
CHINESE INFORMATION ACCESS THROUGH
INTERNET ON X-OPEN SYSTEM

B Y

Y A O JlAN

SUPERVISED BY ：

P R O F . LU CHIN

SUBMITTED TO THE DlVISION OF DEPARTMENT OF COMPUTER SCIENCE &

ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF PHILOSOPHY

AT THE

CHINESE UNIVERSITY OF HONG KONG

JUNE 1997

x ^ ^ ^
合 统 ^ 圖 》

P 2 2 謹 ira 1；

^~UNIVERSITY ~~~JMj
^^XllBRARY SYSTEMŷ ^̂
^ ^ ^ ^

Chinese Information Access Through Internet

On X-Open System

submitted by

Yao Jian
for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

With the advent of World Wide Web, not only English documents are exchanged in the

Internet, the exchange and manipulation of none English documents, including Chinese

documents are also in great demand. The problem of Chinese information access is that

the large set of Chinese characters and the co-existence of multiple codesets and the

incompatibility among them bring out the obstacle to share and exchange of Chinese

information for people from Mainland China, Hong Kong and Taiwan.

To provide a friendly environment for people to fetch, exchange and manipulate

Chinese documents with codeset transparency, codeset announcement mechanism, au-

tomatic codeset conversion are introduced into the current web system. Also the

browser provides a Chinese interface for the ease of operating the system.

In this thesis, I describe the design of our Chinese web server and an international-

ized browser on X-Open system as well as the implementation results. The web server

is built on a Unix platform similar to other English Internet servers with the capa-

bility to manage Chinese text data encoded in different codesets on the same server.

The server also provides automatic codeset conversion transparently to client machines

when data stored in the server are incompatible with what the client machine can pro-

cess. The internationalized browser allows users to access the server information in its

local familiar environment, either using traditional Chinese or simplified Chinese with-

i

out the need to match the codeset of the documents being retrieved from the server.

The browser is built in an internationalized way so that user interface can switch to

different language environment easily. The browser also has the capability to handle

on-line automatic codeset conversion if necessary. A proxy server with automatic code-

set conversion and cache mechanism is also provided for users to communicate with

those servers which do not offer Chinese specific services.

To provide friendly and convenient Internet access environment for users who do

not have our enhanced web system at hands, a new approach using Common Gateway

Interface (CGI) is also devised to realize the codeset announcement and automatic

codeset conversion such that users can select the codeset they prefer through the

interface web page and the converted document encoded in the codeset preferred by

users will be sent back after the CGI program conducts the proper handling.

ii

Acknowledgments

First of all, I would like to give my deepest gratitude to my advisor, Prof. Lu Chin, for

her tremendous support, encouragement and guidance throughout my graduate study.

She is enlightening, critical and helpful on research, always being ready to discuss

problems and results. Many discussions with her helped me to progress in the right

direction. She has tirelessly corrected my writing draft after draft, including papers

and this thesis. She is always warm and kind to give her hands when I have problems

of life during the past two years. I am also very grateful to Prof. Lee Kin Hong

who gave me many constructive advices on my research work. His rigorous working

style when correcting my research papers impressed me deeply. He is a kind person

and gives me a lot of help during my studies here. I greatly appreciate Prof. Kan

Wing-Kay, for serving on my defense committee and giving me important comments

on my thesis. I would like to thank Prof. Sun Yu Fang, from Chinese Academy of

Sciences. I learned a lot of knowledge from text books on C programming language

and Unix systems written by him during my undergraduate studies. It is my honour

to have Prof. Sun to serve as my defense committee member and I highly appreciate

his valuable knowledge and comments on my research work.

I would like to thank all my classmates, past and present, who have helped me when

I encountered problems on terminals or softwares. Without their help, it is impossible

for me to rapidly grasp so many knowledge and advanced techniques on Unix and

X-Window System. I especially appreciate the collaboration with my research group

members: Wong Man-fai, Lawrence Nui Pui Tak, Eddie Kwan Hoi-ching, Paul Pang

Chi-wang, Johnny Yip Hoi-man, Michael Ng Mau Kit who give me great help, support

and advice on many technical issues during the project goes on.

Special thanks to Mr. Lau Sau Ming who gave me many precious advices on my

research project and shared all his knowledge, experience in research and even some

tricks on programming. He is a warm-hearted and patient friend who is always ready

to give me encouragement when I was in low spirit. I am very much indebted to

Mr. Lu Si Fei for his help on many professional issues. He discussed with me on my

iii

research project for many times and shared his precious knowledge on world wide web,

browser/server computing model and networking. I am also very grateful to Mr. Liu

Jian Zhuang for helping me in my thesis editing and working out many figures with

me. I greatly appreciate Mr. Pan Jiao Feng for giving me valuable suggestions and

pertinent comments to the drafts of my paper and thesis.

Thanks also to many wonderful friends who made my stay in CUHK so pleasant

and unforgettable. My special thanks go to Li Hai Ying, Zhang Xue Jie, Li Yuan

Yuan, Li Guan Xin, Tian Ying Li, Zhu Zhe Ying, Wang Li Di, Zhang Jian Xin, Wang

Zhi Jun, Chen Jian Wei and Wang Wai Ting. I will treasure their friendship for the

rest of my life.

I am forever indebted to my families for their unending love and support. My

parents are always there when I need them and their constant encouragement makes

me confident in what I do, My loving younger brother is always ready to give me

help. Last, but not least, I am deeply indebted to my dear husband; without his

understanding, sacrifices and patience, the completion of this thesis would not have

been possible.

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

2 Basic Concepts And Related Work 6

2.1 Codeset and Codeset Conversion 7

2.2 HTML Language 10

2.3 HTTP Protocol 13

2.4 I18N And LlON 18

2.5 Proxy Server 19

2.6 Related Work 20

3 Design Principles And System Architecture 23

3.1 Use of Existing Web System 23

3.1.1 Protocol 23

3.1.2 Avoid Duplication of Documents for DifFerent Codesets 25

V

3.1.3 Support On-line Codeset Conversion Facility - . 27

3.1.4 Provide Internationalized Interface of Web Browser 28

3.2 Our Approach 29

3.2.1 Enhancing the Existing Browsers and Servers 30

3.2.2 Incorporating Proxies in Our Scheme 32

3.2.3 Automatic Codeset Conversion 34

3.3 Overall System Architecture 38

3.3.1 Architecture of Our Web System 38

3.3.2 Flexibility of Our Design 40

3.3.3 Which side do the codeset conversion? 42

3.3.4 Caching 42

4 Design Details of An Enhanced Server 44

4.1 Architecture of The Enhanced Server 44

4.2 Procedure on Processing Client's Request 45

4.3 Modifications of The Enhanced Server 48

4.3.1 Interpretation of Client's Codeset Announcement 48

4.3.2 Codeset Identification of Web Documents on the Server 49

4.3.3 Codeset Notification to the Web Client 52

4.3.4 Codeset Conversion 54

4.4 Experiment Results 54

5 Design Details of An Enhanced Browser 58

vi

5.1 Architecture of The Enhanced Browser « . 58

5.2 Procedure on Processing Users' Requests 61

5.3 Event Management and Handling 63

5.3.1 Basic Control Flow of the Browser 63

5.3.2 Event Handlers 64

5.4 Internationalization of Browser Interface 75

5.4.1 Locale 76

5.4.2 Resource File 77

5.4.3 Message Catalog System 79

5.5 Experiment Result 85

6 Another Scheme - CGI 89

6.1 Form and CGI 90

6.2 CGI Control Flow 96

6.3 Automatic Codeset Detection 96

6.3.1 Analysis of code range for GB and Big5 98

6.3.2 Control Flow of Automatic Codeset Detection 99

6.4 Experiment Results 101

7 Conclusions and Future Work 104

7.1 Current Status 105

7.2 System Efficiency 106

7.3 Future Work 107

vii

Bibliography 109

A Programmer's Guide 113

A.1 Data Structure 113

, A . 2 Calling Sequence of Functions 114

A.3 Modification of Souce Code 116

A.4 Modification of Resources 133

B User Manual 135

viii

List of Tables

2.1 Codesets of Chinese 8

2.2 Code Range of Hanzi Characters in Different Codesets 9

2.3 Language encodings as supported by Netscape 3.0 20

2.4 Access result using Netscape and CMosaic 21

3.1 Implementation Possibilities 33

3.2 DifFerent Codeset Converters 35

3.3 Exceptional Cases in Codeset Conversions 37

5.1 Locales set up in our web system 78

5.2 File Types Related To Message Catalog System 83

5.3 Elements of an NLSPATH Value 85

6.1 Some Useful Environment Variables 94

6.2 Valid HTTP Headers for CGI programs 95

ix

List of Figures

2.1 Client-Server Model used in WWW 7

2.2 Codeset Conversions 9

2.3 The Web Page of a Simple HTML Document 11

2.4 The Web Page of a Simple Form 12

2.5 Negotiation of Data types between Web Browsers and Web Servers . . . 13

2.6 Proxy server act as a client and a server 19

3.1 File Storage Structure on Multi-codesets Web Servers 25

3.2 Output for viewing a Chinese GB web page using a Big5-based browser 27

3.3 Multi-Codeset Conversions of Both Web Browsers And Web Servers. . . 31

3.4 The Architecture of API for Codeset Conversions 34

3.5 The Structure of the Codeset Conversion API 35

3.6 Calling Sequence of the Conversion Routines 36

3.7 Overall System Architecture 38

3.8 Case I and Case II 40

3.9 Case III and Case IV 41

V

4.1 The Architecture of The Enhanced Web Server - . 45

4.2 HTTP/1.1 Request Message From Our Enhanced Browser 49

4.3 Steps in Determining the Codeset of a Given File 51

4.4 Demonstration on <LANG> Tag Identification By The Enhanced Server 55

4.5 Demonstration on Codeset Identification By File Extension 56

4.6 Demonstration on Handling Multi-Codeset Chinese Document 57

5.1 Architecture of The Enhanced Browser 59

5.2 Basic Control Flow of Mosaic 63

5.3 Control Flow of Event "Open URL." 66

5.4 FSM MIME Parser 69

5.5 Codeset Conversion Handlement In MIME Parser 73

5.6 Relationship between language and locale 78

5.7 Relationship Between Locale and Resource File 79

5.8 The Fragment of The Message Source File 82

5.9 Message Catalog Directory Structure In Our System 83

5.10 The Chinese Interface of Our Browser 86

5.11 On-line Codeset Conversion Done By The Enhanced Browser 87

6.1 The Operation Procedure of CGI 90

6.2 The Interactive Interface Designed For Codeset Announcement 92

6.3 Control Flow of CGI Program 97

6.4 Big5 and GB encoding table 98

xi

6.5 Control Flow of Automatic Codeset Detection 100

6.6 Codeset Conversion From Big5 To GB 102

6.7 Codeset Conversion From GB To Big5 103

,A.1 History List 114

xii

Chapter 1

Introduction

In recent years, Internet access has become a common practice. Especially, the emer-

gence of the World Wide Web (WWW), gives us a chance to navigate the world of

global information with the click of a button. Meanwhile, the availability of softwares

such as Gopher, Mosaic, Netscape and Bulletin Board Systems(BBS) facilitates the

dramatic growth of WWW. Academics and business communities alike use Internet to

exchange and share information as well as software. However, most ofthe Internet soft-

wares are designed for English or other alphabet based languages only. Exchange and

sharing of Chinese information is very limited although exchange and manipulation of

Chinese text information via WWW are in great demand in Mainland China, Taiwan,

Hong Kong and other places where Chinese characters are used. With more and more

non-alphabet based language web documents available on the Internet such as Chinese

documents, specific supports are needed to handle Chinese and other non-alphabet

based languages.

As an ideographic language, Chinese requires a much more complex processing en-

vironment. The complexity comes mainly from the large set of Chinese characters that

a computer system has to process and the fact that there exists more than one com-

puter coded character set, referred to as codeset. Different codesets are incompatible

because one code value can represent different Chinese characters in different codesets.

The GB codeset, for example, which represents simplified Chinese writing, is used in

1

Chapter 1 Introduction 16

Mainland China on all computer platforms. However, Big5 and CNS, which represent

traditional Chinese writing, are used in Taiwan and Hong Kong for PCs and work-

stations, respectively. The co-existence of multiple codesets for Chinese characters is

not only a nightmare for Chinese software developers as they have to maintain many

different versions of the same software, but also a great barrier for people from Hong

Kong, Taiwan and Mainland China to communicate with each other over the Internet.

In general case, source Chinese documents on the web are written in different

codesets. They are maintained on web servers at different places. Most of the existing

web servers which provide Chinese documents store multiple versions for the same

Chinese document, i.e. one version per codeset. Each time, users choose to read a

certain version through selecting the corresponding codeset from the web page. This

method realizes the support of multiple Chinese codesets at the server side at the cost

of the large duplication of Chinese documents which wastes a lot of disk space. On the

other hand, different web browsers have different capabilities on supporting Chinese

codesets. One issue is that although some web servers provide multiple versions for

different codesets of Chinese documents, it still depends upon the local support of the

web browser whether users can read those Chinese documents or not. Suppose that a

web browser on PC platform supports only traditional Chinese codeset - BIG5, then

users can access only the BIG5 version of that document. If users try to access Chinese

text data from a web server which provides only simplified Chinese documents, there is

no way for users to read them with their local browser. In such case, codeset conversion

is needed to be carried out either at the server side or at the browser side to convert

the document encoded in GB 2312 into the target codeset BIG5 version.

Another special issue for Chinese text processing is that users from different regions

may have their own reading preferences. For example, people from Mainland China

prefer to read simplified Chinese while people from Taiwan and Hong Kong may like

to read traditional Chinese. Although some web browsers support multiple Chinese

codesets environment, codeset conversion is also needed to satisfy their reading pref-

erences if the codeset of the original document is incompatible with what users prefer.

Furthermore, as a Chinese Internet access tool, the browser interface such as buttons

Chapter 1 Introduction 3

and menus must be customized in a way that is convenient for Chinese users . ,

In order to handle Chinese text retrieval via WWW with automatic recognition

of codesets and the conversion among them, some codeset announcement mechanisms

must be provided. We know that Internet access uses the client-server model to manage

client access and server information handling separately. WWW, as a popular way of

Internet access, uses the client-server model to carry out communication between web

servers and web clients (browsers). The protocol used between web clients and web

servers is HTTP (HyperText Transfer Protocol) which handles only one request at a

time, To carry out codeset announcement, the client side must be able to announce its

local environment or codesets supported, the server side must announce the codeset

information for documents it manages. If the two announcements do not match each

other, automatic codeset conversion can then be supported either before the document

is transferred or after it is received on the client side.

The exchange of codeset announcement information between web servers and web

clients (browsers), referred to as data type negotiation, can be realized through HTTP/1.1

protocol. However, most of the current web servers and web clients communicate with

each other via pre-HTTP/1.1, such as HTTP/1.0 [21] protocol, which does not support

data type negotiation between servers and clients. It works fine for alphabet based

languages since the default codeset in the case of HTTP protocol is ISO-8859-1 (the

so-called “Latin-1,, for Western European characters) [1]. However, for Chinese text

data, which is composed of multi-byte characters, the lack of data type negotiation

may cause misinterpretation of data: For example, both CMosaic and Netscape 3.0 can

access and display Chinese text. However, the Chinese text can be displayed properly

only if the local environment of the client, mostly the codeset it supports, is compatible

with the codeset of the documents retrieved from the server. There is no automatic

way to detect if the local environment of the client machine is compatible with the

data retrieved from the server. Users have to manually try out different encodings sup-

ported in the browser to interpret the retrieved documents correctly. With the help of

codeset announcement and automatic codeset conversion, a web server stores only a

single version for each Chinese document, if the local environment of a web browser is

Chapter 1 Introduction 4

incompatible with the codeset supported by the server, automatic codeset conversion

can be done to convert the document from the original codeset to the target one. At

last, the converted document is displayed by the web browser properly. This approach

provides a more convenient and user friendly environment for users to access Chinese

information through Internet and it avoids the duplication of Chinese documents.
•*"

In this thesis, I shall describe the design of a Chinese web server and an internation-

alized browser on X-Open system as well as some implementation details. The Chinese

web server is built on UNIX platform. It can manage Chinese text data encoded in

different codesets on the same server and provide automatic codeset conversion trans-

parently to client machines when data stored in the server are incompatible with what

the client machine can process. The internationalized browser is intended to work

under different language and cultural conventions. The Chinese web browser is a lo-

calized version of the internationalized web browser whose interface part is developed

in an internationalized way. This browser allows users to access the web server either

using traditional Chinese codesets or simplified Chinese codeset without the need to

match the source document's codeset. Both the web server and web client use the new

data type negotiation mechanism of HTTP/1.1 [9] during Internet communication.

The development of the Chinese web server is based on the CERN libwww [29]. The

internationalized browser is based on NCSA Mosaic written in C language. Its inter-

face part is written on top of Motif under the X windows environment which supports

internationalization and localization based on the Locale specifications of ISO POSIX.

To support codeset announcement and automatic codeset conversion for Chinese

information access for users who do not have our software, a new approach is devised

to complete the same task. In the new scheme, web servers and browsers communicate

with each other through the current HTTP protocol which doesn't provide data type

negotiation. The data type negotiation is realized through a web page interface and

its corresponding CGI(Common Gateway Interface) program. The interface is written

in HTML form format asking users to select their preferred codeset by clicking the

related button such that the codeset announcement of the client side is completed by

users' intervention. This information is then transferred to the remote server via an

Chapter 1 Introduction 19

HTTP request message sent by the browser, and it is CGPs responsibility to receive

the form input data when they reach the server side. The CGI program then tries to

investigate the original codeset of the retrieved document and carries out automatic

codeset conversion to the retrieved document if needed. Finally, the CGI program

announces the codeset of the returned document in the HTTP response message header

and the server takes up the job and returns the document to the client at last.

The rest of the thesis is organized as follows. Chapter 2 introduces basic concepts

and related work. Chapter 3 presents the design principles and system architecture.

Chapter 4 and Chapter 5 describe the design details and implementation of the en-

hanced server and the enhanced browser respectively. Chapter 6 describes how to

realize Chinese information access through normal web server/browser with a new

approach - the common gateway interface (CGI). Chapter 7 is the conclusion.

Chapter 2

Basic Concepts And Related

Work

The World Wide Web (WWW), or web for short, is one of the most graphical Internet

services and is a way of creating a geographically distributed pool of information so

that people separated by short or long distances can make information available to

others. The web has very strong linking abilities where it allows specially marked

words and/or pictures in a document to link/refer to documents which could be of

other media and are located in other machines which could be very far away. It is very

easy for users to access web information through Internet, just by clicking the buttons.

These features contributed the fastest growth and usage of the web. Especially in

recent years, more and more web documents written in languages other than English,

including Chinese, are available on Internet.

The client-server model is adopted in WWW where a browser can access infor-

mation on Internet through various Internet tools such as FTP, NNTP, Gopher and

HTTP. Figure 2.1 shows the typical client-server model used in WWW. A client is the

service requester which is responsible for requesting services from the server. A server

is the service provider which is a long living process, referred to as the daemon process,

waiting to handle requests that may come through network connections [35]. The text

data maintained on the server machines are regarded as source web documents. The

6

Chapter 2 Basic Concepts And Related Work ^]_

> News Server _ —

^ € : ^ ^ ^ r ^
Wcb Browser | ^ • Web Server • - “ Gateway U ^ OtherServers |

L ^ ^ ^ ^ ^ J L ^ ^ ^ ^ ^ J (CGI) • _ ^ _ Z ^ J

^ 二 “
Ŝ̂ Gopher Server •

^\ *-HHMHl
"̂ !̂ ^^ •̂̂

Figure 2.1: Client-Server Model used in WWW

language used by clients and servers to communicate with each other is called proto-

col. For web servers and web clients (browsers), the protocol they use are HyperText

Transfer Protocol(HTTP for short). Currently, HTTP/1.0 protocol is supported by

most of the existing web browsers and web servers. HTTP/1.1 is the latest specifi-

cation which consists of new features of data type negotiation mechanism which will

be explained later. When clients retrieve documents through a web server, documents

accessed are mostly written in HTML language [11]. In this thesis, I confine myself to

text document access through web servers only.

In order to fulfill additional language requirements for handling Chinese documents

and other non-alphabet based languages, additional features for both HTML language

and HTTP protocol must be developed. Since Chinese documents can be written in

different codesets, ways have to be found to identify the codeset of documents first,

then to exchange this information when clients and servers communicate with each

other and finally to carry out automatic codeset conversion if needed.

2.1 Codeset and Codeset Conversion

To fulfill the additional handlement for Chinese information, the first step is to identify

the codeset of the retrieved documents. As we know, there are two major character

sets of Chinese, both of them are being used widely. One is traditional character set

and the other is simplified character set. Corresponding to each character set, there

exist multiple codesets. Some of the well-known codesets for Chinese are: GB 2312

Chapter 2 Basic Concepts And Related Work ^]_

Table 2.1: Codesets of Chinese ‘

Character Set Country of Origin Codeset Number of
Characters

"^pl i f ied Chinese Mainland China GB 2312-80 6,763
1 ^ i t i o n a l Chinesi" Taiwan CNS 11643-19W 13,051
1Witional Chinese Taiwan BIG-5 13,053

for simplified Chinese character set, Big5 and CNS for traditional Chinese character

set. Please note the difference between character set and codeset. Character set is just

the graphic representation of all characters while codeset is a mapping of a character

set to specific numeric codes [31]. Each codeset contains a set of values and each of

these values represent one character with absolutely no duplications. When handling

Chinese characters, computer systems deal with the numeric code of each character

defined by a certain codeset rather than the related character set.

As an ideographic language, Chinese has literally thousands of characters. Because

of this, an 8-bit codeset with maximum of 256 characters obviously is inadequate. In

fact, the three major codesets for Chinese - GB 2312, Big5 and CNS, all adopt 16

bits (two bytes) to represent each Chinese character. Table 2.1 [26, 27, 32] lists the

information of the three major codesets for Chinese. Here the number of characters

refers to the number of hanzi characters in the corresponding codeset excluding other

alphabet characters in the same codeset since the large number of hanzi characters

are under our main concern. Note that CNS 11643 was revised in 1992 to increase its

characters to 48,228 [31:.

Because of historical reasons, the two major Chinese character sets are not com-

patible and the traditional character set is a super-set of the simplified one. The

code range of different codesets is different and has overlap in some extent. Table 2.2

"26, 27, 32] illustrates the code range of all hanzi characters in different codesets. Note

that in the above table, the code range of CNS 11643 just denotes the range of all hanzi

characters in plane one of CNS 11643. For plane two or more, hanzi characters are

represented by four bytes instead of two bytes which are more complicated than the

Chapter 2 Basic Concepts And Related Work ^]_

Table 2.2: Code Range of Hanzi Characters in Different Codesets ‘

"Codeset First Byte Range(Hex) Second Byte Range(Hex)
~GB 2312-80 BQ - F7 A1 - FE

BIG-5 A4 - C6, C9 - F9 40 - 7E, Al-FE
"CNS 11643* C4 - FD A1 - FE

^ F = = ^ F=^==i f = ^ F ^ F ^ ^
other CNS GB BIG-5 Raw

Codesets J L J — _ ^ '----.Zl^ ^--^__^^ ^ - ^ ^ - ^ ^^ -"^

^ ^ ^ 1^^^ 1""̂ T̂~ T""T / ^ \
-L_J- ^^^>- ^ ^ ^ ^^^^^

Codeset Conversion Routines

. ^ — n j ~ ~ u u V
‘ All source codesets will be converted into the target codesets No conversions

as required by individual application program. needed.

Figure 2.2: Codeset Conversions

two-byte system. From Table 2.2, it is easy to find that one code value can represent

different Chinese characters in different codesets. For example, code value 0xB0AE

is，爱，in GB 2312-80, but it is ’乾,，in BIG-5. This brings the incompatibility. The

co-existence ofmultiple codesets is the barrier for people from Hong Kong, Taiwan and

Mainland China to exchange Chinese information and causes the unnecessary dupli-

cation of various versions of documents or softwares for different codesets. This brings

us the need of codeset conversion.

Codeset conversion is the procedure to translate a document from one codeset to

another. For the major three codesets of Chinese, we need at least converters for

pairs of GB/BIG5，BIG5/CNS and CNS/GB. Figure 2.2 [13] illustrates the codeset

conversion between different codesets. Because different codesets are not compatible,

there are 1-to-N and N-to-1 mappings instead of only 1-to-l mapping for the characters

being converted when translating them from one codeset to another. The simplest way

is to choose one of all mapping characters as a default output no matter it is correct or

not in the context. Another way is to provide all possible mapping characters, and let

users to choose. The best way is to choose the right one intelligently by the converter.

Chapter 2 Basic Concepts And Related Work ^]_

This needs the involvement of semantic analysis in context. Currently, we use the first

method in our codeset routines.

2.2 HTML Language

Web documents are mostly written in a language called HyperText Markup Language
(HTML) [11]. HTML is designed to specify the logical organization of a text document,
with important extensions for hypertext links and user interaction. HTML requires
you construct documents with sections of text marked as logical units, such as titles,
paragraphs, or lists, and leaves the interpretation of these marked elements up to the
browser displaying the document [11]. The structure of an HTML document can be
marked by various tags. Here is a simple example:

<html>
<head>
<title> Demonstration of HTML Document </title>

</head>
<body>

Hello World！

</body>
</html>

Each HTML document starts with the tag <HTML> and ends with </HTML>. In

most cases, an HTML document has a head part and a body part which are marked

by tag <head> and tag <body> respectively. The above example shows that this

document has a title named 'Demonstration of HTML Document, and the body is

'Hello World!'. Figure 2.3 shows the corresponding web page of the above HTML file

under Netscape 3.0.

As Chinese web documents can be written in different codesets, and for the purpose
of fulfilling additional requirements for Chinese information access, ways have to be
found to identify their codeset, which is referred to as codeset identification. Earlier
versions of HTML have no mechanism to tell data are written in what codeset, every-
thing defaults to ISO-8859-1 which was designed for European languages [42]. Even

Chapter 2 Basic Concepts And Related Work ^]_

=!•^^^^Fteti^ef;DatoioitetM«Mm:KfePaaai^at»«^»^q 一

Fiie Edit Vlew Go, Bookmarks Options Dft̂ ctory Window Help

± d M ^ MMM^!M M , H A
Location: |ittp ： //wwv. C3. cuhk. edu. hk/-jyao/the3is/cha2. htmI , , g^^g

, , ‘ “ ‘ - ‘ ‘ g t K K K K m
What's Hew?[What's Cdo[?j Destrnations| Met Searcft{ Faopte|

‘ ~ i
. Hello World! N

j,| ĵ f^ "z^y,-y- yi /.̂-.<̂̂- -“-:厂厂： '，” -: , JS<JJ

Figure 2.3: The Web Page of a Simple HTML Document

with the only codeset available, HTML has still been used to describe data in other
languages and encodings at the expense ofinteroperability [42]. In other words, HTML
documents written in other codesets such as Chinese are forced to be interpreted as
ISO-8859-1. HTML version 3.0 [34] has included a new language tag <LANG> to
announce the codeset of text data. For a multi-part document, each pair of <LANG>
tags denote a certain language or codeset for that part. Therefore it is easy to indi-
cate the content type information of a multilingual or multi-codeset mixture in one
document with several <LANG> tags. Here is an example:

Single Web Document

<html>
<title> Multiple Codeset Document </title>
<LANG=big5>

… 繁 體 字 寫 成 的 部 分 …

</LANG>...
<LANG=gb2312>

. • • 简 体 字 写 成 的 部 分 - …

</LANG>...
</html>

With the help of tag <LANG>, it is easy for both the web browser and web server

to identify the codeset of the retrieved documents. However, no commercial browsers

and servers are able to interpret this new tag yet.

Chapter 2 Basic Concepts And Related Work ^]_

•j^^^^^^^^^^^^^M^ii^Mi!iiWW^^^M^^^^^^^^W,rfp i 一
File Edit Vlew Go Qookmarks Options Directory Window Help

i d � _ ^ ^ l d M ^ M � m m
¢, ̂ n MT nt^m/f t m. t*t,tMm “ ^uUMfMht. tMf,-v^ •‘ **r* 'Mv' ttmvwfv f Mtt^ . "r* •“供 « tMKf-*M-tM*ut •«" •“ '**^.ttttntmt «x»m«vn> KfS k ̂ 9B ̂ f̂ }

Location: t̂tp://www cs.cuhk hkAjyao/thesis/Eorm htal t « ^ ®
U ^ ^ H ^ w J What's |C&o‘？| Destina^ons{ HetSearchj 1 ¾ ^ Software|

A Simple Form!
* ， • M MMMf, «M»̂MrWMW r««ry»m«M* <MMMMT *«» , *««•* «M»M* '4W «nMWC *ntf^ ^ ^ |

Name of Photo: Monte Bianco Submit| Reset；
* V ««v *r*w * »«<w « t"*ttVffttfA 'I

-
_^^ 1 —"—' ^ii. !

