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Abstract 
I n th is thesis we w i l l survey some analyt ic results related to rough isome-

tries between Riemannian manifolds. The concept of rough isometry is first 
in t roduced by Kana i . Since to be roughly isometr ic is an equivalent rela-
t ion, we would expect tha t there are some invar iants share w i t h roughly 
isometric manifolds. Kana i showed tha t the volume growth rate, the isoperi-
metr ic inequal i ty and the existence of posit ive Green funct ion are examples 
of these invariants. He also proved tha t a man i fo ld has L iouv i l le proper ty of 
posit ive harmonic funct ions i f i t is roughly isometr ic to a Eucl idean space. 
A f te r Kanai , Holopainen used s imi lar method to prove tha t the L iouv i l le 
Dp-property is another roughly isometric invar iant . I n al l results above, 
the assumption on posit ive in jec t iv i ty radius on manifolds was used. Later 
Coulhon and Saloff-Coste used a different method to study rough isometries. 
They d idn ' t use the assumption on posit ive in jec t i v i t y radius. They showed 
tha t some Sobolev inequalit ies, which are equivalent to some isoperimetr ic 
inequalit ies, are un i fo rmly roughly isometric invar iant . They also proved 
tha t the Poincare inequal i ty is also preserved under un i fo rm rough isome-
tries. Combine w i t h a previous result given by Gr igor 'yan and Saloff-Coste 
independently, which gave an equivalent statement of parabol ic Harnack in-
equality, they found tha t the parabol ic Harnack inequal i ty is a un i fo rmly 
roughly isometric invar iant . 
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Chapter 1 

Introduction 

I n th is chapter, we giVe the def in i t ion of rough isometries between two metr ic 
spaces and discuss some basic propert ies of them. 

1.1 Rough Isometries 
Let X be a metr ic space. For a po in t x in X , Br{x) denotes the open 
r - b a l l around x\ Moreover for a subset Y of X we denote by Br{Y) the 
r -ne ighborhood of F ; Br{Y) = {x e X : d(x,Y) < r } . A subset V of X 
is called e-full in X for e > 0 i f X : Be{Y), and is said to be full i f i t is 
e-full for some e > 0. 

Definition 1.1 A map (p : Xi ^ X2 between two metric spaces Xi and X2, 

not necessarily continuous, is called a rough isometry, if 

1. the image of (p is full in X2； 

2. there exists constants a > 1 and b > 0 such that 

a~^d{x, y) - b < d{(p{x), ip{y)) < ad{x, y) + b, Vx, y G X i . 
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We can easily show tha t i f (p : X — Y and 补:Y ~^ Z are rough isometries 
then so is the composit ion ^o^ : X ~> Z and we have a mapping (^_i : Y — 
X such that bo th d(cp~^o(p(x),cc) and d{(po(^-^(y),y) are bounded in x G X 
and in y e F , respestively. I n fact, for each y G Y, choose x G X so that 
d{(f{x), y) < e, where we assume that the image of (p is ^ - fu l l in Y , and put 
( ^ - i ( y ) 二 X. We call cp-i a rough inverse of (p. Two metr ic space is said to 
be roughly isometric i f there is a rough isometry between them. Therefore 
we have 

Proposition 1.1 To be roughly isometric defines an equivalent relation. 

We give some basic examples of rough isometries. 

Example 1.1 An arbitrary mapping between two compact metric spaces is 

a rough isometry. Therefore any two compact metric spaces are roughly iso-

metric. 

Example 1.2 If X and Y are roughly isometric, then X and Y x K are 

roughly isometric where K is an arbitrary compact metric space. In other 

words, rough isometries neglect "compact factors". 

Definition 1.2 A diffeomorphism (p of two Riemannian manifolds X onto 

Y is called a quasi-isometry if there is a constant a > 1 such that 

^ " ' l e l < M ^ ( O I < ^ K I , V^ G TX. 
Another k ind of isometries is so called pseudo-isometries introduced by 
Mostow [Mo . 

Definition 1.3 A pseudo-isometry of X into Y is a continuous map satis-

fying 

a_ifi(Xi, X2) — b < d{^{xi), y^{^2)) < ad{xi,x2)^ Vx1,a:2 ^ X 

with suitable constants a > 1 and b > 0. 
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Example 1.3 Both quasi-isometries and pseudo-isometries are rough isome-

tries. 

Since we have not assumed a rough isometry even to be continuous, the local 
geometry of a mani fo ld does not brought in to another mani fo ld by a rough 
isometry. So we need some addi t ional condit ions on rough isometries and 
Riemannian manifolds which governs local geometries of the manifolds. On 
a Riemannian mani fo ld, there is a natura l Riemannian measure. So we can 
consider a Riemannian mani fo ld as a metr ic measure space and we have the 
fo l lowing definit ion. 

Definition 1.4 Let Xi andX2 be two metric measure spaces. A rough isom-

etry ip from Xi to X2 is said to be uniform if there exists constant C > 0 

such that 

C - ' V i { x , 1) < V2{^{x) , 1) < C V i { x , 1), Vx G X i , 

where Vi{x, 1) and V2{(p{x), 1) are measure of Bi(x) in Xi and B2{(p{x)) in 

X2. 

I n general, un i fo rm rough isometries does not define an equivalence relation. 
Bu t i t define an equivalence relat ion in manifolds satisfy the local volume 
doubl ing property. 

Definition 1.5 A complete Riemannian manifold X is said to he satisfies 

the local volume doubling property i / V r > 0, 3CV > 0 such that Vx G M, we 

have 

V{x,2r) < C r V [ x , r ) 

where V{x^ r) denotes the volume of the ball with center x and radius r. 

Another local geometric property which w i l l be used later is the local Poincare 
inequality. 
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Definition 1.6 A complete Riemannian manifold X is said to satisfy the 

local Poincare inequality if Vcr > 1, r > 0, 3CV，r > 0 such that V / G 

C^{M), X G M, we have 

(I \f{y)-人⑷广办”"< a , . ( [ , �|v/0/)l^)i" 
JB{x,r) JB{x,2r) 

where fr{x) = ^ ^ fB(z,r) f{v)dy-
F r o m [B] and the B ishop compar ison theorem [BC], we have 

L e m m a 1.1 If the Ricci curvature of a complete Riemannian manifold is 

hounded below, then both local volume doubling property and local Poincare 

inequality will be satisfied. 

L e m m a 1.2 Iftwo complete Riemannian manifold have bounded below Ricci 

curvature and positive injectivity radii, then every rough isometries between 

them are uniform. 

Proof : 
Suppose X i and X2 are mani fo lds of dimensions r i i and ri2 w i t h posi t ive 
in jec t i v i t y radius and Ricc i curvature bounded below f r om - { r i i — l)K^, 
i — 1,2, where K > 0. Let ip be a m a p p i n g f r o m Xi to X2, then f r o m Bishop 
compar ison theorem, we have 

V i { x , l ) < V K { l ) , Vx G X i . 

where V x ( l ) is the vo lume of a geodesic ba l l o f radius 1 i n the s imp ly 
connected complete R iemann ian n i - m a n i f o l d of constant sectional curvature 
- K \ 
O n the other hand, 

V2{^{x),r)>v^T^' 

where r = m i n { l , i n j ( X 2 ) / 2 > 0 } and VQ is a posi t ive constant depending 
only on d imension of X2 [Cr . 
Therefore 

^ i ( - ' i ) < 5 S % ( w W , r ) < ^ W w W , i ) . 
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Since the above inequal i ty is t rue for any (^, the proof of the lemma is com-
pleted by exchanging X i and X2. 口 

1.2 Discrete approximation of 

Riemannian manifolds 
I n [Mi] , M i lnor gives examples of pairs of Riemannian manifolds roughly 
isometric to each other, and suggests the method of discrete or combinator ia l 
approximat ion of geometries of Riemannian manifolds. Suppose that F is a 
finitely generated group w i t h f ini te generator system A. For an element 7 • 1 
of r , let |7|^ be the smallest posit ive integer k such that 7 is represented by 
a product of k elements of AuA~^, and put |1|^ = 0. This | . |^ is called the 
word norm of F w i t h respect to A , and satisfies the fol lowing condit ions for 
al l /?, 7 G r : 

1. |7|A > 0, and | 7U = 0 i f f 7 = 1， 

2. | 7 " ^ U = |7U, 

3. | /^7U < l/^U + h U -

Also the word norms corresponding to two finite generator systems A and B 
are equivalent; i.e., there is a constant a > 1 such that a "^ |7 |^ < |7|5 < a|7|^ 
for al l 7 . Now suppose moreover that F acts freely and properly discontin-
uously on a complete Riemannian manifo ld X as isometry and that X/T 
is compact. F ix a point 0 in X and put ||7|| = p(o, 70) for 7 G F. Then 
obviously the fol lowing hold for al l |3,7 G F: 

1. ||7|| > 0, and ||7| = 0 i f f 7 = 1, 

2. | |7" ' l l = l|7||, 

3. ||/^7ll < ||/^|| + ||7ll-

In this si tuat ion, Mi lnor [Mi] has shown the inequalities 

a " ^ l 7 U - b < ||7|| < a \ j \A , V7 e r , 
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where a > 1 and b > 0 are suitable constants. Now put d,A{P, 7 ) = \P~^j\A-
Then d,A is a lef t - invar iant metr ic on F, called the word metric of V w i t h 
respect to A, and the map (p : V ~^ X, 7 ^ 7 0 is a rough isometry (w i th 
respect to the word metr ic c ^ of T and the Riemannian metr ic p of X) 
satisfying the inequal i ty 

a-^dA{Pn) 一 b < p ( ^ ( O , ^ ( 7 ) ) < a d A _ , V ^ , 7 ^ r . 

Thus we can conclude the fo l lowing propposi t ion since to be roughly isometric 
is an equivalence relat ion. 

Proposition 1.2 If a discrete group F acts freely and properly discontinu-

ously on complete Riemannian manifolds X and Y isometries in such a way 

that both X/T and Y/T are compact, then X is roughly isometric to Y. 

Also Mi lnor has shown tha t the volume growth rate of X is dominated by 
tha t of r . I n fact he proved 

c - i # { 7 € r : | 7 U < o!'^r — b} < V{o, r) < ¢ # { 7 e T : | 7 U < o!r + 6'} , 

where a' > 1, h' > 0 and c > 1 are constants, and, for a set S, # 5 denotes 
the cardinal i ty of S. Th is fact suggests tha t geometry of the Riemannian 
mani fo ld X may be approximated by the combinator ia l geometry of the dis-
crete group r . 
To establish our theorems of invariance of geometric properties of manifolds 
under rough isometry, we approximate a Riemannian mani fo ld by a combi-
nator ia l structure, which we call a net. I n case of Mi lnor 's work, the orb i t 
To of the act ion of F on X may be considered as a net in our sense, and we 
have already seen tha t the geometry of the discrete group F reflects that of 
the Riemannian mani fo ld X. Th is is also the case w i t h a net in a complete 
Riemannian manifold. Moreover a net in a complete Riemannian mani fo ld 
has a canonical metr ic of combinator ia l nature, which corresponds to the 
word metr ic in the case of a f in i tely generated group, and we w i l l see that 
the net is roughly isometric to the manifold. 
Now the scheme of the proofs of our theorems of invariance of geometric 
properties under rough isometries is stated in the fol lowing form. Suppose 
that the complete Riemannian manifolds X and Y are roughly isometric to 
each other. 
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1. A rough isometry between X and Y induces a rough isometry between 
nets P in X and Q i n Y. 

2. A discrete approx imat ion lemma suggests tha t the geometries of P and 
Q coincide w i t h those of X and F , respectively. 

3. T w o roughly isometric nets P and Q have the same geometry. 

I f the above statements are proved, then i t is easy to see tha t X and Y have 
the same geometry. We w i l l see tha t the first statement is always true. The 
t h i r d statement is, in general, easy to prove. So most of our work w i l l be 
concentrated in the proofs of discrete approx imat ion lemmas. 
Now we give the def in i t ion of nets. 

Definition 1.7 Let P be a countable set. A family N — {N{p) : p G P} is 

called a net structure of P if the following conditions hold for all p, q G P: 

1. N{p) is a finite subset of P, 

2. q e N{p) i f f p e N { q ) . 

For a point p G P, sometimes we denote q G N{p) by q 〜p and q is called a 

neighbor ofp. By a net we mean a countable set with a net structure. 

Connect ing by a segment each pair of two points which are neighbors of 
each other, we see immediate ly tha t a net is essentially no th ing but a count-
able 1-dimensional local ly f in i te s impl ic ia l complex w i thou t or ientat ion, or 
equivalently, local ly f ini te countable graph. 

Definition 1.8 Suppose that P is a net. 

1. A sequence p = (po, • • • ,Pi) of points in P is called a path from po to 

Pi of length 1 if each pk is a neighbor ofp^-i-

2. P is called connected if any two points in P are connected by a path. 
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3. For points p and q of a connected net P, d{p, q) denotes the minimum 

of the length of paths from p to q. Obviously this d satisfied the axioms 

of metric. We call this d the combinatorial metric of P. 

4- P is said to be uniform if sup{ij^N[p) : p e P} < 00，where, for a set 

5, # 5 denotes the cardinality of it. 

Lemma 1.3 

1. IfP is a uniform connected nets, d be the combinatorial metric of P, 

then, for all r > 0 and for all finite subsets S of P, the inequality 

iKp e P: d[p, S) < r } < y # s 

holds, where X > 1 is a constant independent of r and S. 

2. Suppose that P and Q are connected nets, P uniform, and that ip : 

P ~> Q is a rough isometry with respect to the combinatorial metrics 

of P and Q. Then there is a constant jjL such that 

•s < MMS) 

for any finite subset S of P. 

Proof: 
The first statement is obvious f rom the def ini t ion. 
We prove the second statement. Vp, q G P such tha t d(p, q) > a ( 6 + l ) , where 
a and b are constants in the def in i t ion of rough isometry, 

d{^{p), ^{q)) > a'^d{p, q) - b > 1. 
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Thus y?{p) ^ (p{q). 
For any finite S C P , there exists r G N, p i , . • . ,Pr ^ S such tha t d(pi,pj) > 
a{b + 1), V I < iJ < r , i + j and \/q G S, d{q,pi) < a{b + 1) for some 
1 < i < r. Then (f{pi) + ( ^ ⑷ for any 1 < iJ < r, i + j . 
Therefore by the first statement 

碰 > T > 為 , 

which complete the proof of lemma. • 

Suppose that X is a complete Riemannian manifold, and let p be the Rie-
mannian metr ic. A subset P of X is said to be e-separated for £ 〉 0 , i f 
p(p, q) > £ whenever p and q are dist inct points of P, and an e-separated 
subset is called maximal i f i t is max imal w i t h respect to the order relat ion 
of inclusion. Obviously a max ima l e-separated subset of X is 6-ful l in X. 
Let P be a max ima l ^-separated subset of X. We define a net structure 
N = {N{p) : p e P} of P by N{p) 二 {q G P : 0 < p{p, q) < 2e). 

Definition 1.9 A maximal e-separated subset of a complete Riemannian 

manifold X with the net structure described above is called an e-net in X. 

I t is easy to see tha t an 5-net in a complete Riemannian mani fo ld is con-
nected i f the mani fo ld is connected. In our later discussions, al l manifolds 
and nets are assumed to be connected unless otherwise indicated. 

Lemma 1.4 Let X be a complete Riemannian manifold satisfying local vol-

ume doubling property, and let P be an e-separated subset of X. Then we 

have 

# { p G P : X G B r {p ) } < u 

for all r>0 and for all x 6 X, where v depending only on e, r and constants 

in local volume doubling property. Consequently every e-net in a complete 

Riemannian manifold satisfies local volume doubling property is uniform. 
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Proof: 
F ix r > 0 and x e X, and put P^ 二 {p G P : x G Br{p)]- Obviously 
Bs/2{p) C Br+e/2{x) C B2r+e/2{p) holds for al l pG Px. Also by local volume 
doubl ing property we have V{p,s/2) > CV{p, 2r + e/2), where C depends 
on r and e. Hence w i t h the fact tha t 〜2(P)，s are disjoint , we conclude 

V[x,T + e|2) > E ^ ( P . ^ / 2 ) 
pePx 

> C{s,r) Y^ V(p,2r + s/2) 
pePx 

> C [ s , r M T , m _ P z 

i.e., # P i < C - \ • 

The fol lowing lemma w i l l be a fundamental too l in later discussions, because 
this lemma makes i t possible to interpret the geometry of a Riemannian 
mani fo ld into the combinator ia l geometry of an e-net in the manifold. 

Lemma 1.5 Let X be a complete Riemannian manifold satisfies local volume 

doubling property, and P an e-net in X. Then inclusion ofP with combinato-

rial metric d into X with Riemannian metric p is a rough isometry. In fact 

we have 

^P(P1,P2) < d{p1,p2) < ap{p1,p2) + b, Vp1,p2 e P, (1.1) 

where a > 1 and b > 0 are constants depending only on e and the constants 

in local volume doubling property. Consequently P is roughly isometric to X. 

