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Abstract of thesis entitled 
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for the degree of Master of Philosophy , 

at The Chinese University of Hong Kong in July, 1997 

The preconditioned conjugate gradient method is employed to solve Toeplitz 
system AnX = b. Some well-known circulant preconditioners were developed in 
the past. The main aim of this thesis is to develop an 0(nlogn) method of con-
structing a family of circulant preconditioners from B-splines to solve the Toeplitz 
systems. We find that our preconditioner works better than some well-known cir-
culant preconditioners, such as Strang's, T. Chan's and R. Chan's precondition-
ers, when solving the Toeplitz systems with the non-negative generating functions 
f with or without discontinuous points. Though the non-circulant band-Toeplitz 
preconditioners can work for the non-negative generating functions, the gener-
ating function f has to be given explicitly. The beauty of our preconditioner is 
that it can solve the Toeplitz systems without the knowledge of the underlying 
generating function. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

In this thesis we discuss the solutions of a class of symmetric positive definite 
systems A^x = b by the preconditioned conjugate gradient method, where A^ is 
an n-hy-n Hermitian Toeplitz matrix (i.e. the entries of A^ are the same along 
its diagonals). Clearly, A^ has the following form : 

^0 Ci-l • • • Ci2-n ^l-n 

ai ao a_i ci2-n 

An 二 : ai ao . •. : . (1.1) 

^n-2 • • • • G,-l 

dn-l ^n-2 . • • <̂1 <̂0 
In short, if A^ = [aij], then ciij 二 ai_j. 

Toeplitz systems appear in different kinds of applications in mathematics and 
engineering. In signal processing, solutions of Toeplitz systems are needed to ob-
tain the filter coefficients in the design of recursive digital filters, see Chui and A. 
Chan [13] and Haykin [21]. Time series analysis involves solutions of Toeplitz sys-
tems for the unknown parameters of stationary auto-regressive models, see King 
et al. [24]. Solutions of partial differential equations, solutions of convolution-
type integral equations, Pade approximations and minimum realization problems 
in control theory are involved in the applications of the Toeplitz systems, see 
Bunch [7] and the references therein. These applications give a strong motiva-
tion to mathematicians and engineers to develop fast algorithms to solve Toeplitz 
systems. 

By applying the direct method such as the Gaussian elimination method to 
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By applying the direct method such as the Gaussian elimination method to 
solve the Toeplitz systems, the algorithm requires 0{n^) operations. But since 
n-hy-n Toeplitz matrices are determined by only (2n - 1) entries rather than 
n^ entries, the solutions of Toeplitz systems are expected to be obtained in less 
than 0(n^) operations. Other direct methods, for instance, that are based on 
the Levinson recursion formula are in constant use, see Levinson (1946) [26]. His 
algorithm requires 0(n^) operations for solving an n-by-n Toeplitz system. Faster 
algorithms that require 0 (n log^ n) have also been developed, see, for instance, 
Brent, Gustavson, and Yun (1980) [6], Bitmead and Anderson (1980) [4], and 
Ammar and Gragg (1988) [1]. The stability properties of these direct methods 
for symmetric positive definite matrices are discussed in Bunch [7 . 

In addition to the direct methods for solving Toeplitz systems, much attention 
has been focused on the iterative method such as the preconditioned conjugate 
gradient method recently, see the survey paper by Chan and Ng [10 . 

Let us begin by introducing the notation that will be used throughout the 
paper. Let C27r be the set of all 27r-periodic continuous real-valued functions 
defined on [-7r,7r]. For all f G C27r, let 

ak = ^ f : f[e>-_de, k = 0, ±1, ±2 , . . • 

be the Fourier coefficients of / . For all n > 1, let An be the n-by-n Toeplitz 
matrix with entries cij,k = aj—k, 0 < j, k < n. The function f is called the 
generating function of Toeplitz matrices 4̂̂ , see Grenander and Szeg6 [18]. Since 
f is a real-valued function, we have 

a-k = ak, A; = 0 , ± l , ± 2 , - - . . 

It follows that An are Hermitian Toeplitz matrices. Note that when / is an even 
function, the matrices An are real symmetric. The jth partial sum of f is defined 
as 

Sj[f]{0)三 f a , e _ , yO e R . (1.2) 
k=-j 

In practical applications, the functions f are given. Examples of generating 
functions are the kernels of Wiener-Hopf equations, see Gohberg and Fel'dman 
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16], the functions which give the amplitude characteristics of recursive digital 

filters, see Chui and A. Chan [13], the spectral density functions in stationary 

stochastic processes, see Grenander and Szeg5 [18], and the point-spread functions 

in image deblurring, see Jain [23]. 

1.2 Preconditioned Conjugate Gradient Method 

As mentioned earlier, we want to solve the systems AnX = b by conjugate gradient 
method. The rate of convergence of the conjugate gradient method depends 
on the condition number of An see Axelsson and Barker [3]. In general, the 
smaller the condition number of An is, the faster the convergence will be. If the 
condition number of A^ is not small, we can use the method of preconditioning 
to increase the speed of the convergence rate. More precisely, instead of applying 
the conjugate gradient method to the system A^x = b, we apply the method 
to the transformed system AnX = b where An = M~^/^AnM~^/^, x = M)J^x 

and h — M~^/^b. The matrix M^ is called a preconditioner for An. It is hoped 
that the preconditioner should be chosen to minimize the condition number of 
M~^An and allow efficient computation of the product M~^v for any vector v. 

The preconditioner Mn for An can be viewed as an approximation to An that is 
easily invertible. 

1.3 Outline of Thesis 

The main aim of this paper is to propose a numerical procedure to construct 
a new family of circulant preconditioners from B-splines of different orders to 
solve the Toeplitz systems with non-negative generating function with or without 
discontinuous points. We will also apply the our circulant preconditioners to 1-
dimensional Toeplitz least squares problems and numerical results show that they 
perform better than the T. Chan's circulant preconditioner. 

The outline of the rest of the paper is as follows. In §2, some well-known 
circulant preconditioners for solving Toeplitz matrices are introduced and they 
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can be expressed in terms of the convolution product of the generating function 

of the Toeplitz matrix with famous kernel functions such as the Dirichlet and the 

Fejer kernels. Secondly, we consider a non-circulant band-Toeplitz preconditioner 

for Toeplitz matrices which can work for the Toeplitz systems with non-negative 

functions. In §3，we briefly introduce J5-splines and normalized B-splines. Futher-

more, we construct a translated and scaled version of B-splines. From this new 

spline, we formulate the sequence of B^ and the Fourier transform B^ of B^. 
A I ___ A I 

Graphs of B^ are plotted. They show that 5^ tends to the Dirac delta function 

(5 as n and 1 becomes larger. In §4, we introduce the numerical procedure for 

constructing circulant preconditioners from the translated and scaled B-splines. 

In §5, numerical examples and concluding remarks are given. In §6, we consider 

the Toeplitz least squares problems and the method of regularization. We re-

port on preliminary numerical experience with applying our preconditioners to 

1-dimensional Toeplitz least squares problems. 
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Chapter 2 
CIRCULANT AND NON-CIRCULANT 
PRECONDITIONERS 

In this chapter, we consider solving Toeplitz systems by the preconditioned 
conjugate gradient method with circulant matrix as preconditioner. Let us begin 
by introducing the circulant matrix. 

