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Abstract

In this thesis we will survey some analytic results related to rough isome-
tries between Riemannian manifolds. The concept of rough isometry is first
introduced by Kanai. Since to be roughly isometric is an equivalent rela-
tion, we would expect that there are some invariants share with roughly
isometric manifolds. Kanai showed that the volume growth rate, the isoperi-
metric inequality and the existence of positive Green function are examples
of these invariants. He also proved that a manifold has Liouville property of
positive harmonic functions if it is roughly isometric to a Euclidean space.
After Kanai, Holopainen used similar method to prove that the Liouville
D,-property is another roughly isometric invariant. In all results above,
the assumption on positive injectivity radius on manifolds was used. Later
Coulhon and Saloff-Coste used a different method to study rough isometries.
They didn’t use the assumption on positive injectivity radius. They showed
that some Sobolev inequalities, which are equivalent to some isoperimetric
inequalities, are uniformly roughly isometric invariant. They also proved
that the Poincaré inequality is also preserved under uniform rough isome-
tries. Combine with a previous result given by Grigor’yan and Saloff-Coste
independently, which gave an equivalent statement of parabolic Harnack in-
equality, they found that the parabolic Harnack inequality is a uniformly
roughly isometric invariant.
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Chapter 1

Introduction

In this chapter, we give the definition of rough isometries between two metric
spaces and discuss some basic properties of them.

1.1 Rough Isometries

Let X be a metric space. For a point z in X, B,(z) denotes the open
r-ball around z: Moreover for a subset Y of X we denote by B.(Y) the
r-neighborhood of Y; B,(Y) = {z € X : d(z,Y) < r}. A subset Y of X

is called e-full in X for e > 0 if X = B.(Y), and is said to be full if it is
e-full for some € > 0.

Definition 1.1 A map ¢ : X; = X, between two metric spaces X, and X,

not necessarily continuous, is called a rough isometry, if
1. the image of ¢ s full in X,

2. there exists constants a > 1 and b > 0 such that

atd(z,y) — b < d(p(z), ¢(y)) < ad(z,y) + b, Vz,y € X;.



We can easily show that if o : X - Y and ¢ : Y — Z are rough isometries
then so is the composition ¥ o : X — Z and we have a mapping ¢! : Y —
X such that both d(¢~'oy(z),z) and d(po¢p~'(y),y) are bounded in z € X
and in y € Y, respestively. In fact, for each y € Y, choose z € X so that
d(¢(z),y) < €, where we assume that the image of ¢ is e-full in Y, and put
¢ 1 (y) = . We call ¢! a rough inverse of ¢. Two metric space is said to
be roughly isometric if there is a rough isometry between them. Therefore
we have

Proposition 1.1 To be roughly isometric defines an equivalent relation.

We give some basic examples of rough isometries.

Example 1.1 An arbitrary mapping between two compact metric spaces s
a rough isometry. Therefore any two compact metric spaces are roughly iso-

metric.

Example 1.2 If X and Y are roughly isometric, then X and Y x K are
roughly isometric where K is an arbitrary compact metric space. In other

words, rough isometries neglect ”compact factors”.

Definition 1.2 A diffeomorphism ¢ of two Riemannian manifolds X onto

Y is called a quasi-isometry if there is a constant a > 1 such that

a V(€] < |dp(€)] < alé], VE € TX.

Another kind of isometries is so called pseudo-isometries introduced by
Mostow [Mo)].

Definition 1.3 A pseudo-isometry of X into Y is a continuous map satis-

fying
a~td(zy, 12) — b < d(o(z1), 9(x2)) < ad(z1,2), VIT1,20 € X

with suitable constants a > 1 and b > 0.
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Example 1.3 Both quasi-isometries and pseudo-isometries are rough isome-
tries.

Since we have not assumed a rough isometry even to be continuous, the local
geometry of a manifold does not brought into another manifold by a rough
isometry. So we need some additional conditions on rough isometries and
Riemannian manifolds which governs local geometries of the manifolds. On
a Riemannian manifold, there is a natural Riemannian measure. So we can

consider a Riemannian manifold as a metric measure space and we have the
following definition.

Definition 1.4 Let X; and X, be two metric measure spaces. A rough isom-
etry ¢ from X; to X, is said to be uniform if there exists constant C > 0

such that
C~'i(z,1) < Va(p(z),1) < CVi(z,1), Vz € X;,

where Vi(z,1) and Va(p(x),1) are measure of By(z) in X; and Bs(p(z)) in
Xo.

In general, uniform rough isometries does not define an equivalence relation.
But it define an equivalence relation in manifolds satisfy the local volume

doubling property.
Definition 1.5 A complete Riemannian manifold X is said to be satisfies

the local volume doubling property if Vr > 0, 3C, > 0 such that Vz € M, we

have
Vi(z,2r) € C.V(z,7)
where V (z,r) denotes the volume of the ball with center z and radius r.

Another local geometric property which will be used later is the local Poincaré
inequality.



Definition 1.6 A complete Riemannian manifold X is said to satisfy the
local Poincaré inequality if Yo > 1, r > 0, 3Cy, > 0 such that Vf €
C*®(M), z € M, we have

(/B(:c,r) ) = @ dy)' < Cmr(/B V£ @)l7dy)"/”

(z,2r)
where f'r (IL‘) = ﬁ,r)' fB(:c,r) f(y)dy

From [B] and the Bishop comparison theorem [BC], we have

Lemma 1.1 If the Ricci curvature of a complete Riemannian manifold is
bounded below, then both local volume doubling property and local Poincaré

inequality will be satisfied.

Lemma 1.2 If two complete Riemannian manifold have bounded below Ricci
curvature and positive injectivity radii, then every rough isometries between

them are uniform.

Proof:

Suppose X; and X, are manifolds of dimensions n; and n, with positive
injectivity radius and Ricci curvature bounded below from —(n; — 1)K?,
¢ =1,2, where K > 0. Let ¢ be a mapping from X; to X5, then from Bishop
comparison theorem, we have

Vi(z,1) < Vk(1), Vz € X.

where Vi (1) is the volume of a geodesic ball of radius 1 in the simply
connected complete Riemannian n;-manifold of constant sectional curvature
-K2.
On the other hand,

Va(o(z),7) 2 vor™
where 7 = min{1,inj(X3)/2 > 0} and v, is a positive constant depending
only on dimension of X, [Cr].
Therefore

Vitz, 1) < ZEWy o0, ) <

VT2



Since the above inequality is true for any ¢, the proof of the lemma is com-
pleted by exchanging X; and X,. ]

1.2 Discrete approximation of

Riemannian manifolds

In [Mi], Milnor gives examples of pairs of Riemannian manifolds roughly
isometric to each other, and suggests the method of discrete or combinatorial
approximation of geometries of Riemannian manifolds. Suppose that I' is a
finitely generated group with finite generator system A. For an element v # 1
of T, let |y|4 be the smallest positive integer k such that v is represented by
a product of k elements of AUA™', and put |1|4 = 0. This |- |4 is called the

word norm of I with respect to A, and satisfies the following conditions for
all g,yeT:

1. |7|a >0, and |y|a =0iff y =1,
2. |v7Ha = I7la
3. |B7la < |Bla+ |7la-

Also the word norms corresponding to two finite generator systems A and B
are equivalent; i.e., there is a constant a > 1 such that a™!|y|4 < |7|s < aly|a
for all v. Now suppose moreover that I acts freely and properly discontin-
uously on a complete Riemannian manifold X as isometry and that X/I’
is compact. Fix a point o in X and put ||y|| = p(o,v0) for v € I'. Then
obviously the following hold for all 8,7 € I':

L |7l =20, and ||y| = 0 iff v =1,
2. [y = 1l
3Byl < 18I+ llvI-

In this situation, Milnor [Mi] has shown the inequalities
o Ya—b< Il <alyla, ¥y €T,
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where @ > 1 and b > 0 are suitable constants. Now put d4(3,7) = |37'7]a.
Then dy4 is a left-invariant metric on I', called the word metric of ' with
respect to A, and the map ¢ : I' = X, 7 — 7o is a rough isometry (with
respect to the word metric d4 of I' and the Riemannian metric p of X)
satisfying the inequality

a”'da(B,7) — b < p(e((), 0(7)) < ada(B,7), VB,7 €T.

Thus we can conclude the following propposition since to be roughly isometric
is an equivalence relation.

Proposition 1.2 If a discrete group ' acts freely and properly discontinu-
ously on complete Riemannian manifolds X and Y isometries in such a way
that both X/T" and Y/T' are compact, then X is roughly isometric to Y.

Also Milnor has shown that the volume growth rate of X is dominated by
that of I'. In fact he proved

cH{yeT: yla<d T =8} <V(o,r) S c#t{y €T : |7la < dr +0'},

where @’ > 1, ¥ > 0 and ¢ > 1 are constants, and, for a set S, #S denotes
the cardinality of S. This fact suggests that geometry of the Riemannian
manifold X may be approximated by the combinatorial geometry of the dis-
crete group I'.

To establish our theorems of invariance of geometric properties of manifolds
under rough isometry, we approximate a Riemannian manifold by a combi-
natorial structure, which we call a net. In case of Milnor’s work, the orbit
['o of the action of I' on X may be considered as a net in our sense, and we
have already seen that the geometry of the discrete group I' reflects that of
the Riemannian manifold X. This is also the case with a net in a complete
Riemannian manifold. Moreover a net in a complete Riemannian manifold
has a canonical metric of combinatorial nature, which corresponds to the
word metric in the case of a finitely generated group, and we will see that
the net is roughly isometric to the manifold.

Now the scheme of the proofs of our theorems of invariance of geometric
properties under rough isometries is stated in the following form. Suppose
that the complete Riemannian manifolds X and Y are roughly isometric to
each other.



1. ‘A rough isometry between X and Y induces a rough isometry between
nets Pin X and Q in Y.

2. A discrete approximation lemma suggests that the geometries of P and
Q coincide with those of X and Y, respectively.

3. Two roughly isometric nets P and @ have the same geometry.

If the above statements are proved, then it is easy to see that X and Y have
the same geometry. We will see that the first statement is always true. The
third statement is, in general, easy to prove. So most of our work will be
concentrated in the proofs of discrete approximation lemmas.

Now we give the definition of nets.

Definition 1.7 Let P be a countable set. A family N = {N(p) :p € P} is
called a net structure of P if the following conditions hold for all p,q € P:

1. N(p) is a finite subset of P,

2. g€ N(p) iff p€ N(q).

For a point p € P, sometimes we denote ¢ € N(p) by g ~ p and q is called a

neighbor of p. By a net we mean a countable set with a net structure.

Connecting by a segment each pair of two points which are neighbors of
each other, we see immediately that a net is essentially nothing but a count-
able 1-dimensional locally finite simplicial complex without orientation, or
equivalently, locally finite countable graph.

Definition 1.8 Suppose that P is a net.

1. A sequence p = (po,--- ,p1) of points in P is called a path from p, to
p of length | if each py is a neighbor of pr_;.

2. P is called connected if any two points in P are connected by a path.
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3. For points p and q of a connected net P, d(p,q) denotes the minimum
of the length of paths from p to q. Obuviously this d satisfied the axioms

of metric. We call this d the combinatorial metric of P.

4. P is said to be uniform if sup{#N(p) : p € P} < oo, where, for a set
S, #S denotes the cardinality of it.

Lemma 1.3

1. If P is a uniform connected nets, d be the combinatorial metric of P,

then, for all > 0 and for all finite subsets S of P, the inequality
#{p€ P:d(p,S) <r} < N#S
holds, where A > 1 is a constant independent of r and S.

2. Suppose that P and @Q are connected nets, P uniform, and that ¢ :
P — Q is a rough isometry with respect to the combinatorial metrics

of P and Q. Then there is a constant p such that

#S < p#p(S)

for any finite subset S of P.

Proof:

The first statement is obvious from the definition.

We prove the second statement. Vp, g € P such that d(p,q) > a(b+1), where
a and b are constants in the definition of rough isometry,

d(¢(p), p(q)) > a~'d(p,q) — b > 1.
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Thus ¢(p) # ¢(q)-
For any finite S C P, there exists 7 € N, py, - ,p, € S such that d(p;, p;) >

alb+1), V1 < 4,5 <r, 1 # jand Vg € S, d(g,p;) < a(b+ 1) for some
1 <4 <. Then p(p;) # ¢(p;) forany 1 < 4,5 <r, i # j.
Therefore by the first statement

#S
#0(5) 27 2 oy

which complete the proof of lemma. O

Suppose that X is a complete Riemannian manifold, and let p be the Rie-
mannian metric. A subset P of X is said to be e-separated for € > 0, if
p(p,q) > € whenever p and g are distinct points of P, and an e-separated
subset is called maxzimal if it is maximal with respect to the order relation
of inclusion. Obviously a maximal e-separated subset of X is e-full in X.
Let P be a maximal e-separated subset of X. We define a net structure
N={N(p):p€ P} of Pby N(p) ={q € P:0<p(p,q) < 2¢}.

Definition 1.9 A mazimal e-separated subset of a complete Riemannian

manifold X with the net structure described above is called an -net in X.

It is easy to see that an e-net in a complete Riemannian manifold is con-
nected if the manifold is connected. In our later discussions, all manifolds
and nets are assumed to be connected unless otherwise indicated.

Lemma 1.4 Let X be a complete Riemannian manifold satisfying local vol-

ume doubling property, and let P be an e-separated subset of X. Then we

have

#{peP:z€B,(p)} <v

for all >0 and for all x € X, where v depending only on €, r and constants
in local volume doubling property. Consequently every e-net in a complete

Riemannian manifold satisfies local volume doubling property is uniform.
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Proof:

Fix 7 > 0and z € X, and put P, = {p € P : z € B,(p)}. Obviously
Be/2(p) C Byriej2(z) C Baryej2(p) holds for all pe€ P;. Also by local volume
doubling property we have V(p,e/2) > CV(p,2r + €/2), where C depends
on 7 and €. Hence with the fact that B, ;(p)’s are disjoint, we conclude

V(z,r+€/2) > > V(p,e/2)

PEP;

C(e,r) > V(p,2r+¢/2)
pEP:

> Cle,r)V(z,r+¢/2)#P;

v

ie., #P. <C™1. O

The following lemma will be a fundamental tool in later discussions, because
this lemma makes it possible to interpret the geometry of a Riemannian
manifold into the combinatorial geometry of an e-net in the manifold.

Lemma 1.5 Let X be a complete Riemannian manifold satisfies local volume
doubling property, and P an e-net in X. Then inclusion of P with combinato-
rial metric d into X with Riemannian metric p is a rough isometry. In fact

we have

1

Ep(pl,pz) < d(p1,p2) < ap(p1,p2) +b, Vp1,p2 € P, (1.1)

where a > 1 and b > 0 are constants depending only on € and the constants

in local volume doubling property. Consequently P is roughly isometric to X.