Figure 2.4: The Web Page of a Simple Form

Another powerful feature of HTML language is that it provides fill-in forms to
realize the interaction with users. The tag <form> makes HTML documents' authors
establish interactive interface, collect input data from users and make response based
on users' input. This makes the web documents alive instead of being static all the
time. Here is an example:

<form action="http://www.cs.cuhk.hk/cgi-bin/photo">
Name of Photo: <input type="text" name="photoname" size=30>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

Figure 2.4 shows the web page corresponding to the above example. In this ex-

ample, the first line ties the data of the form to a particular program (photo) on the

indicated HTTP server (http://www.cs.cuhk.hk) at the directory ,,/cgi-bin,,. The sec-

ond line asks users to input the name of the photo they want to see. The third and

fourth lines are designed for Submit button and Reset button respectively. If there are

mistakes in users' input, they can click Reset button to clear all input data, otherwise,

after they click Submit button, the form data (Here are "Monte Bianco": the name of

the photo) will be sent to the program (photo) and the corresponding photo will be

sent back later.

http://www.cs.cuhk.hk/cgi-bin/photo
http://www.cs.cuhk.hk

Chapter 2 Basic Concepts And Related Work ^]_

Document Request and content types I can process ,

i ^ ^ i
Web Browser • Web Server •

^ ^ ^ ^ ^

Document
, L 3 ^

Of the content types which can

be processed by the browser

Figure 2.5: Negotiation of Data types between Web Browsers and Web Servers

2.3 HTTP Protocol

The communication between a web browser and a web server is carried out by Hyper-

Text Transfer Protocol (HTTP) [9, 21]. HTTP is an application-level protocol with the

lightness and speed necessary for distributed, collaborative, hypermedia information

systems. It is a generic, stateless, object-oriented protocol which can be used for many

tasks, such as name servers and distributed object management. HTTP protocol has

been in use by the World Wide Web global information initiative since 1990 [21], and

most ofthe existing web servers and web browsers adopt pre-HTTP/1.1 protocol, such

as HTTP/1.0 [21] in most cases.

The HTTP protocol is based on a request/response paradigm. A requesting pro-

gram (termed a client) establishes a connection with a receiving program (termed a

server) and sends a request to the server in the form of a request method, URL, and

protocol version, followed by a MIME-like message containing request modifiers, client

information, and possible body content. The server responds with a status line, includ-

ing its protocol version and a success or error code, followed by a MIME-like message

containing server information, entity metainformation, and possible body content [21].

The feature of HTTP is the typing and negotiation of the data representation, allowing

systems to be built independently of the data being transferred [9]. The negotiation

of data types between web browsers and web servers is shown in Figure 2.5. The web

r

Chapter 2 Basic Concepts And Related Work ^]_

browser sends a request telling what kind of data types it can handle, the web server

sends back the document with the data type which is what the browser can support.

Communication through HTTP protocol is 8-bit clean which ensures safe trans-

mission of all forms of data including Chinese [11]. An HTTP connection has four

steps:

1. Open connection — The client contacts the server at the Internet address and

port number specified in the URL (the default port is 80).

2. Request for service — The client sends a message to the server, requesting service.

The message consists of HTTP request header defining the method requested and

the information about the capabilities of the client. The header is followed by

the data being sent to the server (if any). Typical HTTP methods are GET, for

getting an object from a server, or POST, for posting data to an object on the

server.

3. Response from server 一 The server sends a response to the client with response

header describing the state of the transaction (for example, the status of the

response — successful or not — and the type of data being sent), followed by

the actual data.

4. Close connection 一 The connection is closed. ‘

HTTP messages consist of requests from client to server and responses from server
to client. In HTTP/1.0, messages are Full-Request and Full-Response. The grammar
of them are as follows:

Full-Request = Request-Line
*(General-Header
1 Request-Header
丨 Entity-Header)
CRLF
[Entity-Body]

Full-Response = Status-Line

Chapter 2 Basic Concepts And Related Work ^]_

*(General-Header -
I Response-Header
1 Entity-Header)
CRLF
[Entity-Body]

Both the request and the response consist of three parts: the first line of the
message, the header and the body. Request-Line begins with a method, followed by
the URL requested and the protocol version, for example:

GET http://www.cs.cuhk.hk/Index.html HTTP/1.0

This line means to retrieve document at http://www.cs.cuhk.hk/Index.html with pro-
tocol HTTP/1.0. The Status-Line consists of the protocol version followed by a code
number and its associated textual phrase. For example:

HTTP/1.0 200 OK

This means the server uses HTTP/1.0 as the communication protocol and the status

code is 200, standing for success, phrase ,OK, has the same meaning.

The General-Header includes information of Date, Mime-version, and Pragma
which decides whether a cache is chosen. The Request-Header of a Full-Request al-
lows the client to pass additional information about the request, and about the client
itself, to the server, such as: User-Agent, Authorization and so on [21]. Similarly, the
Response-Header of a Full-Response allows the server to pass additional information
about the response as well as the server itself to the client [21]. The Entity-Header
in either the Full-Request or the Full-Response defines optional information about the
trailing Entity-Body, if no body is present, about the resource identified by the request.
Here is the Entity-Header fields defined in HTTP/1.0 [21]:

Entity-Header = Allow
I Content-Encoding
I Content-Length
I Content-Type

http://www.cs.cuhk.hk/Index.html
http://www.cs.cuhk.hk/Index.html

Chapter 2 Basic Concepts And Related Work ^]_

I Expires -
I Last-Modified
I extension-header

The field Content-Type of Entity-Header in HTTP/1.0 provides simple data type
negotiation in one direction: from the server to the client. Codeset information can be
indicated in this field by charset parameter to tell the client what kind of data type
the retrieved document is, for example:

Content-Type: text/html; charset="IS0-8859-l"

Although this Content-Type header field can provide codeset information about

the trailing data, in general, most of the existing web servers do not provide charset

parameter in the Content-Type field when they send back response message to clients.

Even though web servers do provide charset information in this header field, few web

browsers know how to interpret it, instead, just ignore such information when analyzing

the Content-Type header. In addition, since ISO-8859-1 is the default character set

(or codeset) in the case of HTTP protocol [21], all text data in the Entity-Body are

forced to be interpreted as written in ISO-8859-1, misinterpretation of Chinese text

data is unavoidable.

In general, data contained in the response message's Entity-Body are mostly simple

ASCII text(or 8-bit clean) written in HTML language. We are particularly concerned

about the codeset in which the HTML document(the body data) is written. Consider

the following scenario. Suppose a simplified Chinese source document on the server is

coded in GB2312 and suppose that the client wishes to read the document in traditional

Chinese, then the document must be converted to a codeset that represents traditional

Chinese, say Big5, before it can be displayed on the client browser. This brings out

the Chinese specific requirement of codeset conversion support.

Before codeset conversion is carried out, ways have to be found to tell what codeset

in which the web document is written. As discussed in Section 2.2, the codeset tagging

for web documents can be done through the new tag <LANG> defined in HTML

Chapter 2 Basic Concepts And Related Work ^]_

version 3.0. In order to minimize codeset conversion efforts, and to provide flexibility

of codeset conversion at either the client side or the server side, the client and server

must announce information on the codesets they can support, referred to as codeset

announcement. For instance, if the source document is written in GB2312, and the

client side recognizes GB2312, no codeset conversion would be needed on the server's

side if the server is aware of such information. As another example, suppose the client

side only supports ISO-8859-1 and Big5 encodings, the codeset conversion for a source

document written in GB2312 can only be done on the server side provided that server

knows what codeset to convert the document to.

The new features of HTTP/1.1 [9], use the basic idea of language labeling facility
in MIME [2] to allow the negotiation of data types between the server and the client.
It is the HTTP header which provides us with the information regarding the data
types (including language, codeset and encoding etc.) of documents which we are
retrieving. From HTTP/1.0 [21] onwards, whenever a client requests a web document
from a server, the client will pass along a list of data types which it can support. In
receipt of such a request, the sever will try its best to send HTML document with
only the data types supported by the client. The header of the returned data shall
indicate which data type of the trailing content is. This is subsequently interpreted
by the client. The HTTP/1.1 header contains two fields related to our discussion,
namely, Accept-Charset and Accept-Language in the HTTP request message and
Content-Type(with charset parameter) and Content-Language in the HTTP response
message. Their formats are:

*Accept-Charset = "Accept-Charset" “；” l#charset
*Accept-Language = "Accept-Language" ••;••

l#(language-tag[__;" "q" "="qvalue])
*Content-Type = "Content-Type" ••:•• media-type

media-type = type ••/•• subtype *(";" parameter)
type = token
subtype = token
parameter = attribute "=•. value
attribute = token

Chapter 2 Basic Concepts And Related Work ^]_

value = token 丨 quoted-string -
*Content-Language = "Content-Language" ••:" l#language-tag

The first two Accept fields provide the codeset announcement mechanism for the

client. The latter two Content fields are filled up by the server. With the help of these

four fields, the client sends the request with the codeset announcement information to

the server, according to this codeset preference information and based on the codeset

of the source document retrieved by the client, the server decides whether automatic

codeset conversion should be carried out. According to the data type specification

given by the server, the client can interpret the data properly.

2.4 I18N And LlON

As a Chinese Internet access tool, the client interface must be customized in a way

that is convenient for Chinese users. For example, the client interface for people in

Mainland China should be customized to simplified Chinese. However, it is inflex-

ible and unnecessary to set up several versions of the browser for different codeset

environments, such as having different versions for simplified Chinese and traditional

Chinese. Since the core part of the software is the same, the browser design should be

independent of language and culture conventions. This design methodology is known

as internationalization (I18N) [22, 31]. With an internationalized browser, each time

it is invoked, the specific information on the supported language, cultural data and

codeset is plugged into the program dynamically. This process of preparing data for a

particular environment is called localization (LlON) [22, 31].

To facilitate I18N and to make LlON easy, ISO POSIX provides several mechanisms.

One is the introduction of Locale [22’ 31]. Locale is defined to hold the collection of

rules and text specific to a language and geographical area, such as collation rules

if different from the internal code sequence, date and time formats, and character

classification data for a language or culture such as alphabet letters, upper/lower case

letters, and control characters, etc. Another mechanism is the message catalog system

Chapter 2 Basic Concepts And Related Work ^]_

� - ； � N N T P �

1 t request

i ^ r o w ^ " • ^ P | O X ^ ^ _ I � HTTP Y ^ ^ J e r v ^

response ^ ^ " " ^ respUe ,

I , ^ - o ¢ ^
^ I 冊丨 I /"~"~\

； ^ L I (Gopher)
： Local Network Cache ； \^=~^J
I 1̂

Figure 2.6: Proxy server act as a client and a server

22, 31]. A message catalog contains program context data such as prompt information,

help messages, error messages, etc.. By separating this information from the program,

the program can be independent of the operating environment and this set of data for

different languages can be prepared in a uniformed way. When a browser is invoked

under a certain Locale, the messages related to this particular Locale can be extracted

from the message catalog automatically.

2.5 Proxy Server

In general, browsers connect with servers directly to retrieve HTML documents. How-

ever, in some cases, clients are connected with a so-called proxy server [28] which is in

turn connected to the server. A WWW proxy server, proxy for short, provides access

to the web for people on closed subnets who can only access the Internet through

the firewall machine. A proxy is a special server which typically runs on a firewall

machine. It waits for a request from inside the firewall, forwards the request to the

remote server outside the firewall, reads the response and then sends it back to the

client [11]. It is possible to arrange the same proxy to be shared by all the clients

within a given subnet so as to perform caching of documents that are requested by a

number of clients. Figure 2.6 illustrates the proxy server's architecture.

Nowadays many web browsers have the proxy support built in. The proxy acts as

Chapter 2 Basic Concepts And Related Work ^]_

Table 2.3: Language encodings as supported by Netscape 3.0.

L angu age codeset
Western (Latin-1)
Central European (Latin-2)
Japanese (Auto-Detect)
Japanese (Shift-JIS)

^ Japanese (EUC-JP)
Traditional Chinese (Big5)
Traditional Chinese (EUC-TW)
Simplified Chinese (GB)
Korean (EUC-KR)
Korean (ISO-2022-KR)
Cyrillic (KOI8-R)
Cyrillic (ISO 8859-5)
Greek (ISO 8859-7)
Turkish (ISO 8859-9)
User-Defined

both a client and a server in the whole transaction since the initial document requests

generated by the browsers. When requesting for a document, on the browsers' side,

the proxy is a server to receive the requests from them; and on the other side it will

inspect the browsers' messages, filter/process them before forwarding it to the target

server. This is also true for the other direction when the proxy receives the returning

document from the target server and the proxy will perform proper processing on them

before delivering it to the browsers. In case the server where the source document is

located is not enhanced to support Chinese specific requirements, an enhanced proxy

server can be set up as the bridge between clients and target servers.

2.6 Related Work

Currently, most of the web servers and browsers do not support interpretation of

HTTP/1.1 and HTML/3.0. However, some do provide document encoding options for

users to switch manually if the document does not match the viewing browser's current

encoding. In Netscape 3.0, for example, users can select one of the supported codesets

as shown in Table 2.3.

Chapter 2 Basic Concepts And Related Work ^]_

Table 2.4: Access result using Netscape and CMosaic.

Codeset of Source User Preferred User Preferred Codeset
Codeset

Document Under Netscape 3.0 Under CMosaic 2.4

明 ^ (Big5) Document-encoding: Font:
^ Big5: OK Chinese(gb2312): Not work
^ EUC-TW: OK Chinese(Big5): OK

GB: Not work Chinese(HZ): Not work
华夏文摘 (GB) Document-encoding: Font:

Big5: Not work Chinese(gb2312): OK
EUC-TW: Not work Chinese(Big5): Not work
GB: OK Chinese(HZ): OK

化夏文摘 (Big5) Document-encoding: Font:
十 Big5: OK Chinese(gb2312): Not work

EUC-TW: Not work Chinese(Big5): OK
GB: Not work Chinese(HZ): Not work

Here is an example when users use Netscape 3.0 or CMosaic (Mosaic-llOn) [38, 40

to access Chinese Information through Internet. The operation procedures are nearly

the same when using both browsers. At the beginning, users may choose the font

from the menu, and then access Chinese web documents encoded in different codesets.

Table 2.4 shows the access result.

From Table 2.4, it is obvious to find that only when the codeset of the source

document is identical to the one chosen by users at the client side, or in other words,

only when users just choose the right codeset identical to that ofthe required document

can the browser display the information correctly, otherwise what we will see are

garbage data. In most cases, users of Netscape 3.0 are assumed to know the codesets

of the target documents they are retrieving, which seems not to be a good idea, as in

many cases the codesets of the target documents are being identified by the HTTP

header returned. There is no automatic codeset conversions built in, therefore even

when Netscape 3.0 knows the codeset of the retrieved document, it will not perform any

extra processing except passing directly to the users. As a result there are cases where

the users have set a particular language encoding (either as a default or setting it via

the option menu), say GB 2312 , and requesting to view a document written in another

Chapter 2 Basic Concepts And Related Work ^]_

codeset, say Big-5. Netscape 3.0 will dutifully retrieve the requested document, but

will not perform any codeset conversions on it. Using the existing fonts for GB 2312,

it is obvious that the browser will not be able to show the right shapes of characters

for the target documents. In that case the users will be forced to choose the proper

Document Encoding from the menu and the characters will be re-displayed in their

right shapes. This requires users' interventions. And in the cases where the codeset

of the retrieved document is not known, it is tedious for users to guess it correctly.

Therefore what the current browsers can provide is not as what users anticipate.

To solve this problem, we should enhance the web browser so that the preference of

codeset for viewing the document may be selected by users dynamically and no matter

what codeset the required document is encoded in, the browser can display it in the

codeset as what users expect and users will not be aware of the automatic codeset

conversion , if any, at all.

Chapter 3

Design Principles And System

Architecture

The objective of our system is to provide a friendly environment for users to fetch,

exchange and process Chinese text data via Internet. To realize our main goal, the

core idea is to provide codeset announcement between web servers and web browsers

and to carry out automatic codeset conversion if the original codeset is incompatible

with what users require or prefer. Since our development is based on the current

commonly-used web server and browser, I first explain the technology used by most

existing web systems, then describe the new approach devised in our web system, at

last I discuss the overall system architecture of our web system.

3.1 Use of Existing Web System

3.1.1 Protocol

The protocol which most of the current web servers and browsers adopt is HTTP/1.0

.21] which doesn't provide sufficient data type negotiation. As introduced in Chapter 2,

HTTP messages consist of requests from client to server and responses from server to

client. In HTTP/1.0, there is no header field of a request message which can be used

23

Chapter 3 Design Principles And System Architecture ^0

to announce the codeset that the browser can support. Also, in the response message,

there is only one header field named Content-Type which is defined to indicate which

codeset the trailing data are encoded in. Although this Content-Type header field can

provide codeset information about the trailing data, in general, most ofthe existing web

servers do not provide charset parameter in the Content-Type field when they send back

response message to clients. Even though web servers do provide codeset information

in this header field, few web browsers know how to interpret it, instead, they just

ignore such information when analyzing the Content-Type header. In addition, since

ISO-8859-1 is the default codeset in the case ofHTTP protocol [21], all text data in the

Entity-Body are forced to be interpreted as written in ISO-8859-1, misinterpretation

of Chinese text data is unavoidable.

Comparing with HTTP/1.0, HTTP/1.1 [9] improves much on its data type negoti-

ation mechanism. The codeset announcement can be done in two directions. For each

HTTP request, two new Request-Header fields are provided. They are Accept-Charset

and Accept-Language [9]. With the help of these two fields, the client now is able to

pass the local environment (the language and codeset the client can support) to the

server. This completes the data type negotiation from the client to the server. On

the other hand, HTTP/1.1 defines a new Entity-Header field Content-Language which

tells what language ofthe text data in Entity-Body is. With the help of both Content-

Language and Content-Type (with charset parameter) Entity-Header fields, the server

can tell the data type of the retrieved document when it sends back the HTTP re-

sponse to the client. This completes the data type negotiation from the server to the

client.

To support codeset announcement, HTTP/1.1 is adopted as the protocol commu-

nicated by our Chinese web server and browser with each other so that two directions'

data type negotiation can be realized. Furthermore, using the new headers fields

defined in HTTP/1.1 makes the data type negotiation applicable to many other lan-

guages/codesets , not just Chinese. It is sure that HTTP/1.1 is the trend for the

web world and its new features make the access of web documents written in various

languages and codesets become much more easy and convenient.

Chapter 3 Design Principles And System Architecture ^0

Switch Web Page

C ^ <Bi^ (¾ ^ ¢ ^ ^ select GB̂ ^̂ ^ ^^^ sê ver

n I 十 _ 丨 ^~ 丨
v__y •••參肇鲁 丨

/ � • Web Browser GB Bis5 CNS Unicode

• — A A A A
Doc 1 Doc 1 Doc 1 Doc 1

C ^ C ^ C 7 ^ L x ^
selected

Figure 3.1: File Storage Structure on Multi-codesets Web Servers

3.1.2 Avoid Duplication of Documents for Different Codesets

Most of the English-based or alphabet-based language web servers provide only one

version document over the Internet. For example, the homepage of Netscape has only

English version information. For documents written in ideographic languages, such as

Chinese, some web servers may provide multiple versions for the same document with

different codesets. For example, the home page of Hua Xia Wen [6] on a web server

located in U.S.A, provides multiple versions for the same document: GB (simplified

Chinese), Big5 (Traditional Chinese), HZ, etc. Users just click a certain button related

to a particular codeset to see the right version of that document.

The idea for the existing web servers supporting multiple codesets is to adopt

the directory tree structure concept which keeps the documents with various codesets

under different sub-directories [36]. For example, the documents encoded in Simpli-

fied Chinese are stored under the sub-directory GB, while the documents encoded in

Traditional Chinese are stored under the sub-directory BIG5 and CNS respectively

depending on various systems's conventions. Figure 3.1 illustrates the file storage

structure on multi-codesets web servers. When a web browser sends a request to a

multi-codesets web server, the server tries to fetch the retrieved document with the

codeset selected by the web browser from the corresponding sub-directory. At the

browser side, the selection of different version document can be done through clicking

Chapter 3 Design Principles And System Architecture ^0

a button, a particular part of an imagemap or a hyperlink in a switch page. ,

The approach of storing documents with multiple codeset versions has many dis-

advantages [36]:

1. If the web server supports N codesets, it has to maintain N copies of documents

with the supported codesets. This requires quite a lot of effort to convert each

document from one codeset to another.

2. It wastes a lot of disk space storing duplicated information.

3. It is difficult for the management and is liable to cause inconsistency of different

version documents. For instance, once one version document has been updated,

all other copies should be modified timely, otherwise inconsistency will happen.

4. Current operating systems usually support only one kind of codeset which makes

it hard for web clients to support multiple codesets.

To overcome the limitations of the above approach, some web servers use image files

instead of the text equivalent to fulfill the requirements for web clients which don't

support the codesets provided by the multiple-codesets web server. However, image

files usually occupy a huge disk space which seems not to be a good solution, new

facilities should be added into web systems.

In our design, with the help of codeset announcement mechanism and automatic

codeset conversionfacility, our web server stores only one version for each Chinese doc-

ument, either in traditional Chinese codesets or in simplified Chinese codeset. There is

no need to maintain other versions for other Chinese codesets at the same time. Each

time, when our browser tries to access a Chinese document on our server, the server is

capable to decide whether codeset conversion needs to be done to convert the retrieved

document or not. If the original codeset of the retrieved document is incompatible

with what the browser can support, automatic codeset conversion will be conducted.

At last, the converted document will be sent back to the browser for display.

Chapter 3 Design Principles And System Architecture ^0

\J Hetscape:-Ttievtewofwoman !小4 ,
^ -^=^ _ . :

服 Edlt Vlew 60 BooRmarto Options Pin̂ ctory 彻幅 一

: 5 Z ^ ^ J l W J — _
Location: ^ t t p • //cwebl: 8001/gb html K ^ ^

^ ^ ^ M ^ ^ 睡
r"̂ „ ̂ ^

< V/^/^,y/^/i^//i///sM'-^V^^^^^ . '. • • fS^X ：

U
> { 1 {阪城健姥澄‘丨里峡玲躁藝璨腔‘丨里̂ JJ；

i : r z z z z z r : z z z z r , z j T "
‘ ‘ I 粉一 ^ 对 ^ *供 < < < <"«~«» < 揪、嘴-<-^*< ‘ t^ 零 i

丄幽； •.•••.. :••• 二 - “ ™ ： ~ ~ ~ = ~ ~ ~ = " " = ~ ~ ~ — — ^ ^

Figure 3.2: Output for viewing a Chinese GB web page using a Big5-based browser

3.1.3 Support On-line Codeset Conversion Facility

It is very common that only one codeset is supported on all computer platforms in a

certain region or country. For instance, nearly all computer systems used in Mainland

China only support simplified Chinese - GB codeset, in the meanwhile, most of the

computer systems used in Taiwan and Hong Kong support traditional Chinese with

codeset Big5, and some of them also support CNS, however, they do not support sim-

plified Chinese at most of the time. Suppose a PC-platform web browser Netscape 3.0

only supports Big5 encoding on its local machine, although users can select "Document

Encoding" from Netscape's menu to different codesets, users still cannot read docu-

ments encoded in GB in this case, because there is no resource for simplified Chinese,

such as fonts, at the client machine. Figure 3.2 shows the access result of the exam-

ple. In this example, although some Chinese characters are displayed on the screen,

the sentence as shown in Figure 3.2 is meaningless due to misinterpretation of the text

data. One ofthe solution is to download the documents encoded in codesets other than

the one supported by the local machine, and use other codeset conversion softwares

to convert them later. This brings inconvenience to users as it gives unnecessary disk

space burden for users to save the intermediate documents on their local machine, and

wastes their time to do the conversion by themselves, and will frustrate them to read

such documents in the future again. It is unfavorable to information exchange among

people in different regions and countries.

Chapter 3 Design Principles And System Architecture ^0

Let's see another situation. Suppose the local machine supports many codesets on

its own, and users want to access a web document encoded in a codeset which is not

known by users in advance. If users happen to set the current 'Document Encoding'

of the web browser compatible with the one of the retrieved document, there is no

problem for them to read the document. However, it may be the case that the two

are1ncompatible, for example, users set the current display environment to simplified

Chinese, it is very possible that the document is encoded in traditional Chinese, in

this case, garbage data will be displayed on the screen like shown in Figure 3.2, users

are forced to try different 'Document-Encoding' manually which is very tedious, and

if the number of codesets increases, the manual intervention will be time-consuming

and boring.

What we have learned from the both cases leads us to the consideration of on-

line automatic codeset conversion. With on-line codeset conversion, users can access

documents encoded in different codesets without the need to worry about the incom-

patibility between codesets supported by the web browser and that of the retrieved

document, all conversions are conducted transparently and automatically.

3.1.4 Provide Internationalized Interface of Web Browser

Most of the existing web browsers provide English interface for users. As a Chinese

information access tool, the browser interface should be customized to support Chinese

so that users can operate the web browser in their familiar environment, either in

traditional Chinese or simplified Chinese.

The traditional method to realize the objective is to add more codes to the original

browser program, so that the modified browser supports bilingual environment. How-

ever, this method has some drawbacks. As the number of Chinese codesets supported

increases, a large amount of repetition work will be done to modify the original code

of the program to support the new language/codeset. Also the program is not exten-

sible and it is difficult to guarantee the consistency with different codesets/languages.

As the supported codesets grows, so does the code size which causes some perfor-

Chapter 3 Design Principles And System Architecture ^0

mance degradation. The new approach named Internationalization (I18N for shprt)

is adopted in our design. The main idea of I18N is to separate the logical control of

software from the data it handles. The software includes calls to generalized routines

that get language- or culture-specific data at run time. The data still has to be local-

ized. An internationalized system is capable of supporting new languages and cultures

without changes to the source code of the program.

In our system, all program context messages are isolated from the program, and

they are stored in message source files under different directories for different codesets.

Each message source file has identical format, only the content itself is different from

one to another. Each time, when users invoke our browser, there are some ways for

them to set the local environment. After the environment has been set up, the corre-

sponding messages are plugged into the program when it runs. With I18N approach,

adding a new language/codeset is quite straightforward, just by adding a new message

source file under related directory. There is no need to change the source code of the

program at all.

3.2 Our Approach

To solve all problems of Chinese information access through the web, we proposed a

new approach to enhance the current web system. The main goal of our web system

is to provide codeset announcement [13] for both Chinese Internet documents and for

browser environments so that automatic codeset conversion can be provided trans-

parently. This allows a browser to view a document in the user's preferred codeset

regardless of the codeset of the source document being retrieved. In brief, we first

need language/codeset tagging in the web documents using HTML 3.0. Secondly, we

must enhance servers and browsers(or proxies) by supporting HTTP/1.1 so that data

type negotiation can be carried out. Thirdly, we must add on-line codeset conversion

functionalities [14] into the enhanced server and browser. Currently, most servers and

browsers do not support data type negotiation and on-line codeset conversion, so we

Chapter 3 Design Principles And System Architecture ^0

have to discuss the different cases and their solutions. ‘

3.2.1 Enhancing the Existing Browsers and Servers

The enhancement of browser and server consists of two parts: one is supporting

HTTP/1.1, the other is providing automatic codeset conversion functionality. If both

sides, the browser and the server support HTTP/1.1, the codeset announcement is

straightforward. However, there are still browsers and/or servers which are running

pre-HTTP/1.1 protocols. Therefore, different situations need to be discussed further.

Case 1: Having An Enhanced Browser Only

In this case, only the browser is enhanced, therefore data type negotiation between the

browser and the server cannot be carried out, and automatic codeset conversion can

be done on the browser side only if the retrieved document is written in HTML/3.0

with language tagging. Since the browser is invoked by an individual user, caching of

converted documents and sharing them by other users are difficult. In other words,

even if the same original document is retrieved by N users from the same network and

assuming that they are all requesting for the same target codeset, N retrievals are still

needed and N codeset conversions must be done, which waste network bandwidth as

well as system resources. It is also possible that a given browser does not have the

required converters. In that case the original document is sent back to the browser

without any change.

Case 2: Having An Enhanced Server Only

Using a normal browser and an enhanced server, the server should convert the required

document into one which is acceptable by the browser. However for browsers preceding

HTTP/1.1, the server will not know which codeset(s) the client can handle. It is

because the client will not pass the codeset information in the header. Although the

server can perform codeset conversions, it doesn't know the target codeset as required

by its client.

Chapter 3 Design Principles And System Architecture ^0

B (GB’Big5) s ‘
() G B request

^ ^ \ ^ Web Browser ^ Web Server

/ \ response 八

GB ^ — — B i g 5 Big5 Big5 ^ CNS ————
User

Doc c ^
» CNS

Figure 3.3: Multi-Codeset Conversions of Both Web Browsers And Web Servers.

