and Arithmetic Entropy 
Coding is performed as following. 
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Figure 5.-5 Performance of Bounded-Length Block Sorting 

Beside testing how the order of context affects performance of Bounded-Length Block 
Sorting, the context scanning method is also considered. The order of context will help in the 
compression at extreme cases (the length of context is very short). After order-4, compression rates 
in Figure 5.-5 become flat. The most detailed values can be find in Appendix A, Table 5.-1. One 
more interesting thing is that right-to-left context scanning is better at low order context cases. 
Left-to-right context scanning is better at high order context cases. 

5.2 Locally Adaptive Entropy Coding 

In additional to Block Sorting with a bounded context length, some coding techniques can 
improve the compression performance. Modifies on the MTF and arithmetic coding are main 
contributions in followings.^ 

The order-0 statistical model of Move-To-Front output is at best only an approximation or 
averaging-out of local contexts, probably with considerable local deviation from that model. 
However, during the processing on the symbol ranking sequence, we know about the frequency 
distribution of outputs. We should be coding more efficiently. 

43 



In the symbol ranking output, first few MTF ranks contain almost all elements. Improving 
compression over that achieved by the order-0 model requires models which can adapt quickly to 
local changes in frequency. With adaptive arithmetic coding this requires a model containing only a 
few symbols and with a small count limit, so that statistics are sensitive tojust a few added symbols 
and there is frequent rescaling to provide locality. One good starting point is applying different 
weighting on the ranks, e.g. {0,1-4, 5-255} likes Shannon's human results on symbol guess (Table 
4.-2). Moreover, an adaptive frequency ordering method is included in Move-To-Front Coding. Ifthe 
first symbol in the MTF list is appear continuously, the new symbol is inserted into position 1 rather 
than position 0 as MTF. 
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Figure 5.-6 Extensions for the Bounded-Length Block Sorting 

In experiments, both context scanning methods are processing with new MTF and new 
Arithmetic coding. The results are mentioned in Figure 5.-6 and Table 5.-1 at Appendix A. The new 
MTF and new Arithmetic coding are marked as version 2 in above figure. Adaptive frequency 
ordering on MTF for the ranking list is always improved the performance about 5~6%. Plus the 
proposal Arithmetic Coding based on Shannon's human guess,compression rates can reduce near 
7.5%. 

Some good ideas for improving compression results for the symbol ranking list are 
published recently. A new technique is Inversion Frequencies [AM97] by Ziya Arnavut and Spyros 
S. Magliveras. One best approach is using caches and run-length coding [FEN96] by Peter Fenwick. 
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I have got a few more improvements by using it as locally adaptive entropy coding to Bounded-
Length Block Sorting algorithm. The method is to use a small "cache" model which holds only the 
first few, or most probable, MTF codes, escaping to a complete, background, model to other values. 
With much of the MTF output being simply runs of zeros, it seems reasonable to try run length 
coding of the zero values. 
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Figure 5.-7 Locally adaptive coding improvement by using cache model 

Cache model can farther improve the ranking list from Bounded-Length Block Sorting. As 
the performance curve is similar to my proposal methods, I think the gap is due to modeling updates 
or the different between Shannon's human guess and machine learning. Some more experiments 
are need to done for a better update step for fitting the real world cases. 

5.3 Discussion 

In above sections, I have presented another possible application of Content Prediction 
framework. This application, Bounded-Length Block Sorting, is a linkage between context sorting 
and block sorting. With sorting on the low order context is possible to archive the similar 
performance of Burrows-Wheeler Transform, but consumes fewer time. In addition, the adaptive 
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frequency ordering in MTF and arithmetic coding with 3-ary model are proposed for locally adaptive 
coding on the ranking list. Caches and run-length coding is testing for Bounded-Length Block 
Sorting too. 

Bounded-Length Block Sorting has a very different kind implementation rather than 
Burrows-Wheeler Transform and baseline Content Prediction. The extensions ofContent Prediction 
that I present in Chapter 4.3 may not be used in Bounded-Length Block Sorting. As the prediction 
style of Bounded-Length Block Sorting is no longer operation adaptive, the system may not be 
possible to modify for further prediction. But system ranks with a locally adaptive entropy coding is 
another promise techniques for static Content Prediction. 

The next stage for static Content Prediction can be divided into two different approaches. 
One is improvement on the sorting style, another is using a different set of symbols in the rotation 
matrix. In the sorting part, as the prior and follow symbols are important to prediction in the same 
weight, we could construct a sorting algorithm that can use prior and follow symbols in the same 
time. At rotation matrix, we could use other columns to instead of the current one. May be a mixture 
of second column, third one, and so on can be a good choice. 
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6. Context Coding for Image Data 
In this chapter I will review some common image compression techniques and proposed 

some context model or coding techniques for improvement on the embedded zerotree wavelet 
image coding. 

Image is very different kind of data to the text. In fact, over the long run, histograms for live 
images from sources such as television tend to be flat. This means that each pixel code has 
approximately the same chance of appearing as any other, negating any opportunity for exploiting 
entropy differences. Besides, the length of matching strings tends to be small because of the 
vagaries of the real world. All these limits the effectiveness of compression by using the lossless 
coding methods mentioned before. 

However, a small alteration on pixel could be undetectable or meaningless to the human 
eye. Thus, a lossy compression has an advantage on image data files. They can be slightly modified 
during the compression or expansion cycle and unnoticed if the modifications are done carefully. In 
section 6.1, basic characteristics of image data are introduced. The model of image coding system, 
aimed at reducing image data redundancies, is described in section 6.2. The following sections are 
addressed on the zerotree data structure coding and possible extensions. 

6.1 Digital Images 

Before describing the context coding modeling, I like to introduce some basic 
characteristics of image data. 

A two dimensional image can be represented by a light intensity function f{x,y), where x and 
y denote the spatial coordinates and the value of function f{x,y) that is proportional to the brightness 
of image at point {x,y). A digital image is formed by discretizing both the spatial resolution and the 
brightness function. The picture elements in a digitalized image are called pixels. The performance 
of an image compression method must be revised with three aspects in mind, Compression ratio, 
Image quality, and Computational cost. 

In general it is always possible to improve one aspect at the cost of degrading the 
performance of the others. A good compression method takes all three aspects into account, and it 
is essential to make a survey of all aspects together when evaluating a specific compression 
method. The performance of the proposed image coding algorithm will be compared with two 
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popular image compression techniques, Discrete Cosine Transform and Wavelet Transform. A brief 

summary of these two techniques is shown in Table 6.-1，and detailed introduction can be found in 

Appendix B. 

Table 6.-1 Summary of some popular image compression techniques 

Discrete Cosine Transform 
widespread standard (JPEG) 
fast 
excellent compression-quality tradeoffs at medium to high rates 
errors affect small areas 

Wavelet Transform 
no standard (yet) 
fast 
excellent compression-quality tradeoffs at all rates 
errors affect entire image 

6.1.1 Redundancy 

In compression of digital images there exist three basic image data redundancies : 

• Coding redundancy consists of a nonoptimal way of describing an image. The typical 
approach to eliminate coding redundancy is to examine the probabilities of the pixel values in 
the image and then assign a variable length code to each pixel value according to its 
probability ； the higher probability the shorter code. 

• lnterpixel redundancy stems from the fact that there in most images is a correlation between 
these pixels. A real world image can be modeled as Markov process where the value of the 
current pixel in some way has dependency with the n previous pixel. This kind of redundancy 
can be removed by transforming the image to a state where the interpixel redundancy can be 
discovered and eliminated, and this kind of transformation process is called a mapping. It is 
referred to as reversible mapping if the original image can be reconstructed from the 
transformed data set without any loss. Interpixel redundancy is also know as spatial, geometric 
or interframe redundancy. 

• Psychovisual redundancy The human perception is not a constant pixel oriented 
mechanism. This implies that every area in a visual field is not processed with the same amount 
of sensitivity, and that areas in the image which do not contribute with valuable visual content 
possible can be removed without major loss in quality for the human perceiver. This 
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unnecessary image content is called psychovisual redundant information, and elimination of 
these redundancies is a sort ofquantization, which is an irreversible process. 

6.2 Model of Image Compression System 

To reduce three kinds of redundancy that mentioned before, a general model of image 
coding system can befound here. 

