
Dynamic Modeling and Simulation of a Multi-fingered 
Robot Hand 

by 

Joseph Chun-kong Chan 

A dissertation submitted in partial 

fulfillment of the requirements for the degree of 

Master of Philosophy 

in the 

Division of Mechanical and Automation Engineering 

of 

The Chinese University of Hong Kong 

Shatin, N.T., 

Hong Kong, China 

August 1998 

Dissertation committee in charge: 
Professor Yun-hui Liu, Chair 
Professor Yang-sheng Xu 
Professor Kin-chuen Hui 



/ 0 ^ 
, , / ^ 统 系 ‘ > 闺 » 

^ I Z Z Z ) | 
Y ^ v UNIVER̂  7 ^ / 

� s g ^ _ Y SYSTEMyW 
^ < ^ ^ 



Dynamic Modeling and Simulation of a Multi-fingered 
Robot Hand 

© Copyright 

by 

The Chinese University of Hong Kong 
August 1998 



Abstract 

Dynamic Modeling and Simulation of a Multi-fingered 
Robot Hand 

by 

Joseph Chun-kong Chan 

A dynamic simulation system for dextrous manipulations can facilitate the appli-
cations of multi-fingered robot hands. For examples, it can assist the programming 

by demonstration system to transfer human manipulation skills to robot hand. It can 
also be used to evaluate different control algorithms before they are applied to real 
systems. Dextrous manipulation using multi-fingered robot hands involves various and 
rapid changes in contact constraints and grasping configurations. If different situations 
are handled case by case in simulation, these will lead to the problem of combinato-
rial explosion. There is no existing dynamic simulator that can sophisticatedly and 
efficiently simulate dextrous manipulation using multi-fingered robot hands. 

In this dissertation, we derive the kinematics and dynamics of a multi-fingered 
robot hand manipulating an object, and develop a dynamic simulation system for 
dextrous manipulations based on them. The dynamic modeling problem is divided 
into two parts: contact modeling and collision modeling. Firstly, a unified method 
is developed to formulate the dynamics under different motions including free motion, 
sticking contact, rolling, and sliding. Transitions between motions are handled by a new 
transition model. Secondly, based on the Mirtich's impulse-based simulation paradigm, 
an improved collision model is developed to determine the instantaneous change of 
velocity caused by collisions. This improved method can simulate the multiple collisions 
and mixed contact-collision cases. By combining these methods, we can effectively cope 
with rapid changes in grasping configurations and kinematic constraints. The validity 
of the dynamic modeling is verified by the development of a dynamic simulation system 
for the five-fingered robot hand system developed at this department. It is the first 
kind of dynamic simulation system for the multi-fingered robot hand which is capable 
of sophisticate simulation of various situations occurred in robot hand systems. The 
development of the system provides human operator an interactive way to simulate 
the dextrous manipulation. The simulation results confirm the validity of the dynamic 
models, and the accuracy and the efficiency of the developed dynamic simulator. 
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摘要 

多 指 靈 巧 手 的 動 態 建 模 與 計 算 機 模 擬 

陳鎮光 

多 指 靈 巧 手 的 計 算 機 動 態 模 擬 系 統 能 促 進 其 實 際 應 用 。 例 如 它 可 

以 輔 助 「 範 例 編 程 系 統 」 把 人 類 的 操 縱 技 術 轉 移 到 多 指 靈 巧 手 上 ； 對 

於 一 些 新 設 計 而 未 曾 應 用 的 控 制 方 案 ， 它 可 幫 助 評 價 其 性 能 。 靈 巧 操 

縱 的 動 作 包 含 多 種 及 經 常 改 變 的 接 觸 點 約 束 條 件 和 抓 握 形 態 ， 如 每 種 

情 况 都 獨 立 處 理 ， 將 會 引 致 組 合 性 之 爆 炸 的 問 題 ° 現 存 的 動 態 模 擬 器 

並 沒 有 一 個 能 有 效 地 模 擬 多 指 靈 巧 手 的 靈 巧 操 縱 動 作 。 

在 這 篇 論 文 中 ， 我 們 推 算 出 多 指 靈 巧 手 操 縱 模 型 的 靜 態 和 動 態 方 

程 ’ 並 在 此 基 礎 上 開 發 了 一 套 多 指 靈 巧 手 的 動 態 模 擬 系 統 。 動 態 模 型 

的 建 立 分 兩 個 部 份 ： 接 觸 點 接 觸 模 型 和 碰 撞 接 觸 模 型 ° 首 先 ， 我 們 發 

展了 一 種 統 一 方 法 來 建 立 在 不 同 接 觸 運 動 如 自 由 運 動 、 點 性 點 接 觸 運 

動 、 滾 動 和 滑 動 下 的 動 態 模 型 ° 不 同 接 觸 運 動 的 轉 換 是 透 過 一 個 新 的 

接 觸 點 變 遷 模 型 來 描 述 。 另 一 方 面 ， 我 們 改 良 了 ^ J t ( Mirtich ) 的 

衝 擊 模 擬 方 法 ， 發 展 了 一 個 新 的 碰 撞 模 型 去 計 算 因 碰 撞 而 引 致 的 速 度 

突 變 。 這 一 模 型 能 夠 模 擬 多 點 碰 撞 以 及 混 合 觸 點 接 觸 和 碰 撞 的 情 況 。 

綜 合 以 上 的 方 法 ， 我 們 能 有 效 地 處 理 那 些 涉 及 不 同 的 接 觸 點 約 束 條 件 

和 抓 握 形 態 的 操 作 ° 根 據 我 系 所 有 的 五 指 靈 巧 手 ’ 我 們 研 發 了 一套多 

指 靈 巧 手 操 縱 的 動 態 模 擬 系 統 。 這 是 第 一 套 能 模 擬 不 同 的 靈 巧 操 縱 動 

作 ， 並 且 能 提 供 操 控 員 一 交 互 式 的 方 法 來 進 行 靈 巧 操 縱 模 擬 的 系 統 。 

透 過 模 擬 系 統 的 模 擬 結 果 ’ 我 們 証 明 了 所 建 立 的 動 態 模 型 的 正 確 性 和 

肯 定 了 模 擬 系 統 的 效 率 和 精 確 度 。 
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Chapter 1 

Introduction 

1.1 Motivation 

Robotics is a multi-disciplinary subject involving mechanical engineering, electronic 
and electrical engineering, computer science, and mathematics. This subject has been 
studied over several decades. Nowadays, robots are not only examined in laboratories 
but also have wide applications in industry. John Craig in his robotics textbook (Craig, 
1989, page 1) claims that robotic technologies are leading industrial automation through 
another transition and the scope of which is still unknown. 

For a typical industrial robotic system, it consists of a controller, sensing devices, a 
manipulator and an end-effector. Controller is the cognition device of the system. By 
using feed-forward and feedback control, it can execute commands issued by operator 
with the errors within a certain tolerance. For an autonomous system, additional task 
planner and motion planner are added on top of the controller to execute high-level 
commands. They work as the brain of the system to make decision on what jobs 
must be done and how tasks can be accomplished. Sensing device is the perception 
module of the system, collecting relevant and essential information necessary for the 
controller. Finally, physical operations such as part insertion and arc welding are 
executed by manipulator and end-effector which distinguish a robotic system from a 
solely intelligent system. 

When we mention end-effector, people may think it may be a gripper, pincers, or 
tongs, which are the common end-effectors that we can observe in industry or in movie. 
These specific tools work well in a pre-defined or known environment. However, when 
we want to extend the application of robotics to more autonomous or general tasks, 
there are several limitations of these traditional end-effectors (Murray et al., 1994; Lee 
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et al., 1994): 

• Limited number of possible grasp: For a special designed end-effector, it 
may be good to do some specific jobs but unable to do another. For example, a 
gripper can hold a rectangular object firmly but not a prismatic object. In this 
case, we may need different end-effectors to grip different shape of objects. 

• Lack of dexterity: A gripper holds a rectangular object securely but the secure 
grasping reduces the mobility of the object. In other words, it is unable to 
manipulate the gripped object. 

• Inefficiency in motion: In many cases, large motion of manipulator is required 
for even small movement of end-effector. For example, if we are required to insert 
a part into a hole but a small error is occurred during the operation (shown 
in Figure 1.1), we may need to repeat the job once again in order to complete 
it (Munoz et al., 1995). To completely repeat the motion is ineffective to correct 
the small error accumulated in operation. 

j j 
/////////////////////^W^ « 

Figure 1.1: Error arisen in peg-in-hole problem when using traditional end-effector. 

To overcome these drawbacks, people began to design more sophisticated end-effectors 
and the development of dextrous multi-fingered robot hands has been extensively stud-
ied since 1980's. 
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High dexterity and superior ability of fine manipulation offer multi-fingered robot 
hand extensive potential applications such as in precision industries and robotic aided 
surgery. Most of the research work are concentrated in mechanical design (Jacobsen 
et al., 1986; Ali et al., 1993; Umetsu and Oniki, 1993), kinematics (Salisbury and 
Roth, 1983; Montana, 1995), dynamics and control (Cole et al., 1989, 1992)，and stable 
grasping (Li et al., 1989; Shimoga, 1996). The maturity of the development of these 
low-level components facilitates some simple applications in the real world. In (Nelson 
et al., 1995), the Utah/MIT multi-fingered robot is capable of performing assembly 
work and of screwing a light bulb. However, planning of dextrous manipulation is still 
one of the major obstacles in more advanced applications. 

Manipulation of multi-fingered robot hands is subject to various geometric and 
mechanical constraints. For example, contact between finger and the part being ma-
nipulated is a kind of unilateral constraint. This constraint prevents inter-penetration 
of physical objects. Rolling contact occurred during dextrous manipulation produces 
the nonholonomic constraint. It is a kind of velocity constraint, which cannot be inte-
grated into position constraint. Planning of a system with nonholonomic constraints is 
still the active research area in these years (Li and Canny, 1993). Furthermore, high 
degree of freedom makes the planning problem more complicated. For the five-fingered 
robot hand system developed at the Chinese University of Hong Kong (CUHK) shown 
in Figure 1.2, there are three joints for each finger. Ifwe consider the planning problem 
of this multi-fingered robot hand, fifteen degrees of freedom plus six degrees of freedom 
of the manipulated object yield a high degree of freedom problem which is very difficult 
to solve. 

In the research proposal ofLiu (1995), the Dextrous Manipulation Teaching System 
DMTS has been proposed to do the planning of a multi-fingered robot hand. The main 
idea is to develop a human friendly teaching interface to teach the human dextrous ma-
nipulation skill to the robot hand system. While the operator is performing the task, 
the system observes the grasping and the manipulating motions, and segment them 
into a set of primitive control motions. In such a way, the human operator action acts 
as the guide for the real multi-fingered robot hand execution, which greatly reduces 
the planning complexity. This robot programming by demonstration method has been 
developed in assembly task and grasping (Kang, 1994). However, it is difficult to apply 
these algorithms in teaching dextrous manipulation. Teaching dextrous manipulation 
requires depth understanding of mechanical interactions between the fingers and the 
manipulated object such as prolonged contact and impulsive collision. The previous 
developed systems only consider the geometric understanding of human motion. More-
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(a) There are 5 fingers and each (b) A snapshot of the hand manipulating 
finger has 3 joints. All joints are a tennis ball. 
actuated by direct drive motors 
and 6 dimensional force sensors are 
equipped at all fingertips. 

Figure 1.2: A five-fingered robot hand system developed at the CUHK. 
over, the DMTS is capable of learning a better dextrous motion taught by different 
operators or the same operator at different times based on some performance evalua-
tion modules in the system. Capability of learning provides a superior feature of this 
DMTS over existing ones. 

In the master thesis of Lam (1998), a pure kinematic simulator has been developed. 
It computes the motions between the human fingers and the manipulated object from 
the manipulation demonstrated by an operator. The simulated motion determined by 
this method can be ensured to be satisfied by all the kinematic constraints. This simu-
lator is good to provide us a basic understanding between the interactions of dextrous 
manipulation and kinematic constraints. However, the dynamics of the hand and the 
object are not considered in this system. In other words, we cannot know the dynamic 
behavior of the system and this is the major limitation of a kinematic simulator. In 
order to teach dextrous manipulation using the DMTS interface, an accurate dynamic 
simulator is the core and the indispensable module. Consideration of full kinematic 
and dynamic models, and the contact dynamics such as sticking, rolling, and sliding 
contacts not only simulates the physically accurate grasping and manipulating motions, 
but also helps us to examine dynamic behaviors of the multi-fingered robot hand. The 
primary objectives of this dissertation are: 

• to model the kinematics and the dynamics of a multi-fingered robot hand sys-



1.2 Related Work 5 

tem performing various dextrous manipulation task, which involves free motion, 
sticking contact, rolling contact, sliding contact as well as collision between the 
fingers and the manipulated object 

• to construct a dynamic simulator that simulates dextrous manipulation 

The constructed dynamic simulator for the multi-fingered robot hand system does 
not limit to apply to the DMTS. It is also precious to act as the general platform to 
evaluate different control algorithms for the multi-fingered robot hand system, multiple 
manipulators cooperation system, and the multi-legged walking robot since they are also 
classified as the closed chain multi-body mechanism. Safety, cost-effectiveness, and high 
efficiency are the advantages of using simulation system to perform preliminary control 
problem study before doing experiments with the real robots. Different situations can 
be simulated by just tuning the simulation parameters such as the total degree of 
freedom of the mechanism or the frictional coefficient between interactions. Existing 
dynamic simulators work under many assumptions. For example, in (Cole et al., 1989), 
the authors study control problem of dextrous manipulator with sticking or rolling 
contacts, assuming no sliding contacts nor collision occurs. Our dynamic simulator is 
suitable for all kind of dextrous motions. 

1.2 Related Work 

Dynamic simulation of hand motions has been studied in computer science and engi-
neering. For the work of Sanso and Thalmann (1994) and Ip and Chan (1997), a realistic 
animation of human hand is aimed to develop. Sanso and Thalmann utilize the ge-
ometric modeling of human hand and the kinematic control to realistically simulate 
human grasping motions. Ip and Chan add the dynamic effects into their consideration 
in animating human hand motion. Both studies limit their work in hand motion sim-
ulation but do not consider any grasping or manipulation. In (Kasinski et al., 1991), 
the authors proposed a computer graphic system for interactive grasp planning. The 
objective is similar to the one used in DMTS but the authors only consider the geo-
metrical modeling problems in simulation and provide a guideline for construction and 
applications. They have not constructed any system based on their ideas. Bergamasco 
et al. (1994) proposed another approach for simulating grasping motions in virtual 
reality. They firstly determine the contact area between the interacting virtual hand 
and virtual object. The contact force is then estimated by exploiting inter-penetration 
between the contacted surfaces. 
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Since the work mentioned above only consider the unconstrained system (hand 
without grasped object) or just use simple kinematic and dynamic models to model 
the hand and the grasped object, they cannot produce accurate simulations. When 
the development of virtual reality gained its widely attention for the possibly exten-
sive applications in practice, physics-based simulation becomes an active research area. 
People not only consider an accurate geometric modeling to produce the graphical out-
put of simulation but also pay attention to whether the system is physically realistic. 
In (Goyal et al., 1994a,b; Keller et al., 1995), dynamic behaviors of the unconstrained 
rigid bodies are simulated incorporating with physical laws such as Newton-Euler equa-
tions and friction law. Rigid bodies which are in contact each other are viewed as those 
which are connected by simple mechanical components such as spring and damper. 
Contact force is determined by the deformation of these components. On the other 
hand, Cremer has developed another two general-purpose dynamic simulators. Newton 
described in (Cremer, 1989; Cremer and Stewart, 1989) is able to allow constraints to 
be added or deleted while the simulation is running. Isaac in (Cremer and Vanecek, 
1994) is an extension of Newton and it was designed specifically for running in vir-
tual environment. Recently, Mirtich (1996) uses an alternative method to develop his 
general-purpose dynamic simulator. He uses impulse to model all interactions occurred 
in simulation. These interactions include both contacts and collision. His modeling 
approach and developed simulator are efficient to simulate situation where the interac-
tions are rapidly changing. In the field of mechanical engineering, Haug et al. (1986) 
developed the first dynamic simulator specially for multi-body mechanism. It supports 
analysis of mechanisms in a standard paradigm: formulate motion equations and kine-
matic constraints, and then numerically integrate them over time. In (Lee et al., 1994), 
the authors developed a dynamic simulation package for interactive robotic simula-
tion. The structure of their system sets a standard framework in constructing dynamic 
simulator for robotic simulation. 

Besides the general-purpose dynamic simulators, some other specific-purpose dy-
namic simulators have been developed in different fields. Fujimoto and Kawamura 
(1995), and Wendlandt (1997) developed dynamic simulation systems for the biped 
walking robot. Fujimoto and Kawamura combine the general manipulator simulation 
method and contact simulation of rigid body mechanics to simulate the walking motion 
of a biped robot. All interaction forces between the foot and the ground are modeled as 
the impact forces. They are determined by solving a quadratic programming problem 
with constraints. Wendlandt's simulation is developed on top of Mirtich's dynamic 
simulator. A simple contact model was proposed to simulate different contact situa-
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tions such as sliding and sticking contacts. On the other hand, McMillan (1995) in his 
Ph.D work simulated the underwater robotic vehicle systems. Efficiency of simulation 
is emphasized in his development and the dynamic modeling is done by using recursive 
approaches. Gillespie (1996) models another type of complex mechanical mechanism: 
playing piano in a computer system with haptic display. This type of motion involves 
rapid changes in kinematic constraints. He reformulates the dynamics using the Kane's 
formulation method (Kane and Levinson, 1985) to handle these changes since this inde-
pendent coordinate formulation method can help to reduce the number of constraints. 
It embeds both holonomic and nonholonomic constraints in the equations of motion. 