Case 3: Having Both Enhanced Server And Enhanced Browser

There are cases where we must have both the enhanced browser and the enhanced

server. Consider the scenario shown in Figure 3.3. where a browser B can accept

codeset GB and it can perform codeset conversion from codeset Big5 to GB. Assume

that a user chooses to view document in GB, and the document requested by B is

written in codeset CNS. Also assume that the server S servicing the requests can

convert from CNS to Big5. Now when B requests for the document from 5, it specifies

that it can accept codesets GB as well as Big5. Obviously S cannot simply pass the

document in its original codeset (i.e. CNS), otherwise the browser would not know how

to process it. In receipt of the request, the server knows that the browser can accept

both GB and Big5, Therefore, the server can perform CNS-to-Big5 codeset conversion.

In doing so, the server informs the browser that the returning document is in codeset

Big5. This can be done via HTTP/1.1 header. Upon receiving this header, the browser

can perform another codeset conversion — Big5-to-GB. The final characters displayed

to the user will be in GB which is what was required in the first place. Ideally, if all

the browsers and servers can be updated to HTTP/1.1, codeset conversions would be

quite straightforward. The server will simply look at what the client can accept and

try to convert the original document into one which is acceptable by the client.

However, to deal with servers which still use pre-HTTP/l.l, even an enhanced

browser states what codeset it accepts, the server can not react to this option. Since

the target server is beyond users' control, we must devise a way to do conversions when

dealing with pre-HTTP/l.l servers. This brings us to use enhanced proxies to deal

Chapter 3 Design Principles And System Architecture ^0

with such a case. ‘

3.2.2 Incorporating Proxies in Our Scheme

As mentioned in the previous section that it is not possible to perform automatic

codeset conversions for pre- HTTP/1.1 servers, we can add an HTTP/1.1 proxy server

in the path between a pre-HTTP/1.1 server and an enhanced browser. Instead of

asking the browser to contact the target server directly, the browser can contact the

proxy server first. Effectively the proxy server acts as a client to the remote target

server on behalf of the browser.

When the proxy receives a request from a browser, it inspects the header and notices

the codesets acceptable by the browser. It is necessary for the proxy to be equipped

with various codeset converters, so that it may perform the codeset conversions before

returning the document to the browser. Before forwarding this request to the target

server, the proxy may add any extra codesets acceptable by it to the header, so as

to increase the chance of getting the document in one of the codesets as acceptable

either by the proxy or the browser. Although the target server might not be able

to pass codeset information in the header, the proxy can still parse the document if

it is written in HTML/3.0 and try to identify its codeset. In principle, the codeset

information will be available only for HTTP/1.1 or post servers. If such information

is available, there is no need for the proxy to search for this information again in the

document.

Having identified the original codeset and the target codeset, the proxy can per-

form codeset conversions before returning the document to the browser. It is possible

to configure the proxy so that a certain degree of caching will be enforced. With the

presence of the cache facility, the conversion process can be avoided if the same doc-

ument is accessed again when the converted document in the proxy's cache shall be

returned immediately. The browser can get an extremely fast response from the proxy,

although the user may perceive that the document is sent directly from the target

server. If we can ignore the exception situations possibly occurred during the codeset

Chapter 3 Design Principles And System Architecture ^0

Table 3.1: Implementation Possibilities.

Browser Proxy Remote Server Work or Not?
Server

HTTP/1.1 Optional HTTP/1.1 Yes
HTTP/1.1 Mandatory Pre-HTTP/1.1 Yes

(Post-HTML/3.0
documents)

Pre-HTTP/1.1 N^ HTTP/1.1 or ^
Pre-HTTP/1.1

conversion process, the user may also think that all the documents are written in the

codeset as specified by him/her.

Conceivably the proxy and the browser should reside on the same sub-net, this

is to ensure the relatively quick response and easy management from the proxy. The

installer ofthe proxy and/or the browser should install the codeset conversion libraries

12] for both applications. It is also clear that the proxy works even for HTTP/1.1

browsers which cannot perform any codeset conversions. Table 3.1 illustrates the

possibilities of implementation. From Table 3.1, we can see that if both the browser

and server are HTTP/1.1 compatible, whether there is an enhanced proxy or not

between the browser and the server, they are sure to work fine. If the server only

supports Pre-HTTP/1.1, the system can only work when the browser is enhanced,

and there must be an enhanced proxy between the browser and the server, and the

HTML document is written according to HTTP/3.0 specification. Otherwise, the

proxy cannot carry out automatic codeset conversion if the retrieved document is not

written using the <LANG> tag of HTML/3.0 as the normal server doesn't provide

any data type information of the retrieved document at all and there is no way for

proxy to identify the codeset. However, if the browser is not enhanced to be able to

send its local environment to the server, no matter what kind of proxy and the remote

server are, the system doesn't work.

Chapter 3 Design Principles And System Architecture ^0

(hziconv)
(^^ K I ； 1 K crz^ ‘
^ > \ application use \

1 / codeset conversion I /

k _ ^ y I 1 y ^^^
Source File ^ "^^ j^^^^ Target File

Applieation-P rogri im-hiterface

"^c:i^^^^^^^ (libiconv^o)

> application dynamically
G B _ B I G 5 _ n e w iinked libraries G B _ C N S _ U S E R

^ ¾ ^
G B _ B I G 5 G B _ C N S C N S _ G B B I G 5 _ G B

L I ^ I
I s/ ‘

Modules

Figure 3.4: The Architecture of API for Codeset Conversions

3.2.3 Automatic Codeset Conversion

Automatic codeset conversion is the important part of our new web system. Codeset

conversion routines for different codesets of Chinese have been developed in the Hanzix

Open Systems [12, 14]. A uniform Application Program Interface (API) is provided

for individual application to do the codeset conversion from one codeset to another.

The architecture of the API is shown in Figure 3.4.

The Codeset Conversion Application Program Interface can be seen as a set of

functions which are callable by programs or other libraries as shown in Figure 3.5.

Figure 3.5 reflects the view which users have. Details of implementations of such set of

functions are not of users' concern and therefore can be safely hidden from the users.

The design of the Codeset Conversion API employs the modularity methodology in

which system administrators can freely add in their own converters as long as those

converters conform to the interface definitions [14 .

The APIs are implemented as a library which consists of several conversion modules

as shown in Table 3.2, each module converts data from one codeset to another with

Chapter 3 Design Principles And System Architecture ^0

hz_iconv User Applications I-Hanzix libraries

^0" < ^ "=Pf"

<j^ ^0- "U"

Codeset Conversion Application Program Interface

介 介 介 T~�
<S - ^ - ^ “ ^

converter 1 converter 2 converter m converter n

Figure 3.5: The Structure of the Codeset Conversion API

Table 3.2: Different Codeset Converters

Source-Codeset Target_Codeset ConverteT"
"GlB Big5 G B � I G 5

GB CNS - GB-CNS
- ^ ~ ~ GB _ BIG5-GB
~ ^ ~ ~ CNS “ BIG5-CNS
T N S ~ ~ CT CNS-GB

CNS Big5 CNS_BIG5

uniform interfaces as seen by the outside world. Due to the bulky size of the library

and for the sake of efficiency, user programs are arranged to link with the library

dynamically and the library itself is sharable by all programs. All references from the

programs to the APIs within the library (libiconv.so, to be precise) are resolved at

run-time rather than in the process of compilation.

The conversion API consists of three conversion routines: hzJconv-open, hzJconv

and hzJconv.close. The calling sequence of the conversion routines is illustrated in

Figure 3.6. Before a converter can be used, the function hz_iconv_open() ha^ to be

called, which will attempt to locate the corresponding converter to convert a given

source codeset(source) to the given target codeset(target). If there is no converter

available to convert source to target, an error status will be returned, otherwise an

opaque type pointer will be returned to the caller. The pointer returned shall be used

by the subsequent function - hz�conv() which actually converts data from source to

Chapter 3 Design Principles And System Architecture ^0

hz_iconv_open • hzJconv • hz_iconv_close ‘

locates the corresponding actually converts thedata indicatestotheconversion
converters and returns an opaque and the results are put into APIs that further conversions
typepointertotheuser theoutputbuffer shallnotbeneededfromthis

converter in this process

Figure 3.6: Calling Sequence of the Conversion Routines

target. Upon the processing associated with this converter is completed and users

no longer wish to use the converter anymore, the function hz_iconv_close() should be

called. Here are the definitions of the three routines:

1. #include <hzconverter.h>

hz_iconv_p hz_iconv_open(char *target_codeset,
char *target_codeset,
char *identifier)

This function attempts to locate an appropriate converter available in the system for
converting source.codeset to target_codeset. The parameter identifier is a modifier which
could affect the search of the required converter. Different identifiers designate different
converters, but they all convert same source.codeset to the same target_codeset, given that
they must be pre-installed into the system and hence being integrated into the codeset
conversion library. If identifier is NULL, the standard converter for such conversion, if
found, will be chosen and returned to the caller. For example,

hz_iconv_open("BIG5", "GB", NULL)

means a standard converter for conversion from Big5 to GB is opened, and the statement

hz_iconv_open("BIG5", "GB", "my")

will do the same conversion, but the converter is different which is designated by the

third parameter -，，my".

2. #include <hzconverter.h>

size_t hz_iconv(hz_iconv_p cd,

Chapter 3 Design Principles And System Architecture ^0

Table 3.3: Exceptional Cases in Codeset Conversions

Categories Descriptions
1-to-N A single character in codeset A can be mapped into more

than one character in codeset B. This is very common
when converting CNS-11643 data into GB-2312, as in
other cases where codeset A is a subset of codeset B.

N-to-1 Many characters in codeset A can be mapped into a
single character in codeset B. This is very common when
converting GB-2312 data into CNS-11643, as in other
cases where codeset A is a superset of codeset B.

l_to-0 There is no corresponding character when mapping a
character from codeset A to codeset B.

char **inbuf,
size_t *inlen,
char **outbuf,
size_t *outlen,
unsigned int *exception_buf,
unsigned int *nchars,
CONVERSION_INFO custom_data)

This is the actual conversion routine which does the job of conversions from one codeset

to another. hz�conv() will convert as much data as possible until some exceptions

happen.

3. #include <hzconverter.h>

void hz_iconv_close(hz_iconv_p cd)

When a converter is no longer required, users should call this routine so as to free any

redundant memory allocated. The parameter cd should be a valid return value from a

previous call of hz_iconv_open().

During the conversion, the mappings between characters in one codeset with char-

acters in another codeset is not always a 1-to-l relationship. Table 3.3 lists the three

different cases. In our web system, automatic codeset conversion is carried out through

invoking the three conversion routines mentioned above, and linking to the library dy-

namically. To simplify the conversion and for the sake of efficiency, all exceptional

Chapter 3 Design Principles And System Architecture ^0

Client 2

CodesetConverters SearchEngine /

7 E T t c � i Z r n
y Client 3

^ ^ _ ^ HTTP 7

- / ^ 二 一 丨 _ 1 Proxy ^ ^ R _ t e , t ^ •
(i ^ g P ^ I ^ HTTPSever ^

N^^^^^^j_^ _ f _ _ Internet ^ ^ ^ ^ ^ ‘ \ ^ •
^ ^ ^^^__J fe_^-^^ Server \

Connection y ^ � �
• • • ^ \ •

� : n ^ 一 I 1 \
CodesetConverters i CodesetConverters

“ ，� Client N
^ ^

^ — 乂

Server
Cache

广 、
Client 1

Figure 3.7: Overall System Architecture.

cases for character mapping are handled uniformly, and always use default settings

when 1-to-N mapping is encountered.

With the codeset conversion API, it is very easy for our web system to call different

converters to do the codeset conversions. And with the uniform definition of API, new

converters can be added into the system, such as converters to and from Unicode, in

the future.

3.3 Overall System Architecture

3.3.1 Architecture of Our Web System

Through discussions for different cases, we have adopted proxy server into our design

for the maximum capability of the system. The overall system architecture is illustrated

in Figure 3.7. The whole system is divided into two parts: the client part and the

Chapter 3 Design Principles And System Architecture ^0

server part. Although the proxy server is also called a server, it is convenient,and

flexible to locate the proxy server in the same subnet with clients. When invoking an

internationalized browser, the browser is initiated according to the current Locale of

user's choice. The codeset converters are installable routines which are based on the

Hanzix conversion interface [12, 13，14] so that they can be plugged into the browser

. T h i s internationalized browser is an enhanced browser which supports HTTP/1.1.

If the remote server supports pre-HTTP/1.1 only, a proxy server is needed, otherwise

the browser can communicate with the server directly. Once the user sends a request

with the codeset preference, the browser forwards this request to the remote server or

the proxy server. The proxy server checks the codeset information and forwards this

request to the remote server. After the HTTP connection, the server tries to find out

the retrieved document, either locally or asking helps from other sites through common

gateway interface (CGI) [11, 15]. If the original codeset of the retrieved document is

different from the preferred codeset, automatic codeset conversion is carried out and the

converted document is sent back to the client side. After the proxy server receives the

document, it may carry out further codeset conversion if needed, and then maintains

a copy of the document in the local cache in case another browser asks for the same

document. The proxy server can retrieve a buffered document and return it to the client

at a very high speed. If the browser finds that further codeset conversion is needed,

it invokes the related codeset converter to carry out another round of conversion. At

last, the final document is displayed on the screen without any problem.

In a nutshell, we will provide three packages to users:

1. An enhanced server supporting HTTP/1.1 and having codeset conversion facility.

2. A proxy server with built-in automatic codeset conversion facility and caching

mechanism.

3. An internationalized browser supporting HTTP/1.1 and with codeset conversion

facility.

Chapter 3 Design Principles And System Architecture ^0

codeset | codeset |
I , I L converter | detector I ‘

^ k 薩 I I 1
Interface | M | | | ^ ^ ^ J V X

t j__, v x
Enhanced | HTTF/1.1 | Enhanced | enhanced / T T P / 1 . 1 p,^xy . H T T P / l ; typical
Browser ^ ^ Server browser | codeset Server | 如 codeset server

“ “ c o d e s e t A negotiation i negotiation
‘ ‘ negotiation ‘ I

� codeset | “ “codese t~h ： codeset | ^ ^
：converter | converter I ； converter •
' - ^ M M ^ J * - H H ^ H J - m m i ^ m ^ Cache

^ —“̂

(a) Enhanced Browser Accesses Enhanced Server (b) Enhanced Browser Accesses Typical Server

Figure 3.8: Case I and Case II

3.3.2 Flexibility of Our Design

As discussed before, the support of automatic codeset conversion is based on codeset

announcement mechanism which requires codeset negotiation between the client and

the server. This can be carried out through the data type negotiation provided by

HTTP/1.1 protocol [9；.

However most ofthe current web browsers and web servers support pre-HTTP/l.l ,

such as HTTP/1.0 [21]. Besides providing an enhanced server and an enhanced browser

supporting HTTP/1.1, the system should be compatible with web systems which sup-

port pre-HTTP/l.l protocol. This brings our design requirements of flexibility for

backward compatibility. The component integration approach is used in our architec-

tural design, where each component is independent and reusable, and all components

can act in flexible combination to provide services under different situations. There

are four cases for the framework of our system which are illustrated in the following

figures. All rectangles with shadows are characteristic modules in our web system.

Those drawn with dashed lines are optional modules or functions.

Case I: Enhanced Browser Accesses Enhanced Server

Figure 3.8(a). shows that an enhanced browser can communicate with an enhanced

server without any problem. The enhanced browser provides an internationalized

interface for users, and both the server and browser carry out data type negotiation

according to HTTP/1.1 protocol.

Chapter 3 Design Principles And System Architecture ^0

r"c'JdeseV"k r"codeseV"| codesel | codes t̂ |
i converter | ！ detector • L ^ ^ j j j ^ ^ j | ^ L ^ ^ | ^ ^ S J

. - \ 、 — / \ / ^

_ a l 厂 . 0 , r ^ , r r m . : enhanced _ a l | J ! : ^ r ^ J ! : ! Z ! ^ | =

browser _肌 codeset’ Server ^̂^̂ server | browser 丨 肌⑶通杉过 Server 丨 no codesei I——ff!ZE
negotiation i n ' eg2t ion | n e g - t i < m | n e g - « o n

codeset _ ^ 二

“ ‘ converter I
Cache ^ ^ ^ ^ J Cache

‘ (a) Typical Browser Accesses Enhanced Server (b) Typical Browser Accesses Typical Server

Figure 3.9: Case III and Case IV

Case II; Enhanced Browser Accesses Typical Server

Figure 3.8 (b). illustrates if an enhanced browser wants to access documents on a typ-

ical server. Since the typical server will ignore the codeset announcement information

sent by the enhanced browser, and the typical server doesn't have any codeset con-

version facility built in, an enhanced proxy server must be added as a bridge between

them. In this case, the proxy server accepts the request from the enhanced browser,

and forwards it to the typical server. After receiving retrieved document from the

server, the proxy server will try to identify the codeset of the retrieved document and

do automatic codeset conversion if necessary. Then it returns the converted document

to the browser.

Case III: Typical Browser Accesses Enhanced Server

Figure 3.9 (a), shows another case where a typical browser wants to access an enhanced

server. Although the enhanced server can do codeset conversion, however, the typical

browser doesn't send any codeset announcement information to the server, there is no

way for the server to know which codeset it should convert the document to. As a

result, an enhanced proxy server is also needed in this case. In general, a proxy server

is located within a local network. The assumption used by such proxy server is that it

regards that most of the web browsers within the local network support an identical

codeset. For instance, most web browsers in Hong Kong support Big5, so that the

proxy server can announce this codeset to the enhanced server and automatic codeset

conversion can be done based on this information.

Case IV: Typical Browser Accesses Typical Server

Chapter 3 Design Principles And System Architecture ^0

If users don't have our web software at hands, another framework is also provided

for them, which is shown in Figure 3.9 (b). In this case, an enhanced proxy server

is a must if users still want to have the specific services. The proxy server assumes

that a particular codeset is supported by most web browsers in the local network, and

then it accesses the document on the server on behalf of these web browsers. It is

indispensable to enhance the proxy server with automatic codeset detection facility so

that it can identify the original codeset of the retrieved document by investigating the

source code ofthe document, and carry out codeset conversion if needed. The enhanced

proxy server with caching capability also speeds up the document retrieval when a web

browser accesses the document which has been accessed by another browser before.

The proxy will fetch it from the cache instead of connecting with the remote server

again.

3.3.3 Which side do the codeset conversion?

Through discussion in Section 3.3.1, we know a new web system may consist of an en-

hanced browser, an enhanced server and probably an enhanced proxy server. Consider

the case where the browser, the server and the proxy can all do the codeset conversion,

an interesting question to be asked is: who is responsible for the actual conversion

process? The answer is that it should be more flexible if it can be done nearer to the

browser's side, in fact, it is best for the browser to do the job. The reason is that users

may sometime provide their own versions of converters, which might be more effective

than the default ones as supported by the proxy and/or the server. If we force the

users to use the default converters, they will have no choice but accepting the possibly

relatively less efficient converters.

3.3.4 Caching

There is a question concerning the caching of data in our model. Assuming that the

proxy is to do the codeset conversion on a particular incoming document, there is a

dilemma that the proxy may cache the original document or it can cache the converted

Chapter 3 Design Principles And System Architecture ^0

form of the document. In principle the proxy may also cache both the unconverted and

the converted formats, but this is considered as a waste of space when web documents

are usually small in size and therefore it won't cost much in CPU power to convert

from the original documents to other codesets. Therefore we have decided that the

proxy should cache the original documents only under the control of the installer of

the proxy. For many browsers, they have options to allow the retrieved documents to

be cached in users' selected directories. Therefore it is decided that it should be users'

responsibilities to cache the converted document should one be required. Also it is

common for hundreds of users to access one single proxy, it seems to be impractical to

cache all the converted documents at the proxy.

Chapter 4

Design Details of An Enhanced

Server

As mentioned in Chapter 3，an enhanced web server with automatic codeset conversion

functionality should be set up in a new web system to fulfill the additional requirements

for Chinese text data processing through Internet. The enhanced web server is built on

UNIX platform similar to other English web servers. It has the capability to manage

Chinese text data encoded in different codesets on the same server. When data stored

in the server are incompatible with what the client machine can process, the server

can also provides automatic codeset conversion transparently to client machines.

4.1 Architecture of The Enhanced Server

The architecture of the enhanced web server is illustrated in Figure 4.1. We know, to

realize all objectives mentioned in Chapter 3, the enhanced web server must know how

to analyze the HTTP request message containing preferred codeset information by the

user at the client side, and after the codeset conversion if necessary, compose a new

HTTP response message containing the content language and codeset information of

the converted/unconverted document so that the browser can parse it and do properly

on the documents. All lightly shadowed modules in Figure 4.1 stand for modified

44

Chapter \ Design Details of An Enhanced Server _f^

()lnformation() R ^ m o t e S i t e ,

11 T

C ^ ^ k j L o c a I F U e | Gopher FTP

^ 2 2 i ^ 2 2 I l i l 2 2 2 J H a S r I Handler Handler

t T i > ^ ^ ^
HTTP Information

^ Installable Converters |RequestHandler| k^ollection Module

~k MIME
MIMEParser 圓 Body Generator

*"̂¾;!"!¾½¾̂"!!¾!¾¾>̂"¾½¾¾̂¾¾-'¾̂¾¾¾̂^

~ " i f i ^ HTTP I
Message Parser Header Generator |

I ••� 1¾¾¾¾¾¾̂½¾¾¾:̂;¾̂¾¾¾¾¾̂*¾""")¾̂¾̂^

HTTP
Lexical Analyser Reply Constructor

HTTP
Network Handlei Reply Handler

Client Request Server Reply

Figure 4.1: The Architecture of The Enhanced Web Server

functions while the heavily shadowed module stands for the new function - codeset

conversion.

4.2 Procedure on Processing Client's Request

The steps about how the enhanced web server processes client's requests are listed as

follows:

1. Network Handler

Before a web client sends a request to the web server, it first establishes an

HTTP connection with the server. Module Network Handler is responsible for

handling the connection with the client and if there are data coming from the

client, Network Handler collects them and sends them to the next module.

2. Lexical Analyzer

Chapter \ Design Details of An Enhanced Server _f^

Like any language parser, module Lexical Analyzer is designed to do the lexical

investigation of the input data. And it tries to detect any syntactical errors of

the data and pass the correct part of the data to the next processing module.

3. HTTP Message Parser

, I n general, an HTTP message consists of three parts: a header-line, message

header fields, and the message body. Module HTTP Message Parser divides the

three parts into different objects and invokes module MIME Parser for further

parsing.

4. M I M E Parser

MIME Parser is an important part of the web server. It is responsible for the

analysis of the HTTP request message's header fields. It has been modified

to fulfill the additional requirements, i.e. it is capable to analyze the codeset

announcement information in the HTTP request message which is sent by the

web client. This will be described in more details in the next section.

5. HTTP Request Handler

In the header-line ofeach HTTP request message, there is a part describing what

the protocol the web client uses, and module HTTP Request Handler is right for

identifying this information and invokes different protocol handlers to do the

further process.

6. Local File Access Handler

If the web client wants to access a document located on the local server other

than remote servers, this module tries to locate the document from the file system

of the server. Local File Access Handler module has been enhanced to have the

capability to detect the codeset of the original document which will be explained

later. If the codeset of the document is incompatible with what client requests,

codeset conversion should be carried out later.

7. Codeset Conversion Module

Chapter \ Design Details of An Enhanced Server _f^

This is a new module which is added into the server to do the automatic cod^set

conversion. It is the interface between the web server and the Hanzix codeset

conversion libraries and routines which are described in Section 3.2.3. This mod-

ule tries its best to convert the retrieved document on the same server from the

original codeset to the one required by the web client.

8. Gopher Handler, FTP Handler

These two modules are similar to module Local File Access Handler and are

designed to handle requests for Gopher and FTP protocols respectively. Both of

them need to access the remote site to get back the data required by the web

client.

9. Information Collection Module

After Local File Access Handler, Gopher Handler or FTP Handler gets the data

from related server, no matter codeset conversion has been carried out or not,

all data will be collected by module Information Collection Module for further

processing in the next step.

10. MIME Body Generator

This module composes the HTTP response message's body part with the input

data from the Information Collection Module and rearrange them into the format

according to HTTP specification.

11. HTTP Header Generator

This module is responsible for generating the header fields of each HTTP response

message. It has been enhanced to notify the web client what codeset of the data

in the body part is. The codeset notification is done through a header field

Content-type,s charset parameter.

12. HTTP Reply Constructor

This module composes the complete HTTP response message through combining

both the message body generated by MIME Body Generator, and the message

header fields generated by HTTP Header Generator.

Chapter \ Design Details of An Enhanced Server _f^

13. HTTP Reply Handler

This module uses the HTTP connection established at the very beginning, and

sends the HTTP response message to the web client through network.

4.3 Modifications of The Enhanced Server

To enhance the server to be able to carry out data type negotiation, and automatic

codeset conversions, four kinds of modifications have been completed: the interpre-

tation of the client's codeset announcement information, codeset identification of the

retrieved document on the local server, codeset notification to the web client and au-

tomatic codeset conversion.

4.3.1 Interpretation of Client's Codeset Announcement

According to the HTTP/1.1 standard definition, there is a field "Accept-Charset"

which can let the web client to inform the server about the client's preferred codeset.

There is also another field called "Accept-Language" which is used by the client to

notify the server what language it can accept. However, these two fields are not

supported by the current implementation in most of the business web browsers, such as

Netscape and Internet Explorer. Also, most of the business web servers, say, NCSA and

CERN's httpd now only support HTTP/1.0 specification, therefore they also ignore

these two fields.

Under the implementation of our enhanced web browser, we can notify the codeset

and the language information inside the HTTP request header. Figure 4.2 shows a

simple HTTP request message sent out by our enhanced browser. It is noticed that

the web client can accept codeset "gb2312 (simplified Chinese)", and language zh_CN

(Chinese), en (English). And the protocol the client uses is HTTP/1.0 (Although we

support the new features ofHTTP/1.1, we do not support HTTP/1.1 completely, thus

we still use HTTP/1.0 when requesting service from our server).

Chapter \ Design Details of An Enhanced Server _f^

GET /Index.html HTTP/1.0
Date: Sun, 20 Apr 199719:00 GMT
Accept: text/plain,text/html,image/gif, */*
Accept-Charset: gb2312
Accept'Language: zh_CN, en
Host: cwebLcs.cuhk.hk:8888

User-Agent: NCSA_Mosaic/2.6 (Xll;SunOS 5.5 sun4u)

‘ F i g u r e 4.2: HTTP/1.1 Request Message From Our Enhanced Browser

Our enhanced server should be modified to extract the codeset information from

HTTP request header field "Accept-Charset". The first thing to do is to add this

codeset field into the HTRequest data structure. HTRequest is an object which stores

the HTTP request information from the client. The line added in HTRequest is shown
below:

HTList* charsets; /• accepted charset */

HTParseRequest() is a function which gets an HTTP request message from the network

channel. It parses the request message and then puts it into HTRequest data structure.

A new defined function HTAcceptCharset() has been added into HTParseRequest().

Its main function is to get the codeset information and add it into data structure

HTRequest. After executing the new function, all codesets in "Accept-Charset" from

the HTTP request header will be stored into another link list for later use. All these

modifications are carried out in module MIME Parser shown in Figure 4.1.

4.3.2 Codeset Identification of Web Documents on the Server

After the server knows what the preferred codeset required by the web client, it has

to fetch the file in the system and tries to identify the original codeset of the retrieved

document to carry out codeset conversion if the two codesets are incompatible.

At present, we have the following ways (in descending order) when determining
the codeset of a given web document as perceived by our web server:

(a) by scanning the special HTML tag - namely "<LANG>" within

Chapter \ Design Details of An Enhanced Server _f^

the requested document. -
e.g. "<LANG = gb2312>" denotes the following content is

written in simplified Chinese with codeset gb2312.

(b) by querying the I-Hanzix server which records the codeset
of virtually every file in the system.

(c) by inspecting the file extensions, e.g. files having the >-
extension htmlgb will be taken as GB files, and file
extension htmlb5 will be taken as Big5 files.

The server first investigates the HTML document to see whether there are <LANG>
tags. If there are, the server extracts these information first, and then tries to convert
all data encoded in different codesets into data encoded in the same target codeset if
possible. Here is an example of multi-codeset HTML document:

<HTML>
<BODY>
<LANG = gb2312>

<LANG = big5>

</LANG>

</LANG>

</BODY>
</HTML>

The above data including <LANG> tags are regarded as 3 blocks.

The first block ~ between <LANG = gb2312> and <LANG = big5>,
The second block -- between <LANG = big5> and the first </LANG>,
The third block -- between the first </LANG> and the second </LANG>.