Lossless 
Image > Representation > Quantization > - coding > Output 

Figure 6.-1 model of image compression system 

A model of a general compression system (Figure 6.-1) consists of three stages : 
representation, quantization, and finally a lossless encoding, all aimed at reducing a specific 
redundancy. Block-based transforms (such as the DCT) and wavelet decompositions are 
commonly used to convert an image into a representation with good energy compaction. The 
transform coefficients are then quantized to reduce the information and achieve the desired bitrate. 
The quantized coefficient image is then entropy encoded in a lossless fashion. We have shown (for 
wavelets) that good results can be obtained with such a framework. Recently, however, more 
sophisticated techniques have surfaced which, in some sense, analyze the image to exploit higher 
level correlations that exist in the transform domain. One such technique, which has received a lot of 
attention, is the embedded zerotree wavelet (EZW) code. 

In the following section, after introducing lossy image compression, I discuss the EZW 
code, analyze its behavior, and then propose a context modeling techniques to achieve better 
performance. 

6.2.1 Representation 

The representation operation maps the image from one format to another. The idea behind 
this operation is to represent the image in a format that interpixel redundancy can be discovered. 
Common methods include block based transforms, such as the DCT used in JPEG, and joint spatial 
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frequency based decompositions as used in subband and wavelet coding. From an appropriate 
viewpoint, block based DCT codes can be interpreted as a subband coding techniques — all one 
has to do is reorder the data so that coefficients which share the same frequency band are grouped 
together. 

A major problem, however, is that in block based codes there is no interaction between 
pixels in different blocks which, when coupled with coarse quantization, results in blocking artifacts. 
Wavelet techniques decompose the image into frequency bands and, because they are filtering 
based approaches, do not suffer from blocking artifacts and typically generate higher quality images 
at low bitrates. In wavelet transforms, representations differ in their choice of wavelets. I will try 
orthogonal wavelet and biorthogonal wavelet filters and the associated representations in the 
context of image coding. 

6.2.2 Quantization 

Typically, the number of samples resulting from image transformations remains the same, 
but the precision required to specify the transform coefficients increases. Often, the output of the 
representation is a set of real-valued coefficients, which we cannot encode with a finite number of 
bits. Thus, quantization has thejob ofdegrading the accuracy ofthe mapping operation according to 
a given fidelity criterion. This job reduces both of the interpixel and psychovisual redundancy. 
Furthermore, quantization is often the only way we can reduce the information content of the source 
in a controlled fashion. In all common transformations, there is some notion of frequency in the 
transform domain, and better quantizers exploit the human visual system by quantizing higher 
frequencies, where errors are less visible, more coarsely than lower frequencies. 

Suppose we have decomposed an image to N dyadic scales using a wavelet transform, 
either orthogonal or biorthogonal. This will yield 3A/+1 wavelet subbands. Since the variance of each 
subband is generally different, we need to design a quantizer for each subband. Scalar quantization 
is a solution with much simpler implementation. Doing uniform quantiztion among the value of pixel 
can be worked satisfactorily in most cases. This design is obviously nonoptimal, one better 
quantizer is Vector Quantization. VQ is a generalization of scalar quantization on which vectors, or 
blocks, of pixels are quantized instead of the pixels themselves. To apply VQ to wavelet image 
coding, the common approach is to consider each subband individually. Since subbands are a 
hierarchical organization of oriented frequency bands, it is intuitive to consider quantizing a vector 
whose elements span subbands of the same orientation. Such idea is referred as Space-Frequency 
Quantization [XOR96, XOR97]. For better visual effect, Human Visual System Characteristics are 
always considered in the image coding. A general description of HVS can be found in Appendix C. 
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6.2.3 Lossless coding 

Lossless coding is responsible for suppressing the coding redundancy from two previous 
stages. This stage of encoding is reversible in contrast to the output of the quantizer. Huffman or 
Arithmetic coding are commonly using in the this stage. Some universal code based on an 
ensemble oftypical images plus the encoded image data are always saving more space. For highly 
skewed sources, such as abundance of zeros in quantized wavelet transformed images, Run-
Length coding can be combined to remove the zeros. The locations of non-zero pixel are specified 
by encoding a binary activity mask (all non-zero values are set to 1) with standard binary image 
compression techniques, such as JBIG. The non-zero pixels are mapped through a balanced binary 
tree and encoded. Some alternative, efficient representations of the zeros in the source are 
Shapiro's zerotree coding [SHA93] and stack-run coding by M.J. Tsai, J.D. Villasenor and F. Chen 
[TVC96]. 

After transmission through the channel the source decoder reconstructs the original image. 
It consists of an entropy decoder and an inverse transformation. The decode process corresponds 
to the inverse action of the source encoder, except that an inverse quantizer is not possible due to 

, the irreversible process of the quantization. 

In this thesis, the model of image compression system is designed as followings. I use 
wavelet transform as the image representation is due to its excellent compression-quality tradeoffs 
at all rates. Zerotree data structure is chose because of simplicity and adaptiveness. The main issue 
of context-based image coding is central on the modeling part. 

Model of Image Compression System Context-based Image Coding 

representation wavelet transform 
quantization zerotree data structure 
lossless�coding ,, linkage between coefficients 

modeling (-deadzone 
entropy coding 、、、coefficient scanning 

6.3 The Embedded Zerotree Wavelet Coding 

Since wavelet is a relative new and promising development in the area of lossy image 
compression, we will develop the context coding model for this area. Among different wavelet 
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coding algorithms, we choose the Embedded Zerotree Wavelet Coding because of simplicity and 
adaptiveness. 

The EZW Coding encodes images, in an embedded fashion, from their dyadic wavelet 
representations. The goal of embedded coding is to generate a single encoded bitstream which can 
be truncated, to achieve any desired rate, and used to reconstruct the best possible rendition at that 
rate. Since wavelet representations have both scale (frequency) and space contents, spatial 
grouping of data and quantization are possible. Qunantization in the EZW is done by successive 
approximation across the subbands with same orientation. This results in an efficient data structure 
for encoding zero and nonzero quantized value. 

The main idea of EZW is the wavelet transform coefficients with the same magnitude are 
assumed to have equal importance, and should be transmitted before coefficients with smaller 
magnitudes. This technique is based on three concepts: 1.) partial ordering of the transformed 
image elements by magnitude, with transmission of order by a subset partitioning algorithm that is 

duplicated at the decoder, 2.) ordered bit plane transmission ofrefinement bits, and 3.) exploitation 

ofthe self-similarity ofthe image wavelet transform across different scales. 

As to be explained, the partial ordering is a result of comparison of transform element 
(coefficient) magnitudes to a set of octavely decreasing thresholds, T"。>T̂  >.">7"/v-i = T^m • We 
say that an element is significant or insignificant with respect to a given threshold, depending on 
whether or not it exceeds that threshold. Significance pixel are processed during each pass. 
Typically, 7} = 丁丨_、/2 just like the bitplane coding. 

As described by Shapiro, the zerotree coder maintains two lists, a dominant list and a 
subordinate list. Initially, all pixels are placed on the dominant list in a predefined order. In the 
dominant pass, this list is scanned and the location of all pixels whose magnitude exceeds the first 
significance threshold, T"。，and their signs, are encoded using the zerotree data structure. These 
pixels are then transferred to the subordinate list, and the corresponding coefficients in the wavelet 
transform image set to zero so that their location is not encoded again in later passes. In the 
subordinate pass, the next bit in the representation of each pixel on the subordinate list is encoded. 
The subordinate list is then sorted (using only the information that is known at the decoder), and the 
process repeated for each threshold until a bitrate target is met or T̂ -̂ ^ is reached. 

Shapiro elected to encode the sign bits as part of the zerotree and chose a 4 symbol 
representation to encode i t : zerotree root (ZTR), isolated zero (IZ), positive significant (POS) and 
negative significant (NEG). A zerotree root is used to indicate that the entire subtree rooted at the 
corresponding node is zero (or insignificant), and allows an efficient description of large all white 
blocks. The isolated zero symbol is used to indicate that a pixel is not significant, but that one of its 
children is. Significant symbols are classified as positive or negative significant. Then EZW symbols 
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are drawn from the three different alphabets S。={0,1}, S^ = {ZTR,IZ,POS,NEG}, and 
$2 = {Zero,POS,NEG}. For processing the quantization precision in the subordinate pass, 0 and 1 
in So are used to the significant coefficients' interval. The alphabet set Ŝ  is used to encode the 
sign bits in the dominant list. As there are 3 subbands (hlHo,HLo,LHo) not need to distinguish 
between the zerotree root and isolated zero, a simpler alphabet set S2 is designed for these cases. 