For the dynamic simulation of multi-fingered robot hand system, Hashimoto et al. 
(1994), and Kunii and Hashimoto (1996) developed a dynamic force simulator in a 
virtual environment. They simulate the dynamics of the object, contact model and 
characteristics of friction between the human hand and the interacting object. Since 
their input devices can input the force measured from the human hand, they do not 
consider the dynamics of robot hand. Reznik and Laugier (1996) constructed a similar 
dynamic simulator for multi-fingered robot hand system. Rather than using rigid fin-
gertip model in simulation, they use a deformable model to simulate the interactions 
between the fingertips and the object. The contact forces are computed by using a 
simplified finite element analysis method. These multi-fingered robot hand dynamic 
simulators work well to simulate grasping motion. However, since they only use the 
sticking contact model, no sliding or rolling contact is allowed in simulation. Limiting to 
use sticking contact model prohibits us to simulate manipulation motions using multi-
fingered robot hand. Because the manipulation motions may involve rapid change of 
contact constraints. Mirza et al. and Baiardi et al. have considered different contact 
models in dextrous manipulation. Using compliant contact model in (Mirza et al., 
1993) can model friction, rolling, slipping, and wedging effects, as well as the changing 
topological structures of grasp dynamics but their simulator is only a two dimensional 
simulation system. Also, stability cannot be ensured in numerical integration when 
parameters are tuned to mimic the rigid body model. Baiardi et al. (1993) derives all 
the dynamics to model different contact phenomena but their validities have not been 
proved as no dynamic simulation system has been developed based on these equations. 

1.3 Contributions 

The objective of this dissertation is to develop the kinematic and dynamic models that 
combine free motion, collision, and contact motions for a multi-fingered robot hand 
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system. Moreover, by applying the derived equations, a dynamic simulation system 
is developed for a five-fingered robot hand system. It is constructed based on the 
full kinematics and dynamics of the robot hand. The developed multi-fingered robot 
hand dynamic simulation system can help us to examine the dynamic behaviors of 
dextrous grasping and manipulation. Also, it can act as a platform to evaluate different 
control algorithm designed for the multi-fingered robot hand. In the development of 
the dynamic model, the major difficulties we encountered are: 

• Rapid changes in contact constraints and grasp configurations are common in 
dextrous manipulation but there is no unified framework to model the dynamics 
under different contact situations. 

• For the sudden change of velocity of the system caused by collision, there is no 
concise three-dimensional impulsive collision with friction model. 

The main contributions can be divided into two parts and they are: 

• Theoretical contributions: 

1. Unified formulation of contact constraints: Different contact con-
straints occurred in dextrous manipulation using multi-fingered robot hand 
are integrated into a same framework. The unified model includes free mo-
tion, sticking contact, rolling contact and sliding contact. 

2. New contact transition model: A new contact transition model is pro-
posed to handle the transition of different contact modes. 

3. Improved impulsive collision model: A simple but accurate impulsive 
collision model is developed to handle the three dimensional impact with 
friction between the fingers and the manipulated object. 

• System development: 

1. New sophisticated dynamic simulation system: A dynamic simulator 
of a multi-fingered robot hand with full kinematics and dynamics is de-
veloped. To the best of the author's knowledge, this dynamic simulation 
system is the first of its kind simulator for the multi-fingered robot hand 
in the world. It allows various grasp configuration of the robot hand and 
different contact modes in dextrous manipulation motion. 

2. Systems integration: The development of the dynamic simulator in vir-
tual environment incorporates the knowledge of virtual reality, multi-body 
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dynamics, contact modeling, physics-based simulation and human control. 
The system integration method used in this dissertation can be applied in 
many other similar systems. 

1.4 Organization of the Thesis 

This dissertation presents the dynamic modeling and simulation of a multi-fingered 
robot hand in the following chapters: 

• Chapter 2 Contact Modeling: Kinematics: Various methods for modeling 
contact interaction are reviewed and the constraint-based formulation method 
is applied. The contact kinematics, finger kinematics, and grasp kinematics of 
the multi-fingered robot hand system are derived in order to obtain the veloc-
ity constraints of the entire system. Different kinds of contact constraints are 
incorporated in the formulation for the purpose to allow various grasping config-
urations and various contact modes. 

• Chapter 3 Contact Modeling: Dynamics: This chapter is to derive the 
dynamic equations of the fingers and the manipulated object under the velocity 
constraint derived in Chapter 2. They are essential to the study of the dynamic 
behaviors of the multi-fingered robot hand system manipulating an object. 

• Chapter 4 Collision Modeling: A first order differential equation is derived 
to describe the collision process. Because in different collision conditions, the 
integration of the differential collision equation are different. Both sliding mode 
and sticking mode collision integration with details are discussed. There are some 
special treatments for the system with mixed contact and collision interactions 
in using our collision model. It will be discussed at the end of the chapter. 

• Chapter 5 Dynamic Simulation: The overview architecture of the dynamic 
simulation system of the five-fingered robot hand system is discussed and various 
components of the system are presented. Since the dynamic simulator is the core 
of the dynamic simulator, each of its components is further discussed and the 
implementation issues are also discussed. 

• Chapter 6 Simulation Results: Dynamic simulation examples and results are 
presented in this chapter. The examples include the change of grasping con-
figurations, different types of contacts, impulsive collision, and simple dextrous 
manipulation motions. 
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• Chapter 7 Conclusions: This chapter summaries the work and also discusses 
the future development of the system. 

In a number of appendices, we enclose some reference materials including 

• Appendix A Montana's Contact Equations for Finger-object Contact 

• Appendix B Finger Dynamics 

• Appendix C Simulation Configurations 



Chapter 2 

Contact Modeling: Kinematics 

2.1 Introduction 

In real world, when we grasp or manipulate a rigid object, our fingers never penetrate 
into the object. However, it is not the case in computer world. Consider Figure 2.1, 
when we want to use the hand to grasp a virtual rigid object in a computer simu-
lated environment, the fingers will enter into the object if nothing is done to prevent 
these inter-penetrations from happening. For computer animation systems without 
considering dynamic effects, this kind of situation can be easily avoided by monitoring 
kinematic relationships between objects. For example, the grasping simulator devel-
oped by (Iwata, 1990) assumes that when the virtual hand is in contact with the virtual 
object, the virtual object is considered captured and graphically connected with the 
virtual hand. This method provides a visual effect that the virtual hand just touches 
the virtual object. However, for dynamic simulation systems, contact force between 
the contacted objects must be determined in order to simulate the dynamic effects It 
is computed based on the dynamic properties of the simulated system to prevent the 
unrealistic inter-penetrations occurred in simulation. 

The most widely used method in computer graphics community (Moore and Wil-
lielms, 1988; Cadoz et al., 1993; Luciani et al., 1991) to determine the contact constraint 
force is the penalty method. Contact presented during simulation is modeled by a spring 
or a spring-damper coupler connecting the bodies in contact. The interaction force is 
computed based on the depth and the speed of penetration. To mimic this unilateral 
contact constraint, the spring-damper pair is removed when a change from compressive 
to tensile interaction force is detected. In (Kraus and Kumar, 1997; Kraus et al., 1997)， 

the authors use an improved model to simulate frictional contact motion. Their compli-

11 
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® 
Figure 2.1: Inter-penetrations between the virtual fingers of the multi-fingered robot 
hand and the virtual object in computer simulation. 

ant model uses a pair ofspring-damper couplers to model the normal and the tangential 
contact interactions. The spring-damper couplers allow small local deformation at the 
contact point, which incorporate mechanisms for energy storage and for energy dis-
sipation. These penalty methods are easy to implement and efficient in simulation. 
Tlieir major disadvantage is to yield stiff equation^ when large spring constant (stiff-
ness coefficient) is applied in order to approximate the rigid body behaviors (Witkin 
et al., 1992). Thus, the equations of motion of the whole system become numerically 
ill-conditioned. 

When we examine the contact phenomenon physically, there are some properties 
that can help us to compute the interaction force analytically. Firstly, when we denote 
the relative normal acceleration between contact points by a„ and the interaction force 
as /n, two inequality constraints can be obtained: 

Un > 0 

[fn ” 

1八 stiff system is one whose dynamical differential equations posses a solution with widely disparate 
time constants. 
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These relationships are easy to understand since no inter-penetration is allowed for 
the contact of rigid bodies. The third characteristics is called the complementarity 

constraint: 

fnO-n = 0 

This constraint reflects that if the interaction force is nonzero, the relative acceleration 
must be zero and the contact is a resting contact. Otherwise, if the interaction force 
is zero, the acceleration must be positive so the bodies are moving apart. As a result 
determination of contact force with above constraints can be solved as a linear com-
plementarity problem (LCP) (Cottle et al , 1992). It is one ofbranches in optimization 
with wide study. Lotstedt (1982) is the first person who uses this idea to treat friction 
between contacting rigid bodies. Baraff extends his work to develop a dynamic sim-
ulator focusing on the non-penetrating rigid bodies (Baraff, 1993，1994, 1992). When 
there is no friction in the system, the LCP method always yield unique solution for the 
contact force. However, when considering the effect of friction, the corresponding LCP 
may not have a solution, or if there is solution, it may not be unique. Existence and 
uniqueness of LCP solution in dynamic simulation are extensively studied in (Pang 
and Trinkle, 1996a; Trinkle et aL, 1996; Pang and Trinkle, 1996b) and they can be 
guaranteed when strict modification of the problem is applied. 

The idea of penalty method is trivial but accuracy of the computed contact force 
cannot be ensured or unstable equations of motion may be obtained. The LCP method 
is accurate but it is under restrictions. Also, it is comparative time consuming to 
solve optimization problem. An alternative to determine the interaction force analyti-
cally is to transform the inequality constraints into equality constraints. The bilateral 
constrained mechanical system is well studied and the constraint force can be easily cal_ 
culated by, for example, the Lagrangian method (Rosenberg, 1977). Haug et al. (1986) 
have used similar idea in implementing their general-purpose dynamic simulator. The 
most difficult part ofthis approach is how to choose a corresponding bilateral constraint 
to replace the unilateral constraint when contact is detected. A comprehensive contact 
transition model is proposed in this dissertation to solve this problem. 

The bilateral constraints in contact dynamics represent the geometrical relation-
ships between the contacting rigid bodies or they are called the contact kinematics 
in mechanics. The contact kinematics for rigid bodies is firstly examined in (Cai and 
Roth，1987, 1988). Cai and Roth formulate the equations with respect to Cartesian ref-
erence frame established at the contact point of the three dimensional contacting rigid 
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bodies. Montana (1988) generalizes their results by applying differential geometry con-
cepts and people call these generalized equations the Montana 's contact equations. His 
result assumes that the contacting bodies are always in contact. The approach de-
veloped by Anitescu et al. (1995) allows the non-contacting case based on Montana's 
work. Sarkar et al. (1996) also extend the velocity level Montana's contact equations 
to the acceleration level. 

In this dissertation, the constraint-based formulation method is applied in modeling 
different kinds of contacts presented in dextrous manipulation motions. It provides a 
comparative simple and effective method to determine the constraint force. In this 
chapter, we will present the contact kinematics occurred in multi-fingered manipula-
tion and review the Montana's contact equations. Based on these equations, we will 
derive the velocity constraint for the whole multi-fingered robot hand system and the 
manipulated object. This velocity constraint is in a generalized form that can represent 
free motion, sticking contact, rolling and sliding contacts. Force related materials will 
not be considered in this chapter and they will be discussed in next chapter. 

2.2 Contact Kinematics between Two Rigid Bodies 

2.2.1 Contact Modes 

Before the discussion of contact kinematics in dextrous manipulation, the simple contact 
kinematics between two rigid bodies is introduced first. When the two rigid bodies are 
not in touch, we generally call that they are in free motions. If the two rigid bodies 
are in contact, there are three different contact modes and they may be in sticking 
contact，rolling or sliding contact. Consider Figure 2.2, coordinate frames Si and S2 are 
located at the contact points on the surfaces of object 1 and object 2 respectively Let 
^ 二 [̂ X Vy Vz^ and w = 0½ Uy u^ be the relative translational and rotational 
velocities of the coordinate frame Si with respect to the coordinate frame S2. When 
we assume that the two contacting objects' surfaces are smooth, the three contact 
modes can be defined in terms of the elements of v and uj since some components 
of the relative contact velocity are constrained for a particular contact mode. The 
mathematical expressions of the three contact modes are: 
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1. Sticking contact: 

�1 r 1 
Vy = 0 and ^ = 0 (2.1) 

^v 
-•̂2」 

It represents the two contacting objects are sticking together and there is no 
relative motions between them except the rotation above the normal vector at 
the contact point. 

2. Rolling contact: 

Vx 
Vy = 0 and ujz = 0 (2.2) 

yz_ 

It represents the pure rolling contact so translational movement is not allowed. 

3. Sliding contact: 

UJx 
Vz = 0 and ujy = 0 (2.3) 

_ ’ 

Similarly, this contact considers only the pure sliding contact. 

2.2.2 Montana's Contact Equations 

The Montana's contact equations describe the motion of contact points on the surfaces 
of two contacting objects in response to a relative motion of these objects. With 
reference to Figure 2.3, the coordinate frame Ei and the coordinate frame S2 are 
assigned at the contact points on the surfaces of the two objects. The 2-axes of them 
are pointing outwardly in the normal directions at the contact point. Local coordinate 
charts a and c2 are defined on the surfaces of the two contacting objects. The local 
coordinate chart ĉ  takes a point � $ G 况2 to a point ^‘ e 况3 on the surface of an 

Yuiy\ 
o^ect. The Montana's contact equations governing the geometrical relationships of 
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Object 1 

/ f 7 \ 
Object 2 / T 

/ ^ ^ ^ ^ 么 
( ^ ^ - - ¾ ^ 

^ ^ ^ ^ 
* - : -" t̂'Ĵ ' 

Figure 2.2: Relative contact velocity defined in two contacting rigid bodies. 
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the two contacting rigid objects are: 

‘ /「_ 1 「 ] 、 
ui =Mi_ l ( i^ i + ^ 2 ) - l - �- ^ 2 ' ^ 

U w J K.. / 

^ �=似2-1 \k {K, + 知 - 1 I 卜 叫 + Ki ”^ ] (2.4) 

U%J KJ/ 
i^ = uJz + TiMiUi + T2M2U2 

Object 1 
^f|^^^/^- •/•• • • V'̂"̂^̂^̂s*w 

y '̂-./'........L..i........V,:̂ ^ 
/ ( / I \ \ \ 

U-t—11—v-\\ 
H-�..�...1—44—A--.v\ 

1一..二.....一.....X-4—.....L..�1 O b j e c ^ 

;1.�.^¾^]'...':1^^^^5i^^ 
^ ¾ ¾ ¾ w^ 
^ • f ^ ^ ^ 

Figure 2.3: Coordinate frames assignment for the Montana's contact equations. 

The rotation angle |̂; makes the a;-axes of coordinate frame Ei and that of coordinate 
frame E2 aligned. Matrix \k is the sub-matrix of \R which is the rotational matrix^ 
of frame Si relative to the frame E2： 

lR=\'^ 02xi^ and ? ^ = [ c o s V ^ — s i n - ' 

0ix2 1 -sini/; — cosip 

^This rotational matrix can be computed by firstly rotating 180° about the x-axis and then rotating 
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r 1 � 

Vector Vx Vy Vz ojx ^y ^x is the generalized relative velocity of the coordinate 
frame Si with respect to the coordinate frame S2. Matrices Ki, Ti, and M{ are the 
curvature tensor, torsion tensor, and metric tensor of the zth contact surface. The 
matrix K2 is determined by equation 

k2= \RK2\R 

Figure 2.4 shows the input-output relationship of the Montana's contact equations. 
When we have the information of the relative velocity of two contacting bodies, we 
can determine the contact trajectories on these contacting surfaces. This piece of 
information is useful when we need to integrate the contact kinematics and the contact 
dynamics together. The detailed derivation of the Montana's contact equations for 
the contacting finger and the object in our multi-fingered robot hand system can be , 
referred in appendix A. 

”工 *"I |w • ^ix , 

， ！ S — — “ � , 
^ Montana's Contact Equations S • ŷ ^̂  

二 I : 、 . 
^Z ^̂  Miiiwiwiwwnp<m-u•••••nw>y_<ww"wyr"M;Jf"!"M>,VTOgOPWSBgPWffiyy î S ^̂  ^ 

“-： . ¾ ^ r:y -丄* 1 - •；*•.. ：：：； • ̂ ¾¾i¾̂ ： ĝgil 
'.��• , A T̂tV* i'i^ •* ,jMh,ik̂  |1 ji LC illwitor' ̂  »f îBBKWf<̂ Ŵff̂  !̂5 

Figure 2.4: Input-output relationship of the Montana's contact equations. 