The first block is considered written in simplified Chinese with codeset gb2312, the

second block is regarded written in traditional Chinese with codeset big5 and the third

Chapter \ Design Details of An Enhanced Server _f^

f^^
I • m codeset information
K ^ — ^

I ® \ . „
I ^ h e W e b S e r v e r J info^aLn \ ^ W e b B r o w ^

唱 ^ ^ ^ ^ m ^ ^ ^ ^ ^ Content-Type / " ^ ^ ^ * H ^ ^ ^ ^
“ Z ———~"J

‘ web ® ^ ° ^ ^
Document / . ^ ^ . §

U � \ rJ/
<LANG> � / &

1 . | / ,
file extension

Figure 4.3: Steps in Determining the Codeset of a Given File

block is considered written in simplified Chinese again according to the embedded

structure of <LANG> tags. Suppose, the codeset preferred by client users is gb2312,

then the first and third blocks don't need to be converted, only the second block needs

to be converted from big5 to gb2312. Then the converted document will be sent out

for further process.

If the server finds there are no <LANG> tags inside the retrieved document, then

it relies on the I-Hanzix server [13, 14] to obtain the codeset information for the

corresponding file. Therefore it will try to connect to the I-Hanzix server, if it is

available in the system.

In case both the (a) and (b) failed, the server can only rely on the file extension
of the requested file to determine the file codeset. As discussed before, the codeset
of document with file extension htmlgb is regarded as GB while the codeset of doc-
ument with file extension htmlb5 is regarded as Big5. Figure 4.3 shows the steps in
determining the codeset of a given file by our server. A new function called code-

setJdent() is added into our server. And it invokes three other new-developed func-
tions: get.codeset-hy-extension() , get.codesetJ)yJHanzix() and get_codeset_by_HTML()

to realize the codeset identification by three methods. Their definitions are as follows:

char *codeset_ident(char *Full_Path_Filename)；

Chapter \ Design Details of An Enhanced Server _f^

char *get_codeset_by_extension(char *Full_Path_Filename)； ‘
char *get_codeset_by_IHanzix(char *Full_Path_Filename)；

char *get_codeset_by_HTML(char *Full_Path_Filename)；

Each method determining the codeset of the retrieved document has its own advan-

tage^ and disadvantages. For example, the last method relying on file extension seems

to be the simplest one, however, since the limitation of the ' 'DOS' which has only 3

characters for file extension, this method is not suitable when the server is running on

a PC. The obvious drawback of the second method is that it relies on the I-Hanzix

server which has not yet been very popular. Regarding to the first method, let the

server to parse the html file itself and find out the codeset information will decrease

the performance of the server.

In the future, automatic codeset detection will be added into our web system.

And the server relies on the detection module to identify the codeset of the retrieved

document. Although this will also decrease the performance of the server, 'but it is con-

sidered to be the least dependent approach comparing with other methods. Because,

the file extension convention may not be accepted by other users, also the <LANG>

tags may also not be used by most of the HTML authors, and it is not practical to

force users to install our I-Hanzix server if they don't want to.

4.3.3 Codeset Notification to the Web Client

Codeset notification involves putting the codeset information of the returned document

into the HTTP response message. In HTTP/1.1 specification, one of the attributes of

the Content-Type header field - charset can be used for this purpose. There are two

cases when the server deals with the codeset notification to the web client, one with

codeset conversion and the other without codeset conversion.

When codeset conversion is involved, the "charset" attribute should be set to the

target codeset of the conversion. This codeset information is the result of interpret-

ing the web client's codeset announcement information. On the other hand, without

Chapter \ Design Details of An Enhanced Server _f^

codeset conversion, the "charset" attribute should be set to the original codeset of

the retrieved document. This codeset information can be obtained by the codeset

identification step.

Function HTReplyHeaders() is responsible for generating an HTTP response mes-
sage's header according to the corresponding HTTP request by the client. It has
been modified to add codeset information into the charset attribute of the header ileld
Content-Type. The following examples show the HTTP response header generated by
the server for both cases:

Case I:
HTTP/1.0 200 OK
Date: Sun, 25 May 1997 15:23:52 GMT
Content-Length: 2476
Content-Type: text/html；charset=gb
Expires: Tue, 27 May 1997 15:23:52 GMT
Last-Modified: Mon, 19 May 1997 7:17:58 GMT

In this example, no codeset conversion is involved, so the server returns the original

codeset information - "gb" to the web client.

Case II:
HTTP/1.0 200 OK
Date: Sun, 25 May 1997 15:23:52 GMT
Content-Length: 2476
Content-Type: text/html；charset=big5
Expires: Tue, 27 May 1997 15:23:52 GMT
Last-Modified: Mon, 19 May 1997 7:17:58 GMT

In this example, codeset conversion from gb to big5 has been carried out, and the target

codeset hig5 is returned to the web client.

Chapter \ Design Details of An Enhanced Server _f^

4.3.4 Codeset Conversion

A function file_conveH() is designed as the interface between the server modules and

the Hanzix's codeset conversion library [14]. The prototype of this function is shown

below:

int file_convert(in_fptr, out_fptr, from_codeset, to_codeset)
FILE *in_fptr, *out_fptr;
char *from_codeset, *to_codeset;

The in-fptr is a pointer points to the file which the client requests. The outJptr is a

temporary file which stores the converted version of the requested file. The from_codeset

is the codeset of the original file which is the result obtained through the codeset

identification by the server. The to_codeset is the target codeset obtained by the

interpretation of client's codeset announcement.

The reason for storing the converted data into a file is that simple caching mech-

anism may be applied for improving the server's performance. When clients request

the same data next time, codeset conversion would not carry out twice.

To ensure the safety, the output buffer is much larger than the input bufFer to

reduce the chance of overflow. It is potential that the converted data occupy much

larger space, for example, CNS character may occupy 4-bytes for each character while

GB or Big5 only use two-bytes per character, so when converting a GB character into

a CNS one, the latter must have enough space to hold the converted data.

4.4 Experiment Results

Figure 4.4 shows how the enhanced server realizes the codeset identification of the

document written with <LANG> tags, and carries out the codeset conversion. The

right window shows that the current font setting is gb2312, and the middle window

shows that the original codeset of the retrieved document "funnyl.html" is Big5. The

left window shows that the converted document encoded in gb2312 is displayed on the

Chapter \ Design Details of An Enhanced Server _f^

P ： � � � � CUHK̂Dacû^̂tVÎ B^^••-••^；^--^^^~~^^^^^^^ Z ^ ^
m Qptioits to/igate AirotaUi fews F%_ Qptions ！ fev^ate Annotate Jews — : „ — . „ — — 妙 „

m^: lDeô r̂ aticn on Cĉ ê ecô tion by < L.IS > Ia. Titla: = = : ' ; f » ^“；———减
狐: iMtp : / / o^^c^-____-r " “™"^™"^ . P"?^^,^ = . , p ? ^ ? ^ r z z i 5 ? |

~ r r ^ ^ : — l i S S E — _
一 一 ， 昔 ^ 」 您 £ ^ --

_ _ _ , 纖 ? 1 ? 5 3 : E E " S 5 r —
l i l l l 「 ^ ^ 二 = = » ~ ~ ^ « ^ i f : i « $ i e r ™ “ - - S 4 ^ -哪

^fSL;�De.o . t .at ion on C.eset Hec«.̂ i.n b. . | _ ,—二 _ * _ : S ^ S f
服 te^SSa —set Recô n̂bŷ at ； 口謝二：益艇箭厂'‘ _ 邮已

M S I ; r _ 利 用 “ 腿 &红樣 & 片 碼 - _ 6 ； ^ [访！ t : = 二 s r

明人麵按春赢集錦[crd̂ in BIG5] � � 0 麵 1 » ^Ma Bri,ht L̂ gc

, S S t e i M S ^ ; ; : _ r S
孩重打®,老网’ /p� I t BIG5 31 搬:21 , Cyrmic (ISO 8859̂)
, S> I . >_a"aL<̂ «她丨《 "。̂！啦…’Cyrmic (_)

• � … ’丨‘"•未尚辆 处押多字！̂來中文im iCft/Pl .Greek (ISO 8359-̂ | “H〜，gp feW 丨 " : 如 .Hebre.(K0 8859-8) ;r _,與‘‘卿1 ； 。••»。 ：SL?SU %f--尼_尚瘦，鬼短夜叉長；與“因荷而鄉，.I tN..̂ -i .ctoe M)
•塗隱臂_匪 - • • - ~ • ~ .Chir̂ se (ffi) 1 二‘

Da-a transfer ci kxmA {ddi inputj ‘ , . .Korean (KSC 5601) 1 ^ .
^•Ij;±Jj!2=r=:±=f̂ =r-tr=rrrrf:::~~� i>^^=H -"̂ “ - ' ^ ‘ ^ - - "^‘― Ĵapanese (JIS X 0208) ^

Figure 4.4: Demonstration on <LANG> Tag Identification By The Enhanced Server
screen. In this example, codeset conversion from Big5 to gb2312 has been conducted

by the server after it analyzes the <LANG> tags in the retrieved document.

Figure 4.5 illustrates that the server can identify the codeset of the retrieved doc-

ument by its name's extension. Since the font setting for the browser is Big5, the

server does the codeset conversion from gb2312 (the original codeset of the document

"vr.htmlgb") to Big5.

Figure 4.6 shows another example. The right window is the result of accessing

the mixed.html file using Netscape. File mixed.html is written in multiple codesets:

gb2312, Big5 and CNS. And the multi-codeset document is written using <LANG>

tags which is shown in the middle window. Since Netscape doesn't have <LANG> tag

analysis and doesn't have codeset conversion facility built in, users set the "Document

Encoding" to simplified Chinese (gb2312), only the line written in gb2312 can be shown

correctly, other lines are all garbage data. Using our web system, the browser informs

the server that its preferred codeset is gb2312, and the enhanced server analyzes the

Chapter \ Design Details of An Enhanced Server _f^

.rruLjrsarff? rrrAuu;grrijur" -̂: >~r—r*̂ L*~*̂ T’--'~̂

二\、、\ �� -""coHiCiDotnwantVtew ."pT..— — : . , : CUHK;OflcwwntVlw ‘ . ‘ “ “：___-….“.l,,!.j..rJ,
File Options Navigate Annotate Mevvs ！ FUe Options i ^̂ vifiate StmotateJte ^M
»«rT «* M*. «»̂- » *一 » « MM M. A «• » » «. * ~ - * - -» ̂ - - - - “ ‘ ‘ ！ ***̂**"̂̂*̂*****̂ • > -1_L_LL LLU11-iULLUJULLLU ir丨丨丨丨丨丨i,nr
Title: IDeaionstiatlon m Codeaet Ffecognition by file ErtensioB j Titfe: :=¾¾^!^^ -and Web Browser _̂： ,̂：

ORL: jKtp://cwebl.cs.cuhkedu.bk:8DOO/vr.h_ | 丨肌：f"̂D?]«̂ Inage Loadirg iC07SSSd~"^“"“^"~" Jlf^J.[
J I r „ 丄 _(•^ '.-¾...- 'JI ."1： -r.t. ‘ - ‘ ― " ^ | ,„. ̂ � ！ feijad Confi« FiJes , ,, ； 1 Demonstration on Codesel Reco|pudonlijBIe Extendon ', p̂ jushlmageCache i |

刺用延伸權某名 ffi 辨碑示范 'i' • Claco: Gldbs3 ffistory... ̂ ^ ‘ ‘ ''\ , j !
� I _ J M s „ ~ vTiracs Regular „ j 丨：

^±^ f̂i ？ iw-i<,inaUMinCK5i23 ： 此 Bi-directicnaHty ‘ ".finas &iiail ‘ ； i
^±m 是 «rt«.i R̂ htM,亦挪 ® 逝 m « m�s m 現《 是 一 % 到 ̂ "=̂ ^ jwê unes ‘ , iines L̂ ge immmm:；： 1 ¾ ¾ ¾ ¾ ' ^ ^ nimm9 m 0?®«'%®a® M Accept Languages .Helvetka Regul̂ ： ;
& < 3 ^ f ^ « 3 f & ^ g g ^ g ^ � g g K ? g | p § | ; 5 ^ i i..-DisableTableTag .Helvetax:aS<naU 丨 ‘
内•蒂因為我們 n 赞 ji.MRi[̂ 昨-頭 gl '. 1¾-̂ g a 得-曰？ 2. ^^,;;¾&¾-^'^'"““ ““ un.- r (；
m 果物 ĵ |4 � tiitemt “： 3. S ^ ^ # 1 S ^ ^ T S V-Helvet3j=a Large ‘ i , iSSIpML> . " j „ .,. ^ ,., _ >lT«~̂ mjiU:H«̂ Ŝ̂ �MewCenturyRegu3ar f i |

> 罘 筒 薛 I giTLE) Demonstration on Codeset Recogmtion by FiLe E； , New Centoy SmaH ‘ ！ ； ;̂ §||_^S==�nCodesetR«^o>tionb>.FileExte!i ^^^;¾!!¾¾^"^ .NewCenturyLarge ； j ：
在堪屛?知用延伸*3案名称排码示适 I I �B�GSUCSC3123 v_aBiightEegular' j
iS.年 ’ £ ,„„, I I „ „ vLucida Bright Small [i ‘

f | g | r I m^fmmmwm.i^aBright^ ：

貴 ® - 1 声〉么是 V R ？ [ordgiiHUy in GB2312] 丨 j �Bic&] i GBC3i2 i �, (K0 8859-2) J |
1 1 S 3 •险写 ft Virtual ReaHty, J^BPS&# «!十实̂ ^ ° f®fSi4®«l^f '^ ‘ (IM S | ‘‘ L ;

i l^rJ^^i i\ ^^ U S ^ S i ^ S i ^ h m S ?1 _】_议1 .Cyrmic (ISO 8Ĵ 5) ; |

i _ _ _ i _ ， _ ‘ B i 1
I i i i ^ | ^ K l f e f l M ? s * . ^ k i ! ^ i E i j 。 微 纖 秘 ^ : = 二) _ 1 i ir^lsi^{$isgsyg.sijiii^ ' i — : = | f 丨 誇

H|3 BSmaiBflBB3 1 �'Korean fl^SC 6601) 姿 , i
Backj�JP^—(ASC:I�P'ti— 一 MJ:J:2^Jg^M5Mi!j^ .Japanese (JIS X 0208J | ^ |

Figure 4.5: Demonstration on Codeset Identification By File Extension

multi-codeset document and converts all lines written in codesets other than gb2312

to the same target codeset - gb2312, at last, the converted document is sent back to

the browser.

Chapter \ Design Details of An Enhanced Server _f^

V

Z| � ” ；"' :̂DocwnBntVÎ p Hê 9pei MuiBpig CodewVbocwnw>t. .. _.ZZLI ZZZ-Ej2|
|"|Fiifl"""""6pti)ns"*""̂ Wigate""*"̂ Anrotate™~tte me Ecnt Vtew Go Bookmarks OpUons I Directory Window Help |
rrr ^̂,̂̂,77*.. vnnr-n r utPX UUMMWXAU uMM M *M i*wwwJT"* f » u * M. » “-***•、一 » » * » «**"* > ĵ <w>wv> 一 *tt*tf̂ , *ff *f «•〜〜w ->oww<oz, *•*

�*»-">^' ̂ .. i"_i_ .- """ .«- -' ̂ ^s,.«^-._«~^w. ^^^^vj.-..-.v^ Genoral Preferences r mnamm^m
TitĴ : jpiutip]fi Codeset DoCUnent <̂̂ j | H§J ^&j ̂ MairandNewsr̂ fê nces... j P ^ ；

^ ~ ~ ~ ™： ~ ~ " 7 7 7 ~ r - ™™l"T"Zf, 7TZ"'..Z". ifetwork Preferences... '^Bj|M|| i

URL: |ittp://cwebi.GS,cuhk, edu.hk:8000/nmced.httnl • Locason： |]̂ttp //cvebi cs cuhk ed ĉunty preferences... WKmm f
.. ', .™—~-.~». - ~ — • - ••“ ••" • ‘ ‘ ~'l

‘ 丨 p Show Menu^ 二

Demonstration on HandUng \ Dcmonstradwi on HandUn：‘油咖 1抑_ i ‘
I __麵_翻_隱__11_編圏___編___>̂ 1̂寒11_钃__ ______雞1_囊_|11_灣______耀̂ |̂||!̂^̂^̂__,_ •___________• _

MultlpleCodeset ； … … “ -ShowDi^ctoryBultons ！；

*̂ MuIdple Q>desct »Showjavaconsole ‘ ；！

ChineseHTML Document ‘ -flutoU)ati|ma8es 1 is
II 各丨 ^ ̂ �付相山 ^ ^ 种-饿 ChineseHTML Document _«JSlS?"„—^L_«J_ ŵesten. tiatovi)
1 处理多字符集中 X HTHL X W m m 一 Save OpUons 一 central Europcan (Latm 2)

j |r1" - : “ •“‘陈产 才栋̂吵！！狐吵̂ 赁̂ .Japanese (Auto-Detect)

i mmm « w w ； “ ‘ 二：二：
i Ô LANG> [o„sm.IlymCNS] .Japan8se(EUC-JP)

_ r a r] | 歳 = , _ 2]
 艰契恤酬 : r r : ((= =) w«#f |声”还 ；sra ：二二(，.--
§鍾繊fef-.；�釋；!， ：:(:：，…

¾̂ •• + '^^cpt�� I . 料农 ^ w 〜一 • “ • 一

<Jim) ‘ - CyrtBc (ISO 8853-5)

j ® 1»»11» ̂ cNs] <BR) ； sisa :ri™ …
- 1 t ^ ^ a J ^ H B > . U . e r - D e n n e d

I V ^ /s^^ ij* jv >> y LANb/ -- — — pr

1 ^ ^ ̂ 找 <漆 /̂ \ , Remaik It csn be demoMtrated onIywhcn usmg our ovm enhanced Mosaic Broswex | |
P̂>̂ 丨 爹订脚/« 标艾̂�,̂1>=麦凝竟 K)�52十(戒 |i

Remark: It can be demonstrated' s •

01^bî > ‘ I
‘ 丨英文输入 _ i i a n _ ； i T B Z ^ J''
^ • i . < H« ‘ * ~" ‘ ~ 一 SSîW><-W**NSWi <i%S%-<~MV<« WSV><W< <«~.»»*WW»MV«VW. »>W «̂ |

鲍!二二丄」独―…: ：--̂ - A^ ^ "̂ J
Figure 4.6: Demonstration on Handling Multi-Codeset Chinese Document

Chapter 5

Design Details of An Enhanced

Browser

The enhanced web browser is developed based on Mosaic which is a free software

in the public domain. Like any other web browsers, the main function of Mosaic is

trying to establish the HTTP connection with the remote server which users want to

access, sending the request to the server, and handling the response from the server

and interpreting the returned document and displaying it on the browser interface.

The enhanced browser is running on UNIX platform and it can handle Chinese text

data encoded in different codesets, such as GB, Big5 and CNS. It also provides codeset

conversion if required by users. The browser interface has been internationalized. It

allows users to access server information either using traditional Chinese or simplified

Chinese without the need to match the server's codeset.

5.1 Architecture of The Enhanced Browser

Figure 5.1 shows the architecture of the enhanced browser. In this figure, all lightly

shadowed rectangles stand for modified functions while the heavily shadowed rectangle

stands for the new feature added into the system.

58

Chapter \ Design Details of An Enhanced S e r v e r _f^

Browser Network Server

B r o w s e r h i ter face L i b r a r y

Event 1̂ AccessManager

_ Handler

Event
Management Protocol Manager

‘ i User I
InternationaHzation J - ~ ~ ^ Interface 圏 ^ ^ ^ | ^ ^

J l,，：:a: :J � FTP) (H T T P) (G o p h e r)

1
Request Handler 麗

request 厂 ^ \ |

1 / H T T P ^ ~ A ^ server
Web s e r v e r r e p l y ^ J — process ing

Document | | Connect ion \

V p ^ ^ 7 ^
\ Response
\ Handler

\ —.Ml:P:::—|

\ HTML Parser j

\ S
\ Presentation

Manager

Figure 5.1: Architecture of The Enhanced Browser

Chapter \ Design Details of An Enhanced S e r v e r _f^

The browser system consists of two main parts: interface and library. The library

used in the browser system is libwww version 2.0, and it is a general code as the

basis for building the browser. The library contains code for accessing servers with

various protocols, such as HTTP, FTP, Gopher and etc. In addition, it provides

functionality for loading, parsing and caching graphic objects plus a wide spectrum

of generic programming utilities [29]. The interface part is responsible for setting

up browser windows with menubars, buttons, document view windows and etc. The

interface part is developed on top of Motif which is an event-driven programming

environment. It is designed to respond to user events triggered by moving and clicking

the mouse on the menubar options, buttons or hyperlinks in the web documents. The

handling for each event is dealt by corresponding Event Handler. Once an event is

triggered, the Event Handler either communicates with the User Interface Manager

or invokes related modules in the library depend upon the property of the event. In

general, if an event just needs the interface part's involvement, the Event Handleronlj

connects with the User Interface Manager for further service, otherwise, the Event

Handler will invoke the library functions to complete the task.

In order to provide a convenient and user-friendly access environment to Chinese

users, Internationalization [22, 31] feature has been added into the interface part ofthe

browser. Every time the browser is invoked, it may set its whole environment automat-

ically by checking the locale [22, 31] on the local machine, or users can manually change

system configuration and environment through setting UNIX environment variables.

Therefore, users can choose to set the browser interface in either traditional Chinese

or simplified Chinese, such that all menubars, buttons and other prompt messages are

all in Chinese.

Furthermore, the browser must be enhanced to carry out data type negotiation

with web servers. The enhancements have been done in the library part. The browser

is capable to announce the preferred codeset to the server when it sends out each HTTP

request, and after it receives the server reply, it knows how to interpret the additional

codeset information contained in the HTTP response message if there are, and carries

out automatic codeset conversion if the codeset is incompatible with what users prefer.

Chapter \ Design Details of An Enhanced S e r v e r _f^

Also the browser has the capability to analyze the <LANG> tag ofHTML/3.0 taget

the codeset information.

It should be noticed that the interface environment is separated from the document

display environment. That is the interface environment will not change once it has

been set up at the very beginning. However, the document display format can be

changed through selecting different font options in the menubar. For example, a user

can choose the user interface to be Chinese, but the browser still can display web

documents written in other languages. This scheme provides users with the most

flexibility. Suppose a user doesn't know English very well, s/he can choose Chinese

interface. In such a case, it is easy for him/her to operate the browser, meanwhile,

there is no hindrance for him/her to retrieve English web documents or documents

written in other codesets.

5.2 Procedure on Processing Users, Requests

The steps about how the enhanced browser processes users' requests are explained

blow:

1. User Interface Manager

This module deals with all interface management, such as establishing a new window,
menubars, buttons, icons, loading the retrieved document, generating dialog boxes,
changing the fonts of the document, etc.. All the handling of menubars, buttons, dialog
boxes has been modified to realize the internationalization. And some codes have been
added into this module to carry out codeset conversion if required by users.

2. Event Handler

There are a lot of event handlers corresponding to the many events. Once an event is

triggered, the corresponding event handler will be invoked to handle it. Event Handler

either calls functions of the interface part, or invokes functions in the library part to

complete the task.

3. Access Manager

Chapter \ Design Details of An Enhanced S e r v e r _f^

Once an event related to server access is triggered, this module will be invoked. Jts
main function is to analyze the URL information sent to it, and save the current window
document into the cache and remember the trace with the help of history list etc, then
it gives the control to the protocol module to handle various kinds of server access.

4. Protocol Manager

>The Protocol Manager extracts the protocol information from the URL first, then es-

tablishes the connection with the remote server (or the local file system) using related

protocol obtained by Access Manager.

5. Request Handler

This module composes the HTTP request message and sends it to the remote server via

the HTTP connection. It has been enhanced to post the preferred codeset information

in the request header so that the codeset announcement can be realized by the client

side.

6. Response Handler

This module is responsible for collecting incoming data from the network channel, that

is the server reply will reach Response Handler. Then it passes all data to MIME Parser

for further analyses.

7. MIME Parser

This is the module which has been enhanced to be capable to analyze the codeset noti-

fication sent by the server in the HTTP response message. It will parse all header fields,

and put the information into related data structures. If necessary, codeset conversion

will be done in this module.

8. HTML Parser

This module is designed to parse the retrieved HTML document contained in the body
part of the HTTP response message, and divides the stream data into different objects
and save them into related data structures. It is expected to have the capability to
analyze the <LANG> tags in the HTML document if there are, and carry out codeset
conversion if needed.

9. Presentation Manager

This module gets the different objects generated by module HTML Parser and tries to

display the document on the screen.

Chapter \ Design Details of An Enhanced S e r v e r _f^

Start -

I � ^
Setup Environment |

o f W i n d o w |

I WJtWJWWMWLŴ ÂWÂYWÂWAvwffll
Setup Initial

Window
f-mi33XlX3U33JJJJJjmUJJJIXXiXUJJJJJMJJ^

——i— r ^ r -
T No,,̂ 6C«rt>̂

- ^̂-̂Happep3̂
Event Loop T y ^ ^

i <^£^1«>^ ^ < ; ^ E ^ J ^ ~ • ^ ^ ^ ^ ^ J ^

X Yes , , Ycs

T c m S o r |ErrorHandler

Stop

Figure 5.2: Basic Control Flow of Mosaic.

5.3 Event Management and Handling

As discussed in former sections, it is known that there are a lot of events which may

be triggered by users. The user interface of the browser is designed to respond to

users, event triggering by moving and clicking on the menubar options, buttons or

hyperlinks in the web documents. And every event is mapped to a call-back function,

referred to as event handler. The main program of the browser can be seen as an event

loop. When an event is triggered, the browser calls the related event handler to do

the corresponding processing, when the handling for this event is finished, the browser

goes back to its original state waiting for another event to happen, like a loop. Such

situation will not end until a terminator event is triggered, wMch means the browser

will go to its end at last. In the following part, I talk the basic control flow of the

browser first, then go through the details of some typical event handlers to see what

we have done to fulfill the additional requirements for Chinese processing.

5.3.1 Basic Control Flow of the Browser

The basic control flow of the browser is illustrated in Figure 5.2. When the browser

Chapter \ Design Details of An Enhanced S e r v e r _f^

starts to work, it firstly sets up the environment of window, such as sets up global

history list, bookmark list, annotation list, etc. Then it creates the initial window and

loads the default homepage document into it. From now on, it is users' round to trigger

events to ask the browser to offer services. There are various events, such as to move

from this window to next window by clicking button 'back', 'forward' and 'home' etc;

to reload the current document; to save, edit or print current window's document, to

connect to another site by clicking 'Open URL, or clicking hyperlinks in the document,

etc. Each event is handled by related event handler. If an error occurred, an error

handler takes over the job and does proper processing. After an event finishes, the

browser starts to wait for the next event again until an exit event is triggered.

For an enhanced browser, module setup environment of window should be mod-

ified to detect and set up window environment according to the locale of the local

machine. As a result, a localized user interface is established for users. And the

initial window must be customized in the same way. There are no added events in

the enhanced browser system. Event handlers are needed to be modified/enhanced if

the related events involve remote server access, such as event Open URL with remote

url address, event Reload, and event Clicking Hyperlinks In The Document which

causes remote document retrieval, etc.., or if users reset the font from the menubar, the

related event handler has to be modified to carry out automatic codeset conversion.

5.3.2 Event Handlers

To fulfill the project's requirements, operations of event handlers involving remote

server access should have additional processing including HTTP message header han-

dling which involves the client's codeset announcement and the interpretation ofserver's

codeset notification, codeset conversion and HTML language tag parsing [18]. Further-

more, if the remote server is not capable to convert the retrieved document into the

codeset which is preferred by the client users, the browser should be enhanced to do

the on-line codeset conversion by itself. In the following part, I explain two typical

event handlers to illustrate what we have done to make the new features realized in

Chapter \ Design Details of An Enhanced S e r v e r _f^

our browser system. The first one is categorized to be one of those events which n.eed

remote server access which mostly gets the browser's library part involved. And the

second one is just related to the browser interface part.

Event Handler: Open URL

Among those events which need server access, event Open URL needs all steps of op-

erations and is the typical case to show how we add our new functions to enhance

the browser. Figure 5.3. shows the control flow of event Open URL. In this figure, all

shadowed parts are new function modules.

When Open URL event is triggered, the URL handler generates a dialog box ask-

ing users to input URL address, after that Fetch Text Handler analyzes the URL

site information and saves current window information into buffers. Then, the Access

Manager distinguishes different URLs by analyzing the protocol part ofURL, and then

invokes different protocol managers to do proper operations. The HTTP Protocol

Manager calls HTTP Connection to connect the remote server, and then Request

Handler sends requests containing codeset announcement information, after the server

sends back response, the Response Handler collects all response message and sends

them to the MIME Parser to accept parsing. MIME Parser must extract codeset infor-

mation first and check whether it is the same as what users prefer, if not, automatic

codeset conversion must be done at Codeset Conversion Module, and the converted

document is sent to HTML Parser for display. If no codeset information is included

in the server's response header, that is MIME Parser extracts no codeset information,

HTML Parser should parse the document to check tag <LANG> in the HTML document

and do codeset conversion if necessary. Then the document is sent to the Presentation

Manager for final display.