叫 H H r i 
3 i l L J lXJ 
r \ 

^ ^ 
Figure 6.-2 zerotree data structure in wavelet decomposition 

The zerotree data structure is of central importance in the EZW code. Ks importance lies in 
its ability to efficiently encode large blocks of zeros in the significance maps, and its exploitation of 
the hierarchical correlation in wavelet transformed images. An example significance map 
(augmented with isolated zeros, zerotree roots and sign information) and its corresponding zerotree 
are shown in Figure 6.-2. All the zeros are represented by the zerotree root at their parents. 

• 

For entropy encoding, Shapiro conditions zerotree symbols using the significance of a 
pixels' parent and the previous pixel in the defined ordering. An isolated zero cannot occur at the 
leaf nodes, so that a ternary alphabet can be used for the highest frequency bands. The bits 
encoded in the subordinate pass are encoded in a single context, without any conditioning. All 
subsources are encoded using an adaptive arithmetic code 8 with a maximum frequency count of 
256. 

6.3.1 Simple Zerotree-like Implementation 

The following sections are the context coding algorithm with EZW structure. At first, we 
analyze some basic components of wavelet coding. And then we will check the internal regularity of 
the Embedded Zerotree Wavelet image coding. A context coding method based on the experiments 
are acquainted in the section 6.4. 
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At first, I have implemented a simple zerotree-like coder without ordering on the lists. 
Besides, the LL band is also encoded separately in lossless for preserve the lowest frequency 
components, and the coefficients of each subband are rescaling to range of -128-127. I use a 6-
level pyramid wavelet decomposition of Lena*, based on the orthogonal 6 wavelet filter of 
Daubechies and biorthogonal 7/9 wavelet filter of Barlaud [ABMD92, BMH92]. The implementation 
is mainly designed for testing different options in zerotree-like wavelet coding rather than 
effectiveness. 

~~Daubechies 6~~ Barlaud 7/9 
..….…BitRSe "d'56 0.47 

PSNR 33".''36'22 '33.3056  

Table 6.-2 Comparison between Orthogonal and Biorthogonal wavelet filters 

Operation with Daubechies 6 and Barlaud 7/9, the result is shown in the Table 6.-2. For the 
similar PSNR, Barlaud 7/9 leads Daubechies 6 approximately 0.1 bits/pixel. The result forces me 
using the Barlaud 7/9 wavelet filter in the followed cases. 

6.3.2 Analysis of Zerotree Coding 

Using the basic zerotree-like wavelet coder implemented in the last section, I have done 
some experiments for finding useful context elements for zerotree coding. Typically the coding 
procession can be divided into two components : modeling and entropy coding. The goal of 
modeling is to predict the distribution to be used to encode each pixel and context information is 
included in the models in this part. 

In coding, the goal is to encode each sequence of symbols {si,s2,---,s^} with 
- l0g2 p{s^,s2,---,sn) bits. Without any prior information (context) about the symbols, the entropy 
reduces to -n l0g2 p(s), where p(s) = p(s, ) for all i. If not, modeling is the task of estimating 
p(si.^2>"">^n)- Reformulating the problem as that of estimating a set of conditional probabilities, 
i.e., 

p(Si，S2’〜’S„) = 7P(S,|Si’".,S,_i) (6.-1) 

Our goal is to reduce the problem of estimating the symbol distributions to a manageable 
size. This is accomplished by restricting the range of context to a small set of states. Now, we can 

• The Lena I used for testing may be Lean-Y. 
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associate with each state a conditional source comprised of all symbols which occur in that state. 

It is possible using all previously transmitted symbols as context. Owing to complexity 
constraints, we must reduce the range of it. This is done by choosing a set of pixels from the set of 
all previously transmitted pixels. This choice is of utmost importance, since our prediction 
(classification) is based entirely upon these pixels. In the Shapiro's zerotree coder, this corresponds 
to previous pixel in define order and the parent pixel. These should be the pixels that supply the 
most information about the current pixel. Instead of following the Shapiro's step on the context 
choice, I developed a set of conditional probabilities on the different context for coding. Before I 
describe the context-based coding I used，I will present some experiments for finding the context. 

6.3.2.1 Linkage between Coefficients 

Now consider the relationship between wavelet subbands. Figure 6.-3 shows the 
magnitudes of wavelet coefficients in a 2-level pyramid decomposition. It is visually apparent that 
the coefficients with large magnitude tend to occur at the same relative locations in subbands at 
different levels. This is true when comparing subbands of the same orientation, and also holds 
across orientations. 
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Figure 6.-3 2-level pyramid decomposition of wavelet coefficients 

To capture this relationship more precisely, I consider the joint statistics for two coefficient 
subbands. Figure 6.-4 shows the conditional statistics on wavelet coefficients of a 6-level pyramid 
decomposition. That is, we plot the conditional histogram of most-significant-bit of the parent 
coefficient against children coefficient over the 6-level pyramid decomposition. When the magnitude 
of the parent coefficient is large, the expected value of the magnitude of the child appears to be 
linearly related to the magnitude of the parent. When the parent magnitude is small, the magnitude 
of the child is independent of the parent magnitude. 

Although the parent pixels provide some information related to the magnitude of the child 
pixels, it is not always correct. The solutions for solving this problem either not use parent pixels for 
context or coding with parent pixels separately based on their magnitude. 
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implementation, I sort the lists for handling the above requirements. 
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Table 6.-3 Performance of context-based wavelet image coding (using zerotree data structure) 

The experiments' results are shown in Table 6.-3. I use 6-level pyramid wavelet 
decomposition of a 512 x 512 gray scale image Lena* based on Barlaud 7/9 wavelet filter. In 
comparing the results of Shapiro's and my implementation, my wavelet coding with order-3 context 
model always achieve better or same performance as EZW in all cases. 

At each threshold pass, I have tried to use different length context to do the modeling. 
Without mainly depending on the parent and previous pixels, I do conditional coding based on the 
pixels in the same position at two adjacent bands on the same level. And it can still get a very good 
result as the Shapiro's. In general, short context perform better at the low bit rate coding, long 
context lead at the higher bit rate coding. During the experiments, I have got some additional results. 
Rather coding for the whole list, I do coding at each threshold pass individually (Table 6.-4). 
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Table 6.-4 Compression results for coding individually at each threshold pass 

• The Lena I used for testing may be Lena-Y. 
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Coding individually has the similar phenomenon as coding the whole list, short context 
perform better at the low bit rate coding and long context lead at the higher bit rate coding. Some 
extreme cases happen after threshold = 64. Without using any context, the coder get the similar 
result as the using context one. This phenomenon is happened at the bitplane coding. At the less 
significant bit, the image data is become random. 

According to above testing, a better compression scheme for zerotree-like image coding is 
refreshing context model after each threshold pass. Besides, short context can be used in low bit 
rate coding for saving modeling cost. The long context estimates more accuracy probability model 
and applies in high bit rate coding. Further, as random characteristics of less significant bits in the 
Image data, we can just use a memoryless entropy coder in the threshold pass which threshold 
value is less than 128. 

6.3.2.2 Design of uniform threshold quantizer with dead zone 

Another special interest in the testing is a similar skill of "dead zone". The "dead zone" is a 
technique used in uniform threshold quantization that produces data closely approximated by a 
Laplacian distribution. In my implementation,丨 just assume the middle of the integer interval be the 
boundary without computing any probabilities. This approach can bring the benefit of"dead zone" in 
my wavelet coding, and do not increase any complexity. Then the uniform threshold quantization for 
the above implement has a fixed step size (expect for the "dead zone" around zero). 

To apply the idea of "dead zone" in above zerotree-like wavelet compression, two possible 
ways we can do. One is using in the decode part only, and another can use in both encode and 
decode parts.丨 use the case where threshold = 64 in the simulation. 