Proof: 
The first inequali ty in (1.1) t r i v ia l l y holds (wi thout the assumption on local 
volume doubl ing property ). we prove the second inequali ty in (1.1). Sup-
pose that P1,P2 are arb i t rary dist inct points of P. Let 7 be a min imiz ing 
geodesic f rom pi to p2 w i t h un i t speed. Put P’ = {q G P : Be[q)门 7 i=^ 
0} . Obviously {Be{q) : q G P^} covers 7 , and d{p1,p2) < #Ry. More-
over take the positive integer k so that k — 1 < d{pi,p2)/2s < k, and let 
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Xo(= p i ) , x i , . •. , X k - i , X k { = P2) be the points on 7 such tha t d { x j - i , x j ) = 

d{pup2)/k for j = 1 , . . . ,k. Then q G ^ ( 7 ) C U ^ ^ ^ o ^ ( ^ j ) for al l q G P^, 
and therefore P^ C uf=o{^^ € P : xj G ^ ( g ) } . Hence f rom Lemma 1.4 we 
have # E y < Z-=o # { q ^ P : ^ j ^ ^ W } < < k + 1) < v{d{v1.V2)|^e + 2). 
Thus we conclude d(p1,p2) < u{p{p1,p2)/2e + 2). • 

The above lemma especially suggests tha t any two nets in a complete Rie-
mannian mani fo ld satisfies the local volume doubl ing property are roughly 
isometric to each other. 

Definition 1.10 Suppose m is a strictly positive function on an uniform net 

P and 
mix) 

Cm = sup ~ " 7 ^ < 00. 
I，y m[y) 
X~y ^ ‘ 

Then (P,m) is called a ponderable net. 

Lemma 1.6 Let P be a ponderable net. If we put V{x, n) = Y,y^B{x,n) ^n[y), 

B(Jo,n) = {y G P : d{y, x) < n} then 

m{x) < V{x,n) < m{x)C^N^, Vx e P,ne N*. 

Moreover, (P,d,m) is ponderable if and only if it satisfies the local volume 

doubling property. 

Definition 1.11 Put for all E C P 

l l / l l p , F ( E _ I M r ) ) " p , 
E 

write II . ||p = II . Wp^p, 

and the gradient of a function f on P is defined to be 

卵 ) = 0 ： _ - / ( 奢 2 . 

y〜a: 
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Lemrkia 1.7 Let ( X , p, V) be a complete Riemannian manifold satisfying lo-

cal volume doubling property and (P, d, m) he an s-net of X, where m{x)= 

V[x,e). Then 

1. P is ponderable. 

2. The inclusion from P to X is an uniform rough isometry. 

Proof : 

We only need to proved t h a t inc lusion f r om P t o X , wh ich is a rough isometry 
by Lemma 1.1, is un i fo rm. We may assume t h a t £ < 1，then 

m{B{x, 1)) = m{x) = V{x, e) < V{x, 1) 

and 

V{x, 1 ) < CV{x, e) - Cm{x) = Cm[B{x, 1)), 

for any x G P. Therefore the inclusion is un i fo rm. • 

Definition 1.12 Put for all E C P 

i i / i ip,E = C E i / w r ^ w ) " p , 
E 

write II . \\p = II . ||p，p， 

and the gradient of a function f on P is defined to be 

^ = ( E _ - / W | 2 ) " 2 . 
y~x 

Definition 1.13 Suppose ip is a function on X we associate a function ^ 

on P by 

如 )二似力 = & /召 ( ¥ )州 )炎，“尸 -
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Lemma 1.8 Supoose M is a Riemannian manifold satisfies the local volume 

doubling property. Then there exists C,C' such that for alloc G P, n G N, 1 < 

p < +oo and function 妙 G C^{M), we have 

|V'||p,B(x,n) < CW^pWp^B{x,C'n)-

In particular, 

| ^ p , P < C\\lp\\p^M-

Proof: 

_ “ ’ " ) = 五 ) ( “ - 樣 ) 稱 ， 0 

( - 五 ) 由 ( 0 ， 杨 ， £ ) 

< C [ 錢 成 . 

J B { x , { 2 n + l ) s ) 

Here Lemma 1.4 is used. • 

Let {Ox)xeP be a C°° par t i t ion of un i ty of M such that Ox > j j on B{x,s/2), 6^ = 
0 on B { x , 3 s / 2 y and satisfies | |V6yoo < C, Vx e P . 

Definition 1.14 Suppose f is a function on P, we associate a function f 

on M by 

f { y ) = Y . f { x ) e M , yeM. 
xeP 

Similar to Lemma 1.8, we have 

Lemma 1.9 Supoose M is a Riemannian manifold satisfies the local volume 

doubling property. Then there exists C,C, such that for all z G M, r > 

0, 1 < p < +oo and function f G Co{P), we have 

|/||p,S(z,r) < CWfWp,B{z,[C'r]), 
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where [a] denotes the integral part of a and z is a point on P with p{z, z) < e. 

In particular, 

| / | | p , M < C' | | / | | p ,P -

If f > 0； then for all x G P, n G N； we have 

| / | |p ,B(x,n) ^ C*| /||p，B(a;，C7'n) 

and 

|/||p,P < C'||/||p,M-

Lemma 1.10 Suppose M satisfies the local volume doubling property and 

local Poincare inequality. Then for all e > 0， 1 < p < oo there exists 

C = C{e^p) such that for any x, y G M, p{x, y) < 2e, we have 

m x ) — ̂ ,{y)\W{x,e) < C [ |V^O|P^ W^ ^ C^{M) 
JB{x,6e) 

Lemma 1.11 Suppose M satisfies both local volume doubling property and 

local Poincare inequality, then for all p > 1 , there exists constants C,C, s.t. 

for all X G P, n G N and function ^ e C^{M), we have 

l^^Wp,B{x,n) < C\\V^\\p^B{x,C'n)-

In particular, 

lHWp,P < C||VV̂ ||p,M 

Similarly，for all z G M , z G P such that p{z, z) < e, r > 0 and function 

f e Co{P), 

|V/||p,B(^,r) < C\\8f\\p^B{z,[C'r]) 

and 

|V/||p,M < C\\Sf\\p^p. 
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Proof : 
Suppose i) e C^(M) 

WmvM^,n) = ( E my)Ym{y)Y" 
yeB{x,n) 

= ( E E ( ^ ) - 6 ( " ) ) 2 ) " 2 m O / ) ) i / p 
yeB{x,n) z〜y 

< ( E N^'^^M^{z)-^{y)Ym{y)f'^ 
yeB{x,n) 巧 

< q E / , 、 i v ^ a ^ ， 
yeB{x,n)场’6已） 

< c{[ ivmmY^r 
JB{x,C'n) 

Here we have used L e m m a 1.10 and the f i rst inequal i ty i n L e m m a 1.11 is 
proved. 
For the second inequal i ty , since ^ y ^ p • 〜 = 0 , we have 

• / > ) = J 2 i f { y ) - f { x ) ) V 6 y { x ) , Vx e P, 
yeP 

and for a l l x G P, z € 5(a:, e), 

|V/>)| S C s u p { | f ( y ) - f ( x ) | ; d ( p , x ) < 2 } 

< C 5： Sf(z). 
d(z,x)<2 

Therefore 

r ivfum < E i iv/(or^f 
圳',『) xeB(z,{C'r]) JB(x,e) 

< C Y： E _ ) r — ) -
xeB{z,[C'r]) d(z,x)<2 

Th is ends the proof of the lemma. • 
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Chapter 2 

Basic Properties of Rough 

Isometries 

2.1 Volume growth rate 
Since the rough isometr ic i ty between Riemannian mani fo ld is an equivalence 
relation, we may expect tha t a rough isometry preserves some invariants of 
manifolds. I n this section we show that the volume growth rates of geodesic 
balls in Riemannian manifolds are invariant under rough isometries. 

Definition 2.1 Let X he a complete Riemannian manifold, and o a point in 

X. Then X is said to be of polynomial growth of order k if 

i n f { s > 0 : l im supr~^V{o, r) < 00} = k. 
r—00 

X is said to be of exponential growth if 

l im sup r~^ log V{o;r) > 0 
r~>oo 

holds. 
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Obviously these def ini t ions do not depend on the choice of a po in t o in X. 
I t is known tha t a complete Riemannian n -man i fo ld of non-negative Ricci 
curvature is of po lynomia l g rowth of order < n , and tha t a s imply connected 
complete Riemannian mani fo ld of negative sectional curvature bounded away 
f rom zero is of exponent ia l growth. For other examples of computat ions of 
volume growth rates, see [Mi]. I n [CY], some relat ions between the volume 
growth rate and the other a t t r ibutes of a Riemannian man i fo ld are discussed. 
The purpose of th is section is to prove the fo l lowing theorem due to Kana i 
K 1 . 

Theorem 2.1 Suppose that X and Y are complete Riemannian manifolds 

satisfying the local volume doubling property, and that X is uniformly roughly 

isometric to Y. Then X is of polynomial growth of order k (respectively of 

exponential growth) if so is Y. 

Corollary 2.1 The hyperbolic spaces are not roughly isometric to the Eu-

clidean spaces. 

We w i l l prove Theorem 2.1 by showing tha t the volume growth rate of a 
mani fo ld is approximated by tha t of an e-net in the mani fo ld. 

Definition 2.2 Let P be a ponderable net, and o a point in P. Then P is 

said to be of polynomial growth of order k if 

i n f { 5 > 0 : l i m s u p n " ^ m ( { p G P : c?(o,p) < n } ) < 00} = k. 
n—oo 

P is said to be of exponential growth if 

l i m sup n _ i log m{{p G P : c/(o, p) < n } ) > 0 
n—oo 

holds. 
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L e m m a 2.1 Let P and Q be ponderable nets uniformly roughly isometric to 

each other. Then there exists constant C such that for all r > 0 

m{{p G P : c/(0，p) < r } ) < Cm{{q G Q : d{o', q) < a r + 6} ) , 

where o E P, o' 二 ^{o) and a,h are constants in the definition of rough 

isometry. 

Proof : 
Let cp : P ^ Q be a rough isometry sat is fy ing 

a"^d{pi,p2) - b < d{(p{p1),(p{p2)) < ad(p1,p2) + b, Vp1,p2 e P 

(2.1) 

F i x 0 G P , and pu t d — 99(0). Then, w i t h (2.1), we have 

m{{p e P : f / (o ,p) < r } ) = ^ m{p) 
P € P 

d{o,p)<r 

< C Y. mMP)) 
peP 

d{o,p)<r 

< C Y. m{q) 
g€Q 

d{o',q)<ar+b 

=Cm{{q G Q : d{o', q) < ar + 6}) 

and th is impl ies the lemma. • 

Lemma 2.2 Let P and Q he ponderable nets uniformly roughly isometric 

to each other. Then P is of polynomial growth of order k (respectively of 

exponential growth) if and only if so is Q. 

Proof: 
A p p l y i n g Lemma 2.1, we have 

l i m s u p n " ^ m ( { p G P : d{o^p) < n } ) < 00 
n—00 
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i f 
l i m supn'^m{{q G Q : d{o', q) < an + b}) < 00 

ri">oo 
i f 

l i m supn"^m( {q ' G Q : d{o', q) < n } ) < 00, 
n—00 

where 0 G P and 0' = ^{o). 
Therefore the order of volume growth of P is not greater than that of Q. 
The result follows by reversing P and Q. • 

Lemma 2.3 Suppose that X is a complete Riemannian manifold satisfying 

the local volume doubling property, and that P is an e-net in X. Then there 

exists constant C and C' such that for all x G X, n G N and r sufficiently 

large, we have 

m{{p G P : d{x,p) < n}) < CV{x,C'n) 

and 

V{x,r) < Cm{{p e P : d{x,p) < CV}), 

where x G P such that p{x, x) < s. 

Proof: 
Form Lemma 1.8 and Lemma 1.9, we have 

m{{p e P : d{x,p) < n}) 二 ||l||i,s(â n) < C'||i||i,J5(x,c"n) < CV{x, C'n) 

and 

V{x,r) = ||i||i,B(x,r) < C'||l||i,B(x,[C"r]) < Cm{{p G P : d{x,p) < C'r}) 

for large r . • 

The fol lowing lemma claims that the volume growth rate of a mani fo ld is 
approximated combinatorial ly. 
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Lemma 2.4 Suppose that X is a complete Riemannian manifold satisfying 

the local volume doubling property, and that P is an e-net in X. Then X is of 

polynomial growth of order k (respectively of exponential growth) if and only 

ifP is of polynomial growth of order k (respectively of exponential growth). 

Proof: 
App ly ing Lemma 2.3, for p G P, we have 

l im s u p n " ^ m ( { g G P : d{p, q) < n } ) < 00 
n—00 

i f and only i f 
l i m s u p r _ 〒 ( p , r ) < 00. 

T^OO 

A n d this implies the lemma. • 

Now Theorem 2.1 follows immediately f rom Lemma 1.7, Lemma 2.2, Lemma 
2.4, Lemma 1.4 and Lemma 1.5. I n fact, take X and Y as in Theorem 2.1, 
let P and Q be nets in X and F , respectively. First note tha t bo th P and Q 
are ponderable. Then a un i form rough isometry between X and Y induces 
a un i fo rm rough isometry between P and Q as Lemma 1.5 suggests, and 
therefore P and Q have the same growth rate. On the other hand, Lemma 
2.4 says tha t the growth rates of P and Q coincide w i t h those of X and F , 
respectively. Hence we conclude that X and Y have the same volume growth 
rate and Theorem 2.1 is proved. 

Lemma 2.5 Let P and Q be ponderable nets uniformly roughly isometric to 

each other. Then 

^ n < ^ 
i^,m{{peP:d{o,p)<n}) <〜 

if and only if 

^ n 〈⑴ 

hi m{{qeQ:d{o',q) < n}) < ⑴. 
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Proof: 
Suppose 

子 n 〜 

^ m{{p e P : d{o,p) < n}) 

then for posit ive integer k > a + b 
^ n 〈 ^ Cn  
h M { Q ^ Q ' d ( o ' , q ) < n } ) - ^^m({pGP-.d(o,p)<a-Hn-b)}) 

⑴ n 

- ^ ^ ^ , m ( { p e P : d ( o , p ) < l } ) 
< 00 

The proof is completed by reversing P and Q. • 

Lemma 2.6 Suppose that X is a complete Riemannian manifold satisfying 

the local volume doubling property, and that P is an s-net in X, p G P. Then 

厂00 t 
/ 7 7 7 — — rd t < 00 

A v { p , t ) 

if and only if 

^ n < ^ 
^1 m{{qeP:d{p,q)<n}) < ⑴. 

Proof: 
Suppose 

^ n <^ 
h[ m{{qeP:d{p,q)<n}) < ⑴. 

From Lemma 2.3, take posit ive integer k > C', we have 
roo 1 00 Yi +1 

A n ^ f - S ^ ^ 
< - C ( n + 1) 

- h ^ i U ^ P - - d { p , Q ) < C ' - ^ n } ) 
00 

< 2CC'2 V - 
- t"im{{Q^P-d{p,Q)<n}) 
< 00. 
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Suppose 
厂⑷ t , / 777——-dt < 00. 
人 V{p,t) 

Aga in f rom Lemma 2.3, for suff iciently large k > C' + 1 

f ^ < 厂 i dt 
^,m{{qeP:d{p,q)<n}) _ Jk m{{qeP:d{p,q)<t-l}) 

广 Ct  
- A F ( P , ^ ' - H ^ - i ) ) 

< 2CC'2 厂 j y ^ d t 
— Ji V{p.t) 
< oo. 

Th is complete the proof of lemma. • 

Using the same scheme of the proof of Theorem 2.1 but replacing Lemma 
2.2 and Lemma 2.4 by Lemma 2.5 and Lemma 2.6, the fo l lowing theorem is 
proved. 

Theorem 2.2 Suppose that X and Y are complete Riemannian manifolds 

satisfying the local volume doubling property, and that X is uniformly roughly 

isometric to Y. Then the volume growth condition 

r^ t , 
/ ———-at < oo 
人 V{p^t) 

holds on X if and only if so does Y. 

2.2 Sobolev Inequalities 

Definition 2.3 Suppose 1 < p < q < +oo. We say that M satisfies the 

Sobolev inequality (Sp,q) if 

Sp,, = Sp,,{M) = inf{^^ ： ^ e CS^(M), ̂  + 0} > 0. 
Y q 
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In this case, 

SpMW, < l i m , V^ e C^{M). 

I n this section we show tha t the va l id i ty of some Sobolev inequalit ies is inher-
i ted through un i form rough isometries under certain condit ions on manifolds. 
For th is we are going to consider another Sobolev inequalit ies of the fol lowing 
forms. 

Definition 2.4 M is said to be satisfies {S^^) if 

SZ = s z m = i n f { | | ^ ： ^ e c ^ m , ^ + 0} > 0. 

where S is an operator on C^{M) defined by 

s^ = E M^Wx, 
xeP 

and Ox is a partition of unity as stated before Lemma 1.9 and •已 is defined 

in Definition 1.13. 

Lemma 2.7 Suppose M satisfies the local volume doubling property and local 

Poincae inequality. Then S operates on U\ 1 < p < +00，and 

WS^Wp<CiUWp, v^ G c^{M). 

Moreover, 

U — Si;Wp < C2||VV^||p, v ^ G c^{M). 

Proof: 
/v 

The first inequality holds by Lemma 1.8 and Lemma 1.9 since S^p = ^ . 
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For the second inequal i ty 

11功-^^11? 

= [ l ^ - J 2 M ^ % l ' 
J xeP 

= [ \ E W y ) - M ^ ) ) U y ) \ ' d y 
J xeP 

< NY： [ i Y , m y ) - M x ) i r d y 
z^pJB{z,e) a;〜_2 

< A ^ ^ E E / \ ^ { y ) - U x W d y 
2ePa:〜2"^B(2，£) 

< 2P-'NPYSN [ my) - M z ) l ' d y + ^ | ,̂(z) - M x ) n { z , s ) ) 
zeP ^B{z,e) a;〜_2 

The result fol lows by apply ing local Poincare inequal i ty and Lemma 1.10. • 

The fo l lowing proposi t ion tells the re lat ion between {Sp^p) and ( 5 ^ ) . 