2.3 Finger Kinematics 

Besides the contact kinematics between two rigid bodies, finger kinematics is also im-
portant in formulating the kinematics of the whole multi-fingered robot hand system. 

about the z-axis by angle /̂̂  The mathematical expression of this rotational matrix is: 

lR = R47r)R,{ij) 
"1 0 0 ] �cos %p — sin xp 0' 

= 0 - 1 0 smrp cosip 0 
_0 0 - l J [ 0 0 1 

• cos%p — simp 0" 
= — s i n %p - cos ip 0 

0 0 1 
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Finger kinematics relates the joint space to the Cartesian space. The finger Jacobian 
matrix further relates the generalized velocities and the generalized forces in the joint 
and the Cartesian spaces. In this section, the finger forward kinematics and the finger 
Jacobian are reviewed. 

2.3.1 Finger Forward Kinematics 

The derivation of finger forward kinematics can be divided into two steps. The first 
step is to assign coordinate frames to each finger link and to find out the kinematic 
parameters of the finger. Next, the finger equation^ is derived, which is actually the 
finger forward kinematics, from the link-coordinate transformation matrices. 

The coordinate frame for each finger link can by assigned by the modified^ Denavit-
Hartenberg method (Craig, 1986) and the assignment is shown in Figure 2.5. After the 
assignment, the kinematics parameters ofthe finger can be defined and they include the 
joint parameters and the link parameters. The joint parameters describe the relative 
position and orientation of two successive links and the link parameters represent the 
relative position and orientation of the axes of two success joints. Descriptions of these 
parameters are summarized in Table 2.1. 

The general form of the finger equation is: 

m = l r ? 1 (2.5) 
Uix3 1 _ 

Matrix R{0) e 况3><3 jg the rotational matrix and vector p{9) e ^3xi ĝ the translational 
vector. Vector 6 represents the generalized joint angles. This finger equation can be 
determined by the following equation: 

F(6)= \T \T... ^ T . . . (2.6) 

Index i represents the ith coordinate frame and the index b represents the inertial 
coordinate frame. Matrix -^^T is a 4 x 4 link-coordinate transformation matrix which 
represents the relations between the iih coordinate frame and the i + 1th coordinate 

^Generally, it is called arm equation for the manipulator. It is renamed in this dissertation in order 
to emphasis that it is used for the finger. They are actually identical. 

^It is the modified version of the popular Denavit-Hartenberg assignment method and its introduc-
tion is to avoid the problems arisen in closed kinematic chain. 
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Figure 2.5: Coordinate frame assignment of the modified Denavit-Hartenberg method. 

Name Description 一 

Joint Joint angle,氏 The rotation about the z-axis of the 
Parameters ith coordinate frame (^z) which is 

required to make the a>axis of the 
ith coordinate frame (^x) parallel 
with the a>axis of the i + 1th coordinate 
frame ( ^ a ; ) . 

Joint distance, di The translation along ẑ which is 
required to make axis 'x intersect with 
axis ^+½. 

Link Link length, ai The translation along ^+^x which 
Parameters is needed to make axis 'z intersect 

with axis ^^^z. 
Link twist angle, ai The rotation about ^+½ which is 

needed to make axis 'z parallel with  
axis ^+î r. 

Table 2.1: Finger parameters. 
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frame. This transformation has the form of: 
• _ 

C9i -CaiS0i SaiSQi aiCQ-
i rp _ se, CaiC0, -SaiC0. 0^5^. 
终1 = n c ^ , (2.7) 

^ ^ai ^ai d'i 
0 0 0 1 

The symbols SQ. and CQ. represent sin(^) and cos{6i) respectively. 

2.3.2 Finger Jacobian 

The velocity relationship of the kinematics can be obtained by determining the ith finger 
Jacobian Ji{6i). Assuming E^ and Efi are the inertial and the fingertip coordinate 
frames of the ith finger, the finger Jacobian relates the velocity of the zth fingertip 
coordinate frame ^V/j to the joint velocity 6i together as 

% i = MGi)h (2.8) 

Since the finger Jacobian can be partitioned into two sub-matrices: 

j m = h ( A ) 
[Juji{Oi) 

where Jvi(Oi) represents the Jacobian corresponding to linear velocity and Jui{Oi) rep-
resents the Jacobian corresponding to angular velocity. The term Jvi{6i) can be deter-
mined using the the vector p{9) in equation (2.5) and the determination of Jui(Oi) re-
quires the information contained in the link-coordinate transformation matrices (equa-
tion (2.7)). 

2.4 Grasp Kinematics between a Finger and an Object 

The finger kinematics only considers the relationship between the joint space and the 
Cartesian space. When the fingers are manipulating an object, several closed chains 
are formed. It is essential to determine the grasp kinematics to find out the relations 
of the velocities of the fingers, velocities at the contact points and the velocity of the 
object. In this section, the grasp kinematics between the ith finger and the object is 
derived. The derivation not only considers one particular mode of contact but also 
incorporates different contact modes and different fingertip models into one equation 
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to facilitate the simulation of dextrous manipulation. 

2.4.1 Velocity Transformation between Different Coordinate Frames 

In order to formulate the grasp kinematics between the ith finger and the object, ve-
locity transformation methods between different coordinate frames are very important. 
For example, we always need to know the relationship between the velocity of point a 
with respect to coordinate frame E^ and the velocity of point b with respect to coor-
dinate frame E^. The velocities of different parts of the system may be with respect 
to different coordinate frames and the analysis of the resultant motions requires us 
to study them in the same coordinate frame. The first Theorem shows us the veloc-
ity transformation between two coordinate frames and the second one describes the 
transformation between three different coordinate frames. 

y 
Theorem 2.1 (Craig, 1986). Assume V = be the generalized velocity of an ob-

U) 
ject and Ty be the 6 x 6 velocity transformation matrix. This velocity transformation 
maps the velocity of a point in one coordinate frame into corresponding velocity of 
another point in another coordinate frame. 

'Vt='aTv^Va (2.9) 

where "Va is the velocity of point a with respect to coordinate frame E^ and ^Vb is the 
velocity of point b with respect to coordinate frame E{,, and the velocity transformation 
m,atrix ^Ty can be expressed as: 

brj. [ tR % X ？丑] , 

^^^^[03X3 tR J (2.10) 

where l R is the 3 x 3 rotational matrix and "pt is the 3 x 1 translational vector. 
Based on Theorem 2.1, we can have another velocity transformation equation which 

involves more than two coordinate frames. 

Theorem 2.2 (Li et al., 1989). If there are three coordinate frames E^, E^ and Sc, 
the relative velocities acting on different coordinate frames can be related as 

" V c = g T v " H + ^ V e (2.11) 

Proof. Consider Figure 2.6, vector 'Vj/k represents the relative velocity from coordinate 
frame Ek to coordinate frame S j with respect to Sj. The relative velocity ^V /̂a can 
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be written as: 

^Ve/a - 'V,,a + 'V,„ 

Since the term ^V /̂a can be projected to coordinate frame Ej, by Theorem 2.1 as: 

'V,,a=lTv'V,,a 

The relative velocity Vj/^ can be viewed as ^Vj. In this way, the equation (2.11) can 
be obtained. • 

^ ^ ” � 
\ ,>'"""" V 

S c W ^ ' \ ’ 

� � : � � � � � � � � � � � � � -\ . 
� � - � �^ g ^ 

\ 
Figure 2.6: Velocities transformation in different coordinate frames. 

When the coordinate frame Sc is fixed relative to the coordinate frame S^, equa-
tion (2.11) can be further simplified as: 

"Vc=^Tv"V5 (2.12) 

2.4.2 Grasp Kinematics for the zth Contact 

Figure 2.7 shows the coordinate frames assignment for the zth finger and the object that 
are in contact. E^ is the inertial coordinate frame. It is fixed in the workspace such that 
we can use it as the universal coordinate reference frame. Eji and So are the coordinate 
frames placed at the fingertip of the ith fingertip and the object respectively. They are 
used to describe the configurations^ of both the zth fingertip and the object. Both Ŷ n 

5 Configuration is a term used to describe both the translational locomotion and the orientation of 
an object. 
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Figure 2.7: Coordinate frames assignment for the contacting ith. finger and object. 
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and Soi are the coordinate frames located at the contact points. E“ is placed at the 
contact point on the surface of the ith fingertip. Similarly, Eoi is placed at the contact 
point on the surface of the object. Their 么-axes are pointing in the normal directions 
of the contact point so they are aligned on the straight line. Using Theorem 2.2, we 
can establish following velocity relationships for coordinate frames E<,, En, and En： 

^Vo^= f：Ty^Vl^+^'Vo^ 

This equation implies that the relative velocity ^Voi can be determined by the inertial 
contact velocities at the contact points on the ith fingertip surface and on the object 
surface. It is very important since different expressions of the relative contact velocity 
“Voi implies different contact mode as described in Section 2.2.1. However, we are 
more interested to know how the joint velocities and the object velocity affect this 
relative contact velocity. Because there is no relative motion between the coordinate 
frames En and E/j , and between the coordinate frames Eoi and Eo, we can apply the 
equation (2.12) in Theorem 2.2 to obtain following equations: 

bVu=%TvbVfi and ' V o i = l ' T v ' V o 

On the other hand, the velocity of coordinate frame Eŷ  can be related to the joint 
velocity of the contacting ith finger by the finger Jacobian (equation (2.8)). As a 
result, we can express the grasp kinematics for finger i as follows: 

G r V o = J f A + i % i (2.13) 

where Gi = l^T^ is called the grasp matrix for contact point i. It transforms the force 
acting at the contact point to the force with respect to the inertial coordinate frame 
^b- Matrix Jfi 二 gTyĵ ^Tyê î is called the hand Jacobian for finger i and the term Ji 
is the finger Jacobian derived in Section 2.3.2. 

2.4.3 DifFerent Fingertip Models and Different Contact Modes 

There are several fingertip models commonly used in the research community and they 
are: 

1. Frictionless post contact: It is assumed that there is no friction between the 
fingertip and the object. In this case, forces can be only applied in the normal 
direction of the contact point on the object surface. 
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2. Frictional post contact: For this fingertip model, friction assumed to be pre-
sented at the contact point and the Coulomb friction model is always applied to 
model the friction. This model implies that the range of tangential forces which 
can be applied at a contact is governed by: 

| / t | < f^fn 

where ft and / „ represents both the tangential and normal forces, and the co-
efficient /i is the static coefficient of friction. Sliding occurs when the above 
inequality cannot be satisfied. 

3. Soft fingertip contact: This model is similar to the frictional post contact. 
Other than allowing translational forces applied, torque about the normal com-
ponent can also be exerted and it is limited by the torsional friction coefficient 

These fingertip models impose additional constraints to the grasp kinematics. In 
oder to incorporate them into the kinematics, the grasp kinematic equation (2.13) is 
rewritten as: 

B f G j ' V o = B f j f A ^ B f ' % , (2.14) 

The matrix Bi is called the fingertip model selection matrix^ which is in the form of: 

1. Frictionless post contact: 

lT 
Bi = [0 0 1 0 0 0 

2. Frictional post contact: 

_1 0 0 0 0 Ol^ 
B i = 0 1 0 0 0 0 

_0 0 1 0 0 0 

®This matrix is same as the wrench basis notated in (Murray et al., 1994). 
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3. Soft fingertip contact: 
了 

"l 0 0 0 0 o l 
0 1 0 0 0 0 

执 = 

0 0 1 0 0 0 

0 0 0 0 0 1 

On the other hand, the grasp kinematic equation (2.13) is also constrained by 
another constraints when the contact is in a particular contact mode. Some of the 
elements of the relative contact velocity ^̂ Voi are equal to zero. Prom equation (2.13), 
the relative contact velocity can be written as 

in̂ cn = C M d G r V o r J f ^ ) (2.15) 

The matrix contact mode selection matrix Cm for the ith. contact is introduced in the 
above equation to represent the effects of different contacting situations: 

1. Sticking contact: 

0 0 0 0 0 o" 
0 0 0 0 0 0 

0 0 0 0 0 0 
CMi 二 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

since v^ = Vy = Vz = uJx = ^y = 0. 

2. Rolling contact: 

' 0 0 0 0 0 o ' 

0 0 0 0 0 0 

^ 0 0 0 0 0 0 
CMi — 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 0 

since only the Ux and Uy of the relative contact velocity are non-zero. 
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3. Sliding contact: 

"l 0 0 0 0 o" 
0 1 0 0 0 0 

^ 0 0 0 0 0 0 
Cj[4i = 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

since only the elements Vx and Vy are non-zero. 

As a result, the grasp kinematic equation (2.13) can be extended to incorporate both 
fingertip model selection matrix and contact mode selection matrix to represent vari-
ous fingertip models and contacting situations. Combining equation (2.14) and equa-
tion (2.15), the grasp kinematic equation becomes 

BfGj 'Vo = Bfjfi6i + BfCMi{Gj &V�, - JfA) (2.16) 

2.5 Velocity Constraints of the Entire System 

The previous section only derives the grasp kinematics for the ith. contacting finger and 
the object. Typically, there should be more than one finger for a multi-fingered robot 
hand. We can combine the grasp kinematic equations for all fingers and write out the 
velocity constraints of the multi-fingered robot hand system. Assume that there are m 
fingers for the robot hand. There are m grasp kinematic equations (equation (2.16)): 

BfGf'Vo = BlJfA + BfCMi{GrVoi — JfA) 

B2G2 ^Vo = Bjjf2O2 + B2CM2(G2^V02 - Jf2O2) 
• • • 

• • . • • • 

BjGj'Vo = BjjjA + BfCMi{Gj'Vor — JfA) 
• • • 

• • • • • • 

^m^m � o = B^JfmOm + ^m^Mm(G'm �om - Jfm^m) 

The matrix form of the above equation can be expressed as 

G^^Vo-Jh9 = 0 
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where 

'Bl(I-CMi)Gj' 
Bj{I - CM2)Gl 

rjp • 

^ = Bf{I-CMi)Gj 

Bl{I - CMm)Gl_ 

'Bj(I-CMi)Jfi 0 ... 0 ... 0 -

0 Bl(I-CM2)Jf2 … 0 . . . 0 . • • • . . • . 
" " = 0 0 Bj(I - CMi)Jfr 0 

• • • • • • • 鲁 . . • • 
0 0 ••• 0 ••• B^(I - CMm)Jfm_ 

r 1 T • • • • • 

0 = Oi 02 • • • Oi . . . 9m 

This equation can be further transformed into the standard form of velocity constraint 

for a robot hand system: 

Aq = 0 (2.17) 

where 

r 6 
^ = [-Jh 叫 and q = � 

Matrix A is the coefficient of the velocity constraints and vector q is the generalized 
velocity of the system. It can be noted that if CMi is equal to a 6 x 6 identity matrix, 
the term Bf(I - CMi)Gj and the term Bf{I - CMi)Jfi in the constraint coefficient A 

are zero so that velocity constraint for the zth contact does not exist and various grasp 
configuration can be achieved by setting different • • to an identity matrix. 

2.6 Summary 

In this chapter, we have reviewed existing approaches at modeling contacts occurred in 

multi-fingered robot hand manipulation. The constraint-based formulation method is 
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selected in the contact modeling because it is both accurate and computational efficient. 
The contact kinematics, finger kinematics and grasp kinematics are derived respectively. 
The velocity constraint of the multi-fingered robot hand system is deduced based on 
these kinematic equations. It has the form of: 

Aq = 0 Equation (2.17) 

Various contacting situations and various grasping configuration are allowed in our 
derivation by imposing the contact mode selection matrix Cui (equation (2.15)) into 
the formulation. Cui is a 6 x 6 zero matrix except 

f 

CMi = ^6x6 for free motion 

CMi(6,6) =： 1 for sticking contact 
< 

CMi(4,4) = CMi(5,5) = 1 for rolling contact 

CMi(l, 1) = CMi(2,2) = 1 for sliding contact 

where CMi(hi) is the ith row, i column element. Choosing different contact mode se-
lection matrices can reduce the kinematic equations to reflect a certain kind of contacts. 
They include both the free motion and the sticking, rolling, and sliding contacts. 



Chapter 3 

Contact Modeling: Dynamics 

3.1 Introduction 

For a dynamic simulation system, the fundamental problem to solve is to determine 
the equations of motion of the system. The dynamics can help us to calculate the 
acceleration of the system in response to a set of forces (including both external and 
internal forces) acting on it. Once the acceleration is determined, numerical integration 
method can be applied to compute the new state^ of the system. For the multi-fingered 
robot hand system, after setting up the equations of motion, new states of the fingers 
and of the object can be determined under the effects of gravitational force and joint 
torques. The general matrix form of the dynamic equations of a robotic system is: 

M{q)q + N{q,q)=r (3.1) 

Matrix M{q) is a square inertial matrix of the robotic system. This matrix is always 
invertible because it is symmetric and positive definite. N[q, q) contains the centrifugal, 
Coriolis, frictional, and gravitational terms of the dynamics. Vector q and r are the 
generalized coordinates and the generalized external inputs respectively. Rewriting 
equation (3.1) can obtain a second order differential equation as: 

�• = M ( g ) - i [ T - i V ( g , � ) ] (3.2) 

This second order differential equation ODE can be further decomposed into two first 
order equations such that the common ODE numerical integrator can be used to com-
pute the new system state. 

^State represents both location and velocity of a system. 

