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Abstract 

The binary classification problem classifies observations into two pre-

determined groups. Many real-life problems are applications of the binary 

classification problem. The literature has suggested a single hidden-layer 

backpropagation feedforward neural network is a consistent universal clas-

sifier for the binary classification problem. However, there are still limi-

tations in applying the neural network approach. 

In this research, we address two limitations: data dependency and 

network size. For the data dependency problem, we propose a hybrid 

model. This approach uses a data handler to separate the data into good 

and bad data before the data are fed for training or operating the networks. 

By training two independent networks using two groups of data, we are 

able to better describe the distribution space of the corresponding data 

sample with two different functions. The computational result shows that 

the hybrid approach improves the accuracy of the classification. 

The network size is often decided by the trial-and-error test. This 

makes the application of a neural network very tedious. There are some 

network architecture altering methods. In this research, we propose some 

methods that combine the advantages of these network architecture alter-

ing methods. By evaluating the performance of generalization ability, time 

consumption and resulting network size, we find that methods that adopt 

the properties from pruning and constructive algorithms always produce 

a better network. 
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Chapter 1 

Introduction 

1.1 Overview 

The binary classification problem is a special case of the classification problem, 

and has been continuously studied in the literature. Many practical applications of 

the binary classification models include bankruptcy data analysis, medical diagnosis, 

signal processing, etc. Typically, many research studies solve the binary classification 

problem using different discriminating approaches. 

Neural networks are used to solve the binary classification problem in this thesis. 

Neural networks have been shown to be very effective in solving some practical binary 

classification applications[l, 2, 3, 4, 5]. Yet, there are several limitations in applying 

neural networks. In this research, we try to address some of these limitations and 

improve the performance of neural networks. 

The hybrid classification model is developed to minimize the vagueness effect 

introduced by the noise data. By using two different discriminating functions to 

10 



L2. CLASSIFICATION APPROACHES 11 

describe the distribution space of the data, the generalization performance can be 

improved. The model is implemented, and tested using the data of breast mass 

cytology. It is also tested using the synthetic data, which contains a large amount 

of noise data, so as to shows that the hybrid classification model performs better 

in a noisy environment than the conventional method. Furthermore, to study the 

problem in automatically searching for the suitable network architecture, we tested 

the network architecture altering methods using the databases of breast mass cytology 

and tic-tac-toe. 

1.2 Classification Approaches 

Typically, there are two approaches to study classification problem : supervised 

learning and unsupervised learning. Supervised learning is a method which is given 

with certain classes of observations and establishes rules to classify a new observation 

into one of the existing classes[6]. While, unsupervised learning is a method which 

establishes the existence of classes for a given set of observations[6]. In this research, 

we study approaches in supervised learning. 

To be more precise, the classification problem using supervised learning requires a 

finite number N of classes, Ci,...，Cjv[7], where N is greater than one. Each observa-

tion consists of a set of attributes, X, and is assigned to one and only one of the classes 

according to its attributes. The application domains of the classification problem in-

clude character recognition, speech understanding, medical diagnosis, process fault 

detection, managerial decision making, and financial decision making[l, 2, 3，4, 7, 8 . 
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In this research, we concentrate on the binary classification problem rather than 

the multi-class classification problem. The binary classification problem is a subset of 

the classification problem, where observations are assigned to one of the two categories 

only(i.e., N = 2). The problem is widely applied in different application domains, 

such as, bankruptcy prediction in financial forecasting, exclusive-OR(XOR) problem 

in signal processing, risk analysis in managerial decision forecasting and breast-mass 

identification in medical diagnosis[l, 2, 3, 4, 5, 9]. 

1.3 The Use of Neural Network 

The performance of the classification process depends on how well the discriminat-

ing function for the entire classification problem performs. A discriminating function 

is developed to minimize the misclassification rate, based on some given samples of 

input and output vector couples that are referred to as "training data set". This 

discriminating function is then used for classifying new observations into previously 

defined groups and for testing the generalization performance. However, one should 

know that an accurate performance on training data set may not intuitively lead to 

an accurate prediction on the unseen observations (testing data set) [6 . 

There are three main approaches to tackle the classification problem : statistical 

approaches, machine learning approaches and neural network approaches. Statisti-

cal approaches are the traditional methods in the classification problem. They are 

generally characterized by having an explicit underlying probability model, which 

provides a class probability rather than simply a classification[6]. The most widely 
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used statistical approaches are the Fisher's linear discriminant model[l, 6] and its 

extensions, multivariate[10] and univariate[ll] discriminant analysis. These methods 

have some restrictions of the linear prediction manner, assumptions of multivariate 

normal distribution, identical covariance matrices of each class, and known mean 

vectors, covariance matrices, prior probabilities and misclassification costs[l]. Other 

statistical approaches include logistic regression and k nearest neighbour. 

Machine learning approaches improve their performance automatically in a stand-

alone manner by learning process, rather than the programs that built up solely upon 

the analysis by programmer. Decision tree methods commonly used in machine learn-

ing approaches. ID3 and C4.5 are the typical methods[l, 6, 12]. Decision tree methods 

are the family of symbolic data analysis algorithms. The classification procedure in 

decision tree is based on recursive partitioning of the sample space[6]. The exper-

iments in [6] show that all decision tree methods always perform the same. And 

their performance on the multi-modal data will be better when compared to classical 

statistical methods. 

Neural network approaches are also a kind of machine learning approaches. More 

than a typical machine learning approach, neural network approaches have adopted 

some statistical techniques and the properties of a stand-alone system of machine 

learning approaches[6]. These approaches act with a similar behaviour to networks 

of neurons in brain. Several advantages in applications such as, learning from expe-

rience, generalizing from examples, extracting essential information from noisy data, 

developing solutions fast once appropriate network design is adopted, adaptability to 

different domains, computational efficiency when operation, and non-linearity prop-
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erties that applicable to complex and real world situations can be achieved[13]. Many 

research studies show that neural network approaches are more reliable than other 

methods[l, 5, 14 . 

1.4 Motivations 

Although several research studies suggest that neural network approaches have a 

higher classification ability[l, 5, 14] than many other methods, the predictive capa-

bility of these approaches still has potential for further improvement. In the following 

paragraphs, we discuss some limitations of applying neural networks. 

Data Dependency 

The training processes of neural networks are very sensitive to the training data 

set[8]. The training data may affect a network through the different ratio between the 

number of observations with different classes[5], and the noise. A trained network is 

more sensitive to some specific classes if the training data set consists of a larger ratio 

of observations in these classes than the other. And also, although neural network 

approaches can extract essential information from noisy data, their performance may 

be affected by having too many noisy data in the training data set[15 . 

Unknown Network Size 

Before a training to a neural network can be processed, we often need to arbitrarily 

decide the network size first. We often need to perform trial-and-error tests on the 
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network size. A small network may not achieve the desirable prediction ability, but an 

oversized network may also suffer from the problem of memorizing and overfitting[6, 

12，16]. 

Unknown Parameter Setting 

The proper choices of the rate parameters, such as step size of gradient method, 

learning rate, network momentum for neural networks are also important. Too small 

may lead to long training time. Too large may result in an unstable training and 

poor solution network[12, 17]. Generally, the choices of the rate parameters depend 

on the experience and must be varied from different problems. Thus, it is often a 

time consuming and trial-and-error process. 

When to Stop Training 

It is difficult to determine when to stop a training. Typically, the training will 

be terminated when an acceptable misclassification rate on the training data set is 

obtained. However, the level of this misclassification rate is set arbitrarily. On one 

hand, a large misclassification tolerance rate will probably lead to a bad solution 

network. On the other hand, a small misclassification tolerance rate will result in an 

overfitting solution network. 

Initial Weight Dependency 

A successful training process that produces a solution network depends on the 

initial weights[18, 19]. Poor initial weights often make a solution network trapped in 
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a local minimum and hence achieve a sub-optimal performance or never obtain an 

acceptable solution network. Also if we start with all the weights equal to zero or 

any single number, the network will not be trainable[18]. Unfortunately we do not 

have any rules for setting the initial weights that will definitely lead to a successful 

training. 

Unreadability 

The distributed nature of the knowledge representation in a neural network is often 

unreadable[6, 20]. It is extremely difficult for the user to understand the knowledge 

that represented by a trained neural network by just studying its connection weights 

and thresholds[20 . 

1.5 Organization of Thesis 

In this research, we address some limitations of applying neural networks to the 

classification problem. By addressing the limitations, we are able to improve the 

performance of neural network approaches. Furthermore, a single hidden-layer back-

propagation feedforward neural network is used in this research as it is an universal 

consistent classifier for the binary classification problem[21, 22, 23, 24, 25]. The re-

maining chapters in the thesis are organized as follows : 
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Chapter 2 : Related Work 

Chapter 2 introduces the existing work in neural network approaches related to 

the classification problem. The topology of a neural network, the techniques that 

contribute to the hybrid classification model, and the previous studies in network 

architecture altering approaches are explained in this chapter. 

Chapter 3 : Hybrid Classification Systems 

To deal with the noisy data dependency problem, in neural network approaches, 

we propose a hybrid classification approach. The hybrid model is composed of fuzzy 

linear regression with fuzzy intervals analysis(FLRFIA) and neural networks. The 

FLRFIA works as a data handler and separates the data sample into two groups : 

good data and the bad data, before the training and operation begin. By training 

two independent neural networks with these two groups, we can better describe the 

distribution space of the corresponding data sample with two different discriminating 

functions. The result shows that this hybrid approach improves the accuracy of the 

classification. 

Chapter 4 : Searching for Suitable Network Size Automatically 

Typically, the desirable network size is determined through trial-an-error tests. 

A certain network size is chosen because it gives the most promising generalization 

performance in the trial-and-error tests. In spite of the simplicity, it is a very tedious 

work. Recent studies suggest the use of the network architecture altering approaches 

:pruning algorithms and constructive algorithms. These methods allow the network 
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architecture being altered during the training. In Chapter 4, we introduce the mod-

ified constructive methods, emphasizing the integration of pruning and constructive 

methods. In order to evaluate the performance, the fixed architecture network method 

and pruning methods are also tested and evaluated with respect to the generalization 

ability, time complexity and the obtained network size. 

Chapter 5 : Summary of Thesis 

This chapter gives a review, discussion and conclusion to this research. And also, 

the possible future extensions are included. 



Chapter 2 

Related Work 

2.1 Overview 

In this research, the neural network approaches are applied to the binary classifi-

cation problem. In particular we use a backpropagation feedforward neural network 

as a classifier. As discussed in the last chapter, there are several limitations in ap-

plying a neural network. We propose a data preprocessing approach to deal with 

the data problem, and approaches to search for the desirable network architecture. 

In this chapter, we will review a backpropagation feedforward neural network, and 

the training process. Approaches related to data preprocessing and searching for the 

desirable network architecture will also be reviewed. 

19 
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2.2 Neural Network 

Unlike conventional data processing techniques which require complex program-

ming, neural networks develop their own solutions to problems. In fact, neural net-

works are trained rather than programmed[13 • 

2.2.1 Backpropagation Feedforward Neural Network 

A neural network can be represented by nodes, and interconnections associated 

with weights. Figure2.1 shows the structure of a multilayer backpropagation feedfor-

ward neural network[18]. Each node is a computational unit, in which input signals 

from other units are mapped to output signals by a specific activation function. 

Connections Connections 
@ ^ t s ) @ ^ ^ t s ) 

一 1 — ^ ^ ^ ^ ^ ^ ^ 一 
mput2 — O ^ ^ P ^ ^ ^ t > ^ O u _ 2 
Mputni ~ • O ^ ~ ~ ^ ^ ^ Q ^ _ _ - ¾ ~ • Outputni 

i j 1 
Input Hidden Output 
layer layer layer 

Figure 2.1: Structure of Multilayer Backpropagation Feedforward Neural Network 

Before we discuss the training process of a backpropagation feedforward neural 

network, we define the following terminologies of neural networks. 
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Network Inputs and Outputs : A network input is a single pattern. Each input 

pattern has a corresponding value or a set of values that are mapped to a network 

output. The difference between the network output and the desirable output is the 

measurement for the generalization performance of a trained network. 

Training Data Set : A set of examples are used for learning, that is to fit the 

weights of a network[21 . 

Testing Data Set : A set of examples are used to assess the performance of a 

trained network[21 . 

Generalization Performance : The generalization performance is the standard 

of that measures how well a trained network performs. Based on the generalization 

performance, we can compare the prediction ability between different classification 

models or topologies. 

Weights : The weights are associated with the links between nodes. By varying 

the weights, a neural network can implement any transformation between its inputs 

and outputs. 

Bias : In each layer, there is a unit whose output is always equal to 1, and that 

connects to the next layer[26]. The weights on this connection is called biases and is 

learned in the same way as the other weights[27]. It is an optional term[25]. However, 

introducing the bias always helps the convergence of training a network.[26 
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Activation Function : The activation function is usually nonlinear and bounded. 

Through different activation functions, different properties of classifiers or function 

approximators can be estimated. 

Network Architecture : There are many different neural network architectures, 

but one of the most common is the multilayer perceptron or feedforward neural 

network[13 . 

Stopping Criteria : Usually, there are two stopping criteria for the training of a 

neural network : the training misclassification rate and the maximum iteration runs. 

The training misclassification rate is the classification accuracy of a network being 

trained. A larger misclassification rate tolerance would lead to a poor classification 

performance of the training data set. A smaller misclassification rate tolerance would 

result in a better classification performance of the training data set. The maximum 

iteration runs is the stopping criterion that controls training time. 

2.2.2 Training of a Backpropagation Feedforward Neural Net-

work 

The calculation of a backpropagation feedforward neural network can be divided 

into two parts : feedforward calculation and backpropagation calculation. 
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Feedforward Calculation 

The feedforward calculation is used in both the training process and the operations 

of a trained network. The feedforward calculation provides a sequence of mapping 

processes from the input space to the output space. The input data allows for mapping 

from one layer to the other layer according to the connection weights and the node 

activation functions. As each connection and all data flow go from the input layer to 

the output layer, and since there is no feedback loop, the calculation is feedforward in 

nature. Each activation unit that provides the transformation from inputs to outputs, 

is shown in Fig.2.2([26]). 

A Oj 

z ^ ^ x 
V i j = i ^ji^i J 

M 
Oo Oj O2 On 

Figure 2.2: Structure of an Activation Unit 

The inputs to the unit, j, in a hidden layer are aggregated using 

n 

Net-inputj = I j = ^ WjiOi (2.1) 
i=0 

The output of the unit, j, is produced by the activation function, f(Ij). The literature 
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suggest a sigmoid backpropagation neural network is the universal consistent classifier 

for many types of the binary classification problem[21, 22，23, 24, 25]. In this research, 

we use a sigmoid function as an activation function. A sigmoid function (Eq.2.2) 

shows how the output of hidden unit j is computed. The corresponding outputs of 

the sigmoid function are shown in Fig.2.3([18]). 

o u t P U �= Oj = l + exp(-7,) (2.2) 

A sigmoid function is also called a squashing function. The output of an activation 

Unit Output 
4 i 

——1.0 

- 乙 0 . 5 

Large negative , ‘ Large positive 
net input net input 

Figure 2.3: Corresponding Output of a Sigmoid Function 

function is limited between 0 and 1 corresponding to the net input to the unit. For a 

large negative net input, the output approaches 0; while for a large positive net input, 

the output approaches 1. When the net input is 0, the output is 0.5. The output of 

each output layer, /, is calculated similarly using Eq. 2.3 and 2.4. 

n 

Net-inputf = Ii = ^ w i j O j (2.3) 
j=o 
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outputi 二 0i = — ~ ~ 1 ( � (2.4) 
1 + exp{-Ii) 

Through the feedforward calculation, we achieve the sequence of mapping pro-

cesses from the input space to the output space with cooperating the associated 

weights and the activation units. An iteration run of a feedforward neural network 

is then completed and a set of network output for the pattern classification can be 

obtained. Thus, the backpropagation calculation can be proceeded with these infor-

mation. 

