
APPLICATIONS OF NEURAL
NETWORKS IN THE BINARY
CLASSIFICATION PROBLEM

：

*

By

Chan Pak Kei, Bernard

A Thesis

Submitted in partial fulfillment of the requirements for
the degree of Master of Philosophy

Department of Systems Engineering & Engineering Management
The Chinese University of Hong Kong

June 1997

‘ , ‘ “ •

.>.''>

y^^%V /^Xrj3is,vs /ywysn\\^>\
/^;/ /Miuj.,,,̂a vfe\
fc：>/ \忘\
si g:a inf L I \-
、.‘:“ 'H
V\ ts ^i^w^ /¥
NsT>J. ^¾/

v^-^~^-^ 7
^^]:Z

M I
4'
I .々， .
«,

Abstract

The binary classification problem classifies observations into two pre-

determined groups. Many real-life problems are applications of the binary

classification problem. The literature has suggested a single hidden-layer

backpropagation feedforward neural network is a consistent universal clas-

sifier for the binary classification problem. However, there are still limi-

tations in applying the neural network approach.

In this research, we address two limitations: data dependency and

network size. For the data dependency problem, we propose a hybrid

model. This approach uses a data handler to separate the data into good

and bad data before the data are fed for training or operating the networks.

By training two independent networks using two groups of data, we are

able to better describe the distribution space of the corresponding data

sample with two different functions. The computational result shows that

the hybrid approach improves the accuracy of the classification.

The network size is often decided by the trial-and-error test. This

makes the application of a neural network very tedious. There are some

network architecture altering methods. In this research, we propose some

methods that combine the advantages of these network architecture alter-

ing methods. By evaluating the performance of generalization ability, time

consumption and resulting network size, we find that methods that adopt

the properties from pruning and constructive algorithms always produce

a better network.

1

Acknowledgments

I would like to show my deepest gratitude to my advisors, Professor

Chun-Hung Cheng and Professor Boon-Toh Low, for their guidances and

suggestions. Without their support, this thesis would not be completed.

Moreover, I would like to thank all my colleagues and friends who

made my post-graduate life joyful and memorable.

Contents

1 Introduction 10

1.1 Overview 10

1.2 Classification Approaches 11

1.3 The Use of Neural Network 12

1.4 Motivations 14

1.5 Organization of Thesis 16

2 Related Work 19

2.1 Overview 19

2.2 Neural Network 20

2.2.1 Backpropagation Feedforward Neural Network 20

2.2.2 Training of a Backpropagation Feedforward Neural Network . 22

2.2.3 Single Hidden-layer Model 27

2.2.4 Data Preprocessing 27

2.3 Fuzzy Sets 29

2.3.1 Fuzzy Linear Regression Analysis 29

2.4 Network Architecture Altering Algorithms 31

2

CONTENTS 3

2.4.1 Pruning Algorithms 32

2.4.2 Constructive/Growing Algorithms 35

2.5 Summary 38

3 Hybrid Classification Systems 39

3.1 Overview . 39

3.2 Literature Review 41

3.2.1 Fuzzy Linear Regression(FLR) with Fuzzy Interval Analysis . 41

3.3 Data Sample and Methodology 44

3.4 Hybrid Model 46

3.4.1 Construction of Model 46

3.5 Experimental Results 50

3.5.1 Experimental Results on Breast Cancer Database 50

3.5.2 Experimental Results on Synthetic Data 53

3.6 Conclusion 55

4 Searching for Suitable Network Size Automatically 59

4.1 Overview 59

4.2 Literature Review 61

4.2.1 Pruning Algorithm 61

4.2.2 Constructive Algorithms (Growing) 66

4.2.3 Integration of methods 67

4.3 Methodology and Approaches 68

4.3.1 Growing 68

CONTENTS 4

4.3.2 Combinations of Growing and Pruning 69

4.4 Experimental Results 75

4.4.1 Breast-Cancer Cytology Database 76

4.4.2 Tic-Tac-Toe Database 82

4.5 Conclusion 89

5 Conclusion 91

5.1 Recall of Thesis Objectives 91

5.2 Summary of Achievements 92

5.2.1 Data Preprocessing 92

5.2.2 Network Size 93

5.3 Future Works 94

A Experimental Results of Ch.3 95

B Experimental Results of Ch.4 112

Bibliography 125

List of Figures

2.1 Structure of Multilayer Backpropagation Feedforward Neural Network 20

2.2 Structure of an Activation Unit 23

2.3 Corresponding Output of a Sigmoid Function 24

2.4 Structure of Single Hidden-layer Backpropagation Feedforward Neural

Network for Binary Classification Problems 28

3.1 Process flow chart of the hybrid model 47

3.2 Construction of the Hybrid Model 48

3.3 Membership function . . 49

3.4 Single hidden-layer, single output neural network 50

3.5 Dependent variable value of each training datum 53

3.6 Dependent variable value of each training datum which lie inside the

interval 54

3.7 Dependent variable value of each training datum which lie outside the

interval 55

3.8 Dependent variable value of each testing datum 56

5

LIST OF FIGURES 6

3.9 Dependent variable value of each testing datum which lie inside the

interval. . 57

3.10 Dependent variable value of each testing datum which lie outside the

interval 58

4.1 Process Flow of the Growing Method 70

4.2 Process Flow of Growing then Pruning Method 72

4.3 Process Flow of Growing while Pruning Method 74

List of Tables

3.1 Attribute descriptions 45

3.2 Average prediction accuracy on 5 trials 51

3.3 Average prediction accuracy on 5 trials 56

4.1 Attribute descriptions of Breast-cancer Database 77

4.2 Statistics of Accuracy of Different Algorithms : Breast-cancer database 78

4.3 Statistics of Time Complexity Required of Different Algorithms : Breast-

cancer database 79

4.4 Statistics of Network Size of Different Algorithms : Breast-cancer

database 81

4.5 Attribute descriptions of Tic-Tac-Toe Database 83

4.6 Statisitics of Accuracy of Different Algorithms : Tic-Tac-Toe database 85

4.7 Statistics of Time Complexity Required of Different Algorithms : Tic-

Tac-Toe database 86

4.8 Statistics of Network Size of Different Algorithms : Tic-Tac-Toe database 87

4.9 Summaries of Average Accuracy of Different Database 88

4.10 Summaries of Average Time Complexity Required of Different Database 88

7

LIST OF TABLES 8

4.11 Summaries of Average Netowrk Size of Different Database 88

A.1 Accuracy comparison of prediction ability 96

A.1 (cont'd) Accuracy comparison of prediction ability 97

A.2 Accuracy comparison of prediction ability 98

A.2 (cont'd) Accuracy comparison of prediction ability 99

A.3 Accuracy comparison of prediction ability 100

A.3 (cont'd) Accuracy comparison of prediction ability 101

A.4 Accuracy comparison of prediction ability 102

A.4 (cont'd) Accuracy comparison of prediction ability 103

A.5 Accuracy comparison of prediction ability 104

A.5 (cont'd) Accuracy comparison of prediction ability 105

A.6 Accuracy comparison of prediction ability 106

A.6 (cont'd) Accuracy comparison of prediction ability 107

A.7 Accuracy comparison of prediction ability with 10% additional noise . 108

A.7 (cont'd) Accuracy comparison of prediction ability with 10% additional

noise 109

A.8 Accuracy comparison of prediction ability with 20% additional noise . 110

A.8 (cont'd) Accuracy comparison of prediction ability with 20% additional

noise 111

B.1 Accuracy of Different Algorithms : Breast-cancer database 113

B.1 (cont'd) Accuracy of Different Algorithms : Breast-cancer database . 114

LIST OF TABLES 9

B.2 Time Complexity Required of Different Algorithms : Breast-cancer

database 115

B.2 (cont'd) Time Complexity Required of Different Algorithms : Breast-

cancer database 116

B.3 Network Size of Different Algorithms : Breast-cancer database 117

B.3 (cont'd) Network Size of Different Algorithms : Breast-cancer database 118

B.4 Accuracy of Different Algorithms : Tic-Tac-Toe database 119

B.4 (cont'd) Accuracy of Different Algorithms : Tic-Tac-Toe database . . 120

B.5 Time Complexity Required of Different Algorithms : Tic-Tac-Toe database

121

B.5 (cont'd) Time Complexity Required of Different Algorithms : Tic-Tac-

Toe database 122

B.6 Network Size of Different Algorithms : Tic-Tac-Toe database 123

B.6 (cont'd) Network Size of Different Algorithms : Tic-Tac-Toe database 124

Chapter 1

Introduction

1.1 Overview

The binary classification problem is a special case of the classification problem,

and has been continuously studied in the literature. Many practical applications of

the binary classification models include bankruptcy data analysis, medical diagnosis,

signal processing, etc. Typically, many research studies solve the binary classification

problem using different discriminating approaches.

Neural networks are used to solve the binary classification problem in this thesis.

Neural networks have been shown to be very effective in solving some practical binary

classification applications[l, 2, 3, 4, 5]. Yet, there are several limitations in applying

neural networks. In this research, we try to address some of these limitations and

improve the performance of neural networks.

The hybrid classification model is developed to minimize the vagueness effect

introduced by the noise data. By using two different discriminating functions to

10

L2. CLASSIFICATION APPROACHES 11

describe the distribution space of the data, the generalization performance can be

improved. The model is implemented, and tested using the data of breast mass

cytology. It is also tested using the synthetic data, which contains a large amount

of noise data, so as to shows that the hybrid classification model performs better

in a noisy environment than the conventional method. Furthermore, to study the

problem in automatically searching for the suitable network architecture, we tested

the network architecture altering methods using the databases of breast mass cytology

and tic-tac-toe.

1.2 Classification Approaches

Typically, there are two approaches to study classification problem : supervised

learning and unsupervised learning. Supervised learning is a method which is given

with certain classes of observations and establishes rules to classify a new observation

into one of the existing classes[6]. While, unsupervised learning is a method which

establishes the existence of classes for a given set of observations[6]. In this research,

we study approaches in supervised learning.

To be more precise, the classification problem using supervised learning requires a

finite number N of classes, Ci,...，Cjv[7], where N is greater than one. Each observa-

tion consists of a set of attributes, X, and is assigned to one and only one of the classes

according to its attributes. The application domains of the classification problem in-

clude character recognition, speech understanding, medical diagnosis, process fault

detection, managerial decision making, and financial decision making[l, 2, 3，4, 7, 8 .

1.3. THE USE OF NEURAL NETWORK 12

In this research, we concentrate on the binary classification problem rather than

the multi-class classification problem. The binary classification problem is a subset of

the classification problem, where observations are assigned to one of the two categories

only(i.e., N = 2). The problem is widely applied in different application domains,

such as, bankruptcy prediction in financial forecasting, exclusive-OR(XOR) problem

in signal processing, risk analysis in managerial decision forecasting and breast-mass

identification in medical diagnosis[l, 2, 3, 4, 5, 9].

1.3 The Use of Neural Network

The performance of the classification process depends on how well the discriminat-

ing function for the entire classification problem performs. A discriminating function

is developed to minimize the misclassification rate, based on some given samples of

input and output vector couples that are referred to as "training data set". This

discriminating function is then used for classifying new observations into previously

defined groups and for testing the generalization performance. However, one should

know that an accurate performance on training data set may not intuitively lead to

an accurate prediction on the unseen observations (testing data set) [6 .

There are three main approaches to tackle the classification problem : statistical

approaches, machine learning approaches and neural network approaches. Statisti-

cal approaches are the traditional methods in the classification problem. They are

generally characterized by having an explicit underlying probability model, which

provides a class probability rather than simply a classification[6]. The most widely

1.3. THE USE OF NEURAL NETWORK 13

used statistical approaches are the Fisher's linear discriminant model[l, 6] and its

extensions, multivariate[10] and univariate[ll] discriminant analysis. These methods

have some restrictions of the linear prediction manner, assumptions of multivariate

normal distribution, identical covariance matrices of each class, and known mean

vectors, covariance matrices, prior probabilities and misclassification costs[l]. Other

statistical approaches include logistic regression and k nearest neighbour.

Machine learning approaches improve their performance automatically in a stand-

alone manner by learning process, rather than the programs that built up solely upon

the analysis by programmer. Decision tree methods commonly used in machine learn-

ing approaches. ID3 and C4.5 are the typical methods[l, 6, 12]. Decision tree methods

are the family of symbolic data analysis algorithms. The classification procedure in

decision tree is based on recursive partitioning of the sample space[6]. The exper-

iments in [6] show that all decision tree methods always perform the same. And

their performance on the multi-modal data will be better when compared to classical

statistical methods.

Neural network approaches are also a kind of machine learning approaches. More

than a typical machine learning approach, neural network approaches have adopted

some statistical techniques and the properties of a stand-alone system of machine

learning approaches[6]. These approaches act with a similar behaviour to networks

of neurons in brain. Several advantages in applications such as, learning from expe-

rience, generalizing from examples, extracting essential information from noisy data,

developing solutions fast once appropriate network design is adopted, adaptability to

different domains, computational efficiency when operation, and non-linearity prop-

1.4. MOTIVATIONS 14

erties that applicable to complex and real world situations can be achieved[13]. Many

research studies show that neural network approaches are more reliable than other

methods[l, 5, 14 .

1.4 Motivations

Although several research studies suggest that neural network approaches have a

higher classification ability[l, 5, 14] than many other methods, the predictive capa-

bility of these approaches still has potential for further improvement. In the following

paragraphs, we discuss some limitations of applying neural networks.

Data Dependency

The training processes of neural networks are very sensitive to the training data

set[8]. The training data may affect a network through the different ratio between the

number of observations with different classes[5], and the noise. A trained network is

more sensitive to some specific classes if the training data set consists of a larger ratio

of observations in these classes than the other. And also, although neural network

approaches can extract essential information from noisy data, their performance may

be affected by having too many noisy data in the training data set[15 .

Unknown Network Size

Before a training to a neural network can be processed, we often need to arbitrarily

decide the network size first. We often need to perform trial-and-error tests on the

1.4. MOTIVATIONS 15

network size. A small network may not achieve the desirable prediction ability, but an

oversized network may also suffer from the problem of memorizing and overfitting[6,

12，16].

Unknown Parameter Setting

The proper choices of the rate parameters, such as step size of gradient method,

learning rate, network momentum for neural networks are also important. Too small

may lead to long training time. Too large may result in an unstable training and

poor solution network[12, 17]. Generally, the choices of the rate parameters depend

on the experience and must be varied from different problems. Thus, it is often a

time consuming and trial-and-error process.

When to Stop Training

It is difficult to determine when to stop a training. Typically, the training will

be terminated when an acceptable misclassification rate on the training data set is

obtained. However, the level of this misclassification rate is set arbitrarily. On one

hand, a large misclassification tolerance rate will probably lead to a bad solution

network. On the other hand, a small misclassification tolerance rate will result in an

overfitting solution network.

Initial Weight Dependency

A successful training process that produces a solution network depends on the

initial weights[18, 19]. Poor initial weights often make a solution network trapped in

1.5. ORGANIZATION OF THESIS 16

a local minimum and hence achieve a sub-optimal performance or never obtain an

acceptable solution network. Also if we start with all the weights equal to zero or

any single number, the network will not be trainable[18]. Unfortunately we do not

have any rules for setting the initial weights that will definitely lead to a successful

training.

Unreadability

The distributed nature of the knowledge representation in a neural network is often

unreadable[6, 20]. It is extremely difficult for the user to understand the knowledge

that represented by a trained neural network by just studying its connection weights

and thresholds[20 .

1.5 Organization of Thesis

In this research, we address some limitations of applying neural networks to the

classification problem. By addressing the limitations, we are able to improve the

performance of neural network approaches. Furthermore, a single hidden-layer back-

propagation feedforward neural network is used in this research as it is an universal

consistent classifier for the binary classification problem[21, 22, 23, 24, 25]. The re-

maining chapters in the thesis are organized as follows :

1.5. ORGANIZATION OF THESIS 17

Chapter 2 : Related Work

Chapter 2 introduces the existing work in neural network approaches related to

the classification problem. The topology of a neural network, the techniques that

contribute to the hybrid classification model, and the previous studies in network

architecture altering approaches are explained in this chapter.

Chapter 3 : Hybrid Classification Systems

To deal with the noisy data dependency problem, in neural network approaches,

we propose a hybrid classification approach. The hybrid model is composed of fuzzy

linear regression with fuzzy intervals analysis(FLRFIA) and neural networks. The

FLRFIA works as a data handler and separates the data sample into two groups :

good data and the bad data, before the training and operation begin. By training

two independent neural networks with these two groups, we can better describe the

distribution space of the corresponding data sample with two different discriminating

functions. The result shows that this hybrid approach improves the accuracy of the

classification.

Chapter 4 : Searching for Suitable Network Size Automatically

Typically, the desirable network size is determined through trial-an-error tests.

A certain network size is chosen because it gives the most promising generalization

performance in the trial-and-error tests. In spite of the simplicity, it is a very tedious

work. Recent studies suggest the use of the network architecture altering approaches

:pruning algorithms and constructive algorithms. These methods allow the network

1.5. ORGANIZATION OF THESIS 18

architecture being altered during the training. In Chapter 4, we introduce the mod-

ified constructive methods, emphasizing the integration of pruning and constructive

methods. In order to evaluate the performance, the fixed architecture network method

and pruning methods are also tested and evaluated with respect to the generalization

ability, time complexity and the obtained network size.

