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Abstract: 

Axon guidance in the development of mammalian retinofugal pathways. 

Kong Fung WONG, New Asia College 

Thesis submitted for the degree of Master of Philosophy 
at Chinese University of Hong Kong 

(June, 1997) 

The primary goal of this thesis is to understand the guidance cues involved in the 

development of the retinofugal pathway. Three appraoches were used in order to 

understand the development of the retinofugal pathway and also the cues involved in 

the pathfinding process. Jn the first approach, we examined the morphology of 

growth cone at different regions along the retinofugal pathway. Our result indicates 

that axons had a pausing behavior during their course of development in the optic 

chaism. Besides, the growth cone of an axon underwent a morphological change 

during the pausing period, and the change resulted in the alteration of the direction of 

growth. Li the other two approaches, we tried to analyze the molecular cues involved 

in the pathfinding process, ln one of the approaches, we removed one of the eyeballs 

in order to examine the effect of the absence of axon-axon interaction. Altogether, 

three age groups were examined in the monocular enucleation studies and they were 

embryonic day E14, E15 and E16 embryos. The result showed that reduction of cell 

bodies for the uncrossed fibers was found in E15 and E16 embryos but not the E14 



embryos. This result indicated that the early population of tuming fibers were not 

affected by monocular enucleation but the late population of cells did. The result 

might also imply that the early and late population of tuming fibers relied on different 

set of guidance cues for their tuming process to occur. 

Differential PCR display ws used to isolate the differentially expressed genes in 

different regions of the retina. Seven genes were isolated and three of them were 

sequenced. One of the DNA fragments was found to have high homology with the 

gene carnitine Palmitoyltransferase I . The other two DNA fragments were found to 

be novel genes as there are no high homologous sequence to them in the gene bank. 

We are going to apply in-situ hybridization to analyze the identity of the cloned genes 

in the coming future. 
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Chapter 1 

GENERAL INTRODUCTION 

General Introduction 

The question of how an axon finds its route to the distant target has been a central 

issue in understanding the development of the central nervous system. One system 

which has been extensively studied is the specific axon routing patterns at the 

chiasm, a major decision point at the ventral diencephalon. 

PARTIAL DECUSSATION OF RETINAL AXONS. Jn early development of 

mouse embryos, retinal ganglion cells start to appear at dorsocentral retina 

(Guillery et. aL, 1995). Axons of these cells enter the optic chiasm at embryonic 

day E13.5. These early axons are characterized by thick growth cones as shown by 

electric mircoscopy (Colello and Guillery, 1992). Once entering the optic chiasm, 

some of these early axons grow caudally, lateral to a radial glial palisade and enter 

the ipsilateral optic tract directly (Marcus and Mason , 1995). The late generated 

axons which dated E15 or later, however, are different from the early axons. Most 

of these late populations of fibers are crossing fibers, while the remaining axons 

tum to the same side of the brain. This segregation together with the characteristic 
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partial decussation pattem at the chiasm, separating uncrossed axons from the 

crossed axons. This segregation was shown to take place before axons reach the 

midline of the optic chiasm (Godement et aL, 1987b; Colello and Guillery, 1990; 

Godement et aL, 1990; Baker and Reese, 1993; Taylor and Guillery, 1995). Those 

fibers going to the opposite side of the brain are often referred as crossed fibers 

while those that tum to the same side of the brain are often referred as uncrossed 

fibers. This pattem forms a X-shaped pattem of axon pathways known as optic 

chiasm. The cell bodies of the uncrossed fibers are found mainly located at the 

ventral temporal retina, namely temporal crescent (Guillery et. al., 1995). However, 

the cell bodies of the crossed axons spread in all retinal regions. 

RETES[OTOPICAL ORDER. Another developmental feature of the retinofugal 

pathway was that the fibers growing into the optic tract from different retinal 

quadrants were arranged retinotopically in the optic stalk (Colello & Guillery， 

1992). However, this order began to lose in the optic stalk by overlapping with one 

another. The degree of overlapping increased along the optic stalk to the chiasm. 

Such loss of quadrant-specific order was also observed in developing embryos of 

rat, cat, monkey and ferret (Horton Greenwood et aL, 1979; Naito, 1986，1989; 

Baker and Jeffery, 1989; Reese et al, 1994). 
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Although the retinotopical order is totally lost in the chiasm, another distinct fiber 

order is established in the developing mouse optic tract. The dorsal axons were 

found to segregate from the ventral axons, but no obvious segregation of temporal 

axons from nasal axons. This new fiber order was reported in rats (Chan and 

Guillery, 1994) and other animals such as ferrets, in which these optic axons have 

been suggested to come under novel influences as they grow through the chiasmatic 

region and enter the optic tract (Reese and Baker, 1993; Reese et al., 1994). This 

pattem of distribution was also found in Xenopus, which indicated that the dorsal-

ventral axon segregation was established in the tract before the axons approached 

their appropriate targets. The actual mechanism of fiber order segregation in 

different regions of the retinofugal pathway is still unknown. One of the possibility 

could be the changes in glial environment which might in tum guide the fibers to 

arrange in different orders. 

STUDffiS OF GROWTH CONE MORPHOLOGY. To investigate the detail 

development of the retinofugal pathway, some groups of researchers put their effort 

in studying the dynamic behavior of axons. In their studies, brain slices were 

prepared and the dynamic growth behavior of axons were observed using video 

time-lapse technology (Godement et. al., 1990, Godement et. al., 1994). Based on 

their reports, most axons from the ventral temporal retina were crossing fibers in 

both embryonic date E14 and E15. These crossed axons had simple growth cones, 
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with an elongated tip and a few short filopodia. Some crossed axons, however, 

showed a complex morphological change and a pause in their course across the 

chiasm. For the uncrossed fibers, the uncrossed axons tumed at a region 100-200 

^m lateral to the midline of the chiasm. These uncrossed axons showed pausing 

behavior during their growth. During the pause period, there was complicated 

remodeling of growth cones. Their growth cones had filopodia and lamellopodia 

initially extended in all directions, with the branch pointing to the ipsilateral tract 

eventually increased in length while the others retracted. This morphological 

change finally resulted in a change of growth direction. 

GROWTH KJNETIC OF RETC^AL GANGLION CELL AXONS. About the 

growth kinetic of retinal ganglion cell axons, the growth rate is quite constant for 

both crossing and tuming axons. The constant growth, however, is interrupted with 

pausing growth behavior. Actually, it is during this pausing period that the axons 

undergo morphological change, which lead to alteration of growth direction. It was 

also reported that the growth cones undergo a long pausing period at the midline of 

the chiasm. This pausing period may up to several hours. This long period pausing 

at the midline, however, is still controversial as there was other report showing that 

growth cones grow directly across the midline of optic chiasm without pausing 

(Sretavan and Reichardt，1993). 
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STUDffiS OF RETmOTECTAL PROJECTION. A lot of information about 

retinofugal pathway was obtained through studies on non-mammalian vertebrates 

such as frogs (Holt and Harris, 1983; Holt, 1984; Sakaguchi and Murphey, 1985) 

and fish (Stuermer, 1988). Evidence showed that positional markers are present in 

retinal axons and tectal cells (Stahl et al., 1990). Also, interactions between axons 

mediated by their target cells play important roles in the development of 

topographic order in retinal projections (Fawcett and 0'Leary, 1985). 

Evidence from observations of neurons in vitro, in invertebrates, and in the 

peripheral nervous system of grasshopper in situ, suggested that the shape of 

growth cones correlated with their behavior (Raper et al., 1983; Argiro et al., 

1984). This hypothesis was also supported by Tosney and Landmesser (1985), who 

reported that an enlarged size and more lamellepodial morphology of motoneuron 

growth cones in decision region in chick embryos. All these experiments supported 

the idea that growth cone morphology may be related to the specific cues or 

interactions with the environment allowing them to respond to specific cues. 

CUES FOR PATHHNDING PROCESS. Based on the recent understanding, the 

possible cues involved in the pathfinding process were hypothesized mainly located 

at two regions: A) cues located at the retinal ganglion cells and B) cues located at 

the cell components at the optic chiasm. 
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A) cues located at the retinal ganglion cells 

Retinal ganglion cells could be the sites for the location of cues for the pathfinding 

process. This idea is supported by the several evidence: 1) absence of pigement 

epithelium reduces the number of uncrossed fibers and 2) the absence of axon-

axon interaction between fibers from the two eyeballs reduces the number of 

tuming fibers. 

A.1) CHANGE m PIGMENTATION OF THE EPrTHELRIM AFFECTS 

PATHFESnDES[G PROCESS. It was reported (Stone et. al.，1978) that the number 

of uncrossed fibers in an albino animals was reduced compared with normal 

pigmented animals. The reduction of cell bodies of the uncrossed fibers could up to 

50% of normal for the albinos. This phenomenon of reduction in cell bodies was 

found in both rat and ferret (Chan and Guillery, 1993) . Other animal models were 

also used in studying the effect of hyper-pigmentation, such as the Siamese cat 

(Stone et. al. , 1978). The mechanism of reduction was found to be the reason that 

the ipsilaterally projected fibers re-routed to the contralateral side (Guillery et al. 

1984; Stone et. al., 1978; Chan and Guillery, 1993). 

By studying the albino cases using molecular technique, albino mice was found to 

carry a mutation at the c-locus (Jeffery et. al. ,1994)，which encodes the tyrosinase 
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gene. Tyrosinase is the key enzyme in melanin synthesis for the retinal pigment. 

This enzyme produces the cascade of reactions that ultimately results in the 

production of melanin in the skin and the eyes (Stone et al, 1978)，but it does not 

produce melanin in other regions of the CNS，such as the substantia nigra. Tissue 

Culture technique was also applied to study the behavioral difference between the 

normal and the albino animals by co-culturing explants of chiasm and retina 

(Marcus et. al., 1996). However, this technique did not find any significant 

difference between crossed and uncrossed axons from pigmented or albino retinal 

explants. Both the pigmented and albino retinal explants were found to display the 

same amount of differential growth when grown on either pigmented or albino 

chiasm cells. 