Backpropagation Calculation 

The backpropagation calculation is used during the training process. With the 

help of the feedforward calculation, we carry the processes of weight adjustment and 

the error propagation. These processes are parts of network's learning or training. 

The feedforward calculation produces an output vector. This output vector is then 

compared with the actual (or target) output vector to give an average sum-squared 

error value. The goal of the training process is to minimize this average sum-squared 

error over all training data sample[18] so as to find a set of weights which can map 

the input vectors to corresponding output vectors within a tolerant error level. The 

backpropagation calculation propagates the error value back and thus performs the 

weight adjustments accordingly. 

The goal of the backpropagation training process is to determine weights and 

biases that minimize the average sum-squared error over all training data set. There-

fore, we construct an error function of sum-squared error of the network classification 
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performance in Eq.2.5. We divide Eq.2.5 by the total number of the training data 

set, to get the average sum-squared error. 

1 ni 
E , = - E ( tp i - o , t f (2.5) 

^ i=i 

In order to determine the step to update the weights, we use Eq.2.6 to compute the 

gradient. Then we perform the backpropagation. 

— f (2.6) 

By solving Eq.2.6, we obtain the expression of error signal in the output layer. 

Si = f{h){ti-oi) (2.7) 

={ti - oi)oi{l - Oi) 

This error signal is used for updating the weights between the output layer and the 

previous hidden layer. The updating of weights is shown in Eq.2.8, where rj G [0,1 

is the learning rate coefficient. 

wij{new) = wij {old) + rj6iOj (2.8) 

As the weight updating sometimes falls into the local minimum[18], a momentum 

coefficient, a G [0，1], is introduced in Eq.2.9([26]) to make the movement of training 

avoid being trapped by the local minimum. 

wij {new) = wij{old) + rj6iOj + a[Awij{old)] (2.9) 

Awij{old) does not equal to wij(old), where Awij{old) is the previous weight change, 

and wij {old) are the old weights of the network. The new weights are composed of 
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the old weights and weight change. The new weight change is computed by the error 

signal and the momentum of previous weight change. 

For the hidden layers, the equation of error signal is slightly different. 

ni 
Sh = f{ Ih )J2^ ihSi (2.10) 

1=0 

ni 
=Oh{l - Oh)^wih6i 

Z=0 

where h indicates the hidden layers. And the weight updating equation for the hidden 

layers are shown in Eq.2.11. 

wji{new) = Wji{old) + rj6jOi + a[Ait;ji(oZd)] (2.11) 

2.2.3 Single Hidden-layer Model 

In this research, we examine the use of a backpropagation feedforward neural network 

in the binary classification problem. In particular, we use a single hidden-layer model 

shown in Fig.2.4. Many researchers have suggested that the model is very applicable 

to the problem [21, 22, 23, 24, 25 . 

2.2.4 Data Preprocessing 

Data preprocessing for a neural network is a process that converts the raw data 

into the suitable inputs to a network[13]. Generally, there are several types of data 

preprocessing : normalization and parameterization [ 13, 18]. Normalization is the 

procedure to normalize the numerical inputs to a certain range, usually in the interval 

between 0 and 1. Parameterization is the procedure to convert the inputs to the 
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Connections Connections 
Q ^ e i g h t s ) ^ ( w e i g h t s ) 

一 — ^ ^ ^ ^ ^ ^ V ^ i 
Input2 ~ • O ^ V ^ D ^ D “ • Output 

. . _ ^ X 
i j 

Liput Hidden Output 
layer layer layer 

Figure 2.4: Structure of Single Hidden-layer Backpropagation Feedforward Neural 

Network for Binary Classification Problems 

calculated parameters with different methods, such as logarithm, square, Fourier 

transform, chi-square goodness-of-fit, correlation coefficient, etc. When the raw input 

data may be textual data, encoding must be proceeded before the input data are fed 

into the network. There may be some non-contributing input data in the database. 

For the reason to reduce the time complexity required for the training, one would filter 

those non-contributing data by the selection of the input data. These preprocessing 

methods are used for similar purposes, for example, transforming the data into a 

suitable format for the neural network input, selecting the most relevant data, and 

minimizing the number of inputs to the neural network. 
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2.3 Fuzzy Sets 

Fuzzy sets and logic were first introduced by Zadeh in 1965[21, ?]. They represent 

the break-through not only to the studies of uncertainty, but also to the two-valued 

sets and logic. The classical two-valued sets are called the crisp sets, which are strict 

binary decisions and assignments[21] that only represent either true or false. The 

fuzzy sets bring in the new concept of uncertainty beyond using probability theory. 

They provide measurement tools for the uncertainty and the vagueness in different 

problem domains. As an observation may not exactly meet sets with a crisp class, it 

may fall into the transition between membership (certainly belongs to the set) and 

non-membership (certainly does not belong to the set)[?]. In basic concept of fuzzy 

sets, the two-valued sets are described as its special case, where an observation only 

belongs to the membership or the non-membership [?. 

2.3.1 Fuzzy Linear Regression Analysis 

Fuzzy linear regression analysis, or Tanaka's model was introduced by Tanaka et 

al. in the early 1980's[28]. It is the extension of linear regression analysis with using 

fuzzy parameters. There are two objectives for developing fuzzy regression analysis. 

One deals with the situation when the relationship between the given variable cannot 

be described by the crisp function. The other handles the data which are fuzzy in 

nature[?]. There are four possible cases for the nature of the input data(independent 

variable) and the output data(dependent variable) in formulating the fuzzy linear 

regression model. They are couples of fuzzy input and output, non-fuzzy input and 
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fuzzy output, fuzzy input and non-fuzzy output, and non-fuzzy input and output[29 . 

In this research, we apply the case of non-fuzzy couple of input and output. However, 

for the binary classification problem, since the output is either 0 or l(crisp sets), 

we may consider this case as the couple of non-fuzzy input and fuzzy output, as 

mentioned above. Similar to the linear regression analysis, the fuzzy linear regression 

shows the relationship between the dependent and the independent variables by a 

linear function . 

Y = AoXo + AiXi H h A^XN = Ax ( x �: = 1) (2.12) 

where Y is the dependent variable, x is the vector of the independent variables, and A 

is the vector of a fuzzy set on the product space of parameters. The fuzzy parameter 

A is represented by the triangular fuzzy numbers : 

t 

� ( a , ) = l - ¥ i f a , - c , M % . + c,, (213) 

0 otherwise, 
s 

where Aj[aj) is the membership function of the fuzzy parameters a), a j and Cj are 

the center and spread of the fuzzy parameter a) , respectively. With the expressions 

of the fuzzy parameters in the form of triangular fuzzy numbers and the extension 

principle, we can obtain a symmetric triangular characteristic for the independent 

variable of each training data set[?, 28, 30, 31]: 

f 
y-x*a , 

l - " 4 ^ forxT^O， 

Y(y) = 1 for X = 0，y ^ 0, (2-14) 

0 for X = 0，y = 0, 
\ 
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In order to minimize the total vagueness, we then : 

N M 
MIN E f e E K I ) (2.15) 

j=0 i=0 

where M is the number of training samples. If the membership value of each obser-

vation yi is greater than an imposed threshold : 

Y{yi) > h forf = l，2，...，M (2.16) 

A linear programming problem is constructed : 

N M 
MIN E f e E K I ) (2.17) 

j=0 i=0 

subject to 
N 

x-a + |L_i(") Y,Cj \xij\ > yi, 
j=o 

N 
X-a - | L " ^ ( / i ) | ^ 9 1¾! < yi, 

j=o 

c > 0，a e 3¾, Xio :二 1, 

0 < h < 1， 

i = l , 2 , . . . , M 

where \L~^{h)\ = 1 — h, h G [0，1], and the choice of the h value influences the widths 

Cj of the fuzzy parameters. By solving this linear programming model, the fuzzy 

parameters, A, can be obtained. 

2.4 Network Architecture Altering Algorithms 

Dealing with the network size of a neural network during the training, we may use 

two network architecture altering algorithms : pruning algorithms and constructive 
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algorithms. These methods prefer a small solution network than a large one. A small 

solution network provides the advantages of less computational cost, less storage space 

and being easier to interpret what the trained network is doing[6 • 

2.4.1 Pruning Algorithms 

Pruning algorithm reduces the size of a neural network by cutting down the un-

necessary units or weights[9, 16, 32, 33]. It starts from an oversized network and 

is often used as a post-processing to obtain a suitable network architecture. The 

following issues summarize some pruning algorithms[32]: 

Magnitude Based Pruning 

Magnitude based pruning algorithm starts with an oversized network. After each 

training, it removes the smallest weight of the whole network. This method often 

reduces the number of retraining cycles[34] and is the simplest way in pruning algo-

rithms. However, it may often lead to the elimination of the wrong weights[35 . 

Optimal Brain Damage(OBD) 

This method physically decreases the capacity of the model in order to limit 

overfitting[36]. Similar to other pruning methods, it trains the oversized network to 

minimize the classification error of the training data set. The pruning is performed 

to the unit which gives the smallest saliency. The saliency that is computed for each 

hidden unit indicates the change of the error function when pruning is applied to the 

hidden unit. The corresponding approximation of the error function with respect to 
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weights is in terms of Taylor series. As the first derivatives vanish and all the higher 

order terms decrease, only a Hessian matrix, H, is considered. This Hessian matrix 

is obtained by considering all the second order derivatives in the error function with 

respect to weights, ^ ^ . OBD assumes that H is a diagonal matrix by the diagonal 

approximation; thus, simplifies the calculations. It is used to estimate the increase in 

the training error, the saliency, when removing certain weights[37 • 

Optimal Brain Surgeon(OBS) 

This is an extension method to OBD. Unlike OBD that performs poorly when 

the problem on hand leads to a non-diagonal Hessian matrix, H[33], OBS computes 

the full Hessian matrix rather than estimating it as a diagonal matrix. Hence, a 

more accurate approximation of the error function can be obtained. However, OBS 

requires an expensive computation. The computation is the result of the inverse of 

the Hessian matrix for deducing saliency and weight change for every link. In OBS, 

all the weights are updated before the next iteration for searching the new saliency 

and weight change is proceeded. 

Skeletionization 

Similar to OBD and OBS, skeletionization removes hidden units by considering 

the effects of removing a hidden unit to the change of the error function. In general, it 

computes a measure of relevance that identifies which hidden units are most critical to 

the performance, and removes the least relevance one in order to construct a skeleton 

of the network[38]. The measure of relevance is the estimation of the difference, p, 
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between the error of the network, E, on the training data set that with and without 

the corresponding hidden unit. 

pi = Eoci=o — Eai=i (2.18) 

where a^ is the attention strength of the unit, i, which controls the flows from the 

output of one unit to its succeeding layer, ai = 0 corresponds to hidden unit i that 

is removed from the network, while a^ = 1 corresponds to hidden unit i that remains 

in the network. With the approximation of pi, the selection of pruning a unit which 

gives the least relevance to the network can be made. Skeletonization algorithm can 

also be performed to the input units to suppress their influences. Since the removing 

of a unit is made by setting a = 0, so that a network is able to recover easily when a 

unit has been removed[38 . 

Non-contributing Units 

Pruning non-contributing units is simpler than the other pruning algorithms (except 

the magnitude based pruning), and provides a satisfactory result. The pruning ap-

proach for non-contributing units investigates the output of each hidden unit for the 

whole training set. A unit is considered a non-contributing unit when its output does 

not change for the whole input patterns, duplicates or inversely duplicates the output 

of another unit in the same layer[9, 16, 32 . 
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2.4.2 Constructive/Growing Algorithms 

A constructive algorithm, contrary to a pruning algorithm, searches for the solu-

tion network from a minimal network size. The advantage of a constructive algorithm 

is derived from the simplicity in defining an initial network and the preference of a 

small architecture solution network[17]. There are some well established construc-

tive methods which try to search for suitable network size in the way of single unit 

learning. Readers may refer to [6], [17] and [26] for more detailed discussion of the 

following approaches : 

Tower Algorithm 

Tower algorithm adds a new unit to the least hidden layer in a network. Weights 

of trained units are frozen before a new unit is added. A newly added unit is fed 

with all the input values of the training data, the output from the unit that is most 

recently trained. The network will keep on growing until no further improvement 

can be obtained. Otherwise, the last added unit will be removed and the training is 

finished with the solution network obtained before the last growing. 

Tiling Algorithm 

Tiling algorithm constructs a strictly layered network. The inputs of a unit come 

from the outputs of immediate previous layer only. Each hidden layer contains a 

master unit that must performs better than the previous layer. New hidden unit 

is added to the same layer as the ancillary unit that help the layer to be faithful. 

A faithful layer means each succeeding layer has a different representation for the 
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inputs, and no two training samples with different class have the same representation 

in any layer[26]. The training stops when all training data set are classified correctly. 

Upstart Algorithm 

Upstart algorithm starts with a single unit network. The misclassification of the 

network will cause the reinforcements to the unit. For example, if the class is +1, 

but the output is -1，a positive reinforcement will be given by adding a specific unit. 

On the contrary, a negative reinforcement will be given by adding a specific unit. 

When the addition of reinforcement units results in incorrectly classification, the new 

reinforcement units for the previous reinforcement units will be added. The training 

stops when all training data set are classified correctly. 

Dynamic Node Creation(DNC) 

DNC algorithm adds one hidden unit at a time and always in the same hidden 

layer. After a new hidden unit is added, the whole network must be retrained. The 

information of the previous training will probably lose when a new hidden unit is 

added. And, the computational cost will be increased drastically as the network 

enlarges. However, it is a very simple algorithm. 

Projection Pursuit Regression(PPR) 

Some constructive algorithms are based on the statistical technique PPR. A new 

unit is added to the same layer one at a time. However, the retraining of the whole net-

work is not required. After a new hidden unit is added, the input-to-hidden weights, 
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parameters associated with the hidden unit activation function and the hidden-to-

output weights are to be trained. They are usually trained separately. While one of 

the parameters is being trained, the other two are frozen. The training of the new 

unit starts with the input-to-hidden weights first, then the parameters associated 

with the activation function and the hidden-to-output weights. This training process 

stops when there is no further improvement of the performance. 

Cascade-Correlation Algorithm(Cascor) 

Cascor starts with a small network and adds a hidden unit one at a time. The 

newly added hidden units build a multilayer network. The inputs to the new unit are 

connected to all inputs of the training data and the outputs of other previous units. 