Proof:

The first inequality in (1.1) trivially holds (without the assumption on local
volume doubling property ). we prove the second inequality in (1.1). Sup-
pose that p;,p, are arbitrary distinct points of P. Let v be a minimizing
geodesic from p; to p, with unit speed. Put P, = {¢ € P : B.(q) N~y #
@}. Obviously {B:(q) : ¢ € Py} covers 7, and d(p1,p2) < #P,. More-
over take the positive integer k so that k — 1 < d(py,p2)/2¢ < k, and let
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zo(= p1),Z1,"** , Tk—1, Tk(= p2) be the points on 7 such that d(z;_,,z;) =
d(p1,p2)/k for j = 1,--- k. Then ¢ € B.(y) C U5_(Bac(z;) for all ¢ € P,,
and therefore P, C Us_o{q € P : z; € Byg}. Hence from Lemma 1.4 we
have #P, < S_o#{q € P : z; € By (q)} < v(k +1) < v(d(p1,p2)/2¢ + 2).
Thus we conclude d(p;, p2) < v(p(p1,p2)/2€ + 2). O

The above lemma especially suggests that any two nets in a complete Rie-
mannian manifold satisfies the local volume doubling property are roughly
isometric to each other.

Definition 1.10 Suppose m is a strictly positive function on an uniform net

P and

m(z)
Cm = SUp
=y m(y)

T~y

Then (P,m) is called a ponderable net.

< oQ.

Lemma 1.6 Let P be a ponderable net. If we put V(z,n) = ¥, cp@n) m(¥),
B(z,n) ={y € P :d(y,z) < n} then

m(z) < V(z,n) < m(z)C"N", Vz € P,n € N*.

Moreover, (P,d,m) is ponderable if and only if it satisfies the local volume

doubling property.

Definition 1.11 Put for all E C P

1fllp.e = (%: |f (z)Pm(z))"/?,

write ” : ”p = “ ’ ”P,P’

and the gradient of a function f on P is defined to be

3f(z) = (X If(y) = f@))/2.

y~z
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Lemma 1.7 Let (X, p,V) be a complete Riemannian manifold satisfying lo-
cal volume doubling property and (P,d, m) be an e-net of X, where m(z) =

V(z,e). Then
1. P is ponderable.

2. The inclusion from P to X is an uniform rough isometry.

Proof:
We only need to proved that inclusion from P to X, which is a rough isometry
by Lemma 1.1, is uniform. We may assume that € < 1, then

m(B(z,1)) = m(z) = V(z,e) < V(z,1)

and
V(z,1) < CV(z,e) = Cm(z) = Cm(B(z,1)),

for any z € P. Therefore the inclusion is uniform. a

Definition 1.12 Put for all E C P

1fllp.e = (XE: |f (@)[Pm(2))'7?,

write || - [l = | - [lp,p,

and the gradient of a function f on P is defined to be

8f(z) = (X 1f(y) — f(=)P)2.

y~z

Definition 1.13 Suppose v is a function on X we associate a function

on P by

- 1
IP(.’E) - wE(x) - V(CL‘,E) L(z,e) ¢(§)d£, i g
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Lemma 1.8 Supoose M is a Riemannian manifold satisfies the local volume
doubling property. Then there exists C,C’ such that for allx € P, n € N, 1 <
p < 400 and function ¢ € C§°(M), we have

[&llp,Bam) < CllYllp,Biz.crm)-
In particular,

19llp.p < Clivllp,pr-

Proof:
W sem = X (o [ $(EEPV(,e)
p.B(a.n) V(y,€) /Be) ’
yE€B(z,n)
1
< YP(€)dE)V (y,¢)
yEBZ(i,,,) V(y,e)(/s(y,e> i
< C PP(&)dE.
B(z,(2n+1)e)
Here Lemma 1.4 is used. a

Let (6;)cp be a C™ partition of unity of M such that 6, > + on B(z,£/2), 6, =
0 on B(z,3¢/2)¢ and satisfies || V.|| < C, Vz € P.

Definition 1.14 Suppose f is a function on P, we associate a function f

on M by
f@) =3 f@)6:(v), y € M.

zeP
Similar to Lemma, 1.8, we have

Lemma 1.9 Supoose M is a Riemannian manifold satisfies the local volume
doubling property. Then there exists C,C’ such that for all z € M, r >
0, 1 <p< +oo and function f € Cy(P), we have

| fllp,B¢zr) < C|l fllp,Bez1C7))>
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where [a] denotes the integral part of a and z is a point on P with p(z,Z) < ¢

In particular,

1 llp,0r < Cllfllp,p-
If f >0, then for allz € P,n € N, we have

| fllp,Bzn) < Cllfllp,Bz,crm)
and

1£llp.p < ClI llp-

Lemma 1.10 Suppose M satisfies the local volume doubling property and
local Poincaré inequality. Then for all e > 0, 1 < p < oo there exists

C = C(g,p) such that for any x,y € M, p(z,y) < 2¢, we have

e(2) = Ye(W)[PV (z,6) < C IV(§)IPdE, Vi € C5°(M)

B(z,6¢)
Lemma 1.11 Suppose M satisfies both local volume doubling property and
local Poincaré inequality, then for all p > 1, there exists constants C,C’ s.t.

for all z € P, n € N and function ¢ € C§°(M), we have

1681158z < ClIVYllp,B@,cm)-
In particular,
16%1lp,p < ClIVllp01
Similarly, for all z € M, zZ € P such that p(z,2) < &, r > 0 and function
f € Co(P),
IV fllp.8er) < ClI6S llp,Bez 1)
and

IV fllpaa < CI6£lp,p-
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Proof:
Suppose ¥ € C§°(M)

169llp.5@ny = (3 (69(y))Pm(y))"”

yEB(z,n)

= (X 2@(2) —$)}) my)"?

yEB(z,n) 2~Y

< (X Nsup|y(2) = 9(y)IPm(y))"?

y€B(z,n) =Y

<oy [ VPV

yEB(:r n) B(y,6¢)

< o(f, . IVeEPde)”.

Here we have used Lemma 1.10 and the first inequality in Lemma 1.11 is
proved.

For the second inequality, since }°,cp V8, = 0, we have

Vi) =3 (fy) - f(2))Vb,(z), Yz € P,

yeP

and for all z € P,z € B(z,¢),

IVi(z)] < Csup{|f(y)— f(z)];d(y,z) < 2}
< C ) §f(2)

d(z,z)<2

Therefore

Lo Vi@OPE < 3 [ (Vi€

z€B(z,[C'T))

c > > l6f(@)Pm(z).

z€B(Z,[C'r]) d(z,x)<2

IA

This ends the proof of the lemma. O
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Chapter 2

Basic Properties of Rough

Isometries

2.1 Volume growth rate

Since the rough isometricity between Riemannian manifold is an equivalence
relation, we may expect that a rough isometry preserves some invariants of
manifolds. In this section we show that the volume growth rates of geodesic
balls in Riemannian manifolds are invariant under rough isometries.

Definition 2.1 Let X be a complete Riemannian manifold, and o a point in

X. Then X is said to be of polynomial growth of order k if

inf{s > 0 : limsupr~*V(o,r) < 00} = k.

T—00

X is said to be of exponential growth if
limsupr~'logV(o,7) > 0
r—00

holds.
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Obviously these definitions do not depend on the choice of a point o in X.
It is known that a complete Riemannian n-manifold of non-negative Ricci
curvature is of polynomial growth of order <n, and that a simply connected
complete Riemannian manifold of negative sectional curvature bounded away
from zero is of exponential growth. For other examples of computations of
volume growth rates, see [Mi|. In [CY], some relations between the volume
growth rate and the other attributes of a Riemannian manifold are discussed.

The purpose of this section is to prove the following theorem due to Kanai
[K1].

Theorem 2.1 Suppose that X and Y are complete Riemannian manifolds
satisfying the local volume doubling property, and that X is uniformly roughly
isometric to Y. Then X is of polynomial growth of order k (respectively of

exponential growth) if so is Y.

Corollary 2.1 The hyperbolic spaces are not roughly isometric to the Fu-

clidean spaces.

We will prove Theorem 2.1 by showing that the volume growth rate of a
manifold is approximated by that of an e-net in the manifold.

Definition 2.2 Let P be a ponderable net, and o a point in P. Then P is
said to be of polynomial growth of order k if

inf{s > 0 : limsupn™m({p € P : d(o,p) < n}) < 0} = k.
n—oo
P 1s said to be of exponential growth if
limsupn~'logm({p € P : d(o,p) < n}) >0

n—00

holds.
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Lemma 2.1 Let P and @) be ponderable nets uniformly roughly isometric to

each other. Then there exists constant C such that for allr > 0
m({p € P:d(o,p) <r}) <Cm({qg € Q:d(d,q) < ar +b}),

where o € P, o' = (o) and a,b are constants in the definition of rough
1sometry.

Proof:
Let ¢ : P — @ be a rough isometry satisfying

a 'd(p1,p2) — b < d(¢(p1), ¢(p2)) < ad(p1,p2) +b, ¥V p1,p2 € P
(2.1)

Fix o € P, and put o' = ¢(0). Then, with (2.1), we have

m({p€ P:d(o,p)<r}) = >  m(p)

peEP
d(o,p)<r

< C ) me(p)

pEP
d(o,p)<r

< C > mlg)

q
d(o’,q)<ar+b

= Cm({qgeQ:d(d,q) <ar+b})

and this implies the lemma. a

Lemma 2.2 Let P and Q be ponderable nets uniformly roughly isometric
to each other. Then P is of polynomial growth of order k (respectively of
exponential growth) if and only if so is Q.

Proof:
Applying Lemma 2.1, we have

limsupn=*m({p € P : d(o,p) < n}) < o0

n—o0
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if
limsupn™m({g € Q:d(d,q) < an+b}) <
n—o00
if
limsupn™°m({g € Q : d(0',q) < n}) < oo,

where 0 € P and o' = ¢(0).
Therefore the order of volume growth of P is not greater than that of Q.
The result follows by reversing P and Q. O

Lemma 2.3 Suppose that X is a complete Riemannian manifold satisfying
the local volume doubling property, and that P is an e-net in X. Then there
ezists constant C and C' such that for all x € X, n € N and r sufficiently

large, we have

m({p € P :d(z,p) <n}) <CV(z,C'n)
and
V(z,r) < Cm({p € P :d(z,p) < C'r}),

where T € P such that p(Z,z) < €.

Proof:
Form Lemma 1.8 and Lemma 1.9, we have

m({p € P:d(z,p) <n}) = “1||1,B(I,n) < C”iHI,B(z,C’n) < CV(z,C'n)

and

V(z,7) = 1ll,5@n < Cllllsecm < Cm({p € P d(z,p) < C'r})

for large r. O

The following lemma claims that the volume growth rate of a manifold is
approximated combinatorially.
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Lemma 2.4 Suppose that X is a complete Riemannian manifold satisfying
the local volume doubling property, and that P is an -net in X. Then X is of
polynomial growth of order k (respectively of exponential growth) if and only

if P is of polynomial growth of order k (respectively of exponential growth).

Proof:
Applying Lemma 2.3, for p € P, we have

limsupn™m({q € P : d(p,q) < n}) < oo
n—oo
if and only if
limsupr—*V(p,r) < o0.

r—00

And this implies the lemma. O

Now Theorem 2.1 follows immediately from Lemma 1.7, Lemma 2.2, Lemma
2.4, Lemma 1.4 and Lemma 1.5. In fact, take X and Y as in Theorem 2.1,
let P and @) be nets in X and Y, respectively. First note that both P and @
are ponderable. Then a uniform rough isometry between X and Y induces
a uniform rough isometry between P and ) as Lemma 1.5 suggests, and
therefore P and @) have the same growth rate. On the other hand, Lemma
2.4 says that the growth rates of P and @ coincide with those of X and Y,
respectively. Hence we conclude that X and Y have the same volume growth
rate and Theorem 2.1 is proved.

Lemma 2.5 Let P and @ be ponderable nets uniformly roughly isometric to

each other. Then

o0

n
ZmpeP dlop) <n})
iof and only of
0 n
2 e Q de <) =™
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Proof:
Suppose

(o .o]

n
< o0
2 (e Prdlo,p) <nl)
then for positive integer k > a + b

i n = Cn
Y e Q dm g il = §m{pep 6.7 <o =D

n

= m({p € P do,p) <1})

uMg

<OO

The proof is completed by reversing P and Q. O

Lemma 2.6 Suppose that X is a complete Riemannian manifold satisfying

the local volume doubling property, and that P is an e-net in X, p € P. Then

/oo Ldt < 00
1 V(p,t)

if and only if

2 e PAm g < - ™

n=1
Proof:
Suppose
v n
> - < 00.

= m({g € P:d(p,q) <n})
From Lemma 2.3, take positive integer k > C’, we have

t o0
Vet S 2
= C(n+1)

5 X_: m({g € P:d(p,q) < C'~'n})
< 0 nzl (€ P dp,g) <))
< O00Q.
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Suppose

/oo ; dt < oo
1 V(p,t) '

Again from Lemma 2.3, for sufficiently large k > C' + 1
= n o0 t
<
nzz;cm({q € P:d(p,q) <n}) ~ /k m({qg € P:d(p,q) <t—1}
/°° Ct
k. V(p,C'-l(t-1))

i o) t
< 2
< 2()0/1 V(p,t)dt

)dt

dt

< 00.
This complete the proof of lemma. a

Using the same scheme of the proof of Theorem 2.1 but replacing Lemma
2.2 and Lemma 2.4 by Lemma 2.5 and Lemma 2.6, the following theorem is

proved.
Theorem 2.2 Suppose that X and Y are complete Riemannian manifolds

satisfying the local volume doubling property, and that X is uniformly roughly

wsometric to Y. Then the volume growth condition

/oo ; dt < oo
1 V(p,t)

holds on X if and only if so does Y.

2.2 Sobolev Inequalities

Definition 2.3 Suppose 1 < p < ¢ < +oo. We say that M satisfies the
Sobolev inequality (Spq) if

IVl

Sp»q == SPJI(M) = lnf{ “w”q

Y € C° (M), # 0} > 0.
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In this case,
Spall¥lle < IVY|lp, Vo € Co°(M).

In this section we show that the validity of some Sobolev inequalities is inher-
ited through uniform rough isometries under certain conditions on manifolds.

For this we are going to consider another Sobolev inequalities of the following
forms.

Definition 2.4 M is said to be satisfies (S;5) if

[Vl
1591l

where S is an operator on C§°(M) defined by

S = 5% (M) = inf{

€ C°(M), v # 0} > 0.

Sy = Z 1/)e($)0x7

zeP

and 6, is a partition of unity as stated before Lemma 1.9 and 1. is defined
in Definition 1.13.

Lemma 2.7 Suppose M satisfies the local volume doubling property and local
Poincaé inequality. Then S operates on LP, 1 < p < +o00, and

I1SYll, < Crll¥llp, Yo € Cg°(M).

Moreover,
1% = S¥llp, < Co||VYllp, Vip € C5°(M).