Proposition 2.1 Suppose M satisfies local volume doubling property and lo-

cal Poinca6 inequality, then {Sp^p) is equivalent to (5^). 

Proof: 
The inequal i ty Sp^p{M) < C S ^ p { M ) follows easily f rom the f irst par t of 
Lemma 2.7. 
Now for any ^ € C ^ ( M ) , 

|̂||p < W^ - S^>Wp + ||5V̂||p 
< C||VV;||p+||5V̂ | 
< (C7 + 5-(M)-^)||V^||, 

Therefore 

総 > (C + 5 - ( M ) - ) -
coo 

C > P,P 

〜 , 。 - 1 + C 5 - ( M ) 

A n d the result follows. • 
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Definition 2.5 Suppose P is a net, 

Sp,, = 5p , , (P) = i n f { l ^ ： f e Co(P), f + 0 } 

J Q 

We say that P satisfies the Sobolev inequality {Sp^g) if Sp^g{P) > 0. In this 

case, 

SpJfWg < ||"||p, V/ G Co(P) 

T h e fo l low ing p ropos i t ion is refered to [K3 . 

Proposition 2.2 Let P and Q be ponderable connected nets. If P is uni-

formly roughly isometric to Q, then for any 1 < p < +oo and 1 < q < +00， 

P satisfies Sp,q if and only if so does Q. 

Proof : 
Let ^ : P ^ Q be a u n i f o r m rough isometry such t h a t Q = U x e p B { ( p { x ) , r). 

Suppose t h a t v is an a rb i t r a r y non-negat ive func t i on on Q w i t h finite suppor t . 
Let y and y' be po in ts of Q w i t h d{y, y') 二 1. T h e n we have 

M y ' ) - M y ) 

= l ^ ^ ^ ^ " g , / ( r ' ) 4 ' ) — ^ ^ � f w / ( ~ ( r ) l 

= | _ ( w ) i _ ( w ) X ) ( 刚 - + ) ) - _ i 
r'eB{y',r) 

< ~TTT< TT ,^, .~"rr- Y^ v(r') — v(r) m(r)m(r') 
—m{B{y,r))-m{B{y',r))丄,^) ^ ) " U V ) 

r'eB(y',T) 

< Y1 Î KO - 命 ） • 
reB{y,r) 

r'eB{y',r) 

Moreover, for r G B{y, r ) and r' G B{y', r ) , connect ing t hem by a length-
m in im i z i ng p a t h 7 = (yo, • • . , yi) w i t h yo = r and yi = r ' , and of length 
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1 < 2 r ' + 1，we ob ta in 

v{r') 一 v(r)| < \v{yo) - v{yi)l + . •. + \v{yi-i) - v{yi) 

< (̂ v(yo) + . . ' + J<2/z-i) 
< E 知 ⑷ 

y"eB{y,T) 

since d [ y i , y) < r for i = 0，• •.，1 — 1，and therefore we get 

M ) - V r { y ) l < E H y " ) -
y"eB{y,r) 

Thus, for any y G Q, we have 

Svriy) = ( E M y ' ) - V r ( y ) r y ^ ' < C J： Sv(r), 
y'eNy reB{y,r) 

and 

{Svrny) < C{ J2 Hr)Y < C Y1 {6vY{r) 
reB{y,r) reB(y,r) 

by the Holder inequal i ty and the uniformness of Q. Th is yields 

E {Svrny)m{y) < C Y： E (^vnr)m{y) < C J： {5vY{y)m{y), 
yeQ yeQreB{y,r) yeQ 

since m{y) and m{r) are comparable. T h a t is 

{J2{Sv^ny)m{y)y^^ < C(^(H^(y)m(y))V^ (2.2) 
yeQ yeQ 

Now define a finitely suppor ted non-negat ive func t ion u on P by u — i v 〇 

(/?. Note tha t for x , x' G P w i t h d{x^ x') = 1, there is a constant 1。such 
tha t d { i f { x ) , ^{x')) < /o, since ip is a un i f o rm rough isometry. Therefore, 
connect ing (p{x) and p ( ? ) by a pa th 7 = {yo,... ,yi) in Q w i t h yo 二 (p{x) 
and yi = cp(y,), and of length 1 < /。，we have 

^/⑷-咖‘)！ = I M " o ) - M " 0 
< |̂ r(l/o) - ^V('"1)| + . . . + \Vr{yi-\) — Vr{yi) 
< ^Vr{yQ) + -" + ^Vr{yi-i) 

< X ) 3”Ay), 
yeB{cp{x),lo-l) 
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and th is impl ies, as above, 

{SuY{x) < C{ Y1 SVr{x)Y 
yeB{ip{x),lo-l) 

< C Y： {Svrny) 
yeB{^{x),lo-l) 

Hence we obta in 

i Y ^ { S u y { x ) m { x ) y / P < C { J 2 { 6 v r n y ) m { y ) y / ^ . (2.3) 

xeP yeQ 

Moreover, we have 

以 “ ⑷ = ( 一 丄 、 、 ^ H y ) m { y ) r 
MB{^{x))狀明,丁) 

> c J2 观 

yeB(ip(x),T) 

and consequently we get 

E u ^ x ) > c ^ v ^ y ) 
xeP yeQ 

since Q = UxepB{(p{x),r). Th is shows 

(E n̂ {x)m{x)y/̂  > c(^ v̂ {y)m{y)y/̂ . (2.4) 
xeP yeQ 

By (2.2), (2.3) and (2.4) we conclude 
( E {6vy{y)m{y)y/P ( E {Suy{x)m{x)y/P 
y^Q \ x^p 

〉 Q  

( E v^{y)m{y)y/^ 一 ( E u^{x)m{x)y/^ 
yeQ xeP 

> cSp,,{P) 

for an arb i t ra ry non-negative funct ion v on Q w i t h f in i te support . Moreover 
because Sv > 咖| for any funct ion v on Q, we obta in Sp^g{Q) > cSp,q[P). 
This complete the proof of the proposit ion. • 
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Lemrrla 2.8 Suppose M satisfies the local volume doubling property and local 

Poincare inequality, then there exists C,C, such that for all z G M , r > 0 

and^e C^{M), 

\Si^\\p,BM < CW^Wp^B{z,[C>,r])' 

where z G P such that p{z^ z) < e. Moreover if i|j > 0，then for all x G 

P, n G N， 

|V̂ ||p,B(x,n) < C\\S^\\p^B{x,C'n)-

I f f e c o { X ) and f > 0, 

]fWp,B{x,n) ^ C\\Sf\\p^B{x,C'n) 

Proof: ^ 
Observe tha t S ^ = V^ the first two inequal i ty fol low easily f rom Lemma 1.8 
and Lemma 1.9 
Now i f f e Co{P) and f > 0, we have for each x e P, 

〜如=vh~)LJ_ 

= v h L ) l / ( ^ _ 
V { ^ . e / 2 ) 

- N V { x , e ) ^ } ^ ^ 

> c f { x ) 

for some constant c since ；̂⑷ > 1/N for al l y G B{x,e/2). 
The last inequal i ty then follows f rom Lemma 1.9. • 

The fol lowing approximat ion lemma is an immediate consequence of Lemma 
1.9 and Lemma 2.8. 

Lemma 2.9 Suppose M satisfies the local volume doubling property and local 

Poinca6 inequality, 1 < p < q < +oo. If P is an e-net on M, then {S^^) 
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on M is equivalent to {Sp^q) on P. More precisely, there exists constants c, C 

such that 

cSp,,{n < S^,{M) < CS,,,{P). 

Using the same argument as in the last section, we have proved the ma in 
theorem of th is section [C& . 

Theorem 2.3 Let X and Y be complete Riemannian manifolds satisfying 

the local volume doubling property and local Poincare inequality which are 

uniformly roughly isometric to each other, then {S^^) on X is equivalent to 

(5^g) on Yfor any 1 < p < q < +oo. Moreover {Sp^p) on X is equivalent to 

{Sp^p) on Y. 

2.3 Poincare Inequality 
We have defined the local version of Pincare inequal i ty in Section 1.1. We 
now define the global version. 

Definition 2.6 We say that a complete Riemannian manifold M satisfies 

the Poincare inequality at infinity if there exists C and for all r^ and a > 1, 

there exists C^,。such that Vx G M , Vr > r*o and V?/； G C^{M), we have 

( [ m y ) - M ^ ) r d y y / ^ < C _ r ( [ l V i ; { y ) r d y ) ' ^ ^ , 
JB{x,r) JB{x,Cr) 

where 

飽 = 由 / . ， 产 . 

I t is known tha t a mani fo ld w i t h Ricci curvature non^negative satisfies the 
Poincare inequal i ty [B]. To prove tha t the Poincare inequal i ty at in f in i ty is 
preserved under un i fo rm rough isometry, we w i l l use the same method as 
before. We must f irst define the Poincare inequal i ty on a net. 
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Definition 2.7 We say that a ponderable net (P,m) satisfies the Poincare 

inequality if there exists a constant C > 1 and, for all a > 1，there exists C^ 

such that, for any x G P, n G N* and function f on P, 

( E l f { y ) - f n { x ) r m { y ) Y ^ ^ < c M E 1明2/)广叫"))1"， 

yEB{x,n) yEB{x,Cn) 

where 

f n i ^ ) = y ^ E f ( y ) M y ) -
^ (工,n) yeB(x,n) 

Lemma 2.10 Suppose (Pi,rrii) and {P2, rri2) are two uniformly roughly iso-

metric ponderable nets. If (Pi,mi) satisfies the Poincare inequality, so is 

{P2,m2). 

Proof: 
We only prove the case a = 1. Suppose $ : P i ~> P2 be a un i fo rm rough 
isometry, and k G N* such tha t [$(_Pi)]fc = P2. I f f is a func t ion w i t h finite 
support on P2, fk 〇 $ is a funct ion on f \ . Since F\ satisfies the Poincare 
inequal i ty, Vx e Pi, n G N*, 

E \{fkO^){y)-{fkO^Ux)\m,{y) 
yeB{x,n) 

< Cn Y1 WA�^)a/)miO/). (2.5) 
yeB{x,C'n) 

Obviously, 

E H f k �_ r n i ( y ) < Ch E ^fk{z)m2{z), (2.6) 
yeB{x,Cn) zeB{x,C[n) 
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since for C[ suf f ic ient ly large, B { ^ { x ) , C [ n ) contains ^ { B { x , C ' n ) ) and t h a t 
rri2{^{y)) ~ rrii{y). Now 

\sfk{z)\' = E \ M ^ ) - M y ) \ ' 
y〜z 

= E l ^ E / _ ) 
y〜z ^ V^5 ^) teB{z,k) 

- 7 7 ^ E mm,{s)l^ 
^、y,氏)seB{yeB{y,k) 

< 2 E ( ^ E l/W-/WP-2 
y~z ^ V^5 ^; teB{z,k) 

+ • E l f { s ) - f { z ) l ^ m , { s ) ) 
^、y, M seB(y,k) 

< 為 E _ - / ( 秦 《 

^ v^' KJ teB(z,k) 

+ ^ E lf(s)-f(z)l'm,(s). 
V [^^^) seB{z,k+i) 

Using the fact t h a t B{y,k) C B[z,k + 1) and t h a t V{z,k) < C3V(y,k). 
Since m2(t) ^ V(z, k), Mz G P2, t G B(z, k + 1)，we ob ta in 

\ s M z ) \ ' < c , Y： _ — / d 
teB{z,k+i) 

Moreover 

l / W - f { z ) l ' < {k + 1 ) E l / w — / ( t z+ i ) | 2 < {k + 1 ) E IJ/0/)|2， 

i=l yeB{z,k+l) 

where t — t i , • • • , U, • •. , tj = z is a m i n i m a l p a t h f r om t to z. We get 
|^WP<C4(A: + 1)C^1 E _ ) | 2 , 

yeB(z,k+l) 

therefore 

Sfk(z) < c,i E l^f(y)lY^'<Ce E ^f(y)-
yeB(z,k+l) yeB(z,k+l) 
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Fina l l y 

E SMz)rri2(z) < Cj E Sf{y)m2{y). (2.7) 
zeB{^ix),C[n) yeBi^{x),C'^n) 

Combine (2.5), (2.6) and (2.7), we have 

E l ( A � ^ ) a / ) - ( A � $ ) n W | m i ( 2 / ) 
yeB{x,n) 

< Csn Y. Sf{y)rri2{y). (2.8) 
yeBmx),C'^n) 

Now 

E l f { z ) - { h o ^ U x ) l r r i 2 { z ) 
zeB{^{x),n) 

< E |/(之）-九。$。少-1(冲爪2(之） 

zeB(^{x),n) 

+ E \ fk。少。¢-1(2) - { f k 。 ^ ) n W | m 2 ( 4 (2.9) 
zeB{^{x),n) 

where ¢ " ^ is a rough inverse of $ and tha t d2{x, $ 0 $ " ^ ( x ) ) < k. Since 
$ " ^ ( 5 ( $ ( x ) , n ) , n ) ) c B{x, C'3n) for suff iciently large C3, the second te rm 
of r ight hand side of (2.9) satisfies 

E IA。0。¢-1(2) - {fk。$W#m2(z) 
zeB{^{x),n) 

< C, 5： \h 0 $ 。 $ - i ( z ) — ( / , 0 $ ) n M | m i ( $ - i ( z ) ) 
z^B{^{x),n) 

< C, Y. |A�^(2/)-(A�$)n(:r)|mi(2/) 
yeB{x,C'^n) 

< CioTl Y^ ^f{y)m2{y), 
yeB{^{x),C'^n) 

where (2.8) has been used. 
For the first t e rm of r ight hand side of (2.9), wr i te $ 0 ^~^[z)=乏，then 
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d2{z, z) < k. We have 

E 丨/(^ — /*0少0少-1(幼爪2(^ 

zeB{^{x),n) 

二 E \f{z)-h{z)\m,{z) 
zeB(^{x),n) 

< E ( ^ 7 7 ^ E lf{z)-f{t)lm,{t))m2{z) 
2GB(4>(x),n) ^ (之，̂̂  teB{z,k) 

< Cn E ( E l̂ f(y)l'Y '̂Mz) 
zeB{^(x),n) yeB{z,2k) 

< C12 E 明 如 ⑷ ， 

zeB{^{x),C'^n) 

by considering a m in ima l chain f rom t to z. 
We have proved that 

E l / w - (A。0W^m2(z) < C13n Y^ Sf{z)m2iz), 
zeB{^{x),n) zeB{^{x),C'Qn) 

and therefore 

E l f { z ) - f n { z ) l r r i 2 { z ) < 2 i n f J： \f{z)-a\m2{z) 
zeB{^{x),n) “ zeB{^(x),n) 

< 2 E | / W - ( A 。 0 ) n ( x ) | m 2 ( z ) 
zeB{^{x),n) 

< 2c14n Y^ sf{z)m2{z), 
zeB{^{x),C'QTi) 

which proved the Poincare inequal i ty on 7¾. • 

We next prove the fol lowing approximat ion lemma. 

Lemma 2.11 Suppose M satisfies the local volume doubling property and lo-

cal Poincare inequality and P be an e-net on M. Then Msatisfies the Poincare 

inequality at infinity if and only if P satisfies the Poincare inequality. 
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Proof: 
We prove the case a = 1 only. Suppose tha t P satisfies the Poincare inequal-
ity. For any 功 G Cg^(M), x G M , r > e and a G M 

/ \^{y) - ot\dy 
JB{x,r) 

< / � E l^2/)—�XB(z，e)(")^ 
•/SOr’r) 2GPnB(â r+e) 

< Y . / \ ^ { y ) - i p { z ) \ d y + Y1 m { z ) l i ; { z ) - a . 
2ePnBOE，r+£)"^B(2，£) zePnB(x,r+e) 

From the local Poincae inequality, the first te rm above is bounded by 

Ci E [ , \^Hy)\dy 
z6PnS(x,r+e)̂ (̂̂ '̂ î ) 

< ^2 f m { y ) l d y 
JB{x,C'^r) 

For Xo G P such that p{x, Xo) < £, and n e N* such that n ^ r and 
P n j B M ( z， r + £) C Bp(xo, n) C BM{oo, C " r ) , choose a = ipri{xo)- Since JP 
satisfies the Poincare inequality, the second te rm is then bounded by 

C3r1 J2 l^^{y)l<C4T [ \^^{y)\dy, 
yeB(.o,C',n) J B 、 ^ 、 

where Lemma 1.11 is used. 
Obviously that 

/ \^{y) - A{x)\dy < 2 i n f / \ip{y) - a\dy 
JB{x,r) oceRJB{x,r) 

< Csr [ \V^{y)\dy, 
JB{x,C'^r) 

for any r > e. Combine w i t h the local Poincae inequality, we get the Poincare 
inequal i ty at inf ini ty. 
Suppose M satisfies the Poincare inequal i ty at inf inity. For any funct ion f 
wi th f ini te support on P, x G P, n G N*，and a G M, we have 

J2 l f { y ) - ^ l M y ) 
yeB{x,n) 

< C{ E L J f { y ) - m i d z ^ E r J f { z ) - a \ d z y 
yeB^x,n) ‘ ! 2 、 yeB{x,n) •̂物’…） 
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A 

Choose a 二 ( / ) „ ( x ) , apply Poincare inequal i ty at in f in i ty on M and Lemma 
1.11, the second te rm above is bounded by 

[ lf{z) - a\dz < Cin f |V/>)|d^ 
JB{x,C'n) — JB{x,C[n) 

< C2r1 Y1 Sf{y)m{y). 
yeB{x,C'^n) 

Note tha t 9t{z) = 0 when d{z,t) > 3e/2, we have 

L ,,\f(y)-H^)\dz = [ \f{y)-Y.fm{^)\dz 
JB{y,e/2) JB{y,e/2) fZ^ 

= / , ^\T.{f{y)-f{m{z)\dz 
JB(y,e/2)— 

< C s J 2 \ f i y ) - f i t ) \ m { y ) 
t〜y 

< C,6f{y)m{y). 

