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Abstract 

Multimediais so popular that a lot of multimedia applications have been created. 

Those applications usually deal with huge amount of data and it is necessary 

for them to have an indexing- structure such that efficient retrieval of data can 

be provided. However, traditional indexing techniques cannot provide a satis-

factory performance on searching, especially when they are dealing with high 

dimensional data which is very commonly found in those applications. R-Tree, 

which is one of the most efficient content-based indexing structure, is still not ef-

ficient enough on high dimension data retrieval. The major problem of R-Tree is 

due to its non-deterministic behavior during searching. We, therefore, propose a 

new index structure, which is Redundant Tree, as well as its searching algorithms 

so that a better performance on searching can be obtained. The basic idea of 

the Redundant Tree is tliat we introduce redundancy on R-Tree. It inherits 

advantages from R-Tree, and it eliminates disadvantages by its own proper-

ties. Furthermore, we propose exact searching and nearest neighbor searching 

algorithms for Redundant Tree so that non-deterministic searching behavior is 

minimized or even eliminated. We present the results from a series of experi-

ments which sliow that our Redundant Tree outperforms R-Tree on both exact 

and nearest neighbor search. 
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Chapter 1 

Introduction 

1.1 Mot ivat ion 

As multi-media is being developed, images are generated at strictly increasing 

rate by a lot of applications. The development brings a lot of impacts on com-

puter science. For example, the traditional database can deal with text data 

by exact information retrieval. However, it is not enough when image data are 

being retrieved. Image data, on the other hand, is quite different from the orig-

inal text data. Besides exact-match retrieval, similarity retrieval and nearest 

neighbor retrieval algorithm has to be devised for image applications. The size 

of images are relatively large when they are compared with tlie text data. If 

the number of images in the database is very large, efficiency in accessing data 

becomes very important. The size of image data is very large and the dimen-

sion of image data is high also. Traditional indexing methods seems not to be 

appropriate or even not able to deal with large amount of high dimension data. 

Hence, we need a new indexing technique for multi-dimension data. 

A lot of indexing techniques are developed to satisfy tlie needs. However, each 

of them has disadvantages. For example, R-tree and its variants are some of the 
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.. Chapter 1. Introduction 

most commonly used indexing structures in multi-media databases. However, 

their performance on searching is not good enough to deal with high dimension 

image data, and their performance is even worse in nearest neighbor searching. 

We want to ask, if there is any method that can help improve the indexing 

techniques? In order to answer the question, first of all, we have to know why 

R-Tree algorithm have such deficiency. And then we can provide solution to the 

identified problem. 

1.2 Problems in Content-Based Indexing 

Existing content-based indexing techniques cannot provide satisfactory perfor-

mance on data retrieval. No matter whether it is exact or nearest neighbor 

search, a lot of nodes have to be accessed in order to get the desired object. R-

Tree and R*-Tree are the most commonly used content-based index structures. 

However, they still have the problem. Furthermore, the performance on nearest 

neighbor search is much worse than exact search. Besides the fact that finding 

the nearest neighbor does need more steps, additional metrics to find the nearest 

neighbor may slow down the processing speed. 

We propose solution to the addressed problem. In this thesis, we formulate the 

causes of these problems. First of all, we propose the use of redundancy on 

content-based indexing so that a better performance on searching can achieved. 

Searching algorithms of those Redundant trees have been proposed and experi-

ments for performance evaluation of several content-based index tree have also 

been conducted. In addition, we discover a new nearest neighbor search algo-

rithm that can give better performance. 

2 



.. Chapter 1. Introduction 

1.3 Contr ibut ions 

This thesis focuses on index structure and searching techniques on content-

based indexing and presents new indexing structures as well as new searching 

algorithms to improve data retrieval performance. The main contributions of 

this thesis include the following research results: 

1. It has been discovered that it is not necessary to use MINMAXDIST 

in nearest search. A new pruning heuristic for nearest neighbor search 

has been derived so that we try to eliminate the metric from the prun-

ing heuristics used in nearest neighbor search algorithm. The heuristic 

is proved to be correct. The new heuristics have been shown that they 

can replace the old pruning heuristics in [6]. Since we have proved the 

pruning heuristics are redundant, based on the newly derived heuristic an 

improved nearest neighbor search algorithm has been designed. The algo-

rithm uses the new pruning heuristic which does not use a computation 

expensive metric. Furthermore, a defect of the original nearest neighbor 

has been pointed out, and its solution has also been provided. In addition, 

a N-nearest neighbor search algorithm has also be provided. Experiments 

show that the new nearest neighbor search algorithm uses less CPU time 

for processing while it does not introduce any extra number of node ac-

cess. Therefore, the improve nearest neighbor search algorithm provides a 

better performance of data retrieval. 

2. The feature of overlapping nodes in R-Tree has been described. The fea-

ture induces backtracking which makes R-Tree and its variant give a bad 

performance on searching. A new content-based index structure, Redun-

dant R-Tree, has been designed and implemented to solve the problem 

cause by the presence of overlapping node. Tlie exact search and neighbor 

search algorithm of Redundant Tree has also been provided to help the 
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.. Chapter 1. Introduction 

tree give a better performance. Experiments have been done to show that 

our proposed index structure and searching algorithms outperforms the 

others such as R-Tree and R*-Tree. 

1.4 Thesis Organizat ion 

In this thesis, we will focus on the bad performance of existing content-based 

index structures on data retrieval, and propose new index structure and search 

algorithms to solve the addressed problem. An introduction will be given in 

Chapter 1. In Chapters 2 and 3, we will briefly describe several content-based 

index structures and their searching algorithms. A problem that makes the 

nearest neighbor search on R-Tree become inefficient will be discussed, and an 

improved nearest neighbor search algorithm will then be presented in Chapter 4. 

In Chapter 5, we will describe the feature of overlapping nodes in R-Tree and how 

it prohibits efficient searching. In Chapter 6, we introduce our proposed content-

based index structure Redundant Tree to solve problems that existed in R-Tree. 

Both exact search and nearest neighbor search algorithms of Redundant Tree 

and examples of searching will be given in Chapter 7. Furthermore, experimental 

results will be presented in Chapter 8, and the results show our proposed index 

structure outperforms the originals. In Chapter 9, we will make a conclusion 

and describe possible future research. 

4 



Chapter 2 

Content-Based Indexing 

Structures 

Content-based index structures aim at providing methods for retrieving multi-

dimensional image data based on the images' contents. As multi-media appli-

cations are being developed, many content-based indexing structures are devel-

oped. Usually, the bounding region of a node will be represented as rectangles or 

hyper-rectangles because of its simplicity. The most commonly used strategy of 

handling rectangles is to divide the original space into appropriate sub-regions, 

distributing the children of the original space into the sub-regions. The main 

difference between different content-based index structures are how they insert 

data into and delete data from trees, and when and how they split nodes. 

In this Chapter, several content-based index structures will be introduced. The 

characteristics of different index structures will also be described by examining 

the methods for inserting data and splitting nodes. We will focus on R-Tree 

and its variant. First of all, R-Tree, which is a generalized B-Tree manipulating 

multi-dimensional data, will be described. Tlien, R+-Tree and R*-Tree, which 

are variants of R-Tree, will also be discussed. 

5 



Chapter 2. Content-Based Indexing Structures 

2.1 R-Tree 

B1 
B5 B6 

~ ~ ^ ^ 

B2 

B8 B9 
Bll 

_ ^ B 3 ^ B4 
B10 r 

Bi2 r 
�B13 

Figure 2.1: Example of R-Tree: Bounding box 

A. Guttman in [4] proposed an multi-dimensional index structures called R-Tree. 

R-Tree is a generalization of B-Tree for multi-dimensional objects that are either 

points or regions. An R-Tree is a height-balanced tree similar to a B-Tree with 

index records in its leaf nodes containing pointers to data objects. We may 

assume that nodes correspond to disk pages if the index is disk-resident, and 

the structure is designed so that only a small number of nodes will be visited 

for each search query. 

Leaf nodes in an R-Tree contain index object entries of the form {MBR, tuple-

pointer) where tuple-pointer refers to a tuple in the database and MBR is an 

n-dimensional rectangle which is the bounding box of the spatial object indexed: 

MBR={Io,Iu...,In-i) 

Here n is the number of dimensions and Ii is a closed bounded interval [a, b 

describing the content of the object along dimension i. Non-leaf nodes contain 

6 
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B1 

B2 B3 B4 

A A A 
B5 B6 B7 B8 B9 B10 Bll B12 B13 

Figure 2.2: Example of R-Tree: Index structure 

entries of the form 
{MBR, child — pointer) 

where child — pointer is the address of a lower node in the R-Tree and MBR 

covers all bounding boxes in the lower node's entries. MBR is also referred as 

Minimum Bounding Region or Minimum Bounding Box. 

Let M be the maximum number of entries that will fit in one node and let m 

be a parameter specifying the minimum number of entries in a node where 

M 
m < — 

� — 2 

According to [4], an R-Tree must satisfy the following properties: 

1. Every leaf node contains between m and M index entries unless it is the 

root. 

2. For each index record (MBR, tuple-pointer) in a leaf node, MBR is the 

smallest bounding box that spatially contains the n-dimensional data ob-

ject represented by the indicated tuple. 

7 



Chapter 2. Content-Based Indexing Structures 

3. Every non-leaf node has between m and M child nodes unless it is the root. 

4. For each entry (MBR, child-pointer) in a non-leaf node, MBR is the small-

est bounding box tliat spatially contains the bounding boxes in the child 

node. 

5. The root node has at least two child nodes unless it is a leaf. 

6. All leaves appear on the same level. 

Inserting objects for new data tuples is similar to insertion in a B-Tree. Started 

from the root of the tree, a child node which causes least area enlargement will 

be selected, and the process repeated until it is the leaf. Then, the new objects 

are added to the leaves. In case overflow of node occurs, nodes will be splitted 

and the splits propagate up the tree. The split should be done in a way that both 

new nodes will need to be examined on subsequent searches. Since the decision 

on whether to visit a node depends on whether its bounding box overlaps with 

the search area, the total area of the two bounding boxes after a split should 

be minimized. Several split algorithms liave been discussed and the linear-cost 

split algorithm is suggested in [4] because it can give satisfactory splits while it 

does not involve too much computation. 

The searching algorithm descends the tree from the root which is similar to a 

B-Tree. Details about searching will be described in Chapter 3. 

2.2 R+-Tree 

If R-Tree is built using its insertion algorithms, the structure may provide a lot of 

overlapping regions and dead-space in the nodes that result in bad performance 

on data retrieval. In fact, the concepts of coverage and overlap are important, 

but they are not much concerned in R-Tree�Coverage of a level is defined as 

8 
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C G 
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Figure 2.3: Bounding boxes before splitting 

A B 

nTL 
C D El E2 F G H 

Figure 2.4: Example of R+-Tree 

the total area of all the bounding boxes associated with the nodes. Overlap of a 

level is defined as the total area contained within two or more nodes. Efficient 

R-Tree searching algorithms require that both overlap and coverage should be 

minimized. Minimal overlap is even more critical than minimal coverage. It has 

been shown that zero overlap and coverage is only achievable for data points 

that using a packing technique for R-Trees. The performance of searching is 

improved. Overlap-free splitting does not always exist for extended data objects. 9 
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C G 

E l E2 

A B 
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H 

Figure 2.5: Bounding boxes of R+-Tree 

However, if partition is allowed to split bounding boxes, then overlap-free among 

intermediate nodes can be achieved. Whenever a bounding box at a lower level 

overlaps with another bounding box, it will be decomposed into a collection of 

non-overlapping boxes whose union is equal to the original bounding box. 

In [5], T. Sellis et al proposed a variation of R-Tree which is called R+-Tree. 

R+-Tree avoids overlapping bounding boxes in intermediate nodes of the tree. 

The data structure of R+-Tree is similar to R-Tree: Leaf nodes in an R+-Tree 

contain index object entries of the form {MBR, tuple-pointer). Non-leaf nodes 

contain entries of the form {MBR, child — pointer). Besides, according to [5], 

R+_Tree has following properties: 

1. For each entry {MBR, child—pointer) in an intermediate node, the subtree 

rooted at the node is pointed to by child — pointer and it contains a 

bounding box R if and only if R is covered by MBR. 

2. For any two entries ( M B R i , child—pointeri) and {MBR2, child-pointer2) 

of an intermediate node, the overlap between MBRi and MBR2 is zero. 

10 



Chapter 2. Content-Based Indexing Structures 

3. The root has at least two children unless it is a leaf. 

4. All leaves are at the same level. 

There are differences between inserting an object to R+-Tree and R-Tree. When 

an object is being inserted to R+-Tree, it may be added to more than one 

leaf node. It is because it may be broken into several sub-regions. The splitting 

algorithm is more complicated than that of R-Tree because it avoids overlapping. 

If splitting is necessary, first of all, an splitting axis with smallest cost will be 

chosen. Next, it divides the space and distributes the child nodes. Then, it 

recursively packs the entries of each level of the tree so that overlap-free nodes 

are obtained. The split will be propagated upwards while the pack will be 

propagated downwards. 

An example of R+-Tree is shown in Figure 2.3. There are two overlapping 

bounding boxes A and B. Bounding box A encloses four bounding boxes: C, 

D, E and F. Bounding box B encloses four bounding boxes: E, F\ G and H. 

Both bounding boxes A and B enclose bounding boxes E and F. In R-Tree, the 

overlapping region exists. It may happen that both E and F belong to same 

parent, say A, but the other bounding box B still encloses E and F. On the 

other hand, in R+-Tree, overlapping is not allowed. E will be splitted into two 

nodes Ei and E2 such that Ei is enclosed by A only and E2 is enclosed by B 

only. Therefore, A and B can be adjusted to avoid overlapping region. Figure 

2.4 shows the R+-Tree and Figure 2.5 shows the bounding boxes in R+-Tree of 

the example. 

2.3 R*-Tree 

R-Tree emphasizes on minimizing the area of each bounding box of nodes. N. 

Beckmann et al argues in [7] that it is neither the best nor the only optimization 

11 
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criteria. In R-tree, bounding boxes are built up from subsets of between m and 

M bounding boxes such that data retrieval operations are supported efficiently. 

However, the parameters used are not enough to provide efficient retrieval oper-

ations. The known parameters of good retrieval performance affect each other. 

N. Beckmann et al in [7] states four parameters for retrieval performance. They 

are area covered by a bounding box, overlap between bounding boxes, margin 

of a bounding box, and storage utilization. In order to achieve good perfor-

mance, all four parameters should be optimized. However, it is impossible to 

optimize one of them without influencing other parameters which may cause a 

deterioration of the overall performance. In practice, only some of them can be 

optimized. 

During the splitting phase of R-tree, all children of the splitting node will be 

distributed into two splitted nodes. When the distribution process begins, first 

of all, two entries, which are called seeds, among those children will be selected 

so that the pair would have the largest area if they are put in the same node. 

The pair are the first entries of those splitted nodes. Then remaining children of 

the splitting node will be distributed into these nodes by the least-enlargement-

of-area strategy. No matter whether a quadratic or linear seed-picking algorithm 

which is recommended by Guttman in [4] is used, the splitting strategy is simple 

to implement. However, if small seeds are picked, several problems may occur. 