Proof: ”
The first inequality holds by Lemma 1.8 and Lemma 1.9 since Sv = 1.
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For the second inequality

T
- /W) - Z Ve ()07
z€P
= [1 W) - ve@)e:)Pdy

< NY /B (3 [ (y) — ve(x)])Pdy

zeP (z:6) 2z

< Y3 [ W) - vee)Pdy

zZEP T~z

< 27INPRY (N () — ve(2)Pdy + 3 [ve(2) — e (2) PV (2,€))

ZEP B(Z,E) T~z

The result follows by applying local Poincaré inequality and Lemma 1.10. O

The following proposition tells the relation between (S, ,) and (S55,).

Proposition 2.1 Suppose M satisfies local volume doubling property and lo-

cal Poincaé inequality, then (Sp,) is equivalent to (S55,)-

Proof:

The inequality S,,(M) < CSp5,(M) follows easily from the first part of
Lemma 2.7.

Now for any ¢ € C§°(M),

Wl < v =S¥, + 1S,
< ClIVYll, + [|SY|]
< (C+ S5 (M)™VYll,
Therefore
“Vd)“P Z (C+S§<;,(M)_l)_1
191l ’
SOO
S Z P,p
b 1+ CS;;,‘;,(M)
And the result follows. O
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Definition 2.5 Suppose P is a net,

S = SylP) = inf{”“(sj{”'[lp : f € co(P), f # 0}

We say that P satisfies the Sobolev inequality (Sp4) if Spe(P) > 0. In this
case,

Spallflla < 116flp, Vf € co(P)
The following proposition is refered to [K3].

Proposition 2.2 Let P and @ be ponderable connected nets. If P is uni-
formly roughly isometric to Q, then for any 1 < p < 400 and 1 < q < 400,
P satisfies Sp 4 if and only if so does Q.

Proof:

Let ¢ : P — @ be a uniform rough isometry such that Q = UzepB(¢(), 7).
Suppose that v is an arbitrary non-negative function on ) with finite support.
Let y and y’ be points of @ with d(y,y’) = 1. Then we have

IU‘T (y’) - 'U-r(y)l

. ! Wi s v(r)m(r
= |WTIEBZW,T)U(T ym(r’) B rEB%’T) (r)m(r)|
L N —v(r))m(r)m(r’
" ) B gy, O T OmOm)
: N —o(r)|m(r)m(r’
= m(B(y,)) - m(B(y', 7)) 76%;;7)) ] =wielmirimie)
< Y () =)l

TEB(y,T)
r’eB(y’,r)

Moreover, for r € B(y,7) and " € B(y',7), connecting them by a length-
minimizing path v = (yo,--- ,y) with yo = r and y; = 7/, and of length
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[ <27+ 1, we obtain

lo(r') —v(r)| < Jo(yo) —v(yi)[+ -+ + [v(y-1) — v(w)]
< dvu(yo) + -+ + 6v(yi-1)
< Y u(y)
y"€B(y,7)
since d(y;,y) < 7 fori=0,---,l — 1, and therefore we get
lo:(¥) —v-(W)| < D du(y").
y"€B(y,7)

Thus, for any y € @), we have

dur(y) = (3 (0 () — o (®))?<C Y u(r),

Yy ENy re€B(y,T)

and

(v )P(y) C( 3o du(r))P<C 3 (v)°(r)

r€B(y,T) re€B(y,T)
by the Holder inequality and the uniformness of ). This yields

2 0u)Pmy) <CY 3 (Bu)P(r)mly) < C 3 (6v)P(y)m(y),

yeQ y€EQ reB(y,T) yeQ

since m(y) and m(r) are comparable. That is

(3= (v )P (y)m(y) /P < C(3 (v)P(y)m(y)) "> (2.2)

YEQ YyeER

Now define a finitely supported non-negative function u on P by u = v, o
¢. Note that for z,2' € P with d(z,z’) = 1, there is a constant ly such
that d(p(z),¢(z')) < lo, since ¢ is a uniform rough isometry. Therefore,
connecting ¢(z) and ¢(z') by a path v = (yo,- -+ , %) in @ with yo = p(z)
and y; = ¢(y'), and of length [ < [y, we have

|u(z) — u(z")|

|U7(y0) - v’r(yl)l
[vr(y0) — vr(y2)| + - -+ + [vr (1-1) — vr(w)]
6v-(Yo) + -+ - + dvr(Yi-1)

> du(y),

yeB(p(z),lo-1)

IA IA A
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and this implies, as above,

(fuf(z) < C( 3 dv(2))

y€B(p(z),lo—1)

c > (0w

yEB(p(x),lo—1)

IA

Hence we obtain

(3 (Su)P(z)m()) P < C (3 (6v,)P (y)m(y)) 7.

z€P yeQ
Moreover, we have

q — ; v m q
c >, v(y),

yEB(p(z),7)

Vv

and consequently we get

> ul(z) 2 ¢ ) v(y)
yeQ

since @ = UzepB(p(z), 7). This shows

(3 wi(@)m(z))1 > (3 vi(y)m(y))"e.

zEP yeQ

By (2.2), (2.3) and (2.4) we conclude

(Z 00 (W)m(y))"” (3 (uwp()m(z))"?
(3, vmw)" 2 (T w@m@)
> ¢Spq(P)

(2.3)

(2.4)

for an arbitrary non-negative function v on @ with finite support. Moreover
because dv > d|v| for any function v on @, we obtain S, 4(Q) > ¢S, 4(P).

This complete the proof of the proposition.

30

a



Lemma 2.8 Suppose M satisfies the local volume doubling property and local
Poincaré inequality, then there exists C,C’ such that for all z € M, r > 0
and ¢ € C°(M),

1S¥llp,Ber) < Clivllp,azjcrr)-
where Z € P such that p(z,2) < €. Moreover if ¥ > 0, then for all z €
P, neN,

1llp,Bem) < ClISYlp,Biz.crm).

If f € co(X) and f 20,

”f”p,B(z,n) < C”Sfllp,B(m,C’n)

Proof:

Observe that Sy = 12, the first two inequality follow easily from Lemma 1.8
and Lemma 1.9

Now if f € ¢o(P) and f > 0, we have for each z € P,

f@) = V(;,e) /B(I’E)f(y)dy

1
T ey S0
V(z,e/2)
Mo @
> cf(z)

for some constant ¢ since 6,(y) > 1/N for all y € B(z,£/2).
The last inequality then follows from Lemma 1.9. O

IV

The following approximation lemma is an immediate consequence of Lemma
1.9 and Lemma 2.8.

Lemma 2.9 Suppose M satisfies the local volume doubling property and local

Poincaé inequality, 1 < p < g < +o0o. If P is an e-net on M, then (S;3)
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on M is equivalent to (S,,) on P. More precisely, there ezists constants c,C
such that
cSpe(P) < Spo (M) < CSy o(P).

Using the same argument as in the last section, we have proved the main
theorem of this section [CS].

Theorem 2.3 Let X and Y be complete Riemannian manifolds satisfying
the local volume doubling property and local Poincaré inequality which are
uniformly roughly isometric to each other, then (Sp5,) on X is equivalent to
(Sp%) on Y for any 1 < p < g < +o0. Moreover (Spp) on X is equivalent to
(Spp) on Y.

2.3 Poincaré Inequality

We have defined the local version of Pincaré inequality in Section 1.1. We
now define the global version.

Definition 2.6 We say that a complete Riemannian manifold M satisfies
the Poincaré inequality at infinity if there exists C and for all rg and o > 1,

there exists Cyr, such that Vx € M, ¥r > 1y and YV € C§°(M), we have

(], @) =@ @)" < Comr ([ [V0()I7d0),

(z,Cr)

where
1

V(z,r) /B(:r,r) Y(E)dE.

It is known that a manifold with Ricci curvature non-negative satisfies the
Poincaré inequality [B]. To prove that the Poincaré inequality at infinity is
preserved under uniform rough isometry, we will use the same method as
before. We must first define the Poincaré inequality on a net.

Yr(z) =
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Definition 2.7 We say that a ponderable net (P,m) satisfies the Poincaré
inequality if there exists a constant C' > 1 and, for all o > 1, there exists C,

such that, for any x € P, n € N* and function f on P,

(X 1f@) = fa@l"mE)" <Con( X 18f()I"m(y))"",

yEB(z,n) yEB(z,Cn)

where
1

= v

S fy)m(y).

yEB(z,n)

Lemma 2.10 Suppose (P;,my) and (P, my) are two uniformly roughly iso-

metric ponderable nets. If (Py,m,) satisfies the Poincaré inequality, so is

(P2, my).

Proof:

We only prove the case ¢ = 1. Suppose ® : P, — P, be a uniform rough
isometry, and k € N* such that [®(P))]x = P». If f is a function with finite
support on P,, fr o ® is a function on P,. Since P, satisfies the Poincaré
inequality, Vz € P, n € N*,

> (ko ®)(y) — (fi 0 )n(@)|mu(y)

yEB(z,n)
< Cn Y 6(fro®)(y)ma(y). (2.5)
y€B(z,C'n)
Obviously,
Y M(feo®)(y)mu(y) <C1 Y Sfi(2)ma(2), (2.6)
y€B(z,Cn) z€B(z,C}n)

33



since for C] sufficiently large, B(®(z),Cin) contains ®(B(z,C'n)) and that
m2(®(y)) ~ mi(y). Now

6f(2)]* = Zlfk(Z)—fk(y)l2

y~z

y~z teB( k)

1 2
VR SEB(E(W f(s)ma(s)]

1

< 2 g 2, O - f@Pm
y~z ! teB(z,k
1 2
7 se;(y,k) £ (s) = £(2)["ma(s))
205 )
< T o, O~ S m)
Cs 2ms(s
+V(Z, k) seBgc-}-l) lf(s) - f(Z)l 2( )

Using the fact that B(y,k) C B(z,k + 1) and that V(z,k) < C3V(y, k).
Since my(t) =~ V(z,k), Vz € P», t € B(z,k + 1), we obtain

BIP<Co Y 1f() - f(2)

te€B(z,k+1)
Moreover
1f () = f(2)]* < k+1)ZIf fE)P<(k+1) > 16f@I%
y€B(z,k+1)
where t = ¢,,--- ,t;,+-+ ,t; = 2 is a minimal path from ¢ to z. We get
0fr(2)” < Calk +1)C3H Y |0f(y)P,
yEB(z,k+1)

therefore

Sfe(z) <Cs( > BfWIHV2<Cs S 5f(y).

yEB(z,k+1) yEB(z,k+1)
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Finally
Y. Mfi(ma(z) <C7 Y f(y)ma(y).

2€B(®(z),C}n) yeB(2(z),Cyn)

Combine (2.5), (2.6) and (2.7), we have

Yo 1(feo@)(y) — (fr 0 )nl(z)mu(y)

yEB(z,n)

< Csn > 6 f (y)ma(y).

yEB(®(x),Cyn)

Now

> 1f(2) = (fi 0 ®)a(@)Ima(2)

z€B(®(z),n)

< 2 (@) = fro@o @7 (2)|ma(2)

z€B(%(z),n)

+ > fko@0®7(2) = (fk 0 B)al(z)|ma(2).

z€B(®(z),n)

(2.7)

(2.8)

(2.9)

where ®~! is a rough inverse of ® and that dy(z,® o ®~!(z)) < k. Since
®~1(B(®(z),n),n)) C B(z,C"'3n) for sufficiently large Cj}, the second term

of right hand side of (2.9) satisfies

Yo |feo®o®7(z) — (fi 0 B)nlz)|ma(2)

z€B(®(z),n)

< G Y |fko@0®7(2) = (fi 0 ®)a(2)lmu (27 (2))

z€B(®(z),n)

< G D |fko®(y) — (fio @)ul)lmu(y)

yE€B(z,Cyn)

< Cyn > 6 f(y)ma(y),

yEB(®(z),Cyn)

where (2.8) has been used.

For the first term of right hand side of (2.9), write ® o ®~!(2) = Zz, then
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ds(z,2) < k. We have

Y. |f(2) = feo @0 @7 (2)|ma(2)

2€B(®(z),n)
= > |f(2) = fi(®)Ima(2)
2€B(®(z),n)
|
2 STERS
(

IA

> 1f(2) = F(&)Ima(t))ma(2)

2€B(®(z),n) teB(z,k)

< Cn Z N, 16f () %) *ma(2)

z€B(®(z),n) y€B(z,2k)

< Chr > 6 f(2)ma(2),

2€B(®(x),Cin)

by considering a minimal chain from ¢ to z.
We have proved that

> @)= (fro@n(@)lme(2) <Cian 3 6f(2)ma(2),

z€B(®(z),n) z€B(®(z),Cgn)

and therefore

S @) - h@ImE) < 20 X 15() - alma(2)
z€B(®(z),n) 2€B(®(z),n)

<2 > 1f(2) = (fuo ®)alz)ma(2)

z€B(®(z),n)

< 2Cun Y, f(2)ma(2),

2€B(®(z),Cgn)

which proved the Poincaré inequality on P,. O

We next prove the following approximation lemma.

Lemma 2.11 Suppose M satisfies the local volume doubling property and lo-
cal Poincaré inequality and P be an e-net on M. Then M satisfies the Poincaré

inequality at infinity if and only if P satisfies the Poincaré inequality.
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Proof:"

We prove the case 0 = 1 only. Suppose that P satisfies the Poincaré inequal-
ity. For any ¥ € C§°(M), z€ M, r >cand a € R

L., 10) — aldy
S Joon X 00) ~ alxpeo W)y

2€EPNB(z,r+¢)
< / ~P@ldy+ Y m)(E) - al.
zEPﬁB(:z: r+¢) B(Z’E) 2€PNB(z,r+¢)
From the local Poincaé inequality, the first term above is bounded by

a ¥ [ IVe)ldy

2€EPNB(z,r+¢) B(z,C1e)
< Gf | |Ve@)ldy
B, c;r)l (¥)]

For zy € P such that p(z,z¢) < €, and n € N* such that n =~ r and
PN By(z, 7 +¢€) C Bp(xg,n) C By(z,C”r), choose o = 1,(z0). Since P
satisfies the Poincaré inequality, the second term is then bounded by

Con ¥ 1WI<Cir [ [Ve()ldy,
y€B(z0,C4n) B(z,Cyr)

where Lemma 1.11 is used.
Obviously that

[ o) —e@ldy < 2inf [ pi(y) - oldy

a€R B(z,r)
< Csr / Vab(y)|dy,
S 5 B(m,cgr)l Y(y)|dy

for any r > £. Combine with the local Poincaé inequality, we get the Poincaré
inequality at infinity.

Suppose M satisfies the Poincaré inequality at infinity. For any function f
with finite support on P, x € P, n € N*, and a € R, we have

> If(®) —alm(y)

y€B(z,n)

(> |, ~f@az+ X [ i) - alda).