A.2) AXON-AXON ESfTERACTION BETWEEN FffiERS OF THE TWO 

EYEBALLS . Another experiment supported the idea that pathfinding cues could 

be located at the retina is axon-axon interaction (Guillery et. al., 1995). One 

approach to study this interaction is using surgical method to remove one of the 

eyeballs during embryonic day 13. As the axons of the retinal ganglion cells just 

enter the optic chiasm at E13, removing one of the eyeballs at this stage can 

eliminate the interaction between axons of the 2 eyeballs. The experiment of 

prenatal enucleation was done by Chan and Guillery (1993) using rat embryos as 

animal model. Their result indicated a reduction in the total number of turning 

fibers. 
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Similar experiment was also performed in ferret embryos before or during the 

earliest stages of development of the retinofugal pathway (E23-E26) (Taylor and 

Guillery, 1995). At the period of E23 to E26, most of the axons that arrived at the 

optic chiasm were crossing fibers while the uncrossed fibers did not reach this 

'decision，point yet. Enucleation at this early stage, again, resulted in a dramatic 

reduction in the number of uncrossed projection. 

All the above experiments demonstrate that there is a requirement for a cell-cell 

interaction between the axons of the two eyes to establish the normal formation of 

the uncrossed pathway. However, this hypothesis is still controversial since 

investigation done by Stretavan and Reichardt (1993)，however, showed that no 

such axon-axon interaction was needed. 

Despite the cell-cell interaction between the axons from the two eyeballs, the 

interaction could be between axons of the retinal ganglion cells and the cells in the 

environment of the optic chiasm. Based on the studies of developing grasshopper 

axonal projection, evidence has been given for the existence of intermediate 

cellular targets that influence axonal trajectories (Bentley and Keshishian, 1982). 

One of the possible cells involved in the guidance process is the radial glia as 

suggested by Guillery and Walsh (1987) and Wilson et al. (1988). Similar 
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suggestion was also provided by the studies in invertebrates (Jacobs and Goodman, 

1989). 

B) cues located at the cell components In the optic chiasm. 

Another possible location for the pathfinding cues is the optic chiasm as there are 

evidence indicated that 1) the tuming fibers never penetrate explants from the optic 

chiasm and 2) the crossed and uncrossed retinal ganglion cells show different 

penetration levels to the chiasm cells in in-vitro culture. 

B.1) SPEOFIC GROUPS OF CELLS LAY ON THE MK)LJNE OF CfflASM. 

Since it was observed that tuming fibers made their tums to the ipsilateral part of 

the brain before arriving the midline of the optic chiasm, there might be a "barrier" 

located at the middle part of the optic chiasm. As this unseen barrier could be 

formed by a group of cells, which can be specifically stained at the midline by 

immunocytochemistry is a possible candidate of guidance cues. 

Several types of antibodies were used to label the group of cells which define a 

boundary at the midline. Some of the antibodies being used were RC2, SSEA-1, L1 

and CD 44. Monoclonal antibody RC2 was a marker for radial glia in embryonic 

mouse CNS (Reese et al., 1994; Marcus and Mason, 1995; Marcus et al., 1995). 

This group of radial glia centered around the midline of the optic chiasm and 
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extended between the floor of the third ventricle and the pial surface of the brain at 

E12.5. At E15-17, the RC2-labeled cells were found to occupy a more restricted 

region, approximately 150-200um，along the midline of the optic chiasm. It was 

reported that growth cones of uncrossed axons did not enter the region occupied 

RC2-labeled cells. The result indicates that the RC2-positive palisade might help to 

shape the initial pathway taken by optic axons, creating a region less favorable for 

optic axon growth. Also, there was group of chiasm neurons stained positively with 

antibodies against SSEA-1, L1 and CD-44, which formed a structure bordering the 

posterior edge of retina axons and extended an anterior raphe structure exactly at 

the midline of chiasm (Marcus and Mason, 1995; Marcus et al., 1995). These 

chiasm neurons were assumed to be inhibitory to uncrossed axons but not crossed 

axons. A thin raphe of cells that appeared morphologically distinct from the radial 

glia was also labelled by free carbohydrate epitope, stage-specific embryonic 

antigen 1 (SSEA-1). When retinal axons enter the palisade, many axons tumed 

rostrally with respect to the boundary of the SSEA-l-positive cells. Crossed axons 

did not grow among but were located under the SSEA-1- positive cells. Similarly, 

an inverted V-shaped neuronal array defining the midline and posterior boundaries 

of the future optic chiasm were labelled by L1 and CD44(Sretavan et. al. ,1994), 

where L1 was an immunoglobulin superfamily molecules known to promote retinal 

axon outgrowth, and CD44, however, was a cell surface molecule that was found to 

inhibit embryonic retinal axon growth in vitro. By co-culture technique with the 

retina and chiasm cells, incoming retinal axons did not penetrate this Ll/CD44 
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neuron array, but were tumed to establish the characteristic X-shaped optic chiasm 

along the anterior border of this array . 

B.2) THE CROSSED AND UNCROSSED RETE^AL GANGLION CELLS 

SHOW DBFFERENT PENETRATION LEVELS TO THE OPTIC CfflASM JN JN-

VrrRO CULTURE . The potential interaction between axons from the retinal 

ganglion cells and the optic chiasm had been studied by in-vitro culture technique. 

In this approach, explants from dorsal nasal retina and ventral temporal retina were 

dissected and then co-cultured with optic chiasm on a substrate-coated plate ( 

Wang et. al.，1995). All those preparations were prepared at E14-E15 when the 

optic chiasm started to form (Wang et. al.，1995; Wizenmann et. al.，1993). These 

experiments reported that axons from the ventral-temporal explants could not 

penetrate the cluster of cells formed by the chiasm cells, as if the chiasm cell 

formed a barrier. However, for the retinal explant from the dorsal nasal retina, the 

outgrowing axons ignored the chiasm cells and grew straight across the strips. 

APPROACH OF INVESTIGATION 

Although various approaches were tried to understand the mechanism of 

pathfinding process in the optic chiasm, the actual issue of the pathfinding process 

is still not fully addressed. Jn order to enhance our understanding in the retinofugal 

pathway, the following experimental approaches were covered: 
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1. EXAMmATION OF GROWTH BEHAVIOR AND KJNETIC. these 

experimental approach provides a better understanding of the dynamic behavior 

of axons inside the optic chiasm. As change in growth cone morphology 

symbolize reading external signals, this study also provide hints about where 

axons start reading a path guidance signal. 

2. ENTTRA-UTERO ENUCLEATION. Surgical method was used to investigate if 

there was any immediate change of the number of uncrossed axons after 

monocular enucleation. These information could resolve the controversy about 

whether cell-cell interaction between fibers from the two eyeballs was involved 

in the axonal pathfinding. 

3. DffFERENTL\L PCR DISPLAY. Jn order to isolate possible cues inside the 

retinal ganglion cells, the total mRNA from the dorsal nasal retina and the 

ventral temporal retina was extracted. The pattem of the total cDNAs in these 

two regions were compared using DNA sequencing gel. Any differentially 

expressed cDNA in different regions of the retina were extracted from the gel 

and cloned into a vector named pCR-TRAP. The cloned inserts were further 

analyzed by both DNA sequencing and in-situ hybridization method. 
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CHAPTER 2 

EXAMD^ATION OF GROWTH CONE MORPHOLOGY 

AND DEVELOPMENTAL BEHAVIOR 

INTRODUCTION 
One of the central tissues in studying the central nervous system is to analyse how 

axon find their target. One of the system used for this study is the retinofugal 

pathway. In rodents, the axons of the retinal ganglion cells grow through the optic 

nerve to the optic chiasm. At the optic chiasm, axons were separated into two 

groups. One group of the axons cross the midine of the optic chiasm to the other 

side of the brain while the other group of axons make tum to the same side of the 

brain. This segregation of axons was found to take place before reaching the 

midline of the optic chiasm (Godement et al., 1987b; Colello and Guillery, 1990; 

Godement et aL, 1990; Baker and Reese, 1993; Taylor and Guillery, 1995). Various 

studies tried to address the mechanism of the retinofugal pathfinding process. One 

of the suggested mechanism is the interaction of axons with cellular elements at the 

chiasm. This hypothesis is supported by the finding that there are groups of 

specialized radial glial cells which form a palisade flanking the midline of the 

chiasm (Reese et al., 1994; Marcus and Mason, 1995; Marcus et al., 1995). The 
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retinal axons were found to change their course within this zone of radial glial cells 

(Guillery and Walsh, 1987; Taylor and Guillery, 1994; Marcus et al., 1995). 

Another possible group of neurons found to be involved in the pathfinding process 

is the groups stained positively with antibodies against SSEA-1, L1 and CD-44, 

which formed a structure bordering the posterior edge of retinal axons and 

extended an anterior raphe structure exactly at the midline of chiasm (Sretavan et 

al., 1994; Marcus and Mason, 1995; Marcus et al., 1995). It was claimed that these 

cells exhibited inhibitory effect on the uncrossed fibers to stop them from further 

advance toward the contralateral side of the brain, as there was evidence that 

growing axons from temporal, not nasal retina, could grow through strips of 

membrane from midline of chiasm (Wisenmann et al., 1993). In our study, confocal 

imaging techniques was used to look at changes in morphology of individual retinal 

axons and their growth cones in different regions of the chiasm, and to characterize 

the behaviour of single living retinal axons during the whole pathfinding process 

across the chiasm. 
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MATERIALS AND METHODS 

Animals 

Time mated C57 mice were obtained from the Animal House in the University. The 

day that the plug was found was designated as embryonic day 0 (E0). 

Growth cone morphology in fixed preparation 

Four litters of mouse embryos at ages of E13 - E15 were taken out from the mother 

by Caesarean section. After a brief wash in phosphate buffered saline (PBS), 

embryos were fixed in 4% paraformaldehyde in O.lM phosphate buffer for 3 days. 

A small granule ofDiI (1,1 ‘ -dioctadecyl-3,3,3 ‘ ,3 ‘ -tetramethylindocarbocyanine 

perchlorate, from Molecular Probes, Eugene, USA) was put through the sclera into 

either the ventral temporal or dorsal nasal retina (Godement et al., 1987). The 

embryos were then stored in dark at room temperature in 2% buffered formalin. 