Therefore 

E \f{y)-fn{x)\m{y) < 2 in f ^ \f{y) - a\m{y) 
yeB{x,n) yeB{x,n) 

< Cn Y. Sf{y)m{y) 
yeB{x,C'^n) 

and the Poincare inequal i ty on P is proved. • 

Combin ing Lemma 2.10 and Lemma 2.11, we obta in the fol lowing theorem 
immediate ly [CS . 

Theorem 2.4 Suppose X and Y are two uniformly roughly isometric com-

plete Riemannian manifolds satisfying the local volume doubling property and 

local Poincare inequality, then X satisfies the Poincare inequality at infinity 

if so does Y. 
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Chapter 3 

Parabolic Harnack Inequality 

3.1 Parabolic Harnack Inequality 
I n th is section we are going to prove tha t the parabol ic Harnack inequal i ty 
is invar iant under un i fo rm rough isometries. 

Definition 3.1 We say that M satisfies the parabolic Harnack inequality at 

distance less than R ( P H ( R ) ) if there exists C > 0 such that, for all x G 

M, s G E； and all r G (0, R), any positive solution u of ( A + dt)u = 0 in 

Q = (s, s + r*2) X B(x, r) satisfies 

sup u < C in f u Q- ~ Q+ 

where 

Q- = (s + r^/6, s + r2 /3 ) x B{x, r / 2 ) 

and 

Q+ = {s + 2rV3, s + 7*2) X B(x, r / 2 ) . 
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We say that M satisfies the parabolic Harnack inequality if ( P H ( o o ) ) is 

satisfied. 

A remarkable result tells tha t ( P H ( R ) ) is closely related to the fol lowing 
two properties. 

Definition 3.2 

1. We say that M satisfies the volume doubling property at distant less then 

R ( D ( R ) ) if there exists C > 0 such that for all r G (0, R), x G M, 

V{x,2r) < CV(x,r). 

2. We say that M satisfies the Poincare inequality at distant less then R 

( P ( R ) ) if there exists C > 0 such that for all r 6 (0, R), x G M, ip G 

C o - ( M ) , 

f li^-Al^ < Cr^ f |V^|2. 
JB{x,r) JB{x,2r) 

Note tha t i f M satisfies ( D ( R ) ) and (P (R) ) for some R > 0, then (P (oo ) ) 
is equivalent to the Poincare inequal i ty at in f in i ty w i t h a — 2 defined in the 
last section. 
I n [J], D. Jerison shows that ( D ( R ) ) and (P (R) ) imp ly the stronger Poincare 
inequal i ty 

[ U - ^ ^ | 2 < Cr^ f |VV^p, Vx G M , 0 < r < R. 
JB{x,r) JB{x,r) 

The main result of this section is the fol lowing [G][S3 . 

Theorem 3.1 The following properties are equivalent. 

1. Msatisfies (PH(R)). 
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2. M satisfies (D(R)) and (P(R)). 

I f the above theorem is proved, then Theo rem 2.4 i n sections 2.3 w i l l impl ies 
t h a t ( P H ( o o ) ) is invar ian t under u n i f o r m rough isometr ies. T h e fo l low ing 
results is the key t h a t al lows the use of Moser 's i te ra t i ve m e t h o d [M2] when 
(D(R)) and (P(R)) are satisfied. 

Lemma 3.1 Suppose M satisfies (D(R))， then for any x G M, 0 < s < r < 

R, 

V { x , r ) < 2V{x,s)[r/sy^ 

where "• depending only on the constant in ( D ( R ) ) . 

Proof : 
Take integer n such t h a t 2 " _ i < r / s < 2 〜 t h e n 

V { x , r ) < V{x,2^s) < C^V{x,s) < 2V{x,s){r/sY' 

where UQ = l o g C / log2 , C is the constant i n ( D ( R ) ) . • 

L e m m a 3.2 Suppose M satisfies ( D ( R ) ) . Then there exists C > 0 such that 

for any y G M, 0 < s < r < R, 

Wfsh < CV-i/2(r/4"o/2||A|i, v / e C^{B) 

where 

胁 由 / . , ) 勝 ， 

B = B{y, r ) , V{y, r) and "o be the constant in Lemma 3.1. 
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Proof: 
Consider i f d[x,z) < s, then V[z,s) < V{x,2s) < CV{x,s). Therefore 

| / s | | l = / \fs{x)\dx 
JM 

^ L v ^ ) L ^ ( ^ ( . d x 

= L v ^ ) L x B “ . _ — 

< C [ / 、 [ XB(z,s){^)lf{z)ldzdx 
JM V { Z , S) JM 

= c [ \f{z)\dz. 
JM 

Suppose B n B{x, s) / 0, then f rom Lemma 3.1 

y(x,s)-^ < CV{x,2r^s)-^2r/s + iy^ 

< C V - ^ 2 r / s ^ i y 

and 

\fs\\oo < Wy^^ 力 J XB{x,s){z)\f{z)\dz\\^ 

< C^i(2r/s + ini/||i. 
Thus 

fs 2 — fs 1 fs 00 

< C V — i ( 2 r / s + l ) 1 / | | 【 

and th is complete the proof of the lemma. • 

Lemma 3.3 Suppose M satisfies ( D ( R ) ) and (P (R) ) . Then there exists 

constant C such that for any 0 < s < R/4：, f G C^{M), we have 

||/- /�2^||^/||2. 
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Proof : 
F i x 0 < s < R / i . Let { B j , j G J} be a col lect ion of balls of radius s/2 such 
t ha t Bi n Bj = 0 i f i ^ j and M 二 Uej2^, where tB = B(x,tr). Such a 
col lect ion always exists. Now 

Wf-fsWl < E / ] f { x ) - f s { x ) i ' 
ieJ乃战 

< 2 B / i /w-Mp+iM-/ .wr). 
ieJ hBi 

Using (D(R)) and (P(R)), we have 

[ l f { x ) - h B f < [ l f { x ) - f , B f 
J2Bi J4Bi 

< Cs'f |V/|2 
J8Bi 

and 

[ l f m - f s { x ) l ^ < [ [ XBix,s)V{x,s)-'lUB,-f{z)l^dzdx 
J2Bi J2Bi J 

< CVr' [ [ IM - f{z)l'dzdx 
J2Bi JABi 

< C s ' [ | V / p . 
J8Bi 

Hence, w i t h the help of Lemma 1.4, we obta in 

Wf-fsWl < C s ' E f I W | 2 
f t j j 8 B i 

< cs'wvfwi 

Th is ends the proof of Lemma 3.3. • 

L e m m a 3.4 Given v > 2, the three following properties are equivalent. 

1. | | e - ^ ^ / | | o o < C i r - / 2 | | / | | i , V0 < t < t^. 

2- | | / | l L / ( . - 2 ) < ^ 2 ( | | V / | | i + ^ o ' | | / | | l ) . 
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3. l l / | i r / ^ < C 3 ( | | V / | | i + t o ^ | | / | | l ) | | / | | r . 

Moreover, 3. implies 1. with Ci = {uCC^yf^ and 1. implies 2. with C2 = 

CC^^, where C is some numerical constant. 

The proof of 1. implies 2. follows f rom [V3]. The equivalence w i t h 3. follows 
f rom [CKS]. 

Theorem 3.2 [S2] Let M satisfies ( D ( R ) ) and (P(R) ) . Then, there exists 

iy > 2 and C > 0 such that, for all x 6 M , 0 < r < R, the Sobolev inequality 

(S(R)) 

( I | ^ | M ( - 2 ) ) ( . - 2 ) / . < c v ( z , ^ ) -2 / .^2 I(|V^|2 + ^ -2 |^ |2) 

is satisfied for any i|j G C^{B{x, r)) where V — V[x^ r). 

Proof: 
F ix X G M, 0 < r < r。，"0 as in Lemma 3.2 and set nu = max{3 , "o}. For 
anyfeCS^(B(x,r)). 

I f 0 < s < r / 4 , then by Lemma 3.2 and Lemma 3.3, we have 

| / | | 2 < 11/ — /s | |2 + | | /2 | |2 
< q — | V / l l 2 + V ^ - " 2 ( r / M | / | | i ) . 

I f s > r / 4 , then 
| | / | | 2 < C 5 r - ^ | | / | | 2 . 

Therefore 

I l / I l 2 < C{s{WWfh + r-i||/||2) + V — i / 2 ( r / 4 " / 2 | | / | | i ) 

for any s > 0. 
Opt imiz ing over s > 0 yields 

||/||_+4/" < c y - ^ / V ( | | v / | | ^ + r -2 | | / | | ^ ) | | / | | y ^ 

and the theorem follows f rom Lemma 3.4. • 

We next employ the Moser's i terative technique to prove a mean value in-
equality. 
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Theorem 3.3 Assume that ( D ( R ) ) and (S (R) ) are satisfied. Let S e 

(0,1) . Then, any non-negative function u such that (¾ + A)w < 0 in 

Q = (s, s + r*2) X B(oo, r) satisfies 

supw2 < CS-^{r^V)-^\\u\\lQ. 
Qs 

Here 7 > 0 depends only on the constant appearing in ( D ( R ) ) . The constant 

C is independent of u, S, s and of the ball B(oc, r) of radius 0 < r < R. 

Proof: 
For any non-negative funct ion cj) e C ^ ( B { x , r ) ) , we have 

[ {^dtu + V 0 • Vu) < 0. (3.1) 
J _B(cc,r) 

For 4> 二 f y w i t h ^ G C f ( B ( x , r ) ) , some manipu la t ion involv ing the in-
equality \ab\ < ^{ea^ 4- b^/e) and inequali ty (3.1) yields 

[{2^^udtu + |VO/m)|2) < ^||V^||^ f u^ 
J B{x,r) J supp{i>) 

Where A is a numerical constant which w i l l change f rom line to line. I f x is 
a smooth funct ion of the t ime variable t, we easily get 

dt[ [ ( X # ) 2 ) + X ' [ | V O H | 2 < Ax{xW^nl + llx1loo) [ u' 
JB J B Jsupp(ip) 

where B = B{x, r ) . we choose i|j and x such that 

0 < V ^ < 1 , supp(^ ) C (1 - a)B, 

^ - 1 in (1 一 (j')B, | V ^ < { r r ) - \ 
0 < X < 1, X = 0 in ( - 0 0 , s + o-r^), 

X = 1 in {s + a'r\ + 0 0 ) , |x' | < ( r r ^ ) " ! , 

where 0 < a < a' < 1 and r 二 a ' — a. Sett ing / " = (s + crr^, s + r^) and 
integrat ing our inequal i ty over (s, t) w i t h t G Ia', we obtain 

sup{ [ u^} + [ [ | V q 2 < A { r r ) - ^ [ [ u \ (3.2) 
/； J{l-a')B J JQ,, J JQ^ 
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Let E{B) = CV-^!^r^ be the Sobolev constant for the bal l B given by 
( S ( R ) ) and recall the q = v/{v — 2) where v > 2 is the parameter appearing 
in ( S ( R ) ) . Thanks to the H51der inequal i ty 

y v ( i + 2 / " ) s ( y v ” i " ( y v ) 2 / "， 

( S ( R ) ) gives 

I ^2(i+V") < (I w^l-E{B) |(|Vi/;|2 + r - > H , 

for al l w e Cg^(B). Return ing to the subsolution u, the above inequal i ty and 
(3.2) y ie ld 

[ [ u ' ' < E { B ) { A { r r ) - ' [ [ u'^' (3.3) 
J JQ— J jQa 

w i t h 9 — 1 + 2|v. For al l p > 1，vP is also a non-negative subsolution of our 
equation. Therefore, (3.3) yields 

[ [ u ^ P ' < E { B ) { A { r r ) - ^ [ [ u ^ ^ f (3.4) 
J JQa> J JQ<r 

We now set r^ = 2~^~^ so that J ] ^ r^ = 1/2. We also set ao = 0,CTi+i = 
<Ji + Ti = J2\ Tj. App ly ing (3.4) w i t h p = pi = 0\ a = a “ a' = ¢7̂ +1, we get 

f f u'''^'<E{B){A'+'r-' f ( u"'y. 
J ^Q<Ti+i J JQ<ri 

Hence, 

{ [ [ u'0^^'f-'" < 义5>+1)"-卞(5)2没—1-、-2[" f [ u' 
J JQ<Ti+x J JQ 

where al l summat ion are taken f rom 1 to i + 1. Let t ing i tend to inf ini ty, we 
obtain 

supu^ < A E { B y / ^ r - ^ - ^ M l Q . (3.5) 
Ql/2 

This ends the proof of Theorem 3.3 when S = 1/2. The fu l l statement follows 
by using an easy covering argument and ( D ( R ) ) . • 
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Corollary 3.1 Assume that ( D ( R ) ) and ( P ( R ) ) are satisfied. Fix 0 < p < 

+oo and 6 G (0,1) . Then, any non-negative u such that (¾ + A ) i t < 0 in 

Q = (s, s + r^) X B satisfies 

supu^ < C S - ^ r ^ V ) - ' M l ^ Q . 

Qs 

Here 7 > 0 depends only on the constant appearing in ( D ( R ) ) . The constant 

C is independent of u, S, s and of the ball of radius 0 < r < R. 

Proof: 
I f p > 2 and S < 1/2, this statement follows f rom Theorem 3.3 and Jensen's 
inequality. The case p > 2 and 0 < S < 1 /2 is then obtained by a covering 
argument. 
For 0 < p < 2, the proof is more intr icate. F ix 0 < a < 1/2 and set r = cr/4. 
Theorem 3.3 yields 

supii<F(B)r-^/2||^||2,Q_ 
Q̂  

where F { B ) ^ 二 C ( r 2 V ^ - i . Moreover, ||t^||2 < I M I i ^ " 2 | | t i | | f . Hence, sett ing 

J = F { B ) M l % we get 

sup < r ^ / 2 j ( s u p w)1-"2. 
Qa Qa-r 

We now fix S G (0 ,1 /2) and set ao = 6, cJi+i = cr̂  — r^+i w i t h r^+i = ai/4 for 
al l i > 0. This gives cr̂  = ( 3 / 4 ) - i _ M and r^+i = 4-i(3〉4)-i—M. we obtain 

sup < ^ ^ ^ r ^ / 2 j ( s u p u)^-p/2 
Q^i_l Qa-r 

and 
sup < # E ( ^ ) ( l - P / 2 y ( r ) / 2 j ) E ( l - P / 2 V (sup W)(l-"2) i 
Q<r Qa-r 

where al l the summations run f rom 0 to i — 1 and A is a numerical constant 
which may change f rom line to line. When i tends to inf ini ty, this yields 

sup < A^ /p \S - ^ / ' F {B ) f / ^ \ \ u \ \ p ,Q 
Qs 

which, raised to the power p, is the desired inequality. 
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Theor<em 3.4 Assume that ( D ( R ) ) and (S (R) ) hold. For 0 < S < 1 and 

0 < p < +00， any positive function u such that (¾ + A ) n > 0 in Q 二 

(s, s + r^) X B satisfies 

snpu-P < C 6 - \ V r ^ ) - ^ \ \ u - % ^ Q . (3.6) 
Qo-

Here, 7 > 0 depends only on the constant appearing in ( D ( R ) ) . The constant 

C is independent ofS,p, u, s and of the ball B of radius 0 < r < R. 

Proof: 
For any negative (f> G Cg°(B), we have 

f {c|>dtu + V 0 . •以）> 0. (3.7) 
JB 

Sett ing 
(j) 二 -au^-^i^^, w = u^l^ 

wi th —00 < OL < 0，we obta in 

- J { ^ ^ d t { w ^ ) + 4 a ~ \ a - l ) \ V w \ ^ + 4wi^S/w . V̂/；) > 0. 

Note that 1 < a~^{a — 1) < +00. Using the elementary inequali ty \xy\ < 
办2 + 力，yields 

[ d t { w ^ p f + 2 [ \ V w \ ^ < A \ \V^ \ \ l ^ [ w^ ‘ 
J J J supp(xp) 

where A is numerical constant. The arguments used to prove (3.3) apply 
here as well, and they give 

f [ u ^ ^ < E { B ) { A { r r ) - ^ [ [ u ^ Y (3.8) 
J JQa' J JQcr 

for 0 < cr < a, < 1 and r = cr' - a. Here, 0 = 1 + 2 / " , and E{B) 二 CV-Wr) 
is the Sobolev constant for the bal l B given by (S(R)) . 
Now, an argument very similar to the one used to derive (3.5) f rom (3.2) 
leads f romm (3.8) to the desired inequali ty (3.6). • 

In order to state the next result, we set 

Q j - ( 5 , 5 + ( l - ^ ) r ' ) x ( l - ^ ) R 
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Theorem 3.5 Assume that ( D ( R ) ) and (S(R)) are satisfied. FixO < po < 

1 + 2|v where v is the parameter appearing in (S(R)) . For all 0 < S < 1 

and all 0 < p < po, any positive function u such that (¾ + A)u > 0 in 

Q = (s, s + r*2) X B satisfies 

IMILQ-(Cr(2+")(V—)—i)i-"1"ll�c?. (3.9) 

Here, the constant C is independent ofS,p,u,s and of the ball B of radius 

0 < r < R but depends on po. 