Chapter 5 : Summary of Thesis

This chapter gives a review, discussion and conclusion to this research. And also,

the possible future extensions are included.

Chapter 2

Related Work

2.1 Overview

In this research, the neural network approaches are applied to the binary classifi-

cation problem. In particular we use a backpropagation feedforward neural network

as a classifier. As discussed in the last chapter, there are several limitations in ap-

plying a neural network. We propose a data preprocessing approach to deal with

the data problem, and approaches to search for the desirable network architecture.

In this chapter, we will review a backpropagation feedforward neural network, and

the training process. Approaches related to data preprocessing and searching for the

desirable network architecture will also be reviewed.

19

2.2. NEURAL NETWORK 20

2.2 Neural Network

Unlike conventional data processing techniques which require complex program-

ming, neural networks develop their own solutions to problems. In fact, neural net-

works are trained rather than programmed[13 •

2.2.1 Backpropagation Feedforward Neural Network

A neural network can be represented by nodes, and interconnections associated

with weights. Figure2.1 shows the structure of a multilayer backpropagation feedfor-

ward neural network[18]. Each node is a computational unit, in which input signals

from other units are mapped to output signals by a specific activation function.

Connections Connections
@ ^ t s) @ ^ ^ t s)

一 1 — ^ ^ ^ ^ ^ ^ ^ 一
mput2 — O ^ ^ P ^ ^ ^ t > ^ O u _ 2
Mputni ~ • O ^ ~ ~ ^ ^ ^ Q ^ _ _ - ¾ ~ • Outputni

i j 1
Input Hidden Output
layer layer layer

Figure 2.1: Structure of Multilayer Backpropagation Feedforward Neural Network

Before we discuss the training process of a backpropagation feedforward neural

network, we define the following terminologies of neural networks.

2.2. NEURAL NETWORK 21

Network Inputs and Outputs : A network input is a single pattern. Each input

pattern has a corresponding value or a set of values that are mapped to a network

output. The difference between the network output and the desirable output is the

measurement for the generalization performance of a trained network.

Training Data Set : A set of examples are used for learning, that is to fit the

weights of a network[21 .

Testing Data Set : A set of examples are used to assess the performance of a

trained network[21 .

Generalization Performance : The generalization performance is the standard

of that measures how well a trained network performs. Based on the generalization

performance, we can compare the prediction ability between different classification

models or topologies.

Weights : The weights are associated with the links between nodes. By varying

the weights, a neural network can implement any transformation between its inputs

and outputs.

Bias : In each layer, there is a unit whose output is always equal to 1, and that

connects to the next layer[26]. The weights on this connection is called biases and is

learned in the same way as the other weights[27]. It is an optional term[25]. However,

introducing the bias always helps the convergence of training a network.[26

2.2. NEURAL NETWORK 22

Activation Function : The activation function is usually nonlinear and bounded.

Through different activation functions, different properties of classifiers or function

approximators can be estimated.

Network Architecture : There are many different neural network architectures,

but one of the most common is the multilayer perceptron or feedforward neural

network[13 .

Stopping Criteria : Usually, there are two stopping criteria for the training of a

neural network : the training misclassification rate and the maximum iteration runs.

The training misclassification rate is the classification accuracy of a network being

trained. A larger misclassification rate tolerance would lead to a poor classification

performance of the training data set. A smaller misclassification rate tolerance would

result in a better classification performance of the training data set. The maximum

iteration runs is the stopping criterion that controls training time.

2.2.2 Training of a Backpropagation Feedforward Neural Net-

work

The calculation of a backpropagation feedforward neural network can be divided

into two parts : feedforward calculation and backpropagation calculation.

2.2. NEURAL NETWORK 23

Feedforward Calculation

The feedforward calculation is used in both the training process and the operations

of a trained network. The feedforward calculation provides a sequence of mapping

processes from the input space to the output space. The input data allows for mapping

from one layer to the other layer according to the connection weights and the node

activation functions. As each connection and all data flow go from the input layer to

the output layer, and since there is no feedback loop, the calculation is feedforward in

nature. Each activation unit that provides the transformation from inputs to outputs,

is shown in Fig.2.2([26]).

A Oj

z ^ ^ x
V i j = i ^ji^i J

M
Oo Oj O2 On

Figure 2.2: Structure of an Activation Unit

The inputs to the unit, j, in a hidden layer are aggregated using

n

Net-inputj = I j = ^ WjiOi (2.1)
i=0

The output of the unit, j, is produced by the activation function, f(Ij). The literature

2.2. NEURAL NETWORK 24

suggest a sigmoid backpropagation neural network is the universal consistent classifier

for many types of the binary classification problem[21, 22，23, 24, 25]. In this research,

we use a sigmoid function as an activation function. A sigmoid function (Eq.2.2)

shows how the output of hidden unit j is computed. The corresponding outputs of

the sigmoid function are shown in Fig.2.3([18]).

o u t P U �= Oj = l + exp(-7,) (2.2)

A sigmoid function is also called a squashing function. The output of an activation

Unit Output
4 i

——1.0

- 乙 0 . 5

Large negative , ‘ Large positive
net input net input

Figure 2.3: Corresponding Output of a Sigmoid Function

function is limited between 0 and 1 corresponding to the net input to the unit. For a

large negative net input, the output approaches 0; while for a large positive net input,

the output approaches 1. When the net input is 0, the output is 0.5. The output of

each output layer, /, is calculated similarly using Eq. 2.3 and 2.4.

n

Net-inputf = Ii = ^ w i j O j (2.3)
j=o

2.2. NEURAL NETWORK 25

outputi 二 0i = — ~ ~ 1 (� (2.4)
1 + exp{-Ii)

Through the feedforward calculation, we achieve the sequence of mapping pro-

cesses from the input space to the output space with cooperating the associated

weights and the activation units. An iteration run of a feedforward neural network

is then completed and a set of network output for the pattern classification can be

obtained. Thus, the backpropagation calculation can be proceeded with these infor-

mation.

Backpropagation Calculation

The backpropagation calculation is used during the training process. With the

help of the feedforward calculation, we carry the processes of weight adjustment and

the error propagation. These processes are parts of network's learning or training.

The feedforward calculation produces an output vector. This output vector is then

compared with the actual (or target) output vector to give an average sum-squared

error value. The goal of the training process is to minimize this average sum-squared

error over all training data sample[18] so as to find a set of weights which can map

the input vectors to corresponding output vectors within a tolerant error level. The

backpropagation calculation propagates the error value back and thus performs the

weight adjustments accordingly.

The goal of the backpropagation training process is to determine weights and

biases that minimize the average sum-squared error over all training data set. There-

fore, we construct an error function of sum-squared error of the network classification

2.2. NEURAL NETWORK 26

performance in Eq.2.5. We divide Eq.2.5 by the total number of the training data

set, to get the average sum-squared error.

1 ni
E , = - E (tp i - o , t f (2.5)

^ i=i

In order to determine the step to update the weights, we use Eq.2.6 to compute the

gradient. Then we perform the backpropagation.

— f (2.6)

By solving Eq.2.6, we obtain the expression of error signal in the output layer.

Si = f{h){ti-oi) (2.7)

={ti - oi)oi{l - Oi)

This error signal is used for updating the weights between the output layer and the

previous hidden layer. The updating of weights is shown in Eq.2.8, where rj G [0,1

is the learning rate coefficient.

wij{new) = wij {old) + rj6iOj (2.8)

As the weight updating sometimes falls into the local minimum[18], a momentum

coefficient, a G [0，1], is introduced in Eq.2.9([26]) to make the movement of training

avoid being trapped by the local minimum.

wij {new) = wij{old) + rj6iOj + a[Awij{old)] (2.9)

Awij{old) does not equal to wij(old), where Awij{old) is the previous weight change,

and wij {old) are the old weights of the network. The new weights are composed of

2.2. NEURAL NETWORK 27

the old weights and weight change. The new weight change is computed by the error

signal and the momentum of previous weight change.

For the hidden layers, the equation of error signal is slightly different.

ni
Sh = f{ Ih)J2^ ihSi (2.10)

1=0

ni
=Oh{l - Oh)^wih6i

Z=0

where h indicates the hidden layers. And the weight updating equation for the hidden

layers are shown in Eq.2.11.

wji{new) = Wji{old) + rj6jOi + a[Ait;ji(oZd)] (2.11)

2.2.3 Single Hidden-layer Model

In this research, we examine the use of a backpropagation feedforward neural network

in the binary classification problem. In particular, we use a single hidden-layer model

shown in Fig.2.4. Many researchers have suggested that the model is very applicable

to the problem [21, 22, 23, 24, 25 .

2.2.4 Data Preprocessing

Data preprocessing for a neural network is a process that converts the raw data

into the suitable inputs to a network[13]. Generally, there are several types of data

preprocessing : normalization and parameterization [13, 18]. Normalization is the

procedure to normalize the numerical inputs to a certain range, usually in the interval

between 0 and 1. Parameterization is the procedure to convert the inputs to the

2.2. NEURAL NETWORK 28

Connections Connections
Q ^ e i g h t s) ^ (w e i g h t s)

一 — ^ ^ ^ ^ ^ ^ V ^ i
Input2 ~ • O ^ V ^ D ^ D “ • Output

. . _ ^ X
i j

Liput Hidden Output
layer layer layer

Figure 2.4: Structure of Single Hidden-layer Backpropagation Feedforward Neural

Network for Binary Classification Problems

calculated parameters with different methods, such as logarithm, square, Fourier

transform, chi-square goodness-of-fit, correlation coefficient, etc. When the raw input

data may be textual data, encoding must be proceeded before the input data are fed

into the network. There may be some non-contributing input data in the database.

For the reason to reduce the time complexity required for the training, one would filter

those non-contributing data by the selection of the input data. These preprocessing

methods are used for similar purposes, for example, transforming the data into a

suitable format for the neural network input, selecting the most relevant data, and

minimizing the number of inputs to the neural network.

2.3. FUZZYSETS 29

2.3 Fuzzy Sets

Fuzzy sets and logic were first introduced by Zadeh in 1965[21, ?]. They represent

the break-through not only to the studies of uncertainty, but also to the two-valued

sets and logic. The classical two-valued sets are called the crisp sets, which are strict

binary decisions and assignments[21] that only represent either true or false. The

fuzzy sets bring in the new concept of uncertainty beyond using probability theory.

They provide measurement tools for the uncertainty and the vagueness in different

problem domains. As an observation may not exactly meet sets with a crisp class, it

may fall into the transition between membership (certainly belongs to the set) and

non-membership (certainly does not belong to the set)[?]. In basic concept of fuzzy

sets, the two-valued sets are described as its special case, where an observation only

belongs to the membership or the non-membership [?.

2.3.1 Fuzzy Linear Regression Analysis

Fuzzy linear regression analysis, or Tanaka's model was introduced by Tanaka et

al. in the early 1980's[28]. It is the extension of linear regression analysis with using

fuzzy parameters. There are two objectives for developing fuzzy regression analysis.

One deals with the situation when the relationship between the given variable cannot

be described by the crisp function. The other handles the data which are fuzzy in

nature[?]. There are four possible cases for the nature of the input data(independent

variable) and the output data(dependent variable) in formulating the fuzzy linear

regression model. They are couples of fuzzy input and output, non-fuzzy input and

2.3. FUZZYSETS 30

fuzzy output, fuzzy input and non-fuzzy output, and non-fuzzy input and output[29 .

In this research, we apply the case of non-fuzzy couple of input and output. However,

for the binary classification problem, since the output is either 0 or l(crisp sets),

we may consider this case as the couple of non-fuzzy input and fuzzy output, as

mentioned above. Similar to the linear regression analysis, the fuzzy linear regression

shows the relationship between the dependent and the independent variables by a

linear function .

Y = AoXo + AiXi H h A^XN = Ax (x �: = 1) (2.12)

where Y is the dependent variable, x is the vector of the independent variables, and A

is the vector of a fuzzy set on the product space of parameters. The fuzzy parameter

A is represented by the triangular fuzzy numbers :

t

� (a ,) = l - ¥ i f a , - c , M % . + c,, (213)

0 otherwise,
s

where Aj[aj) is the membership function of the fuzzy parameters a), a j and Cj are

the center and spread of the fuzzy parameter a) , respectively. With the expressions

of the fuzzy parameters in the form of triangular fuzzy numbers and the extension

principle, we can obtain a symmetric triangular characteristic for the independent

variable of each training data set[?, 28, 30, 31]:

f
y-x*a ,

l - " 4 ^ forxT^O，

Y(y) = 1 for X = 0，y ^ 0, (2-14)

0 for X = 0，y = 0,
\

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 31

In order to minimize the total vagueness, we then :

N M
MIN E f e E K I) (2.15)

j=0 i=0

where M is the number of training samples. If the membership value of each obser-

vation yi is greater than an imposed threshold :

Y{yi) > h forf = l，2，...，M (2.16)

A linear programming problem is constructed :

N M
MIN E f e E K I) (2.17)

j=0 i=0

subject to
N

x-a + |L_i(") Y,Cj \xij\ > yi,
j=o

N
X-a - | L " ^ (/ i) | ^ 9 1¾! < yi,

j=o

c > 0，a e 3¾, Xio :二 1,

0 < h < 1，

i = l , 2 , . . . , M

where \L~^{h)\ = 1 — h, h G [0，1], and the choice of the h value influences the widths

Cj of the fuzzy parameters. By solving this linear programming model, the fuzzy

parameters, A, can be obtained.

2.4 Network Architecture Altering Algorithms

Dealing with the network size of a neural network during the training, we may use

two network architecture altering algorithms : pruning algorithms and constructive

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 32

algorithms. These methods prefer a small solution network than a large one. A small

solution network provides the advantages of less computational cost, less storage space

and being easier to interpret what the trained network is doing[6 •

2.4.1 Pruning Algorithms

Pruning algorithm reduces the size of a neural network by cutting down the un-

necessary units or weights[9, 16, 32, 33]. It starts from an oversized network and

is often used as a post-processing to obtain a suitable network architecture. The

following issues summarize some pruning algorithms[32]:

Magnitude Based Pruning

Magnitude based pruning algorithm starts with an oversized network. After each

training, it removes the smallest weight of the whole network. This method often

reduces the number of retraining cycles[34] and is the simplest way in pruning algo-

rithms. However, it may often lead to the elimination of the wrong weights[35 .

Optimal Brain Damage(OBD)

This method physically decreases the capacity of the model in order to limit

overfitting[36]. Similar to other pruning methods, it trains the oversized network to

minimize the classification error of the training data set. The pruning is performed

to the unit which gives the smallest saliency. The saliency that is computed for each

hidden unit indicates the change of the error function when pruning is applied to the

hidden unit. The corresponding approximation of the error function with respect to

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 33

weights is in terms of Taylor series. As the first derivatives vanish and all the higher

order terms decrease, only a Hessian matrix, H, is considered. This Hessian matrix

is obtained by considering all the second order derivatives in the error function with

respect to weights, ^ ^ . OBD assumes that H is a diagonal matrix by the diagonal

approximation; thus, simplifies the calculations. It is used to estimate the increase in

the training error, the saliency, when removing certain weights[37 •

Optimal Brain Surgeon(OBS)

This is an extension method to OBD. Unlike OBD that performs poorly when

the problem on hand leads to a non-diagonal Hessian matrix, H[33], OBS computes

the full Hessian matrix rather than estimating it as a diagonal matrix. Hence, a

more accurate approximation of the error function can be obtained. However, OBS

requires an expensive computation. The computation is the result of the inverse of

the Hessian matrix for deducing saliency and weight change for every link. In OBS,

all the weights are updated before the next iteration for searching the new saliency

and weight change is proceeded.

Skeletionization

Similar to OBD and OBS, skeletionization removes hidden units by considering

the effects of removing a hidden unit to the change of the error function. In general, it

computes a measure of relevance that identifies which hidden units are most critical to

the performance, and removes the least relevance one in order to construct a skeleton

of the network[38]. The measure of relevance is the estimation of the difference, p,

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 34

between the error of the network, E, on the training data set that with and without

the corresponding hidden unit.

pi = Eoci=o — Eai=i (2.18)

where a^ is the attention strength of the unit, i, which controls the flows from the

output of one unit to its succeeding layer, ai = 0 corresponds to hidden unit i that

is removed from the network, while a^ = 1 corresponds to hidden unit i that remains

in the network. With the approximation of pi, the selection of pruning a unit which

gives the least relevance to the network can be made. Skeletonization algorithm can

also be performed to the input units to suppress their influences. Since the removing

of a unit is made by setting a = 0, so that a network is able to recover easily when a

unit has been removed[38 .

Non-contributing Units

Pruning non-contributing units is simpler than the other pruning algorithms (except

the magnitude based pruning), and provides a satisfactory result. The pruning ap-

proach for non-contributing units investigates the output of each hidden unit for the

whole training set. A unit is considered a non-contributing unit when its output does

not change for the whole input patterns, duplicates or inversely duplicates the output

of another unit in the same layer[9, 16, 32 .

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 35

2.4.2 Constructive/Growing Algorithms

A constructive algorithm, contrary to a pruning algorithm, searches for the solu-

tion network from a minimal network size. The advantage of a constructive algorithm

is derived from the simplicity in defining an initial network and the preference of a

small architecture solution network[17]. There are some well established construc-

tive methods which try to search for suitable network size in the way of single unit

learning. Readers may refer to [6], [17] and [26] for more detailed discussion of the

following approaches :

Tower Algorithm

Tower algorithm adds a new unit to the least hidden layer in a network. Weights

of trained units are frozen before a new unit is added. A newly added unit is fed

with all the input values of the training data, the output from the unit that is most

recently trained. The network will keep on growing until no further improvement

can be obtained. Otherwise, the last added unit will be removed and the training is

finished with the solution network obtained before the last growing.