2.1 Circulant Matrix 

A circulant matrix is a special kind of Toeplitz matrices. An n-hy-n circulant 

matrix Cn is defined by 

Co C—i • • . C2_n Cl-n 
Ci Co C-i C2-n 

Cn 二 ： Ci Co ... ： , 

Cn-2 . . • ... C_i 

_ Cn-1 Cn-2 • • • Ci Co _ 

where C-k = Cn-k for 1 < k < n — 1. One of the beauties of a circulant matrix is 
that it can always be diagonalized by the Fourier matrix Fn, i.e. 

Cn = FnKFl (2.1) 

where the entries of Fn are given by 

[Fn]j.k = • ^ e ^ � 0 < i, k < n 一 1, (2.2) 

and Kn is a diagonal matrix holding the eigenvalues of Cn, see for instance Davis 
14]. Therefore, for any vector y, when computing the products such as CnV and 

C~^y, they can be expressed as FnAnF*y and FnA'^F*y respectively. Notice 
that they can be efficiently computed by Fast Fourier Transform in 0{n logn) 
operations. 
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Another important property of a circulant matrix should be emphasized is the 

relationship between the first column of a circulant matrix and its eigenvalues. 

By (2.1) and (2.2), if e： and 1̂  denote the first unit vector and the vector of all 

ones respectively, then we have 

y/nCn6i 二 FnAnlfi' (2.3) 

Hence if 
f CO \ 

Cn6i = Cl ， （2.4) 

\ Cn-1 / 
then the eigenvalues of Cn are given by 

MCn) = {K)jj - 2 c , e 2 _ " ^ 0 < > < n. (2.5) 
k=0 

Conversely, if the eigenvalues of Cn are given by the right hand side of (2.5), then 
the first column of Cn is given by (2.4). We also remark that \j can be found in 
0 (n logn) operations by taking the Fast Fourier Transform of the first column of 
Cfi. 

For an n-hy-n Toeplitz matrix A^, the product AnV can also be computed by 
Fast Fourier Transform by first embedding An into a 2n-by-2n circulant matrix: 

丨 An * ) i y \ = ( Ar,y、 

V * ] " ) \ 0 yl _ V 0 ) ， 

see Strang [31]. Thus we can carry out the multiplication as described above by 
the decompositon (2.1). It follows that this multiplication requires 0(2nlog2n) 
operations. 

2.2 Circulant Preconditioners 

The idea of using the preconditioned conjugate gradient method with circulant 
preconditioners for solving positive definite Toeplitz systems was first proposed 
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by Strang [31] in 1986. Instead of solving AnX = 6, we solve the preconditioned 
system C"M^a: = C'^b by the conjugate gradient method with Cn being a cir-
culant preconditioner. Since then, many circulant matrices were developed as 
preconditioners for Toeplitz systems, see for instance [12, 22, 25]. In the follow-
ing, we introduce some well-known circulant preconditioners such as Strang's, T. 
Chan's and R. Chan's circulant preconditioners. Befor we begin our discussion, 
let us recall the construction of ToepJitz matrices. We denote by An[f] the n-hy-n 

Toeplitz matrix with entries CLj,k = CLj_k, where for all integer k, 

(̂ k = ^ r f { 0 ) e - ' ' U 0 , /c = 0,±l，±2，... 
Z7T J-Tx 

be the Fourier coefficients of f. The function f is called the generating function 

of Toeplitz matrix An. 

2.2.1 Strang's Preconditioner Sn[f]-

Given An[f], Strang's preconditioner Sn[f] is defined to be the circulant matrix 
that copies the central diagonals of A^lf] and reflects them around to complete 
the circulant, see Strang [31]. More precisely, the A:th entry in the first column 
of Sn[f] is given by 

f 
,erm au 0<k< [n/2j, 
[On[jl)kO = 

CLk—n [n/2j < k < n. 
、 

2.2.2 T. Chan's Preconditioner T^[/. 

Given An[f]j T. Chan's preconditioner Tn[f] is defined to be the circulant matrix 
with diagonals that are arithmetic average of the diagonals of An[f] (extended to 
length n by wrap-around when necessary), see T. Chan [12]. More precisely, the 
entries in the first column of Tn[f] are given by 

{Tn[f])ko = -{{n - k)ak + ka,n-k}, 0 < k < n. 
Tlf 
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2.2.3 R . Chan's Preconditioner Rn[f]-

Given An[f], the corresponding R. Chan's circulant preconditioner Rn[f] has 

the first column given by 
f 

, 7 ? m � ao A; = 0, 
�Kn J )kO = _ 

ak + an-k 0 < k < n, 
w 

see R. Chan [8 . 
The convergence results for these circulant preconditioners are all based on the 

regularity of the generating function f. A general result is that if f is a positive 
function in the Wiener class, then for large enough n, the preconditioned matrix 
has eigenvalues clustered around 1. In particular, the preconditiond conjugate 
gradient method applied to the preconditioned system converges superlinearly 
and the n-by-n Toeplitz system can be solved in 0(nlogn) operations. However, 
we remark that if f has a zero, then the result fails to hold and circulant precon-
ditioned systems can converge at a very slow rate, see the numerical examples in 

§5. 

2.3 Circulant Preconditioners from 

Kernel Function 

Recently, R. Chan and Yeung [11] introduced a method of finding and analyzing 
circulant preconditioners for Toeplitz systems. Circulant preconditioners are con-

/N 

sidered as convolution product of the generating function with some kernels Cn. 
For example, Strang's and T. Chan's circulant preconditioners are constructed 
by using the Dirichlet and Fejer kernels, respectively. Recall that the eigenvalues 
of Strang's preconditioner Sn[f] are given by 

^ / ] ) = ( ½ * / ) ( ¾ 0 < i < n , 
TX 

where the convolution of the Dirichlet kernel with f is given by 

(^LtJ * fM三去j: A f � ( ^ — 禱 她 
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and 
_ = ^ ^ ^ ^ ^ , ^ = 1 ,2 , . . . . sin ̂ 0 

The eigenvalues of T. Chan's preconditioner T„[/] are given by 

Xj{Tn[f]) = {F, * / ) ( ^ ) , 0 < j < n, (2.6) 
y\ 

where the Fejer kernels are given by 

_ 二 去 闻 2 ， H , 2 , . . . . 
k \sm^Oy 

Similarly, the eigenvalues of R. Chan's preconditioner Rn[f] is given by 

Xj{Rn[f]) = {Dn-i * / ) ( — ) , 0 < j < n. (2.7) 
T~t 

Most of the known circulant preconditioners, for instance the Huckle's pre-
conditioner and the Ku and Kuo's preconditioner, can be derived easily from this 

• 

approach. We can also apply the above idea to design other circulant precondi-
tioners from kernels such as the von Hann kernel, Hamming kernel, and Bernstein 
kernel that are commonly used in function theory [33] and signal processing [20 . 

A A 

We note that the convolution products Cn * f of these kernels Cn with gen-
erating function f are just smooth approximations of the generating function f 

itself. This means that these circulant preconditioners are designed so that their 
27TJ 27T7 eigenvalues approximate the value of f at , 0 < j < n. Thus if / ( ) can be 
n — n 

computed efficiently, then the circulant preconditioners with eigenvalues given by 
27Tj / ( ) is certainly a good choice. Its corresponding kernel isjust the Dirac delta 
7% 

function (̂ . In other words, if the kernel Cn is close to the Dirac delta function J, 
then the constructed circulant matrix will be a good preconditioner. 

2.4 Non-circulant Band-Toeplitz Preconditioner 

In section 2.2, we note that if the generating function f has a zero, the circulant 
preconditioned systems do not work well. The following theorem shows that when 
/min = 0, the condition number of Toeplitz matrix A is not uniformly bounded 
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and A is ill-conditioned. Tyrtyshnikov has proved theoretically [32] that Strang's 

preconditioner will fail in this case. 