When the network has no further improvement in the training error and the error is 

not significantly small enough to terminate the training, a new unit is added to the 

network. Cascor network adds a new hidden unit which has been trained to maximize 

the correlation, S, between the new unit's output and the residual classification error 

of the output unit: 

S = : E E ( V f ^ C ^ � — l ) (2.19) o p 

where Vp is the new unit's output of training pattern p, V is the average to the output 

of new units, Ep�is the residual error observed at output unit o for training pattern 

p, Eo is the average to the residual error. In order to maximize 5, we obtain a partial 

derivative of the error with respect to the incoming weights of the new unit : 

0^ 一 

^ ^ = E ^ o { E , o - K ) f ; i i p (2.20) 
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where a � i s the sign of the correlation between the new unit's output and the output 

of network, / ; is the derivative of training pattern p of the new unit's activation 

function, with respect to the sum of its inputs, and Up is the input of training pattern 

p to the new unit. Once we have obtained the weights of the new unit that maximize 

the correlation, the weights are frozen and the retraining to the output unit is then 

proceeded with the one additional new input to it. 

2.5 Summary 

As mentioned in the last chapter, we address to the general limitations in apply-

ing a single hidden-layer backpropagation feedforward neural network to the binary 

classification problem : the data dependency and the unknown network size. The 

related literature in handling such problems were reviewed. 



Chapter 3 

Hybrid Classification Systems 

3.1 Overview 

Although several research studies suggest that the neural network approach has 

a more accurate classification ability[l, 5, 14] than most of the other approaches, 

the accuracy of prediction of the neural network approach has potential for further 

improvement. For example, Han[8] indicates that the relative performance of different 

classification techniques may depend on the data conditions. Thus, this is a problem 

when using the neural network. The generalization of the neural network depends 

on the distribution of the training data set[14]. For the training data set with fewer 

noise data, the generalized network may have a good performance. However, when 

the data set consist of more noise data, the neural network will be generalized more 

depending on the noise data; as a result, the misclassification rate of the noise free 

data, which should be easier to be classified, increases. 

The objective of this study is to propose a way to improve the accuracy of the 

39 
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neural network. Rather than developing a new architecture and algorithm to achieve 

a better performance, we use a hybrid model instead. Furthermore, the experiment 

results pf applying our model and the conventional backpropagation neural network 

to the breast cytology diagnosis shows that these neural network based methods are 

capable of being reliable decision support systems for the medical diagnosis. 

The hybrid model developed in this study comprises of two phases. In phase I of 

the model, fuzzy regression method with fuzzy interval analysis is applied. In phase 

II of the model two simple backpropagation neural network constructions as the final 

classification engine are provided. 

Both the models are implemented, and tested using the data of breast mass cy-

tology. The class sets are benign and malignant and each element of the class sets 

consists of nine cytological characteristics of benign or of malignant breast fine-needle 

aspirates; however, no single characteristic alone or presently described class distin-

guishes between benign and malignant samples[3]. The previous studies to solve 

this problem are multisurface method of pattern separation[3], decision tree[3], and 

mathematical programming method[4]. Therefore, applying the neural network based 

methods to the breast mass cytology classification problem is innovative. 

By using the fuzzy linear regression with the fuzzy interval analysis, we separate 

the training data into two groups based on the fuzzy interval. The separated training 

data sets are used to generalize two neural networks accordingly. With two neural 

networks, we formulate two different functions to describe the distribution space of 

the data, rather than using one to generate one function to do so. In our experiment, 

our model is compared with the conventional backpropagation neural network. The 
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result shows that using two different functions to describe the distribution space of 

the observations promises a more accurate classification result. 

The chapter is organized as follows. In Section 3.2，Tanaka's model, the modified 

Tanaka's model with fuzzy interval analysis, and the multilayer feedforward back-

propagation neural network are introduced. In Section 3.3 the sample data and the 

methodology used are described. In Section 3.4 the details for the construction of 

our model are explained. In Section 3.5 the results and the comparison between our 

model and the conventional backpropagation neural network are reported. Finally, 

in Section 3.6 a conclusion on the experiment are provided. 

3.2 Literature Review 

3.2.1 Fuzzy Linear Regression(FLR) with Fuzzy Interval Anal-

ysis 

The fuzzy linear regression approach was introduced by Tanaka et al.[28, 39] in 

order to deal with a vague phenomenon. The assumption of Tanaka's model is that 

the input and output data of fuzzy linear model are fuzzy, the relationship between 

the input and output data is given by a fuzzy function, and the distribution of the 

data is possibilistic[30]. The fuzzy linear regression has been applied to forecasting in 

an uncertain environment for finding an interrelationship between the linear interval 

model and the output intervals of the given data. Tanaka's model[30, 31] assumes a 
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linear function as follow : 

V = ^o^o + ^ i ^ i H h AjvXjv = Ax (Xo:=l ) (3.1) 

where Y is the dependent variable, x is the vector of the independent variables, and 

A is the vector of a fuzzy set on the product space of parameters. 

The fuzzy parameters Aj are represented in the form of triangular fuzzy numbers 

f 
1 一 l%:a)l if Gij - Cj < dj < aj + Cj 

M a j ) 二 c' (3.2) 
0 otherwise, 

、 

where Aj(aj) is the membership function of the fuzzy set of a", a j is the center, and 

Cj is the spread of the fuzzy number. 

Applying the extension principle : 
f 

y-x*a , 

1 - ^ M for X + 0, 

>%) = 1 for X = 0, y + 0， （3.3) 

0 for X = 0, y = 0, 
\ 

In order to minimize the total vagueness, we then : 
N M 

MIN E f e E l ^ l ) (3.4) 
j=0 i=0 

where M is the number of training samples. 
If the membership value of each observation yi is greater than an imposed threshold 

Y{yi) > h for i = l , 2 , . . . , M (3.5) 

A linear programming problem is constructed : 

N M 
MIN E f e E l ^ i ) (3.6) 

j=0 i=0 
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subject to 
N 

x - a + L~^{h) Y^Cj \xij\ > yi, 
3=0 
N 

X-a - L_i(/i) Y^Cj \xij\ < yi, 
j=o 

c > 0，a E ^,Xio := 1， 

0 < h < 1， 

i = l，2，...，M 

where \L~^{h)\ = 1 — h, h G [0,1], and the choice of the h value influences the widths 

Cj of the fuzzy parameters. 

Tanaka's model can be used to analyze the interval of the dependent variable 

y, however, the drawback is that a few values may dominate the estimation of the 

bounds of the crisp interval. Therefore, the model is very sensitive to outliers[30 . 

In, 1993, Peters[30] provided a modification to Tanaka's model. In this model, the 

bounds of the interval are assumed to be fuzzy rather than crisp, so that each of the 

dependent data y has a membership degree of belonging to the interval. Peters' fuzzy 

linear programming model is formulated as follows: 

_ 1 M 
MAXA = - ^ A , (3.7) 

似i=i 
subject to 

一 M N 
(1 - >)PQ - Y^ Y^ Cj \xij I > -do, 

i=0 j=0 
N 

(l — \ )Pi + x!a + f q | a ^ | 2 yi, 
3=0 
N 

( 1 - Xi)pi 一 x - a + Y^ Cj \xijI > -yi, 
j=o 
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-A, > - 1 , 

Xi,c > 0，a G 3¾, Xio := 1, 

L_i(")| : = l ] i = l , 2 , . . . , M 

where A represents the membership degree to which the solution belongs to the set 

"good solution". A can be determined by a trade-off between the objective function 

and the equation of the "worst" datum y[30]. pi is the width of the "tolerance 

interval". 

A high value of po and low values of pi leads to a wide interval; while a low value 

of po and high values of pi leads to a narrow interval, do represents the desired value 

of the objective function. The suggested value of do is 0，since the total vagueness 
- M 

is desired to be 0. The objective function MAX A 二 • X) Aj allows for the training 
i=i 

data of each datum to compensate the model. By the weight factor 去，each training 

datum influences the regression function. 

3.3 Data Sample and Methodology 

For this study, the data sample consists of patients' breast mass cytology infor-

mation who were admitted for breast cancer diagnoses at the University of Wiscon-

sin(Madison) form 1989 to 1992[2, 3, 4，40]. There are 699 instances in the database, 

out of which 683 instances are chosen for our experiment. Sixteen instances are 

removed due to missing values. Each instance comprises of 9 attributes and 1 class 

value. These 9 attributes required for Fine-Needle Aspirate (FNA) testing were taken 

from each patient's breast[4]. These attributes are shown in Table 3.1. 
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Attribute Domain 

Clump Thickness 1-10 

Uniformity of Cell Size 1-10 

Uniformity of Cell Shape 1-10 

Marginal Adhesion 1-10 

Single Epithelial Cell Size 1-10 

Bare Nuclei 1-10 

Bland Chromatin 1-10 

Normal Necleoli 1-10 

Mitoses 1-10 

Table 3.1: Attribute descriptions 

Each attribute is a scalar observation. The range of the attribute values shows 

the likelihood of malignancy; the larger the value, the greater the likelihood of ma-

lignancy. The class value tells us whether the symptom is benign or malignant for 

the corresponding instance. In the chosen instances, there are 444 instances belong-

ing to the class of benign breast masses and 239 instances belonging to the class of 

malignant breast masses. 

In each training sample set, 200 instances (100 benign and 100 malignant) are 

randomly selected. For each testing sample set, 169 instances (84 benign and 85 

malignant) are randomly selected. Forty-five couples of training and testing data 

sample sets are generated from the 683 instances, and tested by our model. 

In our experiment, Linear, Interactive, Discrete Optimizer (LINDO)[41] is used 
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to solve the Linear Programming problem. LINDO is an optimization modelling 

system. It has the advantages in that it allows for quick formulation, modification, and 

solution for the linear programming problem. Also, a single hidden-layer feedforward 

backpropagation neural network is used as the basic classifier. The process flowchart 

of the methodology used for developing our model in this study is depicted in Figure 

3.1. 

3.4 Hybrid Model 

3.4.1 Construction of Model 

The basic model is shown in Figure 3.2. The first part of the model separates 

the data sample into two groups. The second part provides two independent neural 

networks as the classifiers and classifies the two groups of data sample into two distinct 

classes. 

Phase I : Fuzzy interval soialysis by fuzzy linear regression 

Rather than finding a best fitted interval in which all training data can be con-

tained, we apply the fuzzy linear regression with fuzzy interval model as a data 

handler. The class variable yi, and the attribute variables Xij of each instance i in the 

training data set are used for composing the fuzzy linear programming model (3.7). 

By solving this fuzzy linear programming model, A,入，otj and Cj are obtained. Since 
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Training Data Set 

1 r 

Select suitable parameters po, 
Pi and do for the Fuzzy Linear 
Regression Problem 

1 f 

Construct corresponding Linear 
Programming Model for FLR 
Problem Testing Data Set 

1 V 1 ^ > 
Separate the training data set Separate the testing data set 
into "good" and "bad" data into "good" and "bad" data 
sets through the solved Fuzzy sets through the solved Fuzzy 
Linear Programming Model Linear Programming Model 

1 ‘ ^ ‘ 

Two training data sets Two testing data sets are 
are formed formed 

^ r 

Training two NNs by the 
two different training data 
sets accordingly 

，‘ 1 r 

Two trained NNs for the Classify the testing data set by 
corresponding training data _ operating the trained NNs to 
sets check the accuracy 

Figure 3.1: Process flow chart of the hybrid model 
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Phase I ^ r : Phase II 
Data lies in : 
the interval ； BP neural �G r o u p 1 
(good d a t a > ^ network 1 V 7 

Training I ^^R model ^ j Y 

1 ^ > with fuzzy : A 
interval | N ^ / \ 

T t l f t C ^ BPneuraJ / \ Group 2 
. ^ , network 2 > 
interval • 
(bad data) 

Figure 3.2: Construction of the Hybrid Model 

we assume the fuzzy characteristic of the bounds of the interval, each datum has its 

own certain degrees of belief(memberships degree) of lying into the interval. 

The solved fuzzy linear programming model shows that one group, representing 

those data with instances of membership degree of l(A = 1)，lies inside the interval; 

while the other group, with instances of membership degree smaller than l(A < 1), 

lies outside the interval. In other words, the instances with the second group are 

classified as noise data. Figure 3.3 shows that Â  may tend to —oo when data is 

infinitely far away from the boundary of the interval[30]. The separated training data 

sets are then used to generalize the backpropagation neural networks in the phase II 

model. 

Since the phase II model performs the classification procedure independently for 

two groups of data, the testing data set have to be processed in the data handling step 

before they can be tested in the phase II model. To determine which data falls into 

the interval or lies outside the interval, we only needed to test the feasibility of the 
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X -

1 r\ 
/ Literval \ 

^ V ~ ~ ~ A ^ 

Figure 3.3: Membership function 

fuzzy linear programming model with the testing data set. As a result, two groups 

of testing data set are obtained in the same manner as the separated training data 

sets. By using the fuzzy linear regression with fuzzy interval analysis, the training 

and testing data sets are then separated into a group of "good" data and a group of 

"noise" data, in order to perform further training and testing processes, respectively. 

We control the width of the interval as we desire by choosing different values of 

do, po and pi. In other words, we control the size of the two training and two testing 

data groups. The wider the intervals, the more the data would lie inside. 

Phase II : Backpropagation neural network model (BPNN) 

A three layers (an input layer, a hidden layer, and an output layer) feed-forward 

backpropagation neural network is used. There is only one node in the output layer. 

For the breast cancer experiment, those outputs smaller than 0.5 are classified as 

group benign or “0”； while, those outputs greater than or equal to 0.5 are classified 

as group malignant or "1". As mentioned in the previous sections, the two training 

data groups are fed into two BPNN models separately. One of the BPNN models 
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is trained with the training data set which lie inside the interval, and the other one 

is trained with the outliers. Figure 3.4 shows the basic construction of the neural 

network we use in our experiment. 

• 
Figure 3.4: Single hidden-layer, single output neural network 

3.5 Experimental Results 

3.5.1 Experimental Results on Breast Cancer Database 

We randomly generate 45 couples of training and testing data samples. Each 

training data sample formulates its own fuzzy linear programming model. From this 

model, the training and testing data sample are separated into two groups, the data 

which lies in and out of the interval. Two different groups of training data sample are 

then fed into two independent NNs in order to perform the training and generalization 

process. Two trained NNs are then tested with the corresponding testing data sample. 

Then, we compare the accuracy of our model with the conventional method which 
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trained a NN with the whole set of training data sample. Table A.1 shows the 

comparison of the accuracy (in percentage) between our model (Hybrid Model) and 

the conventional method (Batch Process). 