EB($ Tl) (y15/2) yGB P Tl) (y,e/2)
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Choosé a = (f),(x), apply Poincaré inequality at infinity on M and Lemma
1.11, the second term above is bounded by

/B o[ —aldz < Cin /B BN\ Z O]
< Con Y. f(y)m(y).

y€B(z,Cyn)

Note that 6;(z) = 0 when d(z,t) > 3¢/2, we have

/B(y,e/z) 1f(y) — f(2)|dz

/B(y,e/z) 1F(y) = X F(8)0,(2)|d2

t~y

Lo 1X () - F(t)0u(z)ldz

(We/2) o

Cs Y 1f(y) — f(&)Im(y)

t~y

Cid f(y)m(y).

IA

IA

Therefore

> fW) - fal@)m(y) < 2inf Y |f(y) — alm(y)

a€R

y€B(z,n) y€B(z,n)
< Cn ) 4f(y)m(y)
yE€B(z,Cyn)
and the Poincaré inequality on P is proved. O

Combining Lemma 2.10 and Lemma 2.11, we obtain the following theorem
immediately [CS].

Theorem 2.4 Suppose X and Y are two uniformly roughly isometric com-
plete Riemannian manifolds satisfying the local volume doubling property and
local Poincaré inequality, then X satisfies the Poincaré inequality at infinity

if so does Y.
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Chapter 3

Parabolic Harnack Inequality

3.1 Parabolic Harnack Inequality

In this section we are going to prove that the parabolic Harnack inequality
is invariant under uniform rough isometries.
Definition 3.1 We say that M satisfies the parabolic Harnack inequality at
distance less than R (PH(R)) if there exists C > 0 such that, for all z €
M, s € R, and all v € (0, R), any positive solution u of (A + 0;)u = 0 in
Q = (s,s +71?) x B(z,r) satisfies

supu < Cinfu

Q- Q+

where

Q- = (s+1%/6,5s +1%/3) x B(z,7/2)

and

Q4 = (s+2r%/3,s+1%) x B(z,1/2).
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We say that M satisfies the parabolic Harnack inequality if (PH(oc0)) is

satisfied.
A remarkable result tells that (PH(R)) is closely related to the following

two properties.

Definition 3.2

1. We say that M satisfies the volume doubling property at distant less then
R (D(R)) if there ezxists C > 0 such that for allr € (0,R), z € M,

Viz,2r) < CV(z,7).

2. We say that M satisfies the Poincaré inequality at distant less then R
(P(R)) if there exists C > 0 such that for allr € (0,R), z € M, ¢ €
C5° (M),

L. w-wi<c[ |vyP
B(z,r)

B(z,2r)

Note that if M satisfies (D(R)) and (P(R)) for some R > 0, then (P(00))
is equivalent to the Poincaré inequality at infinity with o = 2 defined in the

last section.
In [J], D. Jerison shows that (D(R)) and (P(R)) imply the stronger Poincaré

inequality
/ |w—¢,.|250r2/ V|2, Vz € M, 0 <7 < R.
B(z,r) B(z,r)
The main result of this section is the following [G][S3].
Theorem 3.1 The following properties are equivalent.
1. M satisfies (PH(R)).
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2. M satisfies (D(R)) and (P(R)).

If the above theorem is proved, then Theorem 2.4 in sections 2.3 will implies
that (PH(oo)) is invariant under uniform rough isometries. The following
results is the key that allows the use of Moser’s iterative method [M2] when
(D(R)) and (P(R)) are satisfied.

Lemma 3.1 Suppose M satisfies (D(R)), then for anyz € M,0< s <r <
R,

V(z,r) <2V (z,s)(r/s)”
where vy depending only on the constant in (D(R.)).

Proof:
Take integer n such that 2"~ < r/s < 2", then

V(z,r) <V(z,2"s) < C"V(z,s) < 2V (z,s)(r/s)”

where vy = log C/log2, C is the constant in (D(R)). O

Lemma 3.2 Suppose M satisfies (D(R)). Then there exists C > 0 such that
foranyye M,0<s<r <R,

Ifslla < CV=12(r /)% {1, Vf € C5°(B)

where
1

fs(z) = V(z,s) /B(a.-,s) f(2)dz,
B = B(y,r), V(y,r) and vy be the constant in Lemma 3.1.
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Proof:
Consider if d(z, z) < s, then V(z,s) < V(z,2s) < CV(z, s). Therefore

| fslli = /M | fs(z)|dz
< [, vy L X N @ldzds
./M V(aly s) /M XB(z,s)(2)| f (2)|dzdz

¢ M ﬁ /M XB(z,5) (2)| f(2)|dzdz
= C/M |f(2)|d=.

Suppose B N B(z, s) # 0, then from Lemma 3.1

INA

V(z,s)™? CV(z,2r+s)~'(2r/s+ 1)

<
< CVi(2r/s+ 1)

and

1755y [ Yoo Gl

Ccv=t(2r/s+ 1)™|f|l;.

[ fslloo

IA

IA

Thus

102 < Ifsllllfilloo
< ovTi@2r/s+1)”|fIIE

and this complete the proof of the lemma. m|

Lemma 3.3 Suppose M satisfies (D(R)) and (P(R)). Then there emists
constant C such that for any 0 < s < R/4, f € C§°(M), we have

If = fsll2 < Cs||V£]|2.
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Proof: -

Fix 0 < s < R/4. Let {B;,j € J} be a collection of balls of radius s/2 such
that B;N B; = 0 if i # j and M = U;c;2B;, where tB = B(z,tr). Such a
collection always exists. Now

If =116 < 3 [, @) - L@
< 22/ f43,| + | fag; — fs(x)|2)
ieJ

Using (D(R)) and (P(R)), we have

[, @ = fial? < [ 1£(@) - fun]
< o[ |viP

and
L, m = £@F < [ [ xbeoV (@5 fan, — () Pdude
< CV~ [23 /B | faB, — |2dzdz
< cs? | VPR

Hence, with the help of Lemma 1.4, we obtain

IF =5l < cX [ IViP

ieJ

= 032||Vf||2-

This ends the proof of Lemma 3.3. m]

Lemma 3.4 Given v > 2, the three following properties are equivalent.

1. ||e2 flloo < C1t™"2|| fll1, YO < t < to.

2. 1£113, /w2 < C2(IV I3+t | £113)-
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3. I < Cs(IVFIR + e I F IR A1

Moreover, 3. implies 1. with C; = (vCC3)"/? and 1. implies 2. with Cy =
C'Cf/ Y, where C is some numerical constant.

The proof of 1. implies 2. follows from [V3]. The equivalence with 3. follows
from [CKS].

Theorem 3.2 [S2] Let M satisfies (D(R)) and (P(R)). Then, there exists
v > 2 and C > 0 such that, for all x € M, 0 < r < R, the Sobolev inequality

(S(R))
([ pe=2)e=dl < oV (z,r) =212 [(IVof +r2|l?)

is satisfied for any ¢ € C§°(B(z,r)) where V =V (x,r).

Proof:

Fixz € M, 0 <r <y, 1 as in Lemma 3.2 and set nu = max{3,1y}. For
any f € C§°(B(z,)).
If 0 < s <r/4, then by Lemma 3.2 and Lemma, 3.3, we have

Il < ILf = Follz + Nl foll2
< CGlIVEle+ VY2 /5) 2| flI)-

If s > r/4, then
I£llz < st f]l2.

Therefore

1£ll2 < C(s(IVFll2 +r7H I £ll2) + V=2 /)1 £111)

for any s > 0.
Optimizing over s > 0 yields

£ < eV=2""r2(|V £113 + r 2| FID N FIIY

and the theorem follows from Lemma 3.4. O

We next employ the Moser’s iterative technique to prove a mean value in-
equality.
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Theorem 3.3 Assume that (D(R)) and (S(R)) are satisfied. Let § €
(0,1). Then, any non-negative function u such that (0, + A)u < 0 in
Q = (s,s+1?%) x B(z,r) satisfies

supu® < C7(r?V) 7 ull3 o-

Qs
Here v > 0 depends only on the constant appearing in (D(R)). The constant
C s independent of u,d,s and of the ball B(z,r) of radius 0 < r < R.

Proof:
For any non-negative function ¢ € C§°(B(z, 7)), we have

/B ) (B0 + V8- Vu) <0. (3.1)

For ¢ = ¥?y with ¢ € C°(B(z,7)), some manipulation involving the in-
equality |ab| < Z(ea® + b%/¢) and inequality (3.1) yields

2 2 2 2
foe, 2 uB+ IV @) P) < ANV [

Where A is a numerical constant which will change from line to line. If x is
a smooth function of the time variable ¢, we easily get

o[ ocvw®) +¢ [ 19@u)P < AXCAVHIE + Ixle) [ w2

supp(y)

where B = B(z,r). we choose ¢ and x such that
0<% <1, supp(¢) C (1 -0)B,
Yv=1in (1-0")B, |Vy| < (rr)7,
0<x<1, x=0in (—o00,s+ or?),
x = 1lin (s +0o'r%,+0), |X'| < (7?)7},

where 0 < 0 < 0’ < 1 and 7 = ¢’ — 0. Setting I, = (s + or?,s + r?) and
integrating our inequality over (s,t) with ¢ € I», we obtain

sz”p{ e u®} +//Qa, |Vul? < A(TT)_zf/Q, ul. (3.2)
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Let E(B) = CV~%"r? be the Sobolev constant for the ball B given by
(S(R)) and recall the ¢ = v/(v —2) where v > 2 is the parameter appearing
in (S(R)). Thanks to the Holder inequality

/,w2(1+2/u) < (/ w2q)1/q(/ w?)?/”,
(S(R)) gives

[ w29 < ([w?yB(B) [(IVol + 2w,

for all w € C§°(B). Returning to the subsolution u, the above inequality and
(3.2) yield

/ / ) u® < E(B)(A(r7)~? / / uy (3.3)

with § =1+ 2/v. For all p > 1, u” is also a non-negative subsolution of our
equation. Therefore, (3.3) yields

/ / ) u? < E(B)(A(r7)~2 / / uy (3.4)

We now set 7; = 2717% 50 that ¥°7; = 1/2. We also set o9 = 0,041 =
o; + 7 = Y4y 7j. Applying (3.4) with p =p; = 6%, 0 = 0;, 0’ = 041, we get

i

;28 < E(B)(Ai+l7.—2// uzai)a.

Tit+1

Hence,

(f /.

where all summation are taken from 1 to i+ 1. Letting ¢ tend to infinity, we
obtain

Y20 gAz(j“)"'l—jE(B)Z"_'_"rdze'j// u?
Q

Ti+1

sup u® < AE(B)”/2r"2'"||u||§’Q. (3.5)
Q12

This ends the proof of Theorem 3.3 when § = 1/2. The full statement follows
by using an easy covering argument and (D(R)). O
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Corollary 3.1 Assume that (D(R)) and (P(R)) are satisfied. Fiz0 < p <
+00 and § € (0,1). Then, any non-negative u such that (0; + A)u < 0 in
Q = (s,s +1?) x B satisfies

supu? < C77(r?V) 7 |ulff o
Qs

Here v > 0 depends only on the constant appearing in (D(R)). The constant
C s independent of u,d,s and of the ball of radius 0 < r < R.

Proof:
If p> 2 and § < 1/2, this statement follows from Theorem 3.3 and Jensen’s
inequality. The case p > 2 and 0 < § < 1/2 is then obtained by a covering
argument.
For 0 < p < 2, the proof is more intricate. Fix 0 < 0 < 1/2 and set 7 = o /4.
Theorem 3.3 yields

supu < F(B)r"?|lullzq,_.,

where F(B)? = C(r?V)~!. Moreover, ||lul|z < |lul|2;?/2||u|[2/2. Hence, setting
J = F(B)|ull;/3, we get

sup < 72 J(sup u)'~P/2,
Qa Q(’-T

We now fix § € (O, 1/2) and set Op = (5, Oi+1 = 0; — Ti41 with Ti41 = 0,'/4 for
all i > 0. This gives o; = (3/4)7'7% and 7,4, = 47(3/4)"17%. we obtain

sup < A" 6772 J(sup u)!~P/?
Qvg_l Qo-r

and
sup < A > (G+1)(1-p/2) (6_'7/2J)Z(1—p/2)j(sup u)(l_p/z)i
Qs Qor

where all the summations run from 0 to z — 1 and A is a numerical constant
which may change from line to line. When : tends to infinity, this yields

sup < AP (6772F(B))*? |ul|.q
Qs

which, raised to the power p, is the desired inequality.
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Theorem 3.4 Assume that (D(R)) and (S(R)) hold. For 0 < <1 and
0 < p < 400, any positive function u such that (0, + A)u > 0 in Q =
(s,s +1?%) X B satisfies

supu™? < C67(Vr?)Hlu™H? . (3.6)
Qo ’

Here, v > 0 depends only on the constant appearing in (D(R)). The constant

C 1is independent of 0, p,u, s and of the ball B of radius 0 < r < R.

Proof:
For any negative ¢ € C§°(B), we have

/B ($8u + V¢ - V) > 0. (3.7)
Setti
e ¢ = —ou® 2, w=y?

with —0o < a < 0, we obtain
- / (¥°0(w?) + 427 (a = 1)|Vu|* + 4wypVw - Vi) > 0.

Note that 1 < a™!(a — 1) < +o0o. Using the elementary inequality |zy| <
5(2® +9?), yields

Jotwer+2 [ Vol < AIVwlZ [ w?

upp(y)

where A is numerical constant. The arguments used to prove (3.3) apply
here as well, and they give

/ / ) u®® < E(B)(A(rr)™? / / ue’ (3.8)

for0 <o <o’ <land T =0'—0. Here, = 1+2/v, and E(B) = CV~2?/"y2
is the Sobolev constant for the ball B given by (S(R)).

Now, an argument very similar to the one used to derive (3.5) from (3.2)
leads fromm (3.8) to the desired inequality (3.6). O

In order to state the next result, we set

Qs = (s,8+ (1 —0)r*) x (1 —6)B.
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Theorem 3.5 Assume that (D(R)) and (S(R)) are satisfied. Fiz 0 < py <
1+ 2/v where v is the parameter appearing in (S(R)). For all 0 < § < 1
and all 0 < p < po, any positive function u such that (0, + A)u > 0 in
Q = (s,s +1?) x B satisfies

lullpy,q; < (CE~EHI(Vr2)=h)i=p/reu|7 6. (3.9)

Here, the constant C is independent of 6,p,u,s and of the ball B of radius
0 < r < R but depends on py.

Proof:
In (3.7), we set
¢ = aua—1¢2, w= ua/2

with 0 < @ < po(1+2/v)~! < 1. We get
/ (¥20,(w?) + 4o~ (a — 1)|Vw|? + 4wV - Vi) > 0.

Set e = 1—po(1+2/v)~!. Note that a—1 is negative and that o~ !|a—1| > ¢.
Using the inequality |zy| < 3(ex? 4+ e7'y?) yields

_ / B, (wi)? + 2 / IVw|? < A V% / ey (3.10)

where A is a constant which depend only on .