Theorem 2.1 (R . Chan (1991) [8]) Suppose that f{0) - /min has a unique 

zero of order 2v at 0 =礼.Then for all n > 0，we have 

Amin(^) < difmin + 在2饥-\ 

and 
• > "3n2" 
_ � 4 + “n2"， 

where {di)^_^ are some constants independent of n. 

R. Chan in [8] resorted to using band Toeplitz matrices as preconditioners 
instead of finding other possible circulant preconditioners. He has used trigono-
metric polynomials of the form (2 — 2 cos(^ — ^o))" of fixed degree to approximate 
the non-negative generating function f around the zeros Oo of / rather than by 
convolution products of f with some kernels. The power v is the order of the 
zero 0̂ and is required to be even number. The linear convergence of the result-
ing preconditioners has been proved. The band-width of the preconditioners is 
2v + 1 and its diagonals can be obtained by using Pascal's triangle. It is shown 
in [8] that the total number of operations per iteration is of order 0(nlogn) as 
V is independent of n and the overall storage requirement in the preconditioned 
conjugate gradient method is about (8 + u)n. 

The advantage of using this band-Toeplitz preconditioners is that trigonomet-
ric polynomials can be chosen to match the zeros of / , so that the preconditioned 
method still works when f has zeros. However, the drawback of using these band-
Toeplitz matrices as preconditioners is that the generating function f should be 
given explicitly, otherwise we cannot construct the band-Toeplitz precondition-
ers. In addition, when f is positive, these preconditioned systems converge much 
slower than those preconditioned systems by circulant preconditioners. 
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Chapter 3 
B-SPLINES 

3.1 Introduction 

Let {ui)^i be a set of functions defined on the set I - [a, b] and let ti,..., tm be 

points in I such that ti < t2 < . •. < tm. Define 
_ • 

Ui{h) U2{t1)…Um{ti) 

^ ( h,…，tm \ 」‘例(艺2) U2{t2) ... Um{t2) 
D = det . 

• « . • 

乂 ^1 ？ . . . ， ^ m y : . • . 
_ Ui{tm) U2{tm).…Wm(tm). 

Given points ^1,^2,... ,tr+i and a function /，we define its r-th order divided 

difference over the points ti, t2, . . . , tr+i by 

D l̂5 2̂ • • • , tr tr+1 

Y 1) ^5 • • . ： ^ ？ f J 
1̂? • . • , tr+l] J —— 7 ^ . 

jj 1̂ ？ 2̂ • • • 5 tr ^r+l 
1 ,广 rf*T 一1 ^T 

、 丄 , 山， * * • , *AJ , *iy 》 

In the following, let us introduce the truncated power function: 

Or - yY+ = {x - yY{x - y ) l , j > 0 

where 
， 

( 、o 0， 工 < y, {x 一 y)\ = 
1, X > y. 

‘ 

B-splines were first introduced by Schoenberg in [29]. In this section, let 
us begin by introducing the r-th order B-splines as appropriately scaled divided 
differences of the truncated power function. 
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Definit ion 3.1 Let ... < y_i < yo < Vi < V2 < ••. be a sequence of real 

numbers. Given integers i and m > 0，we define 

f 

0爪(工)=|(—1)爪[队”.-，队+爪](工—^7一1, if 2/¥<队+爪， (3.1) 
^ 0, otherwise. 

w 

for all real x. We call Qf{x) the mth order B-spline associated with the knots 队， 

...，yi+m* 

For m=l, the B-spline associated with yi < yi+i is particularly simple. It is the 

piecewise constant function 

‘ I 
^1 / � 11-, 1 — ?/., yi — ^ < yi+i, 
Q]{x)=队+1 队 

0, otherwise. 
k 

Theorem 3.1 (Schumaker [30]) Let m > 2，and suppose yi < Vi+m- Then for 

all X G R , 

『⑷ = { x - y i ) Q T - ' { ^ ) ^ { y i ^ m - x ) Q T ^ - : { x ) 
‘ — (jji+m 一 Vi) . 

This provides a recursion relation whereby 5-splines of order m can be related 

to J5-splines of order m — 1. 

So far we have said nothing about the size of B-splines. The B-splines Q^{x) 

introduced can have widely different sizes depending on the location of the knots. 

For example, in the interval [i/i, Vi+i], the B-spline 

Q]{x) = —~~ 
‘ Vi+1 - Vi 

can be extremely large or extremely small, depending on the spacing of the yi,s. 

For computational purposes it is not acceptable to deal with functions that are 

too small or too large. This suggests that we should introduce some normalization 

of the B-splines. 
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Definition 3.2 Let 

Nr{x) = {vi^m - yi)QT{x) 

where Q^{x) is the B-spline defined in Definition (3.1). We call N^ the normal-

ized B-spline associated with the knots 队，..•, yi^m-

For m=l , the normalized B-spline associated with yi < yi+i is given by 
f 

^ , i , � 1, Vi < ^ < yi+i, N|{x)= 
0, otherwise. 

‘ 

For m=2, the normalized B-spline associated with y^ < yi+2 is given by 

’ i ^ i , 认 ^ 工 < 队+1， 

咖 = < 

. :r ;f+i ,糾1 ^ 工 < 队+2-
In many applications of splines, it suffices to work with equally spaced knots. 

This leads to simplifications in the theory as well as to substantial savings in 
computation. It follows that we want to discuss the B-splines with equally spaced 
knots. 

We say that a set of knots {•..,队，队+i,. • •} is uniform with spacing h provided 
that Pi+i — Pi 二 h for all i. For uniformly spaced knots it turns out that any 
B-spline can be obtained from one basic jB-spline by translation and scaling. Let 

『 ( 和 £ ( — 气 — 收 - 1 
z=0 爪 . 

This is the usual B-splines associated with simple knots 0,1, • • •, m. It belongs 
to C^-2(_cx), oo) (Schumaker [30]). Associated with Q^, we also introduce 

the normalized version 

N^{x) = mQ^{x). (3.2) 

Theorem 3.2 (Schumaker) [30]) Suppose 2/i,...,2/i+m are uniformly spaced 

knots with spacing h. Then 

QT{x) = i g - ( ^ ) 
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and 

• ⑷ = A r ( 〒 ） 

For convenient reference, we now give the explicit formulae for the polynomial 

pieces of N^{x) for m=2, 3 and 4. 

f 

。 X, 0 < X < 1, 
N^{x) = , _ 

(2-x), 1 < X < 2. 
w 

夸， 0 < : r < l , 

N\x) = (-2^^ + 6^-3)^ 1 < 工 < 2, 

‘ 1 ^ ^ ， 2 < . < 3 . 

， X , 0 < x < l , 

, ( 和 ( - 3 x 3 + m^-12x4-4)^ i < , ; < 2 , 

� N^{A-x) , 2 < X < 4. 

The normalized B-splines N^ and N~ are shown in Figure 3.1. 
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0.8r — ~ I 1 1 1 1 1 0 7 | ~ — ~ I 1 1 ‘ ‘ ‘ — ^   

• • 
0 0.5 1 1.5 2 2.5 3 '0 0.5 1 1.5 2 2.5 3 3.5 4 

Figure 3.1 (left) The normalized 5-spline N\ (right)The normalized B-spline N^. 
Several of the formulae involving jB-splines in the preceding discussion can be 

simplified in the case of equally spaced knots. For example, the basic recursion 

formula reads 
= x Q ^ - ' { x ) ^ { m - x ) Q ^ - ' { x - l ) 

m 
or in terms of the normalized B-spline 7 V , 

N^{x) = xQ^-\x) + (m — x)Q^-^(x — 1). 