BatchProcess{%) 
Trial HybridMethod{%) 

{Conventional) 

1 90.28 91.55 

2 90.18 91.64 

3 90.41 91.85 

4 90.34 91.85 

5 90.57 92.06 

Average 90.36 91.79 

Table 3.2: Average prediction accuracy on 5 trials 

The values(that are in bold face) in Table A.1 to A.5 indicate instances where 

the hybrid method has generated equal or better predictions than the conventional 

method. The overall average prediction accuracy as shown in Table 3.2，of our model 

is 91.79% which is 1.43% more accurate than the conventional one. Although there 

are some samples in the conventional method that have a better prediction result, it 

can be argued that our model promises a better prediction ability since the accuracy 

difference between our model and the conventional method for these samples is rela-

tively small. And the largest difference that our model outperforms the conventional 

method is 9.47%, while the largest difference that our model perform poor than the 

conventional method is only 1.77%. 
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Now let's look at a specific illustration of phase I. When we analyze a specific 

sample difference, the following conclusions can be made. For example, sample 2 in 

experimental trial 1, in our model experience a 5.33% improvement. To explain the 

process of the phase I model, we analyze the distribution of the dependent variable 

value of the training and testing data sample in sample 2. Figure 3.5 shows the 

dependent variable value of each training datum. These values are calculated by Eq. 

(3.1)，where A is obtained by solving Eq. (3.7) and by substituting A with a(center 

of the fuzzy number). Similarly, the dependent variable value of each testing datum is 

obtained in Figure 3.8 by substituting the preexisted centers of A.When the training 

and testing data samples are fed into the phase I model, those data samples are 

then separated into two groups accordingly. The dependent variable value of those 

separated data samples are shown in Figures 3.6，3.7, 3.9, 3.10, respectively. When 

comparing Figure 3.6 and 3.7, we can observe the differences between the data sample 

which lie inside and outside the interval. In Figure 3.6, the data lie around 0 or 1 

without large differences. However, in Figure 3.7, the data fluctuates around 0 or 1 

with very large variations. The same situation occurs in the testing data sample, too. 

These results show that the dependent variable values which are close to the crisp 

output [0, 1], are more believed to lie inside the interval; otherwise, they are believed 

to lie outside the interval. 

According to the separated groups of the training data samples, two independent 

NNs can be trained; as a result, there are two different functions to describe the 

distribution space of the training data sample. We can observe that the advantage 
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Figure 3.5: Dependent variable value of each training datum 

of using two functions over using one function (conventional method) is that they can 

describe a more complex distribution space as a whole. However, the drawback of 

our model is that it is more time consuming than the conventional one. 

3.5.2 Experimental Results on Synthetic Data 

In order to show the improvement on the generalization performance of the hybrid 

classification model in a noisy environment, we synthetically create a database with 

a large amount of noise, and compare the generalization performance between the 

conventional method and the hybrid classification model. The database is a binary 

classification database. Each instance has 9 attributes and 1 class value. There are 

883 instances (544 instances belong to class 0, 339 instances belong to class 1). In each 

training sample set, 200 instances are randomly selected. For each testing sample set, 
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Figure 3.6: Dependent variable value of each training datum which lie inside the 

interval 

169 instances are randomly selected. We test on three kinds of training and testing 

couple. The first one is composed with equal amount of good data and noise data, 

the second one is composed with 10% more noise data, and the last one is composed 

with 20% more noise data. In each test, forty-five couples of training and testing data 

sample sets are generated from the 883 instances, and tested by our model. 

The values(that are in bold face) in Table A.6 to A.8 indicate instances where 

the hybrid method has generated equal or better predictions than the conventional 

method. In Table A.6, the accuracy comparison with respect to sample data sets of 

equal amount of good and noise data, it shows that the hybrid model experiences a 

2.85% more accurate on average. For the comparison result on those sample data sets 
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Figure 3.7: Dependent variable value of each training datum which lie outside the 

interval 

composed with 10% more noise data than the good data, Table A.7 shows the hybrid 

model experiences a 5.11% more accurate on average. When the sample data sets 

with 20% more noise data are used, it shows a 7.78% accuracy improvement in Table 

A.8. The summary of the average prediction accuracy on these three experiments are 

showed in Table 3.3. Prom the results, we observe that the generalization performance 

of the hybrid model is better than the conventional method as the data contain more 

noise. 



3.6. CONCLUSION 56 

Dependent variable value of each testing datum 
1,4| 1 — I 1 1 1 1 1 1  

II 
1 . 2 - -

’ 11_ I iMy -
V ' - I I u “ 
•s 
10.6- y -
S 
I 0.4- I -
o 

0.2 - h -

owiKjlWuJUfJ -
-0 2' ‘ 1 1 1 1 1 1 1  

• 0 20 40 60 80 100 120 140 160 180 
Sample 

Figure 3.8: Dependent variable value of each testing datum 

3.6 Conclusion 

This chapter has proposed a hybrid binary classification model. Phase I is used to 

find a fazzy interval so as to separate the training data into two groups, i.e. whether 

the data lies inside or outside the interval. The objective of phase I is to minimize 

the effect of the vagueness data in the training data, and to separate the certain 

BatchProcess{%) 
Additional Noise HybridMethod{%) Difference{%) 

{Conventional) 

0% 74.42 77.26 2.85 

10% 71.65 76.76 5.11 

20% 68.78 76.60 7.78 

Table 3.3: Average prediction accuracy on 5 trials 
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Figure 3.9: Dependent variable value of each testing datum which lie inside the 

interval 

data and vagueness data into two groups. According to the fixed parameters and 

the found unknowns in the FLR with fuzzy interval model, the testing data sample 

is then separated into two groups also. In phase II, two single hidden-layer BPNN 

models are used to build up the classification engines. 

The two independent NNs allow us to formulate two different non-linear discrimi-

nant functions to classify the data. The conventional method uses one NN to describe 

the distribution space of the data. Although, a NN can be used to formulate a highly 

non-linear function, it is hard to describe a very complex distribution space. The 

hybrid model provides us with two independent functions to describe the distribution 

space of the data sets, therefore, the ability of describing the distribution space is im-
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Figure 3.10: Dependent variable value of each testing datum which lie outside the 

interval 

proved. For future studies, one may want to change the phase II classification engines 

by using other approaches and techniques to see if the accuracy is further improved. 

In our study, the phase II model uses the conventional BPNN. The results show that, 

when using the BPNN approach to act as the classification engine, the phase I model 

plays an important role in the accuracy improvement. 

We finally note that the accuracy with which benign and malignant breast mass 

are diagnosed using the hybrid model is an illustrative example of the usefulness of the 

proposed method in solving other medical diagnostic and decision making problem. 



Chapter 4 

Searching for Suitable Network 

Size Automatically 

4.1 Overview 

A neural network is a structure of autonomous nodes interconnected by one-

directional links. Weights(that are determined during a training process) are associ-

ated with the links. Input signals are aggregated according to weights on the links 

and transformed via an activation function to produce output signals. 

One of the problems in applying a neural network pertains to determining its 

right architecture. For example, in a three-layered neural network, it is difficult to 

decide the right number of hidden nodes. When a neural network has too many 

hidden nodes, it tends to memorize the training patterns rather than to generalize 

the prediction ability. On the other hand, a neural network may not achieve the 

desirable prediction ability if it has too few hidden nodes. 

59 
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The suitable network size is also usually unknown. In general, we have to start 

a training process with an arbitrary and often oversized network. Then we perform 

several tests with different network sizes. Finally, we choose the most promising 

network size. The criteria for choosing a network usually include the ability of each 

considered network size on the generalization performance, and the level of ease to 

obtain a solution network in a specific problem. 

The conventional approach, discussed above, is very tedious and time consuming. 

In the literature, there are two main approaches to deal with the problem. They are 

pruning algorithms and constructive algorithms. Pruning algorithms reduce the size 

of a neural network by cutting down the unnecessary units or weights[9, 16, 32, 33 . 

They start from an oversized network and are often used as a post-processing to ob-

tain a suitable network architecture. Constructive algorithms, contrary to pruning 

algorithms, search for the solution network from a minimal network size. The advan-

tage of constructive algorithms is derived from the simplicity in defining an initial 

network and the preference of a small architecture solution network[17]. Most of the 

recent studies in constructive algorithms concentrate on expanding the network ar-

chitecture layer by layer and adding new hidden units one at a time. In this research, 

we will mainly consider determining the number of hidden units in the same layer. 

One of the motivations in this research is that we want to find effective and efficient 

methods to construct a suitable architecture for a single hidden layer backpropagation 

feedforward neural network automatically. The methods should be flexible to help us 

find tailor-made network architectures for different applications without requiring a 

wild guess on the network size. By evaluating the performance based on generalization 
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accuracy, the time complexity, and the obtained network sizes with some different 

algorithms, we may obtain ideas in searching for the suitable network architecture for 

a problem while a learning process proceeds. 

In this research, the databases of breast cancer mass cytology test results[2, 3， 

4，40] and tic-tac-toe patterns are used to evaluate the performance of different al-

gorithms. We will first review the methods of pruning and constructive algorithms 

which have been implemented and used for the evaluation in Section 4.2. Then, in 

Section 4.3, our methodology, and the data samples will be described. The setup of 

experiments and the experimental results are given in Section 4.4. Finally, in the last 

section, brief discussions and conclusion are provided. 

4.2 Literature Review 

4.2.1 Pruning Algorithm 

Pruning is one of the most popular ways to find a small suitable architecture[34 

for a neural network. A pruning algorithm removes some hidden units or weights in an 

oversized network to produce a solution network[17]. There are a variety of removing 

procedures, such as magnitude based pruning, optimal brain damage, optimal brain 

surgeon, skeletionization, and non-contributing units[32 . 

In this research, we are concerned with the pruning approach of the non-contributing 

units and its modification, which is simpler than the other pruning algorithms, but 

provides a satisfactory result. The pruning approach of non-contributing units inves-
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tigates the output of each hidden unit for the whole training set. A non-contributing 

unit has its output that does not change for the whole input patterns, or when it du-

plicates pr inversely duplicates the output of another unit in the same layer[9, 16，32]. 

The pruning algorithms studied here are proposed in [9] and [16 . 

One Pass Pruning 

This approach was introduced in [16] to perform pruning to a solution network, 

where a solution network is a trained network that provides a satisfactory classification 

ability. When a solution network has been obtained, two categories of hidden units 

will be removed : the duplicated units and the non-contributing units. The first 

category of units to be identified for removing is a hidden unit has an output for all 

input patterns which is the same as, or opposite to, the output of another hidden 

unit in the same layer. Once these two hidden units are identified, one of them 

will be removed as they are duplicate or inversely duplicate of each other. The 

second pruning procedure identifies hidden units that do not contribute to the overall 

solution network. In other words, since the non-contributing units do not provide any 

classification information, their removal will not affect the generalization ability of the 

pruned network[16]. The non-contributing units often classify all input patterns into 

the same group. 

Prune and Retrain 

In [9], the characteristics of the excessive hidden units in an oversized solution 

network are studied. Similar to the pruning algorithm in [16], the pruning procedure 
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will be performed after a solution network is achieved. There are four categories 

of excessive hidden units： excessive non-contribution, excessive duplication, excessive 

inversely duplication, and excessive inadequacy. Once these excessive units have been 

pruned, retraining of the pruned network will be performed until no more excessive 

hidden units are found in the solution network. The excessiveness of a hidden unit 

means that a unit may be removed without affecting the generalization performance 

of the network. In [9]，the four categories of excessive units are defined as follows : 

Excessive Non-contributing unit : An excessive non-contributing unit would 

give similar output for all input patterns, Opj. This unit classifies those input patterns 

that lie on one side of the decision hyperplanes, so that no discrimination information 

would be given by this unit. An excessive non-contributing unit can be detected by 

the followings : 

excessive-noncontributing{j) = noncontributing(j) AND [closeness{opj) < ei 

where noncontributing {j) is defined as 

noncontributing{j) = [{opj > 0.5) OR {opj < 0.5), Vp 

and closeness(opj) is defined as 

closeness(opj) = max(|opjj — Op ĵ\) 

Excessive Duplicated unit : It is a unit that has its weight vector that converges 

to the same to another unit in the same layer. It can be detected by : 

excessiv-duplicated{i, j) = d u p l i c a t e d ( � j ) AND [diff(opi, Opj) < e2 
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where duplicated(z, j) is defined as 

duplicated(i, j) = [{opi — 0.5)(¾- — 0.5) > 0，\/p 

which detects the two units have the similar classification ability to all training pat-

terns. And diff(opj, Opj) is defined as 

diff(opi, Opj) = m^{]opi — Opj\) 

in order to show the difference between the outputs of the two duplicated units in all 

patterns. If the maximum difference is less than the tolerant threshold ei and the two 

units duplicate each other, the hidden units are identified as the excessive duplicated 

unit. The classification ability of the two duplicated units can be said to be almost 

the same, if the maximum difference is close to zero. 

Excessive Inversely-duplicated unit : The inversely-duplicated unit are similar 

to the duplicated unit described above. The transformed output of the input patterns 

of an inversely-duplicated unit have opposite properties to another unit in the same 

layer. It can be detected by 

excessive-inversely-duplicated{i, j ) 

=inversely-duplicated{i, j) AND [diff{inv(Opi), Opj) < e3 

where inversely-duplicated(i, j) is defined as 

inversely-duplicated{i, j) = [{opi — O.5)(op̂ - — 0.5) < 0, Mp 

and inv{opj) is defined as 

inv{opj) = 1 — Opj 
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Excessive Inadequate unit : The excessive inadequate unit performs partially 

correct classification to the input patterns, as a result, the generalization performance 

would be degraded. Therefore, this kind of node should be detected and removed 

from the solution network. There are two conditions to satisfy the detection rule of 

excessive-inadequate units : same-merge and not-mix-merge. As the separated same 

class patterns will be merged by the other units, this process is called the same-merge 

process. However, one should beware that the removal of an inadequate unit that 

performs the bad classification to the same class patterns should not result to the 

situation of merging different classes patterns, therefore, the situation of not-mix-

merge must also be satisfied. The detection rule of excessive-inadequate is showed as 

follow : 

excessive-inadequate {j) = not-mix-merge {j) AND same-merge(j) 

where not-mix-merge{j) is defined as 

if {pi and p2 are of the different classes) AND [{op ĵ — 0.5){op^j — 0.5) < 0 

THEN not-mix-merge(j) 

==[(Opii — O.5)(op2i — 0.5) < 0 OR |opii — Op^il < €4 for some i + j 

and same-merge(j) is defined as 

if {pi and p2 are of the same classes) AND [{op ĵ — 0.5)(¾" — 0.5) < 0 

THEN same-merge(j) 

= '(op^i — O.5)(op2i 一 0-5) < 0 AND |opii - 0p2i| < 65 Vz + j 
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ei, €2,63, €4,65 are the trade-off thresholds between the network size and its gener-

alization performance of different pruning conditions. More excessive units would be 

identified and pruned with larger thresholds, and also, the generalization performance 

would be affected as well. 

4.2.2 Constructive Algorithms (Growing) 

Apart from pruning algorithms, constructive algorithms are the methods to search 

for the suitable architecture from a minimal network. These methods expand the net-

work architecture from layer to layer or in the same layer by introducing new hidden 

unit. Different constructive algorithms have their unique expanding topologies. In 

this study, we consider the constructive algorithms for a single hidden layer neural 

network model, and therefore, the unit expansion will be performed at the same layer. 