Again, we follow the argument used to prove (3.3), but this time we must
take into account the minus sign in front of the first integral. This minus
sign leads us to reverse the time and this explains why we are working with
the set Q! instead of Q,. From (3.10), we obtain

//,'Uao = E(B)(A(TT)_2//:’UO)0 (3.11)

for0 <o <o’ <land 7 =0'—0, and where § = 1+2/v, E(B) = SV~2/"2,
Now, define p; = pof~* and note that, thanks to the Hélder inequality, it is
enough to prove (3.9) for p = p;, i = 0,1,---. Thus, fix 7 and apply (3.11)
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with a =p;6?, j=0,---,i—1,and 0p =0, 0; = 0j_1 + 7}, 7j = 0277 where
0 < d < 1isa fixed parameter. Observe that o; < po(1 + 2/v)~! so that
(3.11)can indeed be applied. It follows that

//3,- uqoof < 1«7(3)(/11‘(57.)—2//Q:’j_1 uqoaf—l)o

for j =1,---17, and thus
[ [ we < BBET AT )220 ([ [ gy
by, Q
where the summation run from 0 to 7 — 1. Since 0; = ¢ Z‘i 27t < §, we finally

get
// uP?) pi/po < (CE(B )”/2((57‘) (2+V) —pglpo// uPi.
Q;

Here we have used 57167 = (6: —1)/(6 — 1), 5713 — 5)07H! < Cy(6 - 1),
fori > 1, and 6" = py/p;, 0 = 1+ 2/v. Replacing E(B) by its value in terms
of r, V, gives the desired inequality (3.9). O
Lemma 3.5 Fiz §,7 € (0,1). Assume that (D(R)) and (P(R)) are satis-
fied. For any positive function u such that (0;+A)u > 0 in Q+ (s, s+r?) x B,

there is a constant ¢ = c(u,7) such that, for all A > 0,
B({(t,z) € Ky :logu < =\ —c}) < Cr*via~!

and
a({(t,z) € K_:logu > X—c}) < Cr*vi~!
where [i is the product measure on R x M, K, = (s+7r%,s+71?) x (1-6)B

and K_ = (s,s +7r%) x (1 — §)B. Here the constant C is independent of
A > 0,u,s and of the ball B of radius 0 < r < R.

Proof:
First we note that we can assume that u is a supersolution in (s, s+r?) x B’
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where B’ is a concentric ball larger than B = B(z,r), We set w = — log u.
Then, for any non-negative function ¢ € C§°(B), we have

at/z/ﬂw < /w2u'1Au = /(—¢2|Vw|2 + 2V - V).

Using again |ab| < 3(3a% + 2b%), we get

o, [+ 5 [ IVuPy? < AIVY|Zu(supp(s)). (3.12)

Here, we choose ¢(z) = (1 — p(z, z) /r)+ where z is the center of B and r its
radius. Apply the weighted Poincaré inequality with weight ¥? ([J], [SS]) to
the function w, reads

/|w _W? < Ar2/|V'w|2¢2
with
W= ([ wet)/([ 4.
This and (3.12) give

AW + (Ar2V)~! / lw— W2 < Agr?
(1-6)B

for some constant A;, A, > 0. We rewrite the last inequality as

AW + (Ar?V)~! /( TP S0 (3.13)

where
W(t,z) = w(t,z) — Ayr~2(t — &)
with s’ = s +7r%.
Now, we set c(u) = W(s'), and
Qf(\) ={z€6B:w(t,z) >c+ A}

QN ={z€d0B:w(t,z) <c— A}

Then, if t > &, )
w(t,z) —W({t) > A+c—W(t) > A
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in O (A), because ¢ = W (s') and §;W < 0. Using this in (3.13), we get
AW () + (Air*V) YA +c— W ()|~ > u(QF (V).
Integrating from s’ to s + r2, we obtain
B({(t,2) € K; :w(t,z) > c+ A}) < A;r?V A~
and, returning to —logu = w = w + Ar~%(t — §'),
B({(t,2) € K, :logu(t,z) + Aor2(t — ') < =X —c}) < A r?VA~L,
Finally,

a({(t,z) € K, :logu(t,z) < =\ —c})

< a({(@t 2) € Ky :logu(t,z) + Aor~2(t — ') < —(A/2) — ¢})
+a({(t,2) € Ky : Agr™%(t —5') > \/2})

S A3T2V/\_1.

This proved the first inequality in Lemma 3.5. Working with ;" instead of
Q;f, we obtain the second inequality by a similar argument. O

Consider a collection of measurable subsets U,, 0 < o < 1, of some fixed
measure space endowed with a measure v, such that U, C Uy if o’ < 0. In
our application, the space will be R x M with measure 2 and U, will be Q,
or Q.

Lemma 3.6 Fiz0< 9 <1. Lety, C, py < p1 < 400 be positive constants.

Let f be a positive measurable function on Uy = U which satisfies

1 £llo,0, < (C(@" = 0) W (U) VP~V flp,u,.

for all o,0’,p such that 0 < 0 < o' <§<1and0 < p < p; < py. Assume
further that f satisfies
v(log f > A) < Cv(U)
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for all A > 0. Then,
”f”po,U, < AV(U)I/PO

where A depends only on v, d,C and on a positive lower bound on 1/p;—1/py.

Proof:
We can clearly assume that v(U) = 1. We set

Y = (o) = 10g(|| fllpo,v,); for 0 <o <6

Decomposing U, into the sets where log f > 1/2, we get

”f”p,U, < ||f||p0,Uo,I/(Ing > Q/)/Q)l/P—l/po + e¥/2
< eV (Clp) et 4 eV, _

Here, we have used successively the Holder inequality and the second hy-
pothesis of the lemma. We want to choose p so that the two terms in the
right-hand side of (3.14) are equal, and 0 < p < p;. This is possible if

(1/p —1/po)™" = (2/9)log(y/2C) < (1/pr = 1/po) 7",
and this last inequality is certainly satisfied when
Y > A C (3.15)

where A; depends only on a positive lower bound on 1/p; — 1/py. Assuming
that (3.15) hols and that p has been chosen as above, we obtain

1£llpw, < 2€¥/2. (3.16)
The first hypothesis of the lemma and (3.16) yield

1/)(0") < log(2C(0' _ 0)—7)1/19—1/1’0611)/2)
= (1/p—1/po)1log(2C(0" — 0)™") +¢/2

for 0 < 0 < ¢’ < 4. By the choice of p made above,

) < ¥ 1080~ o))
V)= 5 loatr20)
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On the other hand, if
P > 8C%o’ — o)™, (3.17)

we have 3
Y(o') < Z¢-

On the other hand, if one of the hypothesis (3.15), (3.17) made on 1 are not
satisfied, we have

Y(0') < < A,C+8C% 0’ —0)™.

In all cases, we obtain

| W

Y(0') < =(0) + Ag(0’ — o)™ (3.18)

where A, depends only on C and on a positive lower bound on 1/p; — 1/py.
For any sequence

0<o0; <01 <+ <09g=0,
iteration of (3.18) yields,

B(ov) < (3/4)(03) + Ag 5:3(3/4>f(a,-+1 — o)™,

and, when 7 tends to infinity,

o0

P(6) < A2 ) (3/4) (i1 — 03) 72",

0

The desired bound follows if we set o; = §(1 + 7). O

The result of Theorem 3.2, 3.4, 3.5 and Lemma 3.5, 3.6 yield a weak Harnack
inequality for supersolution.

Theorem 3.6 Assume that (D(R)) and (P(R)) are satisfied. By Theorem
3.2, there ezists v > 2 such that (S(R)) is satisfied. Fiz py € (0,1 + 2/v)).
Fiz0<e<n<o<land0< (<1 and set

Q- = (s+er?,s+nr?) x B(z,(r) and Q4 = (s + or?, s +12) x B(z,(r).
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Then, any positive function u such that (0;+A)u > 0 in Q = (s,s+712) x B,
satisfies

|ellpo@ < C(r?V)Hee glfu.

Here the constant C is independent of u,s and of the ball B of radius 0 < r <
R.

Proof:

Fix u and let ¢ = ¢(u) be constant given by Lemma 3.5 where we have picked
T € (n,0), 0 € (0,{). Lemma 3.5 and Theorem 3.5 (resp. Theorem 3.4)
show that one can apply Lemma 3.6 to e‘u (resp. e “u~!). This yields

e||ullpo,@- < C(r?V)!/P° (resp. e~ Sélp =L 6,
+

The statement of Theorem 3.6 follows. O

Combining Theorem 3.6 and Corollary 3.1, we get 1. = 2. of Theorem 3.1.
To complete the proof of Theorem 3.1, we have

Theorem 3.7 (PH(R)) implies (D(R)).

Proof:

Assume that (PH(R)) holds on M, 0, + A admits a positive fundamental
solution (t,z,y) — h¢(x,y). The function h; can be interpreted as the kernel
of the heat diffusion semigroup H; = e~**. Since A is self-adjoint, h; is a
symmetric kernel. Applying (PH(R)) to h,2 with 0 < r < R, we obtain

V{z,7r)h(x,z) <.C : )h2,z(a:, y)dy < C.
B(z,r
This gives
he(z,z) < CV(z,7)"', V€M, 0 <7 < R.

Fixz € M, 0 <r < R, set B= B(xz,r) and consider the function u defined
by

hsxs(z) if s>0,

u(s,z) = 1 if s>0.

——
<
N
w
N
e
I
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The function u is a non-negative solution of 9; + A in (—o0, +00) x B(z,)
in a weak sense. Applying (PH(R)) twice, we get

u(—r?/4, 1)
Cu(r?/2,z)

|, hespa(@,v)dy
C*V(z,r)h,2(z, )

1

IA I

IA

and this proves that there exists ¢, C' such that
cV(z,r)! < h2(z,z) < CV(z,r)”!
for all z € M and 0 < r < R. Clearly, this and (PH(R)) imply (D(R)). O

Theorem 3.8 (PH(R)) implies (P(R)).

Proof:

We follow an argument of Kusuoka and Stroock [KD]. Fixz € M, 0<r < R
and set B = B(z,r), V = V(z,r). Denote by Hg, the heat kernel associated
with A having Neumann boundary condition on the boundary of B and hp
be the kernel of Hg,, that is,

Hp:f(y) =/Bh3,t(z, y)f(2)dz.

Assume that (PH(R)) holds. By Theorem 3.7, (D(R)) is also satisfied.
Reasoning as in Theorem 3.7, we see that (PH(R)) yields

hB,r2 (Za y) = CV_l

for all z,y € %B. Thus, for y € %B,

Hp,2(f — Hp2f(y))*(y) > % /; (@) = Hp,o )Pz

c 2
> [,V = 1ol
and

[ Hoor(f = Hoef POy 2 ¢ [ 17 = fal
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Since

[ Hoo(f = Hpp f)*()dy = /135 — 1Hp,2f1 5
T2
= — [ a.llHafl3ds
< 2 [ VP,
B
the desired Poincaré inequality is proved. O

The following theorem is an immediate consequence of Theorem 3.1.

Theorem 3.9 Suppose X and Y are two uniformly roughly isometric mani-
folds satisfying the volume doubling property and Poincaré inequality at dis-
tance less than R for all R > 0, then X satisfies the parabolic Harnack in-
equality if and only if so does Y.

Since the parabolic Harnack inequality holds on every manifolds with non-
negative Ricci curvature, we have the following theorem [CS].

Theorem 3.10 Suppose M is a complete Riemannian manifold with Ricci
curvature bounded below. If M is uniformly roughly isometric to a manifold
with non-negative Ricci curvature, then M satisfies the parabolic Harnack

inequality. In particular, every positive harmonic function on M is constant.
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Chapter 4

Parabolicity and Liouville

Dy,-property

4.1 Parabolicity

A complete manifold M is said to be parabolic if all positive superharmonic
functions on M are constant. Also there is an equivalent definition. Let
pe(z,y)(t > 0,2,y € M) be the minimal positive fundamental solution of the
heat equation (0/0t — A)u = 0 for function u on (0,00) X M. Then M is
non-parabolic if and only if the Green function g(z,y) = [;° p:(z, y)dt exists.
As is well known, the Euclidean n-space is non-parabolic if and only if n > 3.
the following proposition was first pointed out by Ahlfors for dimension 2,
and later by Varopoulos [V2] for all dimensions.

Proposition 4.1 Suppose M is a non-parabolic complete Riemannian man-
ifold, then there exists p € M, such that, the volume V (p,t) of geodesic ball

centered at p of radius t satisfies the growth condition

t ;
J Vi, =%
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Observe that this volume growth condition holds at one point if and only if it
holds at all points of M. The obvious question is to determine if this condition
is also sufficient. Unfortunately, an example of Greene [V2] indicated that
this is not true in general. But this condition is also sufficient for non-
parabolicity in manifolds with some curvature assumption [V1].

Proposition 4.2 Suppose M is a complete Riemannian manifold with non-

negative Ricci curvature, p € M, then M is non-parabolic if and only if

/Oo t dt < oo
1 V(p,t) '

To prove that parabolicity is preserved under uniform rough isometry for
manifolds satisfying certain kind of conditions, we employ a criterion of
parabolicity.

Definition 4.1 Let M be a complete Riemannian manifold , and 2 a non-

empty bounded domain in M with smooth boundary. The capacity of S is
defined by

cap(Q)) = inf{/M |Vul?dz : u € CP(M),u|q = 1}.
Then we get [FS]

Proposition 4.3 M is non-parabolic if and only if cap(2) > 0.

Proof:

First we prove the ”only if” part. Suppose that M is non-parabolic. Fix a
point p in Q and put v(z) = log g(p, z), where g denotes the Green function.
Since g(p, -) is harmonic except at p, we have Av = —|Vv|? on M \ Q. Thus
for an arbitrary u € C§°(M) with u = 1 on Q, we get, by Green’s formula,
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that

/ w¥|Volldz = - u?Avdz
M\Q M\Q
ov
= — —di 42 u < Vu,Vv > dx
aq Ov M\Q
_ avdx+2/ lul|Vu| | Vo) dz
- a0 Ov

IA

_ 2 L2ITI2
o audm-i-/ |Vul da:-l-/ |Vv|“dx

/IVuIQda:>/ —d:z:

where 0/0v denotes the "inward” normal derlvative on the boundary of (2.