3.2 New Version of 5-Splines 

Before discussing further, we want to introduce a slightly translated and scaled 
version of the normalized B-splines N^ defined in (3.2) 

召 � ） 二 ^ ^ ^ [ " ’ ^ ¥ ) ] ，V ^ R (3.3) 

where max(B^) is the maximum value of B^(x) for all x e R. This spline is 

symmetric about the origin, has support on [-^¾^, ^¾ ]̂ and the value of B^(0) 

for all m is scaled to one. For m odd, it has simple knots at the integers, while 

for even m, the knots are at the midpoints between the integers. 

In the following, we give the explicit formulae for the translated and scaled 

version of the normalized JB-splines N^ for m= 0, 1 and 2. 
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, 
^ 1, - 1 / 2 < X < 1/2, … � 

B\x)= , 丨 一 ， （3.4) 
0, otherwise. 

‘ 

y 

D l / � 1+工， —1 S l < 0 , , M 
B^{x) = (3.5) 

1 — X, 0 < X < 1. 
w 

‘ 2 | ^ + 2x + I， -3/2 < X < -1/2， 

B^{x) = ^ ^ + 1, - 1 / 2 < X < 1/2, 

‘ ^ - 2 o : + |, 1/2 < X < 3/2. 

The corresponding graphs are shown in Figures 3.2 and 3.3. 

D Q 
o' 1 ‘ • 1 i 1 ‘ ‘ ‘ ‘ <~‘~̂  0̂  ‘ ‘ 1 1 ‘ ‘ ‘ ‘ ‘ ^ 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -1 -0.8 -0.6 -0,4 -0.2 0 0.2 0.4 O.G 0.8 1 

Figure 3.2 The translated and scaled B-spline 5� ( le f t ) and B^(right). 

• 
-1.5 -1 -0.5 0 0.5 1 1.5 

Figure 3.3 The translated and scaled B-spline B^ 
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In (3.4), we note that the support of B^{x) is from - 1 / 2 to 1/2. We divide 

the support into 2n equal partitions associated with 2n + 1 knots 

T—n, ^—(n—1) j . •.，工—l,工0, ^1? . . . , ^n-l ？ ^n* 

By using the formula of B^(x) in (3.4), we have 

f l , i = 0 ,± l ,±2 , . . .，±(n — l ) ,n， 
伊 ⑷ = n . 

0, i = n. 
K 

For the convenience of constructing our preconditioners in the next chapter, we 

now introduce a new sequence B^ from B^{x). This sequence is obtained by taking 

n equally spaced samples of the function B^{x). More precisely, B^ = {bl = 

B%Xk)] for -n < k < n where ^ = b^_^ = 0}. In short, B^ = {0,1，1,..., 1，1,0}. 

In addition, by using b^ for -n < k < n as the Fourier coefficients，we can 
A 

find the Fourier series B^{0) which containing these 2n + 1 coefficients. 

In the following, we let 

B ' M 三 £ b l e _ . (3.6) , 
h=-n 

Then, we see that 

K{o) = E 严 
k=-{n-l) 

n-1 
= ^ e-

k=-{n-l) 
^-i{n-l)d^l — gi(2n-l)0j 

= r ^ 
g-i(n-l)0 _ gm0 

= ~ 1 - 6访 ~~~ 
e^(n-i)0 _ g-i(n-i)0 

= ~ ~ e i ¥ - e-中~~~ 

sin(n — ^)0 
二 sin(i^) 

= b n - i { 0 ) , 



Chapter 3 B-splines 18 

where Drn{0) is the well-known Dirichlet kernel. This means that B^{6) equals to 

the Dirichlet kernel A i - i ( " ) . In Figures 3.4 to 3.6, the graphs of B^{0) for n=16, 
A r\ 

32, 64，128 and 256 are plotted. Notice that the graph of B^{0) is almost like a 

Dirac delta function S as n increases. However, we note that even for n = 256, 

the function B^{0) still have significant ripples away from the origin. 
35| 1 1 1 1 1 1 1 1 7 0 | ~ 1 1 1 ‘ ‘ ‘ ‘ 

30 • 1 60-

25. • SO. • 

20 • • 40_ -

15- • 30- • 

1 0 - • 2 0 - -

5 • • 10- • 

0- /VVVVV\/^ II^Y/VVVVX . � • ÂAA/wwwvV\̂  Hj\/VVWWwwwN • 

_iol 1 1 ‘ 1 1 1 1 1 -2<y ‘ ‘ ‘ 1 ‘ ‘ ‘ 
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 

Figure 3.4 The graph of B^{9) where n=16(left) and n=32(right). 

1 4 0 i ~ I 1 1 1 1 r 1 1 300| 1 1 1 1 1 1 1  

120 • 
250 • • 

100 . • 

2 0 0 - • 

8 0 -

60. • 150- -

40 • • 100 - • 

20 • _ 
I 50- • 

0 , ^ ^ ^ ^ ^ ^ ^ ^w^ ^ ^ ^VWA/y ^ ^/^V^AArv^A^VN/^  

0- -'N.^%^sA/U u V V ^ ^ • 

-20 • ^ V 
-4?4 -3 -2 -1 0 1 2 3 4 ~^% -3 -2 —1 0 1 2 3 4 

Figure 3.5 The graph of Bl{0) where n=64(left) and n=128(right). 
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e00j 1 1 1 — I 1 ' > 

500 • . 

400- • 

300 - -

2 0 0 - • 

1 0 0 - -

0 • -^^-WS^ ^A^“••* • •"•' ‘ ‘ 

_^Qf)l I • , ‘ ‘ ‘ * ‘ --

“ 二 4 -3 -2 -1 0 1 2 3 4 

Figure 3.6 The graph of B^{0) where n=256 

Similarly, for B^{x), the support is from —1 to 1. We divide the support into 

2n equal partitions associated with the 2n + 1 knots a:_n,..., Xo,...，rTn-i, ^n- By 

using the formula of B^{x) in (3.5), we have 

n — |j| . z 1 

1 , J < n — 1, 
B{xj) = n 

0, otherwise. 

Hence again we take n evenly spaced samples of B^{x) and construct a new 
sequence B^ = {bl = B^{xk)] for -n < k < n where b^ = b\^ = 0}. In short, 

1 _ 1 n — 1 n - 1 1 . 
^n ~ l̂ ?——’...， ，丄， “ , . . . , ~ ' U/. 

n n n n 八 

From the sequence B\, we form the Fourier series B^(^) which will have the 

Fourier coefficients bl for —n < k < n, i.e. 

m 三 t 咖 制 

k=-n 

Then we have 

Bl{0) = E ble^e 
k=-(n-l) 

二 ^ ^ ~ W^ike 
乙 71 

k=-{n-l) “‘ 
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= 她 

here Fm{0) is the well-known Fejer kernel. This means that Bl{0) equals to 
the Fejer kernel Fn{0). In Figures 3.7 to 3.9, the graphs of Bl{0) for n=16, 
32, 64, 128 and 256 are plotted. Like the B^{0), we can see that the graph of 
Bl^{0) also converges to a Dirac delta function 5 as n increases. However we 
see that the ripples away from the origin are much smaller than that of B^{0). 

16| 1 1 1 T 1 1 1 35 1 1 1 1 r~ 1 1 

14- - 30- . 

