
R E D U N D A N C Y O N C O N T E N T - B A S E D I N D E X I N G

B Y 、：

; ；

C H E U N G KlNG LUM KlNGLY

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF M A S T E R OF PHILOSOPHY DlVISION OF COMPUTER SCIENCE AND ENGINEERING THE CHINESE UNIVERSITY OF HONG HONG 1997

/ ^ ^ ^
u / ^ ^ n t n V \

p (2 2 M lW j |]
\ ^ UNIVERSITY~/M

%gp>̂ IBRARY SYSTEMX^
^ ^ ^ ^ ^

Abstract

Multimediais so popular that a lot of multimedia applications have been created.

Those applications usually deal with huge amount of data and it is necessary

for them to have an indexing- structure such that efficient retrieval of data can

be provided. However, traditional indexing techniques cannot provide a satis-

factory performance on searching, especially when they are dealing with high

dimensional data which is very commonly found in those applications. R-Tree,

which is one of the most efficient content-based indexing structure, is still not ef-

ficient enough on high dimension data retrieval. The major problem of R-Tree is

due to its non-deterministic behavior during searching. We, therefore, propose a

new index structure, which is Redundant Tree, as well as its searching algorithms

so that a better performance on searching can be obtained. The basic idea of

the Redundant Tree is tliat we introduce redundancy on R-Tree. It inherits

advantages from R-Tree, and it eliminates disadvantages by its own proper-

ties. Furthermore, we propose exact searching and nearest neighbor searching

algorithms for Redundant Tree so that non-deterministic searching behavior is

minimized or even eliminated. We present the results from a series of experi-

ments which sliow that our Redundant Tree outperforms R-Tree on both exact

and nearest neighbor search.

ii

Acknowledgement

I would like to express my sincere thanks to Prof. Ada Fu and Prof. K. S.

Leung, my supervisors of tliis research, for their advice and encouragement. In

the early drafts of this thesis, they found many errors and gave me valuable

suggestions and corrections. Also, I want to thank Prof. M. H. Wong and Prof.

C. Lu for their comments that contributed to the completion of this thesis.

Furthermore, the Department of Computer Science and Engineering of the Chi-

nese University of Hong Kong has provided an ideal working environment. I am

grateful to all staff in the department for providing assistance. Colleagues have

also provided activities for relax. Thanks to T. M. Wong, Chris Cheung, Mary

Leung, Paul Law, Alan Tung, Peter Lie and Y. H. Hung.

Additional technical assistance was provided by many individuals. I especially

thank Polly Chan for her valuable information on my research. This thesis was

typeset with M^X. Arthur Hsieh, Terence Wong and S. K. Lam were my infor-

mants for ETj7;X. There were many problems of submitting the thesis. Thanks

to C. M. Kuok for his help.

Thanks to my father-Frank Cheung, my mother-W. F. Lau and my sister—

Queenie Cheung for their endless support. The love and patience of my family

made this research possible. Finally, I thank T. Y. Law for her love and support

during the writing of this thesis. I dedicate this thesis to her.