Tiling Algorithm

Tiling algorithm constructs a strictly layered network. The inputs of a unit come

from the outputs of immediate previous layer only. Each hidden layer contains a

master unit that must performs better than the previous layer. New hidden unit

is added to the same layer as the ancillary unit that help the layer to be faithful.

A faithful layer means each succeeding layer has a different representation for the

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 36

inputs, and no two training samples with different class have the same representation

in any layer[26]. The training stops when all training data set are classified correctly.

Upstart Algorithm

Upstart algorithm starts with a single unit network. The misclassification of the

network will cause the reinforcements to the unit. For example, if the class is +1,

but the output is -1，a positive reinforcement will be given by adding a specific unit.

On the contrary, a negative reinforcement will be given by adding a specific unit.

When the addition of reinforcement units results in incorrectly classification, the new

reinforcement units for the previous reinforcement units will be added. The training

stops when all training data set are classified correctly.

Dynamic Node Creation(DNC)

DNC algorithm adds one hidden unit at a time and always in the same hidden

layer. After a new hidden unit is added, the whole network must be retrained. The

information of the previous training will probably lose when a new hidden unit is

added. And, the computational cost will be increased drastically as the network

enlarges. However, it is a very simple algorithm.

Projection Pursuit Regression(PPR)

Some constructive algorithms are based on the statistical technique PPR. A new

unit is added to the same layer one at a time. However, the retraining of the whole net-

work is not required. After a new hidden unit is added, the input-to-hidden weights,

2.4. NETWORK ARCHITECTURE ALTERING ALGORITHMS 37

parameters associated with the hidden unit activation function and the hidden-to-

output weights are to be trained. They are usually trained separately. While one of

the parameters is being trained, the other two are frozen. The training of the new

unit starts with the input-to-hidden weights first, then the parameters associated

with the activation function and the hidden-to-output weights. This training process

stops when there is no further improvement of the performance.

Cascade-Correlation Algorithm(Cascor)

Cascor starts with a small network and adds a hidden unit one at a time. The

newly added hidden units build a multilayer network. The inputs to the new unit are

connected to all inputs of the training data and the outputs of other previous units.

When the network has no further improvement in the training error and the error is

not significantly small enough to terminate the training, a new unit is added to the

network. Cascor network adds a new hidden unit which has been trained to maximize

the correlation, S, between the new unit's output and the residual classification error

of the output unit:

S = : E E (V f ^ C ^ � — l) (2.19) o p

where Vp is the new unit's output of training pattern p, V is the average to the output

of new units, Ep�is the residual error observed at output unit o for training pattern

p, Eo is the average to the residual error. In order to maximize 5, we obtain a partial

derivative of the error with respect to the incoming weights of the new unit :

0^ 一

^ ^ = E ^ o { E , o - K) f ; i i p (2.20)

2.5. SUMMARY 38

where a � i s the sign of the correlation between the new unit's output and the output

of network, / ; is the derivative of training pattern p of the new unit's activation

function, with respect to the sum of its inputs, and Up is the input of training pattern

p to the new unit. Once we have obtained the weights of the new unit that maximize

the correlation, the weights are frozen and the retraining to the output unit is then

proceeded with the one additional new input to it.

2.5 Summary

As mentioned in the last chapter, we address to the general limitations in apply-

ing a single hidden-layer backpropagation feedforward neural network to the binary

classification problem : the data dependency and the unknown network size. The

related literature in handling such problems were reviewed.

Chapter 3

Hybrid Classification Systems

3.1 Overview

Although several research studies suggest that the neural network approach has

a more accurate classification ability[l, 5, 14] than most of the other approaches,

the accuracy of prediction of the neural network approach has potential for further

improvement. For example, Han[8] indicates that the relative performance of different

classification techniques may depend on the data conditions. Thus, this is a problem

when using the neural network. The generalization of the neural network depends

on the distribution of the training data set[14]. For the training data set with fewer

noise data, the generalized network may have a good performance. However, when

the data set consist of more noise data, the neural network will be generalized more

depending on the noise data; as a result, the misclassification rate of the noise free

data, which should be easier to be classified, increases.

The objective of this study is to propose a way to improve the accuracy of the

39

3.1. OVERVIEW 40

neural network. Rather than developing a new architecture and algorithm to achieve

a better performance, we use a hybrid model instead. Furthermore, the experiment

results pf applying our model and the conventional backpropagation neural network

to the breast cytology diagnosis shows that these neural network based methods are

capable of being reliable decision support systems for the medical diagnosis.

The hybrid model developed in this study comprises of two phases. In phase I of

the model, fuzzy regression method with fuzzy interval analysis is applied. In phase

II of the model two simple backpropagation neural network constructions as the final

classification engine are provided.

Both the models are implemented, and tested using the data of breast mass cy-

tology. The class sets are benign and malignant and each element of the class sets

consists of nine cytological characteristics of benign or of malignant breast fine-needle

aspirates; however, no single characteristic alone or presently described class distin-

guishes between benign and malignant samples[3]. The previous studies to solve

this problem are multisurface method of pattern separation[3], decision tree[3], and

mathematical programming method[4]. Therefore, applying the neural network based

methods to the breast mass cytology classification problem is innovative.

By using the fuzzy linear regression with the fuzzy interval analysis, we separate

the training data into two groups based on the fuzzy interval. The separated training

data sets are used to generalize two neural networks accordingly. With two neural

networks, we formulate two different functions to describe the distribution space of

the data, rather than using one to generate one function to do so. In our experiment,

our model is compared with the conventional backpropagation neural network. The

3.2. LITERATURE REVIEW 41

result shows that using two different functions to describe the distribution space of

the observations promises a more accurate classification result.

The chapter is organized as follows. In Section 3.2，Tanaka's model, the modified

Tanaka's model with fuzzy interval analysis, and the multilayer feedforward back-

propagation neural network are introduced. In Section 3.3 the sample data and the

methodology used are described. In Section 3.4 the details for the construction of

our model are explained. In Section 3.5 the results and the comparison between our

model and the conventional backpropagation neural network are reported. Finally,

in Section 3.6 a conclusion on the experiment are provided.

3.2 Literature Review

3.2.1 Fuzzy Linear Regression(FLR) with Fuzzy Interval Anal-

ysis

The fuzzy linear regression approach was introduced by Tanaka et al.[28, 39] in

order to deal with a vague phenomenon. The assumption of Tanaka's model is that

the input and output data of fuzzy linear model are fuzzy, the relationship between

the input and output data is given by a fuzzy function, and the distribution of the

data is possibilistic[30]. The fuzzy linear regression has been applied to forecasting in

an uncertain environment for finding an interrelationship between the linear interval

model and the output intervals of the given data. Tanaka's model[30, 31] assumes a

3.2. LITERATURE REVIEW 42

linear function as follow :

V = ^o^o + ^ i ^ i H h AjvXjv = Ax (Xo:=l) (3.1)

where Y is the dependent variable, x is the vector of the independent variables, and

A is the vector of a fuzzy set on the product space of parameters.

The fuzzy parameters Aj are represented in the form of triangular fuzzy numbers

f
1 一 l%:a)l if Gij - Cj < dj < aj + Cj

M a j) 二 c' (3.2)
0 otherwise,

、

where Aj(aj) is the membership function of the fuzzy set of a", a j is the center, and

Cj is the spread of the fuzzy number.

Applying the extension principle :
f

y-x*a ,

1 - ^ M for X + 0,

>%) = 1 for X = 0, y + 0， （3.3)

0 for X = 0, y = 0,
\

In order to minimize the total vagueness, we then :
N M

MIN E f e E l ^ l) (3.4)
j=0 i=0

where M is the number of training samples.
If the membership value of each observation yi is greater than an imposed threshold

Y{yi) > h for i = l , 2 , . . . , M (3.5)

A linear programming problem is constructed :

N M
MIN E f e E l ^ i) (3.6)

j=0 i=0

3.2. LITERATURE REVIEW 43

subject to
N

x - a + L~^{h) Y^Cj \xij\ > yi,
3=0
N

X-a - L_i(/i) Y^Cj \xij\ < yi,
j=o

c > 0，a E ^,Xio := 1，

0 < h < 1，

i = l，2，...，M

where \L~^{h)\ = 1 — h, h G [0,1], and the choice of the h value influences the widths

Cj of the fuzzy parameters.

Tanaka's model can be used to analyze the interval of the dependent variable

y, however, the drawback is that a few values may dominate the estimation of the

bounds of the crisp interval. Therefore, the model is very sensitive to outliers[30 .

In, 1993, Peters[30] provided a modification to Tanaka's model. In this model, the

bounds of the interval are assumed to be fuzzy rather than crisp, so that each of the

dependent data y has a membership degree of belonging to the interval. Peters' fuzzy

linear programming model is formulated as follows:

_ 1 M
MAXA = - ^ A , (3.7)

似i=i
subject to

一 M N
(1 - >)PQ - Y^ Y^ Cj \xij I > -do,

i=0 j=0
N

(l — \)Pi + x!a + f q | a ^ | 2 yi,
3=0
N

(1 - Xi)pi 一 x - a + Y^ Cj \xijI > -yi,
j=o

3.3. DATA SAMPLE AND METHODOLOGY 44

-A, > - 1 ,

Xi,c > 0，a G 3¾, Xio := 1,

L_i(")| : = l] i = l , 2 , . . . , M

where A represents the membership degree to which the solution belongs to the set

"good solution". A can be determined by a trade-off between the objective function

and the equation of the "worst" datum y[30]. pi is the width of the "tolerance

interval".

A high value of po and low values of pi leads to a wide interval; while a low value

of po and high values of pi leads to a narrow interval, do represents the desired value

of the objective function. The suggested value of do is 0，since the total vagueness
- M

is desired to be 0. The objective function MAX A 二 • X) Aj allows for the training
i=i

data of each datum to compensate the model. By the weight factor 去，each training

datum influences the regression function.

3.3 Data Sample and Methodology

For this study, the data sample consists of patients' breast mass cytology infor-

mation who were admitted for breast cancer diagnoses at the University of Wiscon-

sin(Madison) form 1989 to 1992[2, 3, 4，40]. There are 699 instances in the database,

out of which 683 instances are chosen for our experiment. Sixteen instances are

removed due to missing values. Each instance comprises of 9 attributes and 1 class

value. These 9 attributes required for Fine-Needle Aspirate (FNA) testing were taken

from each patient's breast[4]. These attributes are shown in Table 3.1.

3.3. DATA SAMPLE AND METHODOLOGY 45

Attribute Domain

Clump Thickness 1-10

Uniformity of Cell Size 1-10

Uniformity of Cell Shape 1-10

Marginal Adhesion 1-10

Single Epithelial Cell Size 1-10

Bare Nuclei 1-10

Bland Chromatin 1-10

Normal Necleoli 1-10

Mitoses 1-10

Table 3.1: Attribute descriptions

Each attribute is a scalar observation. The range of the attribute values shows

the likelihood of malignancy; the larger the value, the greater the likelihood of ma-

lignancy. The class value tells us whether the symptom is benign or malignant for

the corresponding instance. In the chosen instances, there are 444 instances belong-

ing to the class of benign breast masses and 239 instances belonging to the class of

malignant breast masses.

In each training sample set, 200 instances (100 benign and 100 malignant) are

randomly selected. For each testing sample set, 169 instances (84 benign and 85

malignant) are randomly selected. Forty-five couples of training and testing data

sample sets are generated from the 683 instances, and tested by our model.

In our experiment, Linear, Interactive, Discrete Optimizer (LINDO)[41] is used

3.4. HYBRID MODEL 46

to solve the Linear Programming problem. LINDO is an optimization modelling

system. It has the advantages in that it allows for quick formulation, modification, and

solution for the linear programming problem. Also, a single hidden-layer feedforward

backpropagation neural network is used as the basic classifier. The process flowchart

of the methodology used for developing our model in this study is depicted in Figure

3.1.

3.4 Hybrid Model

3.4.1 Construction of Model

The basic model is shown in Figure 3.2. The first part of the model separates

the data sample into two groups. The second part provides two independent neural

networks as the classifiers and classifies the two groups of data sample into two distinct

classes.

Phase I : Fuzzy interval soialysis by fuzzy linear regression

Rather than finding a best fitted interval in which all training data can be con-

tained, we apply the fuzzy linear regression with fuzzy interval model as a data

handler. The class variable yi, and the attribute variables Xij of each instance i in the

training data set are used for composing the fuzzy linear programming model (3.7).

By solving this fuzzy linear programming model, A,入，otj and Cj are obtained. Since

3.4. HYBRID MODEL 47

Training Data Set

1 r

Select suitable parameters po,
Pi and do for the Fuzzy Linear
Regression Problem

1 f

Construct corresponding Linear
Programming Model for FLR
Problem Testing Data Set

1 V 1 ^ >
Separate the training data set Separate the testing data set
into "good" and "bad" data into "good" and "bad" data
sets through the solved Fuzzy sets through the solved Fuzzy
Linear Programming Model Linear Programming Model

1 ‘ ^ ‘

Two training data sets Two testing data sets are
are formed formed

^ r

Training two NNs by the
two different training data
sets accordingly

，‘ 1 r

Two trained NNs for the Classify the testing data set by
corresponding training data _ operating the trained NNs to
sets check the accuracy

Figure 3.1: Process flow chart of the hybrid model

3.4. HYBRID MODEL 48

Phase I ^ r : Phase II
Data lies in :
the interval ； BP neural �G r o u p 1
(good d a t a > ^ network 1 V 7

Training I ^^R model ^ j Y

1 ^ > with fuzzy : A
interval | N ^ / \

T t l f t C ^ BPneuraJ / \ Group 2
. ^ , network 2 >
interval •
(bad data)

Figure 3.2: Construction of the Hybrid Model

we assume the fuzzy characteristic of the bounds of the interval, each datum has its

own certain degrees of belief(memberships degree) of lying into the interval.

The solved fuzzy linear programming model shows that one group, representing

those data with instances of membership degree of l(A = 1)，lies inside the interval;

while the other group, with instances of membership degree smaller than l(A < 1),

lies outside the interval. In other words, the instances with the second group are

classified as noise data. Figure 3.3 shows that Â may tend to —oo when data is

infinitely far away from the boundary of the interval[30]. The separated training data

sets are then used to generalize the backpropagation neural networks in the phase II

model.

Since the phase II model performs the classification procedure independently for

two groups of data, the testing data set have to be processed in the data handling step

before they can be tested in the phase II model. To determine which data falls into

the interval or lies outside the interval, we only needed to test the feasibility of the

3.4. HYBRID MODEL 49

X -

1 r\
/ Literval \

^ V ~ ~ ~ A ^

Figure 3.3: Membership function

fuzzy linear programming model with the testing data set. As a result, two groups

of testing data set are obtained in the same manner as the separated training data

sets. By using the fuzzy linear regression with fuzzy interval analysis, the training

and testing data sets are then separated into a group of "good" data and a group of

"noise" data, in order to perform further training and testing processes, respectively.

We control the width of the interval as we desire by choosing different values of

do, po and pi. In other words, we control the size of the two training and two testing

data groups. The wider the intervals, the more the data would lie inside.

Phase II : Backpropagation neural network model (BPNN)

A three layers (an input layer, a hidden layer, and an output layer) feed-forward

backpropagation neural network is used. There is only one node in the output layer.

For the breast cancer experiment, those outputs smaller than 0.5 are classified as

group benign or “0”； while, those outputs greater than or equal to 0.5 are classified

as group malignant or "1". As mentioned in the previous sections, the two training

data groups are fed into two BPNN models separately. One of the BPNN models

3.5. EXPERIMENTAL RESULTS 50

is trained with the training data set which lie inside the interval, and the other one

is trained with the outliers. Figure 3.4 shows the basic construction of the neural

network we use in our experiment.

•
Figure 3.4: Single hidden-layer, single output neural network

3.5 Experimental Results

3.5.1 Experimental Results on Breast Cancer Database

We randomly generate 45 couples of training and testing data samples. Each

training data sample formulates its own fuzzy linear programming model. From this

model, the training and testing data sample are separated into two groups, the data

which lies in and out of the interval. Two different groups of training data sample are

then fed into two independent NNs in order to perform the training and generalization

process. Two trained NNs are then tested with the corresponding testing data sample.

Then, we compare the accuracy of our model with the conventional method which

3.5. EXPERIMENTAL RESULTS 51

trained a NN with the whole set of training data sample. Table A.1 shows the

comparison of the accuracy (in percentage) between our model (Hybrid Model) and

the conventional method (Batch Process).

BatchProcess{%)
Trial HybridMethod{%)

{Conventional)

1 90.28 91.55

2 90.18 91.64

3 90.41 91.85

4 90.34 91.85

5 90.57 92.06

Average 90.36 91.79

Table 3.2: Average prediction accuracy on 5 trials

The values(that are in bold face) in Table A.1 to A.5 indicate instances where

the hybrid method has generated equal or better predictions than the conventional

method. The overall average prediction accuracy as shown in Table 3.2，of our model

is 91.79% which is 1.43% more accurate than the conventional one. Although there

are some samples in the conventional method that have a better prediction result, it

can be argued that our model promises a better prediction ability since the accuracy

difference between our model and the conventional method for these samples is rela-

tively small. And the largest difference that our model outperforms the conventional

method is 9.47%, while the largest difference that our model perform poor than the

conventional method is only 1.77%.