First of all, if in d — 1 of the d dimensions a distant bounding box has nearly 

the same coordinates as one of the seeds, it will be distributed first. The area 

and the area enlargement of the created bounding box will be very small, but 

the actual distance is very large. In addition, the algorithm tends to favor the 

bounding box which is created from the first assignment of a bounding box to 

one seed. Moreover, if one group has reached the maximum number of entries 

M — m + 1, all remaining entries are assigned to tlie other group without con-

sidering geometric properties. 

12 



Chapter 2. Content-Based Indexing Structures 

R*-tree is a variant of R-tree. It is based on the reduction of the area, mar-

gin and overlap of tlie bounding boxes. In addition, it prevents splitting and 

its structure is reorganized dynamically. Thus, tlie storage utilization is higher 

than R-tree. 

When choosing the appropriate subtree to insert data, one has to determine the 

minimum overlap cost, minimum margin cost and minimum area cost. Similarly, 

the minimum overlap cost is also concerned when splitting a node. When split-

ting occurs, it will have to choose a split axis, and choose a split index, before 

distributing entries into two groups. Choosing split axis is to determine the axis 

which is perpendicular to which the split is performed. The axis will be chosen 

if it has the greatest normalized separation of two most distant bounding boxes 

of the current node. Choosing split index is to choose the distribution with the 

minimum overlap-value along the chosen split axis. The choosing split axis and 

split index are very important to the performance of R*-tree because it is related 

to the presence of overlapping node in tlie tree. The split algorithm does not 

guarantee that an overlap-free split will be provided. However, R+-tree cannot 

perform better than R*-tree because R+-tree tries to provide overlap-free split 

which may make those nodes become less quadratic and hence tlieir margin will 

be increased. In [7], margin of bounding box is one of four parameters that will 

affect the performance of the tree and it proves why R*-tree can perform better 

than R+-tree. 

Both R-tree and R*-tree are nondeterministic in allocation of the entries onto 

the nodes. R-tree forces entries to be reinserted during the deletion routine. 

R*-tree, on the other hand, forces entries to be reinserted during the insertion 

routine. There are some advantages of reinsertion algorithm in R*-tree. First 

of all, forced reinsert changes entries between neighboring nodes so that it de-

creases the overlap and improves the storage utilization. Moreover, tlie shape of 

13 
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the bounding boxes will be more quadratic. 

N. Beckmann em et al [7] have done some experiments comparing the perfor-

mance of Linear cost R-tree, Quadratic cost R-tree, Greene's R-tree, and R*-

Tree. The results show that R*-Tree is the most outstanding algorithm. R*-Tree 

has also been proved to be the most efficient R-Tree variant on data retrieval. 

Many real applications, for example the QPIC project in [14], [15], [16] and [17], 

use R*-Tree to index their multi-dimensional multi-media data. 

14 



Chapter 3 

Searching in Both R-Tree and 

R*-Tree 

The main purpose of constructing a R-Tree is to index data so that it can 

provide efficient data retrieval. Besides the construction of R-Tree, its searching 

algorithms will also be described in this Chapter. Exact search and nearest 

neighbor search, which are the most commonly used searching method, will 

be introduced. Their algorithms and other related issues such as metrics and 

pruning heuristics used on nearest neighbor search will also be briefly explained. 

3.1 Exact Search 

Before the exact search algorithm is described, the definition of exact search 

should be clarified first: when an exact search queiy is to be performed, the 

index tree will be searched to see whether the given query object does exist in 

the tree or not. If it does, then the object is returned else a failure message 

is returned. That means, a query object will be specified and the searching 

operation is to check its existence in the tree. 

15 



Chapter 3. Searching in Both R-Tree and R*-Tree 

The algorithm of exacting search is given in Algorithm 3.1. 

A l g o r i t h m 3 . 1 Exact search algorithm for R-Tree 

Procedure E x a c t _ S e a r c h 
lntput : Q 

/* Exact search query */ 
O u t p u t : Resul t 

/* Boolean value to show the query is found or not */ 
Begin 

If current node P is at leaf level 
If P is equal to the query Q 
Return P 

Else 
For i :二 1 to number of children of P 

Set Pi to be the 1仇 children of P 
If the bounding box of Pi encloses the query Q 
Then 

Call Exact_Search 
If the result is not equal to FALSE 

Return t h e result 
Return FALSE 

End 

The exact search algorithm is based on the inside-outside test. From the prop-

erty of R-Tree, all bounding boxes of child nodes will be enclosed by the bounding 

box of the parent node. Equivalently, if the bounding box of a node A is not 

enclosed by the bounding box of another node B, then node B will not be an 

ancestor of node A. The exact search algorithm makes use of this property to 

find the object: If the bounding of a node encloses the query object, then the 

node may contain the query object. Therefore, the node will be accessed and 

the process will be repeated until either the leaf level is reached or all bounding 

boxes of child nodes do not enclose the query. The process will be finished when 

the query object is found, or all nodes whose bounding boxes enclose the query 

object are searched but the query object is not found. 
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Figure 3.2: Exact search on R-Tree 

of Bi encloses the query, the .searching will be continued and the child nodes of 

Bi will be examined. It is found that all child nodes of Bi do not contain the 

query, and therefore the searching will be terminated and a failure message will 

be returned. 

Y.Theodoridis and T. Sellis in [24] proposed an equation to predict the per-

formance of R-Tree in range search. Since an exact search query is equal to a 

range search query with a point-size query window, the performance of R-Tree 

in exact search can be derived as follows: 

l+R。"/fl r^ n / p\i| 

DiskAccess 二 ̂  < yj • [ • Dj • — ^ + 1 
i=l 1 丁 i=l \ } . 

where the definition of symbols used in the above equation is explained in Table 

3.1. ' 
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Symbols Definition 
n number of dimensions 
N number of data 
Dj density of the dataset at level j 
f average node capacity 

Nj number of R-Tree nodes at level j 

Table 3.1: Table of symbols and definition on equation of exact search 

3.2 Nearest Neighbor Search 

Nearest Neighbor search aims at searching for an object which is the nearest one 

among all data objects, to the query object. The meaning of nearest is usually 

the shortest Euclidean distance. The searching process is not as trivial as exact 

search. During the exact searching, the required object is known, and the main 

task is checking whether the object does exist in the index tree or not. On the 

other hand, in nearest neighbor search, the required object may not be the same 

as the query. Consequently, the nearest neighbor algorithm is more complicated 

than that of exact search, and it generally needs more disk access and time for 

processing. 

3.2.1 Definit ion of Searching Metrics 

Instead of using the trivial sequential search to find the nearest neighbor, Rous-

sopoulos, Kelley and Vincent in [6] suggested an efficient nearest neighbor search 

algorithm on R-Tree. In this algorithm, an efficient pruning heuristics are used 

to discard impossible candidates from the Active Branch List, which stores all 

entries to be accessed, so that less nodes will be accessed and the correct re-

sult can be guaranteed at the same time. Before the nearest neighbor search 

algorithm is described, two metrics are introduced first. The), are MINDIST, 

minimum distance, and MINMAXDIST, minimum of maximum possible dis-

tances. 
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Symbols Definition 
n number of dimension 
Si lower bound of the node on î ^ dimension 
ti upper bound of the node on î ^ dimension 
qi vector component of query point on î ^ dimension 

Table 3.2: Table of symbols and definition on nearest neighbor search 

The first metric, MINDISTA which is the minimum distance from node A to 

the query Q = {q1,q2, ...,^Vi}, is defined as follows: 

Definit ion 1 MINDISTA, the minimum distance from bounding box of A to , 
the query Q，is: 

n 
MINDISTA = Y . h - r , f 

i=i 

where 
5^ if Qi < Si 

ri = < U if qi > ti 

qi otherwise 
V 

and Si，ti are defined in Table 3.2. 
• 

MINDISTA is the square of the minimum Euclidean distance from the node A 

to the query. Furthermore, it also serves as a lower bound of distance from the 

nearest neighbor within bounding box of node A to the query. That means, if 

an object P which is the nearest to the query among all objects in node A, then 

MINDISTA < DISTp 

must be true where DISTp is the distance from P to the query. 

The second metric, MINMAXDISTA, which is tlie minimum of maximum 

possible distances, is defined as follows: 
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Definit ion 2 MINMAXDISTA, the minimum of ma,ximum possible distances 

of the bounding box ofA from the query Q = {f/i,f/2,.","n}, is: 

MINMAXDISTA= min {\qk-rmk\^^ Y. | g ^ r M , f ) 
l % n 询 

l<i<n 
where 

‘Sk ifqu < ^ 
rm.k = 

tk otherwise 
and 

,r ‘ Ŝ- U q i 2 ^ rM^ — 
ti otherwise 

\ 

and Sk, tk are defined in Table 3.2. 
• 

MINMAXDISTA serves as an upper bound of distance of the nearest neighbor 

in bounding box of node A to the query, and it was proved to be true by using 

the Minimum Bounding Region Face Property stated in [6]. Therefore, if P is 

an object nearest to the query among all objects in A, then 

DISTp < MINMAXDISTA 

must be true too. 

By the definitions of MINDISTA and MINMAXDISTA, they serve as the 

bounds to the distance of nearest object in the bounding box of node A. It is 

particularly important to the nearest neighbor algorithm in [6] that can make use 

of the approximation to provide powerful pruning heuristics so that an efficient 

nearest neighbor search algorithm can be obtained. 

3.2.2 Pruning Heuristics 

In order to reduce the number of disk access during the nearest neighbor search, 

pruning heuristics liave been used. Roussopoulos, Kelley and Vincent in [6] used 
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the following three heuristics to discard nodes which are not or do not contain 

the nearest neighbor. 

Let Q be a nearest neighbor query. Let MINDISTA and MINDISTc be 

the minimum distances from the query to minimum bounding boxes of nodes 

A and C respectively. Let MINMAXDISTA and MINMAXDISTc be the 

MINMAXDISTs from the query to minimum bounding boxes of nodes A and 

C respectively. Let P and B be objects at leaf level DISTp be the actual 

distance from P to Q and DISTs be the actual distance from B to Q. 

Heurist ic 1 If MINDISTA. is larger than MINMAXDISTs, then node A 

will be discarded. 

Q MmDIST(A) 

^ ^ 
\ \ ^ � � : : : • -^___^^ MD>JDIST(C) 

\ ^^ , DIST(QP) "̂~~~~̂*̂  \ DIST(QB)� 

\ B A P 

— M I 
c 

Figure 3.3: Discard node C by applying Heuristic 1 

An example of using Heuristic 1 is shown in Figure 3.3. In this example, the 

MINDIST of node C is larger than the MINMAXDIST of node A. Since 

MINDISTA and MINMAXDISTA serve as the lower and upper bound of 

distance of the nearest neighbor within the bounding box of node A to tlie given 

query, Heuristic 1 can be used to discard node C from the Active Branch List 
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because its nearest neighbor to the query, say P, must be farther than object B 

which is the nearest neighbor in node A to the query. 

Heurist ic 2 If DISTp is larger than MINMAXDISTs, then the object P will 

be discarded. 

Q M ^ D I S T 

^ ^ E 1 
\ ^ \ ^ ^ -. ^^^DIST(QP) 

\ DIST_î  ^ ^ ^ 
\ B A P 

M^MAXDIST \ 

\ I . 
Figure 3.4: Discard object P by applying Heuristic 2 

Figure 3.4 shows an example of using Heuristic 2. Similar to the example used 

in Figure 3.3, Heuristic 2 can be applied to discard object P from the Active 

Branch List. It is because its distance to the query is larger than the upper 

bound of nearest neighbor of node A, and consequently, it must be farther than 

object B which is the nearest neighbor of node A to the query. 

Heurist ic 3 If MINDISTA is larger than DISTp, then node A will be dis-

carded. 

An example of using Heuristic 3 is shown in Figure 3.5. In this example, the 

MINDISTA is larger than the distance from the query to an object P, which 

may be the nearest neighbor of the given query. Using Heuristic 3, node A will 

be discarded from the Active Branch List because it is the nearest neighbor to 

the query, say B, must be farther than object P which implies all child nodes of 

A must not be the nearest neighbor to the query. 
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Q MINDIST 

^ ^ q ； I 
\ DIST(QB) B 

DIST(QP)X 
P A 

Figure 3.5: Discard node A by applying Heuristic 3 

3.2.3 Nearest Neighbor Search Algorithm 

After the metrics and pruning heuristics have been introduced, we present the 

nearest neighbor search algorithm in [6]. The nearest neighbor search algorithm 

is given in Algorithm 3.2. 

In the algorithm, the current node will first be checked to see whether it is at the 

leaf level or not. If it is a leaf, then its distance to the query will be calculated, 

and i f the distance is less than the distance from the temporary nearest neighbor, 

then we set the temporary nearest neighbor to be current node and update the 

nearest distance. 

On the other hand, if the current node is not at the leaf level, then the Active 

Branch List for further search will be generated. The Active Branch List is a list 

which contains all child nodes of current node that will be accessed in order to 

get the nearest neighbor. The Active Branch List is sorted by ascending order 

of MINDIST. Next, pruning will be performed by appl3,ing Heuristics 1 and 2. 

Then, it iterates through the Active Branch List and recursively access the child 

nodes by calling NN_Search. After NN_Search lias been called, pruning will 

be performed by applying Heuristic 3. The recursive call and tlie second pruning 

24 



Chapter 3. Searching in Both R-Tree and R*-Tree 

Algori thm 3.2 Nearest neighbor search algorithm for R-Tree 

Procedure N N _ S e a r c h 
Input : N O D E 

/* node to be visited */ 
NN-DIST— 
/* distance from temporary nearest neighbor to the query */ 

Begin 
If current node P is at leaf level 
T h e n 

For i := 1 to no. of children of current node 
If DISTp < NN_DISTtemp 

Set current node to be nearest neighbor 
Update NN—DIST— 

Else 

Generate Active Branch List of current node 

C a l c u l a t e MINDIST a n d MINMAXDIST 

Sort the Active Branch List by ascending ordering of MINDIST 

Apply Heuristic 1 and 2 to prune objects 
For i := 1 to no. of entries in the Active Branch List 

Call NN—Search 
Apply Heuristic 3 to prune objects 

End . 

will be repeated until no entry in the Active Branch List remains unvisited. 

3.2.4 Generalization to N-Nearest Neighbor Search 

Roussopoulos et al proposed an nearest neighbor search algorithm for R-Tree 

and its variant in [6]. They also described how the iV-nearest neighbor search 

algorithm can be derived from their nearest neighbor search algorithm. The 

followings must be considered: 

• A sorted buffer of at most N temporary nearest neighbors is needed. 
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Algor i thm 3.3 N-Nearest neighbor search algorithm for R-Tree 

Procedure N - N N _ S e a r c h 
Input : N O D E 

/* node to be visited */ 
NN-DISTN 
/* distance from temporary N-nearest neighbor to the query */ 

Begin 
If current node P is at leaf level 
T h e n 

For i :二 1 to no. of children of current node 
If DISTp < NN_DISTN 

Call Insert.NN{P) 
U p d a t e NN_DISTN 

Else 
Generate Active Branch List of current node 

Calculate MINDIST and MINMAXDIST 

Sort the Active Branch List by ascending ordering of MINDIST 

Apply Heuristic 1 and 2 to prune objects 

For i :二 1 to no. of entries in the Active Branch List . 
Call N-NN_Search 
Apply Heuristic 4 to prune objects 

End 

• The minimum bounding boxes pruning is done according to the distance 

of the furthest nearest neighbor in this buffer. 