Since for small € > 0 5
/ 9(PT) e = 4,
B(p.e)

that is,

ov

where 5‘% is the inward normal derivative on 0B(p, €), therefore

o, 1 Jg(p,x)
/B(pe) avdx /B(p,e) 9(p,z) Ov i

tends to 0 as € goes to 0.
This shows that

cap(2) > /an %dm = /QAvdx = /Q |Vv|2dz > 0.
Next we show the ”if” part. Assume cap(2) > 0, take an increasing sequence
of bounded domains € in M with smooth boundaries so that they cover
M and each of them contains €. Then for each k there is a function u; €
C> (% \ ) which is harmonic on Q \ Q2 and satisfies the Dirichlet condition
ur = 1 on 9N and ux = 0 on 0. Note that

cap() = lc]l;r& i |Vug|*dz.
k

By the Harnack inequality and the Schauder estimate, we can find a subse-
quence {u;} of {ux} which converges, with respect to the C**-norm on any
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compact subset in M \ ©, to a positive function v € C*°(M \ Q) harmonic on
M\ © and with u = 1 on 9Q [GT]. Obviously the extension of u by u = 1
on () is a positive superharmonic function on M, and therefore, to prove the
non-parabolicity of M, it is sufficient to show that u is not constant. By
Green’s formula, we get

ou ou;
/ —dz = lim Ty = lim |Vu;|?dz = cap(2) > 0,
oa Ov j—=o0 Jaq Ov j—=00 Ja\Q
and this implies that u is non-constant. g

To use the discrete approximation method, we have to define the parabolicity
on a net.

Definition 4.2 A function u on a net P with measure m is said to be su-

perharmonic if Lu < 0 where L is a linear operator acting on functions u on

P defined by

1
S ) ) S0 ~ w)mla) + m(p), p € P

q~p

Lu(p) =

A net P is said to be parabolic if every positive superharmonic function on P

18 constant.

If we put

v(p) =) m{g) ’; m(p), and 7(p,q) = { 16(10)"1 if g€ N,

a~p otherwise.

Then L can be written as

Lu(p) = ) =(p, Q)U(q)m(q) gl u(p), peP.

For each k = 0,1,---, define a function m; : P x P — R inductively by

Wo(p, Q) = { [1) igz ; Z ) 7rk+1(pa Q) = rezpﬂk(p? 7”)7‘-("" q)m(r) -; m(p) .
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This corresponds to the heat kernel of a Riemannian manifold. Moreover,
the Green function g of P is defined by

9p,0) = 3 (5,0,

if it exists. Since we have been assuming that the net P is connected, it
is easy to see that g(p,q) < oo for all p,q € P if g(po,q) < oo for some
Po, o € P. Moreover if g < oo then for each fixed ¢ € P, we have

_ ) -1 ifp=g
where g,(p) = g(p,q). We prove a discrete counterpart of It6’s theorem [I].

Lemma 4.1 P is non-parabolic if and only if g < co.

Proof:
The ”if” part is trivial from (4.1). We prove the ”only if” part. Let u be a
non-constant positive superharmonic function on P, and put f = —Lu > 0.

We may assume f # 0. (In fact, in the case when Lu = 0, take a real number
a between infu and supu, and define a function »’ on P by u'(p) = u(p) if
u(p) < a, and v'(p) = a if u(p) > a. This v’ is a non-constant positive
superharmonic function on P with Lu’ # 0.) Then we get

k
> > milp,9)f(q)

j=0gq€P

k
=~ 3 7,0 (E 7(g, P)u(r) (m(r) + m(g)) — u(g))

= - Z X;J(Tl'j.{.l(p, Q) = Wj(p, q))'U.(Q)

= u(p) — Z Tr+1(P, )u(q)

geP

IA

u(p),
and this show that

> 9(p,a)f(q) = i > mi(p,q)f(q)

qeP j=0g€eP
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is absolutely summable. Thus we conclude g < oo. ]

For functions v and v on P, we define function < du,dv > on P by
< du,6v > (p) = Y (u(q) — u(p))(v(q) — v(p))-
a~p
Note that,

= \/< du, du > (p),

where du is defined as in Section 1.2. Then we get the Green’s formula on
nets.

Lemma 4.2 Let u and v be functions on P, and assume that at least one of

them has finite support. Then the following identity holds:

> (vuLv(p)+ < éu,dv > (p)m(p)) = 0.

peEP

Proof:

> vuLv(p)

peEP

= > u(p) 3 (v(g) — v(p))(m(q) + m(p))

peP q~p

= > > ulp)v(g)(m =3 3 ulp)v(p)(m(q) + m(p))

pEP q~p pEP q~p

= > > (u(g)v(p) +u(p)v(q) — u(g)v(q) — u(p)v(p))m(p)

pEP q~p

= — Y <bu,dv> (p)m(p)

peEP

where the finite support assumption has been used in the finiteness of each
terms. O

We are now in a position to give a discrete version of Proposition 4.3. For a
finite subset S of P, the capacity of S is defined by
cap(S) = inf{>_ 6*u(p)m(p) : u € ¢o(P), u=10n S}.

peEP
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Lemma 4.3 Let S be a non-empty finite subset of a net P. Then P is non-

parabolic if and only if cap(S) > 0.

Proof:

Take an increasing sequence of finite subsets Sy of P so that S C S, P =
USk, and, for each k, let u; be a function on P which minimizes the quantity
Y pep 0%v(p) among all functions v on P with v = 1 on S and v = 0 on
P\ Sk. Obviously 0 < up < 1, ur = 1on S, up = 0 on P\ Sk, and
cap(S) = limg_,00 X pep 62ux(p). Moreover we can see that Lux = 0 on S\ S
as follows. Let w be an arbitrary function on P such that its support lies in
Sk\S, and put ug; = ug+tw, t € (—1,1). Then ¥,cp 6*uk,(p) is minimized
at t = 0, and hence, by Lemma 4.2, we get

2dt|t 025 Ukt )=E<5uk,5w>(1’)=— Z vw Lug(p).

peEP peEP PESK\S

Since this must hold for any w, we have Luy = 0 on Si \ S. Now we can find
a subsequence {u;} of {ux} which converges pointwise to a function u on P.
It is easy to see that u is positive superharmonic function such that u = 1
on S and Lu =0 on P\ S. In addition, by Lemma 4.2, we have

- > v(p)Lu(p) = - llm z (p)Luj(p

pES peS
= lim ) 6%u;(p)m(p)
j—=o0 pecP
= cap(9).
Now the ”if” part of the lemma follows directly, since u is non-constant if

cap(S) > 0.

We prove the ”only if” part. Assume P is non-parabolic. Then, by Lemma
4.1, the Green function g exists. Note that it is sufficient to show that
cap(S) > 0 only for S consisting only one element of P, say q. By the choice
of v and the maximum principle, we get g(p, q)/9(q,q) > u(p) for all ¢ € P.
If u were identically equal to 1, then ¢(p,q) > g¢(g,q) in contradiction to
(4.1). Hence u is non-constant, and consequently cap({q}) > 0. O

Corollary 4.1 Suppose that P and @ are ponderable nets uniformly roughly

isometric to each other. Then P is parabolic if so is Q.
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Proof: -

Let ¢ : P — Q be a uniform rough isometry, and suppose that P is non-
parabolic. Then, for a non-empty finite subset S of P, we have cap(S) > 0 by
Lemma 4.3. We show that cap((S)) > 0, which implies the non-parabolicity
of Q. Let v be an arbitrary function on @ of finite support with v = 1 on
©(S), and put u = v o . Obviously u = 1 on S, and hence, it suffices to
show that

[[6ull2 < C|j6v]l2
with some constant C' independent of v. By the definition, there exists a
constant C) such that for all p,p’ € P with d(p,p') = [ there is a length-

minimizing path v = (go,- -+ ,q) in @ from gy = ¢(p) to ¢ = (p') of length
[ < Cy. From this we get

(u(p') — u(p))? < Ci((v(go) — v(q1))* + - - - + (v(@-1) — v(@))?)

and hence, with the uniformness of P, we get

Sulp) <Cy Y. ().

d(g,(p))<Ci

Again, from the uniformness assumption on P and @), we obtain a constant
C as required. O

Lemma 4.4 Suppose M satisfies the local volume doubling property and local
Poincaré inequality and P be an e-net in M. Then M s parabolic if and only
if P is parabolic.

Proof:

First we show that P is non-parabolic if so is M. Assume that M is non-
parabolic, and take a non-empty bounded domain Q in M with smooth
boundary. Then by Proposition 4.3, 2 has a positive capacity. We will show
that the finite subset S = {p € P : By.(p) N Q # 0} of P also has a positive
capacity, which implies the non-parabolicity of P by Lemma 4.3.

Suppose that f is an arbitrary function on P of finite support with f =1 on
S, then f is a function on M with compact support and f = 1 on (Section
1.2). Therefore by Lemma 1.11 we have

cap(Q) < [IVFII3 < ClI6f13
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for some constant C independent of f. This proves cap(S) > 0.

Next we show the non-parabolicity of M under the assumption that P is
non-parabolic. Fix a non-empty finite subset S of P. Then, by Lemma 4.3,
cap(S) > 0. Also let 2 be a bounded domain in M with smooth boundary
such that B, (p) C 2 for p € S. For an arbitrary function ¥ € C§°(M) with
¥ = 1on Q, ¢ is a function on P with finite support and ¥ = 1 on S.
Therefore by Lemma 1.11 we have

cap(S) < [I6%]3 < ClIVH I3
for some constant C independent of 1. This shows that cap(€2) > 0, and con-

sequently, implies the non-parabolicity of M as Proposition 4.3 suggests. O

Combining Corollary 4.1 and Lemma 4.4, we get the following theorem im-
mediately [K2].

Theorem 4.1 Suppose that X and Y are complete Riemannian manifolds
satisfying the local volume doubling property and local Poincaré inequality
and uniformly roughly isometric to each other. Then X is non-parabolic if so
s Y.

We have the following theorem as a corollary.

Theorem 4.2 Suppose M is a complete Riemannian manifold satisfying lo-
cal volume doubling property and local Poincaré inequality. If M is uniformly
roughly isometric to a manifold with non-negative Ricci curvature, then M is

non-parabolic if and only if

/oo ¢ dt < oo
1 V(p,t) '

Proof:
The ”only if” part follows from Proposition 4.1.
Suppose M is uniformly roughly isometric to a manifold X with Ricci cur-
vature non-negative. If
A
/ dt < oo
1

V(p, 1)
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holds on M, then this volume growth condition also holds on X by Theorem
2.2. By Proposition 4.2, X is non-parabolic. It then follows that M is non-
parabolic by Theorem 4.1. O

4.2 Liouville D, -property

Let G be an open subset of a Riemannian n-manifold M™. A function u €
C(G) NW,1,.(G), with 1 < p < o0, is called p-harmonic in G if it is a weak
solution of

— dvi(|Vul[P~2Vu) = 0, (4.2)
that is,
/G < |VulP~2Vu, Vé >=0

for every ¢ € C§°(G). Equation (4.2) is the Euler-Lagrange equation of the
variational integral
/ Vul.
G

We say that a Riemannian n-manifold M™ has the Liouville D,-property if
every p-harmonic function © on M™ with

/ |[VulP < +o00
Mﬂ.

is constant. In this section we study the invariance of the Liouville D,-
property under rough isometries between Riemannian manifolds. All results
in this section can be generalized to so call .A-harmonic functions [H3] and
all proofs are just the same.

First we are going to study some properties of p-harmonic functions. We
have the following Caccioppoli-type inequality [H2].

Lemma 4.5 Let u be a positive p-harmonic function in G, and let v = u9/?

where ¢ € R\ {0,p — 1}. Then for every non-negative n € C$°(Q),

q
VolP < |—2 P P|UnlP.
L 1VeP < [ P [ e#19n)
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Proof:
Write K = ¢ — p+ 1. Since v = u9/?, we have

Vv = (q/p)u(q_p)/qu,

and
IVolP = lg/plPu??|Vul”.
Let n € C§°(G) be non-negative and let ¢ = u*nP. Then
Vo = pun?~'Vn + knfu? PV,

Let n € W, (G). Since u is p-harmonic in G and the support of ¢ is compact
subset of G,

/G < |VulP~?Vu, Vi >= 0,
and so
s VulP 2V, P~V / PrPydP.
'pr<| ul u, un? n>+nG|Vu|npu
Therefore we obtain
P _ P, 9—P P
Lol = [ wla/pPur|vul

plQ/p’p ./(; 'vu'p—lnp—lunlvnl

|&|
q —_— K— —_— —

= Iglfau"”’lvnln” b ale Pl g fplP!

< |E|([ u"IV lp)lfp(/ puq—p‘v |p| / |p)(p—1)fp

= N, n G7? u\t\q/p

q p p\1/p p\(p—1)/p

21 v 1onpye( | IvoP)

The lemma is proved. 0

Lemma 4.6 Let u be a weak positive supersolution of (4.2) in G. Then for
any compact subset K C G and ¢ € C§°(G) with ¢ =1 on K, we have

Vlogul?P < f Vol
/K [Viogulf < C [ |V
where C is independent OfK and Q.
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Proof:

We may assume that essinfu > 0. Pick a non-negative ¢ € C§°(G) with
¢ =1in K. Since the function n = ¢Pu'"? € W, ,(G) is non-negative, then

0 < /G < |VulP~2Vu, Vn >
= /G < |VulP~2Vu, ppPtul"PVp — (p — 1)uPpPVu > .
Now Holder’s inequality yields

| ivePurer < C VP~ 1yl P | V| P!
supp(p) ®)

supp(

< & |Vu|"u—”<pp)(”‘l)/”(/c|V<pl”)1/”.

supp(p)

Since ¢ =1 on K, we have

(/K(Ivulu—l)P)l/P < C(/G Ivsolp)l/p.

This complete the proof of the lemma. m|

In order to get a local Harnack inequality for p-harmonic function which
will be needed later, we impose the following property to a manifold.

Definition 4.3 We say that a Riemannian manifold M has bounded geom-

etry if the following two conditions hold on M

1. The Ricci curvature of M is uniformly bounded from below by

—(n—1)K?, with K >0,

2. The injectivity radius of M, denoted by inj(M), is positive.

The well known comparison theorem [BC] and [CGT] says that for Rieman-
nian manifold satisfying condition 1 above, we have estimates

|B(z,R)| _ Vk(R)

|B(z,7)| < Vi (r) and B(z.r) Ve )

<

69



for the volumes of geodesic balls for all z € M and R > r > 0. Here Vi(r)
is the volume of a geodesic ball of radius r in the simply connected complete
Riemannian n-manifold of constant sectional curvature —K?. Volumes of
small geodesic balls in M have a lower bound

|B(z,r)| > vor™

for all z € M and for all » < inj(M)/2, where vy is a positive constant
depending only on n. This estimate is proved by C.B. Croke [Cr]. It is also
proved by Croke [Cr| (see also [CGT]) that for every domain Q C B(z,r)
with smooth boundary, r < inj(M)/2,

vol(Q)»~D/" < C area(d9),
where C depends only on n. Hence
|Q|(m=D/m < C|Q|Y/"V™area(8Q)
< C|B(z,r)|"/""Y™area(d9)

if m > n. It is well-known [C] that this isoperimetric inequality implies that

([ fur/m=)mim < c|B(z, r)ietim [ ()
B(z,r) B(z,r)

for allu € C§°(B(z,r)). By applying this and Holder’s inequality to functions
v = |u|?, where u € C§°(B(z,r)) and 7 is suitable, and approximating, we
obtain a Sobolev estimate.
Lemma 4.7 Suppose that M is a complete Riemannian n-manifold, with
inj(M) > 0, and that ¢ < p < m, where m > n. Then there exists a constant
C = C(n,m,p) such that

(/ |u|pm/(m—p))(m—p)/m < C’|B(x,r)|”/""’/m/ |VulP

B(z,r) B(z,r)

for every u € W, o(B(z,7)) and r < inj(M)/2.