12. • 25-

10 - • 
2 0 - • 

6 • -

15" • 

e • • 

1 0 -

:: • ^ 
0 . • ^ • ^ ^ V v > 0 - ^ ^  

_ o l I I 1 1 1 1 1 1 - 5 l " " 1 " 1 ‘ » 
Z4 -3 -2 -1 0 1 2 3 4 -A -3 -2 -1 0 1 2 3 4 

Figure 3.7 The graph of Bl{0) where n=16(left) and n=32(right). 

70| 1 1 1 1 1 I 1 1 140[ 1 1 1 1 1 1 1  

60 - - 120 • -

50 • • 

100- _ 

40 • 

8 0 - -

30 - • 

6 0 - • 

20 - • 

40- -

10 -

0- J ^ • 20- • 

J • . • • ' 1 nL_ 1 1 1 1̂  1 1  
"_4 _3 -2 -1 0 1 2 3 4 :4 -3 -2 -1 0 1 2 3 4 

Figure 3.8 The graph of 5 (̂6>) where n=64(left) and n=128(right). 
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300j 1 1 1 1 1 1  

250- • 

2 0 0 -

150 - • 

1 0 0 - • 

50- • 

?4 -3 -2 -1 0 1 2 3 4 

Figure 3.9 The graph of 8^(0) where n=256 

Using the same idea presented above, we can construct B!̂  and 台、.The 

graphs of &^ for 1 = 2 and 3 are given in Figures 3.10 to 3.15. Notice that these 
A A  

graphs show the same property as that of the B^ and B^. This means that when 
A j  

n becomes larger, the graphs of B^ is closer to the Dirac delta function S. In 
addition, we see that the ripples away from the origin, which occured in B^ and 

A 1 B^, are nearly disappeared. 

25| 1 1 1 I I 1 1 [ 45i 1 1 1 1 1 I I 

4 0 . 丨 

A 
2 0 • 丨 • 

35 • 

30 • • 
15 - -

25- • 

10- • 20- • 

15- • 

5- • 10- • 

。• • ： 11 : 
A I I 1 1 1 1 1 1 -5l ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

l 4 ^ -2 -1 0 1 2 3 4 ~4 -3 -2 -1 0 1 2 3 4 

Figure 3.10 The graph of Bl{0) where n=16(left) and 32(right). 
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90| 1 1 1 1 1 1 180| 1 T 1 1 ‘ ‘ 1  

80 • • 160 • “ 

70 - - 140 - -

60 • . 120 • • 

50 • . 100 • • 

40 • • 80 • • 

30 . 60 - • 

20- . 40- . 

10 • • 20 - • 

0- J L- 0 - ) L _ _ ^ ^ ^ ^ ^ ^ _ ^ _ _ _ _ 

"^-4 -3 -2 -1 0 1 2 3 4 - ¾ -3 -2 -1 0 1 2 3 4 

Figure 3.11 The graph of P^[6) where n=64(left) and 128(right). 

350. 1 , 1 1 1 1 1  

300 • • 

250- -

2 0 0 - -

150- • 

100 -

50- • 

0 - I  

~^-4 -3 -2 -1 0 1 2 3 4 

Figure 3.12 The graph of Bl{6) where n=256. 

12| 1 1 1 T 1 1 1 1 25| 1 1 1 1 ‘ 1 ‘ 1 

A I 
10- • 20. • 

8- - 15 • 

6 • • 10- • 

4 . - 5-

2 - - 0- ‘ ^  

. / \ - • 
?4 _3 -2 -1 0 1 2 3 4 ^ -3 -2 -1 0 1 2 3 4 

Figure 3.13 The graph of Bl{0) where n=16(left) and 32(right). 
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50| 1 1 1 1 1 1 1 1 100| 1 1 ‘ ‘ ‘ ‘ ‘ 

90- " 

40 - • „A 
8 0 -

70- • 
30 • 

6 0 • -

20 - - 50 - • 

40 -

1 0 - -

30- • 

j i 20- • 
0- ‘ ^ • 

1 0 - -

J • . • . . . . I ol . . ‘ ^    
-1?4 -3 -2 -1 0 1 2 3 4 二4 -3 -2 -1 0 1 2 3 4 

Figure 3.14 The graph of Bf^{0) where n=64(left) and 128(right). 
200| 1 1 1 -n— 1 1 1  

180 • • 

160 - • 

140- • 

1 2 0 - -

1 0 0 - -

8 0 - • 

6 0 - • 

40- -

20- • 

ol 1 1 1 U 1 1 1  

-4 -3 -2 -1 0 1 2 3 4 

Figure 3.15 The graph of B^{0) where n=256 
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Chapter 4 

CIRCULANT PRECONDITIONERS 
CONSTRUCTED FROM 
B-SPLINES 

In this section, we propose a numerical procedure to construct a family of 
circulant preconditioners for Toeplitz systems that are based on the translated 
and scaled B-splines introduced in the last section. According to the discussion 
in Chapter 2, the eigenvalues of the circulant preconditioner Cn can be derived 

/N 

from the convolution product of the generating function f and a kernel Cn, such 
as f * Cn- Using this idea, the first column of the circulant preconditioner can be 
obtained by using (2.3). For instance, we find that the eigenvalues ofR. Chan's 
circulant preconditioner Rn[f] are given by convolution product of the generating 
function f and the Dirichlet kernels in (2.7). It can be expressed as follows: 

Xj{Rn[f]) = (/*£>n-l)( — ), 0 < j < n 
TX 

m,2^A 
= S n - m - ) 

=ao + £ a^k|K + £ 石 严 * 

k=l A ; = 1 

= a o + £ w + ‘ f c } e2# /-
k=i 

= a o + £ { a , + a_(n_, )}e_/-
k=l 

=ao + J^{bla, + 6 V ^ n - J e _ / - . 
k=l 

As stated in (3.6), the Fourier series B^ contains the coefficients 均’ where 
bl = 1 for |A:| < n. It is clear that we are able to construct the (A; + l)-entry of the 
first column of the R. Chan's circulant preconditioner by adding the terms h\ak 
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and 6^(^_;t)a_(n-fc) where b^ and 6 (̂̂ _ )̂ are the A;-th and - ( n - k)-th coefficients 

o f B ^ 

That is to say, the first column of R. Chan's circulant preconditioner can be 

constructed as follows. 
g 

ao k = 0, 

{Rn[f])kO = * 

‘ blak + b\_i^^an-k 0 < k < n, 

Here we have related the entries of the first column of the R. Chan's circulant pre-
conditioner to the Fourier coefficients of B^. More precisely, we can construct the 
eigenvalues of the R. Chan's circulant preconditioner by the convolution product 
of the generating function / and the kernel B^. 

Similarly, the eigenvalues of T. Chan's circulant preconditioner T^[/], as in 
(2.6), are given by the convolution product of the generating function f and the 
Fejer kernel. The way of forming the eigenvalues of the Tn[f] is as follows: 

Xj{Tn[f]) = ( ; * ¾ ( - ) , 0 < j < n 
Hj 

= - 艺 ( n - \k\)ake^^''^'^ 
几 k=-{n-l) 

= - V ( n — k){ake_> + _ _ ' 卜 、 + ao 
化 
n-l „ _ jL n-l _ jL 

二 y !L_^a;^e2_'^ + 5 ： ! L _ ^ ^ # W n 
to ^ t i ^ 
n - l „ _ jL n - l jL 

= r^_2_|n + ^ ~ “ ^ " n 
h n r^. n k=0 k=l 

= E biai^e2__ + E 6 L ( n _ ^ n - , ) " ^ 
k=0 fc==l 

= a o + 2 ( ^ a , + 6L(,_ , )^_,)e2-""-
k=l 

Here, we note that the first column of T. Chan circulant preconditioner can be 
written as the sum of bla^ and 6i(^_/t)^n-fc where bl and 6i_(̂ _̂ ) are the A:-th 
and - ( n - k)-th. coefficients of B^. Thus the first column of T. Chan's circulant 



Chapter 4 Circulant Preconditioners Constructed from B-splines 26 

preconditioner can also be related to the the Fourier coefficients of ^ . We can 

use the following numerical procedure to construct the first column of the T. 