Based on the nearest neighbor search algorithm in [6], we can extend the algo-

rithm to find the TV-nearest neighbor of a given query. 

We define that the first nearest neighbor is tlie closest object to the query while 

the N ^ nearest neighbor is the farthest object among all entries in the near-

est neighbor list. Let the distance from the first nearest neighbor to the query 

denoted by NN_DISTi, the -distance from the second nearest neighbor to the 
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query denoted by NN_DIST2, and so on. In the algorithm, we implement a 

nearest neighbor list which acts as a buffer and it stores the temporary N-nearest 

neighbors of the query. The nearest neighbor list is an ordered list. When an 

object has been checked that it should be a member of the temporary N-nearest 

neighbors, a procedure InsertJVN[P) will be invoked to insert the object into 

an appropriate position in the list. 

In Roussopoulos's algorithm, NN_DISTtemp stores the distance from the tem-

porary nearest neighbor to the query. In N-nearest neighbor search algorithm, 

however, NN_DISTtemp is not adequate because it does not give any informa-

tion about the temporary N ^ nearest neighbor which should be used for pruning 

unnecessary nodes. A new pruning heuristic should be designed for N-nearest 

neighbor search algorithm. The new heuristic is based on the nearest neighbor 

algorithm except that NN_DISTfp is replaced by NN—DISTn which is the 

temporary N^^ nearest neighbor of the query. The following heuristic is the new 

pruning heuristic. 

Heurist ic 4 If MINDISTA is larger than NN-DISTw，then node A will be 

discarded. 

T h e o r e m 1 Heuristic 4 ^s true. 

Proof: By definition, 

NN.DISTi < NN_DIST2 < …S NNJJISTN 

is true. Therefore, if NNJJISTN < MINDISTA where MINDISTA is the 

minimum distance from bounding box of node A to the query, all objects which 

are enclosed by the bounding box of node A must be farther than the 妒 

nearest neighbor whose distance to the query is NN_DISTN. Hence, Heuristic 

4 is proved to be correct. • 
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In the algorithm, the current node will first be checked to see whether it is 

at the leaf level or not. If it is a leaf, then its distance to the query will be 

calculated, and if the distance is less than the distance from the temporary 

nearest neighbor, then we set the temporary nearest neighbor to be current node 

and update the nearest distance. On the other hand, if the current node is not 

at the leaf level, then the Active Branch List for further search will be generated. 

The Active Branch List is a list which contains all child nodes of current node 

that will be accessed in order to get the nearest neighbor. MINDIST and 

MINMAXDIST are calculated for each entry in the Active Branch List, and 

the Active Branch List is sorted by ascending order of MINDIST. Heuristics 

1 and 2 are applied to prune objects. Then, it iterates through the Active 

Branch List and recursively access child nodes by calling NN_Search. After 

NN-Search has been called,..pruning will be performed by applying Heuristic 

4. The recursive call and the second pruning will be repeated until no entry in 

the Active Branch List remains unvisited. 
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Chapter 4 

An Improved Nearest Neighbor 

Search Algorithm for R-Tree 

4.1 Introduct ion 

The task of nearest neighbor search is finding the nearest neighbor from a set of 

data for a nearest neighbor search query. Nearest neighbor search is not as easy 

as exact search. In general, it needs more node access than exact search because 

it may continue the search process even though the real nearest neighbor is found 

until the identification of the nearest neighbor is proved. It is obvious that a 

good estimation of nearest neighbor and a set of efficient pruning heuristics are 

very important to the performance of the search. 

In Chapter 3, we have briefly described two metrics, MINDIST and MIN-

MAXDIST and three pruning heuristics which have been used on nearest neigh-

bor search in [6]. Those heuristics can reduce the number of node access on 

an R-Tree and its variants wlien it is compared to linear search on the dataset. 

However, extra CPU time overhead will be introduced by the process of cal-

culating the two metrics. Algorithm 4.1 shows an algorithm of calculating the 
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Algori thm 4.1 Calculation of MINMAXDIST — 

Procedure C A L C U L A T E _ M I N M A X D I S T 
Input ： ({5i,ti}, {s2,t2}, •••, {Sn,tn}) 

/* The bounding box of the node */ 
O u t p u t : MINMAXDIST 

/* The MINMAXDIST of the node */ 
Begin 

Initialize MINMAXDIST 

Set Dim to be number of dimension 

For i := 1 to Dim 

Set MINMAXDISTtemp to be zero 

For k :二 1 to Dim 
If i 二 k 

Then If Qk < ^ ^ ^ 
Then rrrik ：= Sk 
Else rrrik :二 tk 

MINMAXDISTtemp -= MINMAXDISTfp + \qk — rrrikf 
Else If qk > ^ ^ 

Then rMk :二 Sk 

Else rMk :二 h 

MINMAXDISTtemp ：= MINMAXDIST^^^ + \qk — rM^|' 

lf MINMAXDISTtemp < MINMAXDIST 

Then MINMAXDIST :二 MINMAXDISTu— 

End 

MINMAXDIST of a node. It is easy to observe that the calculation of MIN-

MAXDIST is computationally expensive and the time is bounded by 0{n^) 

where n is the number of dimension. There are two pruning heuristics which 

make uses of MINMAXDIST. The overhead is large especially when a large 

amount of high dimension data lias to be dealt with, which is common to occur 
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Symbols Definition 
NNreai nearest neighbor to the given query 
NNtemp nearest neighbor among searched objects 

MINDISTA minimum distance from node A to the query 
MINMAXDISTA minimum of maximum possible distance 

from node A to the query 
NN_DISTreai distance from the nearest neighbor to the query 
NN-DISTtemp distance from the temporary nearest neighbor 

DISTp distance from the object P to the query 

Table 4.1: Table of symbols and definition 

in real multi-media applications. 

It is found that the calculation of MINMAXDIST is expensive. Since Heuristics 

1 and 2 make use of MINMAXDIST, they should be replaced by a new pruning 

heuristic which does not use MINMAXDIST if the new heuristic can be derived 

so that CPU overhead can be reduced and the node access overhead will not be 

increased. If such a case exists, the old heuristic should be replaced by the more 

efficient one. 

In this Chapter, new pruning heuristic and a new nearest neighbor search algo-

rithm based on the new heuristic will be proposed. The new heuristic will be 

shown to be at least as powerful as the original heuristics in terms of the number 

of disk access during the searching. Therefore, the number of disk access during 

the searching will not be increased. Experimental results will be given to show 

that the total CPU time used for nearest neighbor search will be reduced when 

the new heuristic is applied. 

4.2 New Prun ing Heuristics 

Two new pruning heuristics for nearest neighbor search 011 R-Tree will be in-

t roduced�Before the heuristics are described, lemmas, which will be used for 
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proving the correctness and efficiency of those pruning heuristics, are described 

first. 
I 

L e m m a 1 If P is the nearest neighbor among all objects in node A to the query 

Q, then MINDISTA < DISTp < MINMAXDISTA. 

P r o o f : By definition, MINDISTA is the minimum distance from A to the 

query Q. From the minimal bounding region face property shown in [6], if 

P is an object nearest to the query among all objects in A, then DISTp < 
i 

MINMAXDISTA. Therefore, MINDISTA and MINMAXDISTA serve as 

a lower bound and a upper bound to the distance from the nearest neighbor in 

node A to the query respectively. • 

L e m m a 2 If there are two nodes A and B with the condition MINDISTA < 

MINDISTe, then MINMAXDISTe 水 MINDISTA. 

Proof: From Lemma 1, MINDISTs < MINMAXDISTs must be true for all 

nodes B. Since the precondition MINDISTA < MINDISTe is provided, the 

following inequality MINDISTA < MINDISTe < MINMAXDISTe can be 

derived. Hence MINMAXDISTe 水 MINDISTA. • 

L e m m a 3 If A is an ancestor node of B in a R-tree, then MINDISTA < 

MINDISTe. 

Proof : This follows from the definition of MINDIST. • 

After some lemmas have been introduced, the new pruning heuristics for nearest 

neighbor search is to be described in detail. We assume that in the search 

algorithm that makes use of these heuristics, the distance to tlie nearest object 

discovered so far is kept in a variable NN—DISTump, that is, the distance from 

the temporary nearest neighbor to the query. 

32 



Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree 

Heurist ic 5 IfMINDISTA is greater than NN_DISTump, then node A will 

be discarded. 

Theorem 2 Heuristic 5 is correct. 

Proof: NN.DISTreai < DIS.Tp for all objects P in the dataset. For all objects 

R which are under the child nodes of node A, by Lemma 1, MINDISTA < 

DISTn must be true. If MINDISTA is greater than NN_DIST—, the rela-

tion NN—DISTtemp < DISTn must also be true. Therefore, R must not be the 

nearest neighbor and it implies that all child nodes of A must not contain the 

real nearest neighbor. Consequently, node A can be discarded from the Active 

Branch List. Hence, the heuristic is correct. • 

Q MINDIST 

^ ^ I 
X , , ^ ^ DIST(QB) B 

uNN_DIST _ Q P ) ' p A 
( "• 

NN 

Figure 4.1: Example: discard node A by applying Heuristic 5 

Figure 4.1 shows an example of applying Heuristic 5. In the figure, NN repre-

sents the temporary nearest neighbor to query among all searched objects. The 

condition 

NN.DISTtemp < MINDISTA 

is given. No matter whether NN is the real nearest neighbor to the query or 

not, the nearest neighbor in node A, say B, must have a greater distance to 

the query than NN. That means all child nodes of A cannot be the nearest 
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neighbor. Therefore, node A can be removed from the Active Branch List by 

applying Heuristic 5. 

4.3 A n Improved Nearest Neighbor Search Al-

gori thm 

Algori thm 4.2 New nearest neighbor search algorithm for R-Tree 

A L G O R I T H M B: 
Procedure N N _ S e a r c h 
Input : N O D E 

/* node to be visited */ 
NN—DIST— 

/* distance from temporary nearest neighbor to the query */ 
Begin 

If current node P is at leaf level 
T h e n 

If DISTp < NN_DISTump 

Set current node to be nearest neighbor 
Update NN-DISTtemp 

Else 
Generate Active Branch List of NODE 丨 

. I 

Calcula te MINDIST i 

Sort the Active Branch List by ascending ordering of MINDIST 

For i := 1 to no. of entries in the Active Branch List 
Apply Heuristic 5 to do pruning 
Call NN-Search 

End 

After the new heuristic has been introduced and proved to be correct in the last 

section, a new nearest neighbor search algorithm is proposed that can make use 

of the new pruning heuristics. Let us denote the original algorithm in [6] by 
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Algor i thm A which uses Heuristics 1, 2 and 3, and MINDIST ordering in the 

Active Branch List. The improved nearest neighbor search algorithm is given as 

Algor i thm B (4.2). 

Algorithm B is similar to the nearest neighbor search algorithm shown in Algo-

rithm 3.2. The difference between the new and the original search algorithms is 

that Heuristics 2 and 3 have been replaced by Heuristic 5 in the new algorithm. 

Heuristic 1 have also been deleted from the algorithm. 

In the new nearest neighbor search algorithm, first of all, the current node will 

be checked to see whether it is at leaf level or not. If it is a leaf node, then 

its distance to tlie query will be calculated.工 If the distance is less than the 

distance from the temporary nearest neighbor to the query, then the temporary 

nearest neighbor is set to be the current node and the nearest distance is up-

dated. 

On the other hand, if the current node is not at leaf level, then the Active 

Branch List for further searching will be generated and all entries in the list 

will be sorted by ascending order of MINDIST. Next, it iterates through the 

Active Branch List and recursively access child nodes by calling NNSearch. 

Before NNSearch is called, pruning operations will be performed by applying 

Heuristic 5 so that unnecessary nodes will be pruned before accessed. The re-

cursive procedure call and the pruning will be repeated until no entry in the 

Active Branch List remains unvisited. 

In the nearest neighbor search algorithm in [6], there is a statement "It may 

iNote tha t the algorithm in [6] assumes that a leaf node contains a number of objects. In 
our case we assume objects are #-dimensional points and the leaf node corresponds to a single 
object. However, it is straightforward to modify Algorithm B to assume leaf nodes contains 
objects tha t are not simple poin ts ,and the proofs of correctness and pruning ability will apply 
to the modified algorithm. 

35 



Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree 

discard all entries in the Active Branch List." However, the statement is not 

true if Algorithm A is used. There exists at least one node, the first entry in 

the Active Branch List, to be accessed. The following example illustrate the 

problem. Assume a nearest neighbor search query is given. Current node A 

have a child node A' which is the first entry in the Active Branch List of node 

A and the following relations are true: 

MINDISTA < MINDIST'A < MINMAXDISTA (1) 

MINDISTA < NNDISTtemp ⑶ 

NNDISTtemp < MINDIST'A (3) 

That means, when node A is being accessed, (2) implies that A may contain 

the nearest neighbor. By (3), A' cannot contain the nearest neighbor. However, 

in Algorithm A, A' will also be accessed as it cannot be pruned by heuristics 

1 and 2. Only heuristic 3 can pmne A' from the Active Branch List, but, A' 

will be accessed before the heuristic is applied. Simply reversing the order of 

pruning and searching operation can solve the problem. Therefore, in Algorithm 

B, pruning is performed before further node access will be carried out. 

4.4 Replacing Heuristics 

In previous section, a new pruning heuristic for nearest neighbor search has been 

introduced. In order to replace the original three heuristics, it is necessary to 

show that the new heuristic is more efficient than the old one. In this section, 

we show that the number of node access will not be increased after the new 

heuristic is used instead of the old heuristics. That means, if a node is pruned 

by the old heuristics in the old algorithm, then it will also be pruned by the new 
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heuristic in the new algorithm. We assume that node access corresponds to disk 

access. Once this is established, we can see that with the new algorithm, the 

computational cost will be dramatically decreased without increasing any disk 

access. 

The first heuristic to be considered is Heuristic 2. Heuristic 2 says that if DISTp 

is greater than MINMAXDISTA, then the object P will be discarded. Note 

that no node access is reduced in this case, since the discarded object P is 

already searched. (Effectively, if P is the nearest object discovered so far, then 

iheNN-DISTtemp is updated to be MINMAXDISTA.) Since we are interested 

here only in the reduction of node access, Heuristic 2 can be ignored. 

The second heuristic we consider is Heuristic 3. Heuristic 3 says that if DISTp 

is smaller than MINDISTA, then the node A will be discard. 

L e m m a 4 If a node is pruned by Heuristic 3 using Algorithm A, it can be also 

be pruned by Algorithm B, 

Proo f : Assume that during the execution of Algorithm A, there is a node A 

and an object P in the Active Branch List, and MINDISTA > DISTp, so that 

node A will be pruned by Heuristic 3. Next suppose Algorithm B is used, there 

are two possibilities. 

Case 1: Node A is searched before P is either searched or pruned. Since P 

and A have a common root, and A is not the root, then an ancestor of P must 

be searched before A, let this ancestor be P'. By Lemma 3, the ancestor P' 

must have a MINDIST smaller tlian DISTp, and also the nodes in the path in 

the tree from P' to P must all liave MINDIST smaller than DISTp. If P is 

pruned before being searched, then A would also be pruned since the pruning is 

via Heuristic 5, and A has a greater MINDIST than P 's ancestors. If P is not 

pruned, since a basic depth-first traversal with MINDIST ordering is followed 
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in the nearest neighbor search, it is not possible that A is searched before P is 

searched. Therefore, we conclude that this case cannot happen. 