Modification 1: Codeset Announcement

In Request Handler, codeset announcement should be added so that the local environ-

ment ofthe client can be sent out to the remote server. According to HTTP/1.1, there

Chapter \ Design Details of An Enhanced S e r v e r _f^

Start

. I
'Open URL/
event happen

1 了

URL Handler

i
Fetch

Text Handler

T
Access Manager • Error Handler

T
Protocol Manager

{ ^ ^

(^L^^^ • • • (^^mr^ (^Z^^^ (^^yr^

HTTP Connection

+ , ,
I Codeset L

Request Handler ^ Announcement I

+ ”
Response Handler

i
C — S i t l o d u l e l - * p | MIMEParser 卜 ~ ~ | Codeset Analyses " |

i i
T “ New Tag L
I > " • HTML Parser ^ Analyses |

• • • • •• ^ ‘
installable converters i —

Presentation
Manager

T
Stop

Figure 5.3: Control Flow of Event “Open URL."

Chapter 5 Design Details of An Enhanced Browser J^

is a field "Accept-Charset" which can let the web client to inform the server about

the client's preferred codeset. Therefore, a new parameter 'accept_charsets' should

be added into the structure mo_window. mo-window is an important data structure

which keeps all information related to a single "Document View Window", including

subwindow details, menubar, button, mail function, history list and so on. The line

added into mo_window has the following format:

char accept_charsets[30]；

It can be cited as 'win->accept_charsets' where win is a pointer of type mo_window

"18]. The definition of variable win is as follows:

mo_window *win;

The value of accept_charsets can be acquired either through the default locale setting

at the beginning of invoking client system, or by users resetting the font option in

the menubar. Function moset_fonts() has been modified to fill the accept_charsets

parameter if users reset the font. The definition of mo_set_fonts() is shown below:

mo_status mo_set_fonts (mo_window *win, int size)

The size parameter in mo.setJonts() stands for the numeric representation of each font

in the menubar. Once users click a certain font, the numeric value of this font will be

sent to this function. When variable 'win->accept_charsets' has been filled up, a new

function:

char *mo_get_accept_charsets()

is called to get the right value. Module HTLoadHTTP() has been modified to call

mo-get-accept-charsets() function when composing the HTTP request message.

Modification 2; MIME Parser

After the client sends out the request, the server will send back a reply later. When

Chapter 5 Design Details of An Enhanced Browser J^

the client receives the HTTP response message, it is the MIME Parser who is respon-

sible for the parsing of all header fields, including the interpretation of the codeset

notification in the response header. According to HTTP/1.1, the parameter charset of

response header field Content-Type can be used by the server to indicate the codeset

information of the retrieved document. Therefore, MIME Parser should be modified

to interpret this charset parameter.

The MIME Parser is a Finite State Machine(FSM) parser. And its code is con-

formed to the specification in RFC 1341. The processing of MIME parsing is based on

different states at different time. This MIME Parser is tolerant to all syntax errors. It

ignores field names it does not understand, and resynchronizes on line beginnings [19 .

There are fifteen states in the MIME Parser, they are shown as follows:

1. BEGINNING_OF_LINE
2. CONTENT_
3. CONTENT_T
4. CONTENT_TRANSFER_ENCODING
5. CONTENT_TYPE
6. CONTENT_ENCODING
7. CONTENT_LENGTH
8. LOCATION
9. SKIP_GET_VALUE
10. GET_VALUE
11. JUNK_LINE
12. NEWLINE
13. CHECK
14. MIME_TRANSPARENT
15. MIME_IGNORE

The relationships among different states are illustrated in Figure 5.4. And here

are the explanation of the legend in the diagram:

1. All rectangular boxes are handlement parts. And the color-filled ones are modi-

Chapter 5 Design Details of An Enhanced Browser J^

广 \ Space
yf\ • _ y~^ ^

Sl/ ^ C CONTENTTYPE ^ »• (SHP_GET_VALUE \

2 ^ ^ = C ^ M ^ \
!/^^Q^^_^cor>^^y^ y j ^^^ \^

(二 ― : ； ^ ^ ^ ^ (: : � _ > ^ J (: 1 \ space
^ ~ V \N̂ S . . y^ Ŝpace/'W jspace ,̂ (^ ^

\ \ ^ ^ (CONTENT_LENGTH y^ j J 广 ^
\ \ ^ ^ B>JTERNAL_HANDLE ^ ^ f NEWUNE)

\ UnknownFWd̂ ^̂ C^J^KJ^ ^ ^

\ s y “
\ ^ UnknownFldd ^^1 I 广 MIME_ � I PUTBODYDATA“ END̂OF̂HEADER —�TRANSPARENT J PiTOBUFFER

^""^^-".s^ERROR

^ ^ - ^ ^ / N
(̂ MIMEJGNORE j

Figure 5.4: FSM MIME Parser.

fied ones.

2. All non-rectangular boxes are states.

3. An arrow means the transition from one state to the other.
4. The characters above each arrow indicate the input string.

5. A cycle beside a state means after a certain character or character sequence is

inputted, the state will not be changed.

6. Meanings of all symbols and character sequences used in the diagram:

51 = "Location"
52 = "Content-type"
53 = "Content-encoding"
54 = "Content-transfer-encoding"
55 = "Content-length"
56 = The value of a certain HTTP header field, usually a string
Error = fatal error which is unexpected by the MIME Parser.
Unknown field = This field is absolutely unknown by the parser.
Space = ,\r， or space character

The input stream pushed into the FSM is assumed to be stripped on 'CR's, i.e.

Chapter 5 Design Details of An Enhanced Browser J^

lines end with LF, not CR LF. Each time, when a character is read into the parser,

according to the current state, the parser decides what is the next state.

The first state of the whole parsing should be BEGINNING_OF_LINE, and the last

state is either MIME_IGNORE or MIME_TRANSPARENT. If an unexpected error occurred

during the parsing, the state will be changed to MIME_IGNORE. In fact, this state should

never happen only in the case that a fatal error occurs. The HTTP header (or

the MIME header) fields which can be parsed by this parser are: Content-Type,
Content-Encoding, Content-Transfer-Encoding, Content-Length and Location,
states 4, 5, 6, 7，8 are just corresponding to these fields.

If a line can not be understood by the parser, it simply skips the rest of un-

known characters and jumps directly to state JUNK_LINE, and when the character，\n

, i s met, the state will be changed to NEW_LINE. And NEW_LINE will change itself to

‘ BEGINNING_OF_LINE. States 2, 3 are intermediate states before knowing the final field

name, and state CHECK is the common part for checking all the fields' names with the

help of a check buffer keeping all needed matching strings. For simplicity and clarity,

Figure 5.4. doesn't include two intermediate states and the CHECK state.

The rectangular boxes stand for handlement parts after a certain state.There are

three main handlements parts:

INTERNAL_HANDLE, END_OF_HEADER and PUT30DY_DATA_INT0_BUFFER.

When state GET_VALUE meets character ,\r, or ,\n,，the parser will do internal handle-

ment, that is to save the field value into related variables according to different field

tags.

According to the syntax of HTTP protocol, a blank line with only one character

’\n, is used to separate the HTTP header and the HTTP body of an HTTP message.

Therefore, if state BEGINraG_DF_LINE meets character ,\n，，it will do END_OF_HEADER

handlement, including setting the final header fields' values and related routines for

the next step after the whole MIME parsing. For example, for field 'Content-Type:

text/html', the related routine should be 'HTMosaicHTMLPresent() ‘ which is respon-

Chapter 5 Design Details of An Enhanced Browser J^

sible for displaying the document as an HTML file. ‘

After the header parsing is finished, the state will be changed to

MIME_TRANSPARENT. And the work at this state is just to read the following body

characters into a certain buffer which is used for final display, this is the work done by

handlement part PUT_BODY_DATA_INTO_BUFFER.

According to the new feature of HTTP/1.1, header field Content-type may include

charset parameter. For example,

Content-type: text/html；charset=gb2312•

Therefore, MIME Parser has to be modified to handle the additional charset part.

In the END_OF_HEADER handlement part, modification has been made in function

HTMIME-put-character() to separate the header field 'Content-Type' into two parts,

one is the original part containing the format of the retrieved document, such as

”text/html” or ,,image/gif,,, the other part is the codeset part, the codeset information

is saved into a new global variable AfterMimeCodeset, so that it can be used for

later codeset conversion if necessary. The new global variable has the following data

structure:

typedef struct my_codeset{
int font_size;
char language[5]；

char codeset_name[20]；

} MY_CODESET;

MY_CODESET AfterMimeCodeset；

Data structure MY_CODESET is defined in the new added header file my.h. In

the above structure, item ,font� ize, is corresponding to the menubar callback data,

'language, is used to identify different languages and 'codeset_name' stores the codeset

information extracted from the HTTP response header. There are cases in which one

language has several codesets, such as Chinese has codesets GB, Big5, CNS11643 and

Chapter 5 Design Details of An Enhanced Browser J^

etc. Codeset conversion is only carried out between different codesets within the same

language. Codeset conversion between codesets belonging to different languages makes

no sense.

After the header parsing is finished, the state is changed to be

MIME_TRANSPARENT, and handlement part PUT_B0DYJDATA_INT03UFFER takes the job.

The processing in this part can be illustrated in the Figure 5.5.

There is another global variable CurrentFont which has the same structure of

variable AfterMimeCodeset. It stores the current codeset setting by users or the local

system. If MIME Parser extracts no codeset information from the HTTP response

header, the body data ofthe HTTP response message following the HTTP header fields

一 the real data ofthe retrieved web document, are sent to codeset detect ion module

(explained in Chapter 6) to accept codeset analysis. If codeset detect ion module

cannot detect the codeset by investigating the binary code of the document, then the

data are sent to the buffer directly without any codeset conversion. Otherwise, codeset

conversion may be carried out depending upon the language information. On the other

hand, if MIME Parser has gotten the codeset information, AfterMimeCodeset is not

empty in this case, then something must be done to compare the language information

holding by AfterMimeCodeset and CurrentFont first. If the two languages are the

same, further comparison of two codeset_names are needed. If the two codesets are

identical, no codeset conversion is done, otherwise codeset conversion from the codeset

stored in AfterMimeCodeset to the one held in CurrentFont should be carried out at

this stage. The converted document instead of the original one is sent to the buffer

then.

No modification is made in handlement part INTERNAL_HANDLE.

Modification 3: HTML Parser

After MIME parsing of the HTTP response message, the body data of the retrieved

web document are sent to HTML Parser for further analysis. The main task of HTML

Parser is to separate the HTML document into different presentation units so that the

Chapter 5 Design Details of An Enhanced Browser J^

广 \
START

V J

<<ft^MimeCodI^^_X£!_^| �odeset ^ v ^ =NULL? ^ / ^ Detection Module

1 ^ ^ ^ ^ ^ ^ N o
^^^^^""\s^ <r Have ResuU?̂ >

No ^^^VfterMinieCodese?̂ >^ ^ - \ ^ ^ ^
<i^ .langugage = J]>-

>̂̂ ^̂ Cm̂ tFont .Ianguage?,,̂ ^̂ Yes

Tves ^ ^ ^ \ ..
• ^ , ^ Same language as ^-^^ No

<̂«̂ ^̂ \̂̂ ^ ^ CurrentFont.language? ^ ^ U No ^ ^ Codesets ̂ ^ ^ ^ ^ \ ^ > ^
<C Different? ̂ ^ ^^^^ ^ ^

1 Yes
T

Yes ^ ^ ^ ^ \ No ”
^ ^ Different ^ ^ 则
""̂ ^̂ \̂ Codesets? ^ ^

Yes
^

Codeset Conversion
Module

Y
Read Data
Into Buffer

T
广 \

STOP
V ^

Figure 5.5: Codeset Conversion Handlement In MIME Parser.

Chapter 5 Design Details of An Enhanced Browser J^

Presentation Manager can display the document according to these units. DifFenent

kinds of units have different display strategies. If there is no codeset information

in HTTP response header, and module 'Codeset Detection' cannot find the codeset

of the body data of the web document, HTML Parser should investigate whether

there are <LANG> tags inside the body data, if there are, HTML Parser extracts

these information first, and then tries to convert all different codeset parts into the

same target codeset if possible. After the codeset conversion, the converted data are

separated by the normal HTML parsing modules, and the individual units are sent to

the Presentation Manager for further display. The modification of HTML Parser is

expected to be identical to what have done in the enhanced server.

Event Handler: User_Reset_Font

Another typical event handler User_Reset_Font which is just related to browser inter-

face part has been modified also. After users reset the font option from the menubar,

a menubar callback function XmxCallback() is invoked. The definition of this function

is as follows:

XmxCallback(menubar_cb)

The main function of XmxCallback() is to let variable mo_window *win pointing to

the current window, to get back the triggered event's corresponding numeric value

and then to invoke corresponding event handling functions. For example, if users

reset the font to simplified Chinese (the codeset is gb2312), the numeric value for

this setting is mo_charset_gb which is in fact an integer number. Then the func-

tion mojforce_font_change() is invoked to do the right things. The definition of

mo_force_font_change() is shown below:

mo_status mo_force_font_change(mo_window *win, int size)

The parameter win of type mojwindow is pointing to the current window, and the

size parameter is the numeric value of the triggered event. In this function, codeset

Chapter 5 Design Details of An Enhanced Browser J^

conversion has been added if the codeset of the current window is different from what

users reset provided that they belong to the same language. The codeset conversion is

done by a new function convstr(). The definition of conv.str() is as follows:

void conv_str(char *sourcetext, char *desttext, char *fromcode,
， char *tocode, int textlen)

The sourcetext is a pointer pointing to the document which is currently displayed on

the screen, the desttext is another pointer pointing to the buffer holding the converted

stream data which will be displayed on the screen after the conversion, fromcode points

to the original codeset of the document while tocode points to the target codeset to

which the document will be converted, textlen tells the length of the source document

before it is converted. The module convstr() calls the Hanzix codeset conversion

routines, and has the capability to handle several kinds of exceptions. Before carry-

ing out codeset conversion, two new variables are needed to be defined in function

mo-force-font-change():

MY_CODESET pre, back;

pre is used to remember the current codeset setting before the codeset conversion

while back gets the new setting after the event is triggered. If the two variables are not

identical at the codeset part, and are identical at the language part, codeset conversion

should be done.

5.4 Internationalization of Browser Interface

As a Chinese Internet access tool, the web browser's interface should be customized

in a way that is convenient for Chinese users. For example, the interface for people in

Mainland China should be simplified Chinese while the interface for people in Hong

Kong or Taiwan should be traditional Chinese. The approach used to realize this ob-

jective is to adopt the concept of Internationalization (I18N for short) and Localization

Chapter 5 Design Details of An Enhanced Browser J^

(LlON for short) into the browser's interface part's development. Instead of providing

difFerent versions of the same browser interface for multiple codesets, only one ver-

sion of browser interface is provided to users. Each time, users set up a particular

local environment for their systems, the browser will then be customized to support

only that particular environment at one time, the source code of the browser interface

part doesn't need to be changed at all. This method facilitates the portability of the

browser system.

In general, I18N refers to the approach of writing software in a way independent of

the data and/or display information that are related to culture and language conven-

tions. By applying I18N in software development, source code no longer needs to be

modified or recompiled when porting to difFerent regions where language or culture is

different. If cultural dependent information, which is implicitly non-portable, can be

isolated from the source code, only the external cultural-dependent information needs

to be localized when the software is marketed to a difFerent country or region. The

process of customizing software for a particular language and/or culture is referred

to as LlON. An internationalized software needs the localization process to provide

language and culture related data although the localization process mostly involves

preparing language and culture data in tabular forms outside the software.

To realize the internationalization of the browser interface, several locales which

contain the culture and language related information should be set up, all program

messages should be isolated from the program, and the program should be modified

in an internationalized way which means the statements related to interface display

should only describe the abstract information, the concrete data for a certain language

or culture will be loaded dynamically when the program runs.

5.4.1 Locale

Locale is the facility provided by ISO POSIX. It specifies a particular language envi-

ronment primarily containing a set of tables of predefined formats, defining various

language-specific conventions, such as details of codesets used, date, time and mon-

Chapter 5 Design Details of An Enhanced Browser J^

etary representation formats. Access to data specified in a locale are through a-set

of POSIX interface functions. To use another language environment, a user needs to

switch from one locale to another explicitly using a given designated function. There-

fore the software can be coded completely independent of the locales. With POSIX

support, several localized environments of different languages and customs can coexist

in the same system, although only one locale can be active at any time in a given

application.

The implementation ofthe enhanced browser's interface part is independent of any

codesets. Before running the web browser, a user should specify the required locale and

notify the browser by setting the LANG environment variable in the following format:

setenv LANG zh_TW

which means the locale is set to be traditional Chinese with codeset CNS 11643.

More than one locale has been built for Chinese language in our system. The

relationship between language and locale is not necessarily a one-to-one mapping. The

reason is that a single language such as Chinese might have different character sets

(Simplified Chinese and Traditional Chinese). Besides, the same character set can

have different codesets. For example, there are two popular codesets - Big5 and CNS

for Traditional Chinese. Figure 5.6 illustrates the relationship between language and

locale.

Since the default interface of our web browser is set to be English, there must be

a locale for English. Three locales have been set up for Chinese. Table 5.1 shows the

locale information.

5.4.2 Resource File

Our web browser has a separate resource file under each locale. The contents of this

resource file include the locale-dependent information such as what fonts to be used,

what default codeset to be used, what input method service to be connected and so

Chapter 5 Design Details of An Enhanced Browser J^

GB locale M 4 US locale 1 ‘
/ ' m^KMmm^M / i 〜.：zdJ

/ , CNS locale | / X SJIS iocale |
/ y ^ -| I i / Z r.7. ,.:.'./r�'.l

(̂^̂|̂ ĴĴ^̂^̂ (^^^J)^^
\ ^ | BIG51ocale | \ X | U J I S L o c a l e ^

, \ -|"•— — — £j \ i .1

� U n i c o d e locale _ \ Umcode locale |
~l ^ j 1 I

Figure 5.6: Relationship between language and locale

Table 5.1: Locales set up in our web system

_ Locale Name Language Region Codeset
en_US English Western Countries — ASCII

" ^ Simplified Chinese Mainland China gb2312
zh_TW Traditional Chinese Taiwan CNS 11643

_BIG5 Traditional Chinese Taiwan, Hong Kong Big5 一

on for the selected locale. If users want to customize their own locale environment,

they only need to modify the resource file(s) instead of the source code ofthe browser.

Figure 5.7 illustrates the relationship between locale and its resource file.

In our web browser system, all resource files are located under directory

/local/ciswb/.app-defaults/

For example, resource file for gb2312 codeset is:

/local/ciswb/.app-defaults/zh/Mosaic

and resource file for Big5 codeset is:

/local/ciswb/.app-defaults/zh_BIG5/Mosaic

All resource files for different locales have identical name - Mosaic, but the contents

Chapter \ Design Details of An Enhanced S e r v e r _f^

Resource Files: Locale Setting:

Locale: zh

font: hanzigbl6 \

V _ ^ L A N ^ r f i ^ c ^ ^ setenv L A N G zh
resource file under zh

Locale: zh_TW

font: c n s l l 6

C 7 ^
This resource file

will be accessed

when LANG is set to zh_TW

Figure 5.7: Relationship Between Locale and Resource File

are different from one to another. For example, in the resource file for GB locale, the

font to be used is as follows:

Mosaic*XmPushButton*fontList: 8xl6;hanzigbl6st:

The same line in the resource file for BIG5 locale is as follows:

Mosaic*XmPushButton*fontList:
-*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*

Each time, when users set a certain locale, the related information will be extracted

from corresponding resource file and the interface of the browser will be changed to

be different languages or different codesets according to the settings in the related

resource file.

5.4.3 Message Catalog System

One of the most obvious need an internationalized system must fill is that of allowing

a user to interact with the computer in his or her own language. However, uninter-

nationalized code typically can produce messages in only one language because the

messages are hard-coded into the program logic [31]. To make the browser interface

Chapter 5 Design Details of An Enhanced Browser J^

part to be internationalized, another facility provided by ISO POSIX called message

catalog is adopted into our browser. Instead of hard-coding the text into the program,

it is stored in a separate message catalog.

A message catalog contains program context data such as prompt information, help

messages and so on. All these program messages are stored outside the program itself.

There are routines for creating, storing, accessing, and updating user-visible pro-

gram text in a variety of languages. Users can translate the text into the languages

of their choices. The result is multiple versions of the messages for a given program

- o n e version per language and codeset combination [31]. The program then can in-

teract with a user in any of these language/codesets. Adding new language/codeset is

very easy, just supplying a new message catalog, the program code doesn't need to be

changed.

The first step to build a message catalog system for our web browser is to isolate
all program's messages into a message source file. The messages in the web browser
includes all menubar titles, their options, buttons and so on. For example, menubar
item File and its derivative options have following program messages:

File
New Window Clone Window Open URL
Open Local Reload Current Reload Images
Refresh Current Find in Current View Source
Edit Source Save As Print
Mail To CCI Close Window
Exit Program

In the original version of the browser, all these messages are hard-coded in the

program, so every time, only the English menubar can be shown to users. In our

enhanced browser instead, all such kind of text data have been extracted from the

program, and have been saved into message source files for different languages/codesets

respectively.

The organization of a message source file is quite straightforward. Each line starts

Chapter 5 Design Details of An Enhanced Browser J^

with a message identification number, referred to as msg id. A msg id is either- an

integer or a mnemonic label which has been defined before. But in a message source

file, either integer is adopted or a mnemonic label is used as a msg id, they can not be

used simultaneously. If integers are used, they must be in ascending order, but they

don't need to be consecutive. A single ASCII space or tab follows the msg id, and then

the message text is listed. For example:

20 This is message number 20.\n

Message text within a source file can be in any language, and can contain any valid

multibyte character. In our message catalog system, there are 3 versions for the same

program messages for Chinese, one is for simplified Chinese gb2312 codeset, one is

for traditional Chinese Big5 codeset, and another one is for traditional Chinese CNS

codeset.

Some other options for building a message source file are listed below:

.Comments: Any line that begins with a dollar sign ($) followed by
a space or tab is treated as a comment. For example:
$ This is a comment

.Quoting mechanism: The message text can be surrounded with a quote
character of users‘ choice.

To designate a quote character, the source file
must include a line like:
$quote"
where the double-quote(") is the designated
character. For example:
25 "I am a student\n"

.Continuation character: Not all message text fits exactly on one line.
Use a backslash(X) to continue a message
across multiple lines. For example:

Chapter 5 Design Details of An Enhanced Browser J^

":t � " ; n ""•"— 6B .;P Bifi8 1 -i"̂ -
g Messages for program CMosaic | Mesŝ es for ProgramCMosaK:|| Mesŝ es for Propara CMosaj.c
I Yao Jlan- Apr. 25，1997 | Yao J ân: Apr. 25，1997 ！ | Yao J;pn: Apr, 25, 1997

| ^ r f i x s t level message. I The fixst level message. I The fixst level message.

fe” K r Fxk"

SS? _ 丨瑟
5 "SS 5 "iW" 5 ”新閏”

S 67 % 6 : ; w . .

^d" l"M' ¾̂"
， 纖 ， ， 鲁页” 曇 -: ¾ : , , li|lp" lltllp"

15 "Ss™ow" p"lBwP"i 1 U5"llfflSD"
y h e second level message. $ The second level message. | The second level message,

t 2 $set 2 !;set 2
1 "We； Window" 1 '，新窗口” ”新窗口”

nMXfi K) - 1 11丨英文输入(ASCII input) �英文输入 (咖 1 1聊 1)

Figure 5.8: The Fragment of The Message Source File

12 This is a very very long \
message line.

.Message Sets: Message source files may be divided into sets. Sets are
a useful tool to organize the messages in a more logical
way. Related messages can be categorized into the same
set. To designate a set, the following line must be
included:
$set n
where n is the identification number of this set. If
n is an integer, it must be l(one) or higher.

Since there are nearly 100 messages in the browser's interface, sets are used to

divide them into various groups. Set No. 1 includes the toppest level which includes the

parent messages of menubars, including buttons, and set No. 2 contains the derivative

messages from each menubar options, and the set number definition goes down in the

similar way. The fragmental part of our message source file for English, Simplified

Chinese (gb2312) and Traditional Chinese (Big5) versions are shown in Figure 5.8.

The message source file for different languages/codesets adopts the same format, only

the messages themselves are translated into related language/codeset instead of only

English.

Chapter 5 Design Details of An Enhanced Browser J^

Table 5.2: File Types Related To Message Catalog System

File Type Sample Name Description
Source program callmsg.c Program source code with mes-

saging calls
Message source file callmsg.msg source text of messages used in

callmsg.c, source to gencat
Object catalog callmsg.cat created by gencat, an object file

that callmsg accesses at its run
time

Message System Root

en_US zh BIG5 zh_TW …...

Mosaicnew,cat Mosaicnew.cat Mosaicnew.cat Mosaicnew,cat
••• •••

Mosaicnew.msg Mosaicnew.msg Mosaicnew.msg Mosaicnew.msg

： i ： ：
： ： 5 ：

Figure 5.9: Message Catalog Directory Structure In Our System

Since message source files are only simple text files, they cannot be cited by pro-
gram as they are not in binary format. Generating a message source file into its
corresponding object catalog file is done by UNIX command gencat. The usage is:

gencat catfile msgfile

where catfile is the target object catalog and msgfile is the message source file.

Table 5.2 illustrates the different types of files used in the message catalog system.

In our system, the message catalog files are stored in a separate directory as shown

in Figure 5.9. The message file for the same program has a unique name: Mosaic-

new.msg and Mosaicnew.cat. Different versions of message files are stored in a certain

subdirectory under their corresponding locale name.

Once the message catalog files have been generated, the program can access the

message data through the following 3 system calls:

Chapter 5 Design Details of An Enhanced Browser J^

• catopen() for opening a version of a named message catalog as ‘
determined by the current locale.

.catgets() for retrieving a specific message string from that
catalog, and

.catclose() for closing the named catalog.

In our browser's interface part, function mo_make_document_viewjmenubar() is de-
signed to make all menubars visable on the screen. And a new function ingetmessage()

has been added into the former module to realize the access of the message data. The
first step of function ingetmessage() is to open a message object catalog file:

catd = catopen("Mosaicnew.cat",0)；

Then it tries to modify each menubar option's display by replacing the hard-coded
text into the messaging calls. The original code for displaying menubar option File is:

static XmxMenubarStruct menuspec[]=
{

{ "File", ，F，， NULL, NULL, file_menuspec },

• • • • • •

The modified code is shown below:

menuspec[0].namestr = catgets(catd, 1, 1, "File")；

This statement means the first element of the menubar can be obtained by calling

function catgets() to get the first message of the first set {msg id= 1 and set No.=l)

in message catalog file Mosaicnew.cat String "File" is the default message in case

no data is found in Mosaicnew.cat. All other interface messages are plugged into the

program in the same way.

The environment variable named NLSPATH is used for defining the location of
catalogs [31]. NLSPATHworks much the same as other PATH-like variables. Table 5.3
shows some elements of an NLSPATHvolne. Before invokes our browser, the following
two commands should be run first to indicate clearly the locale and the related message
catalog file:

Chapter 5 Design Details of An Enhanced Browser J^

Table 5.3: Elements of an NLSPATH Value ‘

Keyword Meaning .
%N The value of the name parameter passed to catopen()
%L The value of the full locale name
%1 The language part of the locale
%t The territory part of the locale
%c The codeset part of the locale
%% A single % character

setenv LANG zh
setenv NLSPATH /local/MosaicBAK/message/y.L/y.N

The first line means the locale is set to be zh standing for simplified Chinese with

gb2312 codeset. The second line tells the program to get the message catalog file with

the full path: /local/MosaicBAK/message/zh/Mosaicnew.cat.

5.5 Experiment Result

Figure 5.10 shows the two versions of Chinese interface of our browser: one is for

simpimied Chinese with gb2312 codeset, the other is for traditional Chinese with Big5

codeset. Each time, before the browser is invoked, users have to set up the locale first

so that the browser can access the right message catalog when it runs and plug in the

related data accordingly.

For the gb2312 interface, users have to set up locale in the following format:

setenv LANG zh

And to set up for Big5, the line should be:

setenv LANG BIG5

Figure 5.11 shows the on-line codeset conversion done by our enhanced browser.