iii

(

Contents

Abstract ii

Acknowledgement iii

1 Introduction 1

1.1 Motivation 1

1.2 Problems in Content-Based Indexing 2

1.3 Contributions 3

1.4 Thesis Organization 4

2 Content-Based Indexing Structures 5

2.1 R-Tree . 6

2.2 R+-Tree 8

2.3 R*-Tree 11

3 Searching in Both R-Tree and R*-Tree 15

3.1 Exact Search 15

3.2 Nearest Neighbor Search 19

3.2.1 Definition of Searching Metrics 19

3.2.2 Pruning Heuristics 21

3.2.3 Nearest Neighbor Search Algorithm 24

3.2.4 Generalization to N-Nearest Neighbor Search 25

iv

4 An Improved Nearest Neighbor Search Algorithm for R-Tree 29

4.1 Introduction 29

4.2 New Pruning Heuristics 31

4.3 An Improved Nearest Neighbor Search Algorithm 34

4.4 Replacing Heuristics 36

4.5 N-Nearest Neighbor Search 41

4.6 Performance Evaluation 45

5 Overlapping Nodes in R-Tree and R*-Tree 53

5.1 Overlapping Nodes 54

5.2 Problem Induced By Overlapping Nodes 57

5.2.1 Backtracking 57

5-2.2 Inefficient Exact Search 57

5.2.3 Inefficient Nearest Neighbor Search 60

6 Redundancy On R-Tree 64

6.1 Motivation 64

6.2 Adding Redundancy..on Index Tree 65

6.3 R-Tree with Redundancy 66

6.3.1 Previous Models of R-Tree with Redundancy 66

6.3.2 Redundant R-Tree 70

6.3.3 Level List 71

6.3.4 Inserting Redundancy to R-Tree 72

6.3.5 Properties of Redundant R-Tree 77

7 Searching in Redundant R-Tree 82

7.1 Exact Search 82

7.2 Nearest Neighbor Search 86

7.3 Avoidance of Multiple Accesses 89

V

8 Experiment 90

8.1 Experimental Setup 90

8.2 Exact Search � . 91

8.2.1 Clustered Data 91

8.2.2 Real Data 93

8.3 Nearest Neighbor Search 95

8.3.1 Clustered Data 95

8.3.2 Uniform Data 98

8.3.3 Real Data 100

8.4 Discussion 102

9 Conclusions and Future Research 105

9.1 Conclusions 105

9.2 Future Research 106

Bibliography 108

vi

List of Tables

3.1 Table of symbols and definition on equation of exact search . . . 19

3.2 Table of symbols and definition on nearest neighbor search . . . 20

4.1 Table of symbols and definition 31

vii

List of Figures

2.1 Example of R-Tree: Bounding box 6

2.2 Example of R-Tree: Index structure 7

2.3 Bounding boxes before splitting 9

2.4 Example of R+-Tree 9

2.5 Bounding boxes of R+-Tree 10

3.1 Example of exact search 17

3.2 Exact search on R-Tree 18

3.3 Discard node C by applying Heuristic 1 22

3.4 Discard object P by applying Heuristic 2 23

3.5 Discard node A by applying Heuristic 3 24

4.1 Example: discard node A by applying Heuristic 5 33

4.2 Example: pruning B from the Active Branch List 39

4.3 Node A cannot be discard 41

4.4 N-nearest neighbor search 42

4.5 CPU Time for nearest neighbor search on uniform data 45

4.6 Speedup for nearest neighbor search on uniform data 46

4.7 CPU Time for nearest neighbor search on clustered data 47

4.8 Speedup for nearest neighbor search on clustered data 48

4.9 CPU Time for nearest neighbor search on real data 49

4.10 Speedup for nearest neighbor search on real data 50

viii

4.11 CPU Time for 10-nearest neighbor search on real data . . � . . 51

4.12 Speedup for 10-nearest neighbor search on real data ： 51

4.13 CPU Time for 10-nearest neighbor search on clustered data . . . 52

4.14 Speedup for 10-nearest neighbor search on clustered data 52

5.1 Two disjoint bounding boxes before the insertion 54

5.2 Two bounding boxes overlap with each other after the insertion 55

5.3 Overlapping nodes created during splitting 56

5.4 Two overlapping bounding boxes enclose the same object . . . • 58

5.5 An example of R-Tree structure if overlapping happened 59

5.6 Three bounding boxes overlap with the same object 60

6.1 Two bounding boxes overlap with the same object 65

6.2 Example of R-Tree: Bounding box 70

6.3 Level List 71

6.4 An example: overlapping bounding boxes 75

6.5 An example: The index tree structure 76

6.6 Nearest neighbor search 77

7.1 Tree structure of Redundant R-tree 83

7.2 Exact search on Redundant R-Tree 84

8.1 Exact search on 10000 clustered data 91

8.2 Exact search on 10000 clustered data 92

8.3 Exact search on 10000 real data 93

8.4 Exact search on 10000 real data 94

8.5 Nearest neighbor search on 40000 clustered data 95

8.6 Node access against dimension on 40000 clustered data 96

8.7 Percentage of node access against dimension on 40000 clustered

data 97

ix

8.8 Nearest neighbor search on 40000 uniform data 98

8.9 Node access against dimension on 40000 uniform data 99

8.10 Percentage of node access against dimension on 40000 uniform datalOO

8.11 Nearest neighbor search on 40000 real data 101

8.12 Node access against dimension on 40000 real data 102

8.13 Percentage of node access against dimension on 40000 real data 103

8.14 Ratio of storage on 40000 uniform data 104

8.15 Ratio of storage on 40000 real data 104

t

V

List of Algorithms

3.1 Exact search algorithm for R-Tree 16

3.2 Nearest neighbor search algorithm for R-Tree 25

3.3 N-Nearest neighbor search algorithm for R-Tree 26

4.1 Calculation of MINMAXDIST 30

4.2 New nearest neighbor search algorithm for R-Tree 34

4.3 New N-Nearest neighbor search algorithm for R-Tree 43

6.1 OverlapChild 67

6.2 AddOverlap 68

6.3 StartOverlap 69

6.4 Overlap-Test 72

6.5 Overlap 73

6.6 Overlap-Start • . . '". 74

7.1 Exact search algorithm for Redundant R-Tree . . . 85

7.2 Nearest neighbor search algorithm for Redundant R-Tree 87

xi

Chapter 1

Introduction

1.1 Mot ivat ion

As multi-media is being developed, images are generated at strictly increasing

rate by a lot of applications. The development brings a lot of impacts on com-

puter science. For example, the traditional database can deal with text data

by exact information retrieval. However, it is not enough when image data are

being retrieved. Image data, on the other hand, is quite different from the orig-

inal text data. Besides exact-match retrieval, similarity retrieval and nearest

neighbor retrieval algorithm has to be devised for image applications. The size

of images are relatively large when they are compared with tlie text data. If

the number of images in the database is very large, efficiency in accessing data

becomes very important. The size of image data is very large and the dimen-

sion of image data is high also. Traditional indexing methods seems not to be

appropriate or even not able to deal with large amount of high dimension data.

Hence, we need a new indexing technique for multi-dimension data.

A lot of indexing techniques are developed to satisfy tlie needs. However, each

of them has disadvantages. For example, R-tree and its variants are some of the

1

.. Chapter 1. Introduction

most commonly used indexing structures in multi-media databases. However,

their performance on searching is not good enough to deal with high dimension

image data, and their performance is even worse in nearest neighbor searching.

We want to ask, if there is any method that can help improve the indexing

techniques? In order to answer the question, first of all, we have to know why

R-Tree algorithm have such deficiency. And then we can provide solution to the

identified problem.

1.2 Problems in Content-Based Indexing

Existing content-based indexing techniques cannot provide satisfactory perfor-

mance on data retrieval. No matter whether it is exact or nearest neighbor

search, a lot of nodes have to be accessed in order to get the desired object. R-

Tree and R*-Tree are the most commonly used content-based index structures.

However, they still have the problem. Furthermore, the performance on nearest

neighbor search is much worse than exact search. Besides the fact that finding

the nearest neighbor does need more steps, additional metrics to find the nearest

neighbor may slow down the processing speed.

We propose solution to the addressed problem. In this thesis, we formulate the

causes of these problems. First of all, we propose the use of redundancy on

content-based indexing so that a better performance on searching can achieved.

Searching algorithms of those Redundant trees have been proposed and experi-

ments for performance evaluation of several content-based index tree have also

been conducted. In addition, we discover a new nearest neighbor search algo-

rithm that can give better performance.

2

.. Chapter 1. Introduction

1.3 Contr ibut ions

This thesis focuses on index structure and searching techniques on content-

based indexing and presents new indexing structures as well as new searching

algorithms to improve data retrieval performance. The main contributions of

this thesis include the following research results:

1. It has been discovered that it is not necessary to use MINMAXDIST

in nearest search. A new pruning heuristic for nearest neighbor search

has been derived so that we try to eliminate the metric from the prun-

ing heuristics used in nearest neighbor search algorithm. The heuristic

is proved to be correct. The new heuristics have been shown that they

can replace the old pruning heuristics in [6]. Since we have proved the

pruning heuristics are redundant, based on the newly derived heuristic an

improved nearest neighbor search algorithm has been designed. The algo-

rithm uses the new pruning heuristic which does not use a computation

expensive metric. Furthermore, a defect of the original nearest neighbor

has been pointed out, and its solution has also been provided. In addition,

a N-nearest neighbor search algorithm has also be provided. Experiments

show that the new nearest neighbor search algorithm uses less CPU time

for processing while it does not introduce any extra number of node ac-

cess. Therefore, the improve nearest neighbor search algorithm provides a

better performance of data retrieval.

2. The feature of overlapping nodes in R-Tree has been described. The fea-

ture induces backtracking which makes R-Tree and its variant give a bad

performance on searching. A new content-based index structure, Redun-

dant R-Tree, has been designed and implemented to solve the problem

cause by the presence of overlapping node. Tlie exact search and neighbor

search algorithm of Redundant Tree has also been provided to help the

3

.. Chapter 1. Introduction

tree give a better performance. Experiments have been done to show that

our proposed index structure and searching algorithms outperforms the

others such as R-Tree and R*-Tree.

1.4 Thesis Organizat ion

In this thesis, we will focus on the bad performance of existing content-based

index structures on data retrieval, and propose new index structure and search

algorithms to solve the addressed problem. An introduction will be given in

Chapter 1. In Chapters 2 and 3, we will briefly describe several content-based

index structures and their searching algorithms. A problem that makes the

nearest neighbor search on R-Tree become inefficient will be discussed, and an

improved nearest neighbor search algorithm will then be presented in Chapter 4.

In Chapter 5, we will describe the feature of overlapping nodes in R-Tree and how

it prohibits efficient searching. In Chapter 6, we introduce our proposed content-

based index structure Redundant Tree to solve problems that existed in R-Tree.

Both exact search and nearest neighbor search algorithms of Redundant Tree

and examples of searching will be given in Chapter 7. Furthermore, experimental

results will be presented in Chapter 8, and the results show our proposed index

structure outperforms the originals. In Chapter 9, we will make a conclusion

and describe possible future research.

4

Chapter 2

Content-Based Indexing

Structures

Content-based index structures aim at providing methods for retrieving multi-

dimensional image data based on the images' contents. As multi-media appli-

cations are being developed, many content-based indexing structures are devel-

oped. Usually, the bounding region of a node will be represented as rectangles or

hyper-rectangles because of its simplicity. The most commonly used strategy of

handling rectangles is to divide the original space into appropriate sub-regions,

distributing the children of the original space into the sub-regions. The main

difference between different content-based index structures are how they insert

data into and delete data from trees, and when and how they split nodes.

In this Chapter, several content-based index structures will be introduced. The

characteristics of different index structures will also be described by examining

the methods for inserting data and splitting nodes. We will focus on R-Tree

and its variant. First of all, R-Tree, which is a generalized B-Tree manipulating

multi-dimensional data, will be described. Tlien, R+-Tree and R*-Tree, which

are variants of R-Tree, will also be discussed.