Case 2: The object P is searched before node A is either searched or pruned. 

Hence P has been considered as a possible candidate for the temporary nearest 

neighbor. Let N N _ D I S T f p be the distance of the nearest neighbor discovered 

immediately before the search of node A. Since updates in the temporary near-

est neighbor can only get closer to the query point, NN_DISTtemp < DISTp 

must be true. Since MINDISTA > DISTp, has been given, NN—DISTte— < , 

MINDISTA can be derived and the node A will be pruned by Heuristic 5. I 
i 
I I 

Therefore, if a node can be pruned by Heuristic 3 using Algorithm A, then it ‘ 

can also be pruned by Heuristic 5 in Algorithm B. • 

We have just shown that if a node is pruned by applying Heuristic 3 in Algo-

rithm A, then it will be pruned by Algorithm B. Since Heuristic 2 in Algorithm 

A does not do effective node pruning, it remains to be shown that every node 

which is pruned by Heuristic 1 in Algorithm A will also be pruned by Algorithm 

B. In order to do so, we would make use of tlie following lemma. 

L e m m a 5 If a node B is searched before a sibling node A using Algorithm B, 

and 

MINMAXDISTs < MINDISTA, 

then the distance ofthe temporary nearest neighbor, NN_DISTump, just before 

A is either searched or pruned is less than or equal to MINMAXDISTs • 

P r o o f : Let a be the set of nodes that are searched after B and before the 

search or pruning of A. (We say that A is pruned when either it is pruned or 

an ancestor node containing B is pruned.) Let Bc be the object in B that is 

closest to the query point. There are two possible cases: 
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Figure 4.2: Example: pruning B from the Active Branch List ； 

Case 1: Bc is in a . In this case, Bc has been considered as a candidate for the : 

temporary nearest neighbor, then since we know that its distance is less than or ； 

equal to MINMAXDISTs, hence NNJJISTte” < MINMAXDISTe. ‘ 

I 

Case 2: Bc is not in a . Since DISTsc < MINMAXDIST^ < MINDISTA, 

by Lemmas 1 and 3, all ancestor nodes of Bc have MINDIST < MINDISTA. 

As Bc is not in a , an ancestor node of B, B', must have been in a and has been 

pruned by Heuristic 5. That is, node B' is discarded because MINDISTs'〉 

NN_DISTL-, Hence NN-DIS%e- < MINDISTs' < MINMAXDISTA. 
• 

L e m m a 6 If a node is pruned by Heuristic 1 using Algorithm A, it will be 

pruned by Algorithm B. 

Proof: Heuristic 1 says that if MINDIST。is greater than MINMAXDISTo 

then node C is discarded. Without loss of generality, suppose there are two 

nodes A and B so that Node A is discarded by Heuristic 1 because of Node B in 

39 



Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree 

Algorithm A. Hence A and B are sibling nodes (in the same active branch list) 

and MINMAXDISTs < MINDISTA. There are three cases to consider: 

Case 1: MINDISTA < MINDISTs. 

According to Lemmal , we have inequalities MINDISTA < MINMAXDISTA 

and MINDISTe < MINMAXDISTe. Since, MINDISTA < MINDISTe, 

by Lemma 2, we have MINMAXDISTe 水 MINDISTA- Therefore, it is 

impossible that MINMAXDISTe < MINDISTA so that node A is pruned 

by Heuristic 1. j 

Case 2: MINDISTA > MINDISTs, and Node A is searched before node B 

in Algorithm B. This is not possible since the search is ordered by the values of | 

MINDIST. 丨; 
I 

Case 3: MINDISTA > MINDISTs. Algorithm B is used and node B is : 
( 

searched before node A. Let NN_DIST_ be the distance of the temporary : 
I 

nearest neighbor just before A is either searched or pruned. By Lemma 5, 

NN_DISTfp < MINMAXDISTA ' 

Since the condition MINMAXDISTB < MINDISTA is given, the relation 

NN_DISTtemp < MINDISTA 

can be derived from the above inequalities. Therefore, node A will be pruned 

by Heuristic 5. 

The above show that all nodes pruned by Heuristic 1 in Algorithm A will be 

pruned by the new heuristic using Algorithm B. • 

Theorem 3 Ifnode access corresponds to disk access, then Algorithm B requires 

no extra disk access compared to Algorithm A. 
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Proof: Under our assumption, for a given R-tree, disk access is required if a 

node is searched for the first time. Hence the theorem follows directly from 

Lemmas 4 and 6. • 

From Theorem 3, we find that Heuristics 1, 2, and 3 can be replaced by the 

new heuristic without deteriorating the performance of nearest neighbor search 

in terms of disk access. Consequently, MINMAXDIST is not a must to be 

calculated as the new heuristic does not make use of it. Therefore, a large 

amount of computation cost can be saved. 

4.5 N-Nearest Neighbor Search 

� Q 

bl 

B 

al 
b2 

A 

a2 

Figure 4.3: Node A cannot be discard 

In Chapter 3, we have presented an N-nearest neighbor search algorithm that 

is a strict extension from the nearest neighbor search algorithm in [6]. In this 

section, We are going to present our proposed N-nearest neighbor algorithm for 
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Figure 4.4: N-nearest neighbor search 

R-Tree which is based on our improved nearest neighbor search algorithm. 

In nearest neighbor search, MINMAXDISTA serves as an approximation to 

the nearest neighbor of a query such that it is the upper bound of the dis-

tance between the query and the nearest object in node A. On the other hand, 

MINMAXDISTA does not serve as an approximation to the N-nearest neigh-

bor of the query. One may argue that we use N-MINMAXDISTA, the N ^ 

minimum of maximum possible distance from the node A to the query, to play 

a similar role to MINMAXDISTA in nearest neighbor search. However, there 

are two problems if k-MINMAXDISTA is used. First of all, the number 

of dimension must be larger or equal to N. Secondly, N-MINMAXDISTA 

may not be the upper bound of the distance between the N-nearest neighbor 

and the query. An example is given in Figure 4.4. In this example, there 
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Algor i thm 4.3 New N-Nearest neighbor search algorithm for R-Tree 

Procedure N - N N _ S e a r c h 
Input : NODE 

/* node to be visited */ 
NN-DISTN 
/* distance from temporary N-nearest neighbor to the query */ 

Begin 
If current node P is at leaf level 
T h e n 

For i :二 1 to no. of children of current node 
If DISTp < NNJDISTN 

Call InsertMN{P) 
Upda te NN_DISTN 

Else 

Generate Active Branch List of current node 

Calculate MINDIST 

Sort the Active Branch List by ascending ordering of MINDIST 

For i := 1 to no. of entries in the Active Branch List 
Apply Heuristic 4 to prune objects 
Call N-NN_Search 

End 

is a 2-dimensional bounding box A which have two children ai and a2. A 2-

nearest neighbor query Q has been given. MAXDISTi is the maximum pos-

sible distance from the boundary of dimension 1 of node A to the query while 

MAXDIST2 is the maximum possible distance frorn the boundary of dimension 

2 of node A to the query. Note that MAXDISTi and MAXDIST2 are smaller 

than MINDISTa^. Therefore, the nearest object in node A will not be accessed 

even though it may be one of the N-nearest neighbors. The example shows that 

N-MINMAXDISTA cannot be used in the N-nearest neighbor search algo-

rithm. Consequently, we only use Heuristic 4 to do the pruning operation. 
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In Chapter 3, we have proved that Heuristic 4 is true. In our N-nearest neighbor 

search algorithm, we will also use this pruning heuristic. On the contrary, Heuris-

tics 1 and 2 will not be used because MINMAXDIST is useless in N-nearest 

neighbor search. Heuristic 1 states that if MINMAXDISTe < MINDISTA, 

then node A will be discard. However, in N-nearest neighbor search, the pruning 

heuristic is not necessarily true. Assume 2-nearest neighbor search is being per-

formed and a query Q has been specified. Figure 4.3 shows the example. Node 

A has two child nodes ai and a2; Node B has two child nodes bi and b2. The 

2-nearest neighbor should be ai and bi. Therefore, node A cannot be pruned 

even though MINMAXDISTe < MINDISTA and hence Heuristic 1 cannot 

be used. Similar argument can be applied to Heuristic 2. 

In the algorithm, the current node will first be checked to see whether it is 

at the leaf level or not. If it is a leaf, then its distance to the query will be 

calculated, and if the distance is less than the distance from the N ^ nearest 

neighbor, NN-DISTn, Insert^NN will be invoked to insert the object in the 

nearest neighbor list and then we update N N J J I S T N . On the other hand, if 

the current node is not at tlie leaf level, then the Active Branch List for further 

search will be generated. The Active Branch List is a list which contains all 

child nodes of current node that will be accessed in order to get the nearest 

neighbor. The Active Branch List is sorted by ascending order of MINDIST. 

Next, it iterates through tlie Active Branch List and recursively access child 

nodes by calling NNSearch. After NNSearch has been called, pruning will 

be performed by applying Heuristic 4. The recursive call and the second pruning 

will be repeated until no entry in the Active Branch List remains unvisited. 
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CPU Time against Dimension on Nearest Neighbor Search 
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Figure 4.5: CPU Time for nearest neighbor search on uniform data 

4.6 Performance Evaluation 

Experiments have been done to show that the new nearest neighbor search algo-

rithm outperforms the original nearest neighbor searching algorithm. We have 

implemented both R-Tree and R*-Tree in C under UNIX on a Sun Sparc com-

puter, and have used our implementation in a series of performance tests whose 

purpose was to evaluate efficiency during searching by using both algorithms. 

Both the original and the improved nearest neighbor search algorithm have been 

used in these experiments. Experiments have been measured by CPU time used 

on nearest neighbor search and dimension of data. 

Both uniform and clustered data have been used in experiments. The dimension 

of data varies from 4 to 32, and the number of data varies from 1000 to 40000. 

Figures 4.5 and 4.6 present the result of experiments on uniform data, while 

Figures 4.7 and 4.8 present the results of experiments on cluster data. 
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Figure 4.6: Speedup for nearest neighbor search on uniform data ； 

R-Tree has dimensionality curses problem. That is, its performance will be 

dropped rapidly when it is dealing with high dimension data. It is because high 

dimension data introduce overlap to R-Tree. Therefore, the number of node ac-

cess and the time for the nearest neighbor search will be increased. Figures 4.5 

and 4.7 show that the number of CPU time used for R-Tree on nearest neighbor 

search will be increased with increasing rate. 

R*-Tree also has the dimensionality curses problem even though R*-Tree is the 

best variant of R-Tree. However, as shown in Figures 4.5 and 4.7, R*-Tree used 

less CPU time on nearest neighbor search. Its performance is dropped when the 

number of dimension of data increased, but it still has better performance than 

R-Tree. 

Bpth R-Tree and R*-Tree will gain when they use the new nearest neighbor 

search algorithm instead of the original one. Figures 4.5 and 4.7 show that CPU 

time used for both R-Tree and R*-Tree using tlie improved algorithm are smaller 
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CPU Time against Dimension on Nearest Neighbor Search 
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Figure 4.7: CPU Time for nearest neighbor search on clustered data 

compared to the results of using the original algorithms, and the gains will be 

increased with the number of dimension. There are two reasons for the new , 

algorithm outperforming the old one. First of all, the new algorithm does not ！ 

need to calculate MINMAXDIST which is a very time-consuming processing. ; 
I 

Furthermore, one less pruning heuristic is used to save time on processing. | 

I 

Both Figures 4.5 and 4.7 show that tlie performances of nearest neighbor search 

on both R-Tree and R*-Tree drop rapidly as the number of dimension grows. 

However, when the improved nearest neighbor search on both R-Tree and R*-

Tree is used, the processing time is shortened and its performance drops at a 

slower rate. Figures 4.8 and 4.6 show that the speedup factor of the improved 

nearest neighbor search algorithm increase with the number of dimension of 

data. 

Experiments have also been performed on real data. The number of data varies 

from 10000 to 40000 and the number of dimension varies from 2 to 16. Figure 
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Speedup against Dimension on Nearest Neighbor Search 
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Figure 4.8: Speedup for nearest neighbor search on clustered data 

4.9 shows the result of CPU time used on nearest neighbor search. Figure 4.10 

shows the speedup factor of tlie improved algorithm on real data. The results 

of real data is similar to those of uniform data and clustered data. Since the 

real data have a lot of overlapping, the performance of R*-Tree cannot outper- : 

form R-Tree. When low dimension data are used, R*-Tree gives a substantial 

improvement to R-Tree. However, when the number of dimension increases, its 

performance is similar to R-Tree that it drops rapidly, and CPU time used on 

searching is almost the same for both trees. It is because there are a lot of 

overlapping when it is dealing with high dimension data. Its split and reinsert 

procedures hardly reduce any overlap, therefore, most of the nodes of the tree 

will be accessed. The figure shows the performance of both R-Tree and R*-Tree 

will be the same. 

Figure 4.10 shows that the speedup factor for real data is higher than that of 

uniform data or clustered data. It is because the presence of overlapping makes 
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Figure 4.9: CPU Time for nearest neighbor search on real data ) 

the number of node access on nearest neighbor increases. The original search 

algorithm has a lot of calculations of MINMAXDIST and the additional pruning ‘; 

operation. Therefore, the improved search algorithm can reduce more CPU time ； 

overhead and the speedup factor can be increased. ； 
{ 
\ ii 

The improved N-nearest neighbor search algorithm has also been tested. Both 1 
！ 

the original and the improved N-nearest neighbor search algorithms are used. . 

Experiments are to measure the CPU time used on nearest neighbor search 

against the dimensions of the data. Figure 4.11 shows the CPU time used on 

10-nearest neighbor search on real data. Figure 4.12 shows the speedup of CPU 

used on 10-nearest neighbor search wlien the improved algorithm is used. The 

results are similar to the results in nearest neighbor search. Similarly, the per-

formance of R*-Tree cannot outperform R-Tree. When the dimension of data 

increases, the performance drops rapidly, and CPU time used on searching is 
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Speedup against Dimension on Nearest Neighbor Search 
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Figure 4.10: Speedup for nearest neighbor search on real data , 

,1 

almost the same for both trees. Therefore, the performance of R-Tree and R*- ^ 

Tree is very similar when the same algorithm of search is performed. For the j 

same tree structure, however, the improved N-nearest neighbor search algorithm ； 

is much better than the original N-nearest neighbor search algorithm. Figure ； 

4.12 shows the difference between two algorithms on the same tree structure. | 
i .< 
I' 
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Figure 4.11: CPU Time for 10-nearest neighbor search on real data 
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CPU Time against Dimension on 10-Nearest Neighbor Search 
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Figure 4.13: CPU Time for 10-nearest neighbor search on clustered data 
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Overlapping Nodes in R-Tree 
"t 
s 

and R*-Tree | 
I 

• ,i 
nl il 
I 'l 

:1 

The main purpose of constructing index tree is providing an efficient method for ;! 

information retrieval. Content-based index structures handle multidimensional j 

data and they need to give a fast response to queries given by users. Since { 

multidimensional data are usually large in size, efficiency of its index structure j 

is very important. However, it is found that the performance of those content- j 

based index structures are not satisfactory enough that, in worst case, the whole !| 
II 

index tree will be accessed. f' 

In this Chapter, the main cause of the poor performance of R-Tree and R*-

Tree will be addressed. Overlapping, which is a common feature of R-Tree 

and R*-Tree, will be described. An overlap-free index tree may not outperform 

overlapping R*-Tree. For example, R+-tree is an overlap-free index tree and 

it tries to provide overlap-free split which may make those nodes become less 

quadratic. Therefore, their margin will be increased and its performance on 

searching is worsen. However, overlapping nodes are still tlie main reason of 

the poor searching performance in content-based indexing. The presence of 
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overlapping induces backtracking in searching which makes R-Tree and R*-Tree 

perform badly. How the presence of overlapping affects the performance of R-

Tree and R*-Tree on both exact search and nearest neighbor search will be 

briefly explained. 