3.5. EXPERIMENTAL RESULTS 52

Now let's look at a specific illustration of phase I. When we analyze a specific

sample difference, the following conclusions can be made. For example, sample 2 in

experimental trial 1, in our model experience a 5.33% improvement. To explain the

process of the phase I model, we analyze the distribution of the dependent variable

value of the training and testing data sample in sample 2. Figure 3.5 shows the

dependent variable value of each training datum. These values are calculated by Eq.

(3.1)，where A is obtained by solving Eq. (3.7) and by substituting A with a(center

of the fuzzy number). Similarly, the dependent variable value of each testing datum is

obtained in Figure 3.8 by substituting the preexisted centers of A.When the training

and testing data samples are fed into the phase I model, those data samples are

then separated into two groups accordingly. The dependent variable value of those

separated data samples are shown in Figures 3.6，3.7, 3.9, 3.10, respectively. When

comparing Figure 3.6 and 3.7, we can observe the differences between the data sample

which lie inside and outside the interval. In Figure 3.6, the data lie around 0 or 1

without large differences. However, in Figure 3.7, the data fluctuates around 0 or 1

with very large variations. The same situation occurs in the testing data sample, too.

These results show that the dependent variable values which are close to the crisp

output [0, 1], are more believed to lie inside the interval; otherwise, they are believed

to lie outside the interval.

According to the separated groups of the training data samples, two independent

NNs can be trained; as a result, there are two different functions to describe the

distribution space of the training data sample. We can observe that the advantage

3.5. EXPERIMENTAL RESULTS 53

Dependent variable value of each training datum
1.6| 1 1 1 1 1 1 1 1 1

1.4- -

1 .2 -

^ 1- | | M |/1 i •

lo.e. | | f l .
I
S 0 . 6 - “ -
^
s_
§ 0.4. I -

ô WvAwivAAAJ -
_ Q 2 I I I I 1 I I I I

• 0 20 40 60 80 100 120 140 160 180 200
Sample

Figure 3.5: Dependent variable value of each training datum

of using two functions over using one function (conventional method) is that they can

describe a more complex distribution space as a whole. However, the drawback of

our model is that it is more time consuming than the conventional one.

3.5.2 Experimental Results on Synthetic Data

In order to show the improvement on the generalization performance of the hybrid

classification model in a noisy environment, we synthetically create a database with

a large amount of noise, and compare the generalization performance between the

conventional method and the hybrid classification model. The database is a binary

classification database. Each instance has 9 attributes and 1 class value. There are

883 instances (544 instances belong to class 0, 339 instances belong to class 1). In each

training sample set, 200 instances are randomly selected. For each testing sample set,

3.5. EXPERIMENTAL RESULTS 54

Dependent variable value of each training datum which lie in the interval
1 . 2 | r 1 1 1 1

‘ 1. |rf4v̂ -
0.8 • / -o> ^ 75 >

①

5 0.6 - -
S '[ca >
芒
I 0.4 - -
c
CD
o . o o

0 . 2 - -

o w v v y v \ r w / ^ ^ ^ v \ / ^ -
-0.2i ‘ 1 1 ‘ ‘

0 20 40 60 80 100 120
Sample

Figure 3.6: Dependent variable value of each training datum which lie inside the

interval

169 instances are randomly selected. We test on three kinds of training and testing

couple. The first one is composed with equal amount of good data and noise data,

the second one is composed with 10% more noise data, and the last one is composed

with 20% more noise data. In each test, forty-five couples of training and testing data

sample sets are generated from the 883 instances, and tested by our model.

The values(that are in bold face) in Table A.6 to A.8 indicate instances where

the hybrid method has generated equal or better predictions than the conventional

method. In Table A.6, the accuracy comparison with respect to sample data sets of

equal amount of good and noise data, it shows that the hybrid model experiences a

2.85% more accurate on average. For the comparison result on those sample data sets

3.5. EXPERIMENTAL RESULTS 55

Dependent variable value of each training datum which lie outside the interval
1.61 1 1 I I I I I I I

1.4- \ -

I I
1 : 1 I I •

2 1 - I -

I�.8_ j k j M -
i:: I pi|' n:

y ^]/

ZMArJ^ -
_ Q 2 I I I I I I I I I

. 0 10 20 30 40 50 60 70 80 90 100
Sample

Figure 3.7: Dependent variable value of each training datum which lie outside the

interval

composed with 10% more noise data than the good data, Table A.7 shows the hybrid

model experiences a 5.11% more accurate on average. When the sample data sets

with 20% more noise data are used, it shows a 7.78% accuracy improvement in Table

A.8. The summary of the average prediction accuracy on these three experiments are

showed in Table 3.3. Prom the results, we observe that the generalization performance

of the hybrid model is better than the conventional method as the data contain more

noise.

3.6. CONCLUSION 56

Dependent variable value of each testing datum
1,4| 1 — I 1 1 1 1 1 1

II
1 . 2 - -

’ 11_ I iMy -
V ' - I I u “
•s
10.6- y -
S
I 0.4- I -
o

0.2 - h -

owiKjlWuJUfJ -
-0 2' ‘ 1 1 1 1 1 1 1

• 0 20 40 60 80 100 120 140 160 180
Sample

Figure 3.8: Dependent variable value of each testing datum

3.6 Conclusion

This chapter has proposed a hybrid binary classification model. Phase I is used to

find a fazzy interval so as to separate the training data into two groups, i.e. whether

the data lies inside or outside the interval. The objective of phase I is to minimize

the effect of the vagueness data in the training data, and to separate the certain

BatchProcess{%)
Additional Noise HybridMethod{%) Difference{%)

{Conventional)

0% 74.42 77.26 2.85

10% 71.65 76.76 5.11

20% 68.78 76.60 7.78

Table 3.3: Average prediction accuracy on 5 trials

3.6. CONCLUSION 57

Dependent variable value of each testing datum which lie in the interval
1.2r 1 1 1 1 1 1 1 1 ‘ (UM1 _
0 . 8 - -0 2 n >

0
s 0.6 - -(0 •e 5
芒 I 0.4 - -c
Q)
6 o

0.2 - -

o-W^s.sA^'V/%..yA^^AVSr^ -
_02' 1 1 1 1 1 1 1 1

• 0 10 20 30 40 50 60 70 80 90
Sample

Figure 3.9: Dependent variable value of each testing datum which lie inside the

interval

data and vagueness data into two groups. According to the fixed parameters and

the found unknowns in the FLR with fuzzy interval model, the testing data sample

is then separated into two groups also. In phase II, two single hidden-layer BPNN

models are used to build up the classification engines.

The two independent NNs allow us to formulate two different non-linear discrimi-

nant functions to classify the data. The conventional method uses one NN to describe

the distribution space of the data. Although, a NN can be used to formulate a highly

non-linear function, it is hard to describe a very complex distribution space. The

hybrid model provides us with two independent functions to describe the distribution

space of the data sets, therefore, the ability of describing the distribution space is im-

3.6. CONCLUSION 58

Dependent variable value of each testing datum which lie outside the interval
1.4| 1 1 1 1 f 1 1 1

K h
1 . 2 - I _

1 - -

I： f_f%
I - |i I -

o-v/W V7V -
_0 2' ‘ 1 1 1 1 1 1 1

. 0 10 20 30 40 50 60 70 80 90
Sample

Figure 3.10: Dependent variable value of each testing datum which lie outside the

interval

proved. For future studies, one may want to change the phase II classification engines

by using other approaches and techniques to see if the accuracy is further improved.

In our study, the phase II model uses the conventional BPNN. The results show that,

when using the BPNN approach to act as the classification engine, the phase I model

plays an important role in the accuracy improvement.

We finally note that the accuracy with which benign and malignant breast mass

are diagnosed using the hybrid model is an illustrative example of the usefulness of the

proposed method in solving other medical diagnostic and decision making problem.

Chapter 4

Searching for Suitable Network

Size Automatically

4.1 Overview

A neural network is a structure of autonomous nodes interconnected by one-

directional links. Weights(that are determined during a training process) are associ-

ated with the links. Input signals are aggregated according to weights on the links

and transformed via an activation function to produce output signals.

One of the problems in applying a neural network pertains to determining its

right architecture. For example, in a three-layered neural network, it is difficult to

decide the right number of hidden nodes. When a neural network has too many

hidden nodes, it tends to memorize the training patterns rather than to generalize

the prediction ability. On the other hand, a neural network may not achieve the

desirable prediction ability if it has too few hidden nodes.

59

4.1. OVERVIEW 60

The suitable network size is also usually unknown. In general, we have to start

a training process with an arbitrary and often oversized network. Then we perform

several tests with different network sizes. Finally, we choose the most promising

network size. The criteria for choosing a network usually include the ability of each

considered network size on the generalization performance, and the level of ease to

obtain a solution network in a specific problem.

The conventional approach, discussed above, is very tedious and time consuming.

In the literature, there are two main approaches to deal with the problem. They are

pruning algorithms and constructive algorithms. Pruning algorithms reduce the size

of a neural network by cutting down the unnecessary units or weights[9, 16, 32, 33 .

They start from an oversized network and are often used as a post-processing to ob-

tain a suitable network architecture. Constructive algorithms, contrary to pruning

algorithms, search for the solution network from a minimal network size. The advan-

tage of constructive algorithms is derived from the simplicity in defining an initial

network and the preference of a small architecture solution network[17]. Most of the

recent studies in constructive algorithms concentrate on expanding the network ar-

chitecture layer by layer and adding new hidden units one at a time. In this research,

we will mainly consider determining the number of hidden units in the same layer.

One of the motivations in this research is that we want to find effective and efficient

methods to construct a suitable architecture for a single hidden layer backpropagation

feedforward neural network automatically. The methods should be flexible to help us

find tailor-made network architectures for different applications without requiring a

wild guess on the network size. By evaluating the performance based on generalization

4.2. LITERATURE REVIEW 61

accuracy, the time complexity, and the obtained network sizes with some different

algorithms, we may obtain ideas in searching for the suitable network architecture for

a problem while a learning process proceeds.

In this research, the databases of breast cancer mass cytology test results[2, 3，

4，40] and tic-tac-toe patterns are used to evaluate the performance of different al-

gorithms. We will first review the methods of pruning and constructive algorithms

which have been implemented and used for the evaluation in Section 4.2. Then, in

Section 4.3, our methodology, and the data samples will be described. The setup of

experiments and the experimental results are given in Section 4.4. Finally, in the last

section, brief discussions and conclusion are provided.

4.2 Literature Review

4.2.1 Pruning Algorithm

Pruning is one of the most popular ways to find a small suitable architecture[34

for a neural network. A pruning algorithm removes some hidden units or weights in an

oversized network to produce a solution network[17]. There are a variety of removing

procedures, such as magnitude based pruning, optimal brain damage, optimal brain

surgeon, skeletionization, and non-contributing units[32 .

In this research, we are concerned with the pruning approach of the non-contributing

units and its modification, which is simpler than the other pruning algorithms, but

provides a satisfactory result. The pruning approach of non-contributing units inves-

4.2. LITERATURE REVIEW 62

tigates the output of each hidden unit for the whole training set. A non-contributing

unit has its output that does not change for the whole input patterns, or when it du-

plicates pr inversely duplicates the output of another unit in the same layer[9, 16，32].

The pruning algorithms studied here are proposed in [9] and [16 .

One Pass Pruning

This approach was introduced in [16] to perform pruning to a solution network,

where a solution network is a trained network that provides a satisfactory classification

ability. When a solution network has been obtained, two categories of hidden units

will be removed : the duplicated units and the non-contributing units. The first

category of units to be identified for removing is a hidden unit has an output for all

input patterns which is the same as, or opposite to, the output of another hidden

unit in the same layer. Once these two hidden units are identified, one of them

will be removed as they are duplicate or inversely duplicate of each other. The

second pruning procedure identifies hidden units that do not contribute to the overall

solution network. In other words, since the non-contributing units do not provide any

classification information, their removal will not affect the generalization ability of the

pruned network[16]. The non-contributing units often classify all input patterns into

the same group.

Prune and Retrain

In [9], the characteristics of the excessive hidden units in an oversized solution

network are studied. Similar to the pruning algorithm in [16], the pruning procedure

4.2. LITERATURE REVIEW 63

will be performed after a solution network is achieved. There are four categories

of excessive hidden units： excessive non-contribution, excessive duplication, excessive

inversely duplication, and excessive inadequacy. Once these excessive units have been

pruned, retraining of the pruned network will be performed until no more excessive

hidden units are found in the solution network. The excessiveness of a hidden unit

means that a unit may be removed without affecting the generalization performance

of the network. In [9]，the four categories of excessive units are defined as follows :

Excessive Non-contributing unit : An excessive non-contributing unit would

give similar output for all input patterns, Opj. This unit classifies those input patterns

that lie on one side of the decision hyperplanes, so that no discrimination information

would be given by this unit. An excessive non-contributing unit can be detected by

the followings :

excessive-noncontributing{j) = noncontributing(j) AND [closeness{opj) < ei

where noncontributing {j) is defined as

noncontributing{j) = [{opj > 0.5) OR {opj < 0.5), Vp

and closeness(opj) is defined as

closeness(opj) = max(|opjj — Op ĵ\)

Excessive Duplicated unit : It is a unit that has its weight vector that converges

to the same to another unit in the same layer. It can be detected by :

excessiv-duplicated{i, j) = d u p l i c a t e d (� j) AND [diff(opi, Opj) < e2

4.2. LITERATURE REVIEW 64

where duplicated(z, j) is defined as

duplicated(i, j) = [{opi — 0.5)(¾- — 0.5) > 0，\/p

which detects the two units have the similar classification ability to all training pat-

terns. And diff(opj, Opj) is defined as

diff(opi, Opj) = m^{]opi — Opj\)

in order to show the difference between the outputs of the two duplicated units in all

patterns. If the maximum difference is less than the tolerant threshold ei and the two

units duplicate each other, the hidden units are identified as the excessive duplicated

unit. The classification ability of the two duplicated units can be said to be almost

the same, if the maximum difference is close to zero.

Excessive Inversely-duplicated unit : The inversely-duplicated unit are similar

to the duplicated unit described above. The transformed output of the input patterns

of an inversely-duplicated unit have opposite properties to another unit in the same

layer. It can be detected by

excessive-inversely-duplicated{i, j)

=inversely-duplicated{i, j) AND [diff{inv(Opi), Opj) < e3

where inversely-duplicated(i, j) is defined as

inversely-duplicated{i, j) = [{opi — O.5)(op̂ - — 0.5) < 0, Mp

and inv{opj) is defined as

inv{opj) = 1 — Opj

4.2. LITERATURE REVIEW 65

Excessive Inadequate unit : The excessive inadequate unit performs partially

correct classification to the input patterns, as a result, the generalization performance

would be degraded. Therefore, this kind of node should be detected and removed

from the solution network. There are two conditions to satisfy the detection rule of

excessive-inadequate units : same-merge and not-mix-merge. As the separated same

class patterns will be merged by the other units, this process is called the same-merge

process. However, one should beware that the removal of an inadequate unit that

performs the bad classification to the same class patterns should not result to the

situation of merging different classes patterns, therefore, the situation of not-mix-

merge must also be satisfied. The detection rule of excessive-inadequate is showed as

follow :

excessive-inadequate {j) = not-mix-merge {j) AND same-merge(j)

where not-mix-merge{j) is defined as

if {pi and p2 are of the different classes) AND [{op ĵ — 0.5){op^j — 0.5) < 0

THEN not-mix-merge(j)

==[(Opii — O.5)(op2i — 0.5) < 0 OR |opii — Op^il < €4 for some i + j

and same-merge(j) is defined as

if {pi and p2 are of the same classes) AND [{op ĵ — 0.5)(¾" — 0.5) < 0

THEN same-merge(j)

= '(op^i — O.5)(op2i 一 0-5) < 0 AND |opii - 0p2i| < 65 Vz + j

4.2. LITERATURE REVIEW 66

ei, €2,63, €4,65 are the trade-off thresholds between the network size and its gener-

alization performance of different pruning conditions. More excessive units would be

identified and pruned with larger thresholds, and also, the generalization performance

would be affected as well.

4.2.2 Constructive Algorithms (Growing)

Apart from pruning algorithms, constructive algorithms are the methods to search

for the suitable architecture from a minimal network. These methods expand the net-

work architecture from layer to layer or in the same layer by introducing new hidden

unit. Different constructive algorithms have their unique expanding topologies. In

this study, we consider the constructive algorithms for a single hidden layer neural

network model, and therefore, the unit expansion will be performed at the same layer.

Our model is a modification of SplitNet[42

The output of a hidden unit for different input patterns during a learning process,

may be classified into three possible states. They are the present (yes state), not

present (no state) and maybe state. The hidden unit is said to be a "yes，，state for

an input pattern when the input to the sigmoid hidden unit is greater than 1.4 (the

output to sigmoid hidden unit is greater than 0.8)，where a sigmoid hidden unit is an

activation function that limits the output values between 0 and 1 as shown in Eq.4.1.

1
1 + exp{-input) .