Proof: 
I n (3.7), we set 

0 二 c m Q - i ^ 2 , ^ = ^ « / 2 

w i t h 0 < a < po( l + 2 |v ) -Y < 1. We get 

J{̂ p̂ dt{w )̂ + 4a"^(a — l)\Vw\̂  + 4tŵ pVw . Vxp) > 0. 

Set e = 1 - p o ( l + 2 / " ) - i . Note that a — 1 is negative and tha t a _ i | a - l | > e. 
Using the inequal i ty \xy\ < ^{ex^ + ^~^y^) yields 

— [ d t { w i ; f + 2 [ | V ^ p < y l | | V ^ | | ^ [ w^ (3.10) 

J J J supp{ip) 

where A is a constant which depend only on e. 
Again, we follow the argument used to prove (3.3), but this t ime we must 
take into account the minus sign in front of the first integral. This minus 
sign leads us to reverse the t ime and this explains why we are working w i t h 
the set Q'a instead of Q^- From (3.10), we obtain 

I Iq, u^' < E { B ) { A { r r ) - ' | 人 u^f (3.11) 

for 0 < a < (j' < 1 and r 二 cr'-o, and where 6 = l + 2 / " , E{B) : SV-^r^ 
Now, define pi 二 pQ0_i and note that , thanks to the Holder inequality, i t is 
enough to prove (3.9) for p — Pi, i — 0,1, •. •. Thus, fix i and apply (3.11) 
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w i t h a '= pi9^, j = 0, . . •，i — 1, and ao = 0, aj = c j j_ i + Tj, Tj = S2~^ where 
0 < 6 < 1 is a f ixed parameter. Observe tha t aj < po{l + 2 / " ) _ i so that 
(3.11)can indeed be applied. I t follows tha t 

I 人,û '̂' <E{B){A^{Sr)-'| fq, u - - y 

for j = 1，•.. i, and thus 

I jq, uP。SE(B)D'ADH)e^(Sr)—2E0'+、l f , / 

where the summat ion run f rom 0 to i — 1. Since ai = 6 J^j 2~^ < (̂ , we finally 
get 

(/ Jq,…。产。S ( C ^ E O B ) " 2 ( & ) - ( 2 + d ) i - P " ^ I |^^Pi 

Here we have used Eo~^ 0』={0 ' - l)/(<9 - 1), Eo"H^ — J)^^^^ < 。 6、伊 - 1 ) , 
for i > 1, and 6^ = Po/Pi, ^ = 1 + 2|v. Replacing E(B) by i ts value in terms 
of r , y , gives the desired inequal i ty (3.9). • 

L e m m a 3.5 Fix S, r £ (0,1). Assume that ( D ( R ) ) and ( P ( R ) ) are satis-

fied. For any positive function u such that {dt^A)u > 0 in Q + (s, s + r^) x B, 

there is a constant c 二 c(w, r ) such that, for all X > 0， 

fi({(t,z) e K + : log^i < —A - c} ) < C r ^ V A - ' 

and 

fi{{{t, z) e K— : \ogu > A - c } ) < C W A — i 

where jJi is the product measure on E x M, K+ = {s + r r ^ , s + r^) x (1 — 6)B 

and K- = (s, 5 + r r ^ ) x (1 — S)B. Here the constant C is independent of 

X > 0, u, s and of the ball B of radius 0 < r < R. 

Proof: 
First we note that we can assume that u is a supersolution in (s, s + r^) x B' 
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where B' is a concentr ic ba l l larger t h a n B = B{x, r ) , We set w = — l og i t . 
Then , for any non-negat ive func t i on ip G Cg°(B), we have 

dt J i)^w < j jp^u'^Au = J{-xp^\Vw\^ + 2ilNw • V^). 

Using again \ab\ < | ( | a ^ + 26^), we get 

dt J i)^w + • I | V i i ; | V < A\\V^\\l^fi{supp{i；)). (3.12) 

Here, we choose ip{z) = (1 — p(x , z)/r)+ where x is the center of B and r i ts 
radius. A p p l y the weighted Poincare inequa l i ty w i t h weight 妒([J], [SS]) t o 
the func t i on w , reads 

I\w - VK|V < Ar^ I |VHV 

w i t h 
W = { | w ^ ' ) / { | ^ ' ) . 

Th i s and (3.12) give 

dtW^ {AyV)-^ [ 1¾/; — VPf < A2r-^ 
J{l-5)B — 

for some constant ^ 1 , ^ 2 > 0. We rewr i te the last inequa l i ty as 

dtW^(AyV)-' [ \w-W\^ < 0 (3.13) 
J{l-5)B — 

where 
w{t, z) = w{t, z) 一 A2T-^{t 一 s) 

w i t h s' — S + T7"2. 

Now, we set c{u) = W(s'), and 

n + ( A ) = {z e 5B : w{t, z) > c + A} 

^ r W = {z e 6B : w{t, z) < c - A} . 
Then, i f t > s,, — _ 

w{t, z) — W{t) > A + c — W{t) > A 
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i n $l^(A), because c = W{s') and StW < 0. Using this in (3.13), we get 

这̂⑴̂ + ( A i r V ) - i | A + c - ^ W | - 1 > ^ { n t { X ) ) . 

In tegrat ing f rom s' to s + r^, we obta in 

fi{{{t, z) e K+ : iu(t, z) > c + A} ) < ^ r 2 y A _ i 

and, return ing to — \ogu = w = w + A2r~^{t — <s'), 

fi({(t,z) e K+ :logu{t,z) + A2r-^{t-s') < - A - c } ) < y l i r V A ' ^ 

Final ly, 

H{{t. z) e K+ : logu(t, z) < - A - c}) 

< 幽,z) e K+ : l o g ^ z) + A2V-^t - s') < - ( A / 2 ) - c}) 
+ A ( { ( t , z) G K+ : A2r-^{t - s') > A / 2 } ) 

< > l 3 r V A " ^ 

This proved the first inequal i ty in Lemma 3.5. Work ing w i t h Q^ instead of 
Q^ , we obtain the second inequal i ty by a similar argument. • 

Consider a collection of measurable subsets U^, 0 < a < 1, of some fixed 
measure space endowed w i t h a measure 1/, such that Ua C U^> i f cr' < cr. In 
our application, the space w i l l be R x M w i t h measure JJi and Ua w i l l be Q^ 
or Q'a. 

Lemma 3.6 Fix 0 < S < 1. Let 7 , C, po < Pi < + 0 0 be positive constants. 

Let f be a positive measurable function on Uo = U which satisfies 

| | / l k ' < ( W ' - d - M " ) ) " " / 1 / l k 

for all ¢7, a',p such that 0 < a < cr' < 6 < 1 and 0 < p < pi < po. Assume 

further that f satisfies 

^ ( l o g / > A) < Cu{U) 
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for all \ > 0. Then, 

WfWpo.U. < 如(")"卯 

where A depends only on 7，S, C and on a positive lower bound on 1/pi — l/po. 

Proof: 
We can clearly assume that v{U) = 1. We set 

^ = ^{a) = log(||/||po,c/J, for 0 < a < 6. 

Decomposing U^ into the sets where l o g / > ?/;/2, we get 

l l / I U < WfWpo,uM^ogf > V V 2 ) 1 / H / ^ + e-/2 
< e - ( C W ) i " - " ^ + e0/2. (3.14) 

Here, we have used successively the Holder inequal i ty and the second hy-
pothesis of the lemma. We want to choose p so that the two terms in the 
r ight -hand side of (3.14) are equal, and 0 < p < pi. This is possible i f 

{ l / p - l / P o ) - i = 酬 l o g ( ^ / 2 C ) < ( l M - l / p , ) - \ 

and this last inequal i ty is certainly satisfied when 

^ > A i C (3.15) 

where A i depends only on a positive lower bound on 1 /p i — l /po . Assuming 
tha t (3.15) hols and that p has been chosen as above, we obtain 

l l / I U . < 2 e ， (3.16) 

The first hypothesis of the lemma and (3.16) yield 

i;{a') < l o g ( 2 C V ' — cr)—”i /P- i /^e0/2) 

= ( l / p - l / po ) log(2C(a ' - a ) - ^ ) + ^ / 2 

for 0 < ¢7 < a' < S. By the choice of p made above, 

^log(2C(a^-a)-^) 
• ) S i ( l o g ( ^ / 2 C ) + 1 ) . 
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On the other hand, i f 

^ P > S C { a ' - a ) - ^ ^ (3.17) 

we have 

W ) < 餐 功 . 

On the other hand, i f one of the hypothesis (3.15), (3.17) made on ^ are not 
satisfied, we have 

x|;{a') < V̂  < AiC + SC^a' — a ) _ 2 : 

I n a l l cases, we obta in 

^ { a ' ) < ^ ^ { a ) ^ A , { c 7 ' - a ) - ' ^ (3.18) 

where A2 depends only on C and on a posit ive lower bound on 1 / p i — l / po . 
For any sequence 

0 < Gi < CTi_i < . . • < CTo = S, 

i te ra t ion of (3.18) yields, 
00 

^ M < ( 3 m ( a , ) + ^ 2 E ( 3 / 4 ) V m " ^ i ) ' ' ^ 
0 

and, when i tends to inf in i ty , 
00 

V<0S^E(3 / 4y (q+ i -q ) -2 l 
0 

The desired bound follows i f we set a i ~ ¢5(1 + j ) ~ ^ . • 

The result of Theorem 3.2, 3.4, 3.5 and Lemma 3.5, 3.6 yield a weak Harnack 
inequal i ty for supersolution. 

Theorem 3.6 Assume that (D(R)) and (P(R)) are satisfied. By Theorem 

3.2, there exists v > 2 such that ( S (R) ) is satisfied. Fix po G (0 ,1 + 2/u)). 

Fix 0 < e < T] < ¢7 < 1 and 0 < C < 1 and set 

Q— = {s + er2, s + rjr^) x B(x, <Y) and Q+ = (s + crr^, s + r^) x B{x, ( r ) . 
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Then, any positive function u such that (¾ + A)u > 0 in Q = (5, s + r ^ ) x B， 

satisfies 

WuW,,,Q_<C{r'vy^P^Mu. 
Q+ 

Here the constant C is independent of u,s and of the ball B of radius 0 < r < 

R. 

Proof : 
F i x u and let c : c{u) be constant given by L e m m a 3.5 where we have picked 
T e (77,cr), 6 e (0, C). L e m m a 3.5 and Theorem 3.5 (resp. Theo rem 3.4) 
show t h a t one can app ly L e m m a 3.6 to e^u (resp. e~^u~^). Th i s yields 

e^\\u\\p,Q_ < C(r2V) i "。（ resp. e " " s u p i i - ^ < C). 
‘ Q+ 

The statement of Theorem 3.6 fol lows. • 

Comb in i ng Theorem 3.6 and Coro l la ry 3.1，we get 1. => 2. of Theorem 3.1. 
To complete the p roo f of Theorem 3.1, we have 

Theorem 3.7 (PH(R)) implies (D(R)). 

Proof : 
Assume t h a t ( P H ( R ) ) holds on M, dt + A admi ts a posi t ive fundamenta l 
so lu t ion (t , X, y) ^ ht{x, y). The func t ion ht can be in terpre ted as the kernel 
of the heat d i f fus ion semigroup H t — e—込.Since A is sel f -adjoint , ht is a 
symmet r i c kernel. A p p l y i n g ( P H ( R ) ) to /1̂ 2 w i t h 0 < r < R, we ob ta in 

V{x, r)hj.2{x, x) < C / h2r^{x, y)dy < C. 
JB{x,r) 一 

Th is gives 
hr2{x,x) < CV{x,r)-^, Vx G M, 0 < r < R. 

F i x X G M, 0 < r < R, set B = B{x, r) and consider the func t ion u defined 
by 

f u [ s , z ) = hsXB[z) i f s > 0 , 

\ u{s,z) 二 1 i f s > 0. 
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The funct ion u is a non-negative solut ion of 这 + A in (—00, +00) x B{x, r) 
in a weak sense. Applying (PH(R)) twice, we get 

1 = u{-r^/4,x) 
< Cu(r^/2,x) 

二 人"—/2(4")办 

< C^V{x,r)hr2{x,x) 

and this proves that there exists c, C such tha t 

cV{x,r)-^ < hr2{x,x) < CV{x,r)-^ 

for al l X G M and 0 < r < R. Clearly, this and ( P H ( R ) ) imp ly (D(R) ) . • 

Theorem 3.8 (PH(R)) implies (P(R)). 

Proof: 
We follow an argument of Kusuoka and Stroock [KD]. F ix x G M, 0 < r < R 
and set B = B(x, r ) , V — V{x^ r ) . Denote by HB,t the heat kernel associated 
w i t h A having Neumann boundary condi t ion on the boundary of B and JiB,t 
be the kernel of i ^ ’ “ tha t is, 

HB,tf{y) = / hB,t{z,y)f{z)dz. 
JB 

Assume that ( P H ( R ) ) holds. By Theorem 3.7, ( D ( R ) ) is also satisfied. 
Reasoning as in Theorem 3.7, we see that ( P H ( R ) ) yields 

hB,Az,y) > cV~^ 

for al l z,y G \B. Thus, for y G ^B, 

HBAf-HB,r^f(y))'(y) > ^ f^_^]f{z)-HB,r2f{y)l'dz 

-^/iBl^"A^l' 

and 
/ H B A f - H B , r ^ f { y ) f [ y ) d y > c ' i | / - / i ^ p . 

JB J 2^ 2 
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Since 

/ HsAf - H s , ^ f [ y ) f { y ) d y = || / | |^,^ - | |^5, .2/ | |^ ,5 
J B 

广2 
= - / dsWHB,sfW2dS 

Jo 

< 2r2 [ | V / | 2 , 
JB 

the desired Poincare inequal i ty is proved. • 

The fo l lowing theorem is an immediate consequence of Theorem 3.1. 

Theorem 3.9 Suppose X and Y are two uniformly roughly isometric mani-

folds satisfying the volume doubling property and Poincare inequality at dis-

tance less than R for all R > 0，then X satisfies the parabolic Harnack in-

equality if and only if so does Y. 

Since the parabolic Harnack inequali ty holds on every manifolds w i t h non-
negative Ricci curvature, we have the fol lowing theorem [CS . 

Theorem 3.10 Suppose M is a complete Riemannian manifold with Ricci 

curvature bounded below. If M is uniformly roughly isometric to a manifold 

with non-negative Ricci curvature, then M satisfies the parabolic Harnack 

inequality. In particular, every positive harmonic function on M is constant. 
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Chapter 4 

Parabolicity and Liouville 

Dp-property 

4.1 Parabolicity 
A complete mani fo ld M is said to be parabolic i f a l l posit ive superharmonic 
functions on M are constant. Also there is an equivalent definit ion. Let 
Pt{x, y){t > 0，X, y G M ) be the min ima l positive fundamental solution of the 
heat equation {d/dt — /S)u 二 0 for funct ion u on (0, oo) x M. Then M is 
non-parabolic i f and only i f the Green funct ion g[x, y) = J^pt{x^ y)dt exists. 
As is well known, the Euclidean n-space is non-parabolic i f and only i f n > 3. 
the fol lowing proposit ion was first pointed out by Ahl fors for dimension 2, 
and later by Varopoulos [V2] for al l dimensions. 

Proposition 4.1 Suppose M is a non-parabolic complete Riemannian man-

ifold, then there exists p G M, such that, the volume V{p, t) of geodesic ball 

centered at p of radius t satisfies the growth condition 

厂⑷ t , 

/ 777——-at < CXD. 

h V{p,t) 
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Observ6 tha t th is volume growth condi t ion holds at one po in t i f and only i f i t 
holds at a l l points of M. The obvious question is to determine i f t h i s condi t ion 
is also sufficient. Unfor tunate ly , an example of Greene [V2] indicated that 
th is is not t rue in general. B u t th is condi t ion is also sufficient for non-
parabol ic i ty in manifolds w i t h some curvature assumption [ V I . 

Proposition 4.2 Suppose M is a complete Riemannian manifold with non-

negative Ricci curvature, p G M, then M is non-paraholic if and only if 

厂沉 t , 

A n ^ f ^ " • 

To prove tha t parabol ic i ty is preserved under un i fo rm rough isometry for 
manifolds satisfying certain k ind of condit ions, we employ a cr i ter ion of 
parabol ic i ty. 

Definition 4.1 Let M be a complete Riemannian manifold , and Q a non-

empty bounded domain in M with smooth boundary. The capacity of Q is 

defined by 

cap(Q) 二 i n f { f \Vu\^dx : u G C^{M),u\^ = 1} . 
JM 

Then we get [FS 

Proposition 4.3 M is non-paraholic if and only if cap{Q) > 0. 