Baseline Use "dead zone" in decode Use in encode & decode 

Raw Size 29563 Raw Size 29563 Raw Size 29757 
Coded Size 3354 Coded Size 3354 Coded Size 3375 

Bit Rate 0.102 Bit Rate 0.102 Bit Rate 0.103 
PSNR 29.4352| PSNR 29.451s| PSNR 29.4889 

Table 6.-5 Compression results for coding with "dead zone" 

"Dead zone" is a minor skill for increasing the PSNR (about 0.05 dB). Generally, it does not 
affect the image quality in the coderwith uniform classification, itjust makes the result seems better. 
However, such skill may be useful in the other non-uniform classifications, like Estimation 
Quantization [LR097], Space-Frequency Quantization and so on. 

58 



I 

6.4 Extensions 6n Wavelet Coding 

Due to the experiments' results of above sections, an advanced context model for image 
coding is proposed here. Further improvement on the wavelet coding, there are various basic 
components in a wavelet-based image coder can focus on, namely, the tree-structured filterbank, 
the filters themselves, the quantizers and the entropy coders. 

An extensive analysis of correlations in the wavelet transformed image would be required to 
determine the optimum contexts for the encoding. In this thesis I concentrate on the issue of 
adaptive quantization and entropy coding for a fixed filterbank (Barlaud 7/9). The issues for other 
possible improvements are not considered here. 

There are two main approaches for context-based image data compression. The first 
approach relies on a fixed quantization for all coefficients in a given band and a layered transmission 
of the coefficients using binary or low order arithmetic coding. A best example is SPIHT by Said and 
Pearlman. Context information is taken into account by using the zerotree data structure which 
enables the joint transmission of zero-valued coefficient present at the same spatial location across 
several frequency bands. The second approach is relied on using different quantizers for different 
subbands. With the knowledge of minimum, maximum and variance in each band, the most 
effective quantization method and entropy coding scheme are selected. 

I am considering a context-based adaptive arithmetic coding for the wavelet image coding. 
In additional to pixel at adjacent frequency bands and parent, I add neighboring four pixels and 
same pixel at previous bitplane into the model. Ifthe context which needs a pixel is still not encoded, 
that pixel in the previous bitplane is used. Moreover, some skills mentioned before also add into the 
extended version. Just like sorting the subordinate list and reset the arithmetic coding after each 
threshold pass are proved useful for coding. Contexts used for the wavelet coding is shown in 
Figure 6.-4. 
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Figure 6.-4 Context model for estimating a pixel in HH band. 
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6.4.1 Coefficients Scanning 

Coefficient scanning is another skni to help in the coding. The zerotree coding method takes 
into consideration that the edge energy is spread out in a Wavelet representation in an ordered 
manner. Since the original image is recursively down-sampled at a 2 by 2 ratio, each representation 
coefficient in a lower band is spatially related to 4 other coefficients in the immediately higher band. 
This relation structure can be carried out another skill for the modeling, coefficient scanning. A 
zerotree is encoded by encoding the symbols encountered on a predetermined path through the 
corresponding augmented significance map. In the pyramid decomposition structure, 4 child 
coefficients under a same parent have correlation with each other. Instead of raster scan, some 
specific scanning methods like Morton scan and Peano-Hibert scan in Figure 6.-5 can take 
advantage on the wavelet structure. The chosen scanning is important consideration with respect to 
the embedded nature of the algorithm, and emphasizes the fact that, for images, there really is no 
well-defined notion of causality. Intuitively, is would seem that we should transmit the lower 
frequency components first. 
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Morton Scan Peano-Hibert Scan 

Figure 6.-5 Different coefficient scanning method for a 8 x 8 image 

Context selection is another small skill I use in my final implantation. I use different context 
for different part of the zerotree data structure. Different part in zerotree data structure is sensitive to 
different context. After the experiment, I find that significant bit can be modeled better by four pixels 
surround it and dominant and refinement are mainly relied on their parents. 

Lena “ Lena — Lena-G| EZW| state-of-art* 
Bit Rate 

6:乏台 ':i'iySg'^-…’33/7903 •…3ii'.'̂ oS'b '5iTff -34:gy-
0:'召 5g'.&_ij'̂  ' i^:8&3 _：̂_谷_:各'"̂4§ '36:2^ _3f-'6§—-
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Table 6.-6 Coding result for "Lena" 

“This image may be Lena-Y. 

• Image coding based on mixture modeling of wavelet coefficients and a fast Estimation-Quantization framework. 
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I have done encoding on three images of "Lena" that I have with Peano-Hibert Scan, and 
the result is put at Table 6.-6. The Lena with best result is the Green part of color image, the worst 
one may be the luminance (Y) from the color image. Three coding results of Lena are shown out is 
because 丨 am not sure which one is used by others. Some more testing results can be find in Table 
6.-7 at Appendix D. Using the proposed context model, the context-base wavelet coding algorithm 
always leads EZW over 0.5 dB at the same bit rate. 

However, proposal algorithm is still far from the state-of-art (about 0.7 dB). Beside the 
lacking of optimal quantization technique and advance fiIterbank, cost of model is another factor 
affect the compression performance. The higher-order modeling context would lead to a shorter 
codelength. But the number of possible conditions states grows exponentially with the order of 
context. Since the conditional probabilities Pr(s/|si,---,s/_i) have to be estimated on the fly by 
corresponding symbol histograms in different conditioning states, an image may not provide 
sufficient samples for the convergence of too many symbol histograms to Pr(s,|si,---,s,_i). In other 
words, a large modeling context spreads counting statistics to thin among all possible modeling 
states to reach good conditional probability estimates. The codelength wni actually increase when 
the order of modeling contexts gets too high. Thus high order of context modeling is more than a 
problem of large time and space complexities, it can reduce coding efficiency as well. This problem 
is called "context dilution" and formulated by Rissanen analytically as so-called "model cost" [Ris84, 
RL81]. Solving this problem, we need to do more optimization on context and modeling. 

6.5 Discussions 

In above sections, I show that it is possible to use prior information to boost the 
performance of embedded zerotree wavelet compression algorithm. It is possible to predict the 
significant bit, dominant and refinement more accuracy by using more prior information. I presented 
a new context-based model for EZW image coding algorithm. It always leads the EZW image coding 
algorithm over 0.5dB. In the proposed scheme, the pixel can be estimated by more accurate with a 
context in a reasonable size. In addition, some techniques helping the compression rate are also 
introduced. 

In the sequel,丨 can suggest some possible directions of further research for competition 
with the current champion in image compression. For the further improvement on the wavelet 
coding, there are various basic components in a wavelet-based image coderwhich can be focused 
on, namely, tree-structured fiIterbank, filters themselves, quantizers and entropy coders. Some 
filters can do a better job for image compression, but few modifications are need to arrange in the 
proposed algorithm for new filter. Estimation Quantization or Space-Frequency Quantization is a 
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better quantizer for the proposed algorithm. At the modeling part, wavelet coding with Set Partition 
In Hierarchical Tree is an alternative of the embedded zerotree. Context-driven algorithms that 
proposed in the lossless compression (Chapter 3，4 and 5) should contribute in the image coding, 
although it is still under construction. 
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1. Conclusions 
The objective of this thesis is to study context modeling and its application to the text and 

image data. For the text data,丨 introduce a new algorithm based on Context Sorting and Content 
Prediction. With the use of prior information, the system is try to learn and make prediction as 
human guess. More accurate guesses will reduce the redundancy of the data and make 
compression. 

Image data is a very different kind of data from the text. The correlation in image is no longer 
one dimension as text, multi-dimension's correlation need another context modeling type. 
Moreover, image data can also accept the data loss during the compression. A new context-based 
compression method for image data is developed in this thesis. 

The results and conclusions can be divided into three main groups : framework, modeling 
and coding. The proposed algorithms for text are covered by all these three groups. In the image 
part, I focused on the modeling area. 

For the text data, I present a general-purpose text compression algorithm. The baseline 
version is a codebook based algorithm where the codebook is derived from a combination ofsliding 
windowed context. The general framework for the Content Prediction is described, the possible 
construction of codebook and the context merging method are also presented. For better 
compression, symbol remapping methods are experimented with the Block Sorting algorithms. 
Besides, a static Content Prediction algorithm in a block basis is expressed as a real possible 
production for competition with the other best algorithms. During developing the Bounded-Length 
Block Sorting, adaptive frequency ordering and locally adaptive entropy coding are also 
investigated. 