We also have the following local Poincaré inequality for Riemannian mani-
folds with Ricci curvature bounded below [B] [C].
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Lemma 4.8 Suppose M is a complete Riemannian manifold with Ricci cur-
vature bounded below by —(n — 1)K?, with K > 0, then there ezists constant
cn depends only on n such that

[, lu =l S et [l
for every u € W} (B(z,r)).

We can now prove the local Harnack inequality for p-harmonic function [H3].

Theorem 4.3 Suppose that M is a complete Riemannian n-manifold with
bounded geometry. Then there exists, for each 0 < ry, a constant C such that

sup u<C inf wu,
B(z,r/2) B(z,r/2)

for every positive p-harmonic function u in B(z,r) and r < 1o, where C is

independent of x and u.

Proof:

Let r < ry. suppose that u is a positive p-harmonic function in B(z,r).
Let v = u9/?, where ¢ € R\ {0,p — 1}, let m = max{n,p + 1}, and write
A = m/(m — p). The Sobolev estimate Lemma 4.7 and the Caccioppoli
inequality Lemma 4.5 imply that

(/B( — Ipu|PHYA < C1|B(x,3r/4)|p/n—p/m/

AV P+ PV p
o (P IVOP +27190P)

lq|
& All—12l—_ P vt 4.3
< ((lq_le) +1) B(m,srm”' ul (4.3)

for every non-negative n € C§°(B(z,3r/4)), where
A = Cy|B(z,3r/4)P/"~P/™ and C, = Cy(n, p).

Let r/2 < t < t' < 3r/4, and write t; = ¢ + (¢' - )27 and B; = B(z,t;)
for every i = 0,1,---. Then (t; — tiy1)™? = 20HVP(¢' — t)=P, By = B(z,t'),
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and B(z,t) C B; for every i. For each i, we choose a non-negative 7; €
Cs°(B(z,3r/4)) such that m; = 1 in B;y;, m; = 0 outside B;, and |Vrn;| <
2(t; — tiz1) ™. Next we choose gy € R\ {0} such that

plp—1)

M =p4+1| >
|goA" —p + |-2m_p

(4.4)

for every 7. Applying (4.3) to 7; and to ¢ = go\* yields

. i (i+1)p .
oA TIN1/A <A |q0/\| P 1 2 / qoA
¥V 2 Ml P + D o™

and so

=1 i|p . 9PS;
qo\ N 1/,\' < AS |qoN'| 1) /X / qo
(/B(u ") H QX —p+ 1P ) (& — 075 Jgo

2

where S; = ¥, A~ and S; = I_o(I +1)A~%. The condition (4.4) implies
that the product above has an upper bound which depends only on n and p
(note that m = max{n,p + 1}). Letting j — co we get S; — m/p and

C,A™?|B(z, t'
sup um < S4B D)
B(z,t) (t' — t)m B(z,t')

u®, (4.5)

where Cy = Cs(n, p) provided that (4.4) holds. The condition (4.4) holds for
every qo < 0. Moreover, for every g > 0, there can be at most one 7 such that

p(p—1)

N—p+1| < :
lgX* —p +1] e

Thus every interval [¢/), g] contains a number g, which satisfies (4.4) for all
i. To get rid of (4.4), suppose that ¢ # 0. If ¢ < 0, we set go = ¢, otherwise,
we choose g € [g/A,¢] such that (4.4) holds for every i. Next we choose

Cs = max{Cs, (2C""v7"/™)=™}. Then

CsA™?|B(z, t)| _ CsCT"Pug ™ (r/2)™
-0 = /4=
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since inj(M) > 0. It follows from (4.5) that

sup u¢ = (sup uqo)q/qo

B(z,t) B(z,t)
& (C’sAm/P|B(IB, | )q/qo (][ uQO)Q/QO
- (¢ —t)m B(z,t)

A AmA A

< C3A™?|B(z, t')| ][ 2.
- (¢ —t)mA B(z,t')

(4.6)

This holds for every ¢ # 0 and r/2 <t < t' < 3r/4. Next we write B(s) =
B(z,7/2 + sr/4) for 0 < s < 1. Since A = C,|B(z,3r/4)|P/"P/™, we can
write (4.6) as

sup wl < C(M)m)‘/n(s/ _ S)_m'\][ u
B(s) o B(s')
< C(M)mz\/n(sl . s)_mAJ[ ul
To B(s')

Here we used the volume comparison theorem to obtain first |B(z,3r/4)| <
Vi (3r/4) and then Vi (3r/4)r™™ < Vi (3re/4)ry™. We have proved that

sup < (efs' = s)™) V(L ut),
B(s) B(s')

and

inf > (¢(s' — s)™ 1/"][ u~9)" e
B(s)_(( ™) (B(S,) )

forallg > 0and 0 < s < s’ <1, where ¢ = ¢(n,p, K,r9). By the refined
version of the John-Nirenberg theorem [BG],

sup u < e inf w,
B(z,r/2) B(z,r/2)

where

©) = sup inf logu — «
gl = 2up 1o 7., [Rogme—sa
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and ¢ = c¢(n,p, K,ry). To estimate g(u), we first use the local Poincaré
inequality Lemma 4.8 and Holder’s inequality

1
< = inf [ logu —
7)< 1B, 7] i Jacaarsn 8
Tec,,(l+Kr)
|B(:1:,r/2)| B(z,3r/4)
cn(1+Kr)B 3r/4)|1-1/p
|B(z,7/2)| B(z,3r/4)

Furthermore, Lemma 4.6 implies that

|V log u|

[ Vegur<c [ |vip (4.7)
B(z,3r/4) B(z,r)

for every n € C§°(B(z,r)) such that » = 1 in B(z,3r/4). We obtain an
upper bound ¢r~?|B(z, )| for the right hand side of (4.7) by choosing 7 such
that |Vn| < 8/r. Putting together these estimates yields

u Cecn(1+Kr)|B(x’3r/4)| 1B )| _yi/p
g(u) < |B(z,7/2)| (|B(x,3r/4)|)
- Cec,,(1+1<ro)VK(37‘/4) Vi (r) )i/
= Vik(r/2) “Vi(3r/4)

Finally, we apply the volume comparison theorem to volume of n-balls in R"
to deduce first that cr™ < Vi (r/2)(< Vk(3r/4)), with ¢ = ¢(n), and then

that
Vi (3r/4) 2 Vi (3r/4) é Vi (3ro/4)
Vk(r/2) — crn - erd

Similarly,
Vi(r) < Vi (o)
Vk(3r/4) — cr}
Hence g(u) has an upper bound which depends only on n,p, K, and ry. The
theorem is proved. O

We have the following consequence of the local Harnack inequality.
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Theorem 4.4 Suppose that M is a complete Riemannian n-manifold with

bounded geometry. Let
. 2, .
To = min{1, gznj(M)}

Then there ezists a positive constant ¢ = c(n,p, K,1¢) such that

u(z) u(z)
p(z,y) > cromax{|log ——=/,|lo —I} — 7o,
omaxtflo oy 18Ty
whenever u is p-harmonic in M, with infy; u =0 and sup,, u = 1.

Proof:

Let  and y be two points in M. We may assume that u(z) > u(y). Suppose
first that p(z,y) > 7ro. Let v be a minimal geodesic from z to y, and let
[ > 2 be an integer such that (I — 1)r/2 < p(z,y) < lry/2. Then there are
points o = z,%y, - ,2 = y on v such that d(z;, ;1) < ro/2 for all ¢ =
0,1,---,l—1. Hence B(z;,70/2)NB(x;i41,70/2) # D foralli =0,1,--- ,1—1.
The local Harnack inequality Theorem 4.3 implies that

u(z) < sup u <C inf wu
B(zo,r0/2) B(zo,m0/2)
< C sup u <C? inf wu<---
B(z1,r0/2) B(z1,m0/2)
< C'" sup u <C™' inf < C"lu(y).
B(z,r0/2) B(z;,m0/2)

Hence | + 1 > (log C)~!log(u(z)/u(y)), and so

p(x,y) > crolog uEx; To,

with ¢ = (2logC)~'. If p(z,y) < 7o, there exists a point z € M such that
z,y € B(z,79/2). Then u(z) < Cu(y) by Theorem 4.3, and so

crolog(u(z)/u(y)) — ro < —ro/2.

The theorem follows by applying the same reasoning to the function 1 — ».0
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Manifolds which admit non-constant p-harmonic functions with bounded
Dirichlet integral can be characterized by means of p-capacities. A condenser
is a triple (Fi, F»; G), where F; and F, are disjoint, non-empty, and closed
sets in G.

Definition 4.4 The p-capacity of a condenser (Fy, F3; G) is the number
capy,(Fy, Fy; G) = inf /G Vul?,

where the infimum is taken over all functions u € Ly(G) which are continuous
imn GUFIUF, withu=01in Fy and u =1 in F5. Such a function s called
admissible fo (Fy, F»;G). If the class of admissible functions is empty, we
set cap,(F1, F2; G) = +o00.

Let {B;}{2, be an exhaustion of M such that B; CC B;,; for every i. We
say that a set A C M is unbounded if A has common points with M \ B; for
every 1.

Definition 4.5 For an open set Q C M and a compact set F' C Q, we define

capy(F,00; Q) = lim cap,(F, 2\ B; Q).

1—00

Note that the limit exists and is independent of the exhaustion since the
assumption B; CC B;;, implies that

capp(F1 Q \ Bza Q) > capp(F) Q \ Bi+l; Q)

Definition 4.6 An unbounded open set Q0 C M is called p-hyperbolic if there
exists a compact set F C Q such that cap,(F, 00;Q) > 0.

We remark that any open set Q' is p-hyperbolic if there exists a p-hyperbolic
subst 2 C €'. We also observe that

cap,(F,Q\ D;Q) > cap,(F,00;Q) >0

for each open D CC M if Q is p-hyperbolic and F is as in the definition.
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Definition 4.7 An unbounded open set Q@ C M, with 0 # 0, is called D,-
massive if there exists a p-harmonic function u in Q0 which is continuous in

Q, with u = 0 in 05, supqu =1, and

/ IVul? < +oo.
Q

It is clear from the definition that the sets {z : u(z) < a} and {z : u(z) > b},
and even all components of these sets, are D,-massive if u is a non-constant
bounded p-harmonic function in M, with |Vu| € LP(M), and infu < a <
b < sup u.

Next we explain the connection between D,-massive and p-hyperbolic sets.

Lemma 4.9 Every D,-massive set is also p-hyperbolic.

Proof:

Let 2 be D)-massive, and let u be as in Definition 4.7. Suppose that {B;}2,
is an exhaustion of M such that B; CC B4y, and that cap,(F,Q2\ B;2) > 0,
where F' = B, N Q) # (.

Next we choose admissible functions w; € W, (2N B;), i > 2, for condensers
(F,Q2\ B;; ) such that 0 < w; <1,

= 1
P < F,Q\ B;;Q2) + -, 4.
[, 1Vl < cap,(FLQ\ Bi) + ; (438)

and that w; = 1 in all those components of 2 N B; whose closures do not
intersect F'. We choose these functions in the following way. Suppose that
ws is chosen. Let v, be the unique p-harmonic function in 2 N By such that
vy —wy € W, (2N By). We set v, =1in Q\ B,. Then

/ |Vu,|P < / |Vw,|?
QNBs QN B3

and v, > u in §2. Next we choose w3. Then the set A = {z € Q : w3(z) >
vo(z)} is a subset of QN By. If A # 0,

/A |Vup|P < /A]Vw3|”,
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since vy is p-harmonic in A. We redefine w3 by setting w3 = v, in A. Clearly
(4.8) still holds. By continuing similarly, we get a decreasing sequence of
functions {v;} such that v; is p-harmonic in Q N B;, v; > u;, and that

/ |V’U,‘|p S |Vw,~|”.
QNB; QNB;

To finish the proof, suppose that Q2 is not p-hyperbolic. Then cap,(F,Q \
B;; Q) — 0, and so [onp, |Vvi[P = 0. Since v; > u and supgu = 1, the only
possibility is that v; — 1. This is a contradiction since {v;} is decreasing.
Hence 2 is p-hyperbolic. O

Note that the assumption [, |Vu[’P < 400 was not needed in the proof.
The converse of Lemma 4.9 is not true, that is, there are p-hyperbolic sets
which are not D,-massive. Indeed, let p < n and let 2 C R" be the upper
half space {z : z, > 0}. By symmetry,

cap,(B™(r) N, 00; ) = cap,(B™(r), o0; R*)/2.

It is well-known that cap,(B™(r),00;R*) = c¢r" P > 0. Hence Q is p-
hyperbolic. On the other hand, €2 cannot be D,-massive. Otherwise, the
lower half space would be D,-massive by symmetry. But this implies that
R™ does not have the Liouville D,-property which leads to a contradiction
with [H1]. The exact relation between D,-massive and p-hyperbolic sets is
given by the following theorem.

Theorem 4.5 An unbounded open set Q2 C M, with 0Q # 0, is D,-massive
if and only if there exists a p-hyperbolic 2, C 2 and a continuous function
v in Q which is p-harmonic in Q\ Q,, with v =0 in 0Q, v =1 in Q,, and
Jo VY|P < 400.

Proof:

Suppose first that 2 is D,-massive. Let u be as in Definition 4.7, and let
0 < € < 1. Then the set {z € Q : u(z) > e} is D,-massive, and hence
p-hyperbolic. Furthermore, the function v = min{u,e}/e satisfies the as-
sumption of the claim. |
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To prove the converse, let {B;}2, be an exhaustion of M, with B; CC B;4;.
For © > 2, we write

Q,’:Ql\Bi, G1=Q\Ql, Gi=Q\Qi, G:F:GiﬂBk.

Let u¥ be the unique p-harmonic function in G¥ with boundary values uf—v €
W,o(GY). We set u¥ = vin Q\ G¥. Now 0 < wf < v and uf, < ufin Q.
Since the sequence {uf}%; is uniformly bounded, it is equicontinuous in G;
by the Holder-continuity estimate [T]. By Ascoli’s theorem, there exists a
subsequence, still denoted by {u¥}$,, which converges locally uniformly in
G; to a function u;. We set u; = v in Q\ G;. Then u; is p-harmonic in G; and
the sequence {u;}$2, is decreasing. By Harnack’s principle [HK], the limit
function v = lim;_, u; is p-harmonic in €. If we set u = 0 in 0X2, then u is
continuous in €2 since 0 < u < v and v € C(Q), with v = 0 in 0.