31 
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Equation (3.2) shows us a closed form matrix equation to determine the acceleration 
of a general robotic system. However, due to the speed requirements of real-time 
control application, computational efficiency in determining the system acceleration 
is critical because of the limited computational power of digital computer in past. 
People always rewrite it in a recursive form for the ease of computation. The two most 
famous recursive methods (Featherstone, 1987; Lilly, 1993) are the composite-rigid-body 
method and the articulated-body method. The composite-rigid-body method was firstly 
proposed by Walker and Orin (1982). It is the most efficient recursive method available 
for calculating acceleration from the system dynamics in most practical cases when the 
degree of freedom of the system is less than nine. The main idea of this method is to 
obtain and to solve a set of simultaneous equations in the unknown system accelerations. 
In (Featherstone, 1983), the author developed an alternative recursive method, the 
articulated-body method which uses the spatial operators so that the motion and the 
force constraints can be obtained and propagated along the mechanical system. Since 
the arithmetic operations of this algorithm grows linearly with the number of degrees 
of freedom of bodies, it yields a better performance to simulate a complex dynamic 
system. Also, the idea used in articulated-body method can be extended to handle the 
non-serial mechanism and the closed-loop system. 

Because the rapid development of digital computer, the computational efficiency in 
calculating acceleration directly from the system dynamics is greatly improved. Ac-
cordingly, the computational form of dynamics derived in this chapter is in closed form 
rather than in recursive form. This expression can be easier to help us to examine the 
dynamic behaviors of a system. There are three common methods used by the robotic 
scientists to formulate the dynamics for a multi-body system: Newton-Euler formu-
lation, Kane 's formulation, and Lagrange 's formulation. The Newton-Euler method 
considers the rigid bodies in a multi-body system individually. Each of them has its 
dynamic equations to describe its motions. These individual dynamic equations are sub-
ject to rih holonomic constraints and rinh nonholonomic constraints of the system. This 
method is simple to setup the required equations; however, sparsity and large number 
of constraints needed to handle causes this method computational inefficient. On the 
other hand, Kane's formulation uses the idea of independent generalized coordinates^ 
to embed both holonomic and nonholonomic constraints into the dynamics. It yields 
compact equations to describe the dynamic behaviors but change of constraint requires 
reformulation of the whole system. The alternative way to apply generalized coordi-

^Generalized coordinates are given to any set of quantities that completely describes the configura-
tion of a multi-body system. 
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nates in formulation is the Lagrange's formulation method. It is the most common 
method used in formulating the dynamics of a robotic system and it can embed the 
holonomic constraints into the dynamic equations. Moreover, the constraint force can 
be determined by using the technique of Lagrangian multiplier. More detailed discus-
sion of these methods and their comparisons can be referred to (Gillespie and Colgate, 
1997). 

In this chapter, the dynamics of the multi-fingered robot hand and the dynamics of 
the manipulated object are firstly derived. After that, they are integrated together with 
the constraint equations to form the Lagrange's dynamic equations. Since acceleration 
level constraint equations are required for the reason of stable numerical integration, 
the velocity constraints derived in last chapter are differentiated and modified. This 
modification requires the use of the Montana's contact equations in practice. The final 
section discusses load distribution problem covered in simulation. 

3.2 Multi-fingered Robot Hand Dynamics 

To derive the dynamic equations of a multi-fingered robot hand, the problem can be 
broken down to firstly find out the dynamics of each finger. Since in the first step, 
we assume that the hand is not manipulating an object as well as there are no in-
teractions between fingers. The multi-fingered robot hand is then a solely open loop 
mechanism. We can derive the dynamics of each finger^ individually and then integrate 
them together. 

The finger dynamics can be described by a Lagrange's equation and the Lagrange's 
equations of motion for a conservative system is given by: 

d (dL\ dL , � 

d t [ v e ) - T e = ' (3.3) 

It is conservative because there is no energy loss under the rigid body model assumption. 
Vector 6 represents the generalized coordinates and they are the joint angles for the 
case of finger. Vector r represents the input joint torques, and the Lagrangian L is 
defined as the difference between the kinetic and the potential energies of the finger so: 

L = K - P (3.4) 

Since a finger is actually a system of rigid bodies, the overall kinetic energy is the 

^The detailed derivations of the finger dynamics are given in appendix B. 
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summation of all the rigid body kinetic energies as: 

K = Y^ (^rnfuJvj + ^ujjIju;j^ (3.5) 

where rrij is the mass of the jth. rigid body, and Ij is its inertial tensor. Vectors vj and 
ujj represent the translational and rotational velocities of the center of mass of the jth 
rigid body. The potential energy of the finger is only contributed by the gravitational 
effect and can be expressed as: 

P = Y^ {mjhjg) (3.6) 
j 

where hj is the height of the center of mass of the jth rigid body and the term g is the 
gravitational acceleration constant. 

Using equation (3.3), the dynamics of a finger can be written in the form of: 

M / z ( ^ ) ^ + A ^ ( ^ , A ) = Ti (3.7) 

Similar to equation (3.1), Mfi(6i) e 3¾"^" is the inertial tensor of the ith. finger where 
n is the number of link of a finger, Nfi{9i,0i) G 3R" is a vector of gravity, Coriolis, 
centrifugal, and friction terms, and n G 9¾" is the vector of input joint torques. 

If there are m fingers of a multi-fingered robot hand, equation (3.7) can be aggre-
gated to give the dynamics of the multi-fingered robot hand. 

Mh{e)e + Nh(eJ) = r (3.8) 

where 

'M/i(6>i) 0 . . . 0 _ 
0 Mf2(e2) . . . 0 

Mh{e) = . . . . e 況 觀 遍 
• 鲁 • • . . • . 

_ 0 0 … M f m ( 0 m ) _ 

‘NfiieiJi)-
. Nf2(e2,e2} 

Nh{e,o)= ！ e 5 T " 

_Nfm(Om^^m). 
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and the vector r is: 

n 
72 

T= • G况讓 

Jm. 

For this dynamic equation (equation (3.8)), there is no external or internal force acting 
on the system except the joint torques. 

3.3 Object Dynamics 

The manipulated object is assumed to be a rigid body. The Newton-Euler equations 
are used to derive object dynamics. The Newton equation emphasizes the dynamics of 
the translational motion of the object, and the Euler equation represents the dynamics 
of the rotation. 

I Newton equation: rUoVo = fo , . 
< . (3.9) 
I Euler equation: %cjo + u j � x ” � � �= 丁 0 

Scalar rrio and matrix ^Io represents the mass and the inertial tensor of the object. 
Since it is easier to determine the inertial tensor with respect to the object local frame, 
the inertial tensor with respect to the inertial frame can be calculated by: 

'h=iR'CoR^ 

where Ji? is the rotational matrix of the object coordinate frame with respect to the 
inertial coordinate frame. Vectors fo and r � a r e the external force and torque, and 
vectors v � a n d � �a r e the translational and rotational velocities of the object. These 
vectors are all referred to the inertial coordinate frame E^. 

If we need to determine the configuration and the motion of the manipulated object, 
the second order differential Newton-Euler equations are required to be integrated twice 
times. However, there is no physical meaning of the term f cJo dt. Another variable 
which is capable to describe the orientation of the object should replace the angular 
velocity Up. Since there is a linear relationship between the differential form of the local 
parameterization of the orientation and the angular velocity of the object, the angular 
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velocity in equation (3.9) is expressed as: 

o;o 二 P h o ) i o (3.10) 

r 1T 
where 7 � = a (3 7 is a vector of ZYZ Euler angles^ and P(70)^ is a function of 
the Euler angles: 

0 — sina cos a sin (3 
P(jo) = 0 cosa sinasin/3 e3R3x3 

_1 0 cos/3 _ 

As a result, the equations of motion of the object can be written more concise as: 

Mo{Xo)Xo + No{Xo.之）=Fo (3.11) 

where Mo{^o) is the inertial matrix, vectors No(^o, ^o) and F�are the nonlinear terms 
and the external force acting on the object. They are in the forms of: 

A":^M ^ohx3 O3x3 ^ so6x6 
尊 叫 0 3 > < 3 % 户 产 

队 ( 礼 乂 ） = ['lPjo + (PJ) X ^I{Pjo)l ^ 况6 

Fo= fo e^6 
Jo_ 

A"o = H e ^̂ 6 > . 

Similar to the dynamics of the multi-fingered robot hand, the object dynamics shown 
above is assumed that there is no internal force acting on the object. 

^For every orientation, it can be specified by three succeeding rotations about the principal axes in 
a certain order. ZYZ Euler angles represent the orientation that can be replied by rotating the 2:-axis 
by angle a, rotating the y-aocis by angle /3, and rotating z-axis again by angle 7. It is not a unique 
Euler angles representation. The rest eleven Euler angles representations can be refer to (Craig, 1989, 
page 443). 

^Derivation of matrix P{jo) can be referred to (Haug, 1992’ page 210). 
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3.4 Constrained System Dynamics 

In previous section, we have derived the multi-fingered robot hand dynamics and the 
object dynamics. In this section, we can combine these dynamics together with the 
velocity constraints derived in Chapter 2. Since the generalized velocity represented 
in velocity constraint is in the form of 9 v � Uo , we need to modify the velocity 

• . 1了 . 

constraint so that its generalized velocity is represented by 9 之 . T h e velocity 
constraint of the system becomes 

A'q = 0 (3.12) 

The overall dynamics of the multi-fingered robot hand manipulation system is: 

M s m + N s ( l ^ ) = Fs + A^X (3.13) 

Vector q represents the generalized coordinates of the system, which is equivalent to 

^ . Matrix Ms(q) is the inertial tensor of the whole system. The nonlinear terms 
^oJ 

are represented by vectors Ns(q,^). Vectors Fg represents the external force including 
both joint torques and force acting on the object. The modified velocity constraint 
(equation (3.12)) is imposed to the dynamics by using the Lagrangian multiplier 入 

which actually represents the constraint force fc. It also represents the internal force 
of the system. Matrix A transforms the effects of constraint force to the joint space of 
the system. M ^ ® , Ns{q, ^ , and Fs are in the forms of: 

M (a) = MhW 0mnx6 ^ ^(mn+6)x(mn+6) 
• 一 [Oexmn MoW\ 

二 [ mO.0) 1 ^ 况匪+6 

[iVo(A'o,^o). 

Fs = T G 况匪+6 
yFo 

Therefore, the acceleration of the system can be determined as: 

1 ^ M - \ F , + A^fc - Ns) (3.14) 

All the terms on the right hand side of the equation (3.14) are known during simu-
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lation except the constraint force. In order to determine the constraint force, we need 
to use the first derivative of the modified velocity constraint equation (3.12). Rather 
than differentiating the constraint directly, we are required to add one additional term 
as: 

A^ + Aq + aAq = 0 (3.15) 

The main idea of this modification is similar to use the Baumgarte's constraint stabi-
lization method (Baumgarte, 1972; de Jal6n Javier and Eduardo, 1994; Chin, 1995). 
Direct integration of the system dynamics with velocity constraints is difficult and only 
in some special cases of it are being studied and solved (Brenan et al., 1989). It is also 
computational inefficient. As a result, people always reduce this dynamics with velocity 
constraints into simpler problem by imposing the differential velocity constraints into 
the dynamics. However, this reduction technique introduces the drift problem during 
integration . The numerical solutions of such reduced equations may be far away from 
the manifold defined by the original velocity constraints. The additional term in equa-
tion (3.15) function to make integration among the constraint manifold asymptotically 
stable and a is a constant coefficient. 

Putting the acceleration constraint equation (3.15) into the forward dynamic equa-
tion (3.14) and having some algebraic manipulations, we can determine the constraint 
force fc as: 

fc = C-'X (3.16) 

where 

C = AM-^A^ e况想腿 

X = AM;\Ns - Fs) - Ak - OiAq E 况爪打“ 

For this equation, we cannot ensure that the matrix C is non-singular because when 
there are free motion or sliding contacts, some its rows and columns become zeros 
and the term C becomes singular. This means we cannot determine its inverse in all 
cases. For this reason, the dimension of equation (3.16) is reduced as Jc — C~^X so 
that the zero rows and columns are subtracted for the cases of free motion and sliding 
contact, the constraint force can then be computed for the nonsingular reduced size C. 
Finally, the constraint force fc can be computed based on /。，that is substituted to the 
equation (3.14) to determine the acceleration of the system. 
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Finally, when a multi-fingered robot hand holds or manipulates an object, we must 
determine how hard each finger grasps on the object. If some of them support nearly all 
of weight of the object, other fingers do not need to exert so much forces. This problem 
is called the load distribution for the multi-fingered or multiple manipulators system. 
Since the constraint force fc is determined by the inverse of the term A M " ^ i ^ , the 
payload is optimally distributed and we do not need to handle it manually. 

3.5 Summary 

The dynamics a multi-fingered robot hand system manipulating an object is discussed 
in this chapter. The robot hand dynamics and the object dynamics are derived indepen-
dently and are integrated together with the acceleration constraint (equation (3.15)). 
The major equations are: 

• Multi-fingered robot hand dynamics: 

Mh{9)'e + Nh{6, e) = T Equation (3.8) 

• Object dynamics: 

Mo{Xo)Xo + No{P^o.先）=Fo Equation (3.11) 

• Dynamics of the whole system: 

Msl + Ns = Fs + A^fc Equation (3.14) 

Vector Fs corresponds to the external force and vector A^fc corresponds to the 
internal force of the system. 



Chapter 4 

Collision Modeling 

4.1 Introduction 

When two rigid body objects collide with each other, there are sudden changes of 
velocities but their configurations are kept unchanged. These discontinuous changes 
of velocities are due to a very large interaction force arisen during the collision. This 
problem has been well studied for over a century with various assumptions made to 
simplify the problem. For examples, there is no friction between the interaction of two 
bodies or the interaction is acting along the line jointing the centers of mass of the rigid 
bodies. 

If the above exemplifying assumptions are released, the problem becomes compli-
cated. In many classical mechanics textbooks (Greenwood, 1988), two dimensional 
impulsive collision problem is introduced to be handled by solving a system of alge-
braic equations. This method is simple and easy to be extended to solve the three 
dimensional problem. It is widely used in the computer science community (Hahn, 
1988; Moore and Wilhelms, 1988). Treatments of three dimensional impulsive colli-
sion with friction using this method are thoroughly studied in (Brach, 1991), which 
assumes that the direction of the tangential relative velocity between colliding bodies 
at the collision point is kept constant during collision. As a result, the collision impulse 
and the post-collision velocities of the colliding bodies can be solved by using a system 
of algebraic equations. 

However, the constant tangential relative velocity assumption used in above alge-
braic approach was proved to be invalid. This direction is kept changing during collision. 
Rather than using the algebraic equations to describe the motion, a more accurate col-
lision model is achieved by using a set of differential equations to describe the collision 

40 
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phenomenon. This idea was firstly introduced in (Routh, 1905) and was further stud-
ied by other dynamists (Keller, 1986; Bhatt and Koechling, 1995a,b). Based on these 
previous work in differential collision modeling, Mirtich (1996) in his Ph.D. work pro-
posed an impulse-based simulation paradigm and developed a general-purpose dynamic 
simulator to model both rigid body dynamics and mechanism dynamics. His method 
has been applied to rigid body simulation for haptic display (Chang and Colgate, 1997; 
Brown and Colgate, 1997), micro-electro-mechanical-system (MEMS) device simula-
tion (Zhuang, 1996), and biped walking robot simulation (Wendlandt, 1997). 

In this chapter, we present the impulsive collision modeling equations based on 
Mirtich's work. The major differences between Mirtich's work and the work included 
in this chapter are: 

• The original work of impulse-based method uses repeated impulse to model all 
interactions between objects, including both contacts and collisions. The impulse-
based method is suitable for simulating the impulsive collision but is not natural to 
simulate continuous contacts. Mirtich has proposed an ad hoc method to model 
contact. However, as he suggests, it is more appropriate to model continuous 
contacts by other methods. We use the impulse-based method to model the 
impulsive collision only. The contact motion is handled by the constraint-based 
method discussed in last two chapters. 

• Mirtich has discussed the multi-body mechanism collision modeling but some of 
his expressions are incapable to model the multi-fingered robot hand manipulation 
motioni Modifications are made in our derivations for our specific system. 

• Mirtich used the Stronge's hypothesis (Stronge, 1991) to model the restitution 
during collision. This is different from Poisson's hypothesis in his previous pa-
pers (Mirtich and Canny, 1995a,b). Although using Stronge's hypothesis can 
improve the accuracy of the simulation, Poisson's hypothesis is more widely used 
and its formulation is simpler. We give a detailed formulation using the Poisson's 
restitution model. 

In this chapter, the velocities at the collision point on the surfaces of the finger 
and the object are firstly derived. Under the rigid body assumption, the configurations 
of the system during impulsive collision are kept constant, and only the velocities are 
various. We can determine the impulse to find out the post-collision velocities of the 

iThis incapability is verified in the personal communication and additional assumptions are required 
to add in his original work in order to apply it in our multi-fingered robot hand system. 
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colliding finger and the object. However, it is more convenient to determine the velocity 
change of collision point first and then to compute those of velocities of the finger and 
the object. Next, the first order differential collision equation is derived, which is used 
to describe the process of impulsive collision. Integration of this equation can help 
us to track through the change of collision point velocities during collision because 
the collision equation can have some specific forms for different collision conditions. 
Detailed discussions of different modes of collision integrations in different collision 
phase are placed at the end of this chapter. 