Our model is a modification of SplitNet[42 

The output of a hidden unit for different input patterns during a learning process, 

may be classified into three possible states. They are the present (yes state), not 

present (no state) and maybe state. The hidden unit is said to be a "yes，，state for 

an input pattern when the input to the sigmoid hidden unit is greater than 1.4 (the 

output to sigmoid hidden unit is greater than 0.8)，where a sigmoid hidden unit is an 

activation function that limits the output values between 0 and 1 as shown in Eq.4.1. 

1 
1 + exp{-input) . 

The hidden unit is said to be a "no" state when the input is less than -1.4 (the output 

is less than 0.2). The "maybe" state is defined for the hidden unit which has the input 



4.2. LITERATURE REVIEW 67 

between -1.4 and 1.4 for a input pattern (the output lies between 0.2 and 0.8). The 

reasons of using the input to the sigmoid hidden unit rather than the output are 

due to the faster computational speed and more accurate cutoff values. The SplitNet 

splits a hidden unit into two units when the ratio of the number of "maybe" state 

to the total number of input patterns is greater than 0.6 in the last 50 iterations, as 

shown in the following equation 

number of maybe state ^ ^ , ^ ̂ , 
——^ ； 7T^ > 0.6， (4.2) 
total number or input patterns 

SplitNet is a constructive algorithm designed for a fully interconnected neural 

network with only one output unit. It was tested with the parity problem in [42]. A 

parity problem is a binary classification problem that classifies the number of zeros 

in a string of binary digits, where the output is 1 if there is an odd number of 

zeros; otherwise the output is 0. The performance of SplitNet was compared with 

the fixed architecture network in [42], and shown that it performed better in terms 

of improvement in the time complexity (where the time complexity was measured 

according to the required iteration runs). 

4.2.3 Integration of methods 

The combination of constructive algorithm (Cascade Correlation, Cascor) and 

pruning algorithm (Optimal Brain surgeon, OBS) in order to control the growth of 

an expanding network architecture was introduced in [33]. Cascor is a constructive 

algorithm to build a feed-forward network that begin with a small network. New 

hidden units are added one by one to create a multi-layer architecture[6]. The optimal 
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brain surgeon is a pruning algorithm to remove unimportant weights from a solution 

network based on the information from all second derivatives of the error function[32, 

33，35]. This approach is to control the growth of Cascor in which each new hidden 

unit is pruned before it is added to the network[33]. The architecture of the solution 

network is smaller than the one found solely by the Cascor method and has the 

advantage of avoiding the overfitting problem. 

However, this method results in a multi-layer feed-forward network, which is dif-

ferent from our consideration, a single hidden layer feed-forward network. Therefore, 

we use this related work as our survey rather than as a comparison methods. 

4.3 Methodology and Approaches 

In this study, we want to find a flexible method to obtain suitable network ar-

chitectures for different problem domains using single hidden layer backpropagation 

feedforward neural networks. The recent methods to decide the network size are the 

pruning algorithms, constructive algorithms, trial-and-error. As pruning algorithms 

and constructive algorithms have their limitations, an approach that combines both 

pruning and constructive algorithms would be a possible solution. 

4.3.1 Growing 

When we reviewed the model of SplitNet[42], we found that the growth of the 

hidden unit might lead to the infinite growing of the duplicated units. Also, we 

observed that the network would often fall into the local minimum when all the 



4.3. METHODOLOGYAND APPROACHES 69 

inputs to every hidden unit are all greater than 1.4 ("yes" state) or lesser than -1.4 

("no" state). In other words, all the input patterns are classified into the same group 

by these hidden units. This situation is similar to the network that is composed of 

non-contributing units only. In order to deal with this situation, we will introduce a 

new hidden unit to the network, only if the network satisfies Eq. 4.3 for each review 

period. 

Grow_new_unit (4.3) 

IF (number of yes-state^ : total number of input patterns 

AND number of no-state; = total number of input patterns) Vi 

where i denotes the number of hidden units. Fig.4.1 shows the process flow of the 

growing method. Since a larger network architecture is constructed after growing, 

the enlarged network may need longer time to learn the training patterns than a 

smaller one. For this reason, as the network grows, the review on the need of growing 

will be made after a longer training iterations has been proceeded. To prevent the 

infinite training occurrence, the network will stop training if there is no growing to 

the network after a certain number iterations have been proceeded. 

4.3.2 Combinations of Growing and Pruning 

The same problem of excessive units would occur in the solution network found 

by constructive algorithms, since the constructive algorithms only consider when to 

expand but may add unnecessary units to the network. The excessive units have 
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Figure 4.1: Process Flow of the Growing Method 
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problems such as the computation problem and the storage problem. In the following, 

we propose two possible ways to solve these problems. 

Growing then Pruning 

This approach makes use of the pruning with retraining method discussed in 

Section II. After the solution network is obtained from a growing approach, a prun-

ing process is incorporated to remove the non-contributing units, duplicated units, 

inversely-duplicated units, and inadequate units from the solution network. The 

pruned solution network will be retrained if the classification performance are de-

graded or unable to achieve a certain level. Fig.4.2 shows the process flow. 
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Growing while Pruning 

The previous method is not flexible enough to obtain the minimal solution net-

work architecture as many unnecessary units are included in the network during a 

learning process. When a network grows to a certain size, the computation cost will 

be increased. If a network contains many unnecessary units, the disadvantages of 

large computation overhead become apparent. Therefore, if the unnecessary units 

can be managed during the learning and growing processes, we can effectively control 

computational requirement. Fig.4.3 shows the process flow of a better method. 
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When the growing proceeds, the network may fall into a local minimum when 

all the units are non-contributing units. And also, when the duplicated or inversely-

duplicated units are not significant to the learning process as the discriminant infor-

mation are duplicated. Therefore, the removal of those excess non-contributing units, 

duplicated units and inversely-duplicated units before the growing proceeds can re-

duce the computational costs as a whole. As a result, we can always obtain a nearest 

minimal architecture for training data set once the solution network is obtained. We 

do not consider the inadequate units in the pruning that proceeds before growing be-

cause the inadequate units always provide unique information to the learning function 

unless they are duplicated by the other units. 

In summary, we evaluate three proposed methods, growing method, growing then 

pruning method, and growing while pruning method in the following section. Three 

developed methods by previous literature are used for comparisons in order to show 

the different performance by different methods. The three developed methods are 

fixed architecture network, one pass pruning method, and pruning with retraining 

method. 

4.4 Experimental Results 

In order to compare the overall performance of different models, the evaluations 

on the generalization performance or prediction accuracy, time complexity required 

to obtain the solution network and the network size of the solution network are 

investigated. We compare the performance of the conventional trial-and-error method 
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with oversized network, the pruning methods, the growing method, and the methods 

integrating pruning and growing algorithms. 

In our experiments, we use two databases: breast mass cytology information, 

and encoded tic-tac-toe board configurations. The first database is used in the last 

chapter. This database contains "noise" data. The second database does not contain 

"noise" data. 

4.4.1 Breast-Cancer Cytology Database 

This data sample contains patients' breast mass cytology information. These 

patients were admitted for breast cancer diagnoses at the University of Wiscon-

sin(Madison) from 1989 to 1992[2, 3，4, 40]. There are 699 instances in the database. 

We use 683 instances for our experiment. Sixteen instances are removed due to miss-

ing values. Each instance comprises 9 attributes and 1 class value. These 9 attributes 

were collected when Fine-Needle Aspirate (FNA) testing were taken from each pa-

tient's breast mass[4]. These attributes are shown in Table 4.1. 

Each attribute is a scalar observation. An attribute value shows the likelihood of 

malignancy; the larger the value, the greater the likelihood of malignancy. The class 

value tells us whether the symptom is benign or malignant for the corresponding 

instance. In total, 444 instances are in the class of benign breast masses and 239 

instances are in the class of malignant breast masses. 

In each training sample set, 200 instances (100 benign and 100 malignant) are 

randomly selected. For each testing sample set, 169 instances (84 benign and 85 
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Attribute Domain 

Clump Thickness 1-10 

Uniformity of Cell Size 1-10 

Uniformity of Cell Shape 1-10 

Marginal Adhesion 1-10 

Single Epithelial Cell Size 1-10 

Bare Nuclei 1-10 

Bland Chromatin 1-10 

Normal Necleoli 1-10 

Mitoses 1-10 

Table 4.1: Attribute descriptions of Breast-cancer Database 

malignant) are randomly selected. Forty-five couples of training and testing data 

sample sets are generated from the 683 instances and are used to test different models. 

Since the solution networks rarely contain one hidden unit, we set the number of initial 

hidden units to be 2. Moreover, the number of hidden units for the oversized network 

is set to 18 by trial-and-error. This oversized network provides a promising solution. 
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Generalization Performance 

Table B.1 contains the result of generalization performance of each of the following 

methods: 

(1) ： F ixed Arch i tec ture Neura l Network 

(2) : One Pass P r u n i n g 

(3) : P run ing w i t h Ret ra in ing 

(4) : Grow ing ( t r ia l 1) 

(5) : Growing ( t r ia l 2) 

(6) : Growing then P r u n i n g ( t r ia l 1) 

(7) : Growing then P r u n i n g ( t r ia l 2) 

(8) : Growing whi le P run ing ( t r ia l 1) 

(9) : Grow ing whi le P run ing ( t r ia l 2) 

where trial 1 and 2 mean the two tests on the same training data set with the same 

method. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Average Accuracy 90.20 90.26 91.29 91.09 91.03 91.31 91.91 91.43 91.40 

Median 90.53 90.53 91.12 91.72 91.72 91.12 91.72 91.72 91.12 

Minimum 81.07 81.07 85.21 82.84 84.62 85.21 85.21 84.02 86.39 

Maximum 95.27 95.86 96.45 95.86 95.27 96.45 96.45 96.45 95.86 

Standard Deviation 2.82 2.90 2.49 2.61 2.46 2.54 2.53 2.76 2.41 

Table 4.2: Statistics of Accuracy of Different Algorithms : Breast-cancer database 

From Table 4.2, we observe that the average generalization performances of the 

fixed architecture and one pass pruning methods are about 1% less accurate than the 
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other four methods. These show the generalization ability of a smaller network archi-

tecture may have a better performance than a larger one on average. Furthermore, 

the performance of the pruned network with retraining process is always better than 

the one without retraining process. Therefore, when we apply pruning to the growing 

method, we consider the one with retraining process. 

Time Complexity 

Table B.2 contains the time complexity required by each method 

(1) : F ixed Arch i tec ture Neura l Network 

(2) : Grow ing ( t r ia l 1) 

(3) : Grow ing ( t r ia l 2) 

(4) : Grow ing then P run ing ( t r ia l 1) 

(5) : Growing then P run ing ( t r ia l 2) 

(6) : Growing whi le P run ing ( t r ia l 1) 

(7) : Grow ing whi le P run ing ( t r ia l 2) 

(1) (2) (3) (4) (5) (6) (7) 

Average Time Consuming 158.77 273.19 447.08 1269.85 494.37 19.18 20.00 

Median 36.37 26 63.62 158.43 111.53 4.64 7.83 

Minimum 1.52 0.27 0.93 1.47 2.85 0.60 0.54 

Maximum 1070.80 2356.9 5904.12 8144.93 2527.67 243.06 208.02 

Standard Deviation 230.66 542.16 994.44 2243.46 738.29 42.18 34.52 

Table 4.3: Statistics of Time Complexity Required of Different Algorithms : Breast-

cancer database 

We measure the time complexity by clock time. It is different from some re-

searchers who use the learning iterations. We think that the overhead of those prun-
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ing and growing methods that analyze the network during a learning process must 

also be considered. In Table 4.3，the least time consuming method on average is 

growing while pruning, followed by the fixed architecture network, growing, and the 

growing then pruning, respectively. Since the two pruning methods are performed on 

the fixed architecture network, the time consumed by those pruning methods would 

only be a little longer than the fixed architecture network; and therefore, we will not 

consider the time consumed of solely appending the pruning methods to the fixed 

architecture network. It should be noted that the minimum time consumed by the 

growing, and the two growing and pruning integrated methods are always less than 

the one by the fixed architecture network. This is because the time spent on a small 

solution network is less than the time spent on an oversized network as the computa-

tion cost can be greatly reduced in a small network. As the network grows larger and 

larger, the computational cost and time consumed will increase. Once the network 

size approaches to the size of the fixed architecture network, the time consumed is 

likely to be larger than the fixed architecture one as the time to search of the solution 

space increases. The time consumed by the growing then pruning method is larger 

than the growing method, since the pruning is an computational overhead to the 

growing method. However, we can observe that the time consumed by the growing 

while pruning method give a definitely time advantage. Due to the pruning of the 

unnecessary units from the network during the searching of the solution space, the 

network can be remained with a small suitable size when the learning proceeds. 
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Network Size 

Table B.3 contains the network size obtained by each method. 

(1) : One Pass P r u n i n g 

(2) : P run ing w i t h Re t ra in ing 

(3) : G row ing ( t r ia l 1) 

(4) : Grow ing ( t r ia l 2) 

(5) : Growing then P r u n i n g ( t r ia l 1) 

(6) : Growing then P r u n i n g ( t r ia l 2) 

(7) : Growing whi le P r u n i n g ( t r ia l 1) 

(8) : Grow ing whi le P r u n i n g ( t r ia l 2) 

(1) (2) (3) (4) (5) (6) (7) (8) 

Average Network Size 5.44^6 1.51^2 7.29^^8 8.78=9 1.22^2 1.22s2 1.60«2 1.5S^2 

Median 5 1 6 7 1 1 2 1 

Minimum 1 1 2 2 1 1 1 1 

Maximum 14 3 19 29 2 2 3 3 

Standard Deviation 4.07 0.65 4.19 5.20 0.42 0.42 0.53 0.65 

Table 4.4: Statistics of Network Size of Different Algorithms : Breast-cancer database 

The statistics on the size of the solution networks obtained by those methods 

is presented in Table 4.4. It shows that the average smallest network architectures 

are always provided by the methods pruning with retraining, those growing methods 

with pruning process. The one pass pruning method gives a second biggest average 

network architecture, since the one pass pruning method does not consider the re-

moval of the inadequate units. The growing method gives the biggest average network 

architecture because the excessive units will not be removed. If we compare the aver-
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age network architecture first obtained (no pruning performed) between the growing 

method and the growing with pruning method, the result would be very close, as 

the second method is built up on the foundation of the growing method. No matter 

what the difference size achieved by those network architecture altering methods are, 

we observed that these kinds of solution networks are much smaller than the fixed 

architecture one, 18 hidden units. Prom Table 4.4，we can observe that the maximum 

obtained network architecture in (3) and (4) are 19 and 29, by which we know that 

sometimes we need a larger network architecture for a specific problem space. To 

deal with such kind of problem, the suitable methods should be the growing based 

methods. 

4.4.2 Tic-Tac-Toe Database 

This database encodes the complete set of possible board configurations at the 

end of tic-tac-toe games, where "x" is assumed to have played first[40]. The target 

concept is “ win for x", where it is true when "x" has one of 8 possible ways to create 

a "three-in-a-row". There are 958 instances which are the legal tic-tac-toe endgame 

boards, out of which 626 instances are the group of "win for x" and 332 instances are 

the group of "not win for x". The 9 attributes each corresponds to one tic-tac-toe 

square and have been shown in Table 4.5, where x = player x has taken, o = player 

o has taken and b = blank. 