Proof: 
F i rst we prove the "on ly i f，part . Suppose that M is non-parabolic. F ix a 
point p in Q and put v{x) 二 log g(j), x), where g denotes the Green funct ion. 
Since g{p,.) is harmonic except at p, we have ^v — - | V i ' p on M \ Q. Thus 
for an arb i t rary u G C^{M) w i t h u = 1 on Q, we get, by Green's formula, 
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tha t 

/ u^lVv ^dx = - / u^Avdx 
JM\Q JM\n 

= - [ ^ d x + 2 f u < Vu, Vv > dx 
JdQ ov JM\n 

< — [ ^ d x ^ 2 [ |u||Vw| Vvldx 
— Jdn ov JM\Q 

< - [ $ c b + [ Vul^dx + f u^lVvl^dx 
Jdn ov JM\n JM\n 

tha t is, 

/ lVul^dx > / —dx , 
JM Jdn ov 

where d/dv denotes the “ inward" normal derivative on the boundary of Q. 
Since for small e > 0 

/ ^-^dx = 1, 
JB{p,e) du 

where 悬 is the inward normal derivative on dB(p, s), therefore 

[ ^ d x = [ 1 ^P,z)dx 
JB{p,e) du JB{p,e) g{p, x) 3v 

tends to 0 as e goes to 0. 
This shows that 

capiQ)j > [ ^dx = f Avdx = f Vv ^dx > 0. 
—Jdn ov Jn Jn 

Next we show the " i f ' part . Assume cap{Q) > 0, take an increasing sequence 
of bounded domains Q^ in M w i t h smooth boundaries so that they cover 
M and each of them contains Q. Then for each k there is a funct ion Uk G 
C°^{Qk \ ^ ) which is harmonic on Qk \ & and satisfies the Dir ichlet condit ion 
Uk — 1 on dQ. and Uk = 0 on dQk- Note that 

cap(Q) — l im / lVukl^dx. 
k—ooJfi“n 

By the Harnack inequali ty and the Schauder estimate, we can find a subse-
quence { u j ] of {i/fc} which converges, w i t h respect to the C^ ' " -norm on any 
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compact subset in M \ 1 7 , to a positive funct ion u G C^{M\Q) harmonic on 
M \ Cl and w i t h u = 1 on dQ [GT]. Obviously the extension of u by u = 1 
on Vt is a posit ive superharmonic funct ion on M, and therefore, to prove the 
non-parabol ic i ty of M , i t is sufficient to show that u is not constant. By 
Green's formula, we get 

[ ^ d x = l i m [ ^^dx = l im [ lVuA^dx = cap(Q) > 0， 
Jdn ou j—ooJdn ov j^ooJnj\n 

and this implies tha t u is non-constant. • 

To use the discrete approximat ion method, we have to define the parabol ic i ty 
on a net. 

Definition 4.2 A function u on a net P with measure m is said to be su-

perharmonic if Lu < 0 where L is a linear operator acting on functions u on 

P defined by 

L<P) = E M " ) l + m ( p ) ) g ( " ( " ) — + ) ) M " ) + 叫州， P ^ P, 
9〜P 

A net P is said to be parabolic if every positive superharmonic function on P 

is constant. 

I f we put 

气 5 ^ ^ ^ ^ ， a n d 爹 { ， - 1 : f = 

Then L can be wr i t ten as 

Lu{p) = E T T M u W — ) ， ) — 咖 ’ p e p. 
qeNp ^ 

For each k = 0 ,1 , . • •, define a funct ion 7rjt : P x P ~> R induct ively by 

{1 i f W — CJ \ 飞 TT1/ (T*) I 7T7' ( ^) 

0 i f p ^ q ‘ 兀 科 1 ( 仍 力 二 5 ^ 兀 於 ( 仍 厂 ) 兀 ( 厂 ， " ) ~ ^ ~ ~ — • 
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This corresponds to the heat kernel of a Riemannian mani fo ld. Moreover, 
the Green function g of P is defined by 

00 

g{p^ Q) = Y^^k{p, 9), 
k=0 

i f i t exists. Since we have been assuming that the net P is connected, i t 
is easy to see tha t g{p, q) < 00 for al l p, q G P i f ff(Po,Qo) < 00 for some 
Po, go ^ P. Moreover i f g < 00 then for each fixed q G P , we have 

• = {0—1 !fp；；， （4.1) 
where Qq{p) — g(p, q). We prove a discrete counterpart of I t6 's theorem [I . 

Lemma 4.1 P is non-parabolic if and only i f g < 00. 

Proof: 
The " i f ' part is t r i v ia l f rom (4.1). We prove the "on ly i f，part. Let u be a 
non-constant posit ive superharmonic funct ion on P, and put f = —Lu > 0. 
We may assume f 丰 0. ( In fact, in the case when Lu — 0, take a real number 
a between i n f i t and sup u, and define a funct ion u' on P by u'{p) = u{p) i f 
u{p) < a, and u'{p) = a i f u{p) > a. This u' is a non-constant positive 
superharmonic funct ion on P w i t h Lu'丰 0.) Then we get 

k 

E E ^j(P^ 9 ) / ( 9 ) 
j=0qeP 

k 
= - Y . Y . ^ j { p . Q){Y17r(g, r ) u { r ) { m { r ) + m{q)) - u{q)) 

j=0 qeP reP 
k 

=-JlJ2i^j+^(P^ Q)-^j(P^ Q)MQ) 
j=0qeP 

=u{p) - Yl7Tk+i{p,q)u{q) 
qeP 

< u{p), 

and this show that 
00 

E 9{p, Q)f{Q) = E E ^Ap, q)fW) 

qeP j=0 qeP 
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is absolutely summable. Thus we conclude g < oo. • 

For funct ions u and v on P , we define func t ion < Su, Sv > on P by 

< ^u,Sv > {p) = Y^{u{q) — u{p)){v{q) - v{p)). q〜p 

Note t ha t , 

6u{p) = yJ< Su, Su > (p), ‘ 

where bu is defined as in Section 1.2. T h e n we get the Green's fo rmu la on 
nets. 

L e m m a 4 .2 Lei u and v be functions on P, and assume that at least one of 

them has finite support. Then the following identity holds: 

^ ( z y u Z / f ( p ) + < Su, Sv > (p)m(p)) = 0. 
peP 

Proof : 

y^ uuLv{p) 
peP 

= J 2 ^(p) Z K ^ W - ^ b ) ) ( ^ W + MP)) 
peP 9〜p 

= H T^ u(p)^M(M^) + Mp)) - J2 Y^ u(p)v(p)(m(q) + m(p)) 
peP q~p peP 9〜p 

= H S(w(^)^(p) + u{p)y{Q)-"(咖⑷-u{p)v{p))m{p) 
peP q〜p 

=—Y2 < 〜 加 > (p)m(p) 
peP 

where the finite suppor t assumpt ion has been used in the finiteness of each 
terms. • 

We are now in a posi t ion to give a discrete version of Propos i t ion 4.3. For a 
f in i te subset S of P , the capacity of S is defined by 

cap{S) 二 i n f { ^ S^u{p)m{p) : u e co(P), u = 1 on 5}. 
peP 
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Lemrria 4.3 Let S be a non-empty finite subset of a net P. Then P is non-

parabolic if and only if cap{S) > 0. 

Proof: 
Take an increasing sequence of finite subsets Sk of P so tha t S C Sk, P = 
U^fc, and, for each k, let Uk be a funct ion on P which minimizes the quant i ty 
SpGP^^^(p) among al l functions v on P w i t h v = 1 on S and v = 0 on 
P \ Sk. Obviously 0 < Uk < 1, Uk = 1 on S, Uk = 0 on P \ Sk, and 
cap{S) = lirrifc^oo Z)pGP ^^^k{p)- Moreover we can see that Luk — 0 on Sk \ S 
as follows. Let w be an arb i t rary funct ion on P such tha t its support lies in 
Sk\S, and put Uk,t — Uk + tw, t e (—1,1). Then J2pep ^^^k,t[p) is min imized 
at t = 0，and hence, by Lemma 4.2，we get 

0 二 ^^\t=o X^ S^Uk,t{p)m{p) = Y^ < duk, Sw > (p) = - ^ vwLuk[p). 
^ 饥 peP peP pesk\s 

Since this must hold for any w, we have Luk = 0 on Sk \ S. Now we can find 
a subsequence { u j } of {uk} which converges pointwise to a funct ion u on P. 
I t is easy to see that u is positive superharmonic funct ion such that u — 1 
on S and Lu — 0 on P \ S. In addit ion, by Lemma 4.2，we have 

- Y . ^{p)Lu[p) = — Jim Y1 v{p)Luj{p) 
pes ”°%es 

=)]j^^ Y1 ^^Uj{p)m{p) 
^^^peP 

=cap{S). 
Now the " i f ' part of the lemma follows directly, since u is non-constant i f 
cap[S) > 0. 
We prove the “on ly i f，part. Assume P is non-parabolic. Then, by Lemma 
4.1, the Green funct ion g exists. Note that i t is sufficient to show that 
cap{S) > 0 only for S consisting only one element of P，say q. By the choice 
of u and the max imum principle, we get g{p, q)/g{q, q) > u{p) for al l q G P. 
I f u were identical ly equal to 1, then g{p, q) > g{q, q) in contradict ion to 
(4.1). Hence u is non-constant, and consequently cap{{q)) > 0. • 

Corollary 4.1 Suppose that P and Q are ponderable nets uniformly roughly 

isometric to each other. Then P is parabolic if so is Q. 
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Proof: 
Let if : P ~> Q be a un i fo rm rough isometry, and suppose tha t P is non-
parabolic. Then, for a non-empty finite subset S of P, we have cap[S) > 0 by 
Lemma 4.3. We show tha t cap{^{S)) > 0, which implies the non-parabol ic i ty 
of Q. Let V be an arb i t rary funct ion on Q of finite support w i t h v = 1 on 
(f{S), and put u = v o (p. Obviously u = 1 on 5 , and hence, i t suffices to 
show tha t 

\Su\\2 < C||̂ i'||2 
w i t h some constant C independent of v. By the def ini t ion, there exists a 
constant Ci such tha t for al l p ,p ' G P w i t h d{p, p') — 1 there is a length-
min imiz ing pa th 7 二 (qo,...，qi) in Q f rom qo = (p(p) to qi = (f{p') of length 
1 < C i . From this we get 

W ) — u{p)f < C,[{v[qo) - v{q,)f + .. . + {v[q,_,) - v { q i ) f ) 

and hence, w i t h the uniformness of P , we get 

sMp) < C2 E ^Mq)-
d{qMp))<Cl 

Again, f rom the uniformness assumption on P and Q, we obtain a constant 
C as required. • 

Lemma 4.4 Suppose M satisfies the local volume doubling property and local 

Poincare inequality and P be an e-net in M. Then M is parabolic if and only 

if P is parabolic. 

Proof: 
Fi rst we show that P is non-parabolic i f so is M. Assume that M is non-
parabolic, and take a non-empty bounded domain Q in M w i t h smooth 
boundary. Then by Proposit ion 4.3，Q has a positive capacity. We w i l l show 
that the finite subset S = {p G P : B2e{p) H Q ^ 0} of P also has a positive 
capacity, which implies the non-parabolici ty of P by Lemma 4.3. 
Suppose that f is an arb i t rary funct ion on P of finite support w i t h f — 1 on 

A A 
5 , then f is a funct ion on M w i t h compact support and / : 1 on fl (Section 
1.2). Therefore by Lemma 1.11 we have 

cap{Q) < ||V/||2 < C\\Sf\\l 

65 



for some constant C independent of f . Th is proves cap{S) > 0. 
Next we show the non-parabol ic i ty of M under the assumption that P is 
non-parabol ic. F ix a non-empty finite subset S of P. Then, by Lemma 4.3, 
cap{S) > 0. Also let Q be a bounded domain in M w i t h smooth boundary 
such tha t Bs{p) C Q. for p e S. For an arb i t rary funct ion x[) G C^{M) w i t h 
V̂  二 1 on $1, ip is a funct ion on P w i t h finite support and ^ 二 1 on S. 
Therefore by Lemma 1.11 we have 

cap{S) < \\S^\\l < C\\Vi;\\l 

for some constant C independent of ip. This shows tha t cap{Q) > 0, and con-
sequently, implies the non-parabol ic i ty of M as Proposi t ion 4.3 suggests. • 

Combin ing Corol lary 4.1 and Lemma 4.4, we get the fol lowing theorem im-
mediately [K2 . 

Theorem 4.1 Suppose that X and Y are complete Riemannian manifolds 

satisfying the local volume doubling property and local Poincare inequality 

and uniformly roughly isometric to each other. Then X is non-parabolic if so 

is Y. 

We have the fol lowing theorem as a corollary. 

Theorem 4.2 Suppose M is a complete Riemannian manifold satisfying lo-

cal volume doubling property and local Poincare inequality. If M is uniformly 

roughly isometric to a manifold with non-negative Ricci curvature, then M is 

non-parabolic if and only if 

r^ t , 
A ^ ^ ' 力 < 沉 . 

Proof: 
The "on ly if，part follows f rom Proposit ion 4.1. 
Suppose M is uni formly roughly isometric to a mani fo ld X w i t h Ricci cur-
vature non-negative. I f 

厂00 t 

A V{^f〈w 
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holds dn M , then this volume growth condi t ion also holds on X by Theorem 
2.2. By Proposi t ion 4.2, X is non-parabolic. I t then follows tha t M is non-
parabolic by Theorem 4.1. • 

4.2 Liouville Dp-property 
Let G be an open subset of a Riemannian n-mani fo ld M ^ . A funct ion u 6 
C[G) n Wpi^c(G), w i t h 1 < p < oo, is called p-harmonic in G i f i t is a weak 
solut ion of 

- d v i ( | V w | ^ - 2 V i / ) 二0, (4.2) 

tha t is, 

[<|Vii|P-2V2/,V0>=:O 
JG 

for every 0 G C^{G). Equat ion (4.2) is the Euler-Lagrange equation of the 
var iat ional integral 

/ | V 4 " . 
JG 

We say that a Riemannian n-mani fo ld M^ has the Liouville Dp-property i f 
every p-harmonic funct ion u on M " w i t h 

I \Vu\P < +oo 
JM^ 

is constant. I n this section we study the invariance of the Liouvi l le Dp-
property under rough isometries between Riemannian manifolds. A l l results 
in this section can be generalized to so call ^ -ha rmon ic functions [H3] and 
al l proofs are just the same. 
First we are going to study some properties of p-harmonic functions. We 
have the fol lowing Caccioppoli-type inequali ty [H2 . 

Lemma 4.5 Let u be a positive p-harmonic function in G, and let v — u^l^ 

where q £ R \ { 0 , p — 1}. Then for every non-negative rj G C^{G), 

(7f\VvY < I ~ ~ " - ~ " - r [ vP\Vr]P. 
JG ~ q — p + 1 JG ‘ 
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Proof: ' 
Write ~ = q - p + 1. Since v = uq/ p , we have 

V'v = (q/p)u(q-p)/pV'u, 

and 
lV'vlP = Iq/pIPuq-PIV'uIP. 

Let 1] E Ca (G) be non-negative and let <.p = U K1]P. Then 

V' <.p = puKif- l V'1] + ~ifuq-pV'u, 

Let 1] E Wi,o(G). Since u is p-harmonic in G and the support of <.p is compact 
subset of G, 

and so 

o = p la < lV'ulp
-

2V'u, u"rf'- l V'7] > +/1; la lV'uIPrf'uq-p
. 

Therefore we obtain 

la rf'1V'vIP la rf'lq/pIPuq-PIV'uIP 

< p'r~f'P la lV'uIP-1rf'-lu"IV'7]1 

I q I f uq/PIV'1]lif-luK-q/PIV'uIP-llq/pIP-l 
~ le 

< I q I ( f uq 1V'1]IP) l/p ( f 1]Puq-PIV' uIPlq/pIP)(P-l)/P 
~ le le 

I q I( f vPIV'1]IP)l/p ( f iflV'vIP)(P-l)/P 
~ le le 

The lemma is proved. o 

Lemma 4.6 Let u be a weak positive supersolution of (4.2) in G. Then for 

any compact subset KeG and <.p E Ca (G) with <.p = 1 on K, we have 

where C is independent of K and <.p. 
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Proof: 
We may assume tha t ess in f u > 0. Pick a non-negative (p e C^{G) w i t h 
^ = 1 in K. Since the funct ion r/ 二 (pPy}_P G WpQ{G) is non-negative, then 

0 < 1^ < \ V u \ P - ^ V u , V r ] > 

= [ < \Vu\P-^Vu,p(pP~^u^-PV(p — (p — l)u_P(pPVu > • 
JG 

Now Holder's inequal i ty yields 

[ |VupVV < C [ \vu\p-^u^-p\v^\ipp-^ 
J supp{if) Jsupp{ip) 

< C{[ |Vu|〜-V^)(P-i)/P(( |Vp|P)"t 
J supp{(p) J G 

Since (p = 1 on K, we have 

{j^{\Vu\u-^Yf'P < C{|^\Vip\Py/P. 

This complete the proof of the lemma. • 

I n order to get a local Harnack inequali ty for p-harmonic funct ion which 
w i l l be needed later, we impose the fol lowing property to a manifold. 

Definition 4.3 We say that a Riemannian manifold M has bounded geom-

etry if the following two conditions hold on M 

1. The Ricci curvature ofM is uniformly bounded from below by 

- { n - l ) K ^ , with K > 0, 

2. The injectivity radius ofM, denoted by inj(M), is positive. 

The well known comparison theorem [BC] and [CGT] says that for Rieman-
nian mani fo ld satisfying condit ion 1 above, we have estimates 

rW �̂  T , / 、 , | 聊 , 用 | VK(R) | ^ ( . , r ) | < V ^ . ( r ) a n d ^ ^ < ^ 
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for the volumes of geodesic balls for al l x E M and R > r > 0. Here V/^(r) 
is the volume of a geodesic bal l of radius r in the s imply connected complete 
Riemannian n-mani fo ld of constant sectional curvature - K ^ . Volumes of 
smal l geodesic balls in M have a lower bound 

B{x,r)l > Vor^ 

for al l X e M and for al l r < i n j ( M ) / 2 , where vo is a posit ive constant 
depending only on n. This estimate is proved by C.B. Croke [Cr]. I t is also 
proved by Croke [Cr] (see also [CGT]) that for every domain Q C B{x, r) 
w i t h smooth boundary, r < i n j ( M ) / 2 , 

vol(f^(n-i)/n < Carea(ar]), 

where C depends only on n. Hence 

| Q | ( m - i ) / m < C|^]|'/̂ -'/̂ area(aQ) 
< C|5(x,r)|'/"-^/^area(aQ) 

i f m > n. I t is wel l-known [C] that this isoperimetric inequal i ty implies that 

( [ | y m / (m _ l ) ) (m _ l ) /m < C\B{x,厂)|1/几—1— [ \Vu 
JB{x,r) JB{x,r) 

for al l u G C^{B{x, r ) ) . By apply ing this and Holder's inequal i ty to functions 
V = \u\^, where u G C^{B{x, r)) and 7 is suitable, and approximat ing, we 
obta in a Sobolev estimate. 