5

Chapter 2. Content-Based Indexing Structures

2.1 R-Tree

B1
B5 B6

~ ~ ^ ^

B2

B8 B9
Bll

_ ^ B 3 ^ B4
B10 r

Bi2 r
�B13

Figure 2.1: Example of R-Tree: Bounding box

A. Guttman in [4] proposed an multi-dimensional index structures called R-Tree.

R-Tree is a generalization of B-Tree for multi-dimensional objects that are either

points or regions. An R-Tree is a height-balanced tree similar to a B-Tree with

index records in its leaf nodes containing pointers to data objects. We may

assume that nodes correspond to disk pages if the index is disk-resident, and

the structure is designed so that only a small number of nodes will be visited

for each search query.

Leaf nodes in an R-Tree contain index object entries of the form {MBR, tuple-

pointer) where tuple-pointer refers to a tuple in the database and MBR is an

n-dimensional rectangle which is the bounding box of the spatial object indexed:

MBR={Io,Iu...,In-i)

Here n is the number of dimensions and Ii is a closed bounded interval [a, b

describing the content of the object along dimension i. Non-leaf nodes contain

6

Chapter 2. Content-Based Indexing Structures

B1

B2 B3 B4

A A A
B5 B6 B7 B8 B9 B10 Bll B12 B13

Figure 2.2: Example of R-Tree: Index structure

entries of the form
{MBR, child — pointer)

where child — pointer is the address of a lower node in the R-Tree and MBR

covers all bounding boxes in the lower node's entries. MBR is also referred as

Minimum Bounding Region or Minimum Bounding Box.

Let M be the maximum number of entries that will fit in one node and let m

be a parameter specifying the minimum number of entries in a node where

M
m < —

� — 2

According to [4], an R-Tree must satisfy the following properties:

1. Every leaf node contains between m and M index entries unless it is the

root.

2. For each index record (MBR, tuple-pointer) in a leaf node, MBR is the

smallest bounding box that spatially contains the n-dimensional data ob-

ject represented by the indicated tuple.

7

Chapter 2. Content-Based Indexing Structures

3. Every non-leaf node has between m and M child nodes unless it is the root.

4. For each entry (MBR, child-pointer) in a non-leaf node, MBR is the small-

est bounding box tliat spatially contains the bounding boxes in the child

node.

5. The root node has at least two child nodes unless it is a leaf.

6. All leaves appear on the same level.

Inserting objects for new data tuples is similar to insertion in a B-Tree. Started

from the root of the tree, a child node which causes least area enlargement will

be selected, and the process repeated until it is the leaf. Then, the new objects

are added to the leaves. In case overflow of node occurs, nodes will be splitted

and the splits propagate up the tree. The split should be done in a way that both

new nodes will need to be examined on subsequent searches. Since the decision

on whether to visit a node depends on whether its bounding box overlaps with

the search area, the total area of the two bounding boxes after a split should

be minimized. Several split algorithms liave been discussed and the linear-cost

split algorithm is suggested in [4] because it can give satisfactory splits while it

does not involve too much computation.

The searching algorithm descends the tree from the root which is similar to a

B-Tree. Details about searching will be described in Chapter 3.

2.2 R+-Tree

If R-Tree is built using its insertion algorithms, the structure may provide a lot of

overlapping regions and dead-space in the nodes that result in bad performance

on data retrieval. In fact, the concepts of coverage and overlap are important,

but they are not much concerned in R-Tree�Coverage of a level is defined as

8

Chapter 2. Content-Based Indexing Structures

C G

' E

A B

D F p - ~ ~ "

H

Figure 2.3: Bounding boxes before splitting

A B

nTL
C D El E2 F G H

Figure 2.4: Example of R+-Tree

the total area of all the bounding boxes associated with the nodes. Overlap of a

level is defined as the total area contained within two or more nodes. Efficient

R-Tree searching algorithms require that both overlap and coverage should be

minimized. Minimal overlap is even more critical than minimal coverage. It has

been shown that zero overlap and coverage is only achievable for data points

that using a packing technique for R-Trees. The performance of searching is

improved. Overlap-free splitting does not always exist for extended data objects. 9

Chapter 2. Content-Based Indexing Structures

C G

E l E2

A B

D F

H

Figure 2.5: Bounding boxes of R+-Tree

However, if partition is allowed to split bounding boxes, then overlap-free among

intermediate nodes can be achieved. Whenever a bounding box at a lower level

overlaps with another bounding box, it will be decomposed into a collection of

non-overlapping boxes whose union is equal to the original bounding box.

In [5], T. Sellis et al proposed a variation of R-Tree which is called R+-Tree.

R+-Tree avoids overlapping bounding boxes in intermediate nodes of the tree.

The data structure of R+-Tree is similar to R-Tree: Leaf nodes in an R+-Tree

contain index object entries of the form {MBR, tuple-pointer). Non-leaf nodes

contain entries of the form {MBR, child — pointer). Besides, according to [5],

R+_Tree has following properties:

1. For each entry {MBR, child—pointer) in an intermediate node, the subtree

rooted at the node is pointed to by child — pointer and it contains a

bounding box R if and only if R is covered by MBR.

2. For any two entries (M B R i , child—pointeri) and {MBR2, child-pointer2)

of an intermediate node, the overlap between MBRi and MBR2 is zero.

10

Chapter 2. Content-Based Indexing Structures

3. The root has at least two children unless it is a leaf.

4. All leaves are at the same level.

There are differences between inserting an object to R+-Tree and R-Tree. When

an object is being inserted to R+-Tree, it may be added to more than one

leaf node. It is because it may be broken into several sub-regions. The splitting

algorithm is more complicated than that of R-Tree because it avoids overlapping.

If splitting is necessary, first of all, an splitting axis with smallest cost will be

chosen. Next, it divides the space and distributes the child nodes. Then, it

recursively packs the entries of each level of the tree so that overlap-free nodes

are obtained. The split will be propagated upwards while the pack will be

propagated downwards.

An example of R+-Tree is shown in Figure 2.3. There are two overlapping

bounding boxes A and B. Bounding box A encloses four bounding boxes: C,

D, E and F. Bounding box B encloses four bounding boxes: E, F\ G and H.

Both bounding boxes A and B enclose bounding boxes E and F. In R-Tree, the

overlapping region exists. It may happen that both E and F belong to same

parent, say A, but the other bounding box B still encloses E and F. On the

other hand, in R+-Tree, overlapping is not allowed. E will be splitted into two

nodes Ei and E2 such that Ei is enclosed by A only and E2 is enclosed by B

only. Therefore, A and B can be adjusted to avoid overlapping region. Figure

2.4 shows the R+-Tree and Figure 2.5 shows the bounding boxes in R+-Tree of

the example.

2.3 R*-Tree

R-Tree emphasizes on minimizing the area of each bounding box of nodes. N.

Beckmann et al argues in [7] that it is neither the best nor the only optimization

11

Chapter 2. Content-Based Indexing Structures

criteria. In R-tree, bounding boxes are built up from subsets of between m and

M bounding boxes such that data retrieval operations are supported efficiently.

However, the parameters used are not enough to provide efficient retrieval oper-

ations. The known parameters of good retrieval performance affect each other.

N. Beckmann et al in [7] states four parameters for retrieval performance. They

are area covered by a bounding box, overlap between bounding boxes, margin

of a bounding box, and storage utilization. In order to achieve good perfor-

mance, all four parameters should be optimized. However, it is impossible to

optimize one of them without influencing other parameters which may cause a

deterioration of the overall performance. In practice, only some of them can be

optimized.

During the splitting phase of R-tree, all children of the splitting node will be

distributed into two splitted nodes. When the distribution process begins, first

of all, two entries, which are called seeds, among those children will be selected

so that the pair would have the largest area if they are put in the same node.