Next we shall show that u (multiplied by a suitable constant) satisfies the
conditions in the definition of D,-massiveness. First we observe that

fvasp = [ vutp+ [ Vol
Q G* Q\G*

1

< / |Vv|”+/ IVol?
G e

— /|V’U|p
Q
< 400

Passing to a subsequence we conclude that there exists a vector field X €
L?(Q) such that Vuf — X weakly in LP(2) as k — co. But the convergence
of uf implies that X = Vu;. Now u; — v € L} ,(Q) since uf —v € L} ().
This in turn implies that

P — P P
Livulr = [ 1vup+ [ Vo
< [ IvoP+ [ [vop

G; Q;

/Q |VolP
+00

<

By repeating the above reasoning, we get that [, |[Vul|P < +0o0 and u —v €
L; (). It follows from Maz’ya’s lemma [Ma], which obviously holds in our
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situation, that
|Vu;|P~2Vu; = |Vulf~2Vu

weakly in LP/(P=1)(Q)). It remains to show that u # 0. Since Q; is p-
hyperbolic, there exists a compact set F' C €2, such that cap,(F, 00;Q;) > 0.
Let U CC M be a sufficiently large connected neighborhood of F' so that
U\ is non-empty. We write @, = Q,UU and F;, = U\ Q. Now ] is also p-
hyperbolic, and cap,(F}, 00;§2}) > 0 since F} and F lie in a same component
of Q). For each 7, u; is admissible for the condenser (92, 9€2;; G;). Using this
fact and well-known properties of capacities we get that

/Q|Vu,~|” > cap,y (092, 0SY;; G))
cap,(M \ Q,8:; M)
cap,(Fy, % \ Bi; Q)
capy(Fy,00; )

0

vV IV IV

if 7 is large enough. Furthermore,

/ VP = / < |VuilP~?Vu,, Vo >
Q Q
— /Q < |Vulf~2Vu, Vv >,

and so Vu cannot vanish identically in 2. We conclude that u is non-
constant. Multiplying u by a suitable constant, if necessary, we get a function
which satisfies all the conditions in the definition of D,-massiveness. The the-
orem is proved. O

An open set G CC M is saided to be regular if, for all functions h €
C(GNW,(G),

lim u(z) = h(y)
holds at every boundary point y € dG whenever u is the unique p-harmonic

function in G with u — h € W) ((G). For example, all domains Q cC M™
with C'-boundaries are regular for all p.
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Theorem 4.6 A Riemannian manifold M admits a non-constant p-harmonic

function u, with

/ |VulP < 400,
M

iof and only if there exists two p-hyperbolic sets 1,9 C M such that

cap, (21, Qy; M) < +o00.

Proof:

If M does not have the Liouville D,-property, there exists a non-constant
bounded p-harmonic function u in M, with [, |[Vu|P < +o0. Let infu < a <
b < supu. Then the sets Q) = {z : u(z) < a} and Qy = {z : u(z) > b} are
D,-massive, hence p-hyperbolic. Moreover,

1
(b—a)

cap,(Qy, Q95 M) < /M |VulP < +o0,

since the function
U

—a
5o M

is admissible for the condenser (2, Qy; M).

Suppose then that €; and Q, are p-hyperbolic, with cap, (2, Qp; M) < +c0.
Then there exists an admissible function w for the condenser (£2;,Qq; M).
By taking slightly larger open sets 2} and €, with smooth boundaries and
containing Q; and ), respectively, such that Q) C {z : w(z) < 1/4} and
Q, C {z : w(z) > 3/4}, we obtain p-hyperbolic sets ) and ), with
cap,(Q,%; M) < +o0o. Now there exists a continuous function » in M
which is p-harmonic in M \ () U Q) with u = 0in @}, u = 1 in Q5, and
Jar IVu|P < +00. By Theorem 4.5, the sets {z : u(z) > b} and {z : u(z) < a}
are disjoint D,-massive sets for 0 < a < b < 1. Call them G; and Gs.
Let {B;} be an exhaustion of M such that B; is regular for every i. Let
u;, j = 1,2, be a p-harmonic function in G satisfying the conditions in Def-
inition 4.7. We extend u; to M by setting u; = 0 in M \ G;. Let v; € C(B;)
be p-harmonic in B; such that v; = u; in 0B;. Then

v = max{0, min{

u Sv; < 1—wuy
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in B;. Furthermore,

/ |V;|P 5/ |Vu1|”§/ |Vu, P < +o0.
B; B; M

Thus there exists a subsequence, denoted again by wv;, which converges lo-
cally uniformly in M to a p-harmonic v. Now u; < v <1 —wuy in M and

Jar IVU[P < 400. Since supu; = supus = 1, v cannot be constant. The
theorem is proved. o

The following lemma is a generalization of Lemma 1.11.

Lemma 4.10 Suppose M satisfies the local volume doubling property and
local Poincaé inequality, and that P is an e-net in M. Then there exists

constants C,C" such that for any uw € C°(M), S' C P,
0
1025, < ClIVullp,st, ,

where Sgy, = {x € M : p(z,S'") < C'e}.
Similarly, for all Q C M and function f € Cy(P),

IV fllp.a < ClI6fllp00,ne-

We now define the p-hyperbolicity on nets.

Definition 4.8 A subset S of a net P is p-hyperbolic, with 1 < p < oo, if
there exists a finite non-empty set E C S such that
capy(E, 00; S) = inf D |Vu(g)|"m(q) > 0,
geS
where the infimum is taken over all finitely supported functions u of SUOS,

where 8S = {q : §(q,S) = 1}, with u = 1 in E. Such functions are called
admissible for (E,00;S).
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Lemma 4.11 Suppose that S’ C P is connected subset, Q = {x € M :
d(z,S'U0S’) <€}, and that S = {q € P :d(q,2) < e}. Then Q is a domain
and S is a connected subset.

Proof:

Let z and y be any two points in 2. Then there are points ¢,q' € S" U 05’
such that d(z,q) < € and d(y,¢') < €. Since also S’ C 35’ is connected, we
can find a path in $' U S’ from ¢ to ¢. Then the e-neighborhood of this
path is a connected subset of 2 which contains both z and y. This show that
2 is connected and therefore a domain since clearly € is open.

To show that S is connected, Let ¢ and ¢’ be any two points of S. Then
there are points z,y € € such that d(z,q) < € and d(y,q') < €. Since Q is
a domain, there exists a rectifiable curve which connects z and y in Q. It is
easily see that the e-neighborhood of this curve contains a path in P, and
hence in S, from ¢ to ¢’. Thus S is connected. |

Lemma 4.12 Suppose M satisfies the local volume doubling property and
local Poincaré inequality and C' be the constant in Lemma 4.10. Let S’,
Q= Sc.={z € M: p(z,5) < C'e}. Then Q is p-hyperbolic if S’ is p-
hyperbolic. Conversely, if a domain Q2 in M is p-hyperbolic, then S = {p €
P : p(p,Q) < C'e} s p-hyperbolic.

Proof:

Let {B;} be an exhaustion of M. Suppose first that S’ is p-hyperbolic. Then
there exists a finite non-empty set £ C S'UJS’ such that cap,(E, co; S’) > 0.
We set F = U,epB(g,C’e/2). Let u € C°(M) such that w = 1 in F. Then
u =0 in Q\ B; for some i. Observe that 1 — u is admissible for (E,Q \ B;),
@ is admissible for (E, 00; S’), That is, 2 = 1 in F and it has finite support.
By Lemma 4.10

/Q IVulPP > C S |6i(q)[Pm(q) > Ceap,(E, 00; S').

ges’

Taking the infimum over all such functions u gives

cap,(F, 00; ) > Ceap,(E, 0; S') > 0,
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and so €2 is p-hyperbolic.

For the proof of the second claim, we choose a compact set F' C €2 such that
capp(F,00;€) >). Let E = {g € SUAS : p(q, F) < 2¢}. Then E is finite
and non-empty. Let f be an admissible function for (E, 00;S). Since f has
a finite support, f = 0 in 2\ K for some compact set K C M. For each

z€F, )
f(@) = f(q)by(2),

qEP,

where P, = {p € P : p(p, ) < 2¢}, since P, C E and f(q) = 1 in E. Hence
1 — f is admissible for (F, 2\ B;;2) whenever K C B;. By Lemma 4.10,

> 18£(9)Pmg) > C | [VIP > Ceapy(F, 00;) > 0.

qeS

Since this holds for all admissible function f we get
cap,(E, 00; S) > Ceap,(F, 00;2) > 0.
This ends the proof. m|

The proof of the following lemma is similar to the proof of Corollary 4.1.

Lemma 4.13 Let ¢ : P, — P, be a uniform rough isometry between two
ponderable nets, 1 < p < +o0o. Then there ezists constants C and C' such
that if S C P and S' = {q € P, :d(q,S) < C'}, then S’ is connected if S is
connected. Furthermore, let u be a function of S"UOS" and v =uo . Then

> dv(@) P (2) < C 3 [6u(q)[Pma(q)-

€S qeSs’

Lemma 4.14 Suppose X andY be uniformly roughly isometric Riemannian
manifolds satisfying the local volume doubling property and local Poincaé
inequality. Let P and @Q be e-nets in X and Y, ¢ : P — @Q be a uni-
form rough isometry. Then there exists constant C' such that if Q C X is
connected and p-hyperbolic and S = {q € P : p(q,f2) < €}, then the set
Q' ={yeY:plye(SUdS)) < C'}, is a p-hyperbolic domain.
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Proof:

Clearly €' is open. To shown that it is connected, let z and y be any points
of €. Then there are points ¢ and ¢’ in SUQAS such that z € B(y(q),C") and
y € B(¢(q'),C"). Both of these balls are contained in €. Furthermore, since
S is a connected subnet, so does SUQAS. Thus there exists a path in SUJS,
say go = q,q1,- - ,q = ¢, from q to ¢’. By definition of rough isometry, there
exists constants a, b such that

p(0(4:), p(gi+1)) < 2ed(p(a:), p(gi+1)) < 2e(a+D),

and therefore U!_,B((g;),C") is a connected open subset of ' containing
and y if we choose C' > 2¢(a + b). This implies that €' is a domian.

It remains to prove that ' is p-hyperbolic. First we observe that S is p-
hyperbolic by Lemma 4.12. Thus there exists a finite set £ C S U dS such
that cap,(E,00;S’) > 0. Let u be an admissible function in S’ U dS’ for
(p(E),00;8), that is, u has a finite support and v = 1 in ¢(FE). For each
g € SUOAS, we set v(q) = u(ep(g)). Then v =1 in E. Since the support of
v is finite, there is a point § € S and &y > 0 such that v(q) = u(p(q)) = 0 if
d(p(q), ¢(q)) > do. Since ¢ is a rough isometry, there exists 4, > 0 such that,
d(p(q),¢(q)) > do, and so v(q) = 0, if d(¢,q) > 6;. The uniformness of P
implies that there can be only finitely many points ¢ € P with d(q,q) < d;.
Hence the support of v is finite and v is admissible for (E, 00;S). Lemma
4.13 then implies that

> 6u(q)Pm(g) > C > |6v(z)|Pm(z) > Ceapy(E, 00; S) > 0.

qges’ z€S

This is true for every admissible v. Hence cap,(¢(E),00;S’) > 0 and S’ is
p-hyperbolic. It follows from Lemma 4.12 that the C'-neighborhood of S’U.S’
is p-hyperbolic. Hence, if we choose a larger C’, {2 is also p-hyperbolic as a
larger set. @

We are now ready to prove the main theorem [H3].

Theorem 4.7 Suppose X and Y are roughly isometric complete Riemannian
manifolds with bounded geometry. Then X has the Liouville D,-property if
and only if so does Y.
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Proof:

First, note that X and Y satisfy the local volume doubling property, local
Poincaré inequality and are unifomly roughly isometric by Lemma 1.1 and
Lemma 1.2 in Section 1.1.

Fix ¢ < min{inj(X)/2,inj(Y)/2}. Let P and @ be e-nets in X and Y,
respectively. Suppose that X does not have the Liouville D,-property. By
[H1], there exists a non-constant bounded p-harmonic function u in X with
Jx |VulP < +00. We normalize u such that infy v = 0 and supyu = 1. It
is sufficient to prove that Y also admits a non-constant p-harmonic function
with LP-integrable gradient. For each a,b € (0,1), we denote by €, and
Q% any component of sets {z € X : u(z) < a} and {z € X : u(z) > b},
respectively. Then Q, andQ® are p-hyperbolic domains. Let 0 < s < 1/4
and 3/4 <t < 1. We write Sy ={g € P: p(q,Q) <ec}and S*={g€ P:
p(q,92") < €}. Then the sets D; = {z € Y : p(z,p(Ss U S;)) < C'} and
Dt={z €Y : p(z,p(StUIS)) < C'} are p-hyperbolic by Lemma 4.14. We
claim that, for some 0 < s < 1/4 and 3/4 < t < 1, cap,(D, D%;Y) < +o0
which then proves the theorem by Theorem 4.6. Let

v = max{0, min{2(u — 1/4),1}}.

Now v = 0 in €44 and v = 1 in 234, Next we define function w on @ by
w = v oY, where ¥ is a rough inverse of ¢. By Lemma 1.11 and 4.13, we
have

/ IValP < 0/ Vol < 2”0/ IVul? < +oo.
Y X X

It remains to show that o is admissible for (D, D!;Y) if s and ¢ are properly
chosen. Since 7 is a rough inverse of ¢, there exists a constant ¢ such that
p(z,¥(p(z))) < c for every z € P. Let ¢ € Q be such that p(q, D) < 2e.
Then there is y € D;, with p(q,y) < 4¢. Moreover, p(y, ¢(z)) < 2C" for some
z € S; U 3S;s, and so p(q,¢(z)) < 2C" + 4e. Since 1 is a rough isometry,
p(¥(q), ¥(p(2))) < ¢ for some constant ¢’. Hence p(¥(q),2) < c+¢’. On the
other hand, there is 2z’ € S; such that p(z,2') < 2¢. Finally, p(z,z) < ¢ for
some z € ;. Hence, for every y € B(v(q),¢),

p(y,z) <c+c +4e =C, (4.9)

where C is independent of ¢ and z. Thus we can attach to each q € Q, with
p(g, Ds) < 2¢, a point z € €, such that p(y,z) < C whenever y € B(v(q), ).
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By Theorem 4.4, we can choose 0 < s < 1/4 such that

p(092;,00/4) > 2C. " (4.10)

p(g, Ds) < 2¢. But this implies that w(g) = 9(x(g)) = 0 for such ¢, and so
w(z) = 0 for every z € D;.
Similarly, we can choose 3/4 < t < 1 such that

It follows from (4.9) and (4.10) that B(¢(q),€) C €174 whenever g € Q, with
v

p(09t, 09%) > 2C.

Then B(y(q),e) C Q¥* if ¢ € Q and p(g, D') < 2¢. Hence w(z) = 1 for
every ¢ € D'. We have showed that w is admissible for (Ds, D*;Y) which
then proves the theorem. m)
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