The document named exhi.htmlgb is written in simplified Chinese. When users reset the

jasMOjg jno Jo ao^jja^uj as9uiqQ 9¾ :oi'S 3jnS!j

,r - 二 - -…: ：- • • ‘ • ‘ “ >MMMWMMMWWilg-_" 1，"̂?̂?̂?̂?7̂7̂̂?̂?̂^̂^̂??̂^̂?̂
[0 一 (80Z0 X SF) ̂:fl, ~™ I __J

1 ,¾: _<iia >«•!«�
I (钻刺幻3»溪̂：4«� [0<IHJ
I .(鎮^¾¾¾¾:¾ 離二凝魏縫驟。
i (8-6988 OSI) xmi^ ̂ „^ , r 你灯, t 2TK3D 3 t 93ia 3

F (¾¾!: _SX •«•«�
I (Q-6Q88 OSI) ^^f®® A t 臓3 J c S3ia 3

ss:s^a. ••••I • (Z-Sm OSI), 【ZTS23E) 1 £ S3ia 】

I! - ―二漂歡！珊二機。纖熟二戰
:rernssy 叫？？明 Bppnl,-马^̂柏-丁劝组诚裔一番土^̂ ^ftHTW^—^m

aS:cBimu9DM9W- 一；》任麥£̂̂雜4：基*£ I SiS-»r^^f'^^™
n^s聊幻报明，muMmf%m飞 藉丽缴_ 口細國

:rgpiS9a mu93 M9|>- lm*。蔬 > 1诚'^ 车邀 1 rmt̂^mr̂
I ：胸隱目^̂一 ——】—％—、JfeHJmU3̂mMi$ 辑账禱‘…讓截

1 u^s^^^m- 纖势觀」：^ 湖：^觀&旁， _

！ ropnS3a roT^9AI9H> '1¾¾¾^ “^ 5^中研旅1^>讲虹^^| 勒竺
I ！ 9S09]S9nr̂Î 5土辑雜 j:^V'^"i"il^"" "^^
！ i net"s s9wrî . 域迪,出 丄“，•口'“仇“̂ ‘ xmm^
备 ^gy^^p：™ f^r,� , •‘ "、、1-'‘)至''广、1‘'、 ¥：^4^¥
b —_______J 艰鄉_彰 _J—__^——"3|rXft#^^i
.~~~™~ » “~""• “ ‘ ™ 職番闘4»1 審^$專

l'mm mm mW^M __. JTW Sii'SsS^P.*x^^.
^%m^:'mmmt ..„̂....™̂// 姑郷來

l^M TO*x9pui/0008:W^ 誠棚腳「獵 ew 50 lW/ 麵_
\^^ _^T^ 一 M “ 二 一一 ^ ~ -、 - •“ «
^^ iasMOi8 侧 PU5 isAi9g| -^^¾^'可视零0—舰3™™™Hg|

"'"~^""lii _ 霞 rgr"W" .jTlm^ii m f^'
r>-1 I , ifeaafti<iauBPoo;̂tHn3 _jLJ 03_ -"0
;̂i|̂;<;|i;-<;:;c:::rrj".凰丨丨丨则,m —--""-•画:|^丨^|^^丨游|^丨|^^则益磁"|仏4丨|^丨丨访-良.。/>K ‘ I�...."�...….―-—-'""""'FlofS 拟 pl

gg ddscaodQ p9^r)i{ug[uy fo siw^9Q u6is9Q g J3?cf»^9

Chapter 5 Design Details of An Enhanced Browser J^

. __ 一，_ _ _ •-•- _ _ 一 一 jf̂ ...>u.Lr_ni rti MI I rtrr - i r-r' i--'i n , - .———;• — . - .> -二_,»»..,,---.-.-..-:-.-...-. •“ .；；；̂：̂̂
Tl •-" -aJnirnSSESiiaSnipf̂ - ‘ “ — “ CUHK:PowrwfttV)wy • i.'l..|
文 件 选 择 谨 游 注 释 w m^ i 文 件 j i S J 沒 游 往 释 m m
M MMkM VkM»~ 一 WM. Vt** SKMM t 、***• “ *• *f*f^ S>fc ****** ^***fM W*W*W««*~* " ************* ** t * » “邏，". “̂ ‘明

•。：「比:1; 1 TWe :：麟縫 " ^ “ ^ 减 .

URT. ： j S i T / 7 ^ l " cs. cuhk edu. hk:8000j URL 」延55齒錢载、�̂ ^ ^ 5 ^ ¾ ¾ ! ! ^ ¾ " " * J ^ . . .
‘ 浙饭银免予.，1!>1文4: ,

MzM.LJnMMBMmml^ M 重载配置文件 P^Mm.«?JilMqi i
Data trcTi5fer complcLe. | 冲洗图象缓存

； ：： 请除舰踪迹 - p
^MM^^^^MMMMHI^MIMIMH^MI • 一 ‘ 一 'S^mmm^mmmmmmmmmmmmmmmmmmmmmmm^|gg^ 毛

：''''ii^^^HHP*W I -¾-—-——-•• -I^sJe^5d .̂ H 1 11
； ^ - t M H f ^ S l 欢向 ’<^Times_ m

, ： 芬 漏 ^ ^ S S :—Lar—se— — |
； rr''.^^W%-,-mi ji 可接受诏曰 ..Helvetica Regu：!̂ |

' : >必 ^ ^ 5 _ ' ^ 1 ^ ^丨 ： 輕 钱 堅 „ 效 — _ 4 威 3 5 — f ；

i i ^ : p ~ s r
i _ _ _ _ H i S ^ |
； &•、.'、!̂:•、、'-‘•̂：奴丨‘ W f « L̂ucida Bright Large ,
| I H I _ H I _ _ _ _ M l l i i ^ ^ M i | _ H p _ M _ _ _ i i _ _ _ _ H ^ ^ f c _ _ _ _ _ _ _ _ _ _ _ H 1 漏丨
； II —-(ISO 8859-̂ •
： I. ^ (ISO 8859-4)
！ 香港中文大学计算《^| •中文大二體|妾丨漂8严钟）程系

:丨 |j V m X (ISO 8859-7)
i自动转码万维网中文资料服务纟自動轉碼萬维網中文：$1152|^矹9 8化劉覽器系统

i |i '、中文繁体（8诚码） I

丨 ********** 欢迎各位嘉 _丨 ********** 歡迎 ‘ ： I I [™6oi) h******** i
I _ J L -曰文(JIS X 0208) d j

Figure 5.11: On-line Codeset Conversion Done By The Enhanced Browser

Chapter 5 Design Details of An Enhanced Browser J^

font to be Big5, the browser does the on-line codeset conversion, so that the converted

version in traditional Chinese of the same document is displayed on the screen.

As to the facility of data type negotiation in our enhanced browser, Figure 4.4,

Figure 4.5 and Figure 4.6 in Chapter 4 are all examples to demonstrate it. Without the

codeset announcement from the enhanced browser, the data type negotiation cannot

be completed only by the enhanced server.

Chapter 6

Another Scheme - CGI

Through the above discussion, it is known that a system with both enhanced browser I

and server can realize Chinese text data access with on-line codeset conversion and ‘

can avoid duplication of Chinese documents. However, since the enhanced browser is

developed based on Mosaic, it cannot overcome the drawbacks inherited from Mosaic,

such as Mosaic doesn't support some latest features like: Java, Java script, CGI and

etc.. As we know, among various existing browsers, Netscape is very popular and has

occupied a large proportion of market on Unix platform. It is not wise and applicable to

force Internet users to use our enhanced browser instead of the one which is preferred by

themselves. In such case, something must be done to reach the same goal without the

help of our enhanced browser. A new scheme is devised to fulfill special requirements

for Chinese information processing between a normal web browser(in our project, we

choose Netscape as such a normal web browser) and a normal web server (in our current

development, our own web server is taken as such a normal web server, in the next

stage, any web server can be accessed using our approach). This scheme adopts one of

the latest web technique 一 Common Gateway Interface which can pass the user side

information to the server, and vice versa. With cgi technique, data type negotiation

can be carried out without the need to enhance the browser/server to support the new

features of HTTP/1.1, instead, all works including codeset conversion are done by CGI

itself. In our system, CGI runs as a back-end program on our web server. Users use

Netscape to access files on our web server.

89

Chapter 6 Another Scheme - CGI 104

Q © -
… SubmitFormData „ , , CaUCGI
W e b ^ W e b ^ C G I

B r o w s e r Server

Q 0 十 \ Final y V CGIProgram's /
y ^ ^ Response — Response *^^^

/ • F O R M 二

入 " ^ “ 0 ©

‘ Figure 6.1: The Operation Procedure of CGI.

6.1 Form and CGI

Data type negotiation needs both web browser and server to involve in the commu-

nication of data types they support during each round of information retrieval. Since ：

normal web browser and web server don't have ways to tell such data type informa- ！

tion, an interactive interface must be established to let users to input such information I

manually, and these data should be sent to the server for further processing to fulfill

users' requirements. The interface part can be realized using HTML's form, and the

passing of the inputted data and further handlement at the server side can be carried

out by the cgi program. In fact, the name of the cgi program should be indicated in

the form, and they cooperate to carry out related tasks. Figure 6.1. illustrates the

operation procedure of CGI.

The Common Gateway Interface(CGI), forms are generally used for two purposes:

data collection and interactive communication. Users can conduct surveys or polls,

and present registration or online ordering information through the use of forms. They

are also used to create an interactive medium between the user and the web server.

For example, a form can ask the user to select a document out of a menu, whereby

the server returns the chosen document [15]. The second usage of forms and cgi is

adopted in our scheme. An interactive interface has been designed for users to select

different codesets through clicking a certain button. And the cgi program tries to get

the document and convert it into the codeset preferred by users, and at last send this

converted document back to the client.

A form consists of two distinct parts: the HTML code and the CGI program.

Chapter 6 Another Scheme - CGI 91

HTML tags create the visual representation of the form, while the CGI program-de-
codes (or processes) the information contained within the form [15]. Here is an example
of a simple form:

<FORM ACTION="http://cwebl:8001/demo.cgi" METHOD="GET">

The <FORM> tag starts the form while < /FORM> ends it. The two attributes within

the <FORM> tag (ACTION and METHOD) are very important. The ACTION at-

tribute specifies the URL of the CGI program that will process the form information,

here cgi program named demo.cgi at site http://cwebl:8001 will be invoked after users

input data into this form and click submit button. The METHOD attribute speci-

fies how the server will send the form information to the program. POST sends the ；

data through standard input, while GET passes the information through environment |

variables. If no method is specified, the server defaults to GET [15 .

Most form elements are implemented using the <INPUT> tag. The TYPE at-

tribute to <INPUT> determines what type of input is being requested. Several dif-

ferent types of elements are available: text and password fields, radio buttons, and

checkboxes. In our implementation, radio buttons are devised to ask for users' selec-

tion. Here are the HTML codes:

<form action="http://cwebl:8001/cgi/demo.cgi">
GB: <input type="radio" name="codeset" value="GB">
Big5: <input type="radio" name="codeset" value="Big5">
CNS: <input type="radio" name="codeset" value="CNS">
Unicode:<input type="radio" name="codeset" value="UNICODE">

<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>

The corresponding result displayed by Netscape is shown in Figure 6.2. The above

code presents four choices for users: GB (simplified Chinese with gb2312 codeset),

http://cwebl:8001/demo.cgi
http://cwebl:8001
http://cwebl:8001/cgi/demo.cgi

Chapter 6 Another Scheme - CGI 92

Pk?�':ĉ 、、:、'：、，、、、、、，、V • "- - H^i^:tmmw^^ / '. ?'' ‘ 乂 ： ： 】 1 — ! -

File Edit Vlew Go Bookmari<s Options Directory Window "elp
iflfln_"nmmJ

‘ < ^ � a " " ^ " " " " " " " ^ ^ " " " " " " ^ ^ " " i 7 " ^ " l T ^ : : m ^
Back - � � ‘ , . Home Reload Images Opfen Pnnt Find i f b ^ '

riiinrrrii.L»Liuuux».[i[iUjjiu.tJUOwn' uuaiu-UnULWJ'juuuDOCijOOCO. rcinin m ijWWCCjLijjucuujl̂ ĈCifi(ififir.trjWtrtt̂ tMOTt-TmriiI,XVMJJ.LMM.mmr,,»»» -.-nrrnWimmttn- "ffMUfr//fff/M "WMr , frr/"""Mt 洲“""",, ^^g|g^ j j | | | | | | | | | | | | |^

Location: |ittp ： //cwebl. c3. cuhk. edu.hk:8001/cgigb. htmL H H H i
||ii.nn iiimrtGonnnnniGi .,G[.]jGnnD]jiuunnaa.nnn»inuj»innnimnm[uuouonG LDo»jjfifiLiLionnBmiiijjnGGaoaonrrn-ijBJuu«wouiiiiuuuw_iiiw<iii • i in i «M« x«»̂ »rto«. 'AitW

p>̂ ^

II I

^ ••！ GB:%/ Big5:v CNS:v Utiicode:V �

., ;Submit| Reset| _
0" ‘ '/ "-''> 丨二_""'； 'i;mmmd ,… 隱「仙「麥 “
.;^s«^ ———_一—丨.丨'丨.4)̂4ir"r>̂ ffH"?JVl̂ _̂.，T(*?l”W"̂ .�_”!l.,.''J!J!• '•*W^""“““^*‘'^ ^ ^ wnnnmmnnirrmnnnnnwmn yyuj 一 丨 ^ ... i---n ---m-i-im— w... •«««««««> »»»««« 一 州《»««»-一 •<—>«««««••«« • «"«~~'~ — -"****••*«*•

—：^ ~~2_ •̂^̂̂^̂̂ ^̂̂ ^̂̂--̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂-̂̂•̂^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂-̂̂ ^̂̂ ^̂̂ ^̂-̂̂ ^̂̂ ^̂̂ ^̂̂•̂―編」
Figure 6.2: The Interactive Interface Designed For Codeset Announcement

Big5 (traditional Chinese with Big5 codeset), CNS (traditional Chinese with CNS or |

x-euc-tw codeset defined by Netscape) and Unicode (Unicode codeset which covers 丨

multiple languages).

Two more important "types" of the <INPUT> tag are Submit and Reset. Nearly

all forms offer these two buttons. The Submit button sends all of the form information

to the CGI program specified by the ACTION attribute. Without this button, the

form will be useless since it will never reach the CGI program. The Reset button

clears all the information entered by the user. Users can press Reset if they want to

erase all their entries and start all over again [15 .

After users input data and click Submit button, in the above example, users may

click button GB and Submit, then the codeset of GB is transferred to the server and

the server tries to execute the CGI program.

CGI is the part of the web server that can communicate with other programs

running on the server. With CGI, the web server can call up a program, while passing

user-specific data to the program (such as what host the user is connecting from, or

input the user has supplied using HTML form syntax). The program then processes

that data and the server passes the program's response back to the web browser. When

a CGI program is called, the information that is made available to it can be broken

Chapter 6 Another Scheme - CGI 107

into two groups: ‘

.Information about the client, server, user and additional pathname.

.Form data that the user supplied.

Most information about the client, server or user is placed in CGI environment

variables. And extra path information is placed in environment variables. Form data

is either incorporated into an environment variable, or is included in the "body" of the

request depends upon which method is used in the. form [15]. If the GET method is

used, the query string is simply appended to the URL of the program when the client

issues the request to the server. This query string can then be accessed by using the

environment variable QUERY—STRING [15]. If the POST method is iised, the form

data will be included in the HTTP request message's body, and the main advantage to

the POST method is that query length can be unlimited. Since the form data of our

system is just the codeset information, the query length is short enough to be safely

handled by the client and server, therefore, GET method is chosen in our form/CGI

operation.

Much of the most crucial information needed by CGI applications is made available

via UNIX environment variables. Table 6.1 shows some useful environment variables

which can be used by CGI programs. Among all the above environment variables, RE-

QUEST_METHOD and QUERY_STRING are two important environment variables

which are used by our CGI program. REQUEST_METHOD tells CGI programs what

is the method the form used (GET or POST), and QUERY_STRING provides the

query data entered by users. For example, the content of QUERY_STRING may be

,,codeset=GB" which means users choose GB as their preferred codeset. After CGI

program gets the form data, it has to decode the data and interpret them correctly.

The following is the algorithm which is used by CGI program when it decodes the

input form data [15]:

1. Determine request protocol(either GET or POST) by checking the
REQUEST—METHOD environment variable.

Chapter 6 Another Scheme - CGI 108

Table 6.1: Some Useful Environment Variables

Environment Variable | Description
SERVERJ^AME The hostname or IP address of the server.
SERVER-SOFTWARE The name and version of the server software

that is answering the client request.
SERVER_PROTOCOL The name and revision of the information protocol

the request came in with.
SERVER_PORT The port number of the host on which the server is

running.
REQUEST_METHOD The method with which the information request was

issued.
PATHJNFO Extra path information passed to a CGI program.
QUERY_STRING The query information passed to the program. It is

appended to the URL with a，,?，，

REMOTE_HOST The remote hostname of the user making the request.
CONTENT_TYPE The MIME type ofthe query data, such as "text/htmr.
CONTENT_LENGTH The length of the data (in bytes or the number of

characters) passed to the CGI program through
standard input.

HTTP_ACCEPT A list of the MIME types that the client can accept.
HTTP-USER^GENT The browser the client is using to issue the request.
HTTP_REFERER The URL of the document that the client points to

before accessing the CGI program.

Chapter 6 Another Scheme - CGI 109

Table 6.2: Valid HTTP Headers for CGI programs ‘

Header Description
ContentJength~The length(in bytes) of the output stream.

Implies binary data.
Content_type The MIME content type of the output stream.
Expires Date and time when the document is no longer

valid and should be reloaded by the browser.
Location Server redirection (cannot be sent as part of

a complete header).
Pragma Turns document caching on and off.
Status Status of the request (cannot be sent as part

of a complete header).

2. If the method is GET, read the query string from QUERY_STRING and/or the
extra path information from PATH_INFO.

3. If the method is POST, determine the size of the request using
CONTENT_LENGTH and read that amount of data from the standard input.

4. Split the query string on the ••&•. character, which separates key-value
pairs (the format is key=value&key=value•..).

After decoding the input form data, CGI program will carry out related processing

to complete the requirements from users. Instead of returning a static document, the

server executes the CGI program and returns its output. Since any HTTP response

message must include header information, these information should be composed by

CGI program either partially or completely. Table 6.2 shows some useful HTTP head-

ers for any CGI program [15]. HTTP response header Content-type has charset param-

eter which is defined in HTTP/1.1. For example, Content-type: text/html; charset=big5.

In our system, if automatic codeset conversion has been carried out by the CGI pro-

gram, it should include the converted codeset information into this response header so

that the browser like Netscape 3.0 can interpret the body data correctly.

If the CGI program composes all HTTP response headers, the server will pass

Chapter 6 Another Scheme - CGI 110

its output directly to the client browser, otherwise, the server will get the output of

CGI program and add some other HTTP response headers like the server information,

status code, etc. to the original CGI output. In our system , the CGI program only

composes the HTTP response header in a partial manner.

6.2 CGI Control Flow

To realize data type negotiation between web browser and web server, an interactive

interface using form has been implemented. This interface provides four selections for

users to choose: GB, Big5, CNS and Unicode. GB stands for simplified Chinese while

Big5 and CNS are two different codesets for traditional Chinese, and Unicode is the

coming codeset which can cover nearly all languages in the world. After users select a

codeset from the interface, the server will invoke the CGI program to do the related

works, including decoding the input form data, fetching the retried document located

at the server site, automatic codeset detection of the retrieved document, automatic

codeset conversion of the document, composing HTTP response message containing

the codeset information. Figure 6.3. shows the control flow of our CGI program.

6.3 Automatic Codeset Detection

In the figure of CGI control flow, it is known that automatic codeset detection is the

basis for the automatic codeset conversion. Since there are quite a few different codesets

for Chinese characters, and the code range of most of the codesets are overlapped, it is

not easy to distinguish one codeset from another only by investigating the binary code.

In our system, we only confine ourselves on the automatic codeset detection between

GB and Big5, i.e., we always assume that the retrieved document is encoded in either

GB or Big5.

Chapter 6 Another Scheme - CGI 111

START
V J

Get Form Data
Codeset Information

Fetch Retrieved
Document

Automatic Codeset
Detection

“

^ ^ ^ 1 ^ ^ ^ d ^ ^ 灿

^̂>>____̂____̂^̂^̂^̂^̂^̂^̂|̂^̂ |̂̂jjZ-̂ "̂"""̂^

Yes

Automatic Codeset
Conversion

”
Compose HTTP

Response Message

Send Back Data

STOP

Figure 6.3: Control Flow of CGI Program.

Chapter 6 Another Scheme - CGI 112

„ … ^ Second Byte Ranges
Second Byte Ranges 一 „ ^̂ 00 20 40 tiO 80 AO CO E0 FF 00 20 40 60 80 AO CO E0 FF

00
00

20 浏

.湘 I 40
I ！仰
I & ,
« «„ I 抑
•£ ^

IHII •!!
FF _J__J E ^ I I

Big5 Encoding Table For All Characters. GB Encoding Table For All Hanzi Characters.

Figure 6.4: Big5 and GB encoding table.

6.3.1 Analysis of code range for GB and Big5

As an ideographic language, Chinese character system has thousands of characters.

Because of this, an eight-bit code set with its maximum of 256 characters obviously is

inadequate. Chinese language needs to use 16 bits or more for most characters. The

standard codeset ofsimplified Chinese is GB 2312 which covers 6,763 hanzi characters,

and the popular-used codeset for traditional Chinese is Big5 which covers 13,053 hanzi

characters. Both of them adopt two bytes representation scheme, i.e., two bytes per

character. And the MSB(Most Significant Bit) of the first byte is always 1 for both

GB and Big5. For GB, the MSB of the second byte is also set to 1 while the MSB of

the second byte of Big5 may be 1 or 0. Figure 6.4 shows the code range for both GB

and Big5.

From the above encoding table, we can get the following observations:

1. Whether a character is GB or Big5 codeset, the MSB of its first byte
must be 1, this is a tool to distinguish an ASCII character from a
Chinese character.

2. The range for the first byte of Big5 is from A1 to FE while the
range for the first byte of all hanzi characters of GB is from

Chapter 6 Another Scheme - CGI 113

BO to F7; The range for the second byte of Big5 has two sections: ‘
one is from 40 to 7E, the other is from A1 to FE while the range
for the second byte of GB is from A1 to FE.

3. The code value for all hanzi characters of GB is a subset of the

code value for all characters of Big5.

4. If a Chinese character's code meets the following conditions:
first byte in [A1, AF] or first byte in [F8, FE], then it must be
a Big5 character.

5. If a Chinese character's code meets the following condition:
second byte in [40, 7E], then it must be a Big5 character.

6.3.2 Control Flow of Automatic Codeset Detection

The control flow of automatic codeset detection between GB and Big5 is illustrated

in Figure 6.5. The detection module first checks the MSB of an input character, if it

is 0, then it means that the character is an ASCII one, otherwise further analysis is

needed in the following steps. If the MSB of all characters in the file is 0, then it must

be an ASCII file. If any BIG5 special character is detected out, then the program

regards this file as a Big5 one, this is based on the assumption that any readable

and meaningful Chinese document encoded in Big5 must have characters whose code

values are in different sections. If a character's code value is in the overlapped section,

then just ignore it, and investigate the next character. If all the characters have been

checked, and the MSB of characters is 1, but all characters are not Big5 special ones,

then the program regards the file as a GB encoded one.

Chapter 6 Another Scheme - CGI 114

START

Big5_flag = 0

^ GB_flag = 0

Input a character
from a file

^ ^ ^ ^ ^ Yes
^ ^ ^ Endof ^ ^ 1
\^^^^^^^^ f i l e ? ^ ^ ^ ^

No

I Get MSB of
this character

^^ -̂̂ •^^""""^"^^^"""-̂ •-̂ Yes Get next Char
<C^^^^^^^^|^^^^_Z> ^ from the file

No
i I 1

Get a Character Get high byte
from the file andlowbyte |

,̂ ^̂ î;î inr̂ ^ No i^^^^T^;^"ir^^^�

\ ^ ^ ^ i g 5 s p e d a J Z , . ' ^ " \ « < ^ ^ 5 s p e d a U - - - ^

^ ^ J ! ! _ ^ Yes
I [1

Big5_flag = 1 GB_flag = 1
GB_flag = 0 Big5_flag = 0

I
Get a character
from the file

Big5_nag =0 And GB_flag=0 -> ASCII

~~OutputCheck ? f ， = , l - > ; ? 5
^ GB flag = 1 •> GB

Result - ^

I
STOP

Figure 6.5: Control Flow of Automatic Codeset Detection.

Chapter 6 Another Scheme - CGI 115

6.4 Experiment Results

Figure 6.6. shows the experiment result of our CGI tests. The interactive interface

site is at http://cwebl:8001/cgib5.html. This file is originally written in Big5, after

users click GB, the returned document has been converted into GB format. This

avoids the duplication of documents and provide friendly Chinese information access

environment.

Another example is shown in Figure 6.7. The original codeset of file cgigb.html

is gb2312, after users click Big5 button, the converted document encoded in Big5 is

displayed on the screen.

http://cwebl:8001/cgib5.html

Chapter 6 Another Scheme - CGI 116

� | Netscape: cgi button test I Z j : i
Rle Edit Vlew Go Bookmarf<s Options Directory Window Help

卩口„「卩-.„̂ j„„„̂ „,rf-mn„nn|u„,n„-rrnnnPBnPBfBrBr-u|-ioo[DDnnjrniocnrjrnnrTinn nyuumm丨丨丨丨丨丨丨丨丨丨uiiiiiii 州丨0iiniiinncnninnr0n0T" _ -m *>**,场 »4MAu», * •.

^ _ j j ^ i ^ j i J a j ^ i i i ! _ J n K
J«W WŴVMMW9V>" tttMf*^ *m,/ /# M̂</ewwMM' ^ « « . « M ^ WWW/WSWW , n*tM^ * MMMt.* tmM>f*w^** ><WWW 脚 >wWSW , " W *W ““ *^ ffWMM* t^^ “ ‘ “ W^^ 叙，̂1 ^ *

Location： littp://cwebl:8001/cgi/demorefer.cgi7codeset=GB p ^ ^ k

What's New?j What's CDol^ Destlnations| Net Searchj Pfeoplej Softwarej
#eex*eee6rw*w*ewe*-*eeeeei ^^^^^^ <swiwwww*f fr^^vwfww-^W»Mr%r^v^*JVS^ 耽 ‘< t “ z ~* • * f^w <">*< ‘ / *

^^«„„^„-^.脚一一>>•>^«>-^—•>>«^>>^、•>>••>>•«^^^-->^~«^^<、•><>^納^»«~~>«•>»>-"^—"^一禪•他">^"~""^ ,

I A

: G B : A Big5 V CNS ” Unicode v
¾̂

V. ：丨识‘ •:•：

‘ Submit Reset

, L««~c««««««««««J ： W«««>^«««««««J ；

^ ^ ^ ^ i ^ > ^ � i ^ « ^ ^ ^ M r u ^ ^ � � v > , “

成熟是一种明亮而不剌眼的光辉'一种國润而不腻耳的音响‘

一种不再对别人察颜观色的从容,一种终于停止向厨围申丨見求吿的大气,

‘一轴不揮 _ _細令微樊 .一种洗刷了偏激的淡谨’ II
p r cxtemib5 LdLd

:一种无需:丨||：611161；)̂丨11昭310=，，131油0”1+8±0 (/center)
<pre) _

勃 都 的 夤 & ^ ！ ^ ^ ^ 刺 眼 的 光 瑪 - 種 圓 潤 而 不 國 音 翼

i一種不再對別人察顔_色的從5^ —種終于停止向同圍申詐求告的大

：一種不理會閧閒的微禹一種洗釘偏激的職

！ 一種無需聲張的厚氧一種並不陆山肖的高鼠

丨勃靜的豪情發過了萬兴利的山風收住了孰瑞急的細流匯成了规丨
专 (/font)

Back to (/pre>

P Z Z Z Z Z I 英又罕前入(ASUii :mputJ
^ S T ^ , -.....::::::

Figure 6.6: Codeset Conversion From Big5 To GB

Chapter 6 Another Scheme - CGI 117

..̂ . LLLLL** ll.-LLrLI im....LLL II .LUUUUUULULa'LLUyULLLLUUJT/L.LLLL 1 1 || miT n ,....loil.<WP|

^ fteUcape:tranrwwdCBi :|—| “ Metecaipe:framearHlcgi J_j,
File Edit Vfew Go Bookmarks Options Ob%ctary Window me Edlt Vlew Go Bookmar1(S Options Drectory Wbwtow Help

™ > LL--LL--, uuuu丨丨丨丨丨 - ,̂«, ̂ «^ 一

" ^ . J ^ ^ l l ^ A L ^ i J ： fd ,_J^ .^ ^-.^!A^ ̂ 1 ,:丨 _ ^̂ •̂̂i_̂_̂ĝ?̂2feyff"=�̂^̂fî�)?:?̂ _̂ĵ&;:::4ĵ !̂^̂?̂:::‘::;j:̂^̂âĝ:iM̂ f̂p;̂ajt̂ !̂^̂ !̂̂ 丨̂̂應̂̂黎渗!:钱轉(该2逾改激想̂̂̂̂鹤媒激.總想趙翁舞_̂|̂̂[變:鐵:(_丨;纖̂11̂驟;琴警毅2忍毅1|̂释錄终麥缚麥 ̂ ̂ m K̂ ̂̂錄 Locatran: '>ittp //cvehl.8Q01/cgigb html Locatlon： Jitt̂) //ctfebl 8001/cgi/demotefec cgi'Code5ct>=BIG5 jftjjH|| WhatsNew?̂ What's Cool?' DestmatiDns； Het Search' PeofAe> Softw. what's ttew? Wliat's Cool?； Destaiatwnsi Nel SearchJ Peoplê SoftwareS _�r ̂ ,, —, - :j ..., .., -1 一 —一一—- > ̂-~«~«' —~ — **"*--"--̂ ~"~̂ *^ - *• ~ ‘ » ‘ ‘ “ ^ * ‘ ** ‘ ‘ _ • • ,
jjLjj - ,. wnnrrrr-ir-i — 一 ^-"*^*^ ^ ‘ ‘ - ̂ *̂***̂ »*^^**^ ̂ M^ *» * « ‘ ^ 一 ‘ ^ “ ‘ ‘ ， ^ • “ *" ^ ‘ ‘ �� î:

I GB:0 %g5:A CNS:0 Ujiicode: | oB:<> BigS:0 CNS;0 Unicode:<> ；

I " ^ i S Submni R<.et| :

I 雄 夏 文 摘 ‘

CHINA NEWS DIGEST — CH: | 華 夏 文 摘

I 全球首家中文电脑期刊中面新間电脑_(叫 CHINA NEWS DIGEST - CHINESE MAGAZIN-

！木期 校对： 夏伊宁（美国> <cnd-cm@cji ‘
；读者技术咨询： 荣刚（美国〉<cnd-help(^i 、

I ^ | i T k : i l i i> Snd^ioSll 8 ^ « _首家中文電腦期刊中國新聞電腦絪命
i �CND»^*: 溫冰（加拿大〉<cnd-manag!