Lemma 4.7 Suppose that M is a complete Riemannian n-manifold, with 

inj{M) > 0，and that q < p < m, where m > n. Then there exists a constant 

C — C(ji,m,p) such that 

( [ | ^ | p m / ( m - p ) ^ ( m - p ) / m < C | _ B ( r r , r ) | " " — [ \ V u \ P 
JB{x,r) JB{x,r) 

for every u e Wp Q[B{x, r ) ) and r < i n j { M ) / 2 . 

We also have the fol lowing local Poincare inequality for Riemannian mani-
folds w i t h Ricci curvature bounded below [B] [C . 
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L e m m a 4.8 Suppose M is a complete Riemannian manifold with Ricci cur-

vature hounded below by - ( n — l)K^, with K > 0； then there exists constant 

Cn depends only on n such that 

[ lu-uJ < r e ^ - ( i + ^ ^ ) [ | V w | , 

JB{x,r) JB{x,r) 

for every u G Wl{B{x, r ) ) . 

We can now prove the local Harnack inequal i ty for p -harmon ic func t ion [H3 . 

Theorem 4 .3 Suppose that M is a complete Riemannian n-manifold with 

bounded geometry. Then there exists, for each 0 < ro； a constant C such that 

sup u < C i n f u, 
B{x,r/2) B(x,r/2) 

for every positive p-harmonic function u in B(x,r) and r < r^, where C is 

independent of x and u. 

Proof : 
Let r < ro. suppose t ha t u is a posit ive p -harmon ic func t ion in B(x,r). 
Let V = uqjP, where q G R \ { 0 , p — 1} , let m = m a x { n , p + 1} , and wr i te 
A = m / ( m — p). The Sobolev est imate L e m m a 4.7 and the Caccioppol i 
inequal i ty L e m m a 4.5 i m p l y tha t 

( / | " < A ) " A < Ci\B{x,3r/4)\P/^-P/^ [ {rf\Vv\P^vP\Vr]\P) 
JB{x,3r/4) JB{x,3r/4) 

< A{{——^~~-)^ + l ) [ vP\Vr]\P (4.3) 
' ' | ^ - p + l | ^ ^ JB{x,3r/i) ‘ 、 ) 

for every non-negative r] G C ^ { B { x , 3 r / 4 ) ) , where 

A 二 C i | 5 ( x , 3 r / 4 ) | P / ^ - P / ^ and C i = C i ( n , p ) . 

Let r / 2 < t < t' < 3 r / 4 , and wr i te U 二 t + {t' — t)2-' and Bi = B{x,ti) 
for every i = 0 ,1， . . . . Then {U — ti+i)-P 二 2(!+i)P(" - t)_P, Bo = B{x,t'), 
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and B{x, t) C Bi for every i. For each i, we choose a non-negative rji G 
C^{B{x, 3 r / 4 ) ) such that r]i 二 1 in 双+ i , rji = 0 outside Bi, and | V " i | < 
2{t i — t j + i ) - i . Next we choose qo G R \ { 0 } such that 

k o A ^ - p + l | > ^ (4.4) 
2m — p 

for every i. App l y i ng (4.3) to rji and to q 二 qoX' yields 

( [ u - " i ) i " < ^ ( ( 少 0 》 丨 J + 1 ) 7 ? ^ f u^^'\ 
VB,+i ) - ^ > o A ^ - p + i r ^ {t' - t)p J s , , 

and so 

( / K ) V ) l / V < y ^ 5 , T T ( ^ ^ _ + 1 ) " 》 ， 2 叫 , [ 以 卯 ， 
VB,� ) ) - 2丄=丄0 koA^ - p + 1 | ^ 、 {f — tysj J s , ， 

where Sj = zLo ^ “ ‘ and S'j 二 E L o ( ^ + l ) A " ^ The condi t ion (4.4) implies 
tha t the product above has an upper bound which depends only on n and p 
(note tha t m = m a x { n , p + 1}) . Le t t ing j ^ oo we get Sj ^ m/p and 

s u p , ^ < C 2 : ， ， O I , ,,， (4.5) 
B(x t) - {t' - t)rn JB(x,t') 、、 

where C^ — C2{r1,p) provided that (4.4) holds. The condi t ion (4.4) holds for 
every qo < 0. Moreover, for every q > 0, there can be at most one i such that 

kA^-p + l | < ^ . 
2m — p 

Thus every interval [q/X^ q] contains a number qo which satisfies (4.4) for al l 
i. To get r id of (4.4), suppose that q + 0. I f q < 0，we set qo 二 q, otherwise, 
we choose qo G [q'/A, q] such that (4.4) holds for every i. Next we choose 
C3 = max{C2, ( 2 C i " 〜 o — ” } . Then 

C3A^/pjB(x,f)l〉C3Cr^V^"(r/2)^〉1 
(f -1)^ — ( r /4 )m - 1 
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since i n j ( M ) > 0. I t follows f rom (4.5) tha t 

sup uq = ( sup u^yiqo 
B{x,t) B{x,t) 

< - ( ^ ^ ” 。 ( / . ， , 广 

< a ^ l ^ M l T / ^ . (4 6) 
— {t' - t)^^ JBix,t') • 、.) 

This holds for every q + 0 and r / 2 < t < t' < 3 r / 4 . Next we wr i te B(s)= 
B{x,r/2 + s r / 4 ) for 0 < s < 1. Since A = C i | B ( x , 3 r / 4 ) | P / " - " m , we can 
wr i te (4.6) as 

supu^ < C ( I ^ T j " 4 ) l ) m A / n ( s , — < - £ ( ,、uq 

< , ( M M l l ) m A / n ( y _ ^ ) - m A i … 
- � r S ) ^ ) JB{s') 

Here we used the volume comparison theorem to obta in first |B (x , 3 r / 4 ) | < 
V^(3r/4) and then V^(3r/4)r" " < V / c ( 3 r � / 4 ) r � \ We have proved that 

sup < {c{s' — 5 广 ” - 1 " ( / uqy'q, 
B{s) JB{s') 

and 
inf > icis' - s)^^Y'nl u—qY”q 
B{s) — ^ V ) ) VB{s') ) 

for al l q > 0 and 0 < s < s' < 1, where c : c(n,p, K, ro). By the refined 
version of the John-Nirenberg theorem [BG], 

sup u < ec+) in f u, 
B(x,r/2) B(x,r/2) 

where 
g(u) = sup in f / logw — a 

0<s<l<^^^JB{s) 
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and c = c{n,p, K, ro). To estimate ff(u), we first use the local Poincare 
inequal i ty Lemma 4.8 and Holder's inequal i ty 

g(u) < … 1 , 、 i n f f loff u — a 
^ ) - |5(x,r /2)|aeM7B(x,3r/4) ^ 

j,^Cn{l+Kr) 厂 

< ^ — — ^ 1 / V l o g n 
B[X, r/2) yB(x,3r/4) 

< ^ y y ) | i - i / p ( | v i o g . r ) v . 

- 5 ( a ; , r / 2 ) | Vs(x,3r/4) ^ ) 

Furthermore, Lemma 4.6 implies tha t 
f |V l og^ |P < C ( |Vr7P (4.7) 

JB{x,3r/4) 一 JB{x,r) 

for every rj € C^{B{x, r ) ) such tha t r] = 1 in B{x, 3 r / 4 ) . We obta in an 
upper bound cr~P\B{x, r ) | for the r ight hand side of (4.7) by choosing 77 such 
tha t |V7y| < 8 / r . Pu t t i ng together these estimates yields 

a(u) < cc'n(i+Kr)lBjx,3r/4)l \B{x,r)\ „^ 
_ - | B ( x , r / 2 ) | V ( ^ , 3 r / 4 ) K 

< , , c M r M 3 r / 4 ) V K ( r ) , 。 

一 VK(r/2) WK(3r/4)^ 

Final ly, we apply the volume comparison theorem to volume of n-bal ls in R^ 
to deduce first that c r " < V K ( r / 2 ) { < V ^ ( 3 r / 4 ) ) , w i t h c = c(n), and then 
that 

VK{3r/4) z VK{^r/4) < FK(3rp/4) 
VK{r/2) ~ ~ ^ ^ - ~ ~ ^ ~ ~ • 

Similarly, 
VK{r) < VK(ro) 

VK{3r/4) - crS • 
Hence g(u) has an upper bound which depends only on n,p, K, and ro. The 
theorem is proved. • 

We have the fol lowing consequence of the local Harnack inequality. 
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Theorem 4.4 Suppose that M is a complete Riemannian n-manifold with 

bounded geometry. Let 

2 
r*o = min{l, - i n j { M ) } . 

o 

Then there exists a positive constant c = c(n,p, K, ro) such that 

, 、 . , i / (x) 1 1 - u i x ) . 
• ， y ) > cro max{ log ~ ^ ， l o g — } - ro, 

u{y) 1 - u{y) 

whenever u is p-harmonic in M, with 'mfMU = 0 and s u p ^ u = 1. 

Proof: 
Let X and y be two points in M. We may assume tha t u{x) > u{y). Suppose 
first tha t p(x,y) > r*o. Let 7 be a m in ima l geodesic f rom x to y, and let 
1 > 2 be an integer such that (/ — l ) r o / 2 < p{x, y) < / ro/2. Then there are 
points XQ = X, Xi , •. • , xi = y on 7 such tha t d{xi, Xi+i) < r*o/2 for al l i = 
0 , 1， . . . ,1-1. Hence B{xi,ro/2)nB{xi+i,ro/2) / 0 for al l i = 0,1, • • • , l - l . 
The local Harnack inequal i ty Theorem 4.3 implies tha t 

u{x) < sup u < C in f u 
J5(xo,ro/2) B{xo,ro/2) 

< C sup u < C^ in f u < . • • 
B(xi,ro/2) B{xi,ro/2) 

< Ci sup u < &+^ in f u < C^^^u{y). 
B{xi,ro/2) B(xi,ro/2) 

Hence 1 + 1 > ( l ogC) " ^ log{u{x)/u{y)), and so 

, 、 . u(x) 
P{x,y) > cro log - ^ — ro, 

HV) 

w i t h c = ( 21ogC) - i . I f p{x, y) < r。’ there exists a point z G M such that 
X, y e B{z, ro /2) . Then u{x) < Cu{y) by Theorem 4.3, and so 

cro Xog{u{x)/u{y)) - ro < - r o / 2 . 

The theorem follows by applying the same reasoning to the funct ion 1 - u.U 
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Manifolds which admi t non-constant p-harmonic funct ions w i t h bounded 
Dir ichlet integral can be characterized by means of p-capacities. A condenser 
is a t r ip le ( F i , i ^ ; G ) , where F i and F2 are disjoint, non-empty, and closed 
sets in G. 

Definition 4.4 The p-capacity of a condenser (Fi, F2； G) is the number 

capp{FuF2]G) = ini [ \Vu\P, 
u JG 

where the infimum is taken over allfunctions u G Lp{G) which are continuous 

in G U Fi U F2 with u = 0 in F\ and u = 1 in F2. Such a function is called 

admissible fo (Fi, F2； G). If the class of admissible functions is empty, we 

set capp{F1,F2] G) = +00 . 

Let { B i ] ^ i be an exhaustion of M such that Bi C C B j + i for every i. We 
say that a set A C M is unbounded i f A has common points w i t h M \ Bi for 
every i. 

Definition 4.5 For an open set î  C M and a compact set F C Q； we define 

capp(F, 00; Q) = l i m capp(F, Q \ Bi; Q). 
i—oo 

Note that the l im i t exists and is independent of the exhaustion since the 
assumption B i C C 战 + i implies that 

capp(F, Q \ Bi; Q) > capp{F, Cl \ 双 + i ; Q). 

Definition 4.6 An unbounded open set Q C M is called p-hyperbolic if there 

exists a compact set F C Cl such that capp{F, 00; 0 ) > 0. 

We remark that any open set Q' is p-hyperbol ic i f there exists a p-hyperbol ic 
subst Q C 0 ' . We also observe that 

capp{F, n \ D; n) > capp{F, 0 0 ; Q) > 0 

for each open D C C M i f Q is p-hyperbol ic and F is as in the definit ion. 
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Definition 4.7 An unbounded open set Q> C M, with dQ + 0，is called Dp-

massive if there exists a p-harmonic function u in ^2 which is continuous in 

Q, with u = 0 in dQ, sup^ u = 1，and 

[ \ V u \ P < +oo. 
Jn 

I t is clear f rom the def ini t ion that the sets {x : u{x) < a] and {x : u{x) > b}, 
and even al l components of these sets, are Dp-massive i f u is a non-constant 
bounded p-harmonic funct ion in M , w i t h |Vu | G L^[M), and i n f u < a < 
b < supu. 
Next we explain the connection between Dp-massive and p-hyperbol ic sets. 

Lemma 4.9 Every Dp-massive set is also p-hyperbolic. 

Proof: 
Let Q be Dp-massive, and let u be as in Def in i t ion 4.7. Suppose that { ^ } g i 
is an exhaustion of M such that Bi C C 5 i + i , and that capp(F, Cl\B2； Q) > 0, 
where F = Bi n dQ^ + 0. 
Next we choose admissible functions Wi G Wp{Q. D Bj), i > 2, for condensers 
(F, Q \ Bi- Q) such that 0 < Wi < 1， 

[|V^i|P < capp(F, Q \ Bi-Q) + - , (4.8) 
JnnBi i 

and that Wi = 1 in al l those components of Q 门 B i whose closures do not 
intersect F. We choose these functions in the fol lowing way. Suppose that 
W2 is chosen. Let V2 be the unique p-harmonic funct ion in Q D B2 such that 
V2 — W2 e Wp^o(Q n B2). We set V2 二 1 in Q \ B2. Then 

f \Vv2\P < [ |V^2r 
>/f2nB2 JQnB2 

and v2 > u in f l Next we choose w^. Then the set A = {o; G Q : 1^3(2;) > 
v2{x)} is a subset of Q 门 B】.If A + 0, 

[|对 < [iv^3r 
JA JA 
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since V2 is p-harmonic in A. We redefine Ws by sett ing W3 = V2 in A. Clearly 
(4.8) s t i l l holds. By cont inuing simi lar ly, we get a decreasing sequence of 
funct ions { i ' j } such tha t Vi is p-harmonic in $1 门 B i , vi > Ui, and tha t 

f \Vvi\P < [ \Vwi\P. 
JnnBi </fin5i 

To finish the proof, suppose tha t Q is not p-hyperbol ic. Then capp{F, Cl \ 
Bi; ^^) ~> 0, and so 丄如丑‘ |Vi; i |^ ~> 0. Since Vi > u and supp u = 1，the only 
possibi l i ty is tha t V{ ^ 1. Th is is a contradic t ion since {i>j} is decreasing. 
Hence Q is p-hyperbol ic . • 

Note tha t the assumption f^ |Vu|^ < + 0 0 was not needed in the proof. 
The converse of Lemma 4.9 is not true, tha t is, there are p-hyperbol ic sets 
which are not Dp-massive. Indeed, let p < n and let Q C M^ be the upper 
hal f space {x : Xn > 0 } . By symmetry, 

capp(B^{r) n 化 oo; Q) = capp{B^{r), 00; R ” / 2 . 

I t is wel l -known tha t capp{B^{r), cx)； M") 二 cr^~P > 0. Hence Q is p-
hyperbol ic. On the other hand, Q cannot be Dp-massive. Otherwise, the 
lower hal f space would be Dp-massive by symmetry. Bu t this implies that 
E^ does not have the Liouvi l le Dp-property which leads to a contradict ion 
w i t h [H1]. The exact relat ion between Dp-massive and p-hyperbol ic sets is 
given by the fol lowing theorem. 

Theorem 4.5 An unbounded open set Q C M, with dQ + 0，is Dp-massive 

if and only if there exists a p-hyperholic $^i C Q and a continuous function 

V in Cl which is p-harmonic in Q \ Oi，with v = 0 in dQ, v = 1 in Oi, and 

/n |V^;|^ < +00. 

Proof: 
Suppose first tha t Q is Dp-massive. Let u be as in Def in i t ion 4.7, and let 
0 < e < 1. Then the set {x G Q : u{x) > e} is Dp-massive, and hence 
p-hyperbol ic. Furthermore, the funct ion v : m in { i i , 6}/e satisfies the as-
sumpt ion of the claim. 
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To prove the converse, let {Bi}^^ be an exhaustion of M , w i t h Bi C C Bi+i. 
For i > 2, we wr i te 

^i = ^1 \ Si, Gi = n \ ̂ i, Gi = n \ a , G^ = Gi 门 Bk. 