The pair are the first entries of those splitted nodes. Then remaining children of

the splitting node will be distributed into these nodes by the least-enlargement-

of-area strategy. No matter whether a quadratic or linear seed-picking algorithm

which is recommended by Guttman in [4] is used, the splitting strategy is simple

to implement. However, if small seeds are picked, several problems may occur.

First of all, if in d — 1 of the d dimensions a distant bounding box has nearly

the same coordinates as one of the seeds, it will be distributed first. The area

and the area enlargement of the created bounding box will be very small, but

the actual distance is very large. In addition, the algorithm tends to favor the

bounding box which is created from the first assignment of a bounding box to

one seed. Moreover, if one group has reached the maximum number of entries

M — m + 1, all remaining entries are assigned to tlie other group without con-

sidering geometric properties.

12

Chapter 2. Content-Based Indexing Structures

R*-tree is a variant of R-tree. It is based on the reduction of the area, mar-

gin and overlap of tlie bounding boxes. In addition, it prevents splitting and

its structure is reorganized dynamically. Thus, tlie storage utilization is higher

than R-tree.

When choosing the appropriate subtree to insert data, one has to determine the

minimum overlap cost, minimum margin cost and minimum area cost. Similarly,

the minimum overlap cost is also concerned when splitting a node. When split-

ting occurs, it will have to choose a split axis, and choose a split index, before

distributing entries into two groups. Choosing split axis is to determine the axis

which is perpendicular to which the split is performed. The axis will be chosen

if it has the greatest normalized separation of two most distant bounding boxes

of the current node. Choosing split index is to choose the distribution with the

minimum overlap-value along the chosen split axis. The choosing split axis and

split index are very important to the performance of R*-tree because it is related

to the presence of overlapping node in tlie tree. The split algorithm does not

guarantee that an overlap-free split will be provided. However, R+-tree cannot

perform better than R*-tree because R+-tree tries to provide overlap-free split

which may make those nodes become less quadratic and hence tlieir margin will

be increased. In [7], margin of bounding box is one of four parameters that will

affect the performance of the tree and it proves why R*-tree can perform better

than R+-tree.

Both R-tree and R*-tree are nondeterministic in allocation of the entries onto

the nodes. R-tree forces entries to be reinserted during the deletion routine.

R*-tree, on the other hand, forces entries to be reinserted during the insertion

routine. There are some advantages of reinsertion algorithm in R*-tree. First

of all, forced reinsert changes entries between neighboring nodes so that it de-

creases the overlap and improves the storage utilization. Moreover, tlie shape of

13

Chapter 2. Content-Based Indexing Structures

the bounding boxes will be more quadratic.

N. Beckmann em et al [7] have done some experiments comparing the perfor-

mance of Linear cost R-tree, Quadratic cost R-tree, Greene's R-tree, and R*-

Tree. The results show that R*-Tree is the most outstanding algorithm. R*-Tree

has also been proved to be the most efficient R-Tree variant on data retrieval.

Many real applications, for example the QPIC project in [14], [15], [16] and [17],

use R*-Tree to index their multi-dimensional multi-media data.

14

Chapter 3

Searching in Both R-Tree and

R*-Tree

The main purpose of constructing a R-Tree is to index data so that it can

provide efficient data retrieval. Besides the construction of R-Tree, its searching

algorithms will also be described in this Chapter. Exact search and nearest

neighbor search, which are the most commonly used searching method, will

be introduced. Their algorithms and other related issues such as metrics and

pruning heuristics used on nearest neighbor search will also be briefly explained.

3.1 Exact Search

Before the exact search algorithm is described, the definition of exact search

should be clarified first: when an exact search queiy is to be performed, the

index tree will be searched to see whether the given query object does exist in

the tree or not. If it does, then the object is returned else a failure message

is returned. That means, a query object will be specified and the searching

operation is to check its existence in the tree.

15

Chapter 3. Searching in Both R-Tree and R*-Tree

The algorithm of exacting search is given in Algorithm 3.1.

A l g o r i t h m 3 . 1 Exact search algorithm for R-Tree

Procedure E x a c t _ S e a r c h
lntput : Q

/* Exact search query */
O u t p u t : Resul t

/* Boolean value to show the query is found or not */
Begin

If current node P is at leaf level
If P is equal to the query Q
Return P

Else
For i :二 1 to number of children of P

Set Pi to be the 1仇 children of P
If the bounding box of Pi encloses the query Q
Then

Call Exact_Search
If the result is not equal to FALSE

Return t h e result
Return FALSE

End

The exact search algorithm is based on the inside-outside test. From the prop-

erty of R-Tree, all bounding boxes of child nodes will be enclosed by the bounding

box of the parent node. Equivalently, if the bounding box of a node A is not

enclosed by the bounding box of another node B, then node B will not be an

ancestor of node A. The exact search algorithm makes use of this property to

find the object: If the bounding of a node encloses the query object, then the

node may contain the query object. Therefore, the node will be accessed and

the process will be repeated until either the leaf level is reached or all bounding

boxes of child nodes do not enclose the query. The process will be finished when

the query object is found, or all nodes whose bounding boxes enclose the query

object are searched but the query object is not found.

_ 16

Chapter 3. Searching in Both R-Tree and R*-Tree

B1
B5 B6

——u - oR

Vi
B2 厂 " 7 1 — —

F ^

B8 B9

B l l

B3 L _ _ _ _ B4

B1() .
Bi2 r

J B13

F i g u r e 3 .1: I , : xa i np l c o f exact scarc l i

A n e x a m p l e o i i exac1 search is s h o w n in F i g u r e 3 .1 . A q u (Ty Q is spec i f i ed ancl

w e a r e g o i n g t o soarc l i for t l i c e x i s t e n ce o f Q iii l h c Tr(、(:、. M g u r c ：]：> s h o w s t l i e

R-1Vee s t r u c t u r e o f t l i c o x a n i p l c . T l i c s e a r c h i n g w i l l b (、 s l a r l ed a l t h c r oo t o f

1 ree, B\. S i n c c t h e b o u i i d i n g lx)x o f / i | (、ndos(、the q u e r y， t h e s c a r c h i i i g w i l l l)e

c o n t i n u e d aiicl t h e c h i l d i i odcs o f Bx w i l l 1)(、cxaiii in(xl. Tl i (、 l) () in i (l ing l)ox o f t h e

l irsl (,hil(l i iocle o f “ 卜 w h i c h is / ¾ . (、iK,los(、s t h c (|urry. " 2 is th(、ii searcl iccl . I t

is fou i i (l t h a t al l cliilcl i i odcs o f l l2 (1() not r o i i l a i n t l i e (! i icry (、\(、n t h o u g h t l i e r c

(w i s l s a c h i l d nod (、o f / ¾ . B-- w h o s e h o u i K l i i i g lx>x onc loscs t l i c (j i iory. A f t e r

(^ x a m i n i n g t l i c s u b t r e e o f l l2 a n d t l i (、query is iio1 f()uii(l , 1 l io s e a r c h i n g w i l l b e

s h i f t e d t o t h c svii)trec o f / ¾ w h o s e b o u n d i n g box enc loses t h c (”i(、ry t o o . S u p p o s e

i l s c h i l d noclc / ¾ c o n t a i n s l h c q ue ry , t h c s e a r c h i n g w i l l 1)c t e r m i i i a l c f l a f t e r t h e

q u e r y is f o u n d a n d t h e resul t w i l l b e g i v e n t o t l i e user .