The hidden unit is said to be a "no" state when the input is less than -1.4 (the output

is less than 0.2). The "maybe" state is defined for the hidden unit which has the input

4.2. LITERATURE REVIEW 67

between -1.4 and 1.4 for a input pattern (the output lies between 0.2 and 0.8). The

reasons of using the input to the sigmoid hidden unit rather than the output are

due to the faster computational speed and more accurate cutoff values. The SplitNet

splits a hidden unit into two units when the ratio of the number of "maybe" state

to the total number of input patterns is greater than 0.6 in the last 50 iterations, as

shown in the following equation

number of maybe state ^ ^ , ^ ̂ ,
——^ ； 7T^ > 0.6， (4.2)
total number or input patterns

SplitNet is a constructive algorithm designed for a fully interconnected neural

network with only one output unit. It was tested with the parity problem in [42]. A

parity problem is a binary classification problem that classifies the number of zeros

in a string of binary digits, where the output is 1 if there is an odd number of

zeros; otherwise the output is 0. The performance of SplitNet was compared with

the fixed architecture network in [42], and shown that it performed better in terms

of improvement in the time complexity (where the time complexity was measured

according to the required iteration runs).

4.2.3 Integration of methods

The combination of constructive algorithm (Cascade Correlation, Cascor) and

pruning algorithm (Optimal Brain surgeon, OBS) in order to control the growth of

an expanding network architecture was introduced in [33]. Cascor is a constructive

algorithm to build a feed-forward network that begin with a small network. New

hidden units are added one by one to create a multi-layer architecture[6]. The optimal

4.3. METHODOLOGYAND APPROACHES 68

brain surgeon is a pruning algorithm to remove unimportant weights from a solution

network based on the information from all second derivatives of the error function[32,

33，35]. This approach is to control the growth of Cascor in which each new hidden

unit is pruned before it is added to the network[33]. The architecture of the solution

network is smaller than the one found solely by the Cascor method and has the

advantage of avoiding the overfitting problem.

However, this method results in a multi-layer feed-forward network, which is dif-

ferent from our consideration, a single hidden layer feed-forward network. Therefore,

we use this related work as our survey rather than as a comparison methods.

4.3 Methodology and Approaches

In this study, we want to find a flexible method to obtain suitable network ar-

chitectures for different problem domains using single hidden layer backpropagation

feedforward neural networks. The recent methods to decide the network size are the

pruning algorithms, constructive algorithms, trial-and-error. As pruning algorithms

and constructive algorithms have their limitations, an approach that combines both

pruning and constructive algorithms would be a possible solution.

4.3.1 Growing

When we reviewed the model of SplitNet[42], we found that the growth of the

hidden unit might lead to the infinite growing of the duplicated units. Also, we

observed that the network would often fall into the local minimum when all the

4.3. METHODOLOGYAND APPROACHES 69

inputs to every hidden unit are all greater than 1.4 ("yes" state) or lesser than -1.4

("no" state). In other words, all the input patterns are classified into the same group

by these hidden units. This situation is similar to the network that is composed of

non-contributing units only. In order to deal with this situation, we will introduce a

new hidden unit to the network, only if the network satisfies Eq. 4.3 for each review

period.

Grow_new_unit (4.3)

IF (number of yes-state^ : total number of input patterns

AND number of no-state; = total number of input patterns) Vi

where i denotes the number of hidden units. Fig.4.1 shows the process flow of the

growing method. Since a larger network architecture is constructed after growing,

the enlarged network may need longer time to learn the training patterns than a

smaller one. For this reason, as the network grows, the review on the need of growing

will be made after a longer training iterations has been proceeded. To prevent the

infinite training occurrence, the network will stop training if there is no growing to

the network after a certain number iterations have been proceeded.

4.3.2 Combinations of Growing and Pruning

The same problem of excessive units would occur in the solution network found

by constructive algorithms, since the constructive algorithms only consider when to

expand but may add unnecessary units to the network. The excessive units have

4.3. METHODOLOGYAND APPROACHES 70

Training Data Set

1 r

Training a neural network
with the minimal network
architecture

y f

Add new hidden unit • Perform learning

Yes j > /

lf all the inputs to every Z u . • •
i . j j � „ / Is stopping cntena
hidden units are all greater satisfi^?
than 1.4 or less than -1.4 _ unsatisfied 1'^ ' ' '^ •

Satisfied
\ r

A Trained NN
is obtained

Figure 4.1: Process Flow of the Growing Method

4.3. METHODOLOGYAND APPROACHES 71

problems such as the computation problem and the storage problem. In the following,

we propose two possible ways to solve these problems.

Growing then Pruning

This approach makes use of the pruning with retraining method discussed in

Section II. After the solution network is obtained from a growing approach, a prun-

ing process is incorporated to remove the non-contributing units, duplicated units,

inversely-duplicated units, and inadequate units from the solution network. The

pruned solution network will be retrained if the classification performance are de-

graded or unable to achieve a certain level. Fig.4.2 shows the process flow.

4.3. METHODOLOGYAND APPROACHES 72

Training Data Set

^ r

Training a neural network
with the minimal network
architecture

Retrain
_

^ r

Add new hidden unit | • Perform leaming

t Y e s y ^
1 > ^ ,；

If all the inputs to every Z u . . . , . j j . „ ‘ Is stopping criteria hidden units are all greater _ . 工 ®
than 1.4 or less than -1.4 Unsatisfied patistied.

Satisfied
\ r

remove the unnecessary hidden
units from the solution network,
check the classification performance _
of the pruned network Threshold of
. . . . i i i _ i _ _ _ _ ^ ^ _ ^ ^ _ _ i i i i _ l misclassification rate

is unsatisfied
Threshold of

misclassification rate
is satisfied

^ r

A Trained NN
is obtained

Figure 4.2: Process Flow of Growing then Pruning Method

4.3. METHODOLOGYAND APPROACHES 73

Growing while Pruning

The previous method is not flexible enough to obtain the minimal solution net-

work architecture as many unnecessary units are included in the network during a

learning process. When a network grows to a certain size, the computation cost will

be increased. If a network contains many unnecessary units, the disadvantages of

large computation overhead become apparent. Therefore, if the unnecessary units

can be managed during the learning and growing processes, we can effectively control

computational requirement. Fig.4.3 shows the process flow of a better method.

4.3. METHODOLOGYAND APPROACHES 74

Training Data Set

^ r

Training a neural network
with the minimal network
architecture

Retrain i
y r

Add new hidden unit | > Perform leaming

^
Yes y / ^

J N o ^ i
ff all the inputs to every ^ ^ Is stopping criteria
hidden units are all greater y ^ y satisfied?
than 1.4 or less than-1.4 U n s a t i s f i e d ^

• ^ ^ — ^ — — — * — — ~ — — — ^ ^ Satisfied

^ _ _ ^ _ ^ _ | ^ _ ^ _ _ ^ Z remove the unnecessary hidden
Remove the hidden units > ^ units from the solution network,
which are non-contributing, check the classification performance _•
duplicated or inversely- of the pruned network Threshold of
duplicated to the network r misclassification rate
_ ^ _ _ _ _ _ _ ^ _ _ _ _ _ _ , ^ _ ^ _ | is unsatisfied

Threshold of
misclassification rate

is satisfied
‘ r

A Trained NN
is obtained

Figure 4.3: Process Flow of Growing while Pruning Method

4.4. EXPERIMENTAL RESULTS 75

When the growing proceeds, the network may fall into a local minimum when

all the units are non-contributing units. And also, when the duplicated or inversely-

duplicated units are not significant to the learning process as the discriminant infor-

mation are duplicated. Therefore, the removal of those excess non-contributing units,

duplicated units and inversely-duplicated units before the growing proceeds can re-

duce the computational costs as a whole. As a result, we can always obtain a nearest

minimal architecture for training data set once the solution network is obtained. We

do not consider the inadequate units in the pruning that proceeds before growing be-

cause the inadequate units always provide unique information to the learning function

unless they are duplicated by the other units.

In summary, we evaluate three proposed methods, growing method, growing then

pruning method, and growing while pruning method in the following section. Three

developed methods by previous literature are used for comparisons in order to show

the different performance by different methods. The three developed methods are

fixed architecture network, one pass pruning method, and pruning with retraining

method.

4.4 Experimental Results

In order to compare the overall performance of different models, the evaluations

on the generalization performance or prediction accuracy, time complexity required

to obtain the solution network and the network size of the solution network are

investigated. We compare the performance of the conventional trial-and-error method

4.4. EXPERIMENTAL RESULTS 76

with oversized network, the pruning methods, the growing method, and the methods

integrating pruning and growing algorithms.

In our experiments, we use two databases: breast mass cytology information,

and encoded tic-tac-toe board configurations. The first database is used in the last

chapter. This database contains "noise" data. The second database does not contain

"noise" data.

4.4.1 Breast-Cancer Cytology Database

This data sample contains patients' breast mass cytology information. These

patients were admitted for breast cancer diagnoses at the University of Wiscon-

sin(Madison) from 1989 to 1992[2, 3，4, 40]. There are 699 instances in the database.

We use 683 instances for our experiment. Sixteen instances are removed due to miss-

ing values. Each instance comprises 9 attributes and 1 class value. These 9 attributes

were collected when Fine-Needle Aspirate (FNA) testing were taken from each pa-

tient's breast mass[4]. These attributes are shown in Table 4.1.

Each attribute is a scalar observation. An attribute value shows the likelihood of

malignancy; the larger the value, the greater the likelihood of malignancy. The class

value tells us whether the symptom is benign or malignant for the corresponding

instance. In total, 444 instances are in the class of benign breast masses and 239

instances are in the class of malignant breast masses.

In each training sample set, 200 instances (100 benign and 100 malignant) are

randomly selected. For each testing sample set, 169 instances (84 benign and 85

4.4. EXPERIMENTAL RESULTS 77

Attribute Domain

Clump Thickness 1-10

Uniformity of Cell Size 1-10

Uniformity of Cell Shape 1-10

Marginal Adhesion 1-10

Single Epithelial Cell Size 1-10

Bare Nuclei 1-10

Bland Chromatin 1-10

Normal Necleoli 1-10

Mitoses 1-10

Table 4.1: Attribute descriptions of Breast-cancer Database

malignant) are randomly selected. Forty-five couples of training and testing data

sample sets are generated from the 683 instances and are used to test different models.

Since the solution networks rarely contain one hidden unit, we set the number of initial

hidden units to be 2. Moreover, the number of hidden units for the oversized network

is set to 18 by trial-and-error. This oversized network provides a promising solution.

4.4. EXPERIMENTAL RESULTS 78

Generalization Performance

Table B.1 contains the result of generalization performance of each of the following

methods:

(1) ： F ixed Arch i tec ture Neura l Network

(2) : One Pass P r u n i n g

(3) : P run ing w i t h Ret ra in ing

(4) : Grow ing (t r ia l 1)

(5) : Growing (t r ia l 2)

(6) : Growing then P r u n i n g (t r ia l 1)

(7) : Growing then P r u n i n g (t r ia l 2)

(8) : Growing whi le P run ing (t r ia l 1)

(9) : Grow ing whi le P run ing (t r ia l 2)

where trial 1 and 2 mean the two tests on the same training data set with the same

method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average Accuracy 90.20 90.26 91.29 91.09 91.03 91.31 91.91 91.43 91.40

Median 90.53 90.53 91.12 91.72 91.72 91.12 91.72 91.72 91.12

Minimum 81.07 81.07 85.21 82.84 84.62 85.21 85.21 84.02 86.39

Maximum 95.27 95.86 96.45 95.86 95.27 96.45 96.45 96.45 95.86

Standard Deviation 2.82 2.90 2.49 2.61 2.46 2.54 2.53 2.76 2.41

Table 4.2: Statistics of Accuracy of Different Algorithms : Breast-cancer database

From Table 4.2, we observe that the average generalization performances of the

fixed architecture and one pass pruning methods are about 1% less accurate than the

4.4. EXPERIMENTAL RESULTS 79

other four methods. These show the generalization ability of a smaller network archi-

tecture may have a better performance than a larger one on average. Furthermore,

the performance of the pruned network with retraining process is always better than

the one without retraining process. Therefore, when we apply pruning to the growing

method, we consider the one with retraining process.

Time Complexity

Table B.2 contains the time complexity required by each method

(1) : F ixed Arch i tec ture Neura l Network

(2) : Grow ing (t r ia l 1)

(3) : Grow ing (t r ia l 2)

(4) : Grow ing then P run ing (t r ia l 1)

(5) : Growing then P run ing (t r ia l 2)

(6) : Growing whi le P run ing (t r ia l 1)

(7) : Grow ing whi le P run ing (t r ia l 2)

(1) (2) (3) (4) (5) (6) (7)

Average Time Consuming 158.77 273.19 447.08 1269.85 494.37 19.18 20.00

Median 36.37 26 63.62 158.43 111.53 4.64 7.83

Minimum 1.52 0.27 0.93 1.47 2.85 0.60 0.54

Maximum 1070.80 2356.9 5904.12 8144.93 2527.67 243.06 208.02

Standard Deviation 230.66 542.16 994.44 2243.46 738.29 42.18 34.52

Table 4.3: Statistics of Time Complexity Required of Different Algorithms : Breast-

cancer database

We measure the time complexity by clock time. It is different from some re-

searchers who use the learning iterations. We think that the overhead of those prun-

4.4. EXPERIMENTAL RESULTS 80

ing and growing methods that analyze the network during a learning process must

also be considered. In Table 4.3，the least time consuming method on average is

growing while pruning, followed by the fixed architecture network, growing, and the

growing then pruning, respectively. Since the two pruning methods are performed on

the fixed architecture network, the time consumed by those pruning methods would

only be a little longer than the fixed architecture network; and therefore, we will not

consider the time consumed of solely appending the pruning methods to the fixed

architecture network. It should be noted that the minimum time consumed by the

growing, and the two growing and pruning integrated methods are always less than

the one by the fixed architecture network. This is because the time spent on a small

solution network is less than the time spent on an oversized network as the computa-

tion cost can be greatly reduced in a small network. As the network grows larger and

larger, the computational cost and time consumed will increase. Once the network

size approaches to the size of the fixed architecture network, the time consumed is

likely to be larger than the fixed architecture one as the time to search of the solution

space increases. The time consumed by the growing then pruning method is larger

than the growing method, since the pruning is an computational overhead to the

growing method. However, we can observe that the time consumed by the growing

while pruning method give a definitely time advantage. Due to the pruning of the

unnecessary units from the network during the searching of the solution space, the

network can be remained with a small suitable size when the learning proceeds.

4.4. EXPERIMENTAL RESULTS 81

Network Size

Table B.3 contains the network size obtained by each method.

(1) : One Pass P r u n i n g

(2) : P run ing w i t h Re t ra in ing

(3) : G row ing (t r ia l 1)

(4) : Grow ing (t r ia l 2)

(5) : Growing then P r u n i n g (t r ia l 1)

(6) : Growing then P r u n i n g (t r ia l 2)

(7) : Growing whi le P r u n i n g (t r ia l 1)

(8) : Grow ing whi le P r u n i n g (t r ia l 2)

(1) (2) (3) (4) (5) (6) (7) (8)

Average Network Size 5.44^6 1.51^2 7.29^^8 8.78=9 1.22^2 1.22s2 1.60«2 1.5S^2

Median 5 1 6 7 1 1 2 1

Minimum 1 1 2 2 1 1 1 1

Maximum 14 3 19 29 2 2 3 3

Standard Deviation 4.07 0.65 4.19 5.20 0.42 0.42 0.53 0.65

Table 4.4: Statistics of Network Size of Different Algorithms : Breast-cancer database

The statistics on the size of the solution networks obtained by those methods

is presented in Table 4.4. It shows that the average smallest network architectures

are always provided by the methods pruning with retraining, those growing methods

with pruning process. The one pass pruning method gives a second biggest average

network architecture, since the one pass pruning method does not consider the re-

moval of the inadequate units. The growing method gives the biggest average network

architecture because the excessive units will not be removed. If we compare the aver-

4.4. EXPERIMENTAL RESULTS 82

age network architecture first obtained (no pruning performed) between the growing

method and the growing with pruning method, the result would be very close, as

the second method is built up on the foundation of the growing method. No matter

what the difference size achieved by those network architecture altering methods are,

we observed that these kinds of solution networks are much smaller than the fixed

architecture one, 18 hidden units. Prom Table 4.4，we can observe that the maximum

obtained network architecture in (3) and (4) are 19 and 29, by which we know that

sometimes we need a larger network architecture for a specific problem space. To

deal with such kind of problem, the suitable methods should be the growing based

methods.

4.4.2 Tic-Tac-Toe Database

This database encodes the complete set of possible board configurations at the

end of tic-tac-toe games, where "x" is assumed to have played first[40]. The target

concept is “ win for x", where it is true when "x" has one of 8 possible ways to create

a "three-in-a-row". There are 958 instances which are the legal tic-tac-toe endgame

boards, out of which 626 instances are the group of "win for x" and 332 instances are

the group of "not win for x". The 9 attributes each corresponds to one tic-tac-toe

square and have been shown in Table 4.5, where x = player x has taken, o = player

o has taken and b = blank.

The two classes are defined as 1 ("win for x") and 0 ("not win for x"). The

attribute information {x, o, b} is represented by integer set {2, 0，1} respectively as

4.4. EXPERIMENTAL RESULTS 83

Attribute Domain

top-left-square {x, o，b}

top-middle-square {x, o, b}

top-right-square {x, o, b}

middle-left-square {x, o, b}

middle-middle-square {x, o, b}

middle-right-square {x, o，b}

bottom-left-square {x, o, b}

bottom-middle-square {x, o, b}

bottom-right-square {x, o, b}

Class {1, 0}

Table 4.5: Attribute descriptions of Tic-Tac-Toe Database

4.4. EXPERIMENTAL RESULTS 84

the input for the network.