5.1 Overlapping Nodes 
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Figure 5.1: Two disjoint bounding boxes before the insertion ‘ 

Overlapping of two nodes means that their minimum bounding boxes are not 

disjoint and they have common region. Figure 5.2 shows two nodes A and B 

overlap with each other and they have a common region C. On tlie other hand, 

if two nodes do not overlapping with eacli other, or tliey are called disjoint, tliey 

do not have a common region. Figure 5.1 shows two nodes A and B that do not 

overlap with each other. 

B-Tree, which is a unidimensional index structure, does not liave overlapping 
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A 

0 
r ^ ^ ^ 

B 

Figure 5.2: Two bounding boxes overlap with each other after the insertion 

nodes. It is because the index structure handles simple one dimension data. 

Furthermore, a simple < operator is used for inserting data or searching query 

so that disjoint nodes must remain disjoint. On the contrary, multidimension 

data make their index structures become complicated. In both R-Tree and R*-

Tree, overlapping is not prohibited though it is not desired as well. R*-Tree 

tries to minimize overlapping-,- but, it cannot guarantee that overlapping can be 

avoided. In fact, R*-Tree is found to have a lot of overlapping nodes when they 

are dealing with high dimension data. 

In R-Tree, overlapping can be introduced when an object is being inserted. Ini-

tially, no overlapping exists in the tree. However, it is possible that overlapping 

starts to occur by inserting an object to a node which is enlarged to overlap 

with another node. Figure 5.1 shows an example to illustrate it. Two nodes A 

and B do not have any overlapping initially. An object P is going to be inserted 

into the index tree. By the insert algorithm of R-Tree, since B has less area 
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B c 

A 

E 

D 
： 

Figure 5.3: Overlapping nodes created during splitting 

enlargement than A if P is inserted into it, P will be inserted to B and B will 

adjust its minimum bounding box so that the box encloses the object P. Figure 

5.2 shows the result after the insertion. Now, nodes A and B overlap with each 

other. Although R*-Tree tries to minimize overlapping, overlapping still exist 

and R*-Tree cannot get rid of the problem. 

Overflowing of a node may produce two overlapping nodes. Figure 5.3 shows 

an example of overlapping nodes caused by splitting of a node when overflow 

occurs. There is a node A which have four child nodes B, C, D and E. The 

split algorithms of both R-Tree and R*-Tree cannot produce two overlap-free 

nodes because splitting on either dimension axis cannot avoid overlapping. As 

the dimension of data becomes higher, the risk of overlapping becomes higher 

too. 
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5.2 Problem Induced By Overlapping Nodes 

5.2.1 B acktracking 

Backtracking means that the search process involves more than one node in 

the same level to be accessed. It will occur when the target is not found in 

the searched path and they want to search along another subtree. The reason 

for possible backtracking to occur is that there exists more than one search 

path when searching for an object. When a possible search path has been gone 

through, it may be necessary to go through another one and backtracking is 

thus occurred. 

It is clear that backtracking makes the search process become inefficient because 

more nodes will be accessed. Backtracking does not exist in exact search of B-

Tree because the search process is deterministic. At every stage of the search, an 

accurate search path will be determined. No matter the query object is present 

or not, the search process will be terminated after the leaf is accessed. On the 

other hand, the search in R-Tree and R*-Tree is not deterministic. The presence 

of overlapping nodes in the tree is a reason for backtracking to occur. 

5.2.2 Inefficient Exact Search 

The search algorithms of R-Tree are not efficient enough that, in worst case, it 

may access all nodes in the index tree. In this section, exact search algorithm 

of R-Tree is focused and its inefficiency is to be explained. 

Since R-Tree allows overlapping bounding boxes, it cannot guarantee that a 

unique search path for an exact search query exists, and the performance will 

be degraded accordingly because of the frequently occurrence of backtracking. 

The following example can illustrate why backtracking is likely to occur when 
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A 

°P 

B 

Figure 5.4: Two overlapping bounding boxes enclose the same object 

overlapping regions present.. . 

Suppose an object P is going to be searched. After certain steps have been 

carried out, node C is being accessed. There are two nodes A and B which are 

child nodes of C and their bounding boxes overlap with each other. It is also 

found that both of them enclose the query object P. The situation is shown in 

Figure 5.4 and its corresponding R-Tree structure is shown in Figure 5.5. At 

this point, we have to decide which node, A or B, should be accessed in order to 

find the query object. Although two bounding boxes enclose the query object P, 

it has one parent only, say B. That means, P can be found when we search along 

the subtree of node B, but it cannot be found if we search along the subtree of 

node A even though the bounding box of node A encloses P. 

Although B is the parent of P, the fact is not known until both A and B have 

been accessed. Before A and B are searched, all can be known is that both of 

them may be the real parent of the query object P. Since tlie bounding box of 
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K ^ > D 

^ ^ H , 
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Figure 5.5: An example of R-Tree structure if overlapping happened 

A encloses P, we can proceed the searching along the subtree of A. After the 

subtree of node A have been accessed and the target object is not found, it can 

be concluded that it should be located somewhere else in the tree, if it does 

exist. Therefore, backtracking exists to search along another subtree so as to 

get the target. After the searching process have been backtracked to node C 

and it is looking for another possible search path, it is found that the bounding 

box of node B does enclose the query object. Then, the subtree of B is being 

searched. Since the query object P located in the subtree of node B, it can be 

found at the leaf level of the subtree and the searching process come to an end. 

In real cases, overlapping nodes in R-Tree and R*-Tree are commonly found, 

and multiple overlapping nodes will also be present. As we have shown in the 

above example, additional work on searching along subtree of node A is useless, 

but, it cannot be entirely eliminated. Therefore, the non-deterministic behavior 

in searching often causes the bad performance of R-Tree and R*-Tree. 
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5.2.3 Inefficient Nearest Neighbor Search 

B 

A 

P * 

C 

Figure 5.6: Three bounding boxes overlap with the same object 

In this section, nearest neighbor search algorithm of R-Tree is focused and its 

inefficiency is to be explained. 

The performance of R-Tree on nearest neighbor search is worse than that on 

exact match. As similar as exact search, backtracking is one of the reason that 

make nearest neighbor search in R-Tree become inefficient. Another reason is 

that even the real nearest neighbor of the query is obtained, it is not easy to 

identify that it is the desired one. N. Roussopoulos, S. Kelley, and F. Vincent[6 

has designed an efficient nearest neighbor search algorithm on R-Tree and its 

variant, and it has been explained in Chapter 3. They provide two metrics for 

ordering in nearest neighbor search: MINDISTs^nd MINMAXDIST. The use of 

these two metrics is to prune all nodes which are impossible to contain the near-

est neighbor. Therefore, based on these two metrics, a set of nodes which may 

contain the nearest neighbor can be obtained. There is a substantial difference 
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between nearest neighbor search and exact search. In exact search, we know the 

object being examine is the desired one or not. If we know that the object is 

what we want, the search process will be terminated. On the contrary, nearest 

neighbor search is not as deterministic as exact search. We want a variable to 

keep the temporary nearest neighbor. We will update the variable if we find 

another object which is closer to the query. However, we cannot guarantee that 

the one we got is the real nearest neighbor of the given query until all entries in 

the set have been searched. In fact, we have to do the same procedure in nearest 

neighbor search for the whole R-Tree. 

The metrics, MINDIST and MINMAXDIST, are good approximations to the 

actual distance between object and query. However, it is no more a good ap-

proximation in dense overlapping area. First of all, there will be a lot of potential 

nearest neighbors of a given query, and they may be distributed into many sub-

trees. It implies that we have to search all such nodes in order to get the desired 

object, and we can determine that it is the real nearest neighbor of the query 

only after all those nodes are accessed. We can see that a lot of backtracking 

and unnecessary node accesses on R-Tree will occur for a nearest neighbor search 

query, and the situation is worse than that in exact search. 

An example is given to illustrate the problem, the situation is shown in Fig-

ure 5.6 and its R-Tree structure is shown in Figure 5.6. Assume we are now 

trying to find the nearest neighbor of a given query point P. A, B and C are 

nodes of the R-Tree which are found that their bounding boxes enclose P. There-

fore, MINDIST values of these three nodes are zero. Without loss of generality, 

assume that the searching order of these three nodes in the R-Tree is A, B and 

then C. After we have searched subtree of A, we get a temporary nearest neigh-

bor ai with NN-DISTa, > 0. There are two cases to be occurred. 
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The first case is that the temporary nearest neighbor a,- is not the real nearest 

neighbor to the query. Since MINDIST of A, B and C are equal to zero, the 

condition NN-DISTa, < MINDIST cannot be satisfied. Heuristic 5 cannot 

be applied to prune node B and C from the Active Branch List, and hence the 

subtrees of B and C have to be searched. They have to be searched because 

either bj or Ck, which are temporary nearest neighbor of the query under sub-

trees of B and C respectively, is the real nearest neighbor of P. In this case, it 

is similar to the situation of exact search that after we have reached the leaf of 

the tree and we find that the one we got is not the one we want, backtracking 

is necessary to help us find the required object. 

The second case is that the temporary nearest neighbor a, is the real nearest 

neighbor. Even if a, is the real nearest neighbor, we cannot ensure whether it is 

the required object because it is possible that there exists an object in node B 

or node C which is the real nearest neighbor. After bj and Ck have been found 

and their distances from the query are compared with that of a” we then know 

that CH is the one we wanted. Therefore, no matter whether a,-, bj or Ck is the 

real nearest neighbor to the query, backtracking does exist in this example, and 

subtrees which do not contain the nearest neighbor have also been accessed. 

The above example is a case that shows inefficient search on R-Tree. The poor 

performance is not limited to a tree which have overlapping nodes that con-

tain the query. For example, if a node D which is at the same level as A, B 

and C, and it does not contain query P, that is MINDIST。> 0. It is pos-

sible that uMNN_DISTwNN—DISn”NN-DISTck~) > MINDISTo, and 

subtree of node D is then needed to be searched too as NN_DISTdi, which is 

the distance from the nearest object in node D to the query, is smaller than 

mm{NN.DISTa^,NN^DISn^,NN^DIST,,). 
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We have just shown the inefficiency of nearest neighbor in R-Tree and its vari-

ant. In fact, we cannot expect that searching an object on a multidimensional 

index structure is as efficient as tliat on traditional index structure like B-Tree. 

Pruning is necessary for nearest neighbor search. How to prune irrelevant ob-

jects from the searching list is very important, especially when overlapping cases 

occurred. 
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Chapter 6 

Redundancy On R-Tree 

Real multi-media applications find that existing index structures cannot give a 

satisfactory performance on data retrieval. Those applications handles compli-

cated high dimensional data which need multidimensional index structures. In 

Chapter 2, the most popular index structures have been briefly described. In 

Chapter 5, how overlapping nodes in R-Tree and R*-Tree afFect the performance 

of searching has also been explained. 

In this Chapter, we focus on improving performance on data retrieval. The 

proposed solution is based on- introducing redundancy on an index tree. A new 

multidimensional index structure Redundant R-Tree, which applies the idea of 

adding redundancy on the index tree, will be introduced. Tlie construction 

method and the properties of the tree will also be described. 

i 

6.1 Mot ivat ion 

As we have mentioned in Chapter 5, the presence of overlapping node in R-Tree 

induces backtracking in searching which worsens the performance. On the other 

hand, R+-Tree, which is an overlap-free index structures, however, does not 
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A _C 

B 

Figure 6.1: Two bounding boxes overlap with the same object ‘ 

give a satisfactory performance. In fact, minimizing overlapping is not the only 

criterion for a content-based index structure to give a good performance. N. 

Beckmann et al in [7] specified several optimization criteria, and they pointed 

out that it is hard to optimize all of them in the same time. In fact, R*-

Tree, which is designed by tliem, tried to optimize those criteria, and many 

experiments showed that R*-Tree gives the best performance. Nevertheless, R*-

Tree still suffers from the dimensionality curse problem that its performance 

drops when the dimensionality of data is increased. It is because R*-Tree has a 

lot of overlapping nodes when those data being dealt with induce backtracking 

when a search query is being performed. Therefore, the performance can be 

improved if backtracking can be minimized or even eliminated and it is the task 

of adding redundancy on an index tree. 

6.2 Add ing Redundancy on Index Tree 

The concept of adding redundancy to an index tree is that, every node N should 

contains all nodes n,- if and only if MBRN encloses n“ and there exist not a n^ 
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which is not contained by N but enclosed by MBRN- An example is given to 

clarify the concept. In Figure 6.2, both bounding boxes of node A and B enclose 

an object C. In R-Tree and R*-Tree, either A or B contain C. When redundancy 

is added to index tree, both node A and B should contain C. In this case, if an 

exact search query is given to find the object C, a unique search path for the 

query can be provided. No matter node A or B is accessed first, the object must 

be found without backtracking. In case the object is not found, it can be ensured 

that the object does not exist in the index tree and there is no need to backtrack 

other subtrees. In nearest neighbor search, backtracking can be reduced. If the : 

query object is contained by bounding box of node A, MBRA, the subtree of , 

node A probably contains the real nearest neighbor. The special case is when the 

query located very near to the boundary of the bounding box, the real nearest 

neighbor may not be enclosed in the bounding box. However, in the original 丨 

R-tree nearest neighbor search algorithm, real nearest neighbor may not be 

obtained, or at least may not be recognized as tlie real nearest neighbor even 

though the query located at the center of the bounding box until backtracking 

is carried out to access other subtrees. It is obvious that performance have been 

improved after redundancy is added to an index tree as it is expected to have 

less node access in both exact and nearest neighbor search than that of original 

R-Tree. 

6.3 R-Tree with Redundancy 

6.3.1 Previous Models of R-Tree with Redundancy 

In order to add redundancy on an index tree, tlie structure of the tree should 

be modified. Before our proposed index tree structure is introduced, we will 

describe previous index tree structures with redundancy. The advantages and 

disadvantages will also be discussed explaining why and how our proposed index 
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Algor i thm 6.1 OverlapChild 

Procedure O v e r l a p C h i l d ( 7 V i , N 2 ) 
Input : N i 

/* Node to be inserted by redundant entry */ 
N2 
/* Redundant entry */ 

Begin 
If N2 is a leaf 

If OverlapTest(yVi, N2) = = TRUE 
Return T R U E 

Else 
Return FALSE 

Else 
/* to test if any child of Ni contains N2 */ 
For all children n of Ni 

If OverlapChild(n, N2) = = TRUE 
Return T R U E 

Return FALSE 
End 

tree structure is constructed. 