4.2 Assumptions of Collision 

Before the derivation of relevant equations for the collision, there are three assumptions: 

1. Rigidity: All physical objects or components of a multi-body system in the 
simulation are perfectly rigid. 

2. Poisson's hypothesis: Figure 4.1 shows how the impulse changes during the 
compression phase and the restitution phase of a collision. Let Pn[ l f ) be the 
magnitude of the normal component of the impulse imparted by one object onto 
the other over the entire collision and 7 be the generalized collision parameter. 
Let Pn{lmc) be the magnitude of the normal component of the impulse imparted 
by one object onto the other up to the point of maximum compression. Then, 

Pn(lf) 二 (l + e)Pn(7^c) (4.1) 

where e is a constant between zero and one, dependent on the objects' materials, 
and is called the coefficient of restitution. 

3. Coulomb friction law: At some instant during a collision between bodies i and 
j, let ^Ui be the collision point velocity of body i relative to the collision point 
velocity of body j. Let ^uu be the tangential component of % j , and let ^ ½ 
be a unit vector in the direction of ^uu. Let ” i n and ^fu be the normal and 
tangential components of force exerted by body j on body i, respectively. Then, 

'fit = -MlP7m|| 'Uit if ^Uit ^ 0 , � 
. 4.2 

r f i t \ \ < ^ ^ V f ^ n \ \ if 'Uit = 0 

where /i is the coefficient offriction. 
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The rigidity assumption can ensure that the collision time is infinitesimal and the 
impulse only instantaneously affects the velocities but not the configurations. The 
restitution of collision is described by the Poisson's hypothesis, which represents the 
energy lost effect of the collision. The final assumption is a widely applied friction law 
to model any frictional interaction. 

4.3 Collision Point Velocities 

4.3.1 Collision Point Velocity of the zth Finger 

The coordinate frames assignment in Figure 4.2 is similar to that shown in Figure 2.7. 
Since the configuration of the system is assumed to be kept constant and there is no 
relative motion between the two colliding bodies. Coordinate frames T>u and Eoi used 
to describe relative motions in Figure 2.7 are replaced by a collision coordinate frame 
Ec. Vector pfi and Po are the position vectors of the collision point with respect to 
coordinate frames E/^ and 2« respectively, and vector P is the corresponding impulse. 
These vectors are all with respect to the collision coordinate frame S^. The dynamics 

Change of impulse during collision 

Pn(v) ^ ^ 

K : 
Pji (7mc) y 

Compression phase / Restitution phase 

Pn(70) • — " ^ ' ' ^ ^ ^ ^ ^ • 

70 7mc 7 / 

Figure 4.1: Change of the normal component of collision impulse P in the compression 
phase and restitution phase of a collision. 
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object 

X f 7 f ^ ^ ^ 
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Figure 4.2: Coordinate frame assignment for the colliding ith finger and the object. 
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of the ith finger is: 

M f A + Nfi = Ti + j f F e (4.3) 

This dynamics is similar to the one derived in equation (3.7). The additional term 
jTFc is to describe the external collision force toward the dynamics of the finger. Fc is 
a 3 X 1 vector since only the translational force can be applied at the collision point. As 
a result, the Jacobian Ji used here is sightly different from the one in equation (2.8). 
This Jacobian is a 3 x 3 square matrix which acts as the transformation from the joint 
space to the collision coordinate frame. On the other hand, the finger Jacobian shown 
in equation (2.8) transforms any vector from joint space to Cartesian space so it is 
6 X 3 matrix. Because the whole collision process is examined at the collision point so 
choosing the collision coordinate frame as the reference frame is more convenient. All 
the equations derived below are with respect to this coordinate frame. 

Since the vectors Nfi and n are much smaller than j f F c during collision, they 
become negligible. Integrating equation (4.3) through time results in an expression for 
the change of joint velocities 66i(t): 

6 m = MJ^jJ^P(t) (4.4) 

Since velocity becomes discontinuous function of time during collision under the rigid 
body assumption, we cannot use it as the collision equation parameter. Thus, time 
domain is transformed to the 7 domain in equation (4.4), where 7 is the generalized 
collision parameter which monotonically increases during the course of collision. 

On the other hand, the velocity at the collision point Ufi and the joint velocities &i 
are related by using the Jacobian Ji as uji = Ji&i. Its differential form with respect to 
the generalized collision parameter 7 is: 

8uj,(^) = JiSei{l) (4.5) 

Combining equations (4.4) and (4.5), the relationship between the impulse and the 
change of collision point velocity of the «th fingertip can be obtained as: 

6nji[^) = Kj iP[^) (4.6) 
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where the term Kfi is 

K j , = JiMj^iJI^ (4.7) 

which is a positive definite and symmetric matrix. 

4.3.2 Collision Point Velocity of the Object 

The object dynamics can be represented by the Newton-Euler equations (shown in 
equation (3.9)) and they are rewritten as the forms of: 

• 

Newton equation: -Fc ( t ) 二 rUoioW 
< (4.8) 

Euler equation: po x (-Fc{t)) = Io(^o{t) + ^o{t) x IoOJo{t) 
\ 

Since the inertial forces can also be neglected during collision, integration of the above 
equations through time yields the integral Newton-Euler equations: 

Integral Newton equation: -P(t) = rUo Svo(t) 
< (4 .yj 

Integral Euler equation: -po x P{t) = Io6tOo{t) 
\ 

Similar to the case of determining the collision point velocity of the ith finger, time 
domain is transformed to the 7 domain and equations (4.9) are rewritten as: 

H ' ^ = - + P W (4.10) 
[SuJoil) =-Io_ipoXP(7) 

Since the collision point velocity of the object can be determined by the object's 
translational and rotational velocities as Uo(j) = V0(j)+cj0(7) xpo, its differential form 
is: 

Suo(j) = Sv0(7) + SLJ0(7) X Po (4.11) 

Substituting equation (4.10) into the above equation, we can obtain the relationship of 
change of collision point velocity of the object and the impulse. It is: 

5uo(7) = - K o P ( j ) (4.12) 
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where matrix K。is equal to 

- h . 3 - P o i ; ' p o (4-13) 
rrio 

Matrix po is a 3 x 3 skew-symmetric matrix defined as: 

r • 

0 -Poz Poy 
Po 二 TPoz 0 -pox 

-Poy Pox 0 _ 

where Pox, Poy, and Poz are the elements of vector Po' 

4.3.3 Relative Collision Point Velocity 

Assuming w(7) be the relative collision point velocity between the ith finger and the 

object, it is equal to u(7) = u/i(7) - Uo(l) and its differential form with respect to 7 
is: 

8u(^) = Sufi(j) - 6uo{^) 

Putting the collision point velocity of the iih finger and the collision point velocity 
of the object (equations (4.6) and (4.12)) into the above equation, we can obtain the 

relationship between the change of relative collision point velocity and the impulse as: 

(5u(7) = KP(y) (4.14) 

where K 二 Kfi + K�is called the collision matrix. 

4.4 Equations of Collision 

In previous section, we have derived the relationship between the change of relative colli-

sion point velocity and the impulse caused during the collision shown in equation (4.14). 

The equations of motion which describe this collision process can be obtained by dif-

ferentiating this equation (4.14). Since the collision matrix is constant with respect to 

the collision parameter 7, the equation of collision is: 

A , W = K ^ P h ) (4.15) 
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The above equation is the general form of the collision response. With different collision 

conditions such as different friction between the colliding objects, the general equation 

can be modified for the ease of determining the post-collision velocities according to 

two cases: sliding mode collision and sticking mode collision. 

4.4.1 Sliding M o d e Collision 

When the tangential relative collision point velocities are nonzero, there is sliding be-

tween the colliding finger and the object. When the normal component of impulse P^ 

is used to be the collision parameter, it is possible to represent the first derivative of 

impulse ̂ P in term of the relative collision point velocity as: 

^ p = m (4.16) 

dPz 
where 

- Ux 

\f^^y 
m= - M � e^3xi 

\J^l + ^l 
1 

Angle 6 is equivalent to the relative sliding direction at some point during a collision. 

Scalars Ux, Uy, and 7½ are the x, y, and z components of the relative collision point 
velocities n, and /i is the friction coefficient. This equation can be deduced from the 

Coulomb friction model assumption. As a result, the general form of the collision 

equation (4.15) can be specified as: 

^ u = K m (4.17) 

Figure 4.1 shows that there are two phases in a course of collision. The first one is the 

compression phase and the other is the restitution phase. For the compression phase, 

the termination condition is much easier to notify if we use the normal component of 

the relative collision point velocity u: as the collision parameter 7. Since at the end of 

compression phase, the deformation of the colliding objects are finished and there is no 

relative motion between the colliding objects so u^ should be equal to zero. Assume 

that the collision matrix K is composed if kij. Notation k2j represents the second 
row of matrix K. Similarly, notation fci,3 represent the third column of matrix K and 
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k2^3 represents the element in the second row, third column of matrix K. Using this 

representation, equation (4.17) can be represented by three equations: 

^ = k、 ] _ (4.18a) 

急 = k 2 j m (4.18b) 

羞 二 h,jm (4.18c) 

Using these three equations, the following two equations can be obtained: 

dux 一 h,j({0) 
du, — h^ji(9) 
duy _ k2,j^(O) 
duz h,j^{0) 

Because u^ is the independent variable in these equations, we would not determine ^ . 

Instead, we determine the value of P^ at the end of compression phase. This value is 

useful in determining the P^ at the end of collision based on the Poisson's hypothesis 

equation (4.1). Using equation (4.18c), we get: 

^ = 1 

duz hj^(6) 

Therefore, the sliding mode collision equation in compression phase of the collision 

process can be concluded as: 

Ux kij((9) 

i � = ^ 〜渊） （4.19) 
Pz 1 

L “ J L � 

4.4.2 Sticking M o d e Collision 

Rather than the sliding mode in the course of collision, the tangential relative collision 

point velocities can be zero if friction is large enough to maintain the contact. It is 

the case of sticking mode. Sticking means that there is no relative motion between the 

colliding bodies. In this case, both first derivatives of the relative collision point tan-

gential velocities vanish, ̂  = 祭 = 0 , in equation (4.17); therefore, equation (4.17) 
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can be written as: 

+ 嗟 ^ 
.^Z. 

where the term ^ P can be expressed as 

_ATi-

1 / = ^ � (4.20) 

.h,3. 

where k~^ denotes the ith row, jth column element of the inverse of matrix K. Because 
)̂J 

the sticking collision may be unstable, there is a test derived in (Mirtich, 1996) to verify 

the stability of the sticking mode. If the sticking stability test is satisfied, it means 

friction between the two colliding bodies is sufficient to maintain sticking collision. This 

situation is called the stable sticking mode. O n the other hand, if the test fails, sliding 
immediately resumes because of the insufficient friction and this situation is called 

transient sticking mode. No matter in which sticking mode, equations (4.17) or (4.19) 
cannot be used any more. W e must use another method to determine the information 

of the collision process in order to determine the post-collision velocities. 

Stable Sticking Mode Collision 

W h e n sticking occurs during the compression phase, the value of P^ at the end of this 

phase is required to determine. By equation (4.20), we have the equation ^ = k^l, 

the solution of this first order differential equation can be obtained as: 

Pz{lmc) = Pz{jsticking) + ̂ "j(7mc _ Jsticking) (4.21) 

Scalar ̂ sticking represents the value of collision parameter at the instant when sticking 

happens. Equation (4.21) can help us to compute the value of P^ at the end of resti-

tution phase. Since when the sticking is maintained, velocities Ux and Uy at the end of 

the restitution phase are still zero. Using the relationship that ^ = ^ , the velocity 
3,3 

Uz{jf) can be calculated by the following equation: 

Uzhf) = 7^(7/ - 7mc) (4.22) 

3̂,3 
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Similarly, when the sticking occurs during the restitution phase, we only need to 

determine Uz(jf) since we have the information of Ux(7/) and Uy(7/) that they are 

equal to zero. By using the relationship that 乾 = ^ , the solution of this first order 
3,3 

differential equation is: 

Uz{jf) = Uz{jsticking) + T^(7/ _ lsticking) (4.23) 
3̂,3 

Transient Sticking Mode Collision 

When the sticking is unstable, it is proved that there is exactly one diverging ray 

along which sliding may resume (Mirtich, 1996). Since it is also proved that the sliding 

direction is being maintained constant after the transient sticking, the information 

about the collision can be determined similarly to the method used in stable sticking 

mode collision. Let /? be the resumed direction of the unique diverging ray, if the 

transient sticking occurs during the compression phase, we have: 

Ux{lmc) - Ux(jsticking) + ^^'^'^|^| (7mc 一 lsticking) (4.24a) 

ĵ2 -^{P) 
Uy{jmc) = Uy(ysticking) + “ � ( ") ( 7 m c 一 lsticking) (4.Mb) 

Pz(lmc) = Pz(lsticking) + ^^^J^{lmc — lsticking) (4.24c) 

Since fe 二 fefl,势=fef^ and g = ^ . These equations (equa-

tions (4.24a) to (4.24c)) can help us to determine the post-collision velocities of the 

system. 

On the other hand, if the transient sticking occurs during the restitution phase, the 

post-collision velocities can be directly obtained by: 

Ux(jf) = Uxhsticking) + h,j((P)hf 一 Ksticking) (4.25a) 

Uy{jf) = Uy(ysticking) + h,j^{P)(lf _ lsticking) (4.25b) 

Uz(lf) = U^[lsticking) + h,j^P)hf — lsticking) (4.25c) 

4.5 Summary 

Related work of collision modeling is briefly reviewed at the beginning of this chapter. 

Based on the work of Mirtich (1996), the modified general first oder differential colli-
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sion equation is obtained after determining the relative collision point velocities. The 

collision equations have the form of: 

— u h ) = K ^ P ( ^ ) Equation (4.15) 

dj «7 

This equation provides us a simple and efficient way to handle three dimensional col-

lision with friction occurred in multi-fingered robot hand manipulation motions. The 

specific forms of this collision equation in different collision modes are further discussed 

at the last part of this chapter and the detailed implementation of the derived equation 

are covered in next chapter. 



Chapter 5 

Dynamic Simulation 

5.1 Introduction 

The last three chapters discussed modelings of different interactions presented in the 

dextrous manipulation motions respectively. The derived equations form the founda-

tion to develop a dynamic simulation system to simulate the grasping or manipulation 

motions of the multi-fingered robot hand. In this chapter, these generalized dynamic 

models are applied to develop a dynamic simulation system for the five-fingered robot 

hand system developed in C U H K . 

The traditional robotic dynamic simulators only provide an one way control of 

the simulation. After the setting the initial conditions and the system parameters, 

simulation starts and some numerical or graphical results will then be obtained. In 

our development, we apply the knowledge of human control, computer graphics, and 

virtual reality to construct the dynamic simulator that allows the simulation done in 

an interactive way (Figure 5.1). With the feedback information, the human operator 

can on-line update the simulation parameters. 

In this chapter, the details of this dynamic simulation system are presented. The 

first part of this chapter will cover the architecture of the whole simulation system 

and the descriptions of its main components. The detailed methodologies used in 

the dynamic simulator and its program flow will be discussed in the second part. For 

convenient, we use the term dynamic simulation system to describe the entire simulation 

system and the term dynamic simulator to describe the specific module in the system 
to handle all the numerical computation of the dynamics. The simulation results will 

be demonstrated in Chapter 6. 
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Figure 5.1: Interactive control of the dynamic simulation system. 
5.2 Architecture of the Dynamic Simulation System 
The architecture of the dynamic simulation system for the five-fingered robot hand is 

summarized in Figure 5.2. Except the human operator, there are three main compo-

nents of the system. Both data glove and graphical control panel are the input devices. 

The data glove helps us to collect the information of the human dextrous motions 
measured from the operator. The graphical control panel provides the user some basic 

commands to control the simulation. The second component is the dynamic simulator, 

which is the core module. Based on the equations derived in previous contact and col-

lision modelings, the dynamics of the whole system including both the multi-fingered 

robot hand dynamics and the object dynamics are determined to examine the dynamic 

behaviors of the system. The output of the dynamic simulator is only some numerical 

results of the system dynamics. These numerical data are inputed to the virtual en-
vironment to provide a realistic three dimensional graphical output. As a result, the 

graphical results of the dynamic simulation shown in the virtual environment can act 

as the visual feedback information to the human operator to control and to adjust his 

dextrous motions. 