O n t h e c o n t r a r y , a n o t h e r q u e r y R is t o b e search(、(] iri t l i e s a m e e x a m p l e . T h e

s e a r c h i n g w i l l a l so b e s t a r t e d at t h e roo t o f t ree , / i] . S i n c e t h e b o u n d i n g b o x

17

Chapter 3. Searching in Both R-Tree and R*-Tree

B1

B2 B3 B4

A A A
B5 B6 B7 B8 B9 B10 B l l B12 B13

)[
Q

Figure 3.2: Exact search on R-Tree

of Bi encloses the query, the .searching will be continued and the child nodes of

Bi will be examined. It is found that all child nodes of Bi do not contain the

query, and therefore the searching will be terminated and a failure message will

be returned.

Y.Theodoridis and T. Sellis in [24] proposed an equation to predict the per-

formance of R-Tree in range search. Since an exact search query is equal to a

range search query with a point-size query window, the performance of R-Tree

in exact search can be derived as follows:

l+R。"/fl r^ n / p\i|

DiskAccess 二 ̂ < yj • [• Dj • — ^ + 1
i=l 1 丁 i=l \ } .

where the definition of symbols used in the above equation is explained in Table

3.1. '

18

Chapter 3. Searching in Both R-Tree and R*-Tree

Symbols Definition
n number of dimensions
N number of data
Dj density of the dataset at level j
f average node capacity

Nj number of R-Tree nodes at level j

Table 3.1: Table of symbols and definition on equation of exact search

3.2 Nearest Neighbor Search

Nearest Neighbor search aims at searching for an object which is the nearest one

among all data objects, to the query object. The meaning of nearest is usually

the shortest Euclidean distance. The searching process is not as trivial as exact

search. During the exact searching, the required object is known, and the main

task is checking whether the object does exist in the index tree or not. On the

other hand, in nearest neighbor search, the required object may not be the same

as the query. Consequently, the nearest neighbor algorithm is more complicated

than that of exact search, and it generally needs more disk access and time for

processing.

3.2.1 Definit ion of Searching Metrics

Instead of using the trivial sequential search to find the nearest neighbor, Rous-

sopoulos, Kelley and Vincent in [6] suggested an efficient nearest neighbor search

algorithm on R-Tree. In this algorithm, an efficient pruning heuristics are used

to discard impossible candidates from the Active Branch List, which stores all

entries to be accessed, so that less nodes will be accessed and the correct re-

sult can be guaranteed at the same time. Before the nearest neighbor search

algorithm is described, two metrics are introduced first. The), are MINDIST,

minimum distance, and MINMAXDIST, minimum of maximum possible dis-

tances.

19

Chapter 3. Searching in Both R-Tree and R*-Tree

Symbols Definition
n number of dimension
Si lower bound of the node on î ^ dimension
ti upper bound of the node on î ^ dimension
qi vector component of query point on î ^ dimension

Table 3.2: Table of symbols and definition on nearest neighbor search

The first metric, MINDISTA which is the minimum distance from node A to

the query Q = {q1,q2, ...,^Vi}, is defined as follows:

Definit ion 1 MINDISTA, the minimum distance from bounding box of A to ,
the query Q，is:

n
MINDISTA = Y . h - r , f

i=i

where
5^ if Qi < Si

ri = < U if qi > ti

qi otherwise
V

and Si，ti are defined in Table 3.2.
•

MINDISTA is the square of the minimum Euclidean distance from the node A

to the query. Furthermore, it also serves as a lower bound of distance from the

nearest neighbor within bounding box of node A to the query. That means, if

an object P which is the nearest to the query among all objects in node A, then

MINDISTA < DISTp

must be true where DISTp is the distance from P to the query.

The second metric, MINMAXDISTA, which is tlie minimum of maximum

possible distances, is defined as follows:

20

Chapter 3. Searching in Both R-Tree and R*-Tree

Definit ion 2 MINMAXDISTA, the minimum of ma,ximum possible distances

of the bounding box ofA from the query Q = {f/i,f/2,.","n}, is:

MINMAXDISTA= min {\qk-rmk\^^ Y. | g ^ r M , f)
l % n 询

l<i<n
where

‘Sk ifqu < ^
rm.k =

tk otherwise
and

,r ‘ Ŝ- U q i 2 ^ rM^ —
ti otherwise

\

and Sk, tk are defined in Table 3.2.
•

MINMAXDISTA serves as an upper bound of distance of the nearest neighbor

in bounding box of node A to the query, and it was proved to be true by using

the Minimum Bounding Region Face Property stated in [6]. Therefore, if P is

an object nearest to the query among all objects in A, then

DISTp < MINMAXDISTA

must be true too.

By the definitions of MINDISTA and MINMAXDISTA, they serve as the

bounds to the distance of nearest object in the bounding box of node A. It is

particularly important to the nearest neighbor algorithm in [6] that can make use

of the approximation to provide powerful pruning heuristics so that an efficient

nearest neighbor search algorithm can be obtained.

3.2.2 Pruning Heuristics

In order to reduce the number of disk access during the nearest neighbor search,

pruning heuristics liave been used. Roussopoulos, Kelley and Vincent in [6] used

21

Chapter 3. Searching in Both R-Tree and R*-Tree

the following three heuristics to discard nodes which are not or do not contain

the nearest neighbor.

Let Q be a nearest neighbor query. Let MINDISTA and MINDISTc be

the minimum distances from the query to minimum bounding boxes of nodes

A and C respectively. Let MINMAXDISTA and MINMAXDISTc be the

MINMAXDISTs from the query to minimum bounding boxes of nodes A and

C respectively. Let P and B be objects at leaf level DISTp be the actual

distance from P to Q and DISTs be the actual distance from B to Q.

Heurist ic 1 If MINDISTA. is larger than MINMAXDISTs, then node A

will be discarded.

Q MmDIST(A)

^ ^
\ \ ^ � � : : : • -^___^^ MD>JDIST(C)

\ ^^ , DIST(QP) "̂~~~~̂*̂ \ DIST(QB)�

\ B A P

— M I
c

Figure 3.3: Discard node C by applying Heuristic 1

An example of using Heuristic 1 is shown in Figure 3.3. In this example, the

MINDIST of node C is larger than the MINMAXDIST of node A. Since

MINDISTA and MINMAXDISTA serve as the lower and upper bound of

distance of the nearest neighbor within the bounding box of node A to tlie given

query, Heuristic 1 can be used to discard node C from the Active Branch List

22

Chapter 3. Searching in Both R-Tree and R*-Tree

because its nearest neighbor to the query, say P, must be farther than object B

which is the nearest neighbor in node A to the query.

Heurist ic 2 If DISTp is larger than MINMAXDISTs, then the object P will

be discarded.

Q M ^ D I S T

^ ^ E 1
\ ^ \ ^ ^ -. ^^^DIST(QP)

\ DIST_î ^ ^ ^
\ B A P

M^MAXDIST \

\ I .
Figure 3.4: Discard object P by applying Heuristic 2

Figure 3.4 shows an example of using Heuristic 2. Similar to the example used

in Figure 3.3, Heuristic 2 can be applied to discard object P from the Active

Branch List. It is because its distance to the query is larger than the upper

bound of nearest neighbor of node A, and consequently, it must be farther than

object B which is the nearest neighbor of node A to the query.

Heurist ic 3 If MINDISTA is larger than DISTp, then node A will be dis-

carded.

An example of using Heuristic 3 is shown in Figure 3.5. In this example, the

MINDISTA is larger than the distance from the query to an object P, which

may be the nearest neighbor of the given query. Using Heuristic 3, node A will

be discarded from the Active Branch List because it is the nearest neighbor to

the query, say B, must be farther than object P which implies all child nodes of

A must not be the nearest neighbor to the query.

23

Chapter 3. Searching in Both R-Tree and R*-Tree

Q MINDIST

^ ^ q ； I
\ DIST(QB) B

DIST(QP)X
P A

Figure 3.5: Discard node A by applying Heuristic 3

3.2.3 Nearest Neighbor Search Algorithm

After the metrics and pruning heuristics have been introduced, we present the

nearest neighbor search algorithm in [6]. The nearest neighbor search algorithm

is given in Algorithm 3.2.