In the first model, every non-leaf iiode has two kind of entries: normal child 

pointers as tlie same as those in R-Tree, and a list of redundant entries. Let us 

denote the model by MoclelA-

First of all, inserts all tlie data points the same way as we do to the R-Tree. 

After that, starting from the lowest level of tree node, we try to add redundant 

entries to every node. We test overlapping of the nodes on the same level. After 

all nodes on one level have h.een tested, we move upwards to test overlapping 

of their parent nodes until root node is reached. We illustrate the algorithm by 

giving an example: A has children B and C, D has children E, F and G, where 

A and D are on the same level i, and, B,C,E,FandG are on the same level 
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Algori thm 6.2 AddOverlap 

Procedure A d d O v e r l a p ( i V i , N<2) 
Input : N i 

/* Node to be inserted by redundant entry */ 
N2 
/* Redundant entry */ 

Begin 
If N2 is not a leaf 

For all children n of N2 
/* to test whether they have overlapping region */ 
If OverlapTest(A^i, n) == TRUE 

/* add redundant entries from n to Ni */ 
Call AddOverlap(A^i, n) 丨 

Else 
If N2 is contained by Ni 

/* test if any child of Ni contains N2 already */ ‘ 
If OverlapChild(A^i, N2) = = FALSE 

Add N2 to the redundant list of Ni. 
End 

� 

z + 1 too, and they are not leaf nodes. Assume we are now testing overlapping 

on level i + 1. We test pairs of nodes on level i + 1 to see if they are overlapping 

with each other. For example, C and E are under testing now, and if they do 

overlap with each other, we will add all leaf nodes enclosed by C{E) to E{C) 

as its redundant entries. After all pairs are examined, we will test all entries 

on level i and A, B will be tested. In order to reduce unnecessary redundancy, 

we enfore that parent node does not liave any redundant entries that appear in 

its children. That means, A will not get a data point p as its redundant entries 

if either B, C or any tlieir descendents get p. The advantage of this model is 

that it provides an easy method to add redundancy to the index tree. The 

disadvantage of this model is that the index tree is not height-balanced which 

cannot give a fair performance on searching different objects. 
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Algor i thm 6.3 StartOverlap 

Procedure S t a r t O v e r l a p ( i V i , N 2 ) 
Begin 

Set N to be the pointer to the lowest level of Level List 
If N + NULL 

Set Li to be the head of N 
If Li + NULL 

Set L2 to be tlie one next to Li 
If L2 + NULL 

If OverlapTest{L1,L2) =二 TRUE 
Call AddOverlap{L1,L2) 
Call AddOverlap{L2^L1) 

Advance L2 to the next entry 
Advance Li to the next entry 

Advance N upwards on the Level List 
Return 

End 

The second model is a modification of the first model. The first model has a 

problem that the data objects are essentially on the same level. Some of them 

may be accessed at root node while some of them may be accessed at the leaf 

level which are the same as R-Tree. Let us denote the model by Modeh. 

The algorithm of adding redundancy to the index tree is similar to the first 

model. The only difference is how to add a redundant entry to a node. In the 

first model, a list which store redundancy entries will be created. In this model, 

redundant entries will make up a tree such that the resultant index tree is height-

balanced. The advantage of this model is that the tree is height-balanced which 

gives a fair performance on searching of different object. The disadvantage of 

this model is that it is difficult to avoid multiple access to the same node in a 

search query. For example, in Figure 6.2, both node A and B have a redundant 

entry C. If C has been accessed and now node B is being accessed, it is difficult 

to prevent from accessing node C again in the same query. 
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A B 

^ ^ 
C 

Figure 6.2: Example of R-Tree: Bounding box “ 
\ I I 
I 

6.3.2 Redundant R-Tree 

In previous section, different models that apply redundancy on R-Tree has been 

described. Their advantages and disadvantages have also been mentioned. A 

finalized index structure for adding redundancy on R-Tree is now to be presented. 

Our proposed new index structure which is called Redundant R-Tree is a R-tree 

with redundancy. That means Redundant R-Tree is a variant of R-Tree. The 

formation of a Redundant R-Tree is the same as that of a R-Tree except it will 

be augmented with redundant entries. Its construction method as well as its 

properties will also be described. 

Our index structure will be based on Models- As mentioned in the previous 

subsection, it has a drawback of using a lot of storage to store those redundant 

entries. Furthermore, it is difficult to prevent multiple access to the same node 

in the same query. In order to solve the problem, we design our tree structure 

as in Figure 6.2. In the example, node A and node B share the same redundant 

entry C. In this case, it is obvious that the demand of storage will be decreased. 

In addition, it is easier to avoid multiple access to the same node in the same 

query if this structure is being used. 
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6.3.3 Level List 

Levellist 

B1 
• ! _ 

^ B2 ^ B3 ^ B4 
It. 

I 
I 
I 

I 

. 

I 

• B5 > B6 ^ B7 ~^ B8 ^ B9 > BIO — B11̂  B12 ^ BO ： 

I ^ I ^ ^ ^ * * i 

Figure 6.3: Level List 

In our index structure, there is an array of level lists. A level list is a difference 

linked list which is used to link up all nodes of the tree which are in the same 

level. Every entry in the level list has a pointer which points to the first object 

at that level. For example, the î ^ entry of the level list would point to the first 

object in level z, say A“. A” will in turn point to another node, say A � . An 

example is given in Figure 6.3. Start from a level list, we can retrieve all nodes 

which are on the same level in the tree. 

The reason for constructing such the list is that it will make adding redundancy 

on index tree easier. Assume redundant entries are being inserted into a node 

7Vi. It is necessary to have an efficient way to find all N2 which are redundant 

entries to Ni. Details about how to use the list will be described in the section 

of inserting redundancy to R-Tree. 
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6.3.4 Inserting Redundancy to R-Tree 

Algori thm 6.4 Overlap-Test 

Procedure O v e r l a p _ T e s t ( A ^ i , N 2 ) 
Input : N i 

/* Redundant node inserted to Ni */ 
N2 
/* Redundant node N2 */ 

Begin 
For i :二 1 to no. of dimension 

Set 6/1. to be lower bound of Ni on î ^ dimension :; 
丄〜 7 ‘ 

Set hux, to be upper bound of Ni on ẑ ^ dimension j 
Set bl2, to be lower bound of N2 on î ^ dimension 
Set bu2, to be upper bound of N2 on i^^ dimension 

If hui^ < bl2, or bu2, < bli^ 
Return FALSE 

Return TRUE 
End 

A Redundant R-Tree is built in order to provide more efficient searching al-

gorithms than those of R-Tree. The whole constructing process is started at 

building an R-Tree first. After we have built the R-Tree, we have to annotate 

the tree so that redundant entries will be added to nodes if necessary. The 

adding redundant entries started from the lowest level of the index tree. We 

pick every pair of nodes in the same level to see whether they overlap with each 

other. If it is the case, we will further test whether they overlap with another's 

child nodes, and we will add those child nodes to the node in which they do not 

belong to if they do have overlapping regions. The process is repeated until all 

pairs in the same level have been examined, and then we move upwards and the 

process is repeated again until tlie root of tree is reached. Actually, the index 

tree may be described as a directed graph, as a node may liave more than one 
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Algor i thm 6.5 Overlap 

Procedure O v e r l a p ( i V i , N 2 ) 
Input : N i 

/* Redundant node inserted to Ni */ 
N2 -

/* Redundant node N2 */ 
Begin 

For i :二 1 to no. of children of N2 

Set N2, to be the 1仇 children of N2 

Call OverlapTest{NuN2,) : 

If Ni and Ni overlaps with each other 

Insert N2, to Ni | 
I 

! 

Return 
End 

I 
i 
I 

parent. 

The algorithm of inserting the redundant entries to the index tree is now to be 

described. First of all, OverlapStart, which is shown in Algorithm 6.6, will be 

invoked after the R-tree has been constructed. OverlapStart is the main pro-

cedure to build the Redundant R-Tree. The procedure starts to add redundant 

entries at the lowest level of the index tree. It tests every pair of nodes in the 

same level whether those nodes overlap with each other or not. Here, the pair of 

nodes to be tested are retrieved through the use of level list, and the testing is 

done by invoking a procedure called OverlapTest which is shown in Algorithm 

6.4. If the pair of nodes do overlap with each other, then OverlapStart tries 

to add their overlapped child nodes to these two nodes by invoking a procedure 

called Overlap which is shown in Algorithm 6.5. 
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Algor i thm 6.6 Overlap_Start 

Procedure O v e r l a p _ S t a r t 
Begin 

Set N to be the pointer to the lowest level of Level List 
If N + NULL 

Set Li to be the head of N 
If Li ^ NULL 

Set L2 to be the one next to Li 
If L2 + NULL 

Call OverlapTest[L1,L2) 
If L1 and L2 overlap with each other 

Call Overlap{Lij L2) 
Call Overlap{L2, Li) 

Advance L2 to t h e nex t e n t r y 
Advance L i to the next entry 

Advance N upwards on the Level List 
Return 

End 

If two nodes A and B are in tlie same level and they overlap with each other, the 

procedure Overlap will be invoked to add redundant entries to the overlapped 

nodes. In this procedure, if there is a child node a,- of A which overlaps with B, 

then node B will be updated so that the redundant entry a, will be inserted to 

the node B. As the relation of overlapping is symmetric, the operation will be 

done again so that it adds redundant entries to node A if necessary. Therefore, 

similar to the previous operation, .¾, which is a child node of node B, will be 

inserted as redundant entry of node A if bj overlaps with node A. 

The procedure OverlapTest is used to test whether two bounding boxes overlap 

with each other. Two bounding boxes have overlapping regions if and only if 

their line segments overlap with each other in all dimensions. For example, node 

A and B are two n-dimensional bounding boxes. Let A. and ft be line segment 

of bounding boxes of node A and B in the 1仇 dimension respectively. Let Aa, 
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Figure 6.4: An example: overlapping bounding boxes 

and Ab, be the lower and upper limits of A., while Ba, and Bb, be the lower and 

upper limits of B” There are four cases to consider: 

1. Aa, < Ba, < Ak̂  < ^ ; 

2. ^a. < Aâ , < ^ . < • , ; 

3. Axi < Bâ  < Bk, < A 〜； 

4. Ba, < Aa, < A,̂  < ^ . 

For all pairs of line segment Â  and B” if any one of these four cases are satisfied, 

we can conclude that bounding boxes of A and B overlaps with each other. 

Otherwise, if any pair of line segment Ai and B̂  such that none of the above 

four cases is satisfied, we say that bounding box of A and B does not have 

overlapping region. OverlapTest in Algorithm 6.4 uses a simplified test: for 

any dimension, if the lower bound of a node is larger than the upper bound of 

another node, these two nodes must not have any overlapping region. 
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Levellist 

B1 
H 

^ B2 ^ B3 ^ B4 

L t M 
• B5> B6 • B] ^ B8 • B9 -̂B!0"̂ 'Bll̂  B12̂  B13 

Figure 6.5: An example: The index tree structure 

After all pairs of nodes in the same level have been tested, the process will 

be repeated at upper level, that is, testinging pairs of nodes in upper level. 

The whole process will be repeated until it is now at root level. The inserting 

redundancy process is then terminated and the Redundant R-Tree has been 

constructed. 

An example is given to illustrate the process of inserting redundancy to an index 

tree. The example is shown in Figure 6.4. Three level lists: (^ i ) , ( ¾ — ^3 — 

B4) and (Bs — Be — B, — Bs — B<, — ^io — ^ i i — ^12 ^ ^ ) - When 

OverlapStart is called, it starts to add redundancy at lowest level of the index 

tree. Assume it is to add redundancy to the node of B2, B3 and B4. The first 

entry of the level list {B2 ] B3 — B4), ^2, is L^ in OverlapStart. Its next 

entry B3 is L2 in OverlapStart. Then the procedure tests whether these two 

nodes have overlapping regions. Since they overlap with each other, Overlap 

will be invoked to test if B2 overlaps with any child node of B3. Bg, B9 and Bw 
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are children of B2. Bg and ^io do not overlap with B2 but Bs does. Therefore, 

Bg will be inserted to B2 as its redundant entry. Similarly, Overlap will be 

invoked to test if B2 overlaps with any child node of B3. B5, Be and B7 are 

children of B [ B^ and Be do not overlap with Bi but B j does. Therefore, B7 

will be inserted to Bi as its redundant entry. Then, L2 is advanced to be B4 

now. Since it does not overlap with B2 and it is the last entry in the level list, 

Li is advanced to be B3 but L2 remains to be B4. Again, B3 does not overlap 

with B4. As all pairs of nodes in the same level have been tested, nodes in 

upper level will be tested. As tlie upper level list contains the root node only, 

the inserting redundancy terminates. The resultant Redundant R-Tree is shown 

in Figure 6.5. 

6.3.5 Propert ies of Redundant R-Tree 

a b ^ — ^ ^ > 

“ M 

1 厂\ 
’， 0^ \ 
‘‘ 1 NN_DIsi 

d w 

�‘ L 

Figure 6.6: Nearest neighbor search 

Redundant R-Tree is a variant of R-Tree and it inherits some properties of R-Tree 
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which have been mentioned in Chapter 2. On the other hand, Redundant R-

Tree is designed so that a better performance on data retrieval can be achieved, 

which implies that Redundant R-Tree has its own properties. Exact search and 

nearest neighbor search algorithms of Redundant R-Tree can be designed by 

making use of those properties. 

The first property is about the inter-relation between bounding boxes and nodes. 

Property 1 Let A and B he nodes in a Redundant R-Tree at level i and i+1 

respectively. The bounding box of A encloses or overlaps with the bounding box 

of B if and only if node A has an entry to node B. 

Theorem 4 Property 1 is valid. 

Proof: 

(<H: 

If node A has an entry to node B, then node B is either a normal child node 

or a redundant entry of node A. If node B is a normal child node of node A, 

then, according to properties of R-Tree, it is enclosed by the bounding box of 

node A. If node B is a redundant entry of node A, OverlapTest{A, B) must be 

evaluated to be true which determines node B is a redundant entry of node A. 

OverlapTest{A,B) equals to true means that tlie bounding box of A encloses 

or overlaps with the bounding box of node B. Therefore, if node A has an entry 

to node B, then the bounding box of A encloses or overlaps with the bounding 

box of node B. 

(々)： 

If the bounding box of node A encloses or overlaps with the bounding box of 

node B, there are two possibilities. The first case is that node B is already 

a child node of node A, and node A is trivial to liave an entry to node B. 

The second case is that B is node a child node of node A. Nodes A and B^a.rent 
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which is the parent of node B are in the same level. When OverlapStart is being 

executed, OverlapTest{A, Bparent) will be evaluated. By properties of R-Tree, 

Bparent must enclos6s iiode B which implies that Bparent overlaps with node A and 

OverlapTest[A,Bparent) will be evaluated to be true. Then OverlapTest{A,B) 

will be evaluated to be true also. Therefore, node B will be inserted to node A 

as the latter's redundant entry. Hence, the statement is correct. 

As both statements (4=) and ( ^ ) are proved to be correct, the theorem holds. 
• 

The second theorem is a generalization of Theorem 1. 

Property 2 Let node A be ancestor of another node B in Redundant R-Tree. 

If the bounding box of A encloses or overlaps with the bounding box of B, node 

A has a path to node B. 