Chan's preconditioner. 

{Tn[f])kO 二 biak + 6i(n_fc)ttn-fe, • < ^ < 几 

As remarked in the last paragraph of Section 2.3 in Chapter 2, if we want 
to construct a good circulant preconditioner for the Toeplitz systems, the con-
volution product of the kernel and the generating function f should be a good 

八 r>, A -

approximation of f. From the previous section, we note that B^ and B^ are close 
to the delta function S as n increases. Since B^ is closer to the delta function than 
J5° and JB̂ , here we propose a numerical procedure to construct a new circulant 
preconditioner from B&. Using the same technique as mentioned above, the first 
column of the circulant preconditioner from B^ is obtained by 

{Bl[f])k0 = blcLk + bl^^_|^^ttn-k^ 0 < k < n. 

Hence the eigenvalues of circulant preconditioner constructed from B^[f] are given 

by 

X M f ] ) = E bla,_%J^ b;,�-an—ke^�=(软*/)(^), • < j < n. 
k=0 k=l 

In the next chapter, we will implement our preconditioners to different types 
of generating function / . The results show that our preconditioners work better 
than the well-known circulant preconditioners such as Strang's, T. Chan's and 
R. Chan's preconditioners and the non-circulant band-toeplitz preconditioner. 

We now consider the cost of solving Toeplitz systems An[f]x = b by using the 
preconditioned conjugate gradient method with the circulant matrice B^ con-
structed from B-splines as our preconditioners. It is known that the cost per 
iteration in the preconditioned conjugate gradient method is about 5n multipli-
cations and 5n additions plus the cost of computing the matrix-vector multiplica-
tions of AnV and (^)"^ci for some vectors y and d, see Golub and van Loan [17 • 
The matrix-vector multiplication A^y is able to be computed by the Fast Fourier 
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Transform by first embedding An into 2n-by-2n circulant matrix, see Strang [31 . 

The cost is about 2nlog(2n)+2n operations. As mentioned in Chapter 2, circu-

lant systems can be solved efficiently by the Fast Fourier Transform. Thus, the 

vector {Bl)~^d can be done by 0(nlogn) operations. Therefore, the cost per 

iteration of the preconditioned conjugate gradient method is of 0(nlogn). The 

cost of constructing the circulant matrix B^ is about 2n operations. It follows 

that the total number of operations per iteration is of 0(n logn) operations. As 

for the storage of preconditioned conjugate gradient method, we need to store 

five n-vectors only. 
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Chapter 5 

NUMERICAL RESULTS AND 
CONCLUDING REMARKS 

In this chapter, we compare our preconditioners with Strang's circulant pre-
conditioner, R. Chan's circulant preconditioner and T. Chan's circulant precondi-
tioner. We test their performances on thirteen functions defined on [-7r, 7r]. They 
are classified as four types. First one is the simple positive generating function: 

a ) / = ? + l . 

Second class is the positive generating functions with jumps: 
a)/ = (x + ̂ )2 + l , 

〒 + 10, -7T < X < 0, 

b ) / W = 

‘ fl^ + 0.1, 0<X<7T. 

Third is the non-negative generating functions having no jumps: 

a ) / = a;2, 

h)f = lxl', 
c)f = x\ 

d) / 二 1 — cos^, 
e)f = lx'{x'-l)l 

f ) / 二 7r20r2) 一 ^ 4 

The last is the non-negative generating functions having jumps: 
r 

a;2, |x| < 7r/2, 
a ) / ( x ) = 

1, 7r/2 < \x\ < 7T, 
h)f = x{x + l), 

f 

x\ X < 0, 
c)/{^) = n 

X, X > U, 
d)/ = (x + 7T)2. 
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The Toeplitz matrices A^ are formed by evaluating the Fourier coefficients of 

the test functions. In our tests, the vector of all ones is the right-hand side vector, 

the zero vector is the initial guess, and the stopping criterion is - ^ - < 10"^, 

where Vq is the residual vector after q iterations. All computations are done by 

matlab on an IBM 43P workstation. 
Tables 1-13 show the numbers of iterations required for convergence with 

different choices of preconditioners. In the tables, I denotes no preconditioner was 
used, B&, B^, Bl, B^, B^ and B^ are respectively our preconditioners constructed 
from B-splines B^ for m=0, 1, 2, 3, 4 and 5. Actually B^ and B^ are respectively 

I 

the same as the R. Chan's and T. Chan's circulant preconditioners. 
From the numerical results, we see that in all tests, our preconditioners per-

form better than many other well-known preconditioners, such as Strang's, R. 
Chan's, T. Chan's circulant preconditioners when solving the Toeplitz systems 
with the non-negative generating function with or without jumps. When compar-
ing the performance of our preconditioners and the band-Toeplitz preconditioner, 
we observe that the number of iterations required for convergence using our pre-
conditioners is less than that using the non-circulant band-Toeplitz preconditioner 
in Table 4. However, in Table 6, we see that our preconditioners work pretty well -
for small n only. Though the non-circulant band-Toeplitz preconditioners can 
work for the non-negative generating functions, the generating function f has to 
be given explicitly. That is the reason why we do not use these band-Toeplitz 
preconditioners in practice. The beauty of our preconditioner is that it can solve 
the Toeplitz systems without the knowledge of the underlying generating func-
tion. Moreover, among all the preconditioners constructed from B-splines, the 
B^ works the best almost in every case. 

Th 
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Preconditioner n 

Used 16 32 64 128 256 512 1024 

7 8 20 | i 56 67 70 71 

Strang's 8 8 6 5 5 5 5 

B^(R.Chan) 6 _ 5 _ _ 5 _ _ 5 5 5 5 

^(T.Chan) 8 7 _ 7 _ _ 6 6 6 5 
B^ 6 5 5 _ 5 5 5 5 

B^ 7 6 5 5 5 5 5 
11  

Bl 6 6 5 5 5 5 5 

Bl 7 6 5 __5 5 5 5 

Table 1 . Number of Iterations for f = x^ + 1. 

Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 16 31 38 40 39 38 38 

Strang's 10 14 17 19 19 19 19 

B^(R.Chan) 10 11 12 11 12 12 12 

^(T.Chan) 10 11 11 12 11 12 12 

B^ 7 8 9 9 9 10 10 
Tl  B^ 8 8 9 9 10 10 11 
7i/ 

Bt 8 8 9 9 10 10 11 
fv 

B^ 8 9 9 10 10 10 11 
fL 

Table 2. Number of Iterations for f = (x + 兀尸 + 1. 
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Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 16 30 40 44 48 50 52 

Strang's 16 20 23 27 31 39 40 

B^(R.Chan) 11 13 15 15 17 17 19 

^(T.Chan) 11 13 15 15 17 17 19 

B^ 9 12 13 14 14 14 15 

Bl 10 11 13 14 15 15 16 
TL 

Bt 10 11 13 14 15 16 17 
7i ^^^^_^__ ̂ ^^^^_^ ^^_^_^^^^ 

Bt 10 12 14 15 15 16 17 
7L  

Table 3. Number of Iterations for 

，Q|^ + 10, -7T < X < 0， 

/⑷二 

‘ 2 ^ + 0 . 1 , 0 < X < 7T. 
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Preconditioner n 

Used 16 32 64 128 256 512 1024 

/ 8 17 38 83 178 374 770 

Strang's 7 7 7 _ 7 8 8 8 

B^(R.Chan) 5 _ 7 _ _ 7 _ _ 7 7 7 7 

^(T.Chan) 8 10 12 14 18 22 28 

Bl 6 6 8 _ 8 8 8 8 

Bl 7 7 8 8 8 9 9 

Bi 7 7 8 8 9 9 9 
Tl  

Bl 7 7 8 __9 9 9 9 
Band-Toeplitz 8 10 11 12 12 12 12 

Table 4. Number of Iterations for f = x^. 