In each training sample set, 400 instances (200 in each group) are randomly se-

lected. For each testing sample set, 200 instances (100 in each group) are randomly

selected. Forty-five couples of training and testing data sample sets are generated

from the 958 instances, and are used to test different models. The number of initial

hidden units is set to 1 as the network sometimes obtains its solution network in this

database. Moreover, the number of hidden units for the oversized network is set to 7

by trial-and-error thus always providing a promising solution network.

Generalization Performance

Table B.4 contains the result of generalization performance of each method.

(1) : F ixed Arch i tec ture Neura l Network

(2) : One Pass P run ing

(3) : P run ing w i t h Ret ra in ing

(4) : Growing (t r ia l 1)

(5) : Growing (t r ia l 2)

(6) : Growing then P r u n i n g (t r ia l 1)

(7) : Growing then P r u n i n g (t r ia l 2)

(8) : Growing whi le P run ing (t r ia l 1)

(9) : Growing whi le P run ing (t r ia l 2)

Prom Table 4.6, we find that the average generalization performances can be di-

vided into four groups. The most accurate methods are the growing methods with

pruning process introduced. The second are the growing method and the pruning

with retraining method. Then the fixed architecture network and the one pass prun-

ing method are followed. The one pass pruning gives an unsatisfied generalization

4.4. EXPERIMENTAL RESULTS 85

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average Accuracy 88.23 83.21 89.93 89.16 90.73 91.94 90.74 91.03 90.81

Median 88.50 85.00 91.00 89.00 91.00 93.00 91.00 91.50 91.00

Minimum 78.50 50.00 82.00 81.50 81.00 85.50 78.00 80.50 83.00

Maximum 96.00 96.00 96.00 95.50 99.50 97.00 98.50 97.00 98.00

Standard Deviation 4.52 8.79 3.92 3.59 3.71 2.90 4.94 3.47 3.71

Table 4.6: Statisitics of Accuracy of Different Algorithms : Tic-Tac-Toe database

performance which is caused by the degraded solution network after pruning process

is performed. Again, this shows that the pruning with retraining method would be

more reliable than the one pass method. The statistics in Table 4.6 also shows that

the network architecture altering methods except the one pass pruning method always

performs better than the fixed architecture network.

Time Complexity

Table B.5 contains the time complexity required by each method.

(1) : F ixed Archi tecture Neural Network

(2) : Growing (t r ia l 1)

(3) : Growing (t r ia l 2)

(4) : Growing then Prun ing (t r ia l 1)

(5) : Growing then Prun ing (t r ia l 2)

(6) : Growing whi le Prun ing (t r ia l 1)

(7) : Growing while Prun ing (t r ia l 2)

Table 4.7 shows the statistics of time complexity required by those methods other

than the pruning methods. The statistics gives a similar result to the breast-cancer

database, except that the average time complexity required by the fixed architecture

4.4. EXPERIMENTAL RESULTS 86

(1) (2) (3) (4) (5) (6) (7)

Average Time Consuming 165.67 68.83 144.13 264.53 124.29 54.18 46.91

Median 124.30 44.36 47.28 60.74 49.17 45.40 43.38

Minimum 56.31 13.97 14.88 15.32 19.89 15.72 17.14

Maximum 791.02 373.14 2442.05 5736.17 672.73 278.36 119.20

Standard Deviation 125.51 72.72 378.93 861.07 161.64 43.02 23.59

Table 4.7: Statistics of Time Complexity Required of Different Algorithms : Tic-Tac-

Toe database

network is longer than the growing method in tic-tac-toe database. Since the required

network size for the tic-tac-toe classification problem is relatively small, the smaller

solution network can be obtained by the growing method. The smaller the network

size during the learning stages, the less computational costs and time complexity

there will be. The growing while pruning method shows again that we can obtain a

better performance in time saving over the other methods.

4.4. EXPERIMENTAL RESULTS 87

Network Size

Table B.6 contains the network size obtained by each method.

(1) ： One Pass P r u n i n g

(2) : P run ing w i t h Ret ra in ing

(3) : Growing (t r ia l 1)

(4) : Growing (t r ia l 2)

(5) : Growing then P r u n i n g (t r ia l 1)

(6) : Growing then P r u n i n g (t r ia l 2)

(7) : Growing whi le P run ing (t r ia l 1)

(8) : Growing whi le P run ing (t r ia l 2)

(1) (2) (3) (4) (5) (6) (7) (8)

Average Network Size 3.00 3.00 2.31=3 3.02^3 1.71^^2 1.89^2 1.73=2 1.69^2

Median 3 3 2 2 2 2 2 2

Minimum 1 1 1 1 1 1 1 1

Maximum 5 5 7 11 4 4 4 3

Standard Deviation 1.37 1.40 1.24 1.96 0.75 0.77 0.77 0.63

Table 4.8: Statistics of Network Size of Different Algorithms : Tic-Tac-Toe database

The statistics of the solution network size obtained by different methods is showed

in Table 4.8. It is quite different from the result of breast-cancer database showed in

Table 4.4. In tic-tac-toe database, the average network size obtained by each network

architecture altering methods is very close. Since the tic-tac-toe database is noise-

free database and the patterns are quite simple, we can use a quite small network

architecture to obtain the desirable discriminant ability. However, we can observe

4.4. EXPERIMENTAL RESULTS 88

that the larger maximum network size is also obtained by the growing method, 7

and 11 hidden units respectively in columns (3) and (4). This means that although

we can achieve the solution network with the network architecture altering methods,

sometimes we still need to use a larger network to search for the solution space.

The following are the descriptions of Table 4.9-4.11:

(1) (2) (3) (4) (5) (6)

Breast-cancer 90.20 90.26 91.29 91.06 91.61 91.42

Tic-Tac-Toe 88.23 83.21 89.93 89.95 91.34 90.92

Table 4.9: Summaries of Average Accuracy of Different Database

(1) (4) (5) (6)

Breast-cancer 158.77 360.14 882.11 19.59

Tic-Tac-Toe 165.67 106.48 194.41 50.19

Table 4.10: Summaries of Average Time Complexity Required of Different Database

(2) (3) (4) (5) (6)

Breast-cancer 5.44«6 1,52^2 8.04^9 1.22^2 1.59^2

Tic-Tac-Toe 3.00 3.00 2.67^3 1.80«2 1.71^2

Table 4.11: Summaries of Average Netowrk Size of Different Database

Tables 4.9-4.11 summarize of the average performance on the accuracy, time com-

plexity and the network size achieved by different methods :

The tables show that the growing while pruning method is flexible and reliable in

obtaining an accurate and suitable-sized network, although it is only the second best

in terms of generalization performance.

4.5. CONCLUSION 89

(1) : F i xed Arch i tec ture Neural Ne twork

(2) : One Pass P r u n i n g

(3) : P r u n i n g w i t h Ret ra in ing

(4) : Average o f Grow ing (t r ia l 1) & G r o w i n g (t r ia l 2)

(5) : Average of Grow ing then P r u n i n g (t r i a l 1) & Grow ing then P run ing (t r ia l 2)

(6) : Average of Grow ing whi le P run ing (t r ia l 1) & Grow ing whi le P run ing (t r ia l 2)

4.5 Conclusion

In this research, we want to find a flexible and reliable approach to obtain a suit-

able network architecture for a problem domain automatically. By evaluating on the

performance in the generalization performance, time consuming and network size of

some different network architecture altering methods and the fixed network archi-

tecture method, we find that the growing based methods always provide a better

generalization performance than the other. From the experimental results, we find

that the fixed architecture method and the pruning method to the fixed architecture

network do not provide an overall satisfactory performance. Moreover, these meth-

ods need to perform the trial-and-error test on the network architecture before they

proceed learning. Therefore the pruning methods are not a flexible way to obtain the

suitable network architecture. However, the growing method and the growing then

pruning method often take a longer time to obtain a solution network than the other.

And also, the growing method may produce a network with the unnecessary units.

The growing while pruning method avoids the problems of the others according

to the performance on the generalization ability, time consuming and network size

obtained. The results show that this method gives a promising performance, such

4.5. CONCLUSION 90

that we can obtain the suitable network architecture by this flexible and reliable ap-

proach. As the growing while pruning method proceeds the removals to excessive

non-contributing, duplicated and inversely-duplicated units before the growing anal-

ysis, the non-contributing and duplicated information can be ignored. As a result, the

network can be always kept in a small but information unique network architecture;

in the mean time, the network can remain in the economic computational state so as

to minimize the time consuming for the whole process. Afterward, the last pruning

process will be performed to the obtained solution network, so that the unnecessary

units will not appear in the final solution network.

Prom our experiments, we determined that since the constructive algorithms

prefers the smaller solution network, therefore, constructive algorithms are the most

flexible in obtaining the suitable network size. However, to deal with the unnecessary

units in the solution network, the pruning algorithms should be introduced also to

the solution network. If the time consuming issue is considered, the removals to those

units that do not provide unique information should be involved, such that the com-

putation cost can be reduced. In this chapter, we find that growing while pruning is

one of the possible ways to achieve above flexibility and reliability requirements, and

would be a possible direction to assisting other constructive algorithms and pruning

algorithms.

Chapter 5

Conclusion
�

5.1 Recall of Thesis Objectives

In this research, we address for two limitations in using neural network as a

classifier for the binary classification problem : the data dependency and the unknown

network size.

Typically, training to a neural network is very data dependent. The generalization

performance of a solution network is affected by the distribution of the training data

set. Different ratio between the number of classes and the level of noisy data involved

would provide different classification ability. Although, many literature suggest that

introducing some noisy data can give an ability of immunity to the noisy data when a

solution network is operated with the unseen data, the great amount of noisiness in the

practical environment would lead to a poor generalization performance. Therefore,

one of the objectives in this research is to find a way to minimize the effect of this

vagueness from a large amount noisy data.

91

5.2. SUMMARY OF ACHIEVEMENTS 92

The choice of network size is a usual problem to the users of neural network. Train-

ing always involves trial-and-error tests to find a promising network size provides a

good generalization performance. A small network may not achieve the desirable pre-

diction ability, but an oversized network may suffer from the problems of memorizing

and overfitting. However, the trial-and-error method often suggests an oversized net-

work for the training. In order to avoid this tedious trial-and-error tests, we look for

other methods that are flexible and reliable in deciding the network size.

5.2 Summary of Achievements

5.2.1 Data Preprocessing

Training of a network is a data dependent process. When neural networks are

applied to practical environments, the embedded vagueness in the data would affect

the generalization performance of neural networks. In chapter 3，we propose a hybrid

binary classification model that is composed of fuzzy linear regression with fuzzy in-

terval analysis(FLRFIA) and single hidden-layer backpropagation feedforward neural

network(BPNN). To minimize the effect of the vagueness data, FLRFIA acts as a

data handler that separates the data into two groups : data lie inside or outside the

interval. The data lie inside the interval are identified as the certain data, while the

data lie outside the interval are identified as the vagueness data. As the training data

set is separated into two groups, two signal hidden-layer BPNN models are used.

One is used for classifying the certain data, and the other is used for classifying the

5.2. SUMMARY OF ACHIEVEMENTS 93

vagueness data.

The experimental results show that the proposed hybrid model performs better

than using a single hidden-layer BPNN in the binary classification problem. Since

the main classifiers in the hybrid model are the same as the conventional BPNN, we

conclude that the data handler, FLRFIA, plays an important role in the improvement

of the generalization performance.

On the other hand, before we can separate the data into the certain data and the

vagueness data, the linear programming model must be constructed and solved for

the entire training data. This procedure is quite a time consuming process.

5.2.2 Network Size

In chapter 4，we study the problem of searching a desirable network size for the

single hidden-layer BPNN in the binary classification problem. In this research, we

use three growing based methods for the single hidden-layer BPNN, growing method,

growing then pruning method, and growing while pruning method. These growing

based methods find the better generalization performance improvement when com-

pared with the fixed network architecture method and pruning methods. The growing

while pruning method provide the best overall performance among the other meth-

ods that considered in this research. The experimental results show that it is possible

to find a flexible and reliable method by using both the constructive and pruning

algorithms to compensate the limitations of each other.

5.3. FUTURE WORKS 9 4

5.3 Future Works

In this research, we consider the binary classification problem only. To generalize

our research, the extension to the multi-class classification problem could be studied.

The hybrid classification model we proposed in chapter 3 is to minimize the effect

of the vagueness data to the network. The proposed model achieves this objective

by applying FLRFIA. In general, we can use other methods to reduce the complexity

and time taken to construct and solve the linear programming model. For example,

we may consider taking n samples of training data set. For each sample, we train

a network. The prediction will be jointly by all the networks. The decision can be

made by majority votes.

There are many different network size models available in the literature. In this

research, we show that some combinations of models may provide better size networks.

Many other combinations may be considered. A comprehensive evaluation of these

combined models will be interesting.

Appendix A

Experimental Results of Ch.3

95

96

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 91.12 91.12

2 86.98 92.31

3 87.57 89.35

4 92.90 93.49

5 86.39 87.57

6 88.17 89.94

7 88.76 89.35

8 92.90 95.27

9 91.72 91.72

10 94.67 94.08

11 94.67 95.86

12 88.17 91.12

13 89.35 90.53

14 88.76 93.49

15 90.53 89.94

16 88.76 88.76

17 92.90 94.67

18 85.80 88.17

19 89.94 91.72

20 90.53 91.12

21 89.35 91.12

22 90.53 91.12

23 87.75 88.17

Table A.1: (cont'd) Accuracy comparison of prediction ability

97

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 88.76 91.72

25 87.57 88.17

26 94.08 94.67

27 87.57 89.94

28 86.98 88.17

29 93.49 93.49

30 87.57 87.57

31 92.90 92.31

32 89.94 89.35

33 90.53 93.49

34 91.72 92.90

35 94.08 94.08

36 94.08 93.49

37 90.53 91.12

38 89.94 92.90

39 92.90 93.49

40 86.39 86.98

41 86.98 88.76

42 91.72 93.49

43 94.08 95.86

44 91.12 94.08

45 91.72 93.49

Average 90.28 91.55

Table A.1: (cont'd) Accuracy comparison of prediction ability

98

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 87.76 91.12

2 90.53 91.72

3 89.35 88.76

4 94.08 94.67

5 86.98 88.76

6 90.53 89.94

7 87.57 89.35

8 86.98 96.45

9 91.72 92.31

10 93.49 94.08

11 90.53 90.53

12 91.12 92.90

13 91.12 93.49

14 81.07 87.57

15 85.80 86.98

16 90.53 92.31

17 94.08 95.86

18 90.53 94.08

19 92.31 95.27

20 89.35 89.94

21 90.53 89.94

22 86.98 88.17

23 89.35 91.72

Table A.1: (cont'd) Accuracy comparison of prediction ability

99

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 86.39 87.57

25 94.67 94.67

26 86.98 89.35

27 86.39 89.35

28 92.90 93.49

29 89.94 89.35

30 95.27 95.86

31 92.31 93.49

32 89.94 91.12

33 91.72 92.90

34 88.17 90.53

35 89.35 88.76

36 93.49 94.67

37 86.98 88.76

38 91.72 92.31

39 89.35 88.17

40 90.53 92.90

41 90.53 89.94

42 88.76 91.72

43 92.90 93.49

44 93.49 95.27

45 94.08 94.08

Average 90.18 91.64

Table A.1: (cont'd) Accuracy comparison of prediction ability

100

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 89.94 92.90

2 91.12 92.31

3 89.35 88.17

4 95.27 95.86

5 86.39 88.17

6 89.35 89.94

7 87.57 89.94

8 91.72 97.63

9 89.94 90.53

10 93.49 94.08

11 91.12 89.35

12 88.76 91.72

13 93.49 94.67

14 84.62 86.39

15 86.39 87.57

16 91.72 92.90

17 92.31 95.27

18 89.35 92.90

19 92.90 95.27

20 89.94 91.72

21 91.12 90.53

22 86.98 89.35

23 88.76 89.94

Table A.1: (cont'd) Accuracy comparison of prediction ability

101

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 85.80 88.76

25 95.86 94.67

26 88.76 89.94

27 85.80 89.35

28 92.90 92.90

29 90.53 90.53

30 92.31 93.49

31 91.72 94.08

32 91.12 91.72

33 89.94 92.90

34 89.94 92.31

35 89.35 88.76

36 92.90 94.67

37 86.39 87.57

38 92.31 93.49

39 88.76 90.53

40 91.12 92.31

41 89.94 90.53

42 91.72 94.67

43 92.90 94.08

44 92.90 94.67

45 94.08 94.08

Average 9041 91.85

Table A.1: (cont'd) Accuracy comparison of prediction ability

102

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 90.53 94.67

2 91.12 94.08

3 88.76 89.35

4 94.08 94.08

5 84.62 86.39

6 89.35 89.94

7 87.57 88.17

8 92.90 95.86

9 92.31 92.31

10 91.72 92.90

11 91.12 91.72

12 88.17 89.35

13 92.31 92.90

14 86.98 89.35

15 86.39 88.76

16 90.53 92.90

17 92.31 94.67

18 91.72 94.67

19 92.90 94.08

20 90.53 92.90

21 89.94 91.12

22 88.17 91.72

23 90.53 91.72

Table A.1: (cont'd) Accuracy comparison of prediction ability

103

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 86.39 87.57

25 95.27 95.27

26 88.17 88.17

27 82.25 87.57

28 89.35 91.12

29 88.17 88.17

30 92.90 94.67

31 92.31 95.27

32 91.72 91.72

33 90.53 94.08

34 91.12 92.31

35 88.17 89.35

36 93.49 94.67

37 86.98 88.17

38 91.72 92.31

39 89.94 90.53

40 91.72 91.12

41 89.94 90.53

42 91.72 94.08

43 92.90 94.67

44 92.31 94.67

45 93.49 93.49

Average 90.34 91.85

Table A.1: (cont'd) Accuracy comparison of prediction ability

104

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 90.53 93.49

2 89.94 91.72

3 89.35 88.76

4 93.49 94.08

5 86.39 88.76

6 88.76 88.76

7 87.57 88.76

8 91.72 97.04

9 90.53 91.12

10 92.90 95.27

11 92.31 91.12

12 88.76 91.72

13 92.90 94.67

14 84.62 86.98

15 88.17 89.35

16 91.72 93.49

17 92.31 94.67

18 91.72 92.90

19 92.90 95.27

20 92.90 95.27

21 91.12 91.12

22 88.17 91.12

23 90.53 92.31

Table A.1: (cont'd) Accuracy comparison of prediction ability

105

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 86.98 87.57

25 95.27 95.27

26 88.17 88.76

27 86.98 89.35

28 92.90 92.31

29 88.17 88.76

30 95.27 95.86

31 89.94 95.27

32 88.76 88.76

33 91.12 94.08

34 91.12 92.31

35 89.35 89.94

36 92.90 93.49

37 86.39 87.57

38 92.31 92.90

39 91.12 91.72

40 89.35 90.53

41 91.12 91.72

42 90.53 94.86

43 94.67 95.86

44 91.72 94.67

45 92.31 93.49

Average 90.57 92.06

Table A.1: (cont'd) Accuracy comparison of prediction ability

106

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

1 67.46 66.27

2 78.70 82.84

3 73.96 73.37

4 77.51 77.51

5 72.48 79.29

6 69.23 78.11

7 76.92 77.51

8 77.51 78.70

9 79.29 78.70

10 77.51 78.11

11 72.78 75.74

12 73.96 78.11

13 68.64 79.29

14 78.11 82.25

15 78.70 79.88

16 75.74 75.15

17 66.86 76.92

18 79.88 82.25

19 76.33 79.29

20 80.47 79.29

21 78.70 79.88

22 68.05 76.92

23 69.23 71.60

Table A.1: (cont'd) Accuracy comparison of prediction ability

107

BatchProcess (%)
Sample HybridMethod{%)