Theorem 5 Property 2 is valid. 

Proof: The proposition is to be proved by Mathematical Induction. 

Let P(n) be the proposition of Property 2. Let n be tlie difference in level be-

tween node A and B. -

When n 二 1, the proposition is proved to be correct by Theorem 4. Assume the 

proposition is correct wlien n 二 k where k is larger tlian or equal to one. When 

n = k + 1, let node C be the parent of node B such that the difference in level 

between node A and C is k. If the bounding box of node A encloses or overlaps 

with the bounding box of node B, by properties of R-Tree, the bounding box of 

node A encloses or overlaps with the bounding box of node C. As the difference 

in level between nodes A and C is k and the proposition holds when n 二 k, node 

A. has a path to node C. Because node C is the parent of node B, node C has 
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a path to node B, and consequently, node A has a path to node B. Therefore, 

the proposition is correct when n = k + 1 which means that it is also true for 

all positive integer k. 

Thus, the proposition P(n) is proved to be correct by using Mathematical In-

duction. • 

The converse of the statement is not necessarily true. That means, if a node 

A has a path to node B, then node B may not be enclosed or overlapped with 

the bounding box of node A. However, it may not be an undesirable property. 

Consider that a nearest neighbor query has been given which is located very 

near to the boundary of the bounding box. Its nearest neighbor may be located 

outside the bounding box of current node. If the converse of the statement is 

allowed, then the nearest neighbor may be accessed even the bounding box of 

the current node does not enclose or overlap with the nearest neighbor. 

The following theorem tells a geometric property of bounding boxs in the index 

tree. 

Property 3 Let NNJDIST he the distance between temporary nearest neighbor 

and query. Let 0=f0i,02,...,0^J be a query andP=(pi,p2”",Pm) he the tempo-

rary nearest neighbor ofan query 0. Let M=(L, U) be the current bounding box 

where L=(h,l2,...,lm) is the lower, bounds and U=(u1,u2,...,um) is the upper 

bounds of the bounding box respectively. 

If NNJDIST < mm(\o, — k\, Mi = [l,2,...,m]； and NN_DIST < mm(]o, — u.|, 

Vz = [1,2, ...,m]), then we can be sure that the nearest neighbor is located within 

the current bounding box of node M and it can be obtained after node M has been 

accessed. 

Theorem 6 Property S is correct. 
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Proof: If NN—DIST < min(|o, — kl Vz = [l ,2, . . . ,m]) and NN—DIST < 

min(|j9i — Ui\, Vz = [1,2,..., m]), every object which locates outside the bounding 

box cannot be the nearest neighbor because the distance between the object 

and the query must be larger or equal to the minimum distance between the 

query and the boundaries of the bounding box, which is larger than or equal to 

the distance between the query and the temporary nearest neighbor. Further-

more, by Theorem 5, we guarantee that all objects which are enclosed by the 

same bounding box can be found in the same subtree. The real nearest neigh-

bor, which has smaller or equal distance to the query than that of temporary 

one, must locate within the bounding box and the postconditions are satisfied. 

Therefore, the statement is proved to be correct. • 

Figure 6.6 is an example to illustrate Theorem 6. Let M be a Redundant node 

in Redundant R-Tree. Let 0 be the query and P is the nearest neighbor in 

node M to the query, and the distance is NN_DIST. Let a,b,c,dhe distances 

from the query to the boundaries of node M. If the precondition stated in the 

theorem is true, that is, NN_DIST < a, NN_DIST < b, NN_DIST < c and 

NN-DIST < d are satisfied", and then the nearest neighbor is located within 

the bounding box of node M. By Theorem 5, the nearest neighbor must be found 

under the subtree of node M. In case P is found to be the nearest neighbor 

in node M, then it is the real nearest neighbor to the query among all objects 

indexed by the index tree. 

The theorem is very important to Redundant R-Tree because we can make use of 

it to design its own efficient searching algorithms so as to reduce the numbers of 

node accesses when search queries are being performed. The search algorithms 

will be discussed in Chapter 7. 
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Chapter 7 

Searching in Redundant R-Tree 

The construction method and some properties of Redundant R-Tree have been 

described in Chapter 6. Since there are differences between R-Tree and Redun-

dant R-Tree, it is obvious that new searching algorithms should be designed for 

the new index structure so that the characteristics of the new index structure 

can be utilized and a better data retrieval performance can be achieved. In this 

Chapter, algorithms of exact-search and nearest neighbor search of Redundant 

R-Tree will be described. Examples will also be provided to demonstrate how 

these algorithms work. 

7.1 Exact Search 

In this section, a complete exact search algorithm of Redundant R-Tree will be 

given. Several examples will also be shown to demonstrate liow the algorithm 

works. 

In Redundant R-Tree, every bounding box contains all child nodes which are 

enclosed by the bounding box. That means, if we search a query points A which 

are contained by a bounding box B, we can find A by accessing the subtree 
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Figure 7.1: Tree structure of Redundant R-tree 

of node B. Compared it to the original R-Tree algorithm in which we cannot 

guarantee that the subtree ofnode B is parent of A although the bounding box 

of node B encloses A. It may be the case that another bounding box C which 

overlaps with B and encloses A, and one of its subtree contains A. We have 

described the overlapping nodes in R-Tree in Chapter 5. After a Redundant R-

Tree is constructed, exact search query can be performed more efficiently. The 

exact search algorithm is given in Algorithm 7.1. 

The exact search algorithm is designed for Redundant R-Tree. Since Redundant 

R-Tree is a variant of R-Tree, its search algorithm is similar to the exact search 

algorithm of R-Tree. Again, the exact search algorithm of Redundant R-Tree is 

based on the containment test. That is, a node will be accessed if the query is 

enclosed by the bounding box of the node. Otherwise, it will be left unvisited. 

If there are more than one node which bounding boxes enclose the query, we 

just simply choose one node to visit. The process is repeated until we reach 
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Figure 7.2: Exact search on Redundant R-Tree 

the leaf level of the tree. Then we try to find the desired object. If the query 

object is found, then it reports that the object is found and the search process 

terminated. Otherwise, the search process will be continued until either the 

query is found or all objects of the node have been accessed. If it is the latter 

case, then it reports that the object is not found, and the search process will be 

terminated. No matter whether the object is found or not, no backtracking will 

be present. It is because, by the property of Redundant R-Tree, we know that 

the object is not present in the tree. It is very different to the original R-Tree 

exact search algorithm that the object may exist in somewhere of the tree which 

implies that the search process must proceed and backtracking takes place. 

Recalls the example given in Figure 3.1. The Redundant R-Tree constructed 

in this example is shown in -Figure 7.2. Now, an query Q is specified. The 

searching will be started at the root of the tree, Bi. As the bounding box of Bi 

encloses the query, the searching will continue and all child nodes of Bi will be 
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Algori thm 7.1 Exact search algorithm for Redundant R-Tree 

Procedure E x a c t — S e a r c h 
Input : Q 

/* Exact search query */ 
O u t p u t : Resul t 

/* Result of the query: found or not found */ 
Begin 

Result := Not_Found 
If current node P is at leaf level 

If P is equal to the query Q 
Return P 

Else 
For i : = 1 to number of children of P 

Set Pi to be the î ^ children of P 
If the bounding box of Pi encloses the query Q 
T h e n 

Result :二 Exact_Search 
Return Result 

Return 
End 

checked. We know that the bounding box of B2, which is the first child node 

of Bi, encloses the query. The searching will continue and all child nodes of 

B2 will be checked. Bounding boxes of some child nodes of B2 do not enclose 

the query and therefore they will not be accessed. Instead, we find that the 

bounding box of B7, which is a child node of B2, encloses the query. Therefore, 

the searching process proceed to access the node B7. Since B7 has an entry to 

the query Q, the query is found and the searching process is terminated. In this 

example, three nodes have been accessed, while five nodes should be accessed if 

the query is searched on tlie original R-Tree shown in Figure 3.1. Hence, there 

is an improvement. 

If another query 5' is specified, then the searching will be started again at B [ 

As the bounding box of Bi encloses the query, the searching will continue and all 
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child nodes of Bi will be checked. We know that the bounding box of B2 encloses 

the query and therefore searching will continue and all child nodes of B2 will 

be checked. However, bounding boxes of all child nodes of B2 do not enclose 

the query. Since we cannot proceed further and no backtracking is allowed, 

the searching process is terminated. In fact, the query S does not exist in the 

tree, and the searching process can be terminated because of the property of 

Redundant R-Tree. In this example, two nodes have been accessed to indicate 

that the query does not exist in the tree, while three nodes should be accessed 

if the query is searched on the original R-Tree shown in Figure 3.1. 

7.2 Nearest Neighbor Search 

In this section, pruning heuristics of nearest neighbor search of Redundant R-

Tree will be described. A complete nearest neighbor search algorithm will then 

be given, and an example will also be shown to demonstrate how the algorithm 

works. 

Since Redundant R-Tree is a variant of R-Tree, its nearest neighbor search algo-

rithm should be based on the nearest neighbor search algorithm of R-Tree with 

some modifications. 

First of all, we focus on pruning heuristics used in nearest neighbor search al-

gorithm of Redundant R-Tree. As we have proved that the improved nearest 

neighbor search algorithm stated in Chapter 4 outperforms the nearest neighbor 

search algorithm in [6], Heuristic 5 is used in the nearest neighbor search algo-

rithm of Redmidant R-Tree. In addition, one more pruning heuristic is used so 

that a better performance can be achieved. 

Let 0 = (01,02,...,0^) be a query and P 二 (pi,p2,".,Pm) be the temporary 

86 



Chapter 7. Searching in Redundant R- Tree 

Algori thm 7.2 Nearest neighbor search algorithm for Redundant R-Tree 

Procedure N N _ S e a r c h 
Input : N O D E 

/* node to be visited */ 
NN^DISTtemp 
/* distance from temporary nearest neighbor to the query */ 

Begin 
If current node P is at leaf level 
T h e n 

For i := 1 to no. of children of current node 
If DISTp < NN_DIST 

Set current node to be nearest neighbor 
Update NNJDIST 

Else 

Generate Active Branch List of current node 

Calculate MINDIST 
Sort the Active Branch List by ascending ordering of MINDIST 

For i :二 1 to no. of entries in the Active Branch List 
Apply Heuristic 5 and 6 to do pruning 

Call NN—Search 

End 

nearest neighbor of an query O. Let M 二�L, U) be the current bounding box 

where L 二 [h,h, ...,lm) is the lower bounds and U 二 ( w i , w 2 , . . . , � ) i s the upper 

bounds of the bounding box respectively. The additional heuristic is presented 

as follows: 

Heuristic 6 If the conditions NNJDISTtemp < mm(\o^ — k\, Vz = [1,2，."，m]) 

and NN-DISTtemp < mm(\o, — ^ / 丄 Vz = [l,2,...,m]J are satisfied, then the 

nearest neighbor can be obtained after all candidate child nodes of the current 

node have been accessed. 
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T h e o r e m 7 Heuristic 6 is correct. 

Proof: If the conditions NN-DIST— < min(|o, — h\, Vz = [ l ,2 , . " ,m]) and 

NN.DISTtemp < min(|o, — u,\, Vz 二 [ l,2 , ." ,m]) are satisfied, by Theorem 6， 

the nearest neighbor must be located within the bounding box of current node 

M, that is, bounding box of M encloses the nearest neighbor. Property 3 states 

that the bounding box of A encloses the bounding box of B if and only if node 

A has an entry to node B. Therefore, the nearest neighbor must be obtained 

after all candidate child nodes of node M which are entries in the Active Branch 
I 

List of node M have been accessed. • 

Based on the improved nearest neighbor search algorithm and Heuristic 6, the 

nearest neighbor search algorithm on Redundant R-Tree is obtained and it is 

given in Algorithm 7.2. 

Consider the nearest neighbor search example given in Chapter 5 to see how the 

nearest neighbor search algorithm works. Assume P is the nearest neighbor of a 

given query. The searching started at the root, and after certain steps the subtree 

of node A has been accessed, a, denotes the temporary nearest neighbor after 

the subtree of node A has been accessed. Since P is located within the bounding 

box of node A, by Theorem 6, a, is P. K the query is not located very near to the 

boundary of bounding box of node A, that is, the conditions NN_DISTump < 

min(\pi — hI, Vz = [1, 2,..•, m] and NN—DISTtemp < min(\p^ — u,|, Vz 二 [1，2,..•, m 

are satisfied, then, by Heuristic 6’ the searching process will terminate after all 

candidate child nodes of node A have been accessed. Therefore, the subtree 

of node B and C will not be accessed even if NN.DISTa, > MINDISTs or 

NN-DISTa, > MINDISTc. In the nearest neighbor search algorithm of R-

Tree, node B and node C may also be accessed. It is because the nearest neighbor 

P may be a child node of either node A, B or C. Furthermore, MINDISTA, 

MINDISTs and MINDISTc are all equal to zero which implies that it is 
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possible to exist an object P' such that it is a child node of either node A, B or 

C, and DISTp, < DISTp. 

As the correctness of theorems and pruning heuristics have been proved, the 

nearest neighbor search algorithm is shown to be correct and it will not miss 

the nearest neighbor. For the case described above, nearest neighbor search of 

redundant R-Tree is more efficient than that of R-Tree as subtrees of node B and 

C do not need to be accessed. When the numbers of data is very large, R-Tree 

usually has many overlapping regions and the number of objects enclosed by a 

bounding box is very large too. It implies that the preconditions of Heuristic 6 

are very likely to occur. If there is no overlapping region, redundant R-Tree is 

just a original R-Tree, and hence the performance will be the same in this case. 

7.3 Avoidance of Mul t ip le Accesses 

We assume that all queries will be executed sequentially, i.e. there is no con-

current querying. Since a node may have more than one parent node, it is 

necessary to eliminate the possibility of multiple accesses of a node in the same 

search query. In order to do that, a global logical clock in the system should be 

given. The clock will only be updated once when a new search query is specified 

and stay unchanged throughout the same query. During the searching process, 

when a node is being accessed, its timestamp will be checked first and then 

a new timestamp will be given to the node. The timestamp is used to check 

whether it has been accessed on this searching transaction. If the timestamp of 

the node is the same as the value of current logical clock, it can be ensured that 

the node have been accessed in this transaction, and there is no need to access 

it again. Hence, the node will be ignored. The chance of multiple accesses on 

the same node is eliminated. 
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Chapter 8 

Experiment 

In this Chapter, a series of experiments will be performed and their results will 

also be presented. These experiments are used to compare the performance of 

searching in different content-based index structures. Both exact and nearest 

neighbor search will be performed on R-Tree, R*-Tree, Redundant R-Tree and 

Redundant R*-Tree. 

8.1 Experimental Setup 

We implemented both R-Trees, R*-Tree, Redundant R-Tree and Redundant 

R*-Tree in C under UNIX on a Sun Ultra-Sparc computer, and used our im-

plementation in a series of performance tests to verify the practicality of the 

structure and to evaluate the efficiency during searching by both algorithms. 

Both exact and nearest neighbor search will be used in these experiments. 