Preconditioner n 
Used 16 32 64 128 256 512 1 0 ^ 

I 8 22 61 179 621 > 1000 > 1000 

Strang's 8 10 13 16 20 39 75 
^0(R.Chan) 8 10 10 13 20 27 42 
^(T.Chan) 8 13 17 25 37 101 198 

B^ 8 9 10 10 13 14 15 
7i/ 

Bl 8 10 10 11 13 15 16 
Tl  

Bt 8 10 11 11 13 15 16 
7L 

Bl 9 10 10 11 14 15 16 
^ y I I I 1̂ I I  

Table 5- Number of Iterations for f 二 \x\^. 
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Preconditioner n 

Used 16 32 64 | 128 256 512 1024 

I 9 31 113 544 >1000 >1000 >1000 

Strang's 8 14 21 36 121 406 >1000 

BO(R.Chan) 9 12 18 32 79 657 >1000 

J^(T.Chan) 9 16 26 65 177 484 >1000 

Bl 9 12 13 15 22 30 49 
7L 

Bl 9 12 15 18 23 39 68 
Tb ^^^^^__^___^_^^^_ 

Bt 9 12 15 17 21 31 48 
lL _____^^_^^^^^^___ 

Bl 9 12 15 17 22 30 55 fl/ _^^^^^^^^_____^^_ ̂ ^^^^^^^^^^^^^^ 

Band-Toeplitz 8 15 20 24 27 29 30 

Table 6. Number of Iterations for f = x^. 

Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 8 16 32 32 64 256 512 i 

Strang's * * * _ ^ * * * 

BO(R.Chan) * * _ * _ _ * * * * 

^(T.Chan) 7 8 10 13 15 19 25 

Bl 6 6 6 7 _J_ 7 7 

Bl 6 6 6 8 8 8 8 

Bt 6 6 7 8 8 8 8 
fL 

Bl 6 7 7 8 8 8 8 

Table 7. Number of Iterations for / = 1 - cos 6. 

* indicates ’Not Applicable' due to the singularities of 
the Strang's and R. Chan's circulant preconditioners. 
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Preconditioner n 

Used 16 32 64 128 256 512 1024— 

/ II 10 30 90 252 600 >1000 >1000 

Strang's 8 15 21 23 25 22 31 

BO(R.Chan) 9 15 17 15 17 22 19 

^(T .Chan) 9 16 22 27 32 40 58 

Bl 9 10 10 12 14 15 15 
71 ^^^^^___^^_^_^_ 

B^ 9 11 11 12 14 16 17 
Tv  

Bt 9 11 11 13 14 16 16 
Th  

拔 9 11 11 13 14 15 16 
71 _^^^^^^_^____^_ 

Table 8. Number of Iterations for f 二 {x^{x^ - 1) 

Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 8 16 32 62 118 225 436 

Strang's 7 _ 7 _ _ 9 _ _ 9 9 10 11 

BO(R.Chan) 6 6 8 8 8 8 11 

^(T.Chan) 7 9 10 13 15 20 24 

Bl 7 7 8 8 9 9 10 
ft 

Bl 7 7 9 9 9 9 12 
fb 

Bt 7 8 9 9 9 9 12 
fl/ 

B^ 8 8 9 9 9 10 12 
71 

Table 9. Number of Iterations for f 二 7r2(a;2)—工4 
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Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 7 11 20 41 86 178 372 

Strang's 7 _9__11 14 18 22 26 

5^(R.Chan) 7 _9__11 12 15 21 25 

B^{T.Chan) 7 _9__11 13 15 19 23 

B^ 7 8 9 10 10 10 12 
71  

B^ 7 8 10 10 10 11 12 
fV 

Bt 7 8 10 10 11 11 12 
Tb  

Bl 7 8 10 10 11 11 12 
TL  

Table 10. Number of Iterations for 
, 

, , � ^2, |x| < 7r/2, 
/ W = , , n 

I 1, 7f/2 < |a;| < 7T. 

Preconditioner n 

Used 16 32 64 128 256 512 1024 

I 8 17 38 83 178 374 770 

Strang's 7 7 7 7 8 8 8 
BO(R.Chan) 5 7 7 7 _ 7 7 7 

^(T.Chan) 8 10 12 14 18 22 28 

Bl 6 6 8 8 _ 8 8 8 

Bl 7 7 8 8 8 9 9 
B^ 7 7 8 8 9 9 9 
B^ 7 7 8 9 9 9 9 

Table 11. Number of Iterations for f 二 x{x + 1) 
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Preconditioner n 
Used 16 I 32 I 64 128 256 512 1024 

/ 16 36 71 134 257 486 929 

Strang's 11 11 12 13 14 15 18 

B^(R.Chan) 10 11 11 12 13 15 18 

B^(T.Chan) 10 12 14 16 19 23 30 

Bl 8 9 11 12 13 15 17 
Th _____^^^^^^^_^_ 

Bl 9 10 11 12 13 15 16 
Tl >^^^^^__^_^^ 

Bt 9 10 12 12 13 15 16 
fL  

Bt 9 10 12 13 14 16 17 
Tv _^_^_^^^^^^__^ 

Table 12. Number of Iterations for 
/ 

x^, X < 0, 
f{x)= -

X, X > 0. 
V 

Preconditioner n 

Used 16 32 64 128 256 512 1024 

/ 16 34 76 167 352 678 >1000 

Strang's 11 16 26 42 85 203 755 
BO{R.Chan) 11 15 19 28 43 67 113 
^(T.Chan) 11 15 19 27 41 66 111 

Bl 8 10 12 14 19 30 41 
71 

B^ 9 10 12 12 20 25 34 
71 

Bl 9 9 12 14 18 24 34 
Bl 9 10 12 14 18 21 27 

Table 13. Number of Iterations for f 二（rr + 7r)̂ . 
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Chapter 6 

APPLICATIONS TO 
SIGNAL PROCESSING 

6.1 Introduction 

In this chapter, we consider the least squares problem 

min b — Ax 2’ (6.1) 
X 

where A is a rectangular m-by-n Toeplitz matrix. Toeplitz least squares problems 
arise in a variety of applications, especially in signal and image processing, see 
2] and [23]. In general the conjugate gradient method is always applied to the 

Hermitian positive definite systems. Though A is a rectangular m-by-n matrix, 
the conjugate gradient method can still be applied. Instead of applying the 
conjugate gradient method to the least squares problem, we use it to the normal 
equations in factored form, 

A*{b-Ax) =0. 

This can be solved by conjugate gradient method without explicitly forming the 
matrix A*A, see Bjorck [5]. As mentioned in Chapter 1, to speed up the con-
vergence of the conjugate gradient method, we can precondition the equation. 
Firstly, we transform (6.1) with a preconditioner, for instance C, and then we 
can use the conjugate gradient method to solve 

min \\b — AC~^y\\2^ 

and then set x 二 C_�. The preconditioner considered here is given by an n-by-n 
circulant matrix C, where C*C is then a circulant matrix approximates A*A. 