The two classes are defined as 1 ("win for x") and 0 ("not win for x"). The 

attribute information {x, o, b} is represented by integer set {2, 0，1} respectively as 
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Attribute Domain 

top-left-square {x, o，b} 

top-middle-square {x, o, b} 

top-right-square {x, o, b} 

middle-left-square {x, o, b} 

middle-middle-square {x, o, b} 

middle-right-square {x, o，b} 

bottom-left-square {x, o, b} 

bottom-middle-square {x, o, b} 

bottom-right-square {x, o, b} 

Class {1, 0} 

Table 4.5: Attribute descriptions of Tic-Tac-Toe Database 
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the input for the network. 

In each training sample set, 400 instances (200 in each group) are randomly se-

lected. For each testing sample set, 200 instances (100 in each group) are randomly 

selected. Forty-five couples of training and testing data sample sets are generated 

from the 958 instances, and are used to test different models. The number of initial 

hidden units is set to 1 as the network sometimes obtains its solution network in this 

database. Moreover, the number of hidden units for the oversized network is set to 7 

by trial-and-error thus always providing a promising solution network. 

Generalization Performance 

Table B.4 contains the result of generalization performance of each method. 

(1) : F ixed Arch i tec ture Neura l Network 

(2) : One Pass P run ing 

(3) : P run ing w i t h Ret ra in ing 

(4) : Growing ( t r ia l 1) 

(5) : Growing ( t r ia l 2) 

(6) : Growing then P r u n i n g ( t r ia l 1) 

(7) : Growing then P r u n i n g ( t r ia l 2) 

(8) : Growing whi le P run ing ( t r ia l 1) 

(9) : Growing whi le P run ing ( t r ia l 2) 

Prom Table 4.6, we find that the average generalization performances can be di-

vided into four groups. The most accurate methods are the growing methods with 

pruning process introduced. The second are the growing method and the pruning 

with retraining method. Then the fixed architecture network and the one pass prun-

ing method are followed. The one pass pruning gives an unsatisfied generalization 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Average Accuracy 88.23 83.21 89.93 89.16 90.73 91.94 90.74 91.03 90.81 

Median 88.50 85.00 91.00 89.00 91.00 93.00 91.00 91.50 91.00 

Minimum 78.50 50.00 82.00 81.50 81.00 85.50 78.00 80.50 83.00 

Maximum 96.00 96.00 96.00 95.50 99.50 97.00 98.50 97.00 98.00 

Standard Deviation 4.52 8.79 3.92 3.59 3.71 2.90 4.94 3.47 3.71 

Table 4.6: Statisitics of Accuracy of Different Algorithms : Tic-Tac-Toe database 

performance which is caused by the degraded solution network after pruning process 

is performed. Again, this shows that the pruning with retraining method would be 

more reliable than the one pass method. The statistics in Table 4.6 also shows that 

the network architecture altering methods except the one pass pruning method always 

performs better than the fixed architecture network. 

Time Complexity 

Table B.5 contains the time complexity required by each method. 

(1) : F ixed Archi tecture Neural Network 

(2) : Growing ( t r ia l 1) 

(3) : Growing ( t r ia l 2) 

(4) : Growing then Prun ing ( t r ia l 1) 

(5) : Growing then Prun ing ( t r ia l 2) 

(6) : Growing whi le Prun ing ( t r ia l 1) 

(7) : Growing while Prun ing ( t r ia l 2) 

Table 4.7 shows the statistics of time complexity required by those methods other 

than the pruning methods. The statistics gives a similar result to the breast-cancer 

database, except that the average time complexity required by the fixed architecture 
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(1) (2) (3) (4) (5) (6) (7) 

Average Time Consuming 165.67 68.83 144.13 264.53 124.29 54.18 46.91 

Median 124.30 44.36 47.28 60.74 49.17 45.40 43.38 

Minimum 56.31 13.97 14.88 15.32 19.89 15.72 17.14 

Maximum 791.02 373.14 2442.05 5736.17 672.73 278.36 119.20 

Standard Deviation 125.51 72.72 378.93 861.07 161.64 43.02 23.59 

Table 4.7: Statistics of Time Complexity Required of Different Algorithms : Tic-Tac-

Toe database 

network is longer than the growing method in tic-tac-toe database. Since the required 

network size for the tic-tac-toe classification problem is relatively small, the smaller 

solution network can be obtained by the growing method. The smaller the network 

size during the learning stages, the less computational costs and time complexity 

there will be. The growing while pruning method shows again that we can obtain a 

better performance in time saving over the other methods. 
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Network Size 

Table B.6 contains the network size obtained by each method. 

(1) ： One Pass P r u n i n g 

(2) : P run ing w i t h Ret ra in ing 

(3) : Growing ( t r ia l 1) 

(4) : Growing ( t r ia l 2) 

(5) : Growing then P r u n i n g ( t r ia l 1) 

(6) : Growing then P r u n i n g ( t r ia l 2) 

(7) : Growing whi le P run ing ( t r ia l 1) 

(8) : Growing whi le P run ing ( t r ia l 2) 

(1) (2) (3) (4) (5) (6) (7) (8) 

Average Network Size 3.00 3.00 2.31=3 3.02^3 1.71^^2 1.89^2 1.73=2 1.69^2 

Median 3 3 2 2 2 2 2 2 

Minimum 1 1 1 1 1 1 1 1 

Maximum 5 5 7 11 4 4 4 3 

Standard Deviation 1.37 1.40 1.24 1.96 0.75 0.77 0.77 0.63 

Table 4.8: Statistics of Network Size of Different Algorithms : Tic-Tac-Toe database 

The statistics of the solution network size obtained by different methods is showed 

in Table 4.8. It is quite different from the result of breast-cancer database showed in 

Table 4.4. In tic-tac-toe database, the average network size obtained by each network 

architecture altering methods is very close. Since the tic-tac-toe database is noise-

free database and the patterns are quite simple, we can use a quite small network 

architecture to obtain the desirable discriminant ability. However, we can observe 
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that the larger maximum network size is also obtained by the growing method, 7 

and 11 hidden units respectively in columns (3) and (4). This means that although 

we can achieve the solution network with the network architecture altering methods, 

sometimes we still need to use a larger network to search for the solution space. 

The following are the descriptions of Table 4.9-4.11: 

(1) (2) (3) (4) (5) (6) 

Breast-cancer 90.20 90.26 91.29 91.06 91.61 91.42 

Tic-Tac-Toe 88.23 83.21 89.93 89.95 91.34 90.92 

Table 4.9: Summaries of Average Accuracy of Different Database 

(1) (4) (5) (6) 

Breast-cancer 158.77 360.14 882.11 19.59 

Tic-Tac-Toe 165.67 106.48 194.41 50.19 

Table 4.10: Summaries of Average Time Complexity Required of Different Database 

(2) (3) (4) (5) (6) 

Breast-cancer 5.44«6 1,52^2 8.04^9 1.22^2 1.59^2 

Tic-Tac-Toe 3.00 3.00 2.67^3 1.80«2 1.71^2 

Table 4.11: Summaries of Average Netowrk Size of Different Database 

Tables 4.9-4.11 summarize of the average performance on the accuracy, time com-

plexity and the network size achieved by different methods : 

The tables show that the growing while pruning method is flexible and reliable in 

obtaining an accurate and suitable-sized network, although it is only the second best 

in terms of generalization performance. 
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(1) : F i xed Arch i tec ture Neural Ne twork 

(2) : One Pass P r u n i n g 

(3) : P r u n i n g w i t h Ret ra in ing 

(4) : Average o f Grow ing ( t r ia l 1) & G r o w i n g ( t r ia l 2) 

(5) : Average of Grow ing then P r u n i n g ( t r i a l 1) & Grow ing then P run ing ( t r ia l 2) 

(6) : Average of Grow ing whi le P run ing ( t r ia l 1) & Grow ing whi le P run ing ( t r ia l 2) 

4.5 Conclusion 

In this research, we want to find a flexible and reliable approach to obtain a suit-

able network architecture for a problem domain automatically. By evaluating on the 

performance in the generalization performance, time consuming and network size of 

some different network architecture altering methods and the fixed network archi-

tecture method, we find that the growing based methods always provide a better 

generalization performance than the other. From the experimental results, we find 

that the fixed architecture method and the pruning method to the fixed architecture 

network do not provide an overall satisfactory performance. Moreover, these meth-

ods need to perform the trial-and-error test on the network architecture before they 

proceed learning. Therefore the pruning methods are not a flexible way to obtain the 

suitable network architecture. However, the growing method and the growing then 

pruning method often take a longer time to obtain a solution network than the other. 

And also, the growing method may produce a network with the unnecessary units. 

The growing while pruning method avoids the problems of the others according 

to the performance on the generalization ability, time consuming and network size 

obtained. The results show that this method gives a promising performance, such 
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that we can obtain the suitable network architecture by this flexible and reliable ap-

proach. As the growing while pruning method proceeds the removals to excessive 

non-contributing, duplicated and inversely-duplicated units before the growing anal-

ysis, the non-contributing and duplicated information can be ignored. As a result, the 

network can be always kept in a small but information unique network architecture; 

in the mean time, the network can remain in the economic computational state so as 

to minimize the time consuming for the whole process. Afterward, the last pruning 

process will be performed to the obtained solution network, so that the unnecessary 

units will not appear in the final solution network. 

Prom our experiments, we determined that since the constructive algorithms 

prefers the smaller solution network, therefore, constructive algorithms are the most 

flexible in obtaining the suitable network size. However, to deal with the unnecessary 

units in the solution network, the pruning algorithms should be introduced also to 

the solution network. If the time consuming issue is considered, the removals to those 

units that do not provide unique information should be involved, such that the com-

putation cost can be reduced. In this chapter, we find that growing while pruning is 

one of the possible ways to achieve above flexibility and reliability requirements, and 

would be a possible direction to assisting other constructive algorithms and pruning 

algorithms. 



Chapter 5 

Conclusion 
� 

5.1 Recall of Thesis Objectives 

In this research, we address for two limitations in using neural network as a 

classifier for the binary classification problem : the data dependency and the unknown 

network size. 

Typically, training to a neural network is very data dependent. The generalization 

performance of a solution network is affected by the distribution of the training data 

set. Different ratio between the number of classes and the level of noisy data involved 

would provide different classification ability. Although, many literature suggest that 

introducing some noisy data can give an ability of immunity to the noisy data when a 

solution network is operated with the unseen data, the great amount of noisiness in the 

practical environment would lead to a poor generalization performance. Therefore, 

one of the objectives in this research is to find a way to minimize the effect of this 

vagueness from a large amount noisy data. 

91 
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The choice of network size is a usual problem to the users of neural network. Train-

ing always involves trial-and-error tests to find a promising network size provides a 

good generalization performance. A small network may not achieve the desirable pre-

diction ability, but an oversized network may suffer from the problems of memorizing 

and overfitting. However, the trial-and-error method often suggests an oversized net-

work for the training. In order to avoid this tedious trial-and-error tests, we look for 

other methods that are flexible and reliable in deciding the network size. 

5.2 Summary of Achievements 

5.2.1 Data Preprocessing 

Training of a network is a data dependent process. When neural networks are 

applied to practical environments, the embedded vagueness in the data would affect 

the generalization performance of neural networks. In chapter 3，we propose a hybrid 

binary classification model that is composed of fuzzy linear regression with fuzzy in-

terval analysis(FLRFIA) and single hidden-layer backpropagation feedforward neural 

network(BPNN). To minimize the effect of the vagueness data, FLRFIA acts as a 

data handler that separates the data into two groups : data lie inside or outside the 

interval. The data lie inside the interval are identified as the certain data, while the 

data lie outside the interval are identified as the vagueness data. As the training data 

set is separated into two groups, two signal hidden-layer BPNN models are used. 

One is used for classifying the certain data, and the other is used for classifying the 
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vagueness data. 

The experimental results show that the proposed hybrid model performs better 

than using a single hidden-layer BPNN in the binary classification problem. Since 

the main classifiers in the hybrid model are the same as the conventional BPNN, we 

conclude that the data handler, FLRFIA, plays an important role in the improvement 

of the generalization performance. 

On the other hand, before we can separate the data into the certain data and the 

vagueness data, the linear programming model must be constructed and solved for 

the entire training data. This procedure is quite a time consuming process. 

5.2.2 Network Size 

In chapter 4，we study the problem of searching a desirable network size for the 

single hidden-layer BPNN in the binary classification problem. In this research, we 

use three growing based methods for the single hidden-layer BPNN, growing method, 

growing then pruning method, and growing while pruning method. These growing 

based methods find the better generalization performance improvement when com-

pared with the fixed network architecture method and pruning methods. The growing 

while pruning method provide the best overall performance among the other meth-

ods that considered in this research. The experimental results show that it is possible 

to find a flexible and reliable method by using both the constructive and pruning 

algorithms to compensate the limitations of each other. 
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5.3 Future Works 

In this research, we consider the binary classification problem only. To generalize 

our research, the extension to the multi-class classification problem could be studied. 

The hybrid classification model we proposed in chapter 3 is to minimize the effect 

of the vagueness data to the network. The proposed model achieves this objective 

by applying FLRFIA. In general, we can use other methods to reduce the complexity 

and time taken to construct and solve the linear programming model. For example, 

we may consider taking n samples of training data set. For each sample, we train 

a network. The prediction will be jointly by all the networks. The decision can be 

made by majority votes. 

There are many different network size models available in the literature. In this 

research, we show that some combinations of models may provide better size networks. 