Let u^ be the unique p-harmonic funct ion in G^ w i t h boundary values u^—v G 
W^Q{G^). We set u^ = v in Q \ G f . Now 0 < u^ < v and u^^^ < u^ in Q. 
Since the sequence { i t f } & is un i formly bounded, i t is equicontinuous in G i 
by the Holder-cont inui ty estimate [T]. By Ascoli 's theorem, there exists a 
subsequence, s t i l l denoted by { i t J ^ } & , which converges local ly un i formly in 
Gi to a funct ion Ui. We set ui = v in Q\Gi. Then Ui is p-harmonic in Gi and 
the sequence { i i j ) g ^ is decreasing. By Harnack's pr inciple [HK], the l im i t 
funct ion u = lirQj_^oo Ui is p-harmonic in Q. I f we set u 二 0 in dVt^ then u is 
continuous in Q since 0 < u < v and v e C (Q) , w i t h v — 0 in dQ. 
Next we shall show tha t u (mul t ip l ied by a suitable constant) satisfies the 
condit ions in the def in i t ion of jDp-massiveness. F i rs t we observe that 

f \Vu^\P = [ |V^4f+ [ |V ;̂̂  
Jn JG^ JQ\G^ 

< f \Vv\P^ [ | V < 
Vcf Jn\G; 

二 [丨对 
JQ 

< +oo. 

Passing to a subsequence we conclude that there exists a vector field X G 
LP{Q) such that Vu^ — X weakly in L^(Q) as k ~> oo. Bu t the convergence 
of u^ implies that X = Vui. Now Ui — v G Lp Q(Q) since u^ — v G L^ o(^)-
This in t u rn implies that 

[\Vui\P = [ |Vti,|^+ [ |Vi;|̂  
Jn JGi JQi 

< [|V^; P + [ Vv P 
JGi JQi 

- [ | V ^ ; | P 
Jn 

< +oo. 

By repeating the above reasoning, we get that J^ \Vu\P < +oo and u — v G 
LpQ{Q). I t follows f rom Maz，ya’s lemma [Ma], which obviously holds in our 
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si tuat ion, tha t 
Vui{P-^Vui ^ \Vu\P-^Vu 

weakly in Z M ^ i ) ( 1 7 ) . I t remains to show tha t u 丰 0. Since Qi is p-
hyperbol ic, there exists a compact set F C Cli such tha t capp{F, oo; Q!) > 0. 
Let U C C M be a sufficiently large connected neighborhood of F so that 
U\Cl is non-empty. We wr i te Q^ = QiUU and Fi 二 U\Q. Now Cl\ is alsop-
hyperbol ic, and capp(Fi,oo; Q[) > 0 since Fi and F lie in a same component 
of Q,[. For each i, ui is admissible for the condenser (6^Q, ^ ¾ ; Gi). Using this 
fact and wel l-known properties of capacities we get tha t 

/ j V % | P > capp{^^,^^^•Gi) 

二 a i p p ( M \ n ， a ; M ) 

> c a p p ( F i , n ; \ B , ; Q；) 

> capp(F i ,oo ;Qi ) 

> 0 

i f i is large enough. Furthermore, 

[|Vwi|P 二 [ < \Vu^\P-^Vui,Vv > 
Jn Jn 

^ f < \Vu\P-^Vu,Vv > , 
Jn 

and so V u cannot vanish identical ly in Q. We conclude that u is non-
constant. Mu l t i p l y ing u by a suitable constant, i f necessary, we get a funct ion 
which satisfies al l the conditions in the defini t ion of Z)p-massiveness. The the-
orem is proved. 口 

A n open set G C C M is saided to be regular i f, for al l functions h e 
C7( (5nw; i (G) , ) 

l im u(x) = h{y) 

holds at every boundary point y G dG whenever u is the unique p-harmonic 
funct ion in G w i t h u — h G ^Vp^o{G). For example, al l domains Q C C M " 
w i t h Ci-boundaries are regular for al l p. 
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Theorem 4.6 A Riemannian manifold M admits a non-constant p-harmonic 

function u, with 

[ \ V u \ P < +oo , 
JM 

if and only if there exists two p-hyperbolic sets Qi, Q2 C M such that 

capp{Cl1,Cl2', M ) < +00. 

Proof: 
I f M does not have the L iouvi l le Z)p-property, there exists a non-constant 
bounded p-harmonic funct ion u in M , w i t h / ^ |V?i|^ < +oo. Let in f u < a < 
b < supu. Then the sets Qi = {x : u{x) < a] and ^̂ 2 = {^ ： u{x) > h] are 
Dp-massive, hence p-hyperbol ic. Moreover, 

capp(Hi,么；M) < 1 [ \Vu\P < +00, 
{b — a)P JM 

since the funct ion 
r ^ . r ^ — Oj . , 

V — max{0 , m i n { - ’ 1 } } 
0 — a 

is admissible for the condenser ( ¾ , 〜 ; M ) . 
Suppose then that Qi and 仏 are p-hyperbol ic, w i t h capp{Q1,(^2', M) < + 0 0 . 
Then there exists an admissible funct ion w for the condenser ( ¾ , ¾ ; ^ / ) . 
By tak ing sl ight ly larger open sets Q[ and Q'2 w i t h smooth boundaries and 
containing Qi and 仏，respectively, such that Q[ C {x : w{x) < 1 /4 } and 
^2 C {x : w{x) > 3 / 4 } , we obta in p-hyperbol ic sets Q[ and ^¾, w i t h 
capp{Cl[^Q'2; M) < + 0 0 . Now there exists a continuous funct ion u in M 
which is p-harmonic in M \ ( ¾ U ^¾) w i t h u 二 0 in Cl\, ^ = 1 in Ct2, and 
/iVf |Vi i |^ < 4-00. By Theorem 4.5, the sets {x : u{x) > b} and {x : u{x) < a} 
are disjoint Dp-massive sets for 0 < a < b < 1. Cal l them Gi and G2. 
Let {Bi] be an exhaustion of M such that Bi is regular for every i. Let 
Uj, j 二 1, 2, be a p-harmonic funct ion in Gj satisfying the conditions in Def-
in i t ion 4.7. We extend uj to M by sett ing uj — 0 in M \ Gj. Let Vi G C { B i ) 
be p-harmonic in B i such that Vi — u i in dB i . Then 

ui < Vi < 1 - U2 
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i n Bi： Furthermore, 

f \Vvi\P < [ \Vui\P < ( \ V u i F < +oo. 
JBi _ JBi JM 

Thus there exists a subsequence, denoted again by Vi, which converges lo-
cally un i fo rmly in M to a p-harmonic v. Now ui < v < 1 — U2 in M and 
/iw |V^;|^ < + 0 0 . Since supwi = supU2 = 1, v cannot be constant. The 
theorem is proved. • 

The fol lowing lemma is a generalization of Lemma 1.11. 

Lemma 4.10 Suppose M satisfies the local volume doubling property and 

local Poinca6 inequality, and that P is an e-net in M. Then there exists 

constants C, C' such that for any u G C^{M), S' C P, 

IHks' < q|vMlp’《,e, 

where S'。、= {x e M : p{x, S') < C'e}. 

Similarly, for all Q C M and function f G Co{P), 

l^fWp,n < C\\Sf\\p^Q^,^nP' 

We now define the p-hyperbol ic i ty on nets. 

Definition 4.8 A subset S of a net P is p-hyperbolic, with 1 < p < 00，if 

there exists a finite non-empty set E C S such that 

capp{E, 00; S) = in f ^ |Vi^(^f)|Pm(^g^) > 0, 
“qes 

where the infimum is taken over all finitely supported functions u of S U dS, 

where dS = {q : 6{q^ S) = 1}； with u = 1 in E. Such functions are called 

admissible for {E, 00; S). 
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Lemtna 4.11 Suppose that S' C P is connected subset, Q 二 {x e M : 

d(oo, S' U ^5" ) < e}, and that S = {q G P : d{q, Q) < e}. Then Q is a domain 

and S is a connected subset. 

Proof: 
Let X and y be any two points in Q. Then there are points q, q' G S' U dS' 
such tha t d{x^ q) < e and d[y, q') < e. Since also S' C dS' is connected, we 
can find a pa th in S' U dS' f rom q to q'. Then the e-neighborhood of th is 
pa th is a connected subset of f2 which contains bo th x and y. Th is show tha t 
Q is connected and therefore a domain since clearly Q is open. 
To show tha t S is connected, Let q and q' be any two points of S. Then 
there are points x , y G ^ such tha t d{x, q) < s and d、y, q') < 已 Since 0 is 
a domain, there exists a rectif iable curve which connects x and y in Q. I t is 
easily see tha t the ^-neighborhood of th is curve contains a pa th in P , and 
hence in 5 , f rom q to q'. Thus S is connected. • 

Lemma 4.12 Suppose M satisfies the local volume doubling property and 

local Poincare inequality and C' he the constant in Lemma 4-iO. Let S', 

VL 二 Sc'e = {x G M : p{x, S') < C'e}. Then Q is p-hyperbolic if S' is p-

hyperbolic. Conversely, if a domain Q in M is p-hyperholic, then S — {p G 

P : p(p, Q) < C'e} is p-hyperholic. 

Proof: 
Let {Bi] be an exhaustion of M. Suppose first tha t S' is p-hyperbol ic. Then 
there exists a finite non-empty set E C S'UdS' such tha t capp{E, oo; S') > 0. 
We set F = Uq^EB{q,C'e/2). Let u e C^{M) such tha t u = 1 in F. Then 
u 二 0 in Q \ Bi for some i. Observe tha t 1 — u is admissible for {E, 0 \ Bi), 
u is admissible for {E, oo; 5"), Tha t is, u 二 1 in E and i t has finite support . 
By Lemma 4.10 

[\Vu\P > C J2 \SHq)\^rn{q) > Ccapp{E,oo;S'). 

7f2 q&S' 

Taking the in f imum over al l such functions u gives 

capp(F, oo; ^1) > Ccapp{E, oo; S') > 0, 
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and So rt is p-hyperbol ic. 
For the proof of the second claim, we choose a compact set F C il such that 
capp{F,oo]Q)〉). Let E = {q E S U dS : p{q,F) < 2^} . Then E is finite 
and non-empty. Let f be an admissible funct ion for {E, oo; S). Since f has 
a finite support , f — 0 in Q \ K for some compact set K C M. For each 
X G F , 

/ > ) = E f m w , 
qePx 

where Px = {p G P : p{p, x) < 2s}, since P^ C E and f{q) = 1 in E. Hence 
1 — f is admissible for (F, S \ Bi； Q) whenever K C Bi. By Lemma 4.10, 

E | J / W r ^ W > C [ | V / r > Ccapp{F,oo;Q) > 0. 
qes ^" 

Since this holds for al l admissible funct ion / we get 

capp{E, oo; S) > Ccapp{F, oo; Q) > 0. 

Th is ends the proof. • 

The proof of the fol lowing lemma is similar to the proof of Corol lary 4.1. 

Lemma 4.13 Let ^p : Pi ~> /¾ be a uniform rough isometry between two 

ponderable nets, 1 < p < +oo. Then there exists constants C and C' such 

that if S C P and S' — {q € P2 : d{q, S) < C'}, then S' is connected if S is 

connected. Furthermore, let u be a function of S' U dS' and v = u 0 ip. Then 

E \H^)\'m,{x) < C X： \5u{q)\^m2[q). 

xes qeS' 

Lemma 4.14 Suppose X and Y be uniformly roughly isometric Riemannian 

manifolds satisfying the local volume doubling property and local Poincae 

inequality. Let P and Q be s-nets in X and Y, ^ : P ^ Q be a uni-

form rough isometry. Then there exists constant C' such that if Q C X is 

connected and p-hyperbolic and S = {q G P : p{q, Q) < s}, then the set 

Q' = {y £ Y : p[y, ip[S U dS)) < C'}, is a p-hyperbolic domain. 
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Proof: 
Clearly Q' is open. To shown tha t i t is connected, let x and y be any points 
of Q'. Then there are points q and q' in SUdS such tha t x G B{(p{q), C') and 
y e B{(f{q'), C'). Bo th of these balls are contained in Q'. Furthermore, since 
S is a connected subnet, so does SV)dS. Thus there exists a path in SiJdS, 

say qo = q, qi,... , qi 二 q', f rom q to q'. By def ini t ion of rough isometry, there 
exists constants a, b such that 

p M Q i ) . ^ { Q i + i ) ) < ^^d{ i f {q i ) , ip(q i+ i ) ) < 2e(a + 6), 

and therefore u5=。B((^(Q^),C') is a connected open subset of Q' containing x 
and y i f we choose C' > 2e{a + b). This implies that Q' is a domian. 
I t remains to prove that Q' is p-hyperbol ic. First we observe tha t S is p-
hyperbolic by Lemma 4.12. Thus there exists a finite set E C S U dS such 
that capp{E^ oo; S') > 0. Let u be an admissible funct ion in S' U dS' for 
[(p{E)^ oo; 5 ) , tha t is, u has a finite support and u = 1 in (p(E). For each 
q G S U dS, we set v{q) 二 u((p(q)). Then v — 1 in E. Since the support of 
V is finite, there is a point q G S and 6^ > 0 such that v{q) — u{^p{q)) = 0 i f 
d{^p{q), ^{q)) > So. Since (p is a rough isometry, there exists Si > 0 such that , 
c/((^(g), ^{q)) > 如，and so v{q) = 0, i f d{q, q) > Si. The uniformness of P 
implies that there can be only finitely many points q G P w i t h d[q^ q) < 6i. 
Hence the support of v is f ini te and v is admissible for (E, co; S). Lemma 
4.13 then implies that 

J2 \^u{q)\^m{q) >CY.\6v{x)\^m{x) > Ccapp{E,oo;S) > 0. 
qes' xes 

This is t rue for every admissible v. Hence capp{(p{E), oo; 5") > 0 and S' is 
p-hyperbol ic. I t follows f rom Lemma 4.12 that the C-ne ighborhood of S'uS' 
is p-hyperbol ic. Hence, i f we choose a larger C', Q' is also p-hyperbol ic as a 
larger set. • 

We are now ready to prove the main theorem [H3 . 

Theorem 4.7 Suppose X and Y are roughly isometric complete Riemannian 

manifolds with bounded geometry. Then X has the Liouville Dp-property if 

and only if so does Y. 
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Proof: 
F i rs t , note tha t X and Y satisfy the local volume doubl ing property, local 
Poincare inequal i ty and are un i fomly roughly isometric by Lemma 1.1 and 
Lemma 1.2 in Section 1.1. 
F i x e < m i n { i n j ( X ) / 2 , i n j ( F ) / 2 } . Let P and Q be s-nets in X and Y, 
respectively. Suppose that X does not have the L iouvi l le Dp-property. By 
H1], there exists a non-constant bounded p-harmonic funct ion u in X w i t h 

fx |Vix|^ < +oo. We normalize u such that i n f ^ u — 0 and sup^ u — 1. I t 
is sufficient to prove that Y also admits a non-constant p-harmonic funct ion 
w i t h LMntegrab le gradient. For each a, h G (0,1)，we denote by Vta and 
0!^ any component of sets {x G X : u{x) < a} and {x e X : u{x) > 6}， 

respectively. Then Q^ andQ^ are p-hyperbol ic domains. Let 0 < s < 1 /4 
and 3 /4 < t < 1. We wr i te Ss = {g € P : p{q, Q J < ^ } and S^ = {q e P : 
p{q, n*) < e}. Then the sets D^ 二 {a; G Y : p{x, (p{Ss U dSs)) < C'} and 
Dt = {x e Y : p{x, ip{S^ U dS^)) < C'} are p-hyperbol ic by Lemma 4.14. We 
c la im tha t , for some 0 < s < 1/4 and 3 /4 < t < 1，capp{Ds, D^; Y) < +oo 
which then proves the theorem by Theorem 4.6. Let 

V = max{0, min{2(?i — 1/4)，1}}. 

Now V = 0 in Qi/4 and v 二 1 in r^3/4 Next we define funct ion w on Q by 
w — V o 也 where i|; is a rough inverse of cp. By Lemma 1.11 and 4.13, we 
have 

/ \Vw\P < C I |V^;|P < 2PC I \Vu P < +oo. 
JY Jx Jx 

I t remains to show that w is admissible for {Dg^ D^; Y) i f s and t are properly 
chosen. Since ^ is a rough inverse of (p, there exists a constant c such that 
p{x,^p{(f{x))) < c for every x G P. Let q G Q be such that p{q, Ds) < 2e. 
Then there is y G E>s, w i t h p{q, y) < 4s. Moreover, p(y, (f(z)) < 2C' for some 
z e Ss U dSs, and so p{q, (f{z)) < 2C' + 4e. Since %p is a rough isometry, 
p{^j{q), ^j{(p{z))) < c' for some constant c'. Hence p{^{q), z) < c + c'. On the 
other hand, there is z' G Ss such that p(z, z') < 2e. Final ly, p[z, x) < e for 
some X e ^s- Hence, for every y e B{^{q),e), 

p{y,x) < c + c' + 4e = C , (4.9) 

where C is independent of q and x. Thus we can attach to each q G Q, w i t h 
p{q, Ds) < 2e, a point x G Vts such that p{y, x) < C whenever y G B{^p{q), e). 
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By Theorem 4.4, we can choose 0 < s < 1 /4 such tha t 

p(aa,aQi/4) > 2c. ‘ (4.10) 

I t follows f rom (4.9) and (4.10) that B(jp(q),s) C ^1/4 whenever q G Q, w i t h 
p{q, Ds) < 2e. B u t th is implies that w{q) = v{^p{q)) = 0 for such q, and so 
w{x) = 0 for every x G Ds. 
Similar ly, we can choose 3 /4 < t < 1 such tha t 

p(^a^^3/4) > 2C. 

Then B{^{q),e) C Q 3 " i f q ^ Q and p{q, D^) < 2e. Hence w_{x) = 1 for 
every x e £>、We have showed that w is admissible for {Dg, D^; Y) which 
then proves the theorem. • 
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