In the algorithm, the current node will first be checked to see whether it is at the

leaf level or not. If it is a leaf, then its distance to the query will be calculated,

and i f the distance is less than the distance from the temporary nearest neighbor,

then we set the temporary nearest neighbor to be current node and update the

nearest distance.

On the other hand, if the current node is not at the leaf level, then the Active

Branch List for further search will be generated. The Active Branch List is a list

which contains all child nodes of current node that will be accessed in order to

get the nearest neighbor. The Active Branch List is sorted by ascending order

of MINDIST. Next, pruning will be performed by appl3,ing Heuristics 1 and 2.

Then, it iterates through the Active Branch List and recursively access the child

nodes by calling NN_Search. After NN_Search lias been called, pruning will

be performed by applying Heuristic 3. The recursive call and tlie second pruning

24

Chapter 3. Searching in Both R-Tree and R*-Tree

Algori thm 3.2 Nearest neighbor search algorithm for R-Tree

Procedure N N _ S e a r c h
Input : N O D E

/* node to be visited */
NN-DIST—
/* distance from temporary nearest neighbor to the query */

Begin
If current node P is at leaf level
T h e n

For i := 1 to no. of children of current node
If DISTp < NN_DISTtemp

Set current node to be nearest neighbor
Update NN—DIST—

Else

Generate Active Branch List of current node

C a l c u l a t e MINDIST a n d MINMAXDIST

Sort the Active Branch List by ascending ordering of MINDIST

Apply Heuristic 1 and 2 to prune objects
For i := 1 to no. of entries in the Active Branch List

Call NN—Search
Apply Heuristic 3 to prune objects

End .

will be repeated until no entry in the Active Branch List remains unvisited.

3.2.4 Generalization to N-Nearest Neighbor Search

Roussopoulos et al proposed an nearest neighbor search algorithm for R-Tree

and its variant in [6]. They also described how the iV-nearest neighbor search

algorithm can be derived from their nearest neighbor search algorithm. The

followings must be considered:

• A sorted buffer of at most N temporary nearest neighbors is needed.

• 25

Chapter 3. Searching in Both R-Tree and R*-Tree

Algor i thm 3.3 N-Nearest neighbor search algorithm for R-Tree

Procedure N - N N _ S e a r c h
Input : N O D E

/* node to be visited */
NN-DISTN
/* distance from temporary N-nearest neighbor to the query */

Begin
If current node P is at leaf level
T h e n

For i :二 1 to no. of children of current node
If DISTp < NN_DISTN

Call Insert.NN{P)
U p d a t e NN_DISTN

Else
Generate Active Branch List of current node

Calculate MINDIST and MINMAXDIST

Sort the Active Branch List by ascending ordering of MINDIST

Apply Heuristic 1 and 2 to prune objects

For i :二 1 to no. of entries in the Active Branch List .
Call N-NN_Search
Apply Heuristic 4 to prune objects

End

• The minimum bounding boxes pruning is done according to the distance

of the furthest nearest neighbor in this buffer.

Based on the nearest neighbor search algorithm in [6], we can extend the algo-

rithm to find the TV-nearest neighbor of a given query.

We define that the first nearest neighbor is tlie closest object to the query while

the N ^ nearest neighbor is the farthest object among all entries in the near-

est neighbor list. Let the distance from the first nearest neighbor to the query

denoted by NN_DISTi, the -distance from the second nearest neighbor to the

26

Chapter 3. Searching in Both R-Tree and R*-Tree

query denoted by NN_DIST2, and so on. In the algorithm, we implement a

nearest neighbor list which acts as a buffer and it stores the temporary N-nearest

neighbors of the query. The nearest neighbor list is an ordered list. When an

object has been checked that it should be a member of the temporary N-nearest

neighbors, a procedure InsertJVN[P) will be invoked to insert the object into

an appropriate position in the list.

In Roussopoulos's algorithm, NN_DISTtemp stores the distance from the tem-

porary nearest neighbor to the query. In N-nearest neighbor search algorithm,

however, NN_DISTtemp is not adequate because it does not give any informa-

tion about the temporary N ^ nearest neighbor which should be used for pruning

unnecessary nodes. A new pruning heuristic should be designed for N-nearest

neighbor search algorithm. The new heuristic is based on the nearest neighbor

algorithm except that NN_DISTfp is replaced by NN—DISTn which is the

temporary N^^ nearest neighbor of the query. The following heuristic is the new

pruning heuristic.

Heurist ic 4 If MINDISTA is larger than NN-DISTw，then node A will be

discarded.

T h e o r e m 1 Heuristic 4 ^s true.

Proof: By definition,

NN.DISTi < NN_DIST2 < …S NNJJISTN

is true. Therefore, if NNJJISTN < MINDISTA where MINDISTA is the

minimum distance from bounding box of node A to the query, all objects which

are enclosed by the bounding box of node A must be farther than the 妒

nearest neighbor whose distance to the query is NN_DISTN. Hence, Heuristic

4 is proved to be correct. •

27

Chapter 3. Searching in Both R-Tree and R*-Tree

In the algorithm, the current node will first be checked to see whether it is

at the leaf level or not. If it is a leaf, then its distance to the query will be

calculated, and if the distance is less than the distance from the temporary

nearest neighbor, then we set the temporary nearest neighbor to be current node

and update the nearest distance. On the other hand, if the current node is not

at the leaf level, then the Active Branch List for further search will be generated.

The Active Branch List is a list which contains all child nodes of current node

that will be accessed in order to get the nearest neighbor. MINDIST and

MINMAXDIST are calculated for each entry in the Active Branch List, and

the Active Branch List is sorted by ascending order of MINDIST. Heuristics

1 and 2 are applied to prune objects. Then, it iterates through the Active

Branch List and recursively access child nodes by calling NN_Search. After

NN-Search has been called,..pruning will be performed by applying Heuristic

4. The recursive call and the second pruning will be repeated until no entry in

the Active Branch List remains unvisited.

28

j

Chapter 4

An Improved Nearest Neighbor

Search Algorithm for R-Tree

4.1 Introduct ion

The task of nearest neighbor search is finding the nearest neighbor from a set of

data for a nearest neighbor search query. Nearest neighbor search is not as easy

as exact search. In general, it needs more node access than exact search because

it may continue the search process even though the real nearest neighbor is found

until the identification of the nearest neighbor is proved. It is obvious that a

good estimation of nearest neighbor and a set of efficient pruning heuristics are

very important to the performance of the search.

In Chapter 3, we have briefly described two metrics, MINDIST and MIN-

MAXDIST and three pruning heuristics which have been used on nearest neigh-

bor search in [6]. Those heuristics can reduce the number of node access on

an R-Tree and its variants wlien it is compared to linear search on the dataset.