Many other combinations may be considered. A comprehensive evaluation of these 

combined models will be interesting. 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 91.12 91.12 

2 86.98 92.31 

3 87.57 89.35 

4 92.90 93.49 

5 86.39 87.57 

6 88.17 89.94 

7 88.76 89.35 

8 92.90 95.27 

9 91.72 91.72 

10 94.67 94.08 

11 94.67 95.86 

12 88.17 91.12 

13 89.35 90.53 

14 88.76 93.49 

15 90.53 89.94 

16 88.76 88.76 

17 92.90 94.67 

18 85.80 88.17 

19 89.94 91.72 

20 90.53 91.12 

21 89.35 91.12 

22 90.53 91.12 

23 87.75 88.17 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 88.76 91.72 

25 87.57 88.17 

26 94.08 94.67 

27 87.57 89.94 

28 86.98 88.17 

29 93.49 93.49 

30 87.57 87.57 

31 92.90 92.31 

32 89.94 89.35 

33 90.53 93.49 

34 91.72 92.90 

35 94.08 94.08 

36 94.08 93.49 

37 90.53 91.12 

38 89.94 92.90 

39 92.90 93.49 

40 86.39 86.98 

41 86.98 88.76 

42 91.72 93.49 

43 94.08 95.86 

44 91.12 94.08 

45 91.72 93.49 

Average 90.28 91.55 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 87.76 91.12 

2 90.53 91.72 

3 89.35 88.76 

4 94.08 94.67 

5 86.98 88.76 

6 90.53 89.94 

7 87.57 89.35 

8 86.98 96.45 

9 91.72 92.31 

10 93.49 94.08 

11 90.53 90.53 

12 91.12 92.90 

13 91.12 93.49 

14 81.07 87.57 

15 85.80 86.98 

16 90.53 92.31 

17 94.08 95.86 

18 90.53 94.08 

19 92.31 95.27 

20 89.35 89.94 

21 90.53 89.94 

22 86.98 88.17 

23 89.35 91.72 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 86.39 87.57 

25 94.67 94.67 

26 86.98 89.35 

27 86.39 89.35 

28 92.90 93.49 

29 89.94 89.35 

30 95.27 95.86 

31 92.31 93.49 

32 89.94 91.12 

33 91.72 92.90 

34 88.17 90.53 

35 89.35 88.76 

36 93.49 94.67 

37 86.98 88.76 

38 91.72 92.31 

39 89.35 88.17 

40 90.53 92.90 

41 90.53 89.94 

42 88.76 91.72 

43 92.90 93.49 

44 93.49 95.27 

45 94.08 94.08 

Average 90.18 91.64 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 89.94 92.90 

2 91.12 92.31 

3 89.35 88.17 

4 95.27 95.86 

5 86.39 88.17 

6 89.35 89.94 

7 87.57 89.94 

8 91.72 97.63 

9 89.94 90.53 

10 93.49 94.08 

11 91.12 89.35 

12 88.76 91.72 

13 93.49 94.67 

14 84.62 86.39 

15 86.39 87.57 

16 91.72 92.90 

17 92.31 95.27 

18 89.35 92.90 

19 92.90 95.27 

20 89.94 91.72 

21 91.12 90.53 

22 86.98 89.35 

23 88.76 89.94 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 85.80 88.76 

25 95.86 94.67 

26 88.76 89.94 

27 85.80 89.35 

28 92.90 92.90 

29 90.53 90.53 

30 92.31 93.49 

31 91.72 94.08 

32 91.12 91.72 

33 89.94 92.90 

34 89.94 92.31 

35 89.35 88.76 

36 92.90 94.67 

37 86.39 87.57 

38 92.31 93.49 

39 88.76 90.53 

40 91.12 92.31 

41 89.94 90.53 

42 91.72 94.67 

43 92.90 94.08 

44 92.90 94.67 

45 94.08 94.08 

Average 9041 91.85 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 90.53 94.67 

2 91.12 94.08 

3 88.76 89.35 

4 94.08 94.08 

5 84.62 86.39 

6 89.35 89.94 

7 87.57 88.17 

8 92.90 95.86 

9 92.31 92.31 

10 91.72 92.90 

11 91.12 91.72 

12 88.17 89.35 

13 92.31 92.90 

14 86.98 89.35 

15 86.39 88.76 

16 90.53 92.90 

17 92.31 94.67 

18 91.72 94.67 

19 92.90 94.08 

20 90.53 92.90 

21 89.94 91.12 

22 88.17 91.72 

23 90.53 91.72 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 86.39 87.57 

25 95.27 95.27 

26 88.17 88.17 

27 82.25 87.57 

28 89.35 91.12 

29 88.17 88.17 

30 92.90 94.67 

31 92.31 95.27 

32 91.72 91.72 

33 90.53 94.08 

34 91.12 92.31 

35 88.17 89.35 

36 93.49 94.67 

37 86.98 88.17 

38 91.72 92.31 

39 89.94 90.53 

40 91.72 91.12 

41 89.94 90.53 

42 91.72 94.08 

43 92.90 94.67 

44 92.31 94.67 

45 93.49 93.49 

Average 90.34 91.85 

Table A.1: (cont'd) Accuracy comparison of prediction ability 



104 

BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 90.53 93.49 

2 89.94 91.72 

3 89.35 88.76 

4 93.49 94.08 

5 86.39 88.76 

6 88.76 88.76 

7 87.57 88.76 

8 91.72 97.04 

9 90.53 91.12 

10 92.90 95.27 

11 92.31 91.12 

12 88.76 91.72 

13 92.90 94.67 

14 84.62 86.98 

15 88.17 89.35 

16 91.72 93.49 

17 92.31 94.67 

18 91.72 92.90 

19 92.90 95.27 

20 92.90 95.27 

21 91.12 91.12 

22 88.17 91.12 

23 90.53 92.31 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 86.98 87.57 

25 95.27 95.27 

26 88.17 88.76 

27 86.98 89.35 

28 92.90 92.31 

29 88.17 88.76 

30 95.27 95.86 

31 89.94 95.27 

32 88.76 88.76 

33 91.12 94.08 

34 91.12 92.31 

35 89.35 89.94 

36 92.90 93.49 

37 86.39 87.57 

38 92.31 92.90 

39 91.12 91.72 

40 89.35 90.53 

41 91.12 91.72 

42 90.53 94.86 

43 94.67 95.86 

44 91.72 94.67 

45 92.31 93.49 

Average 90.57 92.06 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

1 67.46 66.27 

2 78.70 82.84 

3 73.96 73.37 

4 77.51 77.51 

5 72.48 79.29 

6 69.23 78.11 

7 76.92 77.51 

8 77.51 78.70 

9 79.29 78.70 

10 77.51 78.11 

11 72.78 75.74 

12 73.96 78.11 

13 68.64 79.29 

14 78.11 82.25 

15 78.70 79.88 

16 75.74 75.15 

17 66.86 76.92 

18 79.88 82.25 

19 76.33 79.29 

20 80.47 79.29 

21 78.70 79.88 

22 68.05 76.92 

23 69.23 71.60 

Table A.1: (cont'd) Accuracy comparison of prediction ability 
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BatchProcess (%) 
Sample HybridMethod{%) 

{Conventional) 

24 68.64 76.33 

25 75.74 74.56 

26 70.41 69.23 

27 73.96 76.33 

28 70.41 77.51 

29 65.09 73.37 

30 78.11 82.84 

31 85.21 86.39 

32 71.01 72.78 

33 72.78 79.88 

34 72.78 73.37 

35 74.56 78.70 

36 82.25 82.84 

37 76.92 78.70 

38 69.23 72.78 

39 78.70 78.70 

40 66.86 72.19 

41 71.60 71.60 

42 78.11 78.11 

43 74.56 77.51 

44 79.29 78.70 

45 74.56 77.51 

Average 7442 TL26 

Table A.1: (cont'd) Accuracy comparison of prediction ability 



108 

BatchProcess{%) 
Sample HybridMethod{%) 

(C onventional) 

1 65.09 75.15 

2 76.33 78.70 

3 71.60 75.74 

4 75.15 76.92 

5 70.41 76.33 

6 66.86 73.96 

7 73.96 76.33 

8 66.86 79.29 

9 75.15 78.70 

10 70.41 80.47 

11 72.78 76.33 

12 74.56 75.74 

13 69.82 80.47 

14 72.78 77.51 

15 78.11 78.11 

16 68.05 69.23 

17 71.01 77.51 

18 77.51 78.11 

19 71.60 72.19 

20 74.56 79.29 

21 73.96 79.29 

22 71.06 73.37 

23 69.82 76.92 

Table A.7: Accuracy comparison of prediction ability with 10% additional noise 
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BatchProcess{%) 
Sample HybridMethod{%) 

(C onventional) 

24 70.41 74.56 

25 74.56 76.33 

26 68.05 71.60 

27 64.50 75.74 

28 69.23 75.74 

29 63.31 72.78 

30 72.19 75.74 

31 78.11 82.25 

32 65.68 75.15 

33 76.33 77.51 

34 67.46 75.74 

35 73.96 78.70 

36 73.96 80.47 

37 71.60 79.29 

38 66.86 75.74 

39 77.51 80.47 

40 69.23 72.78 

41 71.60 80.47 

42 76.92 78.70 

43 62.72 76.33 

44 77.51 76.33 

45 75.15 76.33 

Average 71.65 76.76 

Table A.7: (cont'd) Accuracy comparison of prediction ability with 10% additional 

noise 
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BatchProcess{%) 
Sample HybridMethod{%) 

(C onventional) 

1 63.31 73.37 

2 69.23 75.74 

3 65.68 76.92 

4 75.74 80.47 

5 68.64 77.51 

6 69.23 78.70 

7 66.86 76.92 

8 72.19 79.88 

9 73.96 76.92 

10 75.15 79.88 

11 66.27 76.33 

12 65.68 72.19 

13 71.60 80.47 

14 72.19 78.11 

15 73.37 82.45 

16 66.27 71.60 

17 66.86 79.29 

18 73.37 79.29 

19 69.23 74.56 

20 69.82 76.92 

21 66.86 75.74 

22 66.27 71.01 

23 65.68 73.96 

Table A.8: Accuracy comparison of prediction ability with 20% additional noise 
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BatchProcess{%) 
Sample HybridMethod{%) 

(C onventional) 

24 69.82 73.96 

25 70.41 76.33 

26 62.72 71.01 

27 66.27 72.78 

28 70.41 75.15 

29 59.76 65.68 

30 71.60 79.88 

31 75.15 81.07 

32 71.60 78.11 

33 68.05 76.92 

34 65.68 75.74 

35 67.46 78.11 

36 73.37 80.47 

37 69.23 79.29 

38 62.72 77.51 

39 68.05 74.56 

40 67.46 74.56 

41 72.19 79.29 

42 68.64 78.11 

43 59.76 72.19 

44 72.19 79.29 

45 69.23 76.92 

Average 68.78 76.60 

Table A.8: (cont'd) Accuracy comparison of prediction ability with 20% additional 

noise 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 88.76 91.72 90.53 89.94 89.35 90.53 90.53 91.72 91.72 

2 90.53 90.53 92.31 89.94 90.53 91.72 92.31 92.31 92.31 

3 89.35 89.35 91.12 88.17 90.53 88.17 90.53 88.76 90.53 

4 94.08 92.90 95.27 94.08 93.49 95.27 94.67 94.67 95.27 

5 86.98 86.98 86.98 82.84 86.39 85.21 85.21 84.62 87.57 

6 90.53 90.53 89.94 88.76 92.31 90.53 88.17 90.53 89.35 

7 87.57 87.57 88.17 89.35 88.76 89.35 88.76 89.35 88.76 

8 86.98 86.98 93.49 91.12 91.72 91.72 94.08 93.49 94.08 

9 91.72 91.12 91.12 92.90 91.72 91.12 91.12 91.12 91.12 

10 93.49 93.49 94.67 92.90 93.49 94.67 95.27 91.72 94.08 

11 90.53 90.53 90.53 91.12 89.35 91.12 92.90 90.53 92.31 

12 91.12 91.12 90.53 89.94 92.90 88.76 90.53 91.72 89.94 

13 91.12 91.12 94.08 94.67 94.67 95.27 95.86 94.67 94.08 

14 81.07 81.07 90.53 92.31 86.39 88.76 90.53 84.02 91.12 

15 85.80 85.21 88.76 85.80 87.57 88.17 88.76 90.53 86.39 

16 90.53 90.53 93.49 91.72 91.72 92.90 93.49 93.49 91.72 

17 94.08 93.49 91.12 92.31 92.31 92.90 96.45 95.27 95.86 

18 90.53 90.53 91.72 91.72 90.53 92.90 91.72 91.12 91.72 

19 92.31 92.90 94.67 92.31 92.31 92.90 92.31 94.67 95.27 

20 89.35 91.12 92.90 91.72 91.12 90.53 93.49 91.72 89.35 

21 90.53 90.53 91.72 92.31 90.53 91.12 90.53 91.72 92.31 

22 86.98 86.98 89.94 88.17 89.94 90.53 89.35 86.98 89.35 

23 89.35 89.94 89.35 90.53 89.94 89.94 90.53 90.53 88.76 

Table B.1: Accuracy of Different Algorithms : Breast-cancer database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 86.39 86.39 85.21 86.39 84.62 86.98 86.98 85.21 86.39 

25 94.67 95.86 94.67 95.86 95.27 96.45 96.45 95.86 95.86 

26 86.98 86.98 89.94 88.17 89.35 86.39 89.94 91.12 89.94 

27 86.39 86.39 86.39 88.76 86.98 88.76 89.35 88.76 89.94 

28 92.90 92.90 91.12 92.31 91.12 93.49 94.08 92.90 90.53 

29 89.94 86.39 89.94 91.12 89.35 92.31 91.12 91.72 89.94 

30 95.27 94.67 96.45 95.27 94.08 94.67 94.08 96.45 92.31 

31 92.31 92.31 92.90 92.31 91.72 90.53 91.72 90.53 90.53 

32 89.94 89.94 90.53 91.12 91.72 90.53 91.72 91.12 91.12 

33 91.72 91.72 92.90 89.94 92.90 92.90 92.31 91.72 91.72 

34 88.17 87.57 89.35 92.31 91.72 92.90 94.08 92.90 92.31 

35 89.35 89.35 88.76 88.76 89.94 89.94 91.72 91.72 89.94 

36 93.49 93.49 92.90 94.08 91.72 92.31 93.49 93.49 93.49 

37 86.98 88.17 88.17 87.57 86.39 86.98 87.57 88.17 86.39 

38 91.72 92.90 92.90 91.72 92.90 94.67 94.67 91.12 92.90 

39 89.35 88.76 88.76 90.53 89.35 90.53 92.31 89.35 89.94 

40 90.53 90.53 92.31 91.12 94.08 94.08 94.08 91.72 91.12 

41 90.53 89.35 89.35 91.72 91.72 89.35 91.12 91.12 91.12 

42 88.76 90.53 89.94 91.72 91.12 91.72 89.94 89.94 91.72 

43 92.90 93.49 94.67 95.27 95.27 91.72 93.49 93.49 93.49 

44 93.49 93.49 93.49 94.08 93.49 92.90 94.08 95.27 94.08 

45 94.08 94.08 94.67 94.08 94.08 94.67 94.67 95.27 95.27 

Table B.1: (cont'd) Accuracy of Different Algorithms : Breast-cancer database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 5.76 1873.00 510.46 5577.71 13.70 87.30 17.27 

2 326.63 140.26 5904.12 58.35 29.35 243.06 4.66 

3 32.36 357.65 4.20 6.75 2148.54 2.98 12.61 

4 400.64 36.56 16.79 46.11 1284.00 3.43 90.57 

5 5.36 2.59 102.47 63.18 170.17 4.90 4.39 

6 11.40 80.58 7.27 104.59 217.84 135.37 74.02 

7 36.37 49.34 47.18 428.30 652.53 18.54 2.43 

8 38.95 10.03 22.85 759.70 822.80 35.73 2.03 

9 3.46 25.38 429.27 5.88 1715.43 2.02 2.48 

10 7.43 26.00 518.17 462.82 12.00 1.79 2.41 

11 7.17 18.34 974.67 620.23 1999.01 13.15 37.53 

12 44.03 403.21 47.19 315.09 2.85 23.77 14.38 

13 3.19 87.98 6.75 7.56 116.28 1.93 2.75 

14 297.48 0.27 63.62 1648.10 326.03 4.99 1.73 

15 17.31 3.30 259.51 4.20 17.44 77.27 29.85 

16 14.04 485.96 851.78 6904.50 19.99 10.73 20.63 

17 17.18 3.75 50.80 849.19 8.19 3.13 3.46 

18 500.47 287.00 996.98 18.16 25.37 1.81 11.00 

19 27.33 17.09 3.49 93.63 3.60 4.88 4.39 

20 2.64 32.15 1122.08 1.47 14.88 2.02 208.02 

21 71.54 1804.45 41.68 2057.37 1084.94 2.40 48.82 

22 7.58 15.85 2871.24 6.13 33.25 22.09 8.02 

23 1070.80 451.31 2123.63 2851.02 474.6 2.87 3.83 

Table B.2: Time Complexity Required of Different Algorithms : Breast-cancer 

database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 174.81 2356.90 13.61 8018.11 185.27 2.04 3.13 