I本期 校對： 1 ^宁（美國）< c n d - c m i j
1 Back to Original Page 丨讀者技成咨詢： 榮 剛 （ 美 國 ） < c n d — h e _

i 丨總絡技成维護： 月邊（芬蘭） < c n d - h : _
1 《 華 1 ： ^ ^ ^ 》 主 编 ： 蕭 同 （ 美 國 ） < c n d _ c 。 _
； rrr̂ ^^ ÎD;V- m,"̂ ' 7-"^^^-r-^"h^^^feridtegffa^g/.
^^^一一.、、、一 , :--...'：丄二…'".…^:"“"“""^^*•^•••*•^^^"•••«“�»»»^*»»""y"»»*»»*"***^_»*"»******°*^.T**;!~f^.^_^.r_;;_=2:L„>>>>_>--»>»|�“l —r
^ ^ ^ ^ ^ ^ ^ = 1 F f ^ = i ^ F ^ ^ = ^ ^ ^ ^ ^ ^ ^ M Z Z Z S r Z I E Z 3 : 2 Z 3 Z ^ ^ ^ ^ ^ ^ ^ ^
jiM , ‘ , , ‘ ‘ / ‘ \u^m “ ‘

Figure 6.7: Codeset Conversion From GB To Big5

Chapter 7

Conclusions and Future Work

Exchange and manipulation of Chinese text information through World Wide Web

are in great demand in Mainland China, Hong Kong, Taiwan and other places where

Chinese characters are used. To provide a friendly environment for users to fetch,

exchange and process Chinese text data via Internet, we design a new World Wide

Web system to fulfill the special requirements for Chinese information access through

Internet. Comparing with most of the current web servers/browsers which support

Chinese text data processing, the main idea of our system is to introduce the codeset

announcement mechanism which is realized through the data type negotiation between

the web server and the web browser, and to carry out on-line automatic codeset con-

version transparently to web users. With the on-line codeset conversion, duplication

of Chinese documents are avoided. Also the internationalized user interface of the web

browser provides a very convenient and friendly environment for users to do Internet

access in their local familiar way, either using traditional Chinese or simplified Chi-

nese without the need to match the codeset of the documents being retrieved from the

server.

Our web system consists of three main components: the Chinese web server, the in-

ternationalized browser and an enhanced proxy server. All of them are developed under

X-Open environment. The component integration approach is used in our architectural

design, where each component is independent and reusable, and all components can

104

Chapter 7 Conclusions and Future Work 1^

act in flexible combination to provide services under different situations. The devel-

opment of our web system makes the Chinese text data processing over Internet more

convenient and popular. The component integration concept is applicable to both

Unix platform and PC platform. This approach can also apply to documents access

between different languages. The codeset converter can be replaced by an intelligent

language translator. In this way, document written in Japanese may become accessible

to users who doesn't know Japanese.

7.1 Current Status

Currently, our enhanced server is capable of doing automatic codeset conversion and

can handle data type negotiation with the enhanced browser. There are 3 methods for

the enhanced server to detect the codeset of a retrieved document: with the <LANG>

tag defined in HTML/3.0, with the help of I-Hanzix server and with file extension.

Our enhanced server can handle a multiple codesets document and tries to convert the

various codeset text data into the same target codeset.

Our enhanced browser has built the codeset announcement mechanism into the

system, and it can properly parse the response message sent back by the server and

display the document with a proper font without users' intervention. Also, if users want

to reset the font while reading a document, the enhanced browser can carry out the on-

line codeset conversion immediately. The browser's interface has been modified in an

internationalized way, so that users can access server information either in traditional

Chinese or simplified Chinese.

In order to make our system more flexible, a new scheme with CGI technique is

devised to fulfill the same requirements completed by our enhanced web server and

web browser system. It works fine for normal web browser - Netscape and a normal

web server - our own server. It provides an interactive interface for users to manually

select various codesets. The CGI does the automatic codeset conversion transparently

to client users.

Chapter 7 Conclusions and Future Work 1^

The core part ofthe enhancement of our server and browser are finished. Currently

we are working at the proxy server located at the same side of the browser. The proxy

server with the automatic codeset conversion functionality will be the bridge between

the enhanced browser and any normal server. The cache of the proxy server saves both

the original and converted versions of the web document to speed up the retrieval of

Chinese documents.

7.2 System Efficiency

The implementation of our web system is based on the following criteria:

1. Modularity: all new functions are coded into individual modules respectively.

2. Minimum Coupling: all modules added have high independence, such as module

conv^tr() makes the input/output data as parameters which is least dependent

of outside influences.

3. High Cohesion of Module: each module performs a single well-defined task: for

example, function mo_get_accept_charset() gets the codeset information accepted

by the browser.

4. Good Readability: We use both internal and external documentation to ensure

the good readability of our program. The methods used in internal documenta-

tion include using of good name, such as function conv^tr() and variable After-

MimeCodesetQ, using comments such as function and module header comments

and statement explanation comment. The methods used in external documen-

tation include writing phased implementation report and programmer's guide,

etc..

5. Programming Reliability: Our system has capability to tolerate faults in some

extent when conducting MIME parsing, and it provides excepting handling in

codeset conversion routines.

Chapter 7 Conclusions and Future Work 1^

The platform our web system running on is Sun Sparc Machine with the Operating

System System V Release 4.0. The time to access Chinese documents needed to be

converted on our server is less than one second, and the time for on-line codeset con-

version by the browser is less than one second which are both acceptable by web users.

Since our web server keep only one codeset version of Chinese document, comparing

with other servers which duplicate Chinese documents, the proportion on space saving

increases directly as the number of supported codesets increases.

We adopt DLL (Dynamic Link Library) technique when linking the codeset con-

version routines which saves resources and the library can be shared by all programs.

Since the library is not linked at the compile time, the object code is smaller, the run

speed is fast than usual.

7.3 Future Work

As personal computers become more and more popular in ordinary families, Internet

access will be conducted by PCs at most of the time instead of workstations in the

future. Therefore, we must ported our web system from Unix platform to PC platform

in the next step. Since most of the commercial web browser's source code is not open

to public, and buying them is very expensive, ways have to be found to develop a new

web system ba^ed on the popular web browser to reach the objective proposed by us,

such as using Plug-ins supported by Netscape, CGI technique, Java Script and so on.

As a web system for Chinese information processing, a search engine will be pro-

vided in the future for users to search Chinese information encoded in different codesets.

For example, users want to access Chinese word ”中国”，the search engine must be

able to find out all documents containing this Chinese word encoded in all possible

codesets: gb2312, Big5, CNS, Unicode, etc. Since users' main concern is related to

the semantic meaning of the Chinese word rather than the binary code representation

in computer. Therefore no matter what codeset the Chinese word is encoded in, they

should be regarded as the search result.

Chapter 7 Conclusions and Future Work 1^

Currently our CGI system can only work with our own server, that is users can

only access the files located on our own server. This restriction may not be accepted

by users if the information they want to access is located elsewhere. Therefore the

next objective is to improve our system so that users can access any remote web server

through the interactive interface and our CGI program. This needs the CGI to connect

with the remote server by itself through establishing an HTTP connection with the

remote server, and the CGI is also responsible for collecting the data sent back from

the server and conducts codeset detection and conversion if needed.

The accuracy of automatic codeset detection is very important. If the detection

gives a wrong codeset result, the codeset conversion routine will generate garbage

data. Currently, we can only detect two Chinese codesets: gb2312 and Big5. This

is not sufficient. As the difficulty of detecting Chinese codeset from one to another,

semantic approach is under our consideration. When a binary code is in the overlapped

range of several codesets, the context data will be taken into consideration, and if the

word before or after the current word can make meaningful phrases or structures, then

the right codeset will be detected out.

All codeset conversion in our system are done through invoking related codeset

conversion routines developed in Hanzix system. When 1-to-N mapping is encountered,

the routine will either provide all possible output to users, or just select the first one

by default. In the next step, some extent of intelligence will be added into the codeset

conversion routine so that the right conversion will be given out by the routine directly

without users' intervention.

Bibliography

1] http://www.sai.msu.su/untpdc/training/netxonnect/www.html, October 1995.

2] N. Borenstein and N. Freed. Mime (multipurpose internet mail extensions) part

one: Mechanisms for specifying and describing the format of internet message

bodies (rfc 1521), September 1993.

[3] Lu Chin, Lee Kin Hong, Nui Pui Tak, Yao Jian, and Wong Man Fai. Technical

report: A chinese internet information server with automatic codeset conversion

functionalities, March 1996.

_4] Douglas E. Comer. Internetworking with TCP/IP Volume 1: Principles and Pro-

tocols and Architecture 2nd edition. Printice-Hall, 1991.

.5] General Electric Company. Software Engineering Handbook. New York: McGraw-

Hill, 1986.

.6] China News Digest, http://www.cnd.org:8028/hxwz/.

7] Dale Dougherty, Richard Koman, and Paula Ferguson. The Mosaic Handbook for

the X Window System. O'Reilly k Associates, 1994.

•8] Charles. Easteal. Software Engineering Analysis and Design. McGraw-Hill, 1989.

.9] R. Fielding, H. Frystyk, and T. Berners Lee. Hypertext transfer protocol http/1.1

(http working group, internet draft), January 1996.

10] William B. Frakes. Software Engineering In the UNIX/C Environment Prentice

Hall, 1991.

109

http://www.sai.msu.su/untpdc/training/netxonnect/www.html
http://www.cnd.org:8028/hxwz/

11] Ian S. Graham. The HTML source book. John Wiley, 1995. -

12] Hanzix Work Group. The hanzix open system. In Proceedings of International

Conference on Chinese Computing ,94, Singapore, June 1994.

•13] The Hanzix Work Group. Hanzix open systems - codeset announcements, its

principles and implementations, July 1995.

•14] The Hanzix Work Group. Technical report: The interim hanzix open systems -

codeset conversion functionalities, July 1995.

15] Shishir Gundavaram. CGI Programming on the World Wide Web. O'Reilly k

Associates Inc., 1996.

•16] Lam Yuk Helen. Technical report - a chinese input method system for x-window

applications - the open systems approach, September 1996.

•17] Borka Jerman-Blazie. Tool supporting the internationalization of the generic net-

work. Computer Networks and ISDN Systems, pages 429-435, 1994.

•18] Yao Jian. Technical report - mosaic analysis and browser architecture design, July

1996.

19] Yao Jian and Paul Pang. Fsm mime parser analysis and modification, October

1996.

20] Brian Kelly. Becoming an information provider on the world wide web. Computer

Networks and ISDN Systems, pages 353-360, 1994.

.21] T. Berners Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol http/1.0

(http working group, internet draft), September 1995.

22] X/Open Company Limited. Internationalization Guide. X/Open Company Lim-

ited, 1990.

"23] Cricket Liu, Jerry Peek, Russ Jones, Bryan Buus, and Adrian Nye. Managing

Internet Information Services. O'Reilly & Associates, Inc., December 1994.

110

'24] Chin Lu and Kin Hong Lee. Project draft — a chinese internet information server

and the server access software, 1995.

25] Qin Lu, Kin-Hong Lee, Jian Yao, and Man-Fai Wong. The design of a chinese

world wide web server and an internationalized browser. In Proceedings of the

Seventeenth International Conference on Computer Processing of Oriental Lan-

guages, Hong Kong, April 1997.

'26] Ken Lunde. Understanding Japanese Information Processing. O'Reilly & Asso-

ciates, Inc., 1993.

27] Ken Lunde. ftp://ftp.ora.com/pub/examples/rmtshell/ujip/doc/cjk.inf cjk.inf

version 2.1, July 1996.

28] Ari Luotonen and Kevin Altis. World-wide web proxies, April 1994.

29] Henrik Frystyk Nielsen and Hakon W. Lie. Towards a uniform library of common

code - a presentation of the cern world-wide web library. Computer Networks and

ISDN Systems, pages 13-23, 1995.

.30] Lawrence Nui Pui Tak. Technical report: Modifications of httpd 3.0, July 1996.

.31] Sandra Martin 0'DonnelL Programming for the world - A guide to internation-

alization. Prentice-Hall, 1994.

32] Ross Paterson. http://ifcss.org:8001/www/pub/software/info/cjk-codes/ cjk-

codes.txt, February 1995.

33] Bryan Pfaffenberger. World Wide Web Bible. MIS Press, 1995.

.34] Dave Raggett. Hypertext markup language specification version 3.0 (http working

group, internet draft), March 1995.

.35] Paul E. Renaud. Introduction to Client/Server System - A practical guide for

systems professionals. New York: Wiley, 1993.

111

ftp://ftp.ora.com/pub/examples/rmtshell/ujip/doc/cjk.inf
http://ifcss.org:8001/www/pub/software/info/cjk-codes/

f

"36] Ricky and H.T.Chan. A new unicode-based www gateway for browsing multi-

lingual information on the internet. In Eight International Unicode/ISO 10646

Conference, Hong Kong, April 1996.

.37] Ian Sommerville. Software Engineering. Addison Wesley, 1996.

38] Toshihiro Takada. Multilingual information exchange through the world-wide

web. Computer Networks and ISDN Systems, pages 235-241, 1994.

.39] Andrew S. Tanenbaum. Computer Networks. Printice-Hall, 1989.

'40] TAKADA Toshihiro. http:// www.ntt.co.jp / mosaic-llOn/ readme.html.

41] Matthijs van Doorn and Anton Eliens. Integrating applications and the world-

wide web. Computer Networks and ISDN Systems, pages 1105-1110, 1995.

42] F. Yergeau, G. Nicol, G. Adams, and M. Duerst. Internationalization of the

hypertext markup language (network working group, internet draft), February

1996.

112

http://www.ntt.co.jp

Appendix A

Programmer's Guide

This chapter describes the modification of the source code for enhancing the web browser.
The internationalized browser is developed based on the Mosaic 2.6 which is a free software
located in the public domain. There are around 70,000 lines of code in the original program.
The browser is developed based on the CERN libwww version 2.0. CERN libwww 2.0 is a
uniform library of common code developed as the basis for building World Wide Web clients
and servers. It contains code for accessing HTTP, FTP, Gopher, NNTP and WAIS servers,
perform telnet sessions and access the local file system. Furthermore, it provides functionality
for loading, parsing and caching graphic objects plus a wide spectrum of generic programming
utilities. The other part ofthe browser is the interface part which is responsible for establishing
the access window for users. This part is developed based on Motif which is an event-driven
environment. The whole browser program is an event loop, waiting for events to happen until
an exit event is triggered. Once any event is triggered, the corresponding event handler will be
called to process the request and it will cooperates with both the library part and the interface
part.

A.1 Data Structure

Two header files are mainly used by Mosaic, they are : mosaic.h and xresources.h.
(a) mosaic.h: The main content of mosaic.h is related to information needed by a window,
as well as all parameters related to the menubar specification. The global variables are also
defined here.

1. mo_window: This is the basic and most important data structure of the whole program,
it is a structure with all definitions of the information related to the 'Document View
Window，, such as menubar, buttons, accept_fonts, accept_languages, etc.

2. mo_node: Every 'Document View Window, can be considered as a node. Users can switch
from one node to another through clicking ,back, or 'forward' buttons on the window.
The whole trace which one user invokes Mosaic until she/he exits from the program
consists of a history list. This structure records every node's position of the history
list and the content of the node, including 'url', 'title', 'pointer to text, and so on, it
contains pointers pointing to the previous and the next node as well. Thus, a history
list is a two-directions list, every item ofthe list is a mo_node type variable. Figure A.1
illustrates the history list.

113

^ • ^ • ^ • • • • Node 1 Node 2 Node 3 • • • ^ • • • • • •

Figure A .1 : History List

3. AppData: This is a struct too. It comprises all information about the application during
its run time. Some of these information can be set by individule user. For example, user

‘can set the following information: use proxy server or not, what is the fontset of the
local systems, etc.

4. mo_token: This is an enumerate type structure, it defines every concrete value of the
menubar, for instance, if a user sets codeset to "gb2312", then the value of mo_token
type variable is mo_charset_gb.

(b) xresources.h: This header file contains all default values' definition related to XWindow
environment, as well as other resources value. Such as: Font_size, Header FontSet etc; This
file also has information on display color of the local system. Each user can replace this file by
placing his/her own resource file in a new directory .app-defaults under his home directory.

(c) Global Variables:

1. mo_window *win;
Variable win goes through all the corners of the program. The changing of the running
program is realized by setting different values of the subitems of variable win, including
setting menubar, text window, etc.

2. AppData *Rdata; Variable Rdata nearly plays the same role as win does. It records
the changing or modification of every important parameters, then the changing of this
variable eventually cause the operation change of the whole program.

A.2 Calling Sequence of Functions

The program begins with the main() function which is in the source file main.c. The main
function of main() is to do the initialization and call another kernel module mo.do.gui(). The
modules invoked by mo-do_gui() are listed as follows:

1. mo_setup_global_history()
2. mo_init_global_histort()
3. mo_setup_default_hoslist()
4. mo_write_default_hotlist()
5. mo_setup_pan_list()
6. mo_open_initial_window()

The first five functions are called to set up the necessary resources for users to save or access in
the future. The sixth function mo.openJnitiaLwindow() is invoked to establish the first win-
dow. The event loop is formed in function mo.do.gui() after module mo.openJnitiaLwindow()
is completed.

114

After function mo-operUnitiaLwindow() is invoked, it continues to call other functions, to
complete the task:

1. mo_make_window()
2. mo_set_current_cached_win()
3. mo_load_window_text()

Module mo-make-window() makes a new window by setting up the window structure and
fill up GUI (Graphic User Interface). This module is related to the browser interface part
which has been modified to support the internationalization and localization concepts. Mod-
ule mo.set.current.cached.win() saves the current window information into cache. Module
moJoad—windowJecct() is the core function to do the real document access. It tries to estab-
lish the HTTP connection with the remote server, and collect data coming from the network
channel, and then process the response message and invokes the corresponding event handlers
to do the job. This is the module which utilizes the routines of the libwww2.0 which has been
modified to support the codeset announcement between web servers and web browsers.

The main function used for establishing a new window is module mo.filLwindow(). It takes
a new(empty) mo.wmdowstinctnie and fills in all the GUI elements, including icons, menubars,
buttons and so on. Module mo-fill-window() calls function mo_make_document_mew_menubar()
to complete most of the works. Function mo.grok.menubar() establishes the menubar with the
help of some static data structures which are the templates of different kinds of menubars.
After establishing the menubar, some event handlers are also needed to make responses when
any event is triggered. This can be realized through callingfunction XmxCallback(menubar.cb).
The important events that are triggered through the menubar are listed below:

Button Name Event ID CallBack Function

New Window mo_new_window mo_open_another_window
Clone Window mo_clone_window mo_duplicate_window
•pen URL mo_open_document mo_post_open_window
Open Local mo_local_document mo_post_open_local_window
Reload Current mo_reload_document mo_reload_window_text
Reload Images mo_reload_document

_and_images mo_reload_window_text
Refresh Current mo_refresh_document mo_refresh_window_text
Find in Current mo_search mo_post_search_window
View Source mo_document_source mo_post_source_window
Save As mo_save_document mo_post_save_window
Print mo_print_document mo_post_print_window
Mail To mo_mail_document mo_post_mail_window
Close Window mo_close_window mo_delete_window
Exit Program mo_exit_program mo_post_exitbox

Another important event clusters are for fonts, different fonts (codesets) have different event
handlers respectively. For example, if users choose font GB2312 in the menubar option, then
event identification number mo_charset_gb is used to invoke the related event handler. In this
case, function mo.forceJont.change(win, i) is called to fulfill users' requirement.

As we see in the above event list, event Open URL is a typical event which requires the
HTTP connection with the remote server. It invokes function mo.pulLer.over() to access the

115

document with the URL sent from the menubar. Using the given URL information, function
HTLoadAhsolute(url) is invoked to establish the HTTP connection, sending out HTTP request
message, receiving the response message and then do the parsing. Then the body data of
the response message will be transferred to the next function hackJitmlsrc() for display. This
function analyze the body data according to the HTML specification and tries to display them
on the browser screen at last.

A.3 Modification of Souce Code

The modification of the source code can be divided three parts: the header file, the interface
part and the library part.

Header Files
There are two header files mosaic.h and xresources.h which had been modified. One more new
header file my.h is added into the system.

1. mosaic.h
mo_window:

/* Yao Jian's modification */
char accept_charsets[30]；

Note: this variable is used to send codeset information supported
by the web browser.

2. xresources.h

/* Yao Jian's modification */ /*
"*TitleFont: -adobe-times-bold-r-normal-*-24-*-*-*-*-*-iso8859-l", */
*TitleFont: hanzigbl6st",

Note: change the font to be simplified Chinese.

/* Yao Jian's modification */
"*defaultCharset: iso-8859-1",

Note: change the default font set to be iso-8859-1.

3. New header file my.h

/ * * * * • • ^ = * • * • • * * * * • * * • * * * • * • * * * • * = ! ^ * * • * * • * * * • * * * * • * * • • * * * * • • * * * = • = * * *

* This header file is used by codeconv.c and gui-menubar.c *
* It defines a struct type used by modified gui-menubar.c *
* *

* Yao Jian, Nov. 12, 1996 *
****•***********•*•**••>•=*•****••*****••***•*****•*=«=****•*•******/

#define MY_BUF 50

116

typedef struct my_codeset{ ‘
int font_size; /* related to win->font_size */
char language[5]；

char codeset_name[20]；

} MY_CODESET；

Note: define a new data structure to keep the codeset information.
This is used for the mime parsing later.

Interface Part
Some files related to the browser interface has been modified to fulfill the special requirements
of handling Chinese.

1. gui.c

/* Add By Yao Jian: Apr. 29, 1997 */
#include <locale.h>
#include <nl_types.h>
/* End of Yao Jian's modification */

Note: header files for internationalization and message catalog
system.

static mo_status mo_fill_window (mo_window *win) {
/* Add by Yao Jian on Apr. 26, 1997 */

nl_catd catd; /* catd is defined in main.c */

/* End of Yao Jian's modification */ • • • • • •
}

Note: variable catd is used for open a message catalog file.

In module mo_fill_window():

/* Add by Yao Jian: Apr. 29, 1997 */
catd = catopen("Mosaicnew.cat",0)；

if (catd == (nl_catd) -1) {
printf("Open message catalog fails!\n");
exit(-l)；

}

Note: to open a message catalog file and check error.

In module mo_fill_window():

/* Use the Message catalog: Yao jian Apr. 30, 1997 */

117

win->back_button = XmxMakeNamedPushButton ‘
(win->button_rc, catgets(catd, 1, 7, "Back"), "Back", menubar_cb,
mo_back)；

/* Use message catalog file: Yao Jian Apr. 30， 1997 */
win->forward_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 8, "Forward"), "Forward", menubar_cb, mo_forward)；

’ /* Use message catalog file Yao Jian Apr. 30 1997 */
win->home_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 9, "Home"), "Home", menubar_cb, mo_home_document)；

/* Use message catalog file: Yao Jian Apr. 30， 1997 */
win->reload_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 10, "Reload"), "Reload", menubar_cb,
mo_reload_document)；

/* Use message catalog file: Yao Jian Apr. 30, 1997 */
win->open_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 11, "Open"), "Open", menubar_cb, mo_open_document);

/* Use message catalog file: Yao Jian Apr. 30, 1997 */
win->save_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 12, "Save As..."), "SaveAs", menubar_cb,
mo_save_document)；

/* Use message catalog file on Apr. 30, 1997 */
win->clone_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1, 13, "Clone"), "Clone", menubar_cb, mo_clone_window)；

/* Use message catalog file: Yao Jian Apr. 30, 1997 */
win->new_button 二 XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1， 14, "New Window"), "NewWindow", menubar_cb,
mo_new_window)；

/* Use message catalog file: Yao Jian Apr. 30, 1997 */
win->close_button = XmxMakeNamedPushButton(win->button_rc,

catgets(catd, 1， 15, "Close Window"), "CloseWindow", menubar_cb,
mo_close_window)；

Note: Use messages in the message catalog file instead of hardcoding
them in the program.

In module mo_make_window():

/* Yao Jian's modification */

XmxSetArg (XmNtitle, (long)"CUHK : Document View ");

Note: change the title of the browser.

2. gui-dialogs.c

118

/* Yao Jian's modification */

char *mo_get_accept_charsets() {
return(current_win->accept_charsets)；

}

Note: this is the new defined function to get the codeset information,
this codeset information will be sent to the remote server
after the HTTP connection is established.

3. gui-documents.c

In module mo_do_window_text():

/* Yao Jian's modification: to set font_size through checking url */
/* Just remove it, then see what happen? Oct. 22, 0:30 am */
/ *
{ char site[50];

int my_length=0；

strcpy(site, url)；

my_length=strlen(site)；

if ((site[my_length-l] == 'b') && (site[my_length-2] == ,g,))
mo_force_font_change(win, mo_charset_gb)；

if ((site[my_length-l] == '5') && (site[my_length-2] == 'b'))
mo_force_font_change(win, mo_charset_big5)；

}
* /

/* end of Yao Jian,s modification */

Note: to check the codeset of the document through investigating
the file name extension.

In module mo_ml_codeconv():

/* Yao Jian's modification: both cl and c2 are EUC code */
if (eucflag == 1) {

if ((OxbO <= cl) && (cl <= 0xf7))
mo_set_fonts(win, mo_charset_gb)；

}

/* end of Yao Jian's modification */

Note: to check the codeset by investigating the binary code.

4. gui-menubar.c

/* Yao Jian,s modification */

119

#include "my.h"
#include "HText.h"

/* Yao Jian's modification on Apr. 26, 1997 */
#include <locale.h>
#include <nl_types.h>

/* Add by Yao Jian on Apr. 26, 1997 */

nl_catd catd; /* catd is defined in main.c */

/* End of Yao Jian's modification */

/* Yao Jian's modification */

/* extern HText* HTMainText；*/ /* a global variable for storing text */

extern char AfterMimeCodeset[30]； /* keep codeset after mime parsing */

/* codeset conversion function */
extern void conv_str(char *sourcetext, char *desttext, char *fromcode,

char *tocode, int textlen)；

extern MY_CODESET MyFont[13]； /* save font information */
/* MyFont is a global variable */

extern int to_init; /* decide to init MyFont or not */

/* Yao Jian's modification on Apr. 26, 1997 */

nl_catd catd; /* for opening a message catalog file */

/* Yao Jian's modification on Apr. 26, 1997 */

nl_catd catd; /* for opening a message catalog file */

extern void HText_clearOutForNewContents(HText *self);

extern void HText_appendBlock(HText *text, char *data, int len);

struct _HText {
char *expandedAddress;
char *simpleAddress;

/* This is what we should parse and display; it is *not*
safe to free. */

char *htmlSrc;
‘ /* This is what we should free. */

char *htmlSrcHead;

120

int srcalloc; /* amount of space allocated */ ‘
int srclen; /* amount of space used */

>；
/* End of Yao Jian's modification */

Note: add some header files for supporting internationalization and
the new header file is for automatic codeset conversion.