Wavelet is a relative new and promising development in the area of lossy image 
compression. I try to include context information into zerotree data structure for improvement on the 
image coding. Main area of image coding in this thesis concerns about the modeling of the context. 
Apart from the parent and previous pixel using by the Shapiro, I shift the views on the other potential 
pixels. Without strong dependence on the pixels suggested by Shapiro, I still can get a similar result 
as his. Some more pixels are proposed for the final implementation to get a good result. Moreover, 
a few more skills are suggested for a better performance. 
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7.1 Future Research 

As sorting permutations can be handled from a mathematical point of view, this makes it 
possible to analyze or study the characteristics of the sorting, ranking and output distribution. 
Context Sorting may construct into a two dimension model for lossy coding or remodel to be a 
entropy coder at the final stage of image compression. 

ln the sequel, possible directions forfuture research are suggested, as a continuation ofthis 
work. 

Content Prediction 

A possible modeling on the Content Prediction is enlarger the prediction range, which is 
predicting more than one symbol in each guess. If average coded symbols at each prediction 
are more than one and the output distribution is not changing dramatic, we can get a better 
performance. For content prediction, ranking techniques (in Chapter 4.4) should be carefully 
selected under consideration for changing the accuracy rate of prediction. 

Mixture sorting on both Context and Content 

Bounded-Length Block Sorting has very different kind implementation rather than the baseline 
Content Prediction. Content prediction may not be used due to the prediction style is no longer 
operation adaptive. As both prior and follow information can do prediction on a symbol, a 
mixture that combined both Context and Content can use as context in Bounded-Length Block 
Sorting. 

Extensions on basic components in wavelet-based image coder 

Further improvement on the wavelet coding, there are various basic components in a 
wavelet-based image coder can focus on, namely, the tree-structured filterbank, the filters 
themselves, the quantizers and the entropy coders. Some filters can do a better job for image 
compression, but few modifications are need to arrange in the proposed algorithm for the new 
filter. Estimation Quantization or Space-Frequency Quantization is a better quantizer for the 
proposed algorithm. At the modeling part, wavelet coding with Set Partition In Hierarchical Tree 
is an alternative of the embedded zerotree. Context Sorting that proposed in the lossless 
compression (Chapter 3, 4 and 5) should contribute in the image coding, although it is still 
under construction. 
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Appendix - A 

Lossless Compression results 

Table 3.-1 Block Sorting with Alternatively Symbol Ordering Method 

File Size Block Size 
1K 5K 10K 50K 100K 200K 

Text 
bib 111261 L 67550 48470 43015 33489 30486 28738 

F 65857 48949 43610 33849 30763 28930 
S 66782 48405 43012 33573 30533 28766 
G 65377 47938 42814 33462 30493 28755 
C 42259 39751 39348 39081 39013 39013 

book1 768771 L 462644 372557 347926 302400 286737 273036 
F 439734 368052 345939 303097 287834 274205 
S 461125 371604 347260 302513 286867 273180 
G 448995 369197 346004 301984 286500 272927 
C 379067 361996 359728 357625 357339 357202 

book2 610856 L 354585 268135 244732 204624 192021 182152 
F 337746 267463 245811 207051 194384 184236 
S 352493 268240 245035 205097 192388 182533 
G 343974 266821 244155 204576 192067 182282 
C 259218 245474 243803 242388 242172 242077 

news 377109 L 242198 185789 171448 147550 138746 131465 
F 234529 186718 173332 149552 140673 133210 
S 240582 186168 172042 148055 139178 131817 
G 236945 184960 171116 147585 138913 131583 
C 179612 170238 168993 168139 168103 168014 

paper1 53161 L 31625 23219 21300 17714 17165 17165 
F 30044 23198 21443 17943 17398 17398 
S 31483 23210 21305 17734 17182 17182 
G 30649 23121 21300 17768 17214 17214 
C 23704 22449 22301 22233 22233 22233 

paper2 82199 L 47752 36492 33537 28361 26510 26510 
F 45226 36043 33348 28508 26632 26632 
S 47588 36464 33490 28363 26507 26507 
G 46569 36321 33425 28390 26525 26525 
C 37156 35365 35190 35142 35111 35111 

paper3 46526 L 28077 21506 19823 16615 16615 16615 
F 26577 21336 19819 16713 16713 16713 
S 27867 21446 19807 16605 16605 16605 
G 27201 21350 19743 16584 16584 16584 
C 22649 21588 21472 21486 21486 21486 

paper4 13286 L 7745 5994 5587 5256 5256 5256 
F 7413 5970 5608 5324 5324 5324 
S 7691 5985 5591 5268 5268 5268 
G 7504 5938 5558 5263 5263 5263 
C 6854 6638 6618 6589 6589 6589 
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paper5 11954 L 7021 5449 5126 4860 4860 4860 
F 6714 5469 5149 4913 4913 4913 
S 6961 5453 5140 4875 4875 4875 
G 6799 5406 5095 4842 4842 4842 
C 6383 6082 6101 6069 6069 6069 

paper6 38105 L 21995 16222 14981 12616 12616 12616 
F 20965 16198 15057 12803 12803 12803 
S 21857 16244 14996 12664 12664 12664 
G 21289 16124 14919 12633 12633 12633 
C 17247 16356 16312 16278 16278 16278 

progc 39611 L 22363 16665 14947 12794 12794 12794 
F 21834 16788 15166 13003 13003 13003 
S 22250 16609 14934 12793 12793 12793 
G 21941 16585 14930 12835 12835 12835 
C 17666 16622 16520 16617 16617 16617 

progl 71646 L 33140 22153 19255 16849 16003 16003 
F 31873 22210 19466 17115 16261 16261 
S 33226 22101 19257 16885 16016 16016 
G 32178 21897 19138 16831 16006 16006 
C 22238 20679 20569 20500 20500 20500 

progp 49379 L 23520 15405 13442 10959 10959 10959 
F 22313 15488 13511 11112 11112 11112 
S 23610 15426 13481 10965 10965 10965 
G 23013 15233 13316 10914 10914 10914 
C 15496 14257 14192 14137 14137 14137 

trans 93695 L 50388 34242 28802 21194 18245 18245 
F 49164 34706 29347 21681 18643 18643 
S 50439 34353 28937 21302 18377 18377 
G 49657 34094 28740 21211 18255 18255 
C 25252 23215 23068 23125 23089 23089 

Binary 
geo 102400 L 81793 71240 68545 63991 62578 62342 

F 79057 69793 67502 63710 62519 62266 
S 81943 71187 68679 64424 62992 62776 
G 82043 71484 68737 64111 62645 62403 
C 85048 75257 73403 71219 70896 70802 

obj1 21504 L 13471 10938 10366 10516 10516 10516 
F 13774 11355 10771 10867 10867 10867 
S 13656 11025 10480 10588 10588 10588 
G 13539 10952 10386 10549 10549 10549 
C 14078 12862 12698 12686 12686 12686 

obj2 246814 L 143312 100862 92374 83723 82503 81340 
F 145145 104063 95635 86702 85387 84230 
S 146074 102413 93763 84883 83581 82334 
G 144961 101347 92748 83941 82672 81493 
C 113503 104951 103560 103119 103809 104279 

pic 513216 L 62177 53650 52710 52045 51970 51848 
F 59495 53549 52575 52205 52188 52092 
S 63397 54227 52867 52115 52046 51932 
G 63645 54176 53006 52214 52110 51958 
C 67468 64350 63948 63632 63694 63652 

L Lexical ordering 
F Empirical frequency ordering 
S Pre-set frequency ordering based on natural language style 
G Ordering refer a new symbol list that form by the symbol's properties 
C High order symbol remapping 
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Table 4.-1 Compression Result of baseline Content Prediction Varies on Context Length 

File Size Context Order 
8 12 17 30 64 

Text 
bib 111261 32443 32396 32402 32402 32402 

book1 768771 287589 287562 287581 287582 287587 
book2 610856 194017 193909 193908 193883 193880 
news 377109 141485 141287 141261 141230 141285 

paper1 53161 18053 18016 18012 18002 18004 
paper2 82199 28123 28076 28068 28066 28069 

progc 39611 13454 13435 13432 13440 13439 
progl 71646 17245 17151 17115 17064 17038 

progp 49379 11997 11742 11646 11548 11524 
trans 93695 20158 19881 19790 19603 19562 

Binary 
geo 102400 68747 68683 68683 68658 68657 
obj1 21504 11518 11511 11480 11481 11481 
obj2 246814 86424 86106 85958 85836 85832 

pic 513216 54166 54249 54281 54285 54284 

• The Block Size available for the testing is 64K. 