{Conventional)

24 68.64 76.33

25 75.74 74.56

26 70.41 69.23

27 73.96 76.33

28 70.41 77.51

29 65.09 73.37

30 78.11 82.84

31 85.21 86.39

32 71.01 72.78

33 72.78 79.88

34 72.78 73.37

35 74.56 78.70

36 82.25 82.84

37 76.92 78.70

38 69.23 72.78

39 78.70 78.70

40 66.86 72.19

41 71.60 71.60

42 78.11 78.11

43 74.56 77.51

44 79.29 78.70

45 74.56 77.51

Average 7442 TL26

Table A.1: (cont'd) Accuracy comparison of prediction ability

108

BatchProcess{%)
Sample HybridMethod{%)

(C onventional)

1 65.09 75.15

2 76.33 78.70

3 71.60 75.74

4 75.15 76.92

5 70.41 76.33

6 66.86 73.96

7 73.96 76.33

8 66.86 79.29

9 75.15 78.70

10 70.41 80.47

11 72.78 76.33

12 74.56 75.74

13 69.82 80.47

14 72.78 77.51

15 78.11 78.11

16 68.05 69.23

17 71.01 77.51

18 77.51 78.11

19 71.60 72.19

20 74.56 79.29

21 73.96 79.29

22 71.06 73.37

23 69.82 76.92

Table A.7: Accuracy comparison of prediction ability with 10% additional noise

109

BatchProcess{%)
Sample HybridMethod{%)

(C onventional)

24 70.41 74.56

25 74.56 76.33

26 68.05 71.60

27 64.50 75.74

28 69.23 75.74

29 63.31 72.78

30 72.19 75.74

31 78.11 82.25

32 65.68 75.15

33 76.33 77.51

34 67.46 75.74

35 73.96 78.70

36 73.96 80.47

37 71.60 79.29

38 66.86 75.74

39 77.51 80.47

40 69.23 72.78

41 71.60 80.47

42 76.92 78.70

43 62.72 76.33

44 77.51 76.33

45 75.15 76.33

Average 71.65 76.76

Table A.7: (cont'd) Accuracy comparison of prediction ability with 10% additional

noise

110

BatchProcess{%)
Sample HybridMethod{%)

(C onventional)

1 63.31 73.37

2 69.23 75.74

3 65.68 76.92

4 75.74 80.47

5 68.64 77.51

6 69.23 78.70

7 66.86 76.92

8 72.19 79.88

9 73.96 76.92

10 75.15 79.88

11 66.27 76.33

12 65.68 72.19

13 71.60 80.47

14 72.19 78.11

15 73.37 82.45

16 66.27 71.60

17 66.86 79.29

18 73.37 79.29

19 69.23 74.56

20 69.82 76.92

21 66.86 75.74

22 66.27 71.01

23 65.68 73.96

Table A.8: Accuracy comparison of prediction ability with 20% additional noise

111

BatchProcess{%)
Sample HybridMethod{%)

(C onventional)

24 69.82 73.96

25 70.41 76.33

26 62.72 71.01

27 66.27 72.78

28 70.41 75.15

29 59.76 65.68

30 71.60 79.88

31 75.15 81.07

32 71.60 78.11

33 68.05 76.92

34 65.68 75.74

35 67.46 78.11

36 73.37 80.47

37 69.23 79.29

38 62.72 77.51

39 68.05 74.56

40 67.46 74.56

41 72.19 79.29

42 68.64 78.11

43 59.76 72.19

44 72.19 79.29

45 69.23 76.92

Average 68.78 76.60

Table A.8: (cont'd) Accuracy comparison of prediction ability with 20% additional

noise

Appendix B

Experimental Results of Ch.4

112

113

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 88.76 91.72 90.53 89.94 89.35 90.53 90.53 91.72 91.72

2 90.53 90.53 92.31 89.94 90.53 91.72 92.31 92.31 92.31

3 89.35 89.35 91.12 88.17 90.53 88.17 90.53 88.76 90.53

4 94.08 92.90 95.27 94.08 93.49 95.27 94.67 94.67 95.27

5 86.98 86.98 86.98 82.84 86.39 85.21 85.21 84.62 87.57

6 90.53 90.53 89.94 88.76 92.31 90.53 88.17 90.53 89.35

7 87.57 87.57 88.17 89.35 88.76 89.35 88.76 89.35 88.76

8 86.98 86.98 93.49 91.12 91.72 91.72 94.08 93.49 94.08

9 91.72 91.12 91.12 92.90 91.72 91.12 91.12 91.12 91.12

10 93.49 93.49 94.67 92.90 93.49 94.67 95.27 91.72 94.08

11 90.53 90.53 90.53 91.12 89.35 91.12 92.90 90.53 92.31

12 91.12 91.12 90.53 89.94 92.90 88.76 90.53 91.72 89.94

13 91.12 91.12 94.08 94.67 94.67 95.27 95.86 94.67 94.08

14 81.07 81.07 90.53 92.31 86.39 88.76 90.53 84.02 91.12

15 85.80 85.21 88.76 85.80 87.57 88.17 88.76 90.53 86.39

16 90.53 90.53 93.49 91.72 91.72 92.90 93.49 93.49 91.72

17 94.08 93.49 91.12 92.31 92.31 92.90 96.45 95.27 95.86

18 90.53 90.53 91.72 91.72 90.53 92.90 91.72 91.12 91.72

19 92.31 92.90 94.67 92.31 92.31 92.90 92.31 94.67 95.27

20 89.35 91.12 92.90 91.72 91.12 90.53 93.49 91.72 89.35

21 90.53 90.53 91.72 92.31 90.53 91.12 90.53 91.72 92.31

22 86.98 86.98 89.94 88.17 89.94 90.53 89.35 86.98 89.35

23 89.35 89.94 89.35 90.53 89.94 89.94 90.53 90.53 88.76

Table B.1: Accuracy of Different Algorithms : Breast-cancer database

114

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 86.39 86.39 85.21 86.39 84.62 86.98 86.98 85.21 86.39

25 94.67 95.86 94.67 95.86 95.27 96.45 96.45 95.86 95.86

26 86.98 86.98 89.94 88.17 89.35 86.39 89.94 91.12 89.94

27 86.39 86.39 86.39 88.76 86.98 88.76 89.35 88.76 89.94

28 92.90 92.90 91.12 92.31 91.12 93.49 94.08 92.90 90.53

29 89.94 86.39 89.94 91.12 89.35 92.31 91.12 91.72 89.94

30 95.27 94.67 96.45 95.27 94.08 94.67 94.08 96.45 92.31

31 92.31 92.31 92.90 92.31 91.72 90.53 91.72 90.53 90.53

32 89.94 89.94 90.53 91.12 91.72 90.53 91.72 91.12 91.12

33 91.72 91.72 92.90 89.94 92.90 92.90 92.31 91.72 91.72

34 88.17 87.57 89.35 92.31 91.72 92.90 94.08 92.90 92.31

35 89.35 89.35 88.76 88.76 89.94 89.94 91.72 91.72 89.94

36 93.49 93.49 92.90 94.08 91.72 92.31 93.49 93.49 93.49

37 86.98 88.17 88.17 87.57 86.39 86.98 87.57 88.17 86.39

38 91.72 92.90 92.90 91.72 92.90 94.67 94.67 91.12 92.90

39 89.35 88.76 88.76 90.53 89.35 90.53 92.31 89.35 89.94

40 90.53 90.53 92.31 91.12 94.08 94.08 94.08 91.72 91.12

41 90.53 89.35 89.35 91.72 91.72 89.35 91.12 91.12 91.12

42 88.76 90.53 89.94 91.72 91.12 91.72 89.94 89.94 91.72

43 92.90 93.49 94.67 95.27 95.27 91.72 93.49 93.49 93.49

44 93.49 93.49 93.49 94.08 93.49 92.90 94.08 95.27 94.08

45 94.08 94.08 94.67 94.08 94.08 94.67 94.67 95.27 95.27

Table B.1: (cont'd) Accuracy of Different Algorithms : Breast-cancer database

115

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 5.76 1873.00 510.46 5577.71 13.70 87.30 17.27

2 326.63 140.26 5904.12 58.35 29.35 243.06 4.66

3 32.36 357.65 4.20 6.75 2148.54 2.98 12.61

4 400.64 36.56 16.79 46.11 1284.00 3.43 90.57

5 5.36 2.59 102.47 63.18 170.17 4.90 4.39

6 11.40 80.58 7.27 104.59 217.84 135.37 74.02

7 36.37 49.34 47.18 428.30 652.53 18.54 2.43

8 38.95 10.03 22.85 759.70 822.80 35.73 2.03

9 3.46 25.38 429.27 5.88 1715.43 2.02 2.48

10 7.43 26.00 518.17 462.82 12.00 1.79 2.41

11 7.17 18.34 974.67 620.23 1999.01 13.15 37.53

12 44.03 403.21 47.19 315.09 2.85 23.77 14.38

13 3.19 87.98 6.75 7.56 116.28 1.93 2.75

14 297.48 0.27 63.62 1648.10 326.03 4.99 1.73

15 17.31 3.30 259.51 4.20 17.44 77.27 29.85

16 14.04 485.96 851.78 6904.50 19.99 10.73 20.63

17 17.18 3.75 50.80 849.19 8.19 3.13 3.46

18 500.47 287.00 996.98 18.16 25.37 1.81 11.00

19 27.33 17.09 3.49 93.63 3.60 4.88 4.39

20 2.64 32.15 1122.08 1.47 14.88 2.02 208.02

21 71.54 1804.45 41.68 2057.37 1084.94 2.40 48.82

22 7.58 15.85 2871.24 6.13 33.25 22.09 8.02

23 1070.80 451.31 2123.63 2851.02 474.6 2.87 3.83

Table B.2: Time Complexity Required of Different Algorithms : Breast-cancer

database

116

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 174.81 2356.90 13.61 8018.11 185.27 2.04 3.13

25 160.43 4.80 517.68 8144.93 137.90 2.66 7.83

26 296.75 0.36 5.84 2099.04 714.96 6.07 2.00

27 172.50 23.17 22.64 7215.77 37.76 3.26 11.95

28 92.87 225.41 245.59 130.47 111.53 2.26 45.12

29 230.35 348.49 113.42 226.68 894.30 4.64 7.48

30 685.33 0.84 52.67 1202.60 2502.92 2.27 8.58

31 30.89 2.24 2.09 32.74 38.58 7.79 39.62

32 26.94 2.23 1.74 5.22 2.96 4.64 5.34

33 5.19 53.31 2.48 13.59 70.87 2.02 8.85

34 7.92 583.08 252.41 354.78 2207.10 2.70 2.12

35 1.52 7.70 73.50 318.53 81.46 0.60 9.93

36 129.76 17.02 378.96 71.49 20.87 8.01 0.60

37 101.53 0.58 314.65 153.05 2527.67 8.34 3.31

38 393.59 87.80 0.93 742.54 457.62 33.10 2.33

39 3.27 2.72 629.09 12.88 7.02 8.93 19.99

40 18.10 5.19 241.50 129.65 348.60 1.83 21.99

41 214.59 430.16 1.51 114.18 603.79 1.35 39.60

42 164.15 311.20 18.03 3.01 8.69 16.59 43.63

43 563.51 0.59 187.31 158.43 67.56 2.56 0.54

44 694.20 2.89 3.85 3036.37 21.28 25.98 6.38

45 27.12 1614.62 62.87 2069.17 5.08 9.30 2.23

Table B.2: (cont'd) Time Complexity Required of Different Algorithms : Breast-

cancer database

117

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 9 3 18 10 1 1 2 2

2 1 1 9 29 1 2 3 1

3 9 2 11 4 2 1 1 1

4 8 1 7 6 2 1 2 1

5 10 3 4 7 1 2 2 2

6 5 1 7 5 1 1 2 2

7 5 2 7 7 1 1 2 1

8 3 2 5 6 2 1 1 1

9 6 2 6 11 2 1 1 2

10 8 3 7 10 1 1 2 1

11 7 1 5 16 1 1 2 2

12 1 1 11 7 1 1 2 2

13 9 2 8 5 1 1 1 2

14 5 2 2 8 1 1 1 2

15 6 1 4 10 1 2 2 2

16 8 1 10 12 1 2 2 1

17 3 2 4 7 1 1 2 1

18 13 2 9 16 2 1 2 3

19 2 1 6 3 2 2 2 2

20 13 2 6 17 1 1 1 3

21 4 1 16 7 1 1 1 1

22 3 2 5 21 1 1 2 1

23 1 1 10 18 2 1 2 3

Table B.3: Network Size of Different Algorithms : Breast-cancer database

118

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 1 1 19 6 1 1 2 2

25 4 1 4 12 1 2 2 2

26 1 1 2 5 1 1 1 2

27 1 1 6 6 1 1 1 1

28 1 1 9 10 1 1 2 1

29 4 1 10 8 1 1 2 1

30 13 3 3 7 1 1 1 3

31 14 1 3 4 2 1 1 2

32 4 1 4 3 1 2 2 1

33 2 1 7 3 1 1 2 1

34 8 1 13 10 1 1 1 2

35 7 1 5 8 2 2 1 2

36 1 1 6 10 2 2 1 2

37 5 2 2 10 1 1 2 1

38 1 1 8 2 1 1 1 2

39 9 2 4 12 1 1 1 1

40 13 2 4 9 1 1 2 1

41 1 1 10 3 1 1 1 1

42 2 2 9 6 1 2 1 1

43 1 1 2 8 1 1 2 1

44 1 1 4 4 1 1 2 1

45 12 2 17 7 1 1 1 1

Table B.3: (cont'd) Network Size of Different Algorithms : Breast-cancer database

119

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 87.50 89.00 89.00 89.00 88.50 94.00 87.00 88.50 90.50

2 86.50 86.50 86.50 91.50 93.50 94.50 95.50 90.00 88.00

3 87.50 93.50 92.50 82.00 86.00 87.00 93.50 94.50 86.50

4 83.00 82.50 85.00 88.00 90.00 95.50 91.00 86.00 91.00

5 88.50 88^00 92.50 94.50 91.00 93.50 90.50 96.50 96.50

6 92.50 93.50 92.50 89.50 86.50 94.00 89.50 92.50 97.50

7 96.00 91.00 96.00 92.50 89.00 93.00 96.50 91.00 92.50

8 89.00 87.00 89.00 86.50 97.00 95.00 88.50 88.00 88.00

9 84.00 84.00 84.50 89.50 84.50 93.50 81.50 91.00 92.00

10 87.00 82.50 90.00 93.50 91.50 93.50 98.00 95.50 91.00

11 83.50 85.50 86.50 85.00 96.00 91.50 84.00 92.00 84.50

12 92.00 80.00 92.00 87.00 87.50 88.50 88.00 91.00 92.00

13 85.00 79.50 91.00 86.50 85.50 89.50 89.00 88.00 83.00

14 78.50 79.00 82.00 89.00 89.50 91.50 91.50 89.50 87.50

15 84.00 81.50 92.50 88.00 92.00 94.00 98.00 93.00 87.50

16 93.00 83.50 93.00 91.00 88.00 94.50 94.50 97.00 92.00

17 91.00 85.50 91.00 93.50 99.50 95.50 98.50 95.00 97.50

18 96.00 96.00 96.00 85.50 93.00 88.00 98.00 93.00 92.00

19 87.00 85.00 89.00 86.00 93.00 87.00 87.00 91.00 86.50

20 95.00 95.00 95.00 92.50 89.50 92.00 96.00 92.50 88.50

21 88.50 88.50 88.50 84.00 86.50 96.00 83.50 91.50 83.50

22 87.00 87.00 87.50 92.50 97.00 91.00 93.50 97.00 93.50

23 83.50 85.00 85.00 93.00 86.50 86.50 84.00 87.50 90.00

Table B.4: Accuracy of Different Algorithms : Tic-Tac-Toe database

120

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 88.50 87.00 90.00 87.00 88.00 89.00 87.00 88.50 88.00