In module mo_set_fonts():

/* Yao Jian's modification */
strcpy(win->accept_charsets, "iso-8859-1")；

Note: add acceptable codeset information for all codesets.

In module mo_set_fonts():

if (size == mo_charset_gb) {
XmxSetArg (WbNcharsetInfo, CS_GB);
/* Yao Jian's modification */
/*
strcpy(win->accept_charsets, "iso-8859-1, gb2312");
*/
strcpy(win->accept_charsets, "gb")；

/* Yao jian's modification */
/*
strcpy(win->accept_charsets, "iso-8859-1, big5");
*/

strcpy(win->accept_charsets, "Big5")；

Note: add acceptable codeset information for gb2312 and Big5.

In module mo_force_font_change():

/* Yao Jian's definition */

MY_CODESET pre, back;
char *p; /* pointing to the source text */
char *temp; /* store converted text */
int i; int outlen = 0;

/* End of Yao Jian's definition */

Note: define related variables for automatic codeset conversion.

In module mo_force_font_change():

121

/* Yao Jian's modification */

/* initialize pre and back */
pre.font_size = win->current_node->font_size； /* save previous font */
pre.language [0] = ‘\0‘；

pre.codeset_name[0] = '\0'；

back.font_size=size； /* save new font */
back.language[0] = ,\0‘；

back.codeset_name[0] = '\0'；

/* End of Yao Jian's modification */

Note: to keep the original codeset setting and the latest codeset
setting.

In module mo_force_font_change():

/* Yao Jian's modification */

if (to_init == 0) {
to_init 二 1;
font_init()；

}

/* get information before font setting */
for (i=0; i<13; i++) {

if(pre.font_size == MyFont[i].font_size) {
strcpy(pre.language, MyFont[i].language)；

strcpy(pre.codeset_name, MyFont[i].codeset_name)；

break;
}

} /* end of for */

/* get information after font setting */
for (i=0; i<13; i++) {

if(back.font_size == MyFont[i].font_size)

strcpy(back.language, MyFont[i].language)；

strcpy(back.codeset_name, MyFont[i].codeset_name)；

break;
}

} /* end of for */

/* add codeset conversion hereafter */
if ((strcmp(pre. language,back.language) == 0) &&

(strcmp(pre.codeset_name,back.codeset_name) !=0) &&
(strcmp(pre.language,"zh") == 0)) {

122

outlen = strlen(win->current_node->text)； ‘
p = win->current_node->text;

/* allocate memory to temp */
temp = (char *) malloc (outlen * sizeof(char) + 200)；

if (temp == NULL) {
printf("not enough memory for temp!\n")；

exit(-l);
}
else

temp[0] = ,\0，； /* empty it first */

conv_str(p, temp, pre.codeset_name, back.codeset_name, outlen)；

/* Force program to redisplay the window, Nov. 5， 1996 */

/* clear out the old contents of main text */
HText_clearOutForNewContents(HTMainText)；

/* append new contents to main text */

HText_appendBlock(HTMainText, temp, strlen(temp))；

/* make pointers pointing correctly */
win->current_node->texthead : HTMainText->htmlSrc;
win->current_node->text = HTMainText->htmlSrc；

mo_set_win_current_node(win, win->current_node)；

free(temp)；

} /* end of if */

/* End of Yao Jian,s modification */

Note: add codeset conversion here.

Add a new function ingetmessage() in source file gui-menubar.c:

/* Add by Yao Jian on Apr. 28, 1997 */
void ingetmessage() {

catd = catopen("Mosaicnew.cat",0)；

if (catd == (nl_catd) -1) {
printf("Open message catalog fails!\n");
exit(-l);

}

/* modify structure menuspec */
menuspec[0].namestr=catgets(catd, 1, 1, "Yao Jian")；

menuspec[l].namestr = catgets(catd, 1, 2, "Yao Jian")；

123

menuspec[2].namestr = catgets(catd, 1, 3, "Yao Jian")； ‘
menuspec[3].namestr = catgets(catd, 1, 4, "Yao Jian")；

menuspec[4].namestr = catgets(catd, 1, 5, "Yao Jian")；

menuspec[5].namestr = catgets(catd, 1, 6, "Yao Jian")；

/* modify structure file_menuspec */
file_menuspec[0].namestr = catgets(catd, 2， 1, "Li Xiang Ping")；
file_menuspec[l].namestr = catgets(catd, 2, 2, "Li Xiang Ping")；
file_menuspec[3],namestr = catgets(catd, 2, 3, "Li Xiang Ping")；
file_menuspec[4].namestr = catgets(catd, 2, 4, "Li Xiang Ping")；
file_menuspec[6].namestr = catgets(catd, 2, 5, "Li Xiang Ping")；

file_menuspec[7].namestr = catgets(catd, 2, 6, "Li Xiang Ping")；
file_menuspec[8].namestr = catgets(catd, 2, 7’ "Li Xiang Ping")；
file_menuspec[10].namestr = catgets(catd, 2, 8, "Li Xiang Ping")；

file_menuspec[ll].namestr = catgets(catd, 2, 9, "Li Xiang Ping")；
file_menuspec[12].namestr = catgets(catd, 2, 10, "Li Xiang Ping")；
file_menuspec[14].namestr = catgets(catd, 2, 11, "Li Xiang Ping")；
file_menuspec[15].namestr = catgets(catd, 2, 12, "Li Xiang Ping");
file_menuspec[16].namestr = catgets(catd, 2, 13, "Li Xiang Ping")；
file_menuspec[18].namestr = catgets(catd, 2, 14, "Li Xiang Ping")；
file_menuspec[20].namestr = catgets(catd, 2, 15, "Li Xiang Ping")；
file_menuspec[21].namestr = catgets(catd, 2, 16, "Li Xiang Ping");

/* modify structure opts_menuspec */
opts_menuspec[0].namestr = catgets(catd, 2， 17, "Yao Peng")；
optsImenuspec[2].namestr = catgets(catd, 2, 18, "Yao Peng")；

opts_menuspec[4].namestr = catgets(catd, 2, 19, "Yao Peng")；
opts_menuspec[5].namestr = catgets(catd, 2, 20, "Yao Peng")；
optsImenuspec[7] .namestr = catgets(catd, 2，21, "Yao Peng,');
opts_menuspec[9] .namestr = catgets(catd, 2’ 22, "Yao Peng,');
opts menuspec[10].namestr= catgets(catd, 2， 23, "Yao Peng");
optsImenuspec[12].namestr = catgets(catd, 2, 24, "Yao Peng")；
opts_menuspecCl3] .namestr = catgets(catd, 2，25, "Yao Peng,,);
opts_menuspecCl4].namestr = catgets(catd, 2， 26, "Yao Peng")；
opts_menuspec[15].namestr = catgets(catd, 2, 27， "Yao Peng")；
opts_menuspec[17].namestr = catgets(catd, 2, 28, "Yao Peng")；

/* modify structure navi_menuspec */
navi_menuspec[0].namestr = catgets(catd, 2, 29, "Jian");
navi_menuspec[l].namestr = catgets(catd, 2， 30, "Jian")；
navi_menuspec[3].namestr = catgets(catd, 2, 31, "Jian")；
navi_menuspec[4].namestr = catgets(catd, 2， 32， "Jian");
navi_menuspec[6].namestr = catgets(catd, 2, 33, "Jian")；
navi_menuspecC7].namestr = catgets(catd, 2, 34, "Jian")；
navi_menuspec[9].namestr = catgets(catd, 2, 35, "Jian");
navi_menuspec[10].namestr = catgets(catd, 2, 36, "Jian")；

/* modify structure anno_menuspec */
anno_menuspec[0].namestr = catgets(catd, 2, 37, "Ping")；
annoImenuspec[l].namestr = catgets(catd, 2， 38， "Ping")；
anno_menuspec[3].namestr = catgets(catd, 2, 39, "Ping")；

124

anno_menuspec[4].namestr = catgets(catd, 2, 40， "Ping")； ‘

/* modify structure news_menuspec */
news_menuspec[0].namestr = catgets(catd, 2, 41, "Peng")；

news_menuspec[l].namestr = catgets(catd, 2, 42, "Peng")；
news_menuspec[2].namestr = catgets(catd, 2, 43, "Peng")；
news_menuspec[3].namestr = catgets(catd, 2， 44, "Peng")；

news_menuspec[4].namestr = catgets(catd, 2, 45, "Peng")；
n«ws_menuspec[5].namestr = catgets(catd, 2, 46, "Peng")；

news_menuspec[7].namestr = catgets(catd, 2, 47, "Peng");
news_menuspec[8].namestr = catgets(catd, 2, 48， "Peng")；

news_menuspec[10].namestr = catgets(catd, 2, 49, "Peng")；

/* modify structure help_menuspec */
help_menuspec[0].namestr = catgets(catd, 2, 50, "Peng")；
help_menuspec[l].namestr = catgets(catd, 2, 51, "Peng")；
help_menuspec[3].namestr = catgets(catd, 2, 52, "Peng")；
help_menuspec[4].namestr = catgets(catd, 2, 53, "Peng")；
help_menuspec[6].namestr = catgets(catd, 2, 54, "Peng")；

help_menuspec[7].namestr = catgets(catd, 2, 55, "Peng")；

help_menuspec[8].namestr = catgets(catd, 2， 56, "Peng")；

help_menuspec[10].namestr = catgets(catd, 2, 57， "Peng")；

help_menuspec[ll].namestr = catgets(catd, 2, 58, "Peng")；

help_menuspec[13].namestr = catgets(catd, 2, 59, "Peng")；
help_menuspec[15].namestr = catgets(catd, 2, 60, "Peng")；

/* modify structure fnts_menuspec */
fnts_menuspec[0].namestr = catgets(catd, 3, 1, "Yao")；

fnts_menuspec[l].namestr = catgets(catd, 3, 2， "Yao")；

fnts_menuspec[2].namestr = catgets(catd, 3, 3, "Yao");
fnts_menuspec[4].namestr = catgets(catd, 3, 4, "Yao")；

fnts_menuspec[5].namestr = catgets(catd, 3, 5, "Yao");
fnts_menuspec[6].namestr = catgets(catd, 3, 6, "Yao");
fnts_menuspec[8].namestr = catgets(catd, 3, 7, "Yao__);
fnts_menuspec[9].namestr = catgets(catd, 3, 8, "Yao");
fnts_menuspec[10].namestr = catgets(catd, 3, 9, "Yao");
fnts_menuspec[12].namestr = catgets(catd, 3， 10, "Yao");
fnts_menuspec[13].namestr = catgets(catd, 3, 11, "Yao");
fnts_menuspec[14].namestr = catgets(catd, 3, 12, "Yao")；

fnts_menuspecCl6].namestr = catgets(catd, 3， 13, "Yao");
fnts_menuspec[17],namestr = catgets(catd, 3, 14, "Yao");
fnts_menuspec[18].namestr= catgets(catd, 3, 15, "Yao__);
fntsImenuspec[19] .namestr = catgets(catd, 3, 16, "Yao__);
fnts_menuspec[20].namestr = catgets(catd, 3, 17, "Yao");
fnts_menuspec[21] .namestr = catgets(catd, 3, 18, "Yao__);
fnts_menuspec[22].namestr = catgets(catd, 3, 19, "Yao");
fnts_menuspec[23].namestr = catgets(catd, 3, 20, "Yao");
fntsImenuspec[24].namestr = catgets(catd, 3, 21, "Yao");
fnts_menuspec[25].namestr = catgets(catd, 3, 22, "Yao");
fnts_menuspec[26].namestr = catgets(catd, 3, 23, "Yao")；

fntsImenuspec[27].namestr = catgets(catd, 3, 24, "Yao");

125

fnts_menuspec[28].namestr = catgets(catd, 3, 25， "Yao")； ‘

/* modify structure bidir_menuspec */
bidir_menuspec[0].namestr = catgets(catd, 3, 26, "Zhang")；

bidir_menuspec[l].namestr = catgets(catd, 3, 27, "Zhang")；

/* modify structure undr_menuspec */
undr_menuspec[0].namestr = catgets(catd, 3, 28, "Zhang")；

utidr_menuspec[l].namestr = catgets(catd, 3, 29, "Zhang")；

undr_menuspec[2].namestr = catgets(catd, 3, 30, "Zhang")；

undr_menuspec[3].namestr = catgets(catd, 3, 31, "Zhang")；

undr_menuspec[4].namestr = catgets(catd, 3, 32， "Zhang")；

/* modify structure newsfmt_menuspec */
newsfmt_menuspec[0].namestr = catgets(catd, 3, 33, "Zhang")；

newsfmt_menuspec[l].namestr = catgets(catd, 3, 34, "Zhang")；

}

/* End of Yao Jian's modification on Apr. 28, 1997 */

Note: This new function plug program messages from the message
catalog files.

In module mo_maie_document_view_menubar():

/* Add by Yao Jian on Apr. 28, 1997 */

ingetmessage()；

/* End of Modification by Yao Jian */

Note: to get message from the message catalog files.

5. codeconv.c
This is a new source file used to do the automatic codeset conversion.
This file contains two modules: conv_str() and font_init().
Module conv_str() invokes the codeset conversion routines defined
in the I-Hanzix server, and it handles every exception cases.

/=!=***•**************•=•=**••••*•••*****=•"•••*****•*****•*氺**

* Name: codeconv.c *
* Function: codeset conversion as a function *
* API: void conv_str(char *sourcetext, *desttext, *
* char *fromcode, char *tocode, *
* int textlen) *
* Yao Jian, Nov. 12, 1996 * **/

#include "my.h"
#include "stdlib.h"
#include "stdio.h"
#include <ctype.h>

126

#include <memory.h> ‘
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "ihanzix.h"
#include "hzconverter.h"

MY_CODESET MyFont[13]； /* save font information, a global variable */

int to_init = 0; /* decide to init MyFont or not */

extern CONVERSION_INFO IHanzixGetConversionInfo(char *fromcode, char
*tocode)；

int ShadowErrorNo；

static void shift_bytes(char *from, char *to, unsigned int nbytes)；

void conv_str(char *sourcetext, char *desttext, char *fromcode,
char *tocode, int textlen)

{
char *p, *q;
int inlen=0；

char inbuf[MY_BUF], outbuf[MY_BUF*4]；

char *inbufptr = inbuf, *outbufptr = outbuf；

unsigned int inbytesleft = 0,
outbytesleft = sizeof(outbuf)；

const unsigned int insize = sizeof(inbuf), outsize = sizeof(outbuf);
int nchars = 0， nbytes;

CONVERSION_INFO custom;
size_t result;

hz_iconv_p iconv_fp = NULL;

inbuf[0]='X0';
outbuf[0]='X0'；

p = sourcetext；

if (iconv_fp == NULL) {
inbufptr = inbuf； outbufptr = outbuf；

if ((iconv_fp = hz_iconv_open(tocode, fromcode, NULL)) == NULL) {
fprintf(stderr, ,7.s: cannot open the required converter\n")；

exit(-l);
}

>
if ((custom = IHanzixGetConversionInfo(fromcode, tocode)) == NULL)

127

{ ‘
printf("cannot get information for custom!\n");
exit(-3)；

}

while(p < sourcetext + textlen) {

q = inbufptr；
.while (*p != ,\0, && q < inbufptr+ (insize-inbytesleft)) {

*q = *p; q++；
p++;

}

nbytes = q - inbufptr;
/* reset the pointer to point to beginning of buffer */
inbufptr = inbuf；

inbytesleft += nbytes；

result = hz_iconv(iconv_fp, &inbufptr, &inbytesleft,
&outbufptr, &outbytesleft,
NULL, &nchars, custom)；

switch (result) {
case HZ_ICONV_OK:
case HZ_ICONV_DONE:

/* printf("outbuf is V.sXn", outbuf) ； */
strncat(desttext, outbuf, outsize - outbytesleft)；

inbufptr = inbuf； outbufptr = outbuf；

inbytesleft = 0; outbytesleft = outsize;
break;

case HZ_ICONV_OVER : /* output buffer is full */

strncat(desttext, outbuf, outsize - outbytesleft);
outbufptr = outbuf； outbytesleft = outsize;
shift_bytes(inbufptr, inbuf, inbytesleft)；

inbufptr = inbuf；

break；

case HZ_ICONV_INVAL : /* invalid character detected in input */

/* output the converted chars, if any */
strncat(desttext, outbuf, outsize - outbytesleft)；

outbufptr = outbuf； outbytesleft = outsize;

/* removing 2 bytes and retry again */
printf("invalid char found at byte offset V.dXn",

inbufptr - inbuf)；

128

inbufptr += 2; inbytesleft -= 2; ‘

/* have we gone beyond the input buffer size ？ */

if (inbufptr - inbuf > insize) {
/* if so, reset the pointer */
inbufptr = inbuf； inbytesleft = 0;

}
- else {

/* move the unconverted bytes to the beginning of the input
buf */

shift_bytes(inbufptr, inbuf, inbytesleft)；

/* the next read should start here */
inbufptr = inbuf + inbytesleft;

}
break;

case HZ_ICONV_TRUNC : /* partial char is detected */

strncat(desttext, outbuf, outsize - outbytesleft)；

shift_bytes(inbufptr, inbuf, inbytesleft)；

inbufptr = inbuf； inbufptr = inbuf + inbytesleft;
outbufptr = outbuf； outbytesleft = outsize;
break;

case HZ_ICONV_ENOMEM : /* not possible, we don't want
exceptions */

default :
fprintf(stderr, "'/.s : internal error of hz_iconv() ??\n");

exit(-99)；

} /* end of switch */

} /* end of while */

hz_iconv_close(iconv_fp)； /* close the converter */

>
static void shift_bytes(char *from, char *to, unsigned int nbytes) {

memcpy((void *) to, (void *) from, nbytes);
}

void font_init() {

/* save value into MyFont[13] first */

129

MyFont[0].font_size=42; -
strcpy(MyFont[0].language,“en")； /* English */
strcpy(MyFont [0].codeset_name,"IS0-8859-2");

MyFont[l].font_size=43;
strcpy(MyFont[l].language,"en") ； /* English */
strcpy(MyFont [1]•codeset_name,"IS0-8859-3")；

.MyFont[2].font_size=44;
strcpy(MyFont[2].language,"en"); /* English */
strcpy(MyFont [2].codeset_name,"ISO-8859-4")；

MyFont[3].font_size=45;
strcpy(MyFont[3].language,"en"); /* English */
strcpy(MyFont [3].codeset_name,"ISO-8859-5")；

MyFont[4].font_size=46;
strcpy(MyFont[4].language,"en"); /* English */
strcpy(MyFont [4].codeset_name,"ISO-8859-7")；

MyFont[5].font_size=47;
strcpy(MyFont[5].language,"en")； /* English */
strcpy(MyFont [5].codeset_name，"ISO-8859-8")；

MyFont[6].font_size=48;
strcpy(MyFont[6].language,"en") ； /* English */
strcpy(MyFont[6].codeset_name,"IS0-8859-9");

MyFont[7].font_size=49;
strcpy(MyFont[7].language，”") ； /* Empty */
strcpy(MyFont [7].codeset_name,"K0I8")；

MyFont匸8].font_size=50;
strcpy(MyFont[8].language,"zh") ； /* Chinese */
strcpy(MyFont [8].codeset_name,"GB")；

MyFont [9].font_size=51;
strcpy(MyFont[9].language,"zh")； /* Chinese */
strcpy(MyFont[9].codeset_name’"HZ")；

MyFont[10].font_size=52;
strcpy(MyFont[10].language,"jp")； /* Japanese */
strcpy(MyFont[10].codeset_name,"JIS");

MyFont[ll].font_size=53;
strcpy(MyFont[11].language,"kr")； /* Korean */
strcpy(MyFont[ll].codeset_name,"KSC")；

MyFont[12].font_size=54;
strcpy(MyFont[12].language,"zh"); /* Chinese */
strcpy(MyFont [12].codeset_name,"BIG5")；

130

}

Library Part
The modification of the library part is related mainly to the HTTP connection part. There
are two source files which have been modified. They are HTTP.c and HTMIME.c.

1. HTTP.c
This is the file containing all related functions which carry
out the work to establish the HTTP connection with
the remote server.

/* Yao Jian's modification */

extern char * mo_get_accept_charsets();

Note: declare the new function which is defined in another
source file.

In module HTLoadHTTP():

/* Yao Jian's modification */
{ char *mystr;

/* strcpy(mystr, mo_get_accept_charsets())； */
if ((mystr = strdup(mo_get_accept_charsets())) != NULL) {

printf("mystr is: '/.sXn" , mystr)；

sprintf(line, "Accept-Charset: y.sy.c'/.c", mystr, CR, LF);
StrAllocCat(command, line);

}

}

Note: add acceptable codeset information into the HTTP request
message.

2. HTMIME.c
This is the file which contains the functions for parsing
the response message from the remote server.

/* Yao Jian's modification */

char AfterMimeCodeset[30]=""; /* This is a global variable */
/* Other functions can use it as */
/* an extern variable */

Note: define a structure for codeset conversion.

In module HTMIME_put_character():

case ,\n,: /* Blank line: End of Header! */

131

http://HTTP.c
http://HTTP.c

{ ‘
int compressed = COMPRESSED_NOT;

/* Yao Jian's modification */
{ char *foundl, *found2, *head;

char temp[30]；

int len, sub_len;
char target_codeset[30]；

>

head=me->format->name； /* point to the head */
foundl=strstr(head,“；”)；

found2=strstr(head, "charset")；
if(found2) /* have charset */ {

sub_len=foundl-head;
strncpy(temp, head, sub_len)； /*temp:first part */
tempCsub_len]='XO'；

foundl=strstr(found2,"=")；
if(foundl) {
len=strlen(found2)；

sub_len=len-(foundl-found2)；

foundl++;
strcpy(target_codeset, foundl)；

/* Yao Jian: save it into global */
strcpy(AfterMimeCodeset, target_codeset)；

}

/* Yao: should modify structure instead of string */

/*
strcpy(me->format->name, temp)；

*/
me->format = HTAtom_for(temp)；

printf("format name is: y.s\n", me->format->name)；

printf("target codeset is: '/,sXn", target_codeset)；

printf ("AfterMimeCodeset is: V.sXn",
AfterMimeCodeset)；

}
}
/* end of Yao Jian's modification */

Note: add the capability to analyze the charset parameter in the
HTTP response message header field Content-Type.

3. Xmx.h

In Xmx.h:

/* Menubar uses a recursive struct. */
typedef struct _XmxMenubarStruct {

132

/* Modified by Yao Jian on Apr. 28, 1997 */ ‘
String namestr;
/* comment by Yao Jian on June 12, 1997 */
/*
char namestr[60]；

* /

char mnemonic;
� void (*func)0 ；

int data;
struct _XmxMenubarStruct *sub_menu;

} XmxMenubarStruct；

Note: modify the string pointer to be a string array,
so that Chinese characters can be saved into
the structure without space problems.

A.4 Modification of Resources

The resource files for different codesets have been modified to support the right fonts and right
codesets All resources files are located under /local/ciswb/.app-defaults/ directory, there are
different locales for different codesets: zh for gb2312, zh_TW for CNS H643, BIG5 for Big5,
en_US for English. Under each locale, the resource file has the same name: Mosaic, its content
is different for various codesets.

1. GB 2312 resource file:

Mosaic*XmLabel*fontList: 8x16；hanzigbl6st:
Mosaic*XmPushButton*fontList: 8x16；hanzigbl6st:
Mosaic*XmToggleButton*fontList: 8xl6;hanzigbl6st:
Mosaic*optionmenu*fontList: 8xl6;hanzigbl6st:
Mosaic*menubar*fontList: 8x16；hanzigbl6st:
Mosaic*pulldownmenu*fontList: 8xl6;hanzigbl6st:

Mosaic*defaultCharset: gb

Note: modify the font to support simplified Chinese.

2. Big5 resource file:

Mosaic*XmLabel*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*
Mosaic*XmPushButton*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*
Mosaic*XmToggleButton*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*
Mosaic*optionmenu*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*
Mosaic*menubar*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*
Mosaic*pulldownmenu*fontList: -*-*-medium-r-normal-*-16-160-72-72-c-160-big5*-*

Mosaic*defaultCharset: Big5

133

Note: modify the font to support traditional Chinese ~ Big5 codeset. -

3. CNS 11643 resource file:

Mosaic*XmLabel*fontList: 8x16；cnsll6；cns216:
Mosaic*XmPushButton*fontList: 8x16；cnsll6；cns216:
Mosaic*XmToggleButton*fontList: 8x16；cnsll6；cns216:
Mosaic*optionmenu*fontList: 8x16；cnsll6；cns216:
Mosaic*menubar*fontList: 8x16；cnsll6；cns216:
Mosaic*pulldownmenu*fontList: 8xl6;cnsll6;cns216:

Mosaic*defaultCharset: cns

Note: modify the font to support traditional Chinese -- CNS codeset.

134

Appendix B

User Manual

It is quite straitforward to use our web system to do Chinese information access. The web
server is located on machine http://cwebl:8001/. Both the web server and the web browser
run on the Unix platform.

Before invoking the web browser, it is users' responsibility to set the local environment.
It means users have to set the codeset they prefer before invoking the web browser. The
commands they can use are:

1. setenv LANG zh : setting to gb2312 (simplified Chinese)
2. setenv LANG BIG5: setting to Big5 (traditional Chinese)
3. setenv LANG zh_TW: setting to CNS 11643 (traditional Chinese)
4. setenv LANG en_US: setting to English

Since the web browser has been internationalized, everytime, before it establishes the first
window all program messages are extracted from related message catalog files. To do so, users
have to set up other system environment so that the program can search and fetch the messages
and plug them into the program. The commands users can use are:

setenv NLSPATH /local/MosaicBAK/message/'/.L/'/.N

Note: this is used to set the path for the browser to search for
the related message catalog file.

setenv LD_LIBRARY_PATH /usr/XllR5/lib:/usr/XllR6/lib:X
/usr/local/motif2.0/lib:/usr/ucblib:
/local/Hanzix/iconv/dlib

Note: this is used to link to the codeset conversion routines
defined by the I-Hanzix server.

Now, users can run the program with the following command:

/local/MosaicBAK/src/Mosaic &

135

http://cwebl:8001/

After the browser sets up the first window, users can access the URL they want as.what

they used to do when using Mosaic in the past. The only difference is that in the menubar

option - font, there are two more Chinese codesets for users to select: GB 2312 and BIG5.

Since users have set the codeset before the browser is invoked, by default, the browser will

send that codeset as the acceptable codeset by the browser, so if users access a Chinese file

encoded in a codeset which is incompatible with what the browser accepts, automatic codeset

conversion will be automatically done at the server side, and the converted document will be

sent back without any intervention by users. If users want to change the current document's

codeset, they can choose the right font in the menubar option - font, and the on-line codeset

conversio will be done by the browser.

136

5:̂贫̂广::.‘:::巧驛於.辨;.?、;:‘。.、、:...：’|:.::. .、:：::;.:;.:..•..:‘'.’,.：〜.，...,:...:：.....：.，...'••• .. ‘ . . • • .. .

,.l. -‘ .. .’._. .. . :. • _. I... .
.•'-• ； , .-..,. , •.. . .: : 、： • , ... : •

.• ’. ： . ." ，. ‘ ‘. '• - , ‘,, 、.-.. •(.,,, . . . 、， . � ‘ I • . . ‘ h

- > I

. • _ •

‘ ‘ <

一

•

V

>•

... ‘

. . , ‘ ,' ‘

., .; : . • .

• -:.:,,. -' • „ . . .:.�••
....'•: ••• : ‘ • .. . •‘ •. ‘ . : :•' . .• ., ,. . ‘ . ‘ . '.. •, 丨 .. .

• . . , ” ‘. . •'' . ‘ . .. ,. . .. ’, • , .. .、 , . . •.,:•、—:：：：-. ...一,-.’..、_」‘_._」"...：：•;....:、.....；、._::-, ... : .̂ ,̂
....;..:̂ .̂>̂ v̂V---__:广.;..“.-一"...• .。•....'- ... =• . •‘ •'••- ― ^ _̂̂ __̂ _̂ ^̂ _̂;̂ ;;_____̂ _;_̂ _̂̂ __̂ _̂ ĵ;;________̂ _̂̂ ^̂ _̂ ^̂ ^̂ _̂̂ ^̂ ^̂ ^̂ ^̂ ^̂ _̂̂ ^̂ ^̂ ^̂ |̂ ^̂ jgĵ ^̂ ju||̂ |j|n̂ gĝ jj||g|njg|j|g||||||n||gjgg|ja||y|jjg||ggUmigjKyggmgggKUjgjlgaajggĝ g

CUHK L i b r a r i e s

圓圓1_111111111
DD3SflTSSl