Table 4.-2 Compression Result of baseline Content Prediction Varies on Block Size 

File Size Block Size 
4K 8K 16K 32K 64K 

Text 
bib 111261 43174 39553 36308 33781 32402 

book1 768771 341310 325308 310862 298403 287581 
book2 610856 240858 225501 212562 202106 193908 
news 377109 166317 159203 153044 147533 141261 

paper1 53161 20730 19496 18643 18217 18012 
paper2 82199 33032 31269 29899 28567 28068 

progc 39611 15056 14079 13571 13428 13432 
progl 71646 18843 17917 17529 17179 17115 

progp 49379 12851 12181 12009 11821 11646 
trans 93695 28430 24182 22187 20216 19790 

Binary 
geo 102400 71809 70116 69484 69008 68683 
obj1 21504 11493 11421 11474 11480 11480 
obj2 246814 91823 89394 87740 86091 85958 

pic 513216 54016 54087 54173 54240 54281 

• The context Order sets to 17 for the tests. 
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Table 5.-1 Performance of Bounded-Length Block Sorting 

File Size Context Order 
1 2 3 4 

left right left right left right left right 
Text 

bib 111261 1 57475 57792 45900 46031 37225 37331 33925 34103 
2 53599 53624 41244 41571 33437 33390 30568 30519 
3 56950 57441 45241 45401 36557 36754 33649 33827 
4 53065 53203 40545 40822 32750 32761 30320 30191 

book1 768771 1 393857 392716 329739 330461 285516 285783 265694 265861 
2 392795 390769 319448 317380 271809 269820 250462 248800 
3 392373 391464 325337 326034 279497 280077 259435 259988 
4 390839 389169 314046 311723 264684 262629 243653 241705 

book2 610856 1 306744 307131 243884 244349 201246 201035 184510 184092 
2 304674 304278 234565 234129 189477 188788 172109 170984 
3 305888 306287 240920 241212 197640 197374 181277 180932 
4 303698 303399 231183 230535 185799 184757 169086 167753 

news 377109 卞 205763 207159 166525 167476 142972 142943 134849 134446 
2 203538 204126 160995 161063 136456 135815 128051 127029 
3 205206 206601 165455 166357 142220 142180 134473 134156 
4 202851 203436 159746 159722 135432 134827 127384 126406 

paper1 53161 1 27545 27624 22195 22201 19311 19306 18447 18402 
2 26735 26731 21113 21026 18339 18231 17545 17376 
3 27464 27538 21957 21964 19180 19173 18441 18399 
4 26643 26631 20871 20776 18214 18087 17564 17402 

paper2 82199 1 42185 42185 34442 34487 29697 29788 28204 28301 
2 41212 41289 32851 32756 28066 27890 26661 26513 
3 42067 42068 33983 33999 29259 29399 27941 28067 
4 41027 41121 32317 32119 27619 27445 26417 26250 

paper3 46526 1 24519 24465 20714 20640 18213 18150 17549 17425 
2 23898 23910 19795 19652 17323 17154 16692 16444 
3 24470 24414 20524 20437 18035 17984 17488 17379 
4 23820 23823 19569 19388 17126 16960 16636 16374 

paper4 13286 1 7220 7182 6111 6084 5614 5595 5528 5495 
2 6980 7000 5839 5834 5348 5359 5258 5266 
3 7204 7164 6065 6041 5603 5584 5552 5520 
4 6962 6969 5777 5775 5333 5346 5278 5285 

paper5 11954 1 6563 6560 5564 5551 5203 5184 5116 5096 
2 6345 6362 5345 5356 5000 4970 4914 4884 
3 6546 6540 5524 5508 5200 5200 5143 5132 
4 6324 6327 5304 5317 4992 4987 4936 4923 

paper6 38105 1 19899 19751 16058 15945 14029 14000 13556 13494 
2 19087 19033 15272 15181 13347 13303 12912 12822 
3 19830 19685 15889 15776 13955 13968 13609 13562 
4 19001 18987 15090 15033 13277 13263 12976 12890 

progc 39611 1 20149 20026 15704 15697 14302 14253 13869 13755 
2 19296 19360 14993 14984 13550 13453 13176 13127 
3 19986 19881 15543 15532 14206 14202 13937 13841 
4 19127 19235 14853 14899 13559 13547 13258 13236 

progl 71646 1 31376 31369 22778 22771 19505 19497 18694 18657 
2 29323 29540 20819 20926 17680 17787 17028 17108 
3 31176 30987 22474 22407 19496 19471 18889 18871 
4 29236 29211 20499 20594 17794 17919 17299 17389 
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progp 49379 1 21644 21423 15559 15476 13318 13283 12885 12870 
2 20719 20579 14587 14384 12376 12212 11957 11790 
3 21395 21206 15295 15224 13345 13291 12991 12961 
4 20459 20341 14256 14184 12347 12273 12030 11966 

trans 93695 1 43360 43658 31310 31375 24525 24400 22226 22043 
2 40157 40185 28174 28171 22354 22402 20430 20425 
3 42848 43163 30925 30960 24601 24505 22837 22601 
4 39860 39926 27989 27956 22528 22541 21032 20981 

Binary 
geo 102400 ^ 64849 70073 64895 67423 64992 66638 64813 66289 

2 61676 67534 60125 63249 60063 61945 59888 61552 
3 64058 69742 64786 67201 64904 66512 64750 66221 
4 60420 66852 59976 62869 59958 61727 59772 61394 

obj1 21504 t 13110 12831 11878 11596 11567 11463 11556 11512 
2 12546 12281 11508 11330 11251 11237 11237 11270 
3 12964 12700 11820 11551 11566 11476 11554 11520 
4 12471 12228 11454 11277 11229 11229 11221 11267 

obj2 246814 1 114246 116067 95012 97023 89082 89855 87582 86706 
2 111293 112036 90959 92499 85324 86029 84116 82985 
3 113202 115385 94674 96681 89154 90233 88071 87719 
4 110345 111299 90711 92174 85481 86419 84704 84033 

pic 513216 f 69971 68764 66703 65918 66010 65362 65581 64840 
2 65070 64603 63032 62574 62530 62086 61994 61502 
3 62047 60661 58866 57960 57988 57173 58933 58061 
4 57391 56852 55382 54845 54706 54176 55447 54921 

File Size Context Order 
5 6 7 8 

left right left right left right left right 
Text 

bib 111261 1 32744 32827 32434 32507 32339 32347 32295 32251 
2 29470 29436 29265 29186 29210 29047 29177 28976 
3 32759 32791 32568 32588 32539 32488 32519 32423 
4 29510 29336 29407 29200 29414 29113 29406 29066 

book1 768771 1 258619 258652 255797 255821 254709 254708 254270 254304 
2 243629 242036 241244 239564 240314 238588 240023 238281 
3 252854 252858 250282 250232 249440 249343 249180 248994 
4 237548 235364 235445 233181 234720 232407 234571 232165 

book2 610856 1 178869 178565 176891 176775 176112 176022 175972 175876 
2 166766 165693 164993 164126 164383 163513 164294 163366 
3 176082 175755 174543 174300 174028 173615 174043 173518 
4 164244 162819 162879 161519 162430 160946 162436 160873 

news 377109 1 132407 131949 131463 131064 131048 130717 130828 130493 
2 125678 124592 124757 123783 124331 123432 124119 123232 
3 132337 132109 131690 131414 131388 131190 131218 131025 
4 125365 124401 124736 123794 124444 123563 124287 123434 