25 80.50 63.50 82.50 86.50 86.50 85.50 90.00 92.00 89.50

26 88.00 85.00 89.00 88.00 91.00 88.00 89.00 88.00 91.00

27 93.50 81.50 93.50 89.50 95.00 86.00 89.50 84.00 96.50

28 80.50 80.00 86.50 91.00 89.00 90.50 93.50 89.00 88.00

29 89.50 88.50 85.50 89.00 94.00 91.00 90.50 94.50 93.50

30 79.00 77.50 82.00 85.50 90.50 95.00 91.00 89.50 92.50

31 81.50 81.50 84.00 93.00 90.50 97.00 90.50 88.50 93.50

32 89.00 89.00 95.50 93.50 89.00 92.00 78.00 87.00 90.50

33 94.00 71.00 94.00 84.50 90.50 93.50 94.00 92.50 92.50

34 93.00 58.50 93.00 94.50 93.00 93.00 95.00 92.50 90.50

35 88.00 75.50 92.50 89.00 93.00 95.00 93.50 94.00 91.50

36 95.00 50.00 95.00 81.50 91.50 93.50 89.50 94.50 96.00

37 92.00 93.50 92.00 88.50 87.00 92.00 95.00 92.00 92.50

38 90.50 79.50 91.50 91.50 92.50 92.50 81.00 80.50 96.00

39 84.50 79.00 84.50 82.50 81.00 89.50 86.00 84.00 84.50

40 92.50 83.50 92.50 92.50 92.00 93.50 94.50 91.00 89.50

41 89.50 81.50 89.50 95.50 91.50 90.50 91.00 91.50 89.00

42 85.50 86.50 87.50 94.00 96.00 93.00 94.00 94.00 87.00

43 87.50 91.00 92.00 91.00 93.50 94.00 91.50 94.00 93.50

44 90.50 91.00 95.00 88.50 95.50 90.00 98.50 92.50 98.00

45 92.50 82.00 93.00 85.50 91.50 94.50 84.00 91.00 91.50

Table B.4: (cont'd) Accuracy of Different Algorithms : Tic-Tac-Toe database

121

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 114.61 227.76 19.62 958.60 51.00 53.67 29.31

2 81.61 54.03 16.91 176.86 66.16 21.30 19.86

3 202.10 41.55 50.45 23.95 620.89 135.63 22.25

4 72.56 14.13 28.49 15.32 47.05 49.21 29.45

5 156.63 27.74 72.53 76.13 45.33 57.11 43.38

6 143.29 373.14 40.48 5736.17 419.59 86.24 25.18

7 92.42 15.25 93.92 29.99 33.11 105.98 50.19

8 277.89 107.72 41.93 68.53 68.83 50.21 49.82

9 94.79 32.69 34.28 41.27 44.53 19.62 18.94

10 111.26 70.39 216.26 33.47 672.73 43.36 44.51

11 103.14 47.40 24.03 26.08 32.01 51.22 48.07

12 209.76 27.74 236.34 58.35 43.63 131.42 30.13

13 67.97 48.11 23.01 24.61 338.88 23.27 71.93

14 175.39 28.49 58.20 87.31 22.86 28.15 32.50

15 92.92 28.19 48.88 180.07 93.47 84.72 39.48

16 362.58 17.49 41.83 45.69 517.76 61.24 48.63

17 259.92 42.69 57.04 25.17 61.70 47.09 33.30

18 145.49 92.94 151.03 68.52 136.78 50.69 68.51

19 116.47 50.76 135.19 41.22 49.14 33.50 69.60

20 87.00 34.33 67.22 447.18 256.34 30.02 119.20

21 171.09 13.97 23.91 60.74 49.75 45.74 51.48

22 70.95 273.73 54.18 1405.30 355.82 87.65 26.26

23 56.31 107.75 21.24 100.81 42.75 53.05 33.72

Table B.5: Time Complexity Required ofDifferent Algorithms : Tic-Tac-Toe database

122

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 86.71 24.74 58.82 59.14 41.36 38.93 51.31

25 337.10 44.36 693.93 32.91 20.10 18.62 53.10

26 73.25 36.40 38.04 37.76 31.72 73.06 24.83

27 124.03 32.80 51.03 155.27 23.25 28.34 66.00

28 102.02 48.47 837.00 369.24 27.59 35.46 77.78

29 98.12 142.06 80.12 76.54 25.07 28.68 72.84

30 71.81 46.73 15.84 46.06 49.17 45.40 69.29

31 124.85 106.02 43.29 38.42 73.77 46.62 54.01

32 92.42 33.00 43.56 58.68 94.82 40.60 19.08

33 791.02 27.15 61.21 81.36 48.26 15.72 84.27

34 235.15 84.13 116.57 28.34 144.52 41.97 77.58

35 132.06 18.32 87.62 92.77 34.97 35.41 36.16

36 124.30 229.22 23.08 208.13 48.35 39.45 26.29

37 380.35 29.62 29.76 81.59 366.53 52.99 39.84

38 121.68 63.88 44.68 69.74 38.38 37.17 68.77

39 131.92 31.18 14.88 35.00 19.89 26.07 17.14

40 186.49 90.44 20.63 52.51 96.94 24.12 34.48

41 332.76 63.15 2442.05 106.69 114.62 68.09 29.81

42 57.05 47.38 28.27 43.48 38.32 22.32 48.94

43 160.45 57.99 47.28 116.96 82.30 47.13 108.48

44 185.97 32.04 109.69 35.45 55.37 43.63 19.13

45 239.36 30.37 41.74 346.53 47.46 278.36 25.90

Table B.5: (cont'd) Time Complexity Required of Different Algorithms : Tic-Tac-Toe

database

123

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

1 4 4 3 2 2 2 2 1

2 5 5 2 2 1 2 1 1

3 1 1 2 2 2 2 1 2

4 5 5 1 2 1 2 4 1

5 3 3 2 5 2 2 1 1

6 1 1 6 2 1 4 1 1

7 2 2 1 5 2 1 3 2

8 2 2 3 2 2 3 2 1

9 3 3 2 2 1 3 1 1

10 3 3 3 3 2 2 1 2

11 4 4 2 2 2 2 2 3

12 2 3 2 5 2 3 2 2

13 3 3 2 2 1 2 2 3

14 5 5 1 4 3 1 2 1

15 3 2 2 2 2 2 3 2

16 2 2 1 3 2 1 1 2

17 2 2 3 3 1 1 1 1

18 2 2 4 3 4 2 1 2

19 4 4 2 4 2 3 1 3

20 3 3 1 4 1 1 1 1

21 4 4 1 1 1 2 2 2

22 4 4 7 2 2 1 1 1

23 4 4 2 1 3 2 1 2

Table B.6: Network Size of Different Algorithms : Tic-Tac-Toe database

124

Sample (1) (2) (3) (4) (5) (6) (7) (8) (9)

24 4 4 1 3 3 2 3 2

25 5 5 3 8 1 1 1 2

26 4 4 2 2 2 2 3 1

27 2 2 2 3 2 1 2 2

28 4 5 2 8 3 1 2 3

29 3 4 5 5 3 2 2 2

30 5 4 3 1 1 2 1 2

31 5 5 4 2 1 3 3 2

32 2 1 1 2 2 3 2 1

33 3 3 2 2 1 2 1 2

34 1 1 2 3 1 1 2 2

35 1 1 1 2 1 1 2 2

36 1 1 2 2 1 2 2 2

37 1 1 2 3 1 1 2 1

38 5 5 2 4 2 3 3 1

39 4 4 2 1 1 1 1 1

40 3 3 2 2 1 1 2 2

41 1 1 2 11 1 2 2 2

42 5 5 3 1 2 2 1 2

43 2 2 2 3 2 2 1 2

44 2 2 2 3 2 1 2 1

45 1 1 2 2 1 3 1 1

Table B.6: (cont'd) Network Size of Different Algorithms : Tic-Tac-Toe database

Bibliography

1] Tam, K. Y., and Kiang, M. Y., "Managerial applications of neural networks :
the case of bank failure predictions," Management Science, vol. 38，pp. 926-947,
July 1992.

2] Mangasarian, 0 . L., and Wolberg, W. H., "Cancer diagnosis via linear program-
ming," SIAM News, vol. 23, pp. 1-18, Sept. 1990.

3] Mangasarian, 0 . L., and Wolberg, W. H., "Multisurface method of pattern sep-
aration for medical diagnosis applied to breast cytology," Proceedings of the Na-
tional Academy of Sciences, U.S.A., vol. 87, pp. 9193-9196, Dec. 1990.

4] Mangasarian, 0 . L., Setiono, R., and Wolberg, W. H.，"Pattern recognition via
linear programming: Theory and application to medical diagnosis," Large-scale
numerical optimization, pp. 22-30, 1990.

5] Wilson, R. L., and Sharda, R., "Bankruptcy prediction using neural networks,"
Decision Support Systems, vol. 11，pp. 545-557，1994.

'6] Michie, D.，Spiegelhalter, D. J., and Taylor, C. C .， e d s .， M a c h i n e Learning,
Neural and Statistical Classification. Artificial intelligence (Englewood Cliffs,
N.J.)，Englewood Cliffs, N.J. : Prentice Hall, 1994.

7] Denoeux, T., "Pattern classification," in Neural Network Applications,
pp. F1.2:l-F1.2:8, IOP Publishing Ltd and Oxford University Press, 1997.

"8] Han, I., Chandler, J. S., and Liang, T. P., "The impact of measurement scale
and correlation structure on classification performance of inductive learning and
statistical methods," Expert Systems With Applications, vol. 10，no. 2，pp. 209-
221, 1996.

9] Chung, F. L., and Lee, T., "A node pruning algorithm for backpropagation
networks," International Journal of Neural Systems, vol. 3, no. 3, pp. 301-314,
1992.

10] Ragsdale, C. T .， a n d Stam, A., "Introduction discriminant analysis to business
statistics curriculum," Decision Science, vol. 23, pp. 725-745, 1992.

11] Yarnold, P. R., and Soltysik, R. C., "Refining two-group multivariable classifi-
cation models using univariate optimal discriminant analysis," Decision Science,
vol. 22, pp. 1159—1164，1991.

12] Winston, P. H., Artificial intelligence. Addison Wesley, 3rd ed., 1992.

125

BIBLIOGRAPHY 126

13] "An overview of neural computing technology," tech. rep., DTI NeuroComputing
Web, URL:http://www.clients.globalweb.co.uk/nctt/guidelines, Mar. 1996.

14] Archer, N. P., and Wang, S., "Application of the backpropagation neural network
algorithm with monotonicity constraints for two-group classification problems,"
Decision Sciences, vol. 24, no. 1，pp. 60-75, 1993.

15] Sarle，W. S., "Neural network faq, part 3 of 7 : Generalization，，，
tech. rep., periodic posting to the Usenet newsgroup comp.ai.neural-nets,
URL:ftp://ftp.sas.com/pub/neural/FAQ3.html, 1997.

16] Sietsma, J .， a n d Dow, R. J. F., "Neural net pruning - why and how," IEEE
International Conference Neural Networks, vol. 1，pp. 325-332, 1988.

17] Kwok, T. Y., and Yeung, D. Y.，"Constructive algorithms for structure learning
in feedforward neural networks for regression problems(to be published)," IEEE
Transactions on Neural Networks, 1 9 9 7 .

18] Eberhart, R. C., and Dobbins, R. W .， N e u r a l Network PC Tools : A Practical
Guide. Academic Press, 1990.

19] Patterson, D. W., Artificial Neural Networks : Theory and Applcations. Prentice
Hall, 1996.

20] Narazaki, H., Member, IEEE, Watanabe, T., and Yamamoto, M., "Reorganizing
knowledge in neural networks : An explanatory mechanism for neural networks
in data classification problems," IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 26，pp. 107-117, Feb. 1996.

21] Sarle, W. S., "Neural network faq, part 1 of 7 : Introduction,"
tech. rep., periodic posting to the Usenet newsgroup comp.ai.neural-nets,
URL:ftp://ftp.sas.com/pub/neural/FAQ.html, 1997.

22] Devroye, L., Gyorfi, L., and Lugosi, G., "A probabilistic theory of pattern recog-
nition," in NY:Springer, 1996.

'23] Farag6, A., and Lugosi, G., "Strong universal consistency of neural network
classifiers," IEEE Transactions on Information Theory, vol. 39, pp. 1146-1161,
1993.

24] Lugosi, G., and Zeger, K.，"Nonparametric estimation via empirical risk min-
imization," IEEE Transactions on Information Theory, vol. 41, pp. 677-678,
1995.

25] Freeman, J. A.，and Skapura, D. M., Neural Networks : Algorithms, Applications,
and Programming Techniques. Addison Wesley, 1991.

26] Gallant, S. I., Neural Network learning and Expert Systems. The MIT Press,
Cambridge, London, England, 2nd ed., 1994.

27] Hinton, G. E .， "Connectionist learning procedures," Aritifical Intelligence,
pp. 185-234, 1989.

'28] Tanaka, H., and Ishibuchi, H.，"Possibilistic regression analysis based on linear
programming," in Fuzzy Regression Analysis (Kacprzyk, J., and Fedrizzi，M.,
eds.), PP. 47-60，Physica-Verlag, Heidelberg, 1992.

http://www.clients.globalweb.co.uk/nctt/guidelines
ftp://ftp.sas.com/pub/neural/FAQ3.html
ftp://ftp.sas.com/pub/neural/FAQ.html

BIBLIOGRAPHY 127

29] Sakawa, M., and Yano, H.，"Fuzzy linear regression and its applications," in
Fuzzy Regression Analysis (Kacprzyk, J., and Fedrizzi, M.，eds.), pp. 61-80，
Physica-Verlag, Heidelberg, 1992.

30] Peters, G.，"Fuzzy linear regression with fuzzy intervals," Fuzzy Sets and Sys-
tems, vol. 63，pp. 44-55，1994.

31] Savic, D. A., and Pedrycz, W., "Evaluation of fuzzy linear regression models,"
Fuzzy Sets and Systems, vol. 39, pp. 51-63, 1991.

32] Mache, N., Stuttgart Neural Network Simulator User Manual http://www-
ra.informatik.uni-tuebingen.de: University of Stuttgart, version 4.1 ed.

'33] Hansen, L. K., and Pedersen, M., "Controlled growth of cascade correlation
nets," Proceedings of the International Conference on Artificial Neural Networks,
vol. 1, pp. 797-800, 1994.

34] Thimm, G .， "Evaluating pruning methods," Proceedings of the International
Symposium on Artificial Neural Networks, D e c . 1 9 9 5 .

35] Hassibi, B., and Stork, D. G., "Second order derivatives for network pruning:
Optimal brain surgeon," Advances in Neural Information Processing Systems,
vol. 5, pp. 164-171, 1993.

36] Goutte, C., "On the use of a pruning prior for neural networks,"
i n IEEE Workshop on Neural Networks for Signal Processing,
(http://www.ei.dtu.dk/staff/groutte/PUBLIS/nnsp96.html), 1996.

37] Pedersen, M. W., Hansen, L. K.， a n d Larsen, J.，"Pruning with generalization
based weight saliencies : ^obd, ^bs;, in Advances in Neural Information Pro-
cessing Systems, vol. 8, pp. 521-528, Cambride, Massachusetts, MIT Press, 1996.

38] Mozer, M. C., and Smolensky, P., "Skeletonization : A technique for trimming
the fat from a network via relevance assessment," in Advances in Neural Infor-
mation Processing Systems, vol. 1, pp. 107-115, 1989.

39] Tanaka, H., Uejima, S., and Asai, K., "Linear regression analysis with fuzzy
model," IEEE Trans. Systems, Man and Cybernet, vol. 12，pp. 903-907, 1982.

40] Merz, C. J., and Murphy, P. M., "Uci repository of machine learning databases,"
tech. rep., Irvine, CA : University of California, Department of Information and
Computer Science, http://www.ics.uci.edu/ mlearn/MLRepository.html, 1996.

41] Schrage, L., LINDO : An Optimization modeling system. The Scientific Press,
fourth ed., 1991.

42] de la Maza, M., "Splitnet : Dynamically adjusting the number of hidden units
in a neural network," Proceedings of the International Conference on Artificial
Neural Networks, vol. 1, pp. 647-651, 1991.

http://www.ei.dtu.dk/staff/groutte/PUBLIS/nnsp96.html
http://www.ics.uci.edu/

h599b5EDD

:iiwmmm ssLJBjqLn >lHnD