After 3 weeks, when there is sufficient diffusion of the dye, the retinofugal pathway 

was dissected, whole mounted on slide, coverslipped and examined under a 

confocal imaging system (BioRad MRC600 connected to a Zeiss Axiophot 

photomicroscope), using 514nm line for excitation and a rhodamine filter set for 

capturing the DiI labelled images. 
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Individual growth cone labelled by DiI at different regions of the retinofugal 

pathway were collected using 40x objective (Zeiss Neofluor, N.A. 0.75) and stored 

in zip disks. Black and white photos of these single growth cones were taken from 

a high resolution monitor and quantitative analysis of growth cone morphology was 

done on these prints. 

Label of retinal axons in living tissues 

Twelve litters of mouse embryos were used in this study. The mothers were killed 

by cervical dislocation and embryos at age ofE14 and E15 were taken out by 

Caesarean section, and stored temporarily in ice cold DMEM/F12 medium (Gibco, 

USA). The preparation of the living retinal pathway was similar to the protocol 

used by Godement et al. (1994). First, a slice of the head containing both eyes, 

optic stalks, optic chiasm and proximal optic tract was prepared by microdissection 

in ice chilled serum free medium. A small granule of fluorescent dye DiI was 

applied to a small region of the retina. In this study, most embryos received a label 

in the ventral temporal retina, while in others the dye was put into the dorsal nasal 

retina. The brain slice was then cultured in a 35mm culture dish coated with 

collagen gel and maintained in DMEM>^12 with 33mM glucose, 15mM HEPES 

buffer and 10% fetal bovine serum. The culture was kept in an incubator at 37°C. 

The labels in the slice preparation were checked using a Zeiss Axiophot 
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microscope with the Rhodamine filter set. Satisfactory labelling of retinal axons 

was usually obtained 6 hours after application of dye in these preparations. 

Confocal imaging of living retinal axons at the chiasm 

The brain slice preparation of the retinofugal pathway was imaged under a 

modified confocal imaging system connected to a Zeiss Axiophot microscope. 

During the recording period, the brain slice was maintained at 37°C with a heated 

mounting stage and with a continuous flow of culture medium. The optic stalk and 

chiasm, especially the midline, was recognized in these preparations with phase 

contrast optics. DiI labelled axons were excited with the514nm line emitted from 

the argon ion laser (25mV) and the emission signal was collected with an enhanced 

photomultiplier detector. The laser dose was reduced to 1% using neutral density 

filter in order to minimize possible photodamage to the labelled axons. Series of 

optical sections were taken through different focal planes in the chiasm and the 

images were stacked using the COMOS software to produce a projection image of 

the labelled axons. This technique enabled us to analye growth of a number of 

axons simultaneously in a single preparation. The labelled retinal axons in this 

preparation could usually be maintained and recorded for 4 hours, showing smooth 

axon profiles and continuous growth. After this time window, the labelled axons 

started to show signs of degeneration, which was manifested by appearance of 

beaded profiles, retardation or even stop in all axonal growth. The recording was 
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usually finished in 3 hours, except in some cases the brain slice was imaged up to 4 

hours. Most time-lapsed confocal images were taken at a defined interval, usually 

15 minutes, using a 10x (Zeiss Neofluor, N.A. 0.3) or a 20x (Zeiss NeofIuor, N.A. 

0.5) objective. Some growing axons were imaged using a 40x objective. However, 

these axons usually started to degenerate after one hour in recording, possibly 

because of the photodamage effect of the laser beam under such a high 

magnification. These time-lapse images were stored in either a magneto-optical 

disk (Sony, Japan) or a Iomega zip disk. 

The growth kinetic and behaviour of these labelled retinal axons were analyzed on 

drawings of the axons. The axon morphology was copied either directly from the 

monitor or from color prints of confocal images. The growth distance of a 

particular axon was measured as the distance travelled by a growth cone in 

drawings of two consecutive confocal images recorded within a defined time 

interval. 
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RESULTS 

Axonal outgrowth in the retinofugal pathway of mouse embryos 

The study of the axonal outgrowth was done using fixed mouse embryos with the 

age ranged from E13 to E15. Axons were labelled by fluorescent dye DiI which 

was put at the ventral temporal retina where most of the cell bodies of the 

uncrossed fibers located (Godement et aL, 1987). In the animal model we used, the 

axon first arrived the optic chiasm at E13. At this early period, most of the fibres 

are crossing fibers (Godement et al.，1987), with only a few axons tum to the 

ipsilateral part of the brain. The number of uncrossed fibers increases at E14 and 

E15. A confocal diagram showing the turning fibers at the optic chiasm at the optic 

chiasm at E15 was done at figure l . lA and LIB. It was noted at figure 1.1b that all 

the turnings occur at a position before 100um from the midline of the optic chiasm. 

These tuming axons were characterized by the presence of backwardly pointing 

processes. Also, this region before the midline of the optic chiasm was denoted as 

pre-midline region while the region beyond the midline of the optic chiasm was 

denoted as post-midline region. 
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Remodeling of growth cone morphology during pause periods 

About 50 growing reintal axons were studied in this part and 26 of these axons 

were taken for quantitative analysis for their growth behavior and kinetic during 

their development at the optic chiasm. These axons were grouped according to their 

position at the optic chiasm and were classified to pre-midline and post-midline 

axons. Altogether, there were 12 axons being imaged at the pre-midline region 

while there were 14 axons imaged at the post-midline region. 

Based on our observation, axons, both at the pre-midline and post-midline region, 

exhibited pausing behavior. During this pausing period, the axons had their growth 

cone morphologies change. One of the examples images were shown in figure 1.2. 

ln this figure, an axon was approaching the midline of the optic chiasm during the 

time of recording. This axon exhibit a constant grow during the period from the 

time of 0 minute to 60 minute. At the time of 85 to 140，when the axon was close 

to the midline of the optic chiasm, it did not show obvious advancing. During this 

pausing period, this axon had branching of its growth cone ocurred. One side of the 

processes was retracted while the other side of the growth cones continued to 

extend. This morphological change end up with changing in the direction of 

growth. Such advance and pause cycles were also seen in axons that grew in other 

regions of the chiasm. 
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Axon growth at the pre-midline region 

The major characteristic for axons at the pre-midline region is that axons were 

segregated into crossing and tuming fibers. Figure 1.3 is diagramatic presentation 

of a series of confocal micrographs. Most of the axons exhibited a simple growth 

cone and had a smooth profile of growth. One characteristic of axon growth in the 

premidline chiasm is that each axon had its own tempo of growth. For example, 

while axon ‘A，advanced steadily in the recording period, axons 'C' and 'D' had no 

obvious increase in length from 0 minute to 80 minute in recording. However, a 

dramatic increase in length of axon D was observed in the following 20 minutes 

while axon 'C' was still pausing. Another phenomenon for these pre-midline axons 

was that the tuming fibers had their growth cone remodeling more extensive than 

the crossing fibers. The axon B in figure 1.3 is an example showing this 

phenomenon. This axon tumed at the lateral region of chiasm, 350^im away from 

the midline. This axon displayed initially two short appendages from the axon 

terminal. The appendage pointing towards the midline gradually retracted at 30 min 

and the one that pointed to the ipsilateral tract after a pause for 100 minutes started 

to grow to the ipsilateral optic tract. Within this pausing period, the growth cone 

underwent a dynamic modification of its shape which eventually led to its tuming. 
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Axon behaviour at the post-midline region 

Figure 1.4 shows a typical example of axons at the midline and post-midline region 

in E15 embryos. Axons at the post-midine region were characterized by larger in 

the size of growth cone and more processes. Also, these axons kept on changing 

their direction of growth. For example, the fascicles labelled A, B and C were three 

separated fascicles at time 0. However, starting from time 1 lOmin, these fascicles 

started to spread away and, eventually, fascicles A and B met each other at time 

215 min. 

Growth dynamic of retinal axons at the chiasm 

The growth dynamic of 23 individual retinal axons were analysized (Fig 1.5). Of all 

these axons, 12 of them were located at the premidline region while 11 of them are 

located at the post-midline region. Each plot represents one single axon being 

analyzed, with their distance of growth against the period of recording. Based on 

the graphs, axons exhibit a continuous growth during the whole recording period. 

However, their growth are interrupted by pausing behavior (zero displacement in 

the curves) or retractions of their growth cones retractions (negative 

displacements). The events of interruption were indicated by small arrow heads on 

the graph. These pausing periods last around 15-30 minutes and were observed in 
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axons at both pre-midline and post-midline chiasm. The growth rates of these 

axons were calculated by measuring their slopes of growth curves 

and the results are summarized in Table 1.1. Based on the analyzed result, the 

growth rates of the axons in pre-midline region are similar to the growth rates at the 

post-midline region, ranging from 0.2 to 0.8 |imAnin i.e. 12 - 48 ^im/hr or 0.288 -

1.152 mm/day. The average growth rate was 0.50 土 0.05 \im/mm and 0.52 土 0.06 

^unAnin in the pre-midline and post-midline chiasm, respectively. Also, there was 

no significant difference between growth rates of retinal axons at these two regions 

(p>0.05 by student T-test). 

•aai 



DISCUSSION 

GENERAL OBSERVATION. In this study, we have investigated the growth 

behavior of retinal axons at different regions of the optic chiasm in E14 and E15 

mouse embryos. The axonal growth behavior was studied using both living and 

fixed preparation. The living preparation has the advantage that it allows us to view 

the growth of axons in real time so that we can have a better understanding about 

the whole process of turing. For the fixed preparation, they can tolerate a higher 

dosage of laser used in confocal microscopy than the living tissue. As such, a high 

magnification and high resolutions were obtained. The areas being studied include 

the pre-midline, midline and post-midline regions of the chiasm. Our studies also 

obtained information about the nature of tuming at the optic chiasm. For example, 

uncrossed axons were found to tum at a range from 100um to 200um relative to the 

midline. This information provides us the hint that the molecular cues for the 

turning process might flank the midline of the optic chiasm, instead of restricted to 

a narrow region. As all the tuming processes occur before reaching the midline of 

the optic chiasm, it may be possible that there is a middle barrier located at the 

center of the optic chiasm which prevents the uncrossed fibers to pass through the 

midline. However, there is no indication that the cues for turning of uncrossed 

fibers belong to the midline barrier. As the precision of the retinofugal pattern in 
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the optic chiasm is important, the existence of the midline barrier may be crucial to 

ensure that no uncrossed fibers made tum after passing through the midline of the 

optic chiasm. 