However, extra CPU time overhead will be introduced by the process of cal-

culating the two metrics. Algorithm 4.1 shows an algorithm of calculating the

29

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Algori thm 4.1 Calculation of MINMAXDIST —

Procedure C A L C U L A T E _ M I N M A X D I S T
Input ： ({5i,ti}, {s2,t2}, •••, {Sn,tn})

/* The bounding box of the node */
O u t p u t : MINMAXDIST

/* The MINMAXDIST of the node */
Begin

Initialize MINMAXDIST

Set Dim to be number of dimension

For i := 1 to Dim

Set MINMAXDISTtemp to be zero

For k :二 1 to Dim
If i 二 k

Then If Qk < ^ ^ ^
Then rrrik ：= Sk
Else rrrik :二 tk

MINMAXDISTtemp -= MINMAXDISTfp + \qk — rrrikf
Else If qk > ^ ^

Then rMk :二 Sk

Else rMk :二 h

MINMAXDISTtemp ：= MINMAXDIST^^^ + \qk — rM^|'

lf MINMAXDISTtemp < MINMAXDIST

Then MINMAXDIST :二 MINMAXDISTu—

End

MINMAXDIST of a node. It is easy to observe that the calculation of MIN-

MAXDIST is computationally expensive and the time is bounded by 0{n^)

where n is the number of dimension. There are two pruning heuristics which

make uses of MINMAXDIST. The overhead is large especially when a large

amount of high dimension data lias to be dealt with, which is common to occur

30

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Symbols Definition
NNreai nearest neighbor to the given query
NNtemp nearest neighbor among searched objects

MINDISTA minimum distance from node A to the query
MINMAXDISTA minimum of maximum possible distance

from node A to the query
NN_DISTreai distance from the nearest neighbor to the query
NN-DISTtemp distance from the temporary nearest neighbor

DISTp distance from the object P to the query

Table 4.1: Table of symbols and definition

in real multi-media applications.

It is found that the calculation of MINMAXDIST is expensive. Since Heuristics

1 and 2 make use of MINMAXDIST, they should be replaced by a new pruning

heuristic which does not use MINMAXDIST if the new heuristic can be derived

so that CPU overhead can be reduced and the node access overhead will not be

increased. If such a case exists, the old heuristic should be replaced by the more

efficient one.

In this Chapter, new pruning heuristic and a new nearest neighbor search algo-

rithm based on the new heuristic will be proposed. The new heuristic will be

shown to be at least as powerful as the original heuristics in terms of the number

of disk access during the searching. Therefore, the number of disk access during

the searching will not be increased. Experimental results will be given to show

that the total CPU time used for nearest neighbor search will be reduced when

the new heuristic is applied.

4.2 New Prun ing Heuristics

Two new pruning heuristics for nearest neighbor search 011 R-Tree will be in-

t roduced�Before the heuristics are described, lemmas, which will be used for

31

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

proving the correctness and efficiency of those pruning heuristics, are described

first.
I

L e m m a 1 If P is the nearest neighbor among all objects in node A to the query

Q, then MINDISTA < DISTp < MINMAXDISTA.

P r o o f : By definition, MINDISTA is the minimum distance from A to the

query Q. From the minimal bounding region face property shown in [6], if

P is an object nearest to the query among all objects in A, then DISTp <
i

MINMAXDISTA. Therefore, MINDISTA and MINMAXDISTA serve as

a lower bound and a upper bound to the distance from the nearest neighbor in

node A to the query respectively. •

L e m m a 2 If there are two nodes A and B with the condition MINDISTA <

MINDISTe, then MINMAXDISTe 水 MINDISTA.

Proof: From Lemma 1, MINDISTs < MINMAXDISTs must be true for all

nodes B. Since the precondition MINDISTA < MINDISTe is provided, the

following inequality MINDISTA < MINDISTe < MINMAXDISTe can be

derived. Hence MINMAXDISTe 水 MINDISTA. •

L e m m a 3 If A is an ancestor node of B in a R-tree, then MINDISTA <

MINDISTe.

Proof : This follows from the definition of MINDIST. •

After some lemmas have been introduced, the new pruning heuristics for nearest

neighbor search is to be described in detail. We assume that in the search

algorithm that makes use of these heuristics, the distance to tlie nearest object

discovered so far is kept in a variable NN—DISTump, that is, the distance from

the temporary nearest neighbor to the query.

32

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Heurist ic 5 IfMINDISTA is greater than NN_DISTump, then node A will

be discarded.

Theorem 2 Heuristic 5 is correct.

Proof: NN.DISTreai < DIS.Tp for all objects P in the dataset. For all objects

R which are under the child nodes of node A, by Lemma 1, MINDISTA <

DISTn must be true. If MINDISTA is greater than NN_DIST—, the rela-

tion NN—DISTtemp < DISTn must also be true. Therefore, R must not be the

nearest neighbor and it implies that all child nodes of A must not contain the

real nearest neighbor. Consequently, node A can be discarded from the Active

Branch List. Hence, the heuristic is correct. •

Q MINDIST

^ ^ I
X , , ^ ^ DIST(QB) B

uNN_DIST _ Q P) ' p A
("•

NN

Figure 4.1: Example: discard node A by applying Heuristic 5

Figure 4.1 shows an example of applying Heuristic 5. In the figure, NN repre-

sents the temporary nearest neighbor to query among all searched objects. The

condition

NN.DISTtemp < MINDISTA

is given. No matter whether NN is the real nearest neighbor to the query or

not, the nearest neighbor in node A, say B, must have a greater distance to

the query than NN. That means all child nodes of A cannot be the nearest

.. 33

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

neighbor. Therefore, node A can be removed from the Active Branch List by

applying Heuristic 5.

4.3 A n Improved Nearest Neighbor Search Al-

gori thm

Algori thm 4.2 New nearest neighbor search algorithm for R-Tree

A L G O R I T H M B:
Procedure N N _ S e a r c h
Input : N O D E

/* node to be visited */
NN—DIST—

/* distance from temporary nearest neighbor to the query */
Begin

If current node P is at leaf level
T h e n

If DISTp < NN_DISTump

Set current node to be nearest neighbor
Update NN-DISTtemp

Else
Generate Active Branch List of NODE 丨

. I

Calcula te MINDIST i

Sort the Active Branch List by ascending ordering of MINDIST

For i := 1 to no. of entries in the Active Branch List
Apply Heuristic 5 to do pruning
Call NN-Search

End

After the new heuristic has been introduced and proved to be correct in the last

section, a new nearest neighbor search algorithm is proposed that can make use

of the new pruning heuristics. Let us denote the original algorithm in [6] by

34

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Algor i thm A which uses Heuristics 1, 2 and 3, and MINDIST ordering in the

Active Branch List. The improved nearest neighbor search algorithm is given as

Algor i thm B (4.2).

Algorithm B is similar to the nearest neighbor search algorithm shown in Algo-

rithm 3.2. The difference between the new and the original search algorithms is

that Heuristics 2 and 3 have been replaced by Heuristic 5 in the new algorithm.

Heuristic 1 have also been deleted from the algorithm.

In the new nearest neighbor search algorithm, first of all, the current node will

be checked to see whether it is at leaf level or not. If it is a leaf node, then

its distance to tlie query will be calculated.工 If the distance is less than the

distance from the temporary nearest neighbor to the query, then the temporary

nearest neighbor is set to be the current node and the nearest distance is up-

dated.

On the other hand, if the current node is not at leaf level, then the Active

Branch List for further searching will be generated and all entries in the list

will be sorted by ascending order of MINDIST. Next, it iterates through the

Active Branch List and recursively access child nodes by calling NNSearch.

Before NNSearch is called, pruning operations will be performed by applying

Heuristic 5 so that unnecessary nodes will be pruned before accessed. The re-

cursive procedure call and the pruning will be repeated until no entry in the

Active Branch List remains unvisited.

In the nearest neighbor search algorithm in [6], there is a statement "It may

iNote tha t the algorithm in [6] assumes that a leaf node contains a number of objects. In
our case we assume objects are #-dimensional points and the leaf node corresponds to a single
object. However, it is straightforward to modify Algorithm B to assume leaf nodes contains
objects tha t are not simple poin ts ,and the proofs of correctness and pruning ability will apply
to the modified algorithm.