paper1 53161 1 18262 18184 18149 18103 18118 18055 18098 18025 
2 17370 17178 17277 17125 17245 17067 17224 17038 
3 18322 18245 18235 18211 18209 18191 18200 18173 
4 17454 17274 17394 17255 17366 17227 17355 17216 

paper2 82199 1 27794 27787 27710 27661 27697 27645 27690 27614 
2 26307 26090 26233 26006 26219 25983 26234 25956 
3 27574 27643 27539 27569 27524 27565 27531 27540 
4 26121 25909 26095 25863 26083 25861 26103 25844 
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paper3 46526 1 17353 17268 17348 17274 17339 17269 17341 17251 
2 16502 16315 16510 16317 16502 16319 16502 16316 
3 17339 17276 17340 17280 17353 17282 17349 17274 
4 16503 16301 16507 16307 16522 16316 16510 16317 

paper4 13286 1 5526 5491 5525 5497 5524 5502 5521 5503 
2 5251 5263 5257 5259 5257 5261 5255 5259 
3 5556 5527 5555 5535 5557 5538 5559 5541 
4 5277 5292 5280 5291 5281 5295 5281 5292 

paper5 11954 1 5108 5067 5098 5058 5097 5064 5095 5065 
2 4907 4859 4895 4853 4891 4858 4891 4859 
3 5137 5121 5135 5117 5134 5116 5132 5118 
4 4933 4915 4931 4912 4930 4916 4930 4919 

paper6 38105 1 13407 13364 13351 13300 13338 13275 13314 13260 
2 12791 12724 12748 12681 12730 12667 12711 12660 
3 13497 13476 13456 13438 13457 13416 13439 13406 
4 12888 12827 12865 12810 12863 12794 12856 12792 

progc 39611 1 13756 13655 13728 13592 13687 13559 13677 13553 
2 13105 13066 13096 13009 13056 12985 13055 12979 
3 13869 13794 13851 13747 13833 13716 13829 13717 
4 13230 13216 13220 13179 13205 13165 13209 13158 

progl 71646 1 18231 18225 17954 17947 17659 17649 17483 17456 
2 16645 16781 16440 16578 16265 16412 16132 16266 
3 18576 18527 18414 18385 18179 18186 18059 18050 
4 17036 17140 16900 17019 16740 16903 16658 16795 

progp 49379 1 12679 12698 12444 12387 12359 12364 12222 12232 
2 11765 11610 11561 11441 11486 11403 11382 11298 
3 12861 12854 12757 12689 12679 12648 12604 12561 
4 11932 11881 11829 11749 11778 11731 11727 11658 

trans 93695 1 21304 21083 20840 20661 20517 20338 20264 20182 
2 19659 19548 19243 19149 18959 18888 18821 18780 
3 22187 21985 21843 21625 21649 21415 21495 21363 
4 20543 20420 20256 20094 20102 19927 19991 19884 

Binary 
geo 102400 1 64744 66239 64745 66221 64704 66203 64689 66182 

2 59818 61493 59805 61469 59764 61421 59723 61368 
3 64684 66178 64694 66194 64642 66162 64634 66163 
4 59706 61348 59736 61369 59675 61300 59653 61289 

obj1 21504 1 11547 11529 11542 11542 11544 11547 11547 11553 
2 11230 11280 11218 11287 11221 11293 11220 11295 
3 11549 11529 11557 11546 11554 11543 11557 11545 
4 11221 11268 11223 11285 11219 11278 11219 11277 

obj2 246814 1 85945 85377 85748 84946 85734 84770 85509 84439 
2 83005 82415 82917 82107 82869 82041 82709 81734 
3 86929 86712 86845 86388 86937 86296 86807 86052 
4 83903 83549 83904 83347 83942 83330 83879 83082 

pic 513216 1 64639 63920 64405 63687 63920 63169 63284 62602 
2 60918 60474 60752 60360 60351 59930 59631 59294 
3 57529 56638 57289 56369 57841 56898 56960 56007 
4 53920 53420 53749 53234 54307 53800 53379 52856 

1 Move-To-Front Coding and Arithmetic Coding 
2 Move-To-Front Coding and Arithmetic Coding with 3-ary model 
3 Move-To-Front Coding with adaptive frequency ordering & Arithmetic Coding 
4 Move-To-Front Coding with adaptive frequency ordering & Arithmetic Coding with 3-ary model 
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Table 5.-2 Performance of Bounded-Length Block Sorting with using cache model 

File Size Context Order 
1 2 3 4 5 6 7 8 

Text 
bib 111261 51483 39115 31852 29004 27863 27524 27354 27257 

book1 768771 370748 299429 254006 235159 228693 226291 225449 225167 
book2 610856 289027 221381 177931 161450 156450 154925 154271 154083 
news 377109 195013 153093 129163 121017 118448 117540 117101 116903 

paper1 53161 25407 20182 17707 16859 16649 16555 16497 16481 
paper2 82199 39025 30992 26827 25419 24997 24873 24849 24835 
paper3 46526 22650 18748 16657 15917 15730 15725 15729 15714 
paper4 13286 6609 5656 5179 5072 5066 5068 5081 5077 
paper5 11954 6021 5209 4873 4757 4723 4709 4713 4718 
paper6 38105 18043 14611 12960 12450 12319 12277 12251 12233 

progc 39611 18189 14382 12989 12580 12514 12461 12431 12427 
progl 71646 27892 20202 17159 16380 16072 15826 15644 15512 

progp 49379 19354 13900 11900 11428 11209 11054 11009 10933 
trans 93695 38023 27118 21862 19719 18852 18442 18207 18085 

Binary 
geo 102400 60527 57766 56921 56724 56647 56618 56595 56554 
obj1 21504 11335 10361 10244 10277 10293 10304 10308 10315 
obj2 246814 104114 85829 79534 76584 75745 75473 75361 74985 

pic 513216 53902 53237 52912 52088 52050 52009 51438 51181 

Table 5.-3 Comparison among the best lossless compression algorithms 

File Size BS-BCL GZIP PPM* PPMD+ PPMZ BW95 BS-SM 
Text 

bib 111261 1.96 2.51 1.91 1.86 1.771 2.02 1.95 
book1 768771 2.34 3.25 2.40 2.30 2.235 2.48 2.39 
book2 610856 2.02 2.70 2.02 1.96 1.887 2.10 2.04 
news 377109 2.48 3.06 2.42 2.35 2.280 2.56 2.50 

paper1 53161 2.48 2.79 2.37 2.33 2.263 2.52 2.46 
paper2 82199 2.42 2.89 2.36 2.32 2.245 2.50 2.41 
paper3 46526 2.70 3.11 
paper4 13286 3.05 3.33 
paper5 11954 3.15 3.34 
paper6 38105 2.57 2.77 

progc 39611 2.51 2.68 2.40 2.36 2.293 2.54 2.49 
progl 71646 1.73 1.80 1.67 1.68 1.505 1.75 1.72 

progp 49379 1.77 1.81 1.62 1.70 1.549 1.74 1.70 
trans 93695 1.54 1.61 1.45 1.47 1.273 1.52 1.50 

Binary 
geo 102400 4.42 5.34 4.83 4.73 4.476 4.73 4.50 
obj1 21504 3.81 3.84 4.00 3.73 3.712 3.88 3.87 
obj2 246814 2.43 2.63 2.43 2.38 2.287 2.53 2.46 

pic 513216 0.80 0.80 0.85 0.80 0.770 0.79 0.77 

BS-BCL Block Sorting with a Bounded Context Length in this thesis 
PPM* a recently published unbounded context version of PPM 

PPMD+ a further-improved version of PPM 
PPMZ a mixture of several PPM variance by Bloom C. 
BW95 Block Sorting + run-length coding + historical context from recent codings 
BS-SM Block Sorting with structured coding model by Fenwick P. 
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Appendix - B 

Image Compression Standards 

In the past years, a number of compression standards have emerged and a number is now 
being developed. Although it would be convenience to use only one general image compression 
standard, a growing number of standards are developed because of enhanced processing power, 
dedicated hardware, new compression techniques, and networks with different bandwidths. 

Each compression standard supports a specific image application. It is difficult to choose 
the correct compression standard for a specific application. As is true of compression in general that 
there does not exist one best compression algorithm, the same is true of image compression: there 
is no best standard. Some applications require fast real-time encoding, at the cost of the 
compression factor, while other applications want maximum compression at encoding that need not 
be done real-time, as long as decoding is real-time. 