Behaviour of living growth cones at the chiasm 

For the studies of the growth kinetic, It is found that the growth rate of retinal axon 

at the chiasm has a range, from about 0.23 to 0.83 um/min. However, there is no 

significant difference between the growth rate at the pre-midline region and the 

post-midline region. 

PAUSE^G BEHAVIOUR. The growth behavior of the axons in chiasm is 

characterized by a pattem of intermittent advance interrupted with periods of pause 

and sometimes retractions. These phenomena are observed in all regions of the 

chiasm. The result is consistent with the studies by other groups of 

researchers(Godement et al., 1994; Wang and Mason, 1997; Sretavan and 

Reichardt, 1993). 
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The nature of the pausing phenomenon is still unknown but there is evidence 

supporting the idea that mechanism is included in the pathfinding process. Since 

axons from all parts of the retina are intermixed at the chiasm (Chan and Guillery, 

1994), active mechanism must be involved in the pathfinding process to sort out 

the uncrossed fibers from the crossed fibers. It is hypothesized that the guidance 

processes are probably mediated through interactions of retinal axons, cellular 

elements within the chiasm, and molecules in the extracellular matrix. The fact that 

axons exhibit pausing behavior could also be co-related to the active mechanism as 

it is possible that the axons needed to slow down for reading external signals. 

GUH3ANCE CUES. Currently, there are no ideas about what the extracellular 

signals could be involved in the pathfinding process. Still, various studies provided 

some hints of this tissue. First, electron microscopic studies of chiasm in mouse 

embryos revealed that retinal axons are in close contact with profiles of radial glia 

and other neurites (Bovolenta and Mason, 1987; Marcus et al., 1995). Second, 

changes in growth direction of retinal axons are always associated with an 

alteration of glia environment, such as the reshuffling of retinal axons at the 

juncture of optic nerve and ventral diencephalon where there is a change from 

interfascicular glia to radial glia (Guillery and Walsh, 1987; Colleo and Guillery, 

1992; Reese et aL, 1994). Third, if the CD44 immunoreactive chiasm neurons were 

ablated before any retinal axon outgrowth, the retinal axons in subsequent 

•aai 



development are unable to grow into the chiasm (Sretavan et al., 1995). These 

findings lead to the suggestion that axon guidance in the chiasm depends at least in 

part on interactions with the cellular context resident in the chiasm. 
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CHAPTER 3 

STUDY BINOCULAR INTERACTION BY 

INTRA-UTERO ENUCLEATION 

Introduction 

During the development of the retinofugal pathway, the uncrossed fibers make 

tums before reaching the midline of the optic chiasm. This tuming process seems to 

require the presence of the crossing fibers from the opposite eye as there were 

reports that the removal of one of the mouse eyeballs resulted in a reduction of the 

number ofuncrossed fibers ( Godement et al., 1987b，1990). Similar result was also 

obtained using ferret as animal model (Guillery, 1989). The monocular enucleation 

studies were further supported by the subsequent studies (Chan and Guillery, 1993; 

Taylor and Guillery, 1995) who showed that monocular enucleation done in an 

earlier age could further reduce the number of uncrossed fibers. All these results 

demonstrate that fiber-fiber interactions between the two eyeballs are needed for 

the axonal pathfinding process. 

However, the report given by the group Stretavan and Reichardt (1993) showed a 

contradictory result which indicated that monocular enucleation did not reduce the 

number of uncrossed fibers. 

The cause of the conflict between the separated results is still unknown. However, 

there are reports showing that a wave of cell death occurs to the prenatal neuronal 
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cells (Jeffery, 1984; Linden and Serfaty, 1985; Chan et al., 1989). As the group of 

fibers being studied by Sretavan and Reichardt (1993) could be the early population 

of cells, it is possible that the event of prenatal cell death could be the reason 

causing the contradictory results. Li order to clarify whether an early removal of 

fiber interaction at the chiasm has a direct effect on the development of the 

uncrossed component of the remaining eye, we tried to address the immediate 

effect of the monocular enucleation to the C57 mice embryos by studying the cell 

number of uncrossed fibers at E14, E15 and E16. I also analyzed the result of 

different age groups by dividing the cells into the temporal crescent (TC) and the 

nasal retina (NA) in order to check the impact of monocular enucleation on the 

pathfinding. 

•aai 



Materials and Methods 

Time-mated C57 mice were obatined from the Animal House in the Faculty of 

Medicine. The date that a vaginal plug is found is denoted as embryonic day 0 

(E0). The monocular enucleation surgery was done on E13 embryos. Pregnant mice 

were anaesthetized with a mixture of hypnorm(Jenssen Animal Health, English) 

and hynovel (Roche, Switzerland) (1:1 in 2 parts of distilled water) (0.1 ml/lOg 

body weight). The pigmented eyeballs in embryos were readily identified through 

the thin uterine wall. A small opening was made above an eye and the eye was then 

moved either by fine jeweler forceps or by a micro-cauterizer. Only one embryo 

was operated on each uterine hom. The wound on uterine wall was closed by 7.0 

surgical suture, in which the abdominal muscles and a skin wound were sutured 

separately. The mother was then allowed to be recovered in a warmed environment. 

The operated embryos were taken out from the mother 1 day to 3 days after 

surgery. The unoperated siblings within the same litter served as controls. The 

mothers were killed by cervical dislocation and embryos were collected 

immediately in chilled phosphate buffered saline (PBS) by Caesarean section. The 

embryonic membranes were removed and embryos were decapitated. The heads 

were then fixed in 4% paraformaldehyde in PBS at 4°C. After 3 days, the heads 

were embedded in a mixture of gelatin-albumen and sectioned horizontally on a 

vibratome. At a level about 400-600 um above the chiasm, the optic tract was 
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identified in the horizontal section of the brain as a discrete fiber bundle located at 

the lateral diencephalon. Several granules of a fluorescent dye, DiI (Moleculars 

Probes, Eugene USA), were inserted into the optic tract, on the left in controls, and 

on the side ipsilateral to the remaining eye in enucleates, to label all retinal axons at 

this level. The labelled embryos were then kept in dark at room temperature in 2% 

buffered formalin. 

After 6 to 12 weeks, depending on the age of embryos, retinas were dissected out in 

PBS and flat-mounted on glass slide. A cut was made in the dorsal pole of the 

retina before removing the eyeball in order to mark the orientation in later 

observation. The retina was mounted in an antifading medium containing 0.5% p-

phenylene-diamine and coverslipped. Retrogradely labelled retinal ganglion cells 

were examined under a fluorescent microscope (Zeiss Axiophot photomircoscope). 

Black and white negatives (Bford 400) were taken consecutively through while the 

retina ipsilateral to the labelled tract using a 10x objective. The number of 

ipsilaterally projecting retinal ganglion cells was later counted on a montage of 

these prints. The cell counts were made separately in two regions of the retina, 

namely temporal crescent and nasal retina. Li adult retina, most retinal ganglion 

cells that have an uncrossed axon are located in peripheral regions of ventral 

temporal retina, forming the temporal crescent. Only a few ipsilateral cells are 

found in the nasal retina. Labelled cells in the retinas contralateral to the labelled 

tract were photographed using a 5x objective. The cell counts in the control and 

experimental animals were analyzed using Mann-Whitney non-parametric tests. 
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Results 

ANATOMICAL STRUCTURE AFTER SURGERY, ln this study, the monocular 

enucleation was done at the E13 embryos. During this time period, the early group 

of nerve fibers has just arrived the optic chiasm. As it was important that the 

surgical method should not cause any problem to the embryos, dissection of the 

embryos after surgery was used to examine the completeness of the eye removal. 

As shown in Figure 2.1A, the monocular enucleated embryos do not show any 

significant morphological change except the absence of one of the eyeballs. One of 

the samples demonstrating a horizontal dissection of an E16 embryos is shown in 

figure 2.1B and 2.1C. These figures showed that the the optic stalk was absent in 

the monocular enucleated embryos. 

CONTROL GROUP. Another concern need to be counted in the experiment of 

monocular enucleation was whether the retinal ganglion cells were fully labelled or 

not. Li order to ensure that all the uncrossed fibers were labelled, we used the 

contralateral eyeball as a positive control. Since the cell bodies of the crossed fibers 

located all over the retina, a full labelling had to give an entirely labelled 

contralateral retina. Figure 2.2A and 2.2B showed retinal labels after DiI labelling. 
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Uncrossed retinofugal pathway in normal embryos 

THREE AGE GROUPS. The ages of the embryos studied by us include E14, E15 

and E16. ln E14 embryos, the cell bodies of the uncrossed fibers located mainly in 

the central part of the retina as shown in figure 2.3A. In the subsequent 

development, the number of ucrossed fibers increased (figure. 2.3B). Also, there 

are increasing concentration of cell bodies of uncrossed fibers in the region of 

temporal crescent, especially at E16 embryos(Fig. 2.3c). The sequence of 

development of uncrossed pathway is in accordance with the findings reported in 

an earlier study of mouse retinofugal pathway (Colello and Guillery, 1990). 

SUBTYPES. The three age groups E14, E15 and E16 embryos are further classified 

into the two subtypes and they are (1) the control and (2) the monocular enucleated 

embryos. For the retinas in each subtype, they are divided into two different 

regions: the temporal crescent (TC) and the nasal retina (NA). The reason of 

dividing the retina into these two regions is that the locations of cell bodies of the 

early uncrossed fibers (E14 embryos) are spreading among the whole retina. For the 

late uncrossed fibers (E16 embryos), these cell bodies mainly located at the 

temporal crescent region of the retina. As a result, retina divided into the TC and 

the NA region allowing studying the effect of monocular enucleation to these two 

groups of uncrossed fibers separately. The definition of the temporal cresecent 
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region from the nasal retina is based on the following criteria: First, the orientation 

of the temporal crescent region is at the ventral temporal part of the retina; second, 

the temporal cresecent is restricted to the peripheral part of the retina but not the 

central part of the retina; third, border of the temporal crescent is featured by a 

vague sudden increase in the cell numbers of the uncrossed fibers. 