5.2.1 Input Devices 

Data Glove 
The data glove used in the development is the CyberGlowe^^ shown in Figure 5.3 
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^ Human  

operator 

human dextrous 
manipulation motions  

^ Y  

Graphical 
Data glove control panel 

joint angles 

basic simulation 
^ r control commands 

Dynamic 
simulator ^ 

numerical simulation 
results  

5  

Virtual 
environment 

visual feedback 
signals 

Figure 5.2: Architecture of the dynamic simulation system for the five-fingered robot 

hand. 
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Figure 5.3: CyberGloye^^ used in the dynamic simulator as the input device. 
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which is a product of the Virtual Technologies Inc^ This is a light weight glove com-

posed of flexible sensors to measure the configurations of both operator's fingers and 

wrist. This data glove is capable to measure the joint angles of the human fingers 

but not the joint torques of them. In this case, a position control algorithm must be 

implemented in the dynamic simulation system in order to obtain the joint torques 

for simulation inputs. The most common position control method is the proportional-

plus-derivative (PD) feedback control (Lewis et al., 1993). It is simple, widely used in 

industry and proved to be stable. However, this method does not consider the effect 

of gravitation and there is always a steady state error. The improved P D control is 

applied in our dynamic simulator, which is called the P D plus gravity compensation 
control method. The gravitational effect is firstly cancelled by a dynamics related term 
before doing the P D control. Its mathematical expression is: 

Ti = Kpi(0di - 9i) - K j i + G _ . , (5.1) 

Matrices Kpi and Kyi are the proportional and derivative gains of the control algorithm 
and both of them are diagonal matrices. They determine the convergence rate of 

the control. The final term Gi(6i) is the gravitational terms contained in the finger 

dynamics. Actually, it is embedded in the term Nfi{9i,9i) in equation (3.7). Vectors 
0̂  and 9i are the current joint angles and joint velocities in the simulation. Vector 6di 

is the desired joint angles which actually are the angles measured by the data glove. 

Vector Ti is the corresponding joint torques which is the input data of the dynamic 

simulator. 

Due to the kinematic dissimilarities between the human hand and the five-fingered 

robot hand, another problem in using the data glove is that of mapping human hand 
motions into multi-fingered robot hand motions. Different mapping methods have been 

proposed in the literatures (Hashimoto et al., 1994; Wright and Stanisic, 1990; Speeter, 

1992; Rohling et al., 1993). Their aim is to obtain an exact mapping between the human 

hand motions and the robot hand motions. For example, when the thumb and index 

are touched to show the victory gesture, there should be a similar interaction between 

the thumb and the index of the robot hand. However, it is not the main objective 

in this dissertation to study this mapping problem. A good mapping can help us to 

control the virtual robot hand in the virtual environment more easily but it does not 

affect the physical accuracy of the dynamic simulation system. As a result, a simple 

mapping method is implemented in our system. Since there 22 sensors for the data 

^Home page: http://www.virtex.com 

http://www.virtex.com
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glove but there are 15 joints for the five-fingered robot hand (3 joints for each finger), 

not all sensory data are required to choose to control the robot hand. After comparing 

the structure of the data glove and that of the five-fingered hand, The 14 sensory 

data shown in Table 5.1̂  are used and the simple mapping method is summarized in 

Table 5.2. 

Finger (glove) Joint(glove) Sensor Name (Description) 
thumb, 0 i thumb MPJ, 5o,i 

(joint where the thumb meets the palm) 

thumb, 0 2 thumb IJ, 5o,2 

(outer thumb joint) 

thumb, 0 3 thumb abduction, <So,3 

(angle between thumb and index finger 

index, 1 0 index MPJ, Si^ 

(joint where the index meets the palm) 

index, 1 1 index PIJ, <9i，i 

(joint second from fingertip) 

middle, 2 0 middle MPJ, &，0 

middle, 2 — 1 middle PIJ, 2̂,i' 

middle, 2 3 middle-index abduction, S2,3 

(angle between middle and index fingers) 

ring, 3 一 0 ring MPJ, ̂3,0 

ring,3 1 ring PIJ, 53,1 

ring, 3 3 ring-middle abduction, 53,3 

(angle between ring and middle fingers) 

pinkie, 4 0 pinkie MPJ, S^^ 

pinkie, 4 1 pinkie PIJ, 4̂,1 

pinkie, 4 3 pinkie-ring abduction, 6̂ 4,3  

(angle between pinkie and ring fingers) 

Table 5.1: 14 sensory data used in the simulation system. 

Graphical Control Panel 

Another input of the dynamic simulator is the graphical control panel. It acts as 

the graphical user interface (GUI) of the system. Its screen shot is shown in Figure 5.4. 

This control panel provides the basic controls of the simulation such as START, PAUSE, 

and TERMINATE. Also, using the dialers and sliders can help the human operator to 

^MPJ stands for the metacarpophalangel joint, PIJ is the proximal interphalangeal joint, DIJ is the 
distal interphalangeal joint, TMJ is the trapeziometacarpal joint. 
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Finger (robot hand) | Joint (robot hand) | Angle 
thumb, 0 1 (nearest to the base) -^0,3/2 

thumb, 0 2 S ^  

thumb, 0 3 ^,2  

index, 1 1 -(^2,3 — ^0,3)/2 

index, 1 2 S ^  

index, 1 _ 3 5 y  

— middle, 2 — 1 ~ ^ 3 , 3 - >g2,3)/2" 

middle, 2 2 6*2,0 

middle, 2 3 6*2,1 

ring, 3 1 -(^4,3 —而’3)/2 
ring, 3 2 S ^  

ring, 3 3 ^,i  

pinkie, 4 1 «5*4,3/2 

pinkie, 4 2 ^,o  
pinkie, 4 _3 S ^  

Table 5.2: Mapping between data glove and five-fingered robot hand. 

specify the initial configuration of the system before starting the simulation. The 

recording utilities and the mechanism to modify the specifications of the system help 

us to examine different simulation situations. This graphical control panel was mainly 

constructed by using the Forms library (Overmars, 1995). It provides a rich set of 
subroutines to construct G U I in the Silicon Graphics Workstation. 

5.2.2 Dynamic Simulator 

As mentioned in the previous sections, the dynamic simulator is the nucleus of the 

dynamic simulation system. Based on the equations formulated in Chapters 2, 3，and 4， 

we can accurately describe the dynamic behaviors of the multi-fingered robot hand 

motions with consideration of different type of interactions between fingers and object. 

In the contact modeling, the constraint-based formulation is actually used to develop 

the relevant kinematic and dynamic equations. Otherwise, in the collision modeling, 

the impulse-based formulation is applied to formulate the first order differential collision 

equation to describe the collision process. Combining the constraint-based simulation 

and the impulse-based simulation can help us to examine the free motion, collision, 

sticking contact, rolling and sliding contacts of the system. The detailed descriptions 

of dynamic simulator will be discussed at the second part of this chapter. 

The dynamic simulation system is developed in the platform of Silicon Graphics 
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Figure 5.4: Screen shot of the graphical control panel of the dynamic simulator. 
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graphical workstation (INDIGO^) using C programming language. Because of the in-

tensive use of matrix equations in formulating the system equations, it is time consum-

ing to implement them by using C language directly for this part of implementation. 

All the equations of the system were firstly written in the M A T L A B environment and 

then converted into C source code. M A T L A B provides the ideal matrix-based environ-

ment to implement the equations. The conversion from M A T L A B code to C code and 

the usage of this converted code are accomplished by the MATLAB compiler and the 
MATLAB Math Library. 

5.2.3 Virtual Environment 

Virtual environment is a simulated environment in computer. The numerical results 

from the dynamic simulator are passed to the virtual environment module to display the 

simulation results graphically. The graphical output is three dimensional, in perspective 

projection, and with rendering. Showing the simulation results in virtual environment 

can provide a visual feedback to the human operator for a certain motion. For example, 

if the operator wants to rotate a cube, there are some grasping configurations which 

are not stable to grasp the manipulated cube. Then, the cube may slide away. The 

virtual environment in this way can provide information to the operator to correct his 

movement. 

Running of a virtual environment is highly computational intensive. It does not 

provide a satisfactory result to develop in the personal computer. Instead, the virtual 

environment is developed in a high-end graphical workstation by using the default 

graphics library, IRIS graphics library. All the realistic graphical output can be handled 
by the subroutines provided in this graphics library and the objects drawn are defined 

by their vertices and faces. Since this library only supports primitive way to construct 

the three dimensional models of the five-fingered robot hand, the geometric model is 

firstly constructed by the solid modeler, AutoCAD, and then converted to C code by 

a three dimensional file format converter^. 

5.3 Methodologies and Program Flow of the Dynamic 
Simulator 

W e have just presented the overview of the dynamic simulation system for the five-

fingered robot hand. In this part, we will concentrate to discuss the implementation 

^The 3D file format converter used is called the wcvt2pov. It is a freeware found in internet and it 
can be download from http:/ /www.europa.com/~keithr/free.htm. 

http://www.europa.com/~keithr/free.htm
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issues of the dynamic simulator. The overview program flow of the dynamic simulator 

is shown in Algorithm 5.1. There are three main components of this simulator. The 

interference detection is the routine to detect whether there is interaction in the system. 

The interaction includes both contact and collision. The constraint-based simulation 

and the impulse-based simulation are used to determine the dynamic responses of the 

system. 

Algorithm 5.1 Program flow of the dynamic simulator.  

Input: initial system state 
1： loop 
2: interference detection {refer to Algorithm 5.2} 
3： constraint-based simulation {refer to Algorithm 5.3} 
4: if collision detected then 
5： impulse-based simulation {refer to Algorithm 5.4} 
6： end if 
7： end loop 

5.3.1 Interference Detection 

Development of a robust and efficient interference detection algorithm is one of the 

hottest research areas in virtual reality, motion planning, and dynamic simulation (Lin, 

1993; Garcia Alonso et al., 1994; Held et al., 1995; Hubbard, 1995; Leung, 1996; Mirtich, 

1997). It may be called in different names such as contact detection or collision detec-

tion. In order not to mix up the terms, contact and collision, in dynamic modeling, 

interference detection is used to describe the detection of interactions. Various tech-

niques have been proposed for convex polyhedral, concave polyhedral, curved object 

interaction detection, and software libraries are also available. 

For the dynamic simulation system of the five-fingered robot hand, the interference 

detection problem is limited to detect whether there is interaction between fingertips 

and a rectangular object. W e do not consider the interactions between finger-to-finger 

or link-to-link. Furthermore, interaction further narrows to allow only face-to-face 

interaction, but not the face-to-edge, edge-to-edge, face-to-vertex, or edge-to-vertex 

problem. These assumptions greatly helps to simplify the problem but do not lose 

the object of simulation to examine the dynamic behaviors. This limited situation is 

capable to handle most of the multi-fingered grasping or manipulation motions. As a 

result, a pure geometric interference detection method has been implemented. 

The idea ofthe interference detection is simple. Consider Figure 5.5, the interesting 

part of the fingertip is its end part and it is actually a hemisphere. In such situation, the 
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interference detection is to detect whether there is interaction between the hemisphere 

and the rectangular object if the object is restituted to be rectangular in shape. This 

problem can be further simplified by "blow up" the size of the rectangular object by the 

length of radius of the hemisphere in each side. Therefore, the interaction detection is 

simply to determine whether the center of the hemisphere is placed inside the "growth" 

object. The program flow of this interference detection is summarized in Algorithm 5.2. 

/ 1 — — / 1 

/ i / 1 … … … — z ^ — 

1 遍 丨 — - : 7 > 1 

r / i I I / 

i I ； - 1 - - - m •――7̂ ^ 
(••••••"-••+• ••• ^ — — — - — — — — —ym — — — — — — — _ — — — — _ • • _ • _ • • — • y t. .,..̂ ^̂ r̂ 

H . 7 ^ Z / / ^ ¾ 
/¾¾::! G 

Figure 5.5: The "growth" rectangular object and the object in hemisphere shape used 
in the interference detection of the five-fingered robot hand dynamic simulation system. 
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Algorithm 5.2 Interference detection of the dynamic simulator.  

Input: current system state 
1: compute fingertip state from joint state {using finger forward kinematic equa-

tion (2.5) and finger Jacobian (2.8)} 

2: apply object coordinate frame So as reference coordinate frame 

3： for finger-i 二 1 to 5 do 
4: compute distance between fingertip i and object 
5： if distance < 0 then 

6： compute relative contact velocity, u 
7： if u < thresholdco//ision then 

8: write finger-i-flag = contact {contact detected for finger i} 

9： else 

10： write finger-i-flag = collision {collision detected for finger i} 
11： end if 
12: end if 
13： end for  

5.3.2 Constraint-based Simulation 

The constraint-based simulation is to calculate the dynamic response of the system 

when the hand and the object are stably in contact. The state of the system is updated 

by numerically integrating the system dynamic equation (3.14). The program flow of 

the constraint-based simulation is shown in Algorithm 5.3. 

Algorithm 5.3 Constraint-based simulation of the dynamic simulator.  

1： estimate and update current contact mode {using contact transition model in Fig-

ure 5.6} 

2: compute velocity constraints {equation (2.17)} 

3： compute joint input torques {using PD+gravity control, equation (5.1)} 

4: compute constraint force {equation (3.16)} 

5： compute system dynamics {equation (3.14)} 

6： compute new system state {numerical integration described by equation (5.2)} 

7： update system state 

Contact Transition Model 

When the flag of contact mode is true, it represents there is contact in the simula-

tion. However, it does not give us any other information about what kind of contact 

should be. Selection of an appropriate kind of contact is based on the system states, 

and the previous and the current contact information. This selection is summarized in 

the state diagram of the contact transition model shown in Figure 5.6. 



5.3 Methodologies and Program Flow of the Dynamic Simulator 80 

斤 

• J 广 N 

/ ^ ^ After sticking no  
/ y ^ ^ ^--^^ or rolling ~^~v^ f ^ 
/ y / " contact? J ^~->~^ After 

^ t ^ y ^ ^ 1 n collision? 

V^""^ yes ^n——^"^ 
Contact? / \ 

W^___^^ / yes \ no 

K^ î̂ n 
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Figure 5.6: Contact transition model used in the constraint-based simulation. 
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This contact transition model is developed based on another simple contact transi-

tion model proposed in (Wendlandt, 1997). It helps to handle the change of contacts 

such as sticking contact and sliding contact occurred between the robot foot and the 

ground in biped walking robot simulation. This simple contact transition model is 

extended to handle the change of contact modes occurred specially in dextrous manip-

ulation motions. Circle in the diagram represents the state of contact and the rounded 

corner box represents to the condition of transition between different contact states. 

For example, if there is no contact between the ith finger and the object in last simu-
lation instance but contact is detected in the current state, this contact is classified to 

be the rolling contact if it satisfies following criteria: 

• previous contact mode is sticking contact or rolling contact, and 

• constraint force is within the friction cone, and 

• relative angular contact velocity is large than zero 

After determining the current contact mode, we can choose the appropriate contact 

mode selection matrix CMi (equation (2.15)) in formulating the velocity constraint of 

the system. 

Numerical Integration 

After the construction of the velocity constraint, we can use the information of 

joint input torques and constraint force to determine the system dynamic response. As 

mentioned before, the acceleration of the system is required to integrate numerically in 

order to obtain the system state in next instance. This integration algorithm should 

be accurate and efficient, and the fixed step size fourth order Runge-Kutta method is 

chosen as the integration algorithm. Let x = f{x,t) be the general form of first order 

differential equation, xo, to and h are the initial state value, current time instance, 
and the integration step size, the new state value x{to + h) can be determined by the 
following equation: 

x{to + h) = xo + ^ki + ^k2 + ^h + ^h (5.2) 
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where 

ki = hf{xo,to) 
fci h 

k2 = hf{xQ + Y,t0 + ^) 

h = hf{xo + y,io + ^) 

k4 = hf{xQ + k3,t0 + h) 

5.3.3 Impulse-based Simulation 

The core of the impulse-based simulation is to integrate the collision equation (4.15) in 

order to determine the post-collision velocities of the system. This collision integration 

may involve two different integrations which are the sliding mode collision integration 

and the sticking mode collision integration. Selection of these two integrations depends 

on the pre-collision velocities and the friction coefficient. The detailed program flow 

and implementations of these simulations are shown in Algorithms 5.4, 5.5, and 5.6. 

Algorithm 5.4 Impulse-based simulation of the dynamic simulator. 

1： for each collision do 
2: determine collision coordinate frame, Ec 

3： compute initial relative collision point velocity, u{jo) 

u{jo) = Ufi(jo) - Uo(7o) 

4: compute collision matrix, K {equations (4.7)，(4.13) and (4.14)} 

5: compute final relative collision point velocity, u(7/) {refer to Algorithm 5.5} 
6: compute corresponding impulse {using u(70), u(7/) and K in equation (4.14)} 

Pb)=K-'{u(jf)-u{jo)) 

7： determine post-collision velocities 

8； end for 
9： for each contact do 
10： propagate change of object velocity to joint velocity 

11： end for 

Post-collision Velocity 

In Algorithm 5.4, we can determine the post-collision velocities of the system after 

computing the impulse of collision. These post-collision velocities consist of the post-
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Algorithm 5.5 Sliding mode collision integration. 

1： repeat {compression phase of sliding mode collision integration} 
2: if sticking mode test success, ut < thresholdsHding then 

3： sticking mode collision integration {refer to Algorithm 5.6} 

4: write sticking-mode-flag = true 

5： break 
6： end if 
7： sliding mode collision integration in compression phase {equation (4.19)} 

8： until end of compression phase, Uz > 0 
9： if sticking-mode-flag + true then {continue sliding mode collision integration} 

10： compute terminating condition of restitution phase, Pz(jf) {using Poisson's hy-

pothesis, equation (4.1)} 

11： repeat {restitution phase of sliding mode collision integration} 

12: if sticking mode test success, ut < thresholdsUding then 
13： sticking mode collision integration {refer to Algorithm 5.6} 

14： break 
15： end if 
16： sliding mode collision integration in restitution phase {equation (4.16)} 

17: until end of restitution phase, Pz{j) > Pz{jf) 
18： end if 

collision joint velocities of the colliding finger and the post-collision object velocity. 