Clustered, uniform and real data will be used in the experiments. The size of all 

data set varies from 10000 to 40000. The set of clustered data has 100 clusters 

and its dimension varies from 4 to 32. The dimensions of the uniform data vary 

from 4 to 32, and the dimensions of real data vary from 2 to 16. 
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8.2 Exact Search 

” Disk Access against Dimension on Exact Search 
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Figure 8.1: Exact search on 10000 clustered data 

8.2.1 Clustered Data 

In the first set of experiment, one hundred exact search query are performed on 

the clustered data. The experiments are used to compare the performance of 

R-Tree, R*-Tree, Redundant R-Tree and Redundant R*-Tree on exact search. 

Results of this set of experiments ar.e shown in Figures 8.1 to 8.2. 

First of all, the performance of the index structures on exact search are evaluated 

by average disk accesses per exact search query. Figure 8.1 shows the average 

disk accesses per query against the numbers of dimensions of data. Both R-Tree 

and R*-Tree perform badly when the numbers of dimensions of data increase. 

It is because when they are dealing with high dimension data, they have a 

lot of overlapping nodes and the performance will be degraded rapidly. The 
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” CPU Time against Dimension on Exact Search 
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Figure 8.2: Exact search on 10000 clustered data 

curves resulted by the increasing rate of bad performances. As what have been 

described in Chapter 5, there are many backtrackings in exact search on both 

R-Tree and R*-Tree that cause many unnecessary node access. Furthermore, 

R_Tree performs worse than R*-Tree because R*-Tree tries to avoid overlapping 

nodes which can improve its own performance. On the other hand, Redundant 

R-Tree and R*-Tree outperform R-Tree and R*-Tree because unique search path 

can be provide for each query. 

Figure 8.2 shows the CPU Time used against the numbers of dimensions of data. 

Similar to the results above, Redundant trees used less CPU Time for searching. 

However, as larger nodes take more time for processing, the gains of CPU Time 

saved in Redundant trees are not as many as the gains of the number of disk 

accesses saved. .. 
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Figure 8.3: Exact search on 10000 real data 

8.2.2 Real D a t a 

In this set of experiment, one hundred exact search query are performed on the 

real data. The experiments are used to compare the performance of R-Tree, 

R*-Tree, Redundant R-Tree and Redundant R*-Tree on exact search. Results 

of this set of experiments are shown in Figures 8.3 to 8.4. 

First of all, the performance of the index structures on exact search is eval-

uated by average disk accesses per exact search query. Figure 8.3 shows the 

average disk accesses per query against the numbers of dimensions of data. R*-

Tree is more capable of avoiding overlapping nodes, so its performance is better 

than R-Tree especially when low dimensional data are being handled. However, 

when the numbers of dimensions of data increase, R*-Tree cannot effectively 

reduce overlapping nodes and its performance is almost the same as that of R-

Tree. Since R-Tree has many overlapping nodes, tlie Redundant R-Tree performs 
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Figure 8.4: Exact search on 10000 real data 

slightly worse than R*-Tree. However, the numbers of disk accesses of redun-

dant trees increases steadily that make Redundant R-Tree performs better than 

R*-Tree when high dimensional data are being handled. Redundant R*-Tree, 

on the other hand, gives the best performance as few overlapping nodes when 

low dimensional data are being handled and the steady growth of the numbers 

of disk accesses that makes it perform better than Redundant R-Tree when high 

dimension data are being handled. 

Figure 8.4 shows the CPU Time used against the numbers of dimensions of data. 

Similar to the results above, R-Tree performs the worst while Redundant R*-

Tree gives the best performance on average. R*-Tree gives better performance 

than Redundant R-Tree when low dimensional data are used, but Redundant R-

Tree performs better than R*-Tree when high dimensional data are used. Since 

larger nodes induce more overhead for processing, the gains of CPU Time saved 

in Redundant trees are not as many as the gains of the number of disk accesses 
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saved. 

8.3 Nearest Neighbor Search 
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Figure 8.5: Nearest neighbor search on 40000 clustered data 

In this section, the performance of nearest neighbor search on different index 

structures will be tested. The most nearest neighbor will be searched for each 

query. Nearest neighbor search algorithms described in Chapters 4 and 7 will 

be used to search on original trees and Redundant Trees respectively. Several 

metrics will be used to evaluate the performance. Those metrics are the numbers 

of node accesses per query, the numbers of disk accesses per query, and the 

percentage of node accesses per query. 

8.3.1 Clustered Data 

In the first set of experiment, one hundred nearest neighbor search query are 

performed on the clustered data and each query is need to find tlie most nearest 
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Figure 8.6: Node access against dimension on 40000 clustered data 

neighbor. The experiments are used to compare the performance of R-Tree, R*-

Tree, Redundant R-Tree and Redundant R*-Tree on nearest neighbor search. 

Results of this set of experiment is shown in Figures 8.5 to 8.7. 

First of all, the performance of the index structures on nearest neighbor search is 

evaluated by average disk accesses per nearest neighbor search query. Figure 8.5 

shows the average disk accesses per query against the numbers of dimensions of 

data. Both R-Tree and R*-Tree perform badly when the mmbers of dimensions 

of data increase. It is because when they are dealing with high dimensional 

data, they have a lot of overlapping nodes and the performance will be degraded 

rapidly. The curves resulted by the increasing rate of bad performances. As 

what have been described in Chapter 5, there are a lot of backtrackings in 

nearest neighbor search on both R-Tree and Redundant R*-Tree that cause 

many unnecessary node access. On the other liand, Redundant R-Tree and 

R*-Tree outperform R-Tree and R*-Tree because the searching is much more 
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Figure 8.7: Percentage of node access against dimension on 40000 clustered data 

deterministic by making use of redundancy on index trees. 

Average node access per query is shown in Figure 8.6. Similar to the result 

measured by average disk accesses per query, both R-Tree and R*-Tree perform 

badly when the numbers of dimensions of data increase, while Redundant R-

Tree and Redundant R*-Tree outperform R-Tree and R*-Tree. The difference 

of node accesses between Redundant trees and original trees is larger than the 

difference of disk accesses. It is because each node in R-Tree and R*-Tree is 

fitted into one page size, while the size of each node in Redundant trees may 

be larger than one page. The numbers of node accesses are proportional to the 

numbers of backtrackings during searching. The result shows that the numbers 

of node accesses of Redundant trees are closed to the height of trees which show 

that fewer backtracking occurred. Tlie percentage of node accesses per query 

are shown in Figure 8.7. Similar to the result in measuring the number of node 

accesses, searching on Redundant trees needs fewer percentage of node accesses 

97 



- Chapter 8. Experiment 

Disk Access against Dimension on Nearest Neighbor Search 
1000 I 1 1 1 1 1 1 

800 - R-Tree — “ 
R*-Tree + … 

Redundant R-Tree - • -
Redundant R*-Tree -x••••• 

0, 600 - / . 
w / 
0) / \ _. / 

400 - / -

X 
2��- ^ ^ . 

^ y ^ ' z〉 - :‘： 
Q ^c::C^^_-_K-~»~4a,<.:::r:tl...-..........-.-� X.....1 -X . . . . . . . - . . .� . . - -�_ 

0 5 10 15 20 25 30 
Dimension 

Figure 8.8: Nearest neighbor search on 40000 uniform data 

on average. 

8.3.2 Uniform Data 
In the second set of experiment, 100 Nearest neighbor query are performed on 

the uniform data. Results o f th i s set of experiment is shown in Figures 8.8 to 

8.10. 

Once again, the performance of our proposed Redundant R-Tree and Redundant 

R*_Tree outperform R-Tree and R*-tree in this set of experiment. However, 

since the uniform data have less overlapping, the performance of R-Tree and 

R*-Tree is slightly better than that of dealing with clustered data. Therefore, 

the speedup factor of Redundant R-Tree and R*-Tree is slightly smaller. 

Figure 8.8 shows the average disk accesses per query against tlie numbers of 

dimensions of data. Both R-Tree and R*-Tree perform badly when mmiber of 
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Figure 8.9: Node access against dimension on 40000 uniform data 

dimension of data increased. However, R*-Tree is shown to perform better than 

R-Tree. It is due to the fact that overlapping in uniform data is less that that of 

clustered data. Since R*-Tree is more capable of avoiding overlapping nodes, it 

significantly outperforms R-Tree. As R-Tree performs badly, the performance of 

Redundant R-Tree is similar to that of R*-Tree because too much overlapping 

nodes in R-Tree cause larger node size in Redundant R-Tree. On the contrary, 

Redundant R*-Tree gives the best performance since R*-Tree has better perfor-

mance than R-Tree. 

Average node accesses per query is shown in Figure 8.9. Similar to the result 

measured by average disk accesses per query, R-Tree gives the worst perfor-

mance. R*-Tree performs better. Redundant R-Tree and Redundant R*-Tree 

access fewer nodes on average. As the size of node in Redundant trees is larger 

or equal to the size of node of original trees, Redundant R-Tree accesses fewer 
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Figure 8.10: Percentage of node access against dimension on 40000 uniform data 

nodes on average than R-Tree and R*-Tree. As similar as before, Redundant R*-

Tree accesses the fewest number of nodes. Tlie percentage of node accesses per 

query are shown in Figure 8.10. Similar to the result in measuring the number 

of node accesses, searching on Redundant R*-Tree needs the fewest percentage 

of node accesses. 

8.3.3 Real D a t a 

Experiments have also been done on real data. Figures 8.11 and 8.13 show the 

results. 

In the real data, there are a lot of overlapping and it makes the performance 

of R-Tree and R*-Tree become worse. When it is compared to those results of 

using uniform and clustered data, the results of using real data show R-Tree and 

R*-Tree give worse performance. 
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Figure 8.11： Nearest neighbor search on 40000 real data 

Figure 8.11 shows the average disk accesses per query against the numbers of 

dimensions of data. Both R-Tree and R*-Tree perform badly when the 皿 瓜 匕 6 [ 3 

of dimensions of data increase. Initially, R*-Tree is shown to perform better 

than R-Tree, since R*-Tree is more capable of avoiding overlapping nodes. As 

the dimension of data increased, more overlapping nodes are created which make 

both R-Tree R*-Tree perform badly and their performance are almost the same. 

On the contrary, Redundant R-Tree and R*-Tree perform better than original 

trees. 

Average node accesses per query is shown in Figure 8.12. Similar to the result 

measured by average disk accesses per query, R-Tree gives the worst perfor-

mance. R*-Tree performs better when the dimension of data is low, and their 

performance are almost the aame when high dimensional data are being dealt 

with. &64皿4己打1 R-Tree and Redundant R*-Tree access fewer nodes on average. 

The percentage of node accesses per query are shown in Figure 8.13. Similar 
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Figure 8.12: Node access against dimension on 40000 real data 

to the result in measuring the numbers of node accesses, searching on Redun-

dant R-Tree and R*-Tree have fewer percentage of node accesses. There is a 

difference that the percentage of node accesses of the Redundant trees tend to 

decrease with the numbers of dimensions of data. It is because high dimensional 

real data induce a lot of overlapping nodes. The presence of overlapping nodes 

make Redundant Trees become larger in size. The increase of their size are faster 

than the increase of the height of trees which is proportional to the number of 

node accesses per search query. Therefore, those curves for redundant trees have 

negative slopes. 

8.4 Discussion 

The results show tliat Redundant R-Tree and R*-Tree outperform the original 

R-Tree and R*-Tree on both exact and nearest neighbor search. However, it 

should be noted that the performance of redundant tree can be affected by the 
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Figure 8.13: Percentage of node access against dimension on 40000 real data 

degree of overlapping of their nodes. As we have mentioned before, too much 

overlapping nodes in trees make larger nodes size in Redundant trees which 

induces overheads on both processing and the numbers of page accesses for each 

search query. Furthermore, too much overlapping nodes would also increase 

the size of the trees. Figures 8.14 and 8.15 show the ratio of storage against 

the numbers of dimensions of uniform and real data respectively. In order to 

optimize their performance, an effective methods for reducing overlapping should 

be used. 
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Figure 8.14: Ratio of storage on 40000 uniform data 
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Figure 8.15: Ratio of storage on 40000 real data 
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Chapter 9 

Conclusions and Future Research 

9.1 Conclusions 

Several content-based index structures such as R-Tree, R+-Tree and R*-Tree, 

and their searching methods have been briefly introduced. The cause of the 

inefficiency of nearest neighbor search in R-Tree have also been presented. In 

order to improve the performance, a new pruning heuristic for nearest neighbor 

search have been derived. It is shown tliat the new pruning heuristic can replace 

those old pruning heuristics, while the replacement will not increase the number 

of node access of any nearest "neighbor search query, which means that the per-

formance will not be degraded. Since the new heuristic does not make use of a 

metric MINMAXDIST which is very computational expensive, the performance 

is improved. Based on the new pruning heuristic, an improved nearest neighbor 

search algorithm as well as an improved N-nearest neighbor search algorithm for 

R-Tree and its variants have been designed. A series of experiments have been 

carried out, and the results show that the new nearest neighbor search algorithm 

uses less CPU time for processing, while it does not increase number of node 

access. Therefore, the improved nearest neighbor search algorithm outperforms 

the original one. 

105 



Chapter 9. Conclusions and Future Research 

Besides, we found that the general performance of searching on R-Tree and its 

variants are not satisfactory. Overlapping nodes of R-Tree have also been de-

scribed. The presence of overlapping nodes induces many backtrackings during 

searching, and it therefore degrades the performance on data retrieval. We try 

to improve it by adding redundancy to the tree. The idea of adding redundancy 

on R-Tree have been introduced. We have presented the motivation of the de-

sign of our Redundant Tree, which is a variant of R-Tree with redundancy, and 

we have examined algorithms to build the Redundant Tree. Also, exact and 

nearest neighbor search algorithms of Redundant Tree have been given. Based 

on the properties of Redundant Tree, our proposed algorithms try to reduce the 

number of node access during searching. We have performed experiments to 

compare these algorithms with the original algorithms. The proposed searching 

algorithms in Redundant Tree perform better than those of R-Tree and R*-Tree. 

We conclude that Redundant Tree outperforms R-Tree and R*-Tree. 

9.2 Future Research 

Future research could examine methods to use less storage to build a Redundant 

R-Tree. Also, we should minimize the sorting overhead in the nearest neighbor 

search. In fact, the problems can be solved by reducing but not strictly elim-

inating overlapping nodes in the index tree. Therefore, a better algorithm for 

splitting should be designed so that a moderate degree of overlapping is allowed. 

R-Tree, which does not eliminate any overlapping node on purpose, shows its 

inefficiency on searching because of tlie presence of overlapping node. R+-Tree, 

which does eliminate all overlapping nodes on purpose, shows its inefficiency on 

searching because there are many nodes with large margins. A mixture of R*-

Tree and R+-Tree may be a good choice because R*-Tree tries to keep minimal 

margin of bounding boxes, while R+-Tree tries to eliminate overlapping nodes. 
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In fact, keeping margin and overlapping minimum are important to the perfor-

mance of searching. 

X-Tree is a variant of R-Tree and it is designed by Stefan Berchtold et al，in [9]. 

In [9], Berchtold designs a split algorithm which uses split history of a node so 

that the split will be overlap-minimal. Besides, he introduces supernode to the 

tree structure. When a split makes two heavy overlapping nodes, a supernode 

will be produced instead of splitting. We are doing experiments to compare 

performance between Redundant Tree and X-Tree, and result will be released 

soon. 

A more efficient algorithm for introducing redundancy should be designed. Also, 

redundancy idea can be extended to other multi-dimensional index structures, 

for example Vp-Tree. 
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