25 160.43 4.80 517.68 8144.93 137.90 2.66 7.83 

26 296.75 0.36 5.84 2099.04 714.96 6.07 2.00 

27 172.50 23.17 22.64 7215.77 37.76 3.26 11.95 

28 92.87 225.41 245.59 130.47 111.53 2.26 45.12 

29 230.35 348.49 113.42 226.68 894.30 4.64 7.48 

30 685.33 0.84 52.67 1202.60 2502.92 2.27 8.58 

31 30.89 2.24 2.09 32.74 38.58 7.79 39.62 

32 26.94 2.23 1.74 5.22 2.96 4.64 5.34 

33 5.19 53.31 2.48 13.59 70.87 2.02 8.85 

34 7.92 583.08 252.41 354.78 2207.10 2.70 2.12 

35 1.52 7.70 73.50 318.53 81.46 0.60 9.93 

36 129.76 17.02 378.96 71.49 20.87 8.01 0.60 

37 101.53 0.58 314.65 153.05 2527.67 8.34 3.31 

38 393.59 87.80 0.93 742.54 457.62 33.10 2.33 

39 3.27 2.72 629.09 12.88 7.02 8.93 19.99 

40 18.10 5.19 241.50 129.65 348.60 1.83 21.99 

41 214.59 430.16 1.51 114.18 603.79 1.35 39.60 

42 164.15 311.20 18.03 3.01 8.69 16.59 43.63 

43 563.51 0.59 187.31 158.43 67.56 2.56 0.54 

44 694.20 2.89 3.85 3036.37 21.28 25.98 6.38 

45 27.12 1614.62 62.87 2069.17 5.08 9.30 2.23 

Table B.2: (cont'd) Time Complexity Required of Different Algorithms : Breast-

cancer database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 9 3 18 10 1 1 2 2 

2 1 1 9 29 1 2 3 1 

3 9 2 11 4 2 1 1 1 

4 8 1 7 6 2 1 2 1 

5 10 3 4 7 1 2 2 2 

6 5 1 7 5 1 1 2 2 

7 5 2 7 7 1 1 2 1 

8 3 2 5 6 2 1 1 1 

9 6 2 6 11 2 1 1 2 

10 8 3 7 10 1 1 2 1 

11 7 1 5 16 1 1 2 2 

12 1 1 11 7 1 1 2 2 

13 9 2 8 5 1 1 1 2 

14 5 2 2 8 1 1 1 2 

15 6 1 4 10 1 2 2 2 

16 8 1 10 12 1 2 2 1 

17 3 2 4 7 1 1 2 1 

18 13 2 9 16 2 1 2 3 

19 2 1 6 3 2 2 2 2 

20 13 2 6 17 1 1 1 3 

21 4 1 16 7 1 1 1 1 

22 3 2 5 21 1 1 2 1 

23 1 1 10 18 2 1 2 3 

Table B.3: Network Size of Different Algorithms : Breast-cancer database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 1 1 19 6 1 1 2 2 

25 4 1 4 12 1 2 2 2 

26 1 1 2 5 1 1 1 2 

27 1 1 6 6 1 1 1 1 

28 1 1 9 10 1 1 2 1 

29 4 1 10 8 1 1 2 1 

30 13 3 3 7 1 1 1 3 

31 14 1 3 4 2 1 1 2 

32 4 1 4 3 1 2 2 1 

33 2 1 7 3 1 1 2 1 

34 8 1 13 10 1 1 1 2 

35 7 1 5 8 2 2 1 2 

36 1 1 6 10 2 2 1 2 

37 5 2 2 10 1 1 2 1 

38 1 1 8 2 1 1 1 2 

39 9 2 4 12 1 1 1 1 

40 13 2 4 9 1 1 2 1 

41 1 1 10 3 1 1 1 1 

42 2 2 9 6 1 2 1 1 

43 1 1 2 8 1 1 2 1 

44 1 1 4 4 1 1 2 1 

45 12 2 17 7 1 1 1 1 

Table B.3: (cont'd) Network Size of Different Algorithms : Breast-cancer database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 87.50 89.00 89.00 89.00 88.50 94.00 87.00 88.50 90.50 

2 86.50 86.50 86.50 91.50 93.50 94.50 95.50 90.00 88.00 

3 87.50 93.50 92.50 82.00 86.00 87.00 93.50 94.50 86.50 

4 83.00 82.50 85.00 88.00 90.00 95.50 91.00 86.00 91.00 

5 88.50 88^00 92.50 94.50 91.00 93.50 90.50 96.50 96.50 

6 92.50 93.50 92.50 89.50 86.50 94.00 89.50 92.50 97.50 

7 96.00 91.00 96.00 92.50 89.00 93.00 96.50 91.00 92.50 

8 89.00 87.00 89.00 86.50 97.00 95.00 88.50 88.00 88.00 

9 84.00 84.00 84.50 89.50 84.50 93.50 81.50 91.00 92.00 

10 87.00 82.50 90.00 93.50 91.50 93.50 98.00 95.50 91.00 

11 83.50 85.50 86.50 85.00 96.00 91.50 84.00 92.00 84.50 

12 92.00 80.00 92.00 87.00 87.50 88.50 88.00 91.00 92.00 

13 85.00 79.50 91.00 86.50 85.50 89.50 89.00 88.00 83.00 

14 78.50 79.00 82.00 89.00 89.50 91.50 91.50 89.50 87.50 

15 84.00 81.50 92.50 88.00 92.00 94.00 98.00 93.00 87.50 

16 93.00 83.50 93.00 91.00 88.00 94.50 94.50 97.00 92.00 

17 91.00 85.50 91.00 93.50 99.50 95.50 98.50 95.00 97.50 

18 96.00 96.00 96.00 85.50 93.00 88.00 98.00 93.00 92.00 

19 87.00 85.00 89.00 86.00 93.00 87.00 87.00 91.00 86.50 

20 95.00 95.00 95.00 92.50 89.50 92.00 96.00 92.50 88.50 

21 88.50 88.50 88.50 84.00 86.50 96.00 83.50 91.50 83.50 

22 87.00 87.00 87.50 92.50 97.00 91.00 93.50 97.00 93.50 

23 83.50 85.00 85.00 93.00 86.50 86.50 84.00 87.50 90.00 

Table B.4: Accuracy of Different Algorithms : Tic-Tac-Toe database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 88.50 87.00 90.00 87.00 88.00 89.00 87.00 88.50 88.00 

25 80.50 63.50 82.50 86.50 86.50 85.50 90.00 92.00 89.50 

26 88.00 85.00 89.00 88.00 91.00 88.00 89.00 88.00 91.00 

27 93.50 81.50 93.50 89.50 95.00 86.00 89.50 84.00 96.50 

28 80.50 80.00 86.50 91.00 89.00 90.50 93.50 89.00 88.00 

29 89.50 88.50 85.50 89.00 94.00 91.00 90.50 94.50 93.50 

30 79.00 77.50 82.00 85.50 90.50 95.00 91.00 89.50 92.50 

31 81.50 81.50 84.00 93.00 90.50 97.00 90.50 88.50 93.50 

32 89.00 89.00 95.50 93.50 89.00 92.00 78.00 87.00 90.50 

33 94.00 71.00 94.00 84.50 90.50 93.50 94.00 92.50 92.50 

34 93.00 58.50 93.00 94.50 93.00 93.00 95.00 92.50 90.50 

35 88.00 75.50 92.50 89.00 93.00 95.00 93.50 94.00 91.50 

36 95.00 50.00 95.00 81.50 91.50 93.50 89.50 94.50 96.00 

37 92.00 93.50 92.00 88.50 87.00 92.00 95.00 92.00 92.50 

38 90.50 79.50 91.50 91.50 92.50 92.50 81.00 80.50 96.00 

39 84.50 79.00 84.50 82.50 81.00 89.50 86.00 84.00 84.50 

40 92.50 83.50 92.50 92.50 92.00 93.50 94.50 91.00 89.50 

41 89.50 81.50 89.50 95.50 91.50 90.50 91.00 91.50 89.00 

42 85.50 86.50 87.50 94.00 96.00 93.00 94.00 94.00 87.00 

43 87.50 91.00 92.00 91.00 93.50 94.00 91.50 94.00 93.50 

44 90.50 91.00 95.00 88.50 95.50 90.00 98.50 92.50 98.00 

45 92.50 82.00 93.00 85.50 91.50 94.50 84.00 91.00 91.50 

Table B.4: (cont'd) Accuracy of Different Algorithms : Tic-Tac-Toe database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 114.61 227.76 19.62 958.60 51.00 53.67 29.31 

2 81.61 54.03 16.91 176.86 66.16 21.30 19.86 

3 202.10 41.55 50.45 23.95 620.89 135.63 22.25 

4 72.56 14.13 28.49 15.32 47.05 49.21 29.45 

5 156.63 27.74 72.53 76.13 45.33 57.11 43.38 

6 143.29 373.14 40.48 5736.17 419.59 86.24 25.18 

7 92.42 15.25 93.92 29.99 33.11 105.98 50.19 

8 277.89 107.72 41.93 68.53 68.83 50.21 49.82 

9 94.79 32.69 34.28 41.27 44.53 19.62 18.94 

10 111.26 70.39 216.26 33.47 672.73 43.36 44.51 

11 103.14 47.40 24.03 26.08 32.01 51.22 48.07 

12 209.76 27.74 236.34 58.35 43.63 131.42 30.13 

13 67.97 48.11 23.01 24.61 338.88 23.27 71.93 

14 175.39 28.49 58.20 87.31 22.86 28.15 32.50 

15 92.92 28.19 48.88 180.07 93.47 84.72 39.48 

16 362.58 17.49 41.83 45.69 517.76 61.24 48.63 

17 259.92 42.69 57.04 25.17 61.70 47.09 33.30 

18 145.49 92.94 151.03 68.52 136.78 50.69 68.51 

19 116.47 50.76 135.19 41.22 49.14 33.50 69.60 

20 87.00 34.33 67.22 447.18 256.34 30.02 119.20 

21 171.09 13.97 23.91 60.74 49.75 45.74 51.48 

22 70.95 273.73 54.18 1405.30 355.82 87.65 26.26 

23 56.31 107.75 21.24 100.81 42.75 53.05 33.72 

Table B.5: Time Complexity Required ofDifferent Algorithms : Tic-Tac-Toe database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 86.71 24.74 58.82 59.14 41.36 38.93 51.31 

25 337.10 44.36 693.93 32.91 20.10 18.62 53.10 

26 73.25 36.40 38.04 37.76 31.72 73.06 24.83 

27 124.03 32.80 51.03 155.27 23.25 28.34 66.00 

28 102.02 48.47 837.00 369.24 27.59 35.46 77.78 

29 98.12 142.06 80.12 76.54 25.07 28.68 72.84 

30 71.81 46.73 15.84 46.06 49.17 45.40 69.29 

31 124.85 106.02 43.29 38.42 73.77 46.62 54.01 

32 92.42 33.00 43.56 58.68 94.82 40.60 19.08 

33 791.02 27.15 61.21 81.36 48.26 15.72 84.27 

34 235.15 84.13 116.57 28.34 144.52 41.97 77.58 

35 132.06 18.32 87.62 92.77 34.97 35.41 36.16 

36 124.30 229.22 23.08 208.13 48.35 39.45 26.29 

37 380.35 29.62 29.76 81.59 366.53 52.99 39.84 

38 121.68 63.88 44.68 69.74 38.38 37.17 68.77 

39 131.92 31.18 14.88 35.00 19.89 26.07 17.14 

40 186.49 90.44 20.63 52.51 96.94 24.12 34.48 

41 332.76 63.15 2442.05 106.69 114.62 68.09 29.81 

42 57.05 47.38 28.27 43.48 38.32 22.32 48.94 

43 160.45 57.99 47.28 116.96 82.30 47.13 108.48 

44 185.97 32.04 109.69 35.45 55.37 43.63 19.13 

45 239.36 30.37 41.74 346.53 47.46 278.36 25.90 

Table B.5: (cont'd) Time Complexity Required of Different Algorithms : Tic-Tac-Toe 

database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 4 4 3 2 2 2 2 1 

2 5 5 2 2 1 2 1 1 

3 1 1 2 2 2 2 1 2 

4 5 5 1 2 1 2 4 1 

5 3 3 2 5 2 2 1 1 

6 1 1 6 2 1 4 1 1 

7 2 2 1 5 2 1 3 2 

8 2 2 3 2 2 3 2 1 

9 3 3 2 2 1 3 1 1 

10 3 3 3 3 2 2 1 2 

11 4 4 2 2 2 2 2 3 

12 2 3 2 5 2 3 2 2 

13 3 3 2 2 1 2 2 3 

14 5 5 1 4 3 1 2 1 

15 3 2 2 2 2 2 3 2 

16 2 2 1 3 2 1 1 2 

17 2 2 3 3 1 1 1 1 

18 2 2 4 3 4 2 1 2 

19 4 4 2 4 2 3 1 3 

20 3 3 1 4 1 1 1 1 

21 4 4 1 1 1 2 2 2 

22 4 4 7 2 2 1 1 1 

23 4 4 2 1 3 2 1 2 

Table B.6: Network Size of Different Algorithms : Tic-Tac-Toe database 
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Sample (1) (2) (3) (4) (5) (6) (7) (8) (9) 

24 4 4 1 3 3 2 3 2 

25 5 5 3 8 1 1 1 2 

26 4 4 2 2 2 2 3 1 

27 2 2 2 3 2 1 2 2 

28 4 5 2 8 3 1 2 3 

29 3 4 5 5 3 2 2 2 

30 5 4 3 1 1 2 1 2 

31 5 5 4 2 1 3 3 2 

32 2 1 1 2 2 3 2 1 

33 3 3 2 2 1 2 1 2 

34 1 1 2 3 1 1 2 2 

35 1 1 1 2 1 1 2 2 

36 1 1 2 2 1 2 2 2 

37 1 1 2 3 1 1 2 1 

38 5 5 2 4 2 3 3 1 

39 4 4 2 1 1 1 1 1 

40 3 3 2 2 1 1 2 2 

41 1 1 2 11 1 2 2 2 

42 5 5 3 1 2 2 1 2 

43 2 2 2 3 2 2 1 2 

44 2 2 2 3 2 1 2 1 

45 1 1 2 2 1 3 1 1 

Table B.6: (cont'd) Network Size of Different Algorithms : Tic-Tac-Toe database 
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