Immediate effect of early monocular enucleation on uncrossed retinal 
pathway 

The immediate effect of monocular enucleation in the surgically treated embryos 

and the control group was examined using DiI labelling and the number of labelled 

cell bodies was counted, ln E14, those cell bodies of the uncrossed fibers mainly 

located at the central region of the retina (Fig. 2.4). Statistical test using Mann-

Whitney non-parametric tests did not show any significant difference in cell 

number between the monocular enucleated group and the control group (p> 0.05) 

(Table 2.1). 

ln most E15 control embryos (5 in 7)，labelled cells were first found in the ventral 

temporal retina (Fig.2.5). It was noted that enucleation cause significant reduction 

in the number of cell bodies of the uncrossed fibers at temporal crescent but not 

those cell bodies in the nasal retina. 

The reduction of cell bodies of the uncrossed fibres was further enhanced in E16 

embryos (P<0.001), at which the concentration of the cell bodies at the ventral 

temporal was very obvious (Fig.2.6). This reduction of cell bodies is contributed 
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mainly by decreasing the cell bodies number in the temporal crescent region 

(p<0.01) but not those cell bodies at the nasal retina (p>0.1). 
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Discussion 

Li the present study, we demonstrated that early enucleation of the retina led to a 

reduction of the cell bodies of uncrossed fibers. The reduction was especially 

significant for those cell bodies located at the ventral temporal crescent of the 

retina compared with those cell bodies located at nasal part of the retina. 

Early population of uncrossed fibers 

In adult retina, the cell bodies of the uncrossed fibers are located at the ventral 

temporal crescent of the retina as shown by those studies on rodent (Jeffery and 

Perry, 1982; Godement et al., 1987b; Chan and Jen, 1988). Only a few of cell 

bodies are located at other part of the retina. However, in the early embryo, the cell 

bodies of the uncrossed fibers are mainly located at the central part of the retina 

(Godement et al., 1987b; Colello and Guillery, 1990). These populations of early 

cell bodies located at the central part of the retina could represent a developmental 

error commonly found in the initial phase of pathway formation. The error is 

reported to be corrected by post-natal cell death which acts to refine the retinal 

terminations within the targets (Jeffery, 1984; 0'Leary et aL, 1986; Chan et aL, 

1989; Nakamura and 0，Leary, 1989). 
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Axon guidance of uncrossed axons depends on the presence of fiber 
from the other eye 

The result in this experiment indicates clearly that the number of cell bodies for the 

uncrossed fibers relies on the co-existence of the two eyeballs. It is especially the 

cell bodies which located at the ventral temporal crescent of the retina that had 

significant reduction in the number of cell bodies after removal of one of the 

eyeballs. The result is consistent with the previous studies (Godement et al., 1987a 

and 1990; Chan and Guillery, 1993; Taylor and Guillery, 1995) 

SUGGESTED AXONAL GUEDANCE CUES. Based on the above findings, a 

determinant for the axonal pathfinding process might exist at the ventral temporal 

crescent. This determinant could be a surface property different from the cells in 

the nasal part of the retina (Guillery, 1992; Chan and Guillery, 1993; Taylor and 

Guillery, 1995). This cell surface property is important for them to decide whether 

they should tum to the same side or cross to the other side of the brain when they 

encounter the local guidance cues at the optic chiasm. The nature of this axonal 

guidance cue at the retina is still unknown. However, this cue may be related to the 

ocular pigment as the number of uncrossed fibers reduced in albino animals which 

do not have ocular pigment (La Vail et al., 1978; Guillery et al 1984; Guillery et 

al.，1987). 
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Moreover, two more determinants at the chiasm are required for the proper axon 

tuming. These two determinants have effects on the uncrossed fibers but not the 

crossed fibers. One of these signals is responsible for stopping the further advance 

of the uncrossed fibers and it could be the reason why all the tuming processes 

occur at the pre-midline region of the chiasm. The other signal guides the 

uncrossed fibers to find their way to the ipsilateral part of the brain. For the signals 

which pause the advance of the fibers, they are likely to be the cells inside the optic 

chiasm. One example is the glial cells which form a palisade straddling the midline 

of the chiasm (Marcus and Mason, 1995; Marcus et al., 1995) when the first retinal 

axon enters the chiasm. Another possible type of cells is the chiasm neurons that 

express both SSEA-1 and CD44 (Sretavan et al., 1994; Marcus et al., 1995). 

Elimination of the CD44 positive neurons in the chiasm resulted in an inability of 

retinal axons to grow into the chiasm (Sretavan et al., 1995). 

Another signal for the axonal pathfinding process is the selective fasciculation with 

crossed axons at the chiasm. Disruption of this signal after an early removal of one 

of the eyeballs resulted in an immediately reduction of the uncrossed component. 

However, the reduction level is time dependent. Enucleation at a earlier stage of 

development caused a more obvious reduction of uncrossed componenet (Chan and 

Guillery, 1993; Taylor and Guillery, 1995). 

Unlike the cells in the ventral temporal crescent of the retina, the uncrossed 

components with their cell bodies located at the central part of the retina are not 

affected by the monocular enucleation. This group of axons may find their route on 

f 
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a random basis at the chiasm, without requiring any specific guidance cues as the 

late uncrossed components from the ventral temporal crescent of the retina. It is 

suggested that these axons act as pioneer to guide late developed uncrossed axons 

(Sretavan, 1990) but there is still no firm evidence to support the current idea. 
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CHAPTER 4 

ISOLATION OF DIFFERENTIALLY EXPRESSED 

mRNA IN DIFFERENT REGIONS OF THE RETINA 

Introduction 

Based on current studies, the pathfinding process at the optic chiasm is controlled 

by a local signal at the optic chiasm which let the crossed fibers to cross the 

midline of the optic chiasm while instructs the uncrossed fibers to tum to the same 

side of the brain (Godement et al., 1990; Sretavan, 1990; Sretavan and Reichardt, 

1993; Godement et al., 1994). It is suggested that this local signal is inhibitory to 

the uncrossed fibers but permissive to the crossing fibers (Godement et al., 1990; 

Wizenmann et al., 1993) and the location of this local cue may be at the midline of 

the optic chiasm (Marcus et al., 1995). 

The location of another possible cue for the pathfinding is the retina. The fact that 

the cell bodies of the uncrossed fibers mainly located at the ventral temporal 

crescent (fig 3.1), while their nerve fibers intermingle with those fibers from the 

nasal retina at the optic chiasm has already indicated that there are different 

instrinic properties in the cell bodies of the crossed and uncrossed fibers (Colello 

and Guillery, 1990 ； Chan et al., 1993). There are three criteria to be noted for the 
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different instrinsic property in retinal ganglion cells: First, as the cell bodies of the 

uncrossed fibers located at the peripheral part of the retina while the cell bodies of 

the crossed fibers at the nasal part of the retina, the signal should exist with a 

concentration gradient from the ventral temporal region to the nasal region of the 

retina. Second, expression of this cue must be around the time before or when the 

axons reach the midline of the retina. Finally, expression should be affected by the 

ocular pigment since the number of uncrossed fibers is significantly reduced for the 

albino animals which have a deficiency in ocular pigment production. 

POTENTLY CANDE)ATE GENE. Several proteins and genes were reported to 

be included in the pathfinding process in mouse and chick (Trisler et aL, 1981; 

Rabacchi et al., 1990; McLoon, 1991; Deitcher et al., 1994). The actual function of 

these proteins or genes could be related to defining the development of retinotopic 

maps or related to the determination of specific cell type across the retinal layers 

(Pachnis et al., 1993; Liu et al.，1994). 

One of the molecules under studies in the guidance of axonal path in the optic 

chiasm is the GAP-43. GAP-43 is the growth-associated protein. It is localized to 

the internal surface of the growth cone membrane and is expressed at a high level 

in neuronal growth cones during development and during axonal regeneration. In a 

recent study done by Stephen et. al. (1995), the GAP-43 deficient mouse was used 

as an animal model and it was found that the axons were trapped in the chiasm in 
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the mice at E15 to P2, without processes that grow across the optic chiasm or make 

tum to the same side of the brain. The trapped axons, however, continued their 

joumeys in the subsequent weeks of life by entering the optic tract. The adult 

central nervous system of the mice was anatomically normal. However, there is an 

unusual large number of fibers continued to be misrouted to the contralateral optic 

nerve. 

OTHER A N M A L MODEL. Apart from mammals, insects are another model used 

for the study of pathfinding process. One of the molecules found in the axonal 

guidance process of insects is the semaphorin. Semaphorins comprise a family of 

cell surface and secreted proteins that are conserved from insects to human . These 

molecule were reported to be the diffusible axonal guidance cue for patterning 

sensory projection by selectively repelling axons that normally terminate dorsally. 

Other members of the semaphorins, for example, the Sema I，are transmembrane 

protein that has been implicated in guiding pioneer axons in the grasshopper limb 

bud. Li human beings, similar molecule has been found and the corresponding 

name is H-Sema EL 

Li the animal model like Drosophila, a protein named Fasciclin DI was found to be 

involved in the pathfinding process. Fascilin HI is a cell adhesion molecule of the 

immunoglobulin superfamily and is expressed by motor neuron RP33 and 

particular muscle cells at which the molecules specifically target. Mutation in these 
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molecules resulted in innervation of axons at non-target cells so that these 

molecules were postulated to be the path guidance molecules. 

The present study is to investigate the molecular cues involved in the pathfinding 

process by looking for genes that are differentially expressed in the retina. Here we 

present some genes which were differentially expressed in the retina, ln order to 

search for these intrinsic cues in the retina, the differential PCR display was used. 

The differential expressed genes shown by the differential PCR display were then 

extracted and cloned into a vector named pCR-TRAP. The cloned PCR products 

were further analyzed by both DNA sequencing method and the in-situ 

hybridization technique. Through DNA sequencing, the cloned gene sequences 

were obtained and checked through the gene bank to get more background 

information about the insert. Through in-situ hybridization, the expression position 

of the clone inserts can be visualized to check whether the gene was differentially 

expressed at the retina. 
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Materials and Methods 

Differential PCR display: 

C57 mice were used in this study. The females were time mated in the Animal 

House of Medical Faculty and kept until the embryoswere at embryonic day 13 

(E13). 