The required equations in determining these post-collision velocities are derived in this 

section. 

By equation (4.6), we can write the resultant collision point velocity of the ith. 
colliding finger as: 

ufi(lf) = KfiP{j) + Ufi{yo) (5.3) 

Since this post-collision velocity ti/i(7/) can be related to the joint velocities of the 

finger by the finger Jacobian as: 

Ufiilf) = jA[lf) 

Assuming the ith finger is not in a singular configuration so the finger Jacobian Ji is 

invertible. The joint velocities can be written as: 

UV) = 7「1邮(7/) (5.4) 

By equations (5.3) and (5.4), the post-collision joint velocities ofthe ith colliding finger 
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Algorithm 5.6 Sticking mode collision integration.  

1： do sticking stability test 

2； if stable sticking mode then 
3： if occur in compression phase then 

4: compute P z { l m c ) {equation (4.21)} 

5： compute Pz{lf) {equation (4.1)} 
6： compute u(7/) {equation (4.22)} 

- 0 “ 

u(7/)= 0 
^ ( 7 / - 7 m c ) 

3,3 . 

where 7mc = Pz{lmc) and 7/ = Pz(lf) 
7： else if occur in restitution phase then 
8： compute w(7/) {equation (4.23)} 

— «1 

0 

^(7/) 二 ( 、 \ ( 、 
Uz{lsticking) + T^{jf _ lsticking) 
. 3̂,3 J 

9： end if 
10： else if transient sticking mode then 
11： compute direction of diverging ray, (3 
12： if occur in compression phase then 

13： compute iix(7mc), Uy{lmc), and Pz(lmc) {equations (4.24a) to (4.24c)} 

14： compute Pz(jf) {equation (4.1)} 

15: compute u{jf) {similar to equations (4.25a) to (4.25c)} 

'Ux(jmc) + hj^(f3)(jf - Jrnc)' 
U(lf) = Uy(jmc) + hM(3)(^f - Jrnc) 

. ^3,j^(^)(7/ - 7mc) . 

16: else if occur in restitution phase then 

17： compute u(jf) {equations (4.25a) to (4.25c)} 

r hM(^)hf-lsticking) -
u{jf) = h,j({|3)(jf — Jsticking) 

Uz{jsticking) + h,j^{P){lf 一 lsticking), 

18： end if 
19： end if 
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can be computed by: 

0riv) = J^'[KfrPh)+Uf,{jo)] (5.5) 

O n the other hand, the post-collision object velocity can be deduced from equa-
qj 

tion (4.10). Let V。= ^ be the generalized object velocity, V 0 ( 7 / ) is: 
[o;oJ 

V � ( * [; 气 ( 3 + 二 J (5.6) 
- I ^Po X P ( 7 / ) + ^ 0 ( 7 0 ) _ 

Velocity Propagation 

Because the impulse-based simulation does not involve any change in configurations 

of the colliding objects, multiple collisions can be partitioned and solved one by one 

by equation (4.15). When a finger is colliding with the object grasped or manipulated 

by other fingers, some special treatments are necessary to handle this situation. Com-

pared to the impulsive force caused by a collision, the grasping forces are very small 

so that they were ignored in determining collision response of the system by using 

equation (4.15). Since the object and other contacted fingers are actually connected 

together, this change of the object velocity must be propagated to other contacting fin-

gers. As a result, there are also instantaneous changes injoint velocities of all contacting 

fingers. 

When we have the post-collision object velocity, we can determine the new contact 

velocity Ud = uji at the contact point ofthe ith contacting finger. Using equation (4.5)， 

Ufihf) - Ufi{jo) = Ji 6i{jf) - ^i(70) 

Therefore, the new propagated joint velocities ofthe ith contacting finger can be written 
as: 

Oi(v) = J�1 卜/2(7/) - ^/z(7o) + JrOi{jo)] (5.7) 

5.4 Summary 

In this chapter, we have presented the details of the dynamic simulation simulation 

system for the five-fingered robot hand system. It is developed based on the equations 

derived in last three chapters. The design ofthe system facilitates us to do the dynamic 
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simulation interactively so that the dynamic behaviors of the multi-fingered robot hand 

system can be examined on-line. The simulation inputs are obtained directly from 

transferring the human operator skills to the system. 

The architecture of the dynamic simulation system of the five-fingered robot hand 

system is presented at the beginning of this chapter. It mainly includes the inputs, 

dynamic simulator, and the virtual environment. The implementation issues of these 

components are also reviewed. In the next part, detailed descriptions of the dynamic 

simulator are discussed since it is the heart of the whole dynamic simulation. Inference 

detection is done by using geometric relationships between fingers and object. The 

constraint-based simulation is outlined. The detailed implementation of the impulse-

based simulation is discussed. For the multiple collisions, each of them can be treated 

individually. The mixed contact collision situation is simplified to ignore the contact 

interactions first and then propagate the velocity change effect to the contacting fingers 

after collision. 



Chapter 6 

Simulation Results 

6.1 Introduction 

The dynamic simulation system based on the full kinematic and dynamic models of a 

five-fingered robot hand system has been developed. In this chapter, various capabilities 

of the simulator mentioned in the previous chapters will be demonstrated. The simula-

tion results are presented in three main parts. The first part in Section 6.2, 6.3 and 6.4 

shows the results of the constraint-based simulation based on the equations formulated 

in Chapters 2 and 3. Changes in grasping, rolling contact, sliding contact are demon-

strated with numerical data. The second part presents the impulse-based simulation 

results. Collision responses of a finger collided with different object are discussed in 

Section 6.5 and the effect of velocity propagation discussed in Section 5.3.3 is illustrated 

in an example (Example 8) involving mixed contacts and collisions. Furthermore, two 

examples (Examples 9 and 10) showing dextrous manipulations are presented in Sec-

tion 6.6. These manipulations involve more than one particular type of interactions 

such as contacts and collision, as well as grasping configurations. Finally, the chapter 

is ended with a summary of the simulation results. 

The used physical and geometric parameters of the object are listed in Tables 6.1. 

The other simulation settings are provided in Appendix C. 

6.2 Change of Grasping Configurations 

Figure 6.1 presents an example in changing grasping configuration. Initially, there are 

four fingers grasping the rectangular object and the third (middle) finger is in free 

motion. The third finger is moving to touch the object while the second (index) fin-

71 
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Example Object mass, m�{kg) Object Dimensions, (mj~ 

1 0.1 0.1 X 0.18 X 0.1 

2 0.1 0.06 x 0.06 x 0.06 

3 ~ ~ 0.1 0.08 X 0.06 X 0.03 
4 0.1 “ 0.16 X 0.06 X 0.06 
5 0.01 一 0.06 X 0.06 X 0.06 
6 0.1 “ 0.06 X 0.06 X 0.06 

7 ~ ~ 0.5 0.06 X 0.06 x 0.06 

8 一 0.1 0.06 X 0.06 X 0.06 
9 0.1 0.1 X 0 . 0 8 X 0.1 

10 0.05 0.1 X 0.1 X 0.08 

Table 6.1: Conditions used in the simulation results demonstration. 

ger and the fourth (ring) finger are blending outward. These fingers eventually lose 

their contacts with the object. This example shows the four-fingered grasping config-

iiration is changed to the three-fingered grasping configuration. This kind of grasping 

configuration changing is achieved by imposing different contact mode selection matrix 

•Mi derived in Chapter 2 into the system dynamics to represent both constrained and 

unconstrained motions. 

The second example shown in Figure 6.2 demonstrates the change in grasping con-

figuration from a five-fingered grasp to a three-fingered grasp. Unlike the example 1, 

instability is introduced in this grasping configuration change, that the force-closure 

gmsp cannot be maintained. The object becomes to rotate after the withdrawals of 

the third and the fourth fingers at t = 0.2s. The joint angles of these fingers are shown 
iii Figure 6.3 and the corresponding change of object configuration can be referred to 

Figure 6.4. 
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Figure 6.1: Example 1: Change in grasping configuration from a four-fingered grasp to 
a three-fingered grasp. 
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Figure 6.2: Example 2: Change in grasping configuration from a five-fingered grasp to 
a three-fingered grasp. 
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Figure 6.3: Change ofjoint angles ofthe 3rd and the 4th finger in the process of changing 

grasping configuration from the five-fingered grasp to the three-fingered grasp. 
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Figure 6.4: Change of object configuration in the process of changing grasping config-

uration from the five-fingered grasp to the three-fingered grasp. 
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6.3 Rolling Contact 

Rolling contact is presented between a finger and an object in the simulation shown in 

Figure 6.5. At the beginning, the rectangular is placed on the top of the finger. Since 

friction between the contacting finger and the object is sufficient to prevent sliding 
motion, the object rolls about the spherical part of the fingertip. Figure 6.6 shows the 
change of joint angles under the effect of the contacting object. Figure 6.7 shows the 
object configuration during the simulation. Both the 2:-directi0n and ZYZ (3 Euler angle 
of the object are changed most vigorous. Because the object moves nearly only in the 

2:z-plane of the systemi, the value of the y component of the constraint force is much 
smaller than that of the x and the z components. Figure 6.9 shows the changes of the 
parameters defined in the Montana's contact equation (equation (2.4)). The figures in 
the first row show the local coordinates, Cjix and Cfiy, changes of the fingertip. These 
coordinates are defined similar to the spherical coordinates, which represent location on 
the surface of the fingertip. The figures in the second row show the local coordinates, 
Cox and Coy changes on the contacting surface of the object. The origin point of this 
local coordinate chart is defined at the center of the rectangular face. From these four 
figures, changes of the fingertip local coordinates are larger than that of the object local 
coordinates. This situation represents that the interaction between the finger and the 

object is in rolling contact in most of the time^. 

6.4 Sliding Contact 

Sliding motion between a finger and an object is demonstrated in Figure 6.10. Fig-

ure 6.11 shows the changes of joint angles of the finger during the simulation. Fig-

ure 6.12 shows the changes of object configuration. The sliding motion presents mainly 

in the a:z-plane of the system. Changes of constraint force arisen in the sliding inter-

action are shown in Figure 6.13 and Figure 6.14 shows the local contact parameters 

of the two contacting bodies. Compared to Figure 6.9, we can see that the changes 

of the object local contact parameters are much larger than that of the fingertip local 

contact parameters. This situation implies that the interaction between the finger and 

the object is in sliding contact motion in most of the time. 

^The inertial coordinate frame Eb used for the five-fingered robot hand is shown in Figure C.2. 
2por pure rolling motion, both changes of Cox and Coy should be equal to zero. Similarly, for pure 

sliding motion, both changes of cjix and c/iy should be equal to zero. 



6.4 Sliding Contact 7J_ 

fmmmmmmmrrsm [if^ipi|MPfc^ :^n[卜晰《-«^冗|^^^^^]^| 

‘ �f : ' : : . ' : ^ ^ 
^ 1 ^ H |fH ̂ | ^ ; , ' ‘： ‘ . >g j | ^ ^ ^ ^ ^ ^ M 
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Figure 6.5: Example 3: Rolling between a finger and an object. 
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Figure 6.6: Change ofjoint angles of the finger in the process of rolling. 
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Figure 6.7: Change of object configuration in the process of rolling. 
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Figure 6.8: Change of constraint force /c arisen in the process of rolling. 
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Figure 6.9: Change of local contact parameters [un Uoi V']̂  in the process of rolling. 



6.4 Sliding Contact 7J_ 

™^**^S"*" p ^ ^ ^ ^ ^fl^^^8l a ^^^ 4^M : • _ 
.>»i«MM«Mim |sMM̂ifNMMiiiMSSRR!RSSSK9RRRB̂^̂Ê ŜiiBiiiSiMiâ  fc*awanai^lfetfiSHBBiBBBBBBIBBill^BjBHBBB 

(a) (b) (c) 

^mmammmmsz3m \n ^^^^^^^agmm 

_ _ _ 

j K ^ W s l 
(d) (e) (f) 

aiWBa«ww>A.—.feiMiW| |_M.f..ij<p^_i=:=g^Mg51g| p“^^^ji^|-i^g^^|^jj^^|g| 

_ _ _ ' '^2""'|2|^B 
|jlHRJLJHftj9HiL 

(g) (h) (i) 
Figure 6.10: Example 4: Sliding between a finger and an object. 
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Figure 6.11: Change ofjoint angles of the finger in the process of sliding. 
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(a) Change of object location. (b) Change of object orientation. 

Figure 6.12: Change of object configuration in the process of sliding. 
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Figure 6.13: Change of constraint force /c arisen in the process of sliding. 
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Figure 6.14: Change of local contact parameters [uu Uoi ̂ ]^ in the process of sliding. 
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6.5 Collisions 

The sudden change of velocity occurred when there is impulsive force applied to the 

system. This change is discontinuous and is handled by the collision model presented in 

Chapter 4. Figures 6.15, 6.16 and 6.17 show the collision responses of a finger collided 

with an object with different masses. Figures 6.18, 6.19 and 6.20 shows the velocity 

responses of the collision. The collision happens at about t = 0.12s and there are rapid 
changes of joint velocities, object translational velocities, and differential ZYZ Euler 

angles. Furthermore, there is one more velocity change for the case when m。= 0.5 at 

t = 0.175s since the first collision introduces an another collision between the finger 
and the object. 

Last three examples demonstrate the dynamic effect of a finger collided with an 

object. Example 8 shown in Figure 6.21 illustrates that the collision response of the 

system when there are mixed contacts and collisions. The second (index) finger is 

colliding with the object that is grasped by other fingers. Figure 6.22 shows the joint 

velocities changes of different fingers. The joint velocities of the third (middle) finger 

are kept to be zero, which implies that there is no contact between this finger and the 

object. Since velocity propagation mechanism described in Section 5.3.3 is implemented 

in our system, joint velocities change of a colliding finger can be propagated to other 

contacting fingers. For examples, there is a coupling effect for the first (thumb) finger 

and the fifth (pinkie) finger at t = 0.16s. Furthermore, the change ofjoint velocities of 
the second (index) finger at t = 0.3s are propagated to the fourth (ring) finger so there 
is a change ofjoint velocities. 
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1 |ĵ  r 
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Figure 6.15: Example 5: Collision between a finger and an object with mass rUo = 

O.Olkg. 
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Figure 6.16: Example 6: Collision between a finger and an object with mass rUo = O.lkg. 
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Figure 6.17: Example 7: Collision between a finger and an object with mass m。= 0.5A;̂ . 
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Figure 6.18: Change of joint velocities of the finger in the process of collision with 

different object mass. 
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Figure 6.19: Change of object translational velocity in the process of collision with 

different object mass. 
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Figure 6.20: Change of object differential Z Y Z Euler angles in the process of collision 

with different object mass. 
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Figure 6.21: Example 8: Dextrous manipulation with mixed contacts and collisions. 
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Figure 6.22: Change of joint velocities of the finger in the process of mixed contacts 

and collisions. 

6.6 Dextrous Manipulation Motions 

T w o dextrous manipulation motions of the simulated five-fingered robot hand are shown 

in Figures 6.23 and 6.25. The changes of the object configuration are shown in Fig-

ures 6.24 and 6.26. Example 9 shows the object are being pushed by two fingers to the 
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other sides of the robot hand. Example 10 shows that the robot hand is rotating the 

object. During the rotation, the contact positions of many fingers are kept changing. 

For example, the last (pinkie) finger initially touches the center part of the bottom 

edge. At the end of simulation, it slides to the side of the object. 

6.7 Summary 

In this chapter, various motions of the simulated five-fingered robot hand are simu-

lated. They involve the changes in grasping configuration, rolling and sliding contacts, 

collision, as well as simple dextrous manipulations. The dynamic responses of these 

motions are also presented such as the changes of constraint force and that of the local 

contact parameters. These simulation results verify that our dynamic simulation is 

both efficient and accurate compared to other dynamic simulators. 
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Figure 6.23: Example 9: Simple dextrous manipulation. 
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(a) Change of object location. (b) Change of object orientation. 

Figure 6.24: Change of object configuration in the process of a simple dextrous manip-

ulation shown in Example 9. 
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Figure 6.25: Example 10: Simple dextrous manipulation. 
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(a) Change of object location. (b) Change of object orientation. 
Figure 6.26: Change of object configuration in the process of a simple dextrous manip-

ulation shown in Example 10. 



Chapter 7 

Conclusions 

7.1 Summary of Contributions 

In this dissertation, we have presented a new dynamic modeling method for the general 

multi-fingered robot hand system, which combines free motion, collision, and contact 

motions. Furthermore, we have developed a dynamic simulator for a multi-fingered 

robot hand system based on its full kinematics and dynamics. 

The most difficult part in the dynamic modeling for the multi-fingered robot hand 

system is to handle the interactions between the fingers and the manipulated object. 

These interactions may be collision, sticking contact, rolling or sliding contact and 

they always change rapidly in dextrous grasping and manipulation motions. In this 

dissertation, the dynamics formulation is divided into two parts: contact modeling and 
collision modeling. Firstly, The kinematics and dynamics of a multi-fingered robot 
hand manipulating an object are derived under different contact motions. Secondly, 

the velocity discontinuity caused by collision is handled by an improved collision model. 