Compression algorithm can be categorized in two groups: lossless and lossy compression. 
Lossless algorithms generate exactly the same bit pattern of an object after decompression as 
before the object was compressed. These compression algorithms are used for text and computer 
binary files. Lossy compression algorithms, however, may lose some information during 
compression. In a good lossy compression algorithm, the lost information is not visible in case of a 
picture. Most lossy compression algorithms have the ability to specify a quality-setting that 
determines how much quality (information) may be lost for a higher compression ratio. 

Lossy compression algorithms are useful for compression of samples data. This data is 
analog data from a microphone or a camera that is converted to a digital approximation. Therefore, 
lossy compression algorithms that change the data slightly are not catastrophic. Lossy compression 
followed by decompression, however, cause quality loss that can better be avoided by reducing the 
number of compression-decompression operations for a picture. If a picture must be manipulated 
(in the image space), it can best be store as raw data between the image operations. 

DCT transformation 

A transformation that is useful in image compression is the DCT. This transformation 
converts a n x n block of elements into another block of n x n coefficients. These n x n 
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coefficients represent two-dimensional unique spatial frequencies. The DCT function is reversible 

by using an IDCT function. 

The first coefficients, which has a zero horizontal and vertical frequency，is called the DC-
coefficient ad is equal to the average value ofthe original elements. The other coefficients are called 
AC-coefficients and represent the dimensional spatial frequencies. 

The DCT and IDCT are lossless if the DCT encoded data are stored with perfect accuracy. 

In practice, however, the coefficients are stored as integers which can introduce small differences 

with the original data after the IDCT decoding. 

If the DCT transformation is applied to blocks of pixels, higher spatial frequency coefficients 
become (near) zero because most pixels next to each other differ little in value. If relative more bits 
are used to encode the lower frequency coefficients than the higher frequency coefficients, a (lossy) 
compression method is created. 

Fractal compression 

Fractal compression is one of the latest techniques in lossy image compression. Fractals 
are images that recursively contain themselves. They are defined by a number of translations that 
include re-scales, rotations and dimensional flips. If you zoom into a fractal image，it appears that 
the image has an infinite resolution, but it is actually a part ofthe same image that reappears in itself. 
The idea behind fractal compression is to automatically find a fractal that resembles the image that 
must be compressed. A mayor advantage of fractal compression is the ability to decompress the 
image to any given resolution. The first implementation of such an algorithm was implemented by 
Arnaud Jacquin and was capable of compression from 8:1 to 50:1 while remaining reasonable 
quality. This implementation searches a combination of transformations that represent the image 
the best. Unfortunately, the search to find this transformation is very computationally intensive. 

Wavelet compression 

A relative new and promising development in the area of lossy compression is the use of 
wavelet transformation. An important characteristic of this transformation is that if it is applied on a 
time-domain signal, it results in a representation that is localized in time domain as well as in 
frequency domain. Compared to the Fast FourierTransform (FFT) that is ofan order of N x l0g2(A/) 
for N elements, a fast wavelet transform has an order of N for the same number of elements. 
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Figure B.-1 Construction of image multi-resolution pyramid from one dimensional transformation 

The wavelet transformation converts a sample of 2^ value into 2 " i approximation wavelet 
transform coefficients and 2 " i detail wavelet transform coefficients. This transformation can be 
repeated over the generated approximation wavelet transform coefficients a number of times, until 
the minimum number of 2 approximation transform coefficients and 2^"^ detail transform 
coefficients remain. A flow of wavelet transformation is shown in Figure B.-1. The number of 
transformation is called the number of levels of the wavelet transformation. The wavelet 
transformation is reverse, so applying the reverse wavelet transformation a number of times (equal 
to the number of levels) on the generated wavelet coefficients, the original sample is recomposed. 

Wavelet compression is obtained by only storing those coefficients of the wavelet 
transformation that have an amplitude above a certain threshold together with the place of those 
coefficients in the transformed domain. Because the coefficients are also time-domain, high 
contrast edges are maintained at the cost of low contrast areas. By using quantization and entropy 
encoding in combination with wavelet transform the number of bits needed to store the wavelet 
coefficients are further reduced. 
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Appendix 一 C  

Human Visual System Characteristics 

Contrast 
The HVS is less sensitive to small changes in intensity at high average intensities, than at low. 

Contrast sensitivity function 、 

The CSF provides a relationship between contrast sensitivity and spatial frequency. It shows 
that the HVS is relatively insensitive to low power stimulus at low frequencies. The HVS is 
most sensitive at midrange frequencies (about 4 cycles/degree). 

Spatial masking 
Spatial masking is the reduced visibility of a stimulus which occurs when the stimulus is in the 

close vicinity of a large change in background luminance. 

Texture masking 
Texture masking is the reduced visibility of a stimulus which occurs when the stimulus is in a 
textured region -> the HVS is less sensitive to variations in the true image signal in high activity 

* 

regions, than in low activity (predominantly homogeneous) regions. 

In addition to these characteristics, the HVS also gains a lot of visual information from 

strong edges. Thus, enhancing the edges in images can often make the image a lot easier to 

identify. Conversely, image compression techniques which blur or corrupt edges make the image 

harder to recognize. 
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Appendix - D  

Lossy Compression Results 

Table 6.-7 Coding results of some common testing files 

Context-based Wavelet coding RD-OPT-based JPEG coding SPIHT 

Image Files Bit Rate Bit Rate Bit Rate 

0.25 0.5 1 0.25 0.5 1 0.25 0.5 1 

baboon 23.2133 25.1489 28.5712 22.7731 25.0552 28.5025 23.27 25.65 29.18 
barbara 27.6113 31.7366 36.8681 27.2621 30.9965 36.1806 28.13 32.11 37.45 

boat 31.0326 34.6070 39.2015 29.6493 33.3515 37.9509 30.97 34.45 39.12 
bridge 24.8725 27.3441 30.3274 24.5500 26.8181 30.1307 24.96 27.27 30.7 
couple 29.2384 32.1580 36.2334 28.3905 31.6366 35.7161 29.25 32.45 36.58 
crowd 30.1120 33.6093 38.7034 28.7494 32.5156 37.3249 30.15 33.89 38.86 
flower 38.4927 42.5803 46.0657 35.4212 40.5217 45.3400 38.55 42.90 46.32 

girl 33.8983 37.3965 41.3543 32.5401 36.5000 40.9206 34.05 37.58 41.6 
goldhill 30.4417 33.1257 36.2769 29.6544 32.3899 35.9370 30.56 33.13 36.55 
hustler 37.7418 41.1494 44.7978 35.4605 39.7069 44.3021 37.75 41.21 44.87 

lake 28.6411 31.3192 34.3927 27.5493 30.6384 34.0602 28.68 31.57 34.82 
lena 33.8059 36.8749 39.9889 31.9067 35.5014 39.2184 34.15 37.25 40.46 
man 29.9670 32.7883 36.8225 28.8248 31.8240 35.8354 30.01 33.08 37.34 

marie 38.3774 42.0622 45.3402 35.4549 40.2445 44.7026 38.38 42.29 45.54 
peppers 33.3738 35.6458 38.1847 31.4205 34.4931 37.5288 33.53 35.84 38.39 

plane 32.5410 36.4464 40.7925 30.6890 34.7888 39.5474 32.64 36.65 41.23 
tiffany 31.0022 33.8792 37.0284 29.3946 32.3195 35.9604 31.11 33.98 37.41 

woman 40.0107 42.2931 45.3713 37.6965 41.1323 44.6656 40.20 42.54 45.75 
zelda 37.1661 39.4859 42.1429 35.1151 38.3670 41.5707 37.43 39.59 42.08 

Context-based Wavelet coding The context-based image compression algorithm that proposed in 
this thesis. 

RD-OPT-based JPEG compression Optimizing the DCT quantization tables in an image-specific manner, 
rather than uniform scalar quantization in normal JPEG. It is the best 
result for DCT-based compression algorithm [RL95]. 

SPIHT Wavelet image Compression with Set Partitioning in Hierarchical 
Trees. It is the state-of-art now. 
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