Dissection of retina 

The pregnant mice were killed by cervical dislocation and embryos were taken out 

using Caesarean section. In this study, 30 mouse embryos were used. The retina 

was dissection in ice cold DMEM-F12 medium (Gibco, Life Technologies, USA). 

Before dissecting out the retina, a cut was made at the dorsal nasal pole of the 

eyeball to mark the orientation. The cornea, lens and vasculature on the inner 

surface of the retina were removed usingjeweller fine forceps. The retina was then 

dissected out and bisected roughly at the central border of the presumptive 

temporal crescent. The retinal tissues were immersed immediately in a lysis buffer 

which provides a high salt and denaturing condition to inactivate RNases and 

ensure isolation of intact RNA. 
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Extraction of total RNA from retinas 

The retinal tissues in the lysis buffer were homogenized using a QL^.Shredder kit 

(Qiagen, USA). Total RNA in the lysates was isolated using the RNeasy kit from 

Qiagen, which utilizes the specific binding properties of silica gel-based membrane 

for purifying RNA. The eluted solutions were treated with DNaseI to remove 

contaminated chromosomal DNA (MessageClean kit, Qiagen). The amount of total 

RNA was then measured by spectrophotometry. In this study, we obtained about 7 

ug total RNA from the nasal retina and 3.6ug from the temporal retina. 

Differential display of genes from retina 

Genes that are expressed differentially in either temporal or nasal retina are 

identified using the differential display technology developed by Pardee and Liang 

(Liang and Pardee, 1992). Messenger RNA in the highly purified total RNA was 

reversely transcribed with oligo-dT primers anchored to the beginning of the 

poly(A) tail (in RNAimage kit 1，GenHunter Co, USA), followed by polymerase 

chain reaction (PCR) in the presence of a second arbitrary primer (13 bases in 

length) and radioactive nucleotide (a-[^^] dATP, Amersham, HK). By using 

specific combinations of oligo-dT and arbitrary primers, a specific subpopulation of 

mRNA was amplified. These cDNA fragments were then separated on a DNA 
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sequencing gel (6% polyacrylamide gel, Sigma Chem, USA). The seqeuencing gel 

was dried, transferred to a Whatman No.l membrane and exposed on an X-Ray 

film (hyperFilm-MP, Amersham, UK) in dark for 3 days. The film was exposed 

using a Kodak automatic film processor. Bands that were identified only in one 

retinal region but not the other were marked and cut out from the dried membrane. 

The cDNA fragments of these presumptive differentially expressed genes were 

extracted using the QIAEXII kit (Qiagen, USA) and collected in distilled water. 

They were reamplified by PCR (30 cycles) using specific pairs of 5， a r b i t r a r y and 

3，oligo-dT primers in order to accumulate enough amount of cDNA for later 

cloning process. 

Condition for the PCR reaction 

The PCR condition for the PCR reaction was pre-heating at 94�C，2min; 

denaturation at 9 4 � C for 30 seconds; annealing at 52°C, 40 seconds; elongation at 

72�C, 1 minute; extra-elongation at the last time at 72�C，5 minutes. After the PCR 

reaction, the inserts were further analyzed by the DNA sequencing method and also 

in-situ hybridization and the result was shown in the following sessions. 
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Cloning of differentially expressed genes in retina 

The amplified sequences of the identified cDNA were cloned into a plasmid vector 

pCR-TRAP (GenHunter, USA). The insertion of PCR fragement into the multiple 

cloning site in this plasmid disrupts production of a repressor gene, thus releases 

the suppression of tetracycline resistance gene in the downstream sequence. The 

vector together with the inserts was transformed into a GH competent E.coli cells 

and inoculated on a LB agar plate containing tetracycline (Life Technologies, 

USA). The bacterial colonies were then picked and maintained in LB broth. 

In order to check whether cloned vectors contain insert of the right length that had 

been identified in the differential display, a miniprep of the plasmid was done using 

a QIAprep Spin Plasmid kit (Qiagen, USA )• This protocol yielded up to 20ug 

plasmid DNA from l-5ml ovemight cultures ofE.coli in LB mdium. 

The cloned inserts were checked by PCR method using the purified plasmids that 

contain the cDNA of interest, and a pair of primers (Rgh and Lgh) at both sides of 

the insert. The presence of inserts and their sizes were determined by running the 

PCR products on 1.5% agarose gel. 
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Sequencing the cloned idfferentially expressed genes isolated from 
retina 

The cloned inserts were amplified by PCR reactions using the Lgh and Rgh 

primers. The PCR products were then purified and ready for the sequencing 

reaction. The purified PCR products that served as templates for the sequencing 

reaction using product were then fed into an automatic sequencer (ABI Prism 310, 

Perkin-Elmer Co., USA) for generating the sequences of our inserts. 

The identified sequences were compared with the known sequences in the 

GenBank via the internet (http://www3.ncbi.nlm.nih.gov/BLAST/nph-blast) to 

determine whether the isolated genes were novel or in high homology to other 

known genes. 

Results : 

In order to collect enough retina samples for the experiment of differential PCR 

display, 30 retinas were dissected in mouse embryos. About 7ug of RNA were 

extracted from the nasal retina and 3.6ug RNA was isolated from the temporal 

retina. The RNAs were reversely transcribed to cDNA by a single base anchored 

oligo-dT primer in 3，terminal and a 13-mer arbitrary primer on the 5，terminal. 

The cDNAs were then separated by DNA sequencing gel. In each pair of lanes, 

which corresponds to the nasal and the temporal retina, shows a matching in 
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expression bands in overall but there were some bands which were differentially 

found in one part of the retina but not the others. Figure 3.2 shows one of these 

examples with two PCR fragments found exclusively in the temporal but not the 

nasal retina. These bands were pinned at both ends on the X-ray film under which 

the dried gel was aligned precisely with reference to marks made before the 

exposure. 

Reamplication and cloning 

There were altogether eleven bands extracted and amplified using specific pairs of 

primers. Of all the eleven bands, 6 of them are successfully reamplified. These 

cDNA fragments have their size range from 100 to 280 base pairs (Fig. 3.3). The 

cDNA fragments were then cloned into pCR-TRAP vector. Analysis of the 

presence of cloned cDNA were done by PCR reaction using purified PCR products 

and a primer set (Rgh and Lgh). The length of the amplified DNA fragments was 

found by comparing it with the DNA marker and the result is shown in Table 3.1. 

Since the clones TA4.1, TA8.1 and NC2.-1 have lengths matching the size of the 

insert from the previous DNA sequencing gel, they were taken for subsequent 

analysis. 
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Sequences of the identified genes 

Around the three cloned genes, TA4.1 and TA8.1 are bands expressed only in the 

ventral temporal retina while sample NC2.1 corresponds to the band for the nasal 

retina. The sequences of these three genes were shown in figure 3.4. 

To verify these genes, the following criteria were applied: first, the genes must 

contain poly-A tail in order to confirm that their sources are mRNA; second, as the 

primer sets for the differential PCR display contain HindHI restriction sites 

(AAGCTT), the insert must contain the cutting sites at their flanking sequences. 

The sequences of the three genes were checked through the GenBank. The 

GenBank then returned the result of the corresponding gene information based on 

the homology matching of their base pairs. Based on the searched result, C.elegans 

cosmid C54D10 gave the highest matching with sample 1 (clone TA4.1). 59 out of 

82 bases were matched (approximately 72% matching). Sample 2 (clone TA8.1) 

has 87.2% matching with the gene sequence of carnitine palmitoyltransferase I in 

rats. Sample 3 (clone NC2.1)，C.elegans cosmid R06C7 give the highest 

percentage of matching (75.4%). Another gene shows high percentage matching to 

sample 3 is the GABA-A receptor alpha-5 subunit gene (42.6%). The alpha 5 

subunit of the GABA-A receptor was reported to be expressed in a few brain areas 

such as cerebral cortex, hippocampal formation and olfactory bulb granular layer, 

as shown by in situ hybridization histochemistry. 
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Discussion 

This report shows the preliminary study in using the molecular approach to isolate 

the molecular cues included in the pathfinding process in different parts of the 

retina. By using the differential PCR display, PCR and cloning method, three 

different genes were isolated and cloned. These genes were sequenced and the 

searched results using GenBank show a certain degree of homology to some 

currently known genes. 

Genes that are expressed in the developing retina 

Several groups of genes were reported to be involved in the embryonic 

development. They can be classified into three different categories in accordance 

with their temporal and spatial differences in expression. The first group of genes is 

responsible for the morphogenesis of retina and is expressed in the whole retina. 

Examples of this type of gene include the small eye gene (Pax6) in the mouse 

(Walther and Gruss, 1991) and its homolog eyeless (ey) in Drosophila (Quiring et 

aL, 1994). These paired box-containing genes function as transcription regulators 

during the eye morphogenesis. Mutation of the Pax6 genes results in eye 

malformation such as small eye syndrome in mouse and Aniridia in human (Hill et 

aL, 1991; Tan et aL, 1991). Another paired box gene Rx, which was originally 

isolated in Xenopus embryos and later found in zebrafish, mouse, drosophila and 
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human, also had a crucial function on controlling the eye development (Mathers et 

aL, 1997). Mouse embryos that have a null allele of this gene do not form the optic 

cup and so do not develop an eye. This gene appears to be included in both 

vertebrate and invertebrate. 

The second group of genes determines the cell fates in the retina. It was expressed 

in specific laminae and cell types in the developing retina. One of the examples of 

this type of genes includes the homeobox gene ChxlO which is expressed in the 

inner nuclear layer of mouse retina (Liu et al., 1994). Another example is a proto-

oncogene c-ret (Pachnis et al., 1993). This gene is expressed in the ganglion cells, 

amacrine cells and horizontal cells in the postnatal mouse retina. 

The third group of genes has a topographic difference in expression within the 

developing retina. Example is the TOP molecule that is expressed 35 fold more in 

the dorsal than ventral retina in chick embryos (Trisler et al., 1981). Another 

example is the enzyme aldehyde dehydrogenase which expressed mainly in the 

dorsal part of the mouse embryo retina (McCaffery et al., 1991). This enzyme 

functions at oxidizing retinaldehyde to retinoic acid. 