In the contact modeling, we have derived an unified formulation of different contact 

constraints. Using this new formulation method, we derive a general contact constraint 

to represent all contact cases occurred in multi-fingered robot hand manipulation. They 

include free motion, sticking contact, rolling and sliding contacts. It is achieved by us-

ing different contact mode selection matrix CMi (equation (2.15)) in the general contact 
constraint. Based on this formulation, we are able to simulate the rapid changing of 

grasping configurations or contact kinematic constraints effectively. The contact con-

straints of the whole system are then extended to the general velocity and acceleration 

constraints of the system by applying the Montana's contact equations (equation (2.4)). 

To model the collision, the impulse-based method proposed by Mirtich (1996) is 
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modified and extended. This method is mainly used to handle the interaction that 

the relative interacting velocity is large so there are sudden changes of velocities. The 

derived equations provide a simple but accurate model to handle the collision arisen in 

multi-fingered robot hand grasping or manipulation motions. The first order differen-

tial collision equations for the finger-object system are derived and different collision 

integration methods are presented. Special treatments are presented to handle the 

multiple collisions and the mixed contact-collision cases. 

Based on the equations derived in the contact modeling and the collision modeling, 

a dynamic simulation system of a five-fiiigered robot hand has been developed. This 

system incorporates the knowledge of multi-body dynamics, contact modeling, physics-

based simulation, human control, and virtual reality. It is able to efficiently simulate 

both the multi-fingered grasping and dextrous manipulation of the five-fingered robot 

hand compared to other dynamic simulators. In the constraint-based simulation, a new 

contact model is presented to describe the change of contact constraints during simula-

tion. Combining the contact modeling equations and this contact model, the dynamic 

simulation system is successful to handle the rapid changing of grasp configuration and 

various contact constraints. Using the data glove as one of the input devices and the 

virtual environment as the output medium, the system can easily simulate and exam-

ine the dynamic behaviors of the transferred human skills to the virtual robot hand 

interactively. The performance of the dynamic simulation is verified by the simulation 

examples and results presented in Chapter 6. 

7.2 Future Work 

The work in this dissertation can be further extended in the improvement of the current 

system and its potential applications. They are: 

7.2.1 Improvement of Current System 

• Force feedback: In the current dynamic simulation system, only visual infor-
mation of the simulation results is feedback to the human operator for motion 

guidance and error adjustment. It is one kind of information to help us to do 

the dextrous manipulation motion. However, the operator does not feel that he 

is manipulating an object since no force feedback actuator is available on the 

data glove. In order to have a better quality of the feedback loop, the force 

feedback can be developed in the dynamic simulation system. There are some 
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commercial force actuators for data glove have been already available such as the 

C^6erGrasp^. 

• Speed Improvement: The computational requirement of the dynamic simula-
tion is quite high. The graphical workstation needs to support the three dimen-

sional fully rendered virtual environment, enormous number of matrix compu-

tations, and several computational intensive numerical integration subroutines. 

The speed performance of current dynamic simulation is only satisfactory and it 

may affect the interactive performance of the system. The speed of the system 

can be improved to reformulate all the kinematic and dynamic equation in re-

cursive forms or port the current system to the multi-processes workstation for 

parallel computation. 

• Support various shapes of grasped object: As described in Chapter 5, the 
current interference detection is done based on simple geometric relationships of 

the fingertips and the grasped object. They are restricted in certain shapes. The 

dynamic simulation system can be extended to handle various shapes of grasped 

object or fingertip by incorporating a much sophisticated interference detection 

algorithm such as that proposed in (Lin, 1993) and (Mirtich, 1997). They are 

effective to detect interaction between convex polyhedral objects. Using these 

interaction detection algorithms, the handling of interactions between the fingers 

and the grasped object can be also extended to the interactions between fingers 

to fingers or links to links. 

• Experimental analysis of the simulation system performance: In order to 
have a more analytical evaluation of the performance of the dynamic simulation 

system, experiments on multi-fingered grasping and dextrous manipulation can 

be done based on the real five-fingered robot hand. The experimental data can 

be used to compare to the simulation results for further analysis. 

7.2.2 Applications 

• Embed in task teaching system: The current developed dynamic simulation 
system working in the virtual environment for the real five-fingered robot hand 

system can be embedded to the task teaching system D M T S proposed in (Liu, 

1995). Learning and optimization capabilities are required to added to the current 

simulation system. 

^ Further information of this commercial product can be referred to its internet homepage 
http://www.virtex.cora/prod_cybergrasp.html. 

http://www.virtex.cora/prod_cybergrasp.html
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• Testbed for testing control algorithms: Our proposed dynamic modeling 

methods can help us to develop another dynamic simulation system for multiple 

manipulators cooperation system and the multi-legged walking robot since they 

are similar to the multi-fingered robot hand in mechanical structure and behav-

iors. The dynamic simulation system can be used as a testbed to evaluate the 

performance of different control algorithms such as (Qin et al., 1997) and (Liu 

and Arimoto, 1998) applied to these closed chain mechanisms. It is more safe, 

cost-effective, and efficient comparing to perform experiments in real mechanisms. 

• Internet-based simulation system: In the final project of Jong (1998), an 
internet-based robot control system was developed. The control process can be 

done remotely through the world wide web. The experimental and research re-

sources can then be fully utilized. Using the same idea, the current dynamic 

simulation can be ported to the internet and makes it to be the internet-based 

simulation system. In this way, the dynamic simulation of the multi-fingered 

robot hand can be done in the world wide web browser and it can facilitate the 

development of multi-fingered robot hand. 



Appendix A 

Montana's Contact Equations for 
Finger-object Contact 

Using the notations shown in Figure 2.7, the Montana's contact equations are written 

as following form: 

r /r-o;i r 1� 
m =Mi~^i(Ku + ^ ^ i ‘ -i^oi ^ " 

\ L �J yy. / 
/ r 1 r 1 \ 

1 • - , ~ , -u)y Vx (A.1) 

Uor = M : i ? ^ i i + Ko“-i ‘ +Ku ‘ V L A J W / 
4> = ^Z + TiiMiiUii + ToiMoiUoi 

\ 

A.1 Local Coordinates Charts 

Let cii and Coi be the local coordinate chart with respect to the fingertip surface and 

the object surface if the fingertip is modeled as a hemisphere and the object is modeled 

as a rectangular object, therefore: 

r s i n ( u “ T ) “ 

cii(uiix,uiiy) = rcos(uii:,)sm(uiiy) (A.2) 

rcos{uii:j:)cos{uiiy)_ 
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where r is the radius of the fingertip, and: 

^oix 
^oi i^oix^ ^oiy) ~ ^oiy (A.3) 

_ 0 _ 

U f Uiix Uo Uoix 
To simplify the notations, we use = , = , cn = c/, and Coi = Cg 

[^^/J l^liy] [^oJ L^y� 

to rewrite equations (A.2) and (A.3): 

rsin(u/) 「Uo 

Cf{uf,Vf) = rcos{uf) s'm{vf) , and Co(uo,Vo) = Vo (A.4) 

_rcos(ii/)cos(̂ ;/)J 0 

A.2 Curvature, Torsion and Metric Tensors 

The definitions of the metric, curvature, and torsion tensor are shown as follows: 

• Metric tensor: 

^J"S" ;J [• "£" 
• Curvature tensor: 

• dci drii dci dni ‘ • ‘ - • -
du du du dv 
ll^ip 11^|| l|^|| 

“du ” ” du ” “ dv ” 
Ki = 

dci drii dci dni •—•••' . • 
dv du dv dv 

1|^|| ||^|| l|^||2 
L" au" ” dv ” ” dv ” • 

where 

dci dci 
y^. _ du dv 
‘ | ^ x ^ | 

I ^ X " ^ I 
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• Torsion tensor: 

_ dci d^Ci dci d^C{ _ 
rp. _ dv dv? dv dudv 

^~j'£"£ii "S:""g"2_ 
Using these definitions, we can determine the metric, curvature, and torsion tensors 

of the fingertip surface and they are: 

• Metric tensor: 

r 0 
Mii = 

[0 rcos{uf) 

參 Curvature tensor: 

- 4 ?] 
• Torsion tensor: 

Tii= 0 - i tan(u/) 

Similarly, the metric, curvature, and torsion tensors of the object surface and they 

are: 

• Metric tensor: 

M- = [1 ； 

• Curvature tensor: 

i^ . - [ o 0] 

Koi _ 0 0 

• Torsion tensor: 

Toi [0 0 
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A.3 Montana's Contact Equations 

Since ^ R is equal to: 

oi6_ \ cos^ -simp 
li it — 

[—s'm^ — cos^ 

Therefore, the term Koi can be determined as: 
f> — [ c^ -Si] ^ [ c�—H 
八oi — 八oi -S^ —c^j [-S,/; -C^ 

'o 0_ 

= 0 oJ (A.5) 

u f iiQ • 
Using equations (A.1), we can compute , , and ̂  as: 

l^f\ [̂ oJ 

.卜， : 
”f_ 

r 1 r n -i r! i -i r i 
Uf _ r 0 ^ 0 -ujy 
Vf 0 rcos(uf) 0 - uJx 

• J L J � L r � • • 

= - ^ y 
— Ux 

.cos{uf)_ 

Uo • 
Vo_ 

Uo — 1 0 c^ -s^ 7 0 1 f -UJy + i 0 JJ;、 

Voj [0 lJ [-Srp -C^\ [0 iJ y [ 0½ J 0 i Vy ! 

_ (Vx 一 rUy)c^ - (vy + rcOx)sip 
-{vy + rUx)c,p + (_Va; + rujy)s^ 
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• ^: 
. 1 /、1 卜 0 1 「 - y y 
— Wz+ 0 -ftanu/ ⑴工 

L 」[0 rcos(u,)J [ ^ _ 

二 LJz — (̂ x tan(ii/) 

The matrix form of the Montana's contact equations are thus: 

r 1 r n ^X 
iif̂  0 0 0 0 -1 0] 

vf 0 0 0 sec(u/) 0 0 “ 
n 2̂ 

Uo 二 c^ -s^ 0 -rs^ -rc^ 0 
u)x 

Vo -S^ -c^ 0 -rc^ rs^ 0 
ij) L 0 0 0 -tan(u/) 0 lJ “ 

L̂ z_ 



Appendix B 

Finger Dynamics 

B.1 Forward Kinematics of a Robot Finger 

Figure (B.1) shows a finger of the five-fingered robot hand in our department. The 

coordinate frame for each link is assigned by the modified Denavit-Hartenberg method. 

The link masses are assumed to be concentrated at the ends of the links and the joint 
r 1了 

variable is 9 = 6i 62 3̂ 

4 / ' 

〜 ^ % 

‘； X^ '^ 
.J^^^^ 
^ X ^ 3 , 

2 / ^ 1 
“ 1 
1 I X 
y h 

1 " 1。1 

^ 2 L 
Figure B.1: Coordinate frames assignment of a finger of the five-fingered robot hand. 
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B.1.1 Link-coordinate Transformation 

By using equation (2.7), the link-coordinate transformation matrix coordinate frame 

E2 to coordinate frame Si is: 

ci 0 si hci 

1 一 si 0 -ci hsi 
nJ-— 
2 0 1 0 0 

0 0 0 1 

since di = 0 and ai = 7r/2. Similarly, the link-coordinate transformation matrix 

coordinate frame S3 to coordinate frame S2 and the link-coordinate transformation 

matrix coordinate frame E4 to coordinate frame E3 are: 

C2 -S2 0 l2C2 

lT=幻 C2 0 hS2 

3 0 0 1 0 》 

0 0 0 1 

c3 -s3 0 /3C3 

3 ^ _ 3̂ C3 0 /353 

4 T - 0 0 1 0 (B.2) 

0 0 0 1 

since d2 = d3 = 0 and a2 = «3 = 0. 

B.1.2 Forward Kinematics 
The forward kinematics of the finger can be determined by equation (2.6) as: 

m = h) _1 
[0ix3 1 _ 

where 

c1c23 -c1s23 si 

R{0) = siC23 -s1s23 -ci (B.3) 

_ s23 c23 0 _ 
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and 

ci{h + hc2 + hc23) 
p{0) = si{h + l2c2 + /3c23) 

_ l2S2 + ^3s23 _ 

B.2 Dynamic Equation of a Robot Finger 

B.2.1 Kinetic and Potential Energy 

After obtaining the homogeneous transformation matrix in the above section, the ki-

netic and potential energies of each link can be determined. 

C o n s i d e r mi : Coordinates o f m i respect to coordinate frame Ei is: 

Xml 0 hCl 
Vml lrj. 0 liSi 

二 2丄 
Zml 0 0 

1 J [iJ [ 1 

and its corresponding velocity respect to coordinate frame S i is: 

- "] 「 . -

Xml -hs\0i 
Vml _ -kciOi 

Zml 0 
1 J L 1 

Therefore, the kinetic and potential energies are: 

Ki = ^rniAi + Vml + imi) = ^mh^Ol 

Pi = m19xmi = T^i9hci 

C o n s i d e r m2: Coordinates of rri2 respect to coordinate frame Ei is: 

Xm2 0 

ym2 — iT 0 
二 3^ 

Zm2 0 

1 J [1 
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The corresponding kinetic and potential energies are: 

K2 = ^rn2{xl,2 + Vm2 + ̂ m2) 

=-m2 \(ll + bl + 2hhC2 + bl cos(26>2)l Ol + ll02^ 
2 LV 2 2 / . 

P2 = rn2gxm2 = m2gc1{h + l2c2) 

Consider m3: Coordinates 0fm3 respect to coordinate frame Ei is: 
— «1 p ^ � • 

XmZ 0 Ci(/i +/2C2 + /3C23) 

ym3 二1了 0 二 s1(Z1+Z2c:2 + /3Q23) 

Zm3 4 0 hS2 + hS23 

1 1 1 - J L J L J 

The kinetic and potential energies are: 

K3 = |m2(i43 + yli3 + ^ L ) 

P3 = msgxm^ = m3gc1(l1 + l2c2 + /3c23) 

since K^ is so complicated and its closed form is not shown here. 

B.2.2 Lagrange's Equation 

Using Lagrange's formulation method for a conservative system: 

d dL dL 
d t ^ - ^ = ' (B-4) 

The dynamics of the finger can be formulated in the standard form of: 

M(9)9 + V(e,e)^G(6) = T 
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where 

Mii =milf + m2(/1 + l2c2f + 7n3 [/i + /2c2 + hc23^ 

M12 =Mi3 = M21 = M31 = 0 

M22 =m2ll + m3(l2 + ll + 2i2hcs) 

M23 =M32 = m3/3(/2c3 + h) 

M33 =m3/3 

Vi 二 - 2m2l2s2(h + hc2)O162 - 2m3(/1 + l2c2 + hc23){l2s2 + ^3523)^1^2 -

2hmsS23(h + l2C2 + hC23)0l93 

V2 =m2l2S2{h + hc2)0l + m3{l1 + hC2 + hC23){l2S2 + hs23)9l -

m3M3S3(2^2^3 + ^ ) 

^3 =rri3h \l2Ss + hs23 + “ sin[2(6>2 + 3̂)] + ^h sin(202 + Os)矜 + • “ 

mshhssdl 

Gi = - gsi[mili + m2(l1 + l2c2) + m3(/1 + hc2 + /3C23)] 

G2 = - ^c1[m2/252 + m3(hs2 + ks23). 

G3 = - gm3l3c1s23 



Appendix C 

Simulation Configurations 

C.1 Geometric models 

The specification of the geometric model of a finger of the five-fingered robot hand 

used in the simulation is shown in Figure C.1. The dimensions of this model are fully 

based on the real five-fingered robot hand and the unit shown in figure is in millimeter 

(mm). The corresponding three dimensional solid model of the robot hand constructed 

by AutoCAD is shown in Figure C.2. 

C.2 Physical Parameters 

The setting of physical parameters applied in the simulation are: 

• Mass of the three links of each finger are 0.07kg. 

• Gravitational constant, g = 9.8m/s^ 

• Coefficient of friction, /i = 0.6 

• Coefficient of restitution, e 二 0.8744 + 0.0756 x 2.7182^ where k is the inter-
penetration distance between the contacted finger and the object. 

^If e is less than one, it implies the collision between rigid bodies is not perfectly elastic and energy 
is lost during collision. In our simulation, if collision appears for a long period to time, the finger will 
penetrate into the object because of the energy loss. In order to prevent the severe inter-penetration 
happened, the restitution is set to be an exponential function (Mirtich, 1996) ofthe penetration distance 
rather than to end a constant. 
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Figure C.1: Specification of the geometric model of a finger. 
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Fourth finger (Ring) 
^ ^ Third finger (Middle) 

A 
^ ~ W N ^ ^ ^ ^ Second finger (Index) 

^ H ^ ^ V ^ ^ 
First finger (Thumb) 

Figure C.2: Three dimensional solid model of the five-fingered robot hand constructed 

by AutoCAD. 
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C.3 Simulation Parameters 

The simulation parameters setting are: 

• P-gain of the PD+gravity finger control law is a 3 x 3 diagonal matrix and all the 

diagonal terms are 0.15. 

• D-gain of the PD+gravity finger control law is also a 3 x 3 diagonal matrix with 

diagonal values equal to 0.02. 

• a used in stabilizing the velocity constraint is set to be 0.1. 

• Collision threshold is O.Olm/<s. 

• Both time steps used in the constraint-based and impulse-based simulations are 

equivalent and they are 0.00l5. 
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