For the purpose of constructing a preconditioner, we will extend the Toeplitz 
structure of the matrix A in (6.1) and, if necessary, padding zeros to the bottom 



Chapter 6 Applications to Signal Processing ^7 

left hand side. Without loss of generality, we suppose that m = kn for some 

positive integer k. This padding is only for convenience in constructing the pre-

conditioner and does not alter the original least squares problem. In the material 

to follow, we consider the case where k is a constant independent of n. More 

precisely, we consider kn-hy-n matrices A of the form 

] r 
d = ^ ' , (6.2) 

_^/fc . 

where each square block Aj is a Toeplitz matrix. Notice that if A itself is a 

rectangular Toeplitz matrix, then each block Aj is necessarily Toeplitz. 

Following [9, 27], for each block Aj, we can construct the circulant approxi-

mation Cj. Hence we define our preconditioner as a square circulant matrix C 

such that k 
c*c = Y.qc^. 

i=i 

Notice that each Cj is an n-by-n circulant matrix. Hence, they can all be diag-

onalized by the n-by-n discrete Fourier matrix F, i.e., Cj = F*AjF where Aj is 

diagonal of the circulant matrix Cj. Thus, the spectrum of Cj, j = 1,. • •, k, can 

be computed in 0(n logn) operations by using FFT and we have 

k 
C*C = F* ^(A*Aj)F. 

i=i 

Clearly C*C is a circulant matrix and its spectrum can be computed in 

0{knlogn) operations. The preconditioner is then given by 

C = F*{j:A*Aj)^^F. 
3=l 

R. Chan, Nagy, and Plemmons in [9] showed that total cost of operation in 

the preconditioned conjugate gradient method to the least squares problem per 

iteration is of order 0(mlogn) . 
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6.2 Preconditioned Regularized Least Squares 

In this section the least squares problems (6.1) with the ill-conditioned rectangular 
matrix A are considered. Such systems occur in many applications, such as signal 
and image restoration, see [2, 23]. The ill-conditioned nature of A arises from 
discretization of ill-posed problems in partial differential and integral equations. 
For example, the problem of estimating an original image from a blurred and noisy 
observed image is an important case of an inverse problem, and was first studied 
by Hadamard [19] in the inversion of certain integral equations. Since A is ill-
conditioned, thus it will lead to extreme instability with respect to perturbations 
in b when solving Ax = b. The method of regularization can be used to achieve 
stability for these problems [5]. Stability is attained by introducing a stabilizing 
operator (called a regularization operator) which restricts the set of admissible 
solutions. Since this causes the regularized solution to be biased, a scalar (called 
a regularization parameter) is introduced to control the degree of bias. More 
specifically, the regularized solution is computed as 

min|| — x(/i)||2, (6.3) 
[ 0 J [ fxL J 

where /Li is the regularization parameter and thepxn matrix L is the regularization 

operator. 
Here the regularization operator L smooth the solution x to a certain degree. 

Choosing L as a A:th difference operator matrix forces the solution to have a small 
A:th derivative. The regularization parameter /i controls the degree of smoothness 
(i.e., degree of bias) of the solution, and is usually small. Choosing the regular-
ization parameter /i is not a trivial problem, we need to solve (6.3) for several 
values of jjL [15] to determine the best one. Recent analytical methods for choosing 
an optimal parameter /i are discussed by Reeves and Mersereau [28 . 

Based on the discussion above, the regularization operator L is usually chosen 
to be the identity matrix or some discretization of a differentiation operator [15 . 
Thus L is typically a Toeplitz matrix. Hence, if A has the Toeplitz block form 
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(6.2), then the matrix 
~ A 

A = 
jjiL 

retains this structure, with the addition of one block (or two blocks if L is a 
difference operator with more rows than columns). Since A has the block struc-
ture (6.2), we can form the circulant preconditioner C for A and use the PCG 
algorithm for least squares problems to solve (6.3). 

Notice that if L is chosen to be the identity matrix, then the circulant precon-
ditioner for A can be constructed by simply adding // to each of the eigenvalues 
of the circulant preconditioner for A. In addition, the last block in A (ie., /i/) 
has singular values /x. 

6.3 Numerical Example 

Example : Here we consider an application to 1-dimensional signal reconstruc-
tion computations. In this example we construct a 100 x 100 Toeplitz matrix A, 

whose i, j entry is given by 

0 ii\i-j\>8, 
dij = , (6.4) 

^g{O.lb,Xi — Xj) otherwise, 

where 
4i 

Xi = —, i 二 l,2,...,100, 
5丄 

and 2 
* 7 ) = ^ e x p ( - y 

Matrices of this form occur in many signal restoration contexts as a "prototype 
problem" and are used to model certain degradations in a recorded signal [15, 23 • 
Due to the handedness of A its generating function is in the Wiener class. The 
condition number of T is approximately 2.4 x 10̂ . 

Because of the ill-conditioning of A^ the system Ax = b will be very sensitive 
to any perturbations in b. To achieve stability we regularize the problem using 
the identity matrix as the regularization operator. Elden [15] uses this approach 
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to solve a linear system by direct methods with the same data matrix A defined 

in (6.4). To test our preconditioner we will fix “ = 0.01, where “ is chosen based 

on some tests made by Elden. 

Let � ] 
. A 1 j- b 

A = and b = . 
fiI 0 

_ J L • 

Then A is simply a block Toeplitz matrix. Thus we can apply our preconditioners 
Bl , B^ and Bl and the PCG algorithm to solve (6.3). The convergence results 
for solving Ax = b and Ax = b with no preconditioner and Ax = b using B^, ^ 
and Bl as preconditioners are shown in Table 14. The singular values of A and 
A{B!^)~^, for m = 0, 1 and 2 and the convergence history for solving Ax = b 

and Ax = b using our preconditioners B? , for m 二 0, 1 and 2, are shown in 
Figures 6.1 and 6.2. These results indicate that the PCG algorithm with our 
preconditioner B ? may be an effective method for solving this regularized least 
squares problem. 

n Ax = b Ar = b 2(B2)-4 = b i ( B � - �= b i(Bg)-i:r 二 b 

100 > 100 54 8 13 8 

Table 14. Numbers of iterations for convergence in Example . 

This example illustrates the applicability of the circulant PCG method to 
regularized least squares problems. Recall that B^ is the same as the T. Chan's 
circulant preconditioner, in Figures 6.1 and 6.2, we see that our preconditioners 
such as B^ and Bl perform better than B^. The same as the previous numerical 
examples in §5, the performance of Bl is the best. 
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4| 1 • 1 1 • — I • ‘ ‘ 

3 - + 併十 十 B-spline 2 -

2 _ + ^tf + + B-spline 1 -

1- +册 + + B-spl ineO . 

0 - + + + + i i i i i iHi i I 丨 iim_iimiiimii_iiMM No preconditioner -

-1 10-6 10-4 10-2 10� 10̂  10̂  

Figure 6.1: Singular values of A and A(B^)'^ for m = 0, 1 and 2. 

10̂  E 1 1 1 1 1 1 1 1 1 ! 

H - „.. I 
1 0 - 、 \ X s - s p l i n e 1 , 

10- \ \ 八 
B-splineO、、\ V \ 

10 6� x̂ B-spline2 \ ,. 
1。-7; \ \ ； in_8[ I I I I I 1 1 1 1  

0 2 4 6 8 10 12 14 16 18 20 
Iterations 

/s 

Figure 6.2: Convergence history for A and A(B^)~^ for m 二 0, 1 and 2. 
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