Molecules that show a differential expression in the nasal temporal axis of retina 

were reported in chicks and mice. A temporal retinal axon protein (TRAP) was 

shown to express exclusively in the temporal hemiretina in the chick (McLoon, 

1991). This molecule may play a role in patterning the nasal-temporal axis in the 

retina. Besides, two winged helix genes, BF-1 and BF-2 marked the nasal and 
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temporal hemiretinas respectively during the early development of this visual organ 

(Hatini et al., 1994). 

Results of these studies provided evidences that these topographic specific genes 

are related to the formation of precise retinotopic termination in the primary visual 

targets. However, these genes are not likely to be included in the development of 

partial decussation pattem at the chiasm since most of these identified genes mark 

half of the retina but not the border between the ventral temporal crescent and the 

nasal retina. 

Differentially expressed genes in the retina that control partial 
decussation at chiasm 

The three currently cloned genes from our group could be candidates involved in 

the partial decussation pattem in the mouse chiasm. 

Based on the searched result, the second sample (TA8.1) has a high sequence 

homology to the carnitine palmitoyltransferase I in rats. The other two genes TA4.1 

and NC2.1 share low homology to other known genes so we suspected that they are 

novel genes and are specific to the mouse retina. For TA8.1, its seqeunce is similar 

to carnitine palmitoyltransferase I which is vital for the transport of fatty acid 

through the mitochrondrial membrane to the matrix of mitochondria for beta-

oxidation (Brady et.al., 1992). How the function of carnitine palmitoyltransferase I 

related to the pathfinding process is not known and all these three genes are 
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subjected to further analysis in the future. One of the experiments can be done for 

this purpose is northern blotting. Another approach is in-situ hybridization which 

has an advantage of more sensitive over the northern blotting. 
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CHAPTER 5 

GENERAL DISCUSSION 

This thesis has been dedicated to understand the guidance cues involved in the 

development of the retinofugal pathway. Three approaches have been applied for 

this study. In the first approach, we investigated the growth of retinal axons in the 

chiasm of mouse embryos, both in fixed and living preparation. The major findings 

include 1) major changes in axon growth were seen in the pre-midline chiasm 

where uncrossed axons separated from the crossed axons; 2) Retinal axons 

exhibited constant growth rate in both the pre-midline and post-midline region of 

the optic chiasm. Based on our studies, axons navigated through the chiasm in 

pause-and-advance paradigm. Within the pausing periods, active remodeling of 

growth cone morphology was seen. This active remodeling included branching of 

growth cones, followed with one of the branches extended while the others 

retracted. These remodeling processes often led to a change in growth direction. 

Moreover, this growth behavior was observed in axons at both pre-midline and 

post-midline chiasm. As retinal axons continuously encounter a complex and 

changing environment during their growth from retina to their visual targets, we 

postulate that the change in their growth kinetic and their growth position is a 

signal implying that axons were actually reading signals from their immediate 

environment during all these pausing periods. 
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Besides studying the development of retinofugal pathway, the cues involved in the 

pathfinding process in the optic chiasm were also studied. Since studies done by 

various researchers indicated that monocular enucleation reduced the number of 

uncrossed fibers, axon-axon interaction between the fibers of the retinal ganglion 

cells from the two eyeballs could be one of the mechanism involved in the 

pathfinding process (Chan and Guillery, 1993; Guillery et. al., 1995; Taylor and 

Guillery, 1995). However, the idea is still controversial as there is one reports 

(Stretavan and Reichardt, 1993) showed that the axon-axon interaction between 

fibers from the two eyeballs was not required. We thus tried to address the tissue of 

the immediate effect of monocular enucleation in order to understand whether the 

axon-axon interaction is really required in the pathfinding process, ln our 

monocular enucleation study, the number of cell bodies of the turning fibers were 

counted one day after the surgery. Altogether, three age groups were examined and 

they were the E14, E15 and E16 embryos. Our result indicated that the dependence 

of axon-axon interaction relied on which age group being studied. Statistical result 

showed that the early population (E14) of tuming fibers were not affected by 

monocular enucleation (Table 2.1). On the contrary, axon-axon interaction was 

required for normal development of a correct retinofugal pathway in the late 

population of uncrossed fibers (E15 and E16). This experiment implies that the 

early and the late population of tuming fibers might rely on different sets of 

guidance cues for their tuming process to occur. The third approach was applying 
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the differential PCR display to isolate the molecular cues involved in the axonal 

pathfinding process. Since the axons of crossed and uncrossed fibers were mixed 

together in the optic chiasm while the cell bodies of the uncrossed fibers were 

restricted to the temporal crescent region of the retina (Guillery et. al., 1995), active 

mechanism had to be involved in the pathfinding process. As a result, the retinal 

ganglion cells must have some instrinsic properties which made the crossed axons 

response differently from the uncrossed fibers. The differential PCR display was 

the way we applied to isolate this intrinsic molecular cue in the retinal ganglion 

cells. By differential PCR display, mRNAs were converted to cDNA so that 

different expression levels in different parts of retina could be compared . The 

mRNAs which were differentially expressed in one part of the retina were isolated 

from the DNA sequencing gel for subsequent analysis. Based on this method, 

seven DNA fragments were cloned. Three of these DNA fragments were 

sequenced. One of the DNA fragments was found to have high homology with the 

gene carnitine Palmitoyltransferase I . The other two DNA fragments were found to 

be novel genes as there were no high homologous sequences to them in the gene 

bank. 

]n order to understand more about the identities of the sequenced gene, we are 

going to apply in-situ hybridization to analyze our genes. Since the technique in-

situ hybridization was tested to be technical possible in our laboratory using pax-6 

gene as a template for riboprobe synthesis, our laboratory is currently using this 
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technique to further analyze the three DNA fragments by examining the expression 

location of these three genes in the retina. Jf these genes are really the guidance 

cues for the pathfinding process, they should be differentially labelled at the 

temporal crescent region or the nasal retina. 
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Behavior of Growth cone 

Figure l . lA and l . lB. A confocal micrograph showing a high magnification 

ofE15 labelled axons. An arrow in the photos indicates the midline of the 

optic chiasm and the scale bar indicates the side of the photos. These 

diagrams demonstrate a sharp turn made by the tuming fibers. The sharp 

tuming ends up with the change of the direction of growth. Also, the tuming 

fibers are characterized by a backwardly pointing branches toward the 

ipsilateral part of the brain. 
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Behavior of Growth cone 

Figure 1.2. Diagrammatic representation of the axon approaching the midline 

of the chiasm. The inverted arrow at the bottom of the figure indicates the 

position of the midline of the optic chiasm. The numbers at the right hand 

side of the figure indicate the period of recording. This axon shows a constant 

growth at time 0 min to 60 min. During the period from the time of 85 minute 

to 140 minute, this axon pauses, with the growth cone branches into two 

parts. One side of the processes was eventaully retracted while the other side 

of the growth cone continues to extend at 160 min. This morphological 

change ends up with changing in the direction of growth. 
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Behavior of Growth cone 

Fig 1.3. The axons were imaged at a lower magnification (lOx). Most 

axons displayed a continuous and smooth axon profile. All labelled axons 

were tipped with a growth cone. One characteristic of axon growth in the 

premidline chiasm is that each axon had its own tempo of growth. For 

example, while axon 'A' advanced steadily in the recording period, axons 'C' 

and ‘D，had no obvious increase in length from 0 minute to 80 minute in 

recording. However, a dramatic increase in length of axon D was observed in 

the following 20 minutes while axon ‘C, was still pausing. Also, all axons 

underwent a continuous and dynamic change in morphology. For example, 

axon “B，，in Figure 1.3 which tumed at the lateral region of chiasm 350pm 

away from the midline. This axon displayed initially two short appendages 

from the axon terminal. The appendage pointing towards the midline 

gradually retracted (at 30 min) and the one that pointed to the ipsilateral tract 

after a pause for 100 minutes started to grow to the ipsilateral optic tract. 

Within this pausing period, the growth cone underwent a dynamic 

modification of its shape which eventually led to its tuming. 
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Behavior of Growth cone 

Figure 1.4. This figure shows the growth at the midline (indicated by vertical 

lines) and post-midline regions of the chiasm in E15 embryos, it was noted 

that axons underwent dynamic changes in growth cone formed in the post-

midline chiasm. These growth cones were in general large in size and had a 

number ofprocesses. The axons were initially growing as 3 fiber fascicles 

(A-C in Fig. 1.4). Fascicle A was growing at an angle to fascicles B and C 

which were running in parallel. At the first 80 minutes, these axons continued 

to grow across post-midine chiasm. There was no obvious change in growth 

direction and the axons remained as 3 fascicles. However, after 95 minutes in 

recording, axons in fascicle B started to spread out and grow at different 

direcitons when they were about 100um away from the midline. An axon 

from fascicle B deviated caudally at 95 minute in recording and this axon 

met eventually axon in fascicle A which turned to a rostral direction at 215 

minute in recording. 
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Behavior of Growth cone 

Figure 1.5. This figure contains graphs with the distance of growth against 

the time of recording. The top 12 graphs are axons located at the pre-midline ^ 

region while the 11 graphs at the bottom are those axons at the post-midline 

region. Each graph represents one single recorded axon. The y-axis indicates 

the distance of growth relative to the starting position. The x-axis indicates 

the period of recording. The arrow with legend represents the location of the 

axons with respect to the midline of the optic chiasm. As indicated by the 

graphs, the growth kinetic for the axons at the post-midline region is very 

similar to the growth kinetic for those axons in the pre-midline region. All 

these axons have constant growth rate at different regions of the optic chiasm. 

Also, interrupts of the growth rates are found in both the pre-midline and 

post-midline region, as indicated by the small arrow heads. The result shows 

that reading signals are required in the whole chiasm. 
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Intra-utero enuclation 

Figure 2.1A. This figure compares two embryos from the same mother. The embryo 

at the left hand side is a control embryo which does not receive any surgical 

treatment. The embryo at the right hand side had the left eyeball being removed 

surgically. Despite the left embryo has two normal eyeballs while the right embryo 

has only the right eyeball, all other anatomical structures are the same. The result „ 
- 广 “ 

indicates that the surgical method does not has dramatic damage to the embryo 2 

which might in tum affect the accuracy of the result interpreted in this experiment. 

Fig 2.1B. The right side of a horizontal section of a control embryo is shown. As 

shown in the photo, the control embryo contains retina (R) which is connected to 

the optic chiasm through optic stalk (under the label OS). Li figure 2.1C, the right 

side of a horizontal section of a monocular enucleated embryo is shown. Compared 

with the control embryo, the monocular enculeated embryo has the eyeball being 

removed. The black spot at the top right hand comer is the pigment epithelium left 

behind in the original position of the eyeball. The optic nerve which connect the 

eyeball and the optic chiasm is not found in the photo, suggesting that there should 

be no outgrowing axons from the eyeball to the optic chiasm 
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Intra-utero enuclation 

. , 
Figure 2.2. This figure shows the photos for the crossed fibers in the control group. 

Figure 2.2A shows a flat-mounted retina at E14. Figure 2.2B shows another flat-

mounted retina at E16. As the cell bodies of the crossed fibers distribute all over the 

retina, the entire retina was labelled. The throughly labelled retina is a good 

indication that the labelling in the other retina, which was labelled for the cell 

bodies of uncrossed fibers, is sufficient. 
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Intra-utero enuclation 

Figure 2.3. This figure show three photos and their corresponding ages are the 

embryoic day 14，15 and 16. The fluorescent dye diI was applied to label the cell 

bodies of the uncrossed fibers. The result indicates that the early population of 

uncrossed fibers have their cell bodies spread throughout the retina (figure 2.3a and 

figure 2.3b). However, for the late population of uncrossed fibers (figure 2.3c)，their 

cell bodies are restricted to the temporal crescent of the retina, which is a region 

located at the periperal part of the ventral temporal region of the retina, and there 

are a sudden increases in the number of labeled cells from the opic disk to the 

perphery of the retina. 
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Intra-utero enuclation 

Figure 2.4. This figure is diagrammatic drawings of the retina at E14. The retina 

aligned at the left hand side is the control group. The retina aligned at the right is the 

retina received monocular enucleation treatment. The horizontal bar at the left 

bottom comer is the corresponding scale bar. The black dots inside the retina 

drawings represent the labelled cell bodies of the uncrossed fibers in the retina. For 

the orientation of each retina, the doral part of the retina are pointing upward and 

the temporal part of the retina is pointing toward the right hand side. As shown in 

the diagrams, the cell bodies spread throughout the retina. 
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Intra-utero enuclation 

Figure 2.5. This figure is diagrammatic drawings of the retina at E15. The retina 

aligned at the left hand side is the control group. The retina aligned at the right is the 

retina received monocular enucleation treatment. The horizontal bar at the left 

bottom comer is the corresponding scale bar. The black dots inside the retina 

drawings represent the labeled cell bodies of the uncrossed fibers in the retina. For 

the orientation of each retina, the doral part of the retina are pointing upward and 
'C 

the temporal part of the retina is pointing toward the right hand side. As shown in 

the diagrams, there are increase number of cell bodies in the temporal cresent region 

(ventral temporal region) of the retina compared with the retina at E14. 
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Intra-utero enuclation 

Figure 2.6. This figure is diagrammatic drawings of the retina at E16. The retina 

aligned at the left hand side is the control group. The retina aligned at the right is the 

retina received monocular enucleation treatment. The horizontal bar at the left 

bottom comer is the corresponding scale bar. The black dots inside the retina 

drawings represent the labeled cell bodies of the uncrossed fibers in the retina. For 

the orientation of each retina, the doral part of the retina are pointing upward and 

the temporal part of the retina is pointing toward the right hand side. As shown in 

the photos, the cell bodies of the uncrossed fibers are located mainly at the temporal 

crescent, while just have a few cell bodies located at other part of the retina. 
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Fig 3.1 This figure shows the diagrammatic representation of the distribution of 

ipsilaterally projecting retinal ganglion cells. At E15 to E16 retina, the cells of the 

uncrossed fibers located mainly at the peripheral region of the ventral temporal part 

of the retina. For the cell bodies of the crossing fibers, their cell bodies covering the 

rest of the retina. 

. 編 



Distribution of ipsilaterally 
projecting retinal ganglion 

cells 
Nasal 
Retina 

/ ^ ^ \ • Optic 
i �• disk -

^ ^ 
Ventral temporal retina : 
a region where the majority of 
turning axons arise 



Fig 3.2. This figure shows the DNA sequencing gel of the differential PCR display. 

Each pair of lanes shown in the gel are the cDNA patterns in the nasal retina (N) and 

the ventral temporal retina (T), as indicated by the labels at the top of the gel image. 

Li general, the expression patterns in both nasal and temporal region of the retina are 

the same. However, there are some bands only found in one region of the retina but 

not the other. These band are isolated from the DNA sequence gel for subsequent 

analysis. 
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Figure 3.3. This figure shows the agarose gel analysis of DNA fragments after PCR 

amplification. The bands are the re-amplified DNA from the gel of Differential PCR 

display. The labels at the top of the gel image are the names given to the samples. 

The numbers at the left hand side of the gel image are the molecular weights of the 

DNA marker. The molecular size of each amplified band was estimated by 

comparing with the corresponding bands of the DNA marker. The analysis of the size 

of each band was done and summarized in Table 3.1. 
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Figure 3.4. This figure shows you the DNA sequence of the sample one (TA4.1), 

sample 2 (TA8.1) and sample 3(NC2.1). The double underlined sequences are a Hind 

m restriction sites. The single underlined region is the vector's sequence. The 

sequence flanked by the restriction sites is the insert. For the bases of the DNA, they 

are represented by: 

A : adenine 

T : thymine 

G : guanine 

C : cytosine 

N : unknown base 

The diagrammatic representation of the samples one is shown at the top of figure 3.4. 
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vector sequence msert vector sequence 

Sample 1: sequence of TA4.1 (154 bp) 

TGATAGGAGTCATAGGCCATGAAGGATTCAGGNAGCTTTTNAACGGTAATGGCTAT 

GTTTTTAAATGGATTTATACATTTTAATATTTTAAGTNNCCNTGATATTTCTG^TT 

GGTTTTTCACAAAATTACGATTGTTGAGTTCCTATTATTAAACAGCTTTTTGCTAC 

ACTAAAAAAAAAA^CTTCCTTTNAGGTANTTNAGACCGCCATCTATGACC 
Sample 2: sequence of TA8.1 (158 bp) 
ATTCAANAAANTGGTNCATANATGGCGGTCANNANTACCTGAAANGAAGCTTTTAC 

CGCANCCNAGNNNCGAATTTGGTTTTCTAATCTGTCCATTGCATGTAAATACCATA 

TGCTGTTTGGATATAAATCTTANAAATGCATGTGTGAACNAATATAGCTGANCCAT 

TAATA A AArATTAATrrrarrTAAAAAAAAAAGCTTCCTGAATCCTTCATGGCCTA 

TGACTCCTATCAACGGGAACTGCAAAATTATCGGTGTGTCGGAA 

Sample 3: sequence of NC2.1 (86 bp) 

GGTCATAGNTGGCGGTCAGAAGTACCNGAAAGGNAGCTTTNGACTGTGTAANATGT 

GGNAAAGACTCNGCNTGTTGGTCNAACCATAAACTGTCCTAATTTTCGNAAAAAAA 

AAAGCTTCCTGAATCCTTCATGGCCTATGGCACCTAACAACCGGAACTGCAA 
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Table 1.1. This table summarized the result of growth rate for the axons located at 

the pre-midline and post-midline region. The result indicates that the growth rate 

of axons has a range, from about 0.23 to 0.83 um/min. the mean of the growth rate 

is about 0.51 um/min. The corresponding graphs for all these axons are shown in 

figure 1.5. 
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Table 1.1. Growth kinetics of retinal axons at the chiasm 

Growth Rates (^m/min) 

Position Number of Axons Minimum Maximum Mean±S.E. 

Pre-midline U 0 ^ 0 ^ 4 0.50 ± 0 . 0 5 ~ 

Post-midline 12 0.22 0.81 0.52±0.06 



Table 2.1. This table is a. summary of the number of cell bodies of the uncrossed 
f 

fibers done by our group. The cell bodies are grouped into different age groups: 

E14, 15 and E16. For each age groups, two different groups of embryos are 

studied and they are the control group and the monocular enucleated group. 

During analysis, cell bodies counted from the retina are further classified into the = 

temporal crescent region (TC) and also the nasal retina (NR). Based on statistical “ 

analysis using Mann-Whitney nonparametric test, those numbers have significant 

difference between the control and treated groups are marked with “*，，. 
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Intra-utero enuclation 

Table 2.1 Immediate effect of early monocular enucleation on the uncrossed retinofugal 
pathway 

Animal Cases Number of ipsilaterally projecting cells (mean±SEM) 
TC NR Total 

E14 
Control 8 0 33.50±8.05 33.50±8.05 
Enucleate 3 0 18.67±4.84 18.67±4.84 

E15 
Control 7 37.43±18.33 50.00±8.37 87.43±23.06 
Enucleate 6 0 30.00±6.97 30.00±6.97* 

E16 
Control 9 96.89±10.09 52.00±13.62 148.89±20.15 
Enucleate 6 29.00±10.80* 24.33±5.54 53.33±10.18* 

TC: Temporal crescent 
NR: Nasal retina 
SEM: Standard error of means 

* With statistically significant difference, p<0.05, using Mann-Whitney nonparametric 
tests 
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Table 3.1. This table summarizes the size of the re-amplified samples for inserts • 

isolated from the DNA sequence gel. The size of the inserts were comparing with 

the expected sizes estimated from the DNA sequencing gel. Only those inserts 

which have size matched are used for subsequent analysis. These approaches can 

eliminate the fake DNA inserts which are not from the Differential PCR display. 

Based on the result, the sample one, two and five had matched size and were used 

for further analysis. 
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Table3.1 

Sample Expected size of Actual size Match 

sample after PCR after PCR 

1)TA4.1 ^ WS + 

2) TA8.1 ^ W s + 

3) TG3.1 W^ n o X 

4) TG4.3 320 - -

5) NC2.1 ^ T ^ ~~ ++ 

6) NC6.1 300 140-150 x 

• 

• ‘‘+，，means the level of matching. 

• “-“ means the DNA which cannot be amplified by PCR method. 

• “X，，means not matching. 
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'̂.-'<..ŷ
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