35

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

discard all entries in the Active Branch List." However, the statement is not

true if Algorithm A is used. There exists at least one node, the first entry in

the Active Branch List, to be accessed. The following example illustrate the

problem. Assume a nearest neighbor search query is given. Current node A

have a child node A' which is the first entry in the Active Branch List of node

A and the following relations are true:

MINDISTA < MINDIST'A < MINMAXDISTA (1)

MINDISTA < NNDISTtemp ⑶

NNDISTtemp < MINDIST'A (3)

That means, when node A is being accessed, (2) implies that A may contain

the nearest neighbor. By (3), A' cannot contain the nearest neighbor. However,

in Algorithm A, A' will also be accessed as it cannot be pruned by heuristics

1 and 2. Only heuristic 3 can pmne A' from the Active Branch List, but, A'

will be accessed before the heuristic is applied. Simply reversing the order of

pruning and searching operation can solve the problem. Therefore, in Algorithm

B, pruning is performed before further node access will be carried out.

4.4 Replacing Heuristics

In previous section, a new pruning heuristic for nearest neighbor search has been

introduced. In order to replace the original three heuristics, it is necessary to

show that the new heuristic is more efficient than the old one. In this section,

we show that the number of node access will not be increased after the new

heuristic is used instead of the old heuristics. That means, if a node is pruned

by the old heuristics in the old algorithm, then it will also be pruned by the new

36

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

heuristic in the new algorithm. We assume that node access corresponds to disk

access. Once this is established, we can see that with the new algorithm, the

computational cost will be dramatically decreased without increasing any disk

access.

The first heuristic to be considered is Heuristic 2. Heuristic 2 says that if DISTp

is greater than MINMAXDISTA, then the object P will be discarded. Note

that no node access is reduced in this case, since the discarded object P is

already searched. (Effectively, if P is the nearest object discovered so far, then

iheNN-DISTtemp is updated to be MINMAXDISTA.) Since we are interested

here only in the reduction of node access, Heuristic 2 can be ignored.

The second heuristic we consider is Heuristic 3. Heuristic 3 says that if DISTp

is smaller than MINDISTA, then the node A will be discard.

L e m m a 4 If a node is pruned by Heuristic 3 using Algorithm A, it can be also

be pruned by Algorithm B,

Proo f : Assume that during the execution of Algorithm A, there is a node A

and an object P in the Active Branch List, and MINDISTA > DISTp, so that

node A will be pruned by Heuristic 3. Next suppose Algorithm B is used, there

are two possibilities.

Case 1: Node A is searched before P is either searched or pruned. Since P

and A have a common root, and A is not the root, then an ancestor of P must

be searched before A, let this ancestor be P'. By Lemma 3, the ancestor P'

must have a MINDIST smaller tlian DISTp, and also the nodes in the path in

the tree from P' to P must all liave MINDIST smaller than DISTp. If P is

pruned before being searched, then A would also be pruned since the pruning is

via Heuristic 5, and A has a greater MINDIST than P 's ancestors. If P is not

pruned, since a basic depth-first traversal with MINDIST ordering is followed

37

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

in the nearest neighbor search, it is not possible that A is searched before P is

searched. Therefore, we conclude that this case cannot happen.

Case 2: The object P is searched before node A is either searched or pruned.

Hence P has been considered as a possible candidate for the temporary nearest

neighbor. Let N N _ D I S T f p be the distance of the nearest neighbor discovered

immediately before the search of node A. Since updates in the temporary near-

est neighbor can only get closer to the query point, NN_DISTtemp < DISTp

must be true. Since MINDISTA > DISTp, has been given, NN—DISTte— < ,

MINDISTA can be derived and the node A will be pruned by Heuristic 5. I
i
I I

Therefore, if a node can be pruned by Heuristic 3 using Algorithm A, then it ‘

can also be pruned by Heuristic 5 in Algorithm B. •

We have just shown that if a node is pruned by applying Heuristic 3 in Algo-

rithm A, then it will be pruned by Algorithm B. Since Heuristic 2 in Algorithm

A does not do effective node pruning, it remains to be shown that every node

which is pruned by Heuristic 1 in Algorithm A will also be pruned by Algorithm

B. In order to do so, we would make use of tlie following lemma.

L e m m a 5 If a node B is searched before a sibling node A using Algorithm B,

and

MINMAXDISTs < MINDISTA,

then the distance ofthe temporary nearest neighbor, NN_DISTump, just before

A is either searched or pruned is less than or equal to MINMAXDISTs •

P r o o f : Let a be the set of nodes that are searched after B and before the

search or pruning of A. (We say that A is pruned when either it is pruned or

an ancestor node containing B is pruned.) Let Bc be the object in B that is

closest to the query point. There are two possible cases:

38

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Q MINDIST(A) L ^

^̂ ^̂ =̂1：：；：：：；；；；；̂ ^̂ ^̂ ^̂ MINDIST(B)

\ \ ^ ^ \ v ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J ^ (Q Y)

\ \ \ ^ ^ r ^ > Y
\ \DIST(QX)^> A B

\ \ A
\ MINMAXDIST(A)\

NN_DIST \ J

NN :

r
i

Figure 4.2: Example: pruning B from the Active Branch List ；

Case 1: Bc is in a . In this case, Bc has been considered as a candidate for the :

temporary nearest neighbor, then since we know that its distance is less than or ；

equal to MINMAXDISTs, hence NNJJISTte” < MINMAXDISTe. ‘

I

Case 2: Bc is not in a . Since DISTsc < MINMAXDIST^ < MINDISTA,

by Lemmas 1 and 3, all ancestor nodes of Bc have MINDIST < MINDISTA.

As Bc is not in a , an ancestor node of B, B', must have been in a and has been

pruned by Heuristic 5. That is, node B' is discarded because MINDISTs'〉

NN_DISTL-, Hence NN-DIS%e- < MINDISTs' < MINMAXDISTA.
•

L e m m a 6 If a node is pruned by Heuristic 1 using Algorithm A, it will be

pruned by Algorithm B.

Proof: Heuristic 1 says that if MINDIST。is greater than MINMAXDISTo

then node C is discarded. Without loss of generality, suppose there are two

nodes A and B so that Node A is discarded by Heuristic 1 because of Node B in

39

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Algorithm A. Hence A and B are sibling nodes (in the same active branch list)

and MINMAXDISTs < MINDISTA. There are three cases to consider:

Case 1: MINDISTA < MINDISTs.

According to Lemmal , we have inequalities MINDISTA < MINMAXDISTA

and MINDISTe < MINMAXDISTe. Since, MINDISTA < MINDISTe,

by Lemma 2, we have MINMAXDISTe 水 MINDISTA- Therefore, it is

impossible that MINMAXDISTe < MINDISTA so that node A is pruned

by Heuristic 1. j

Case 2: MINDISTA > MINDISTs, and Node A is searched before node B

in Algorithm B. This is not possible since the search is ordered by the values of |

MINDIST. 丨;
I

Case 3: MINDISTA > MINDISTs. Algorithm B is used and node B is :
(

searched before node A. Let NN_DIST_ be the distance of the temporary :
I

nearest neighbor just before A is either searched or pruned. By Lemma 5,

NN_DISTfp < MINMAXDISTA '

Since the condition MINMAXDISTB < MINDISTA is given, the relation

NN_DISTtemp < MINDISTA

can be derived from the above inequalities. Therefore, node A will be pruned

by Heuristic 5.

The above show that all nodes pruned by Heuristic 1 in Algorithm A will be

pruned by the new heuristic using Algorithm B. •

Theorem 3 Ifnode access corresponds to disk access, then Algorithm B requires

no extra disk access compared to Algorithm A.

40

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Proof: Under our assumption, for a given R-tree, disk access is required if a

node is searched for the first time. Hence the theorem follows directly from

Lemmas 4 and 6. •

From Theorem 3, we find that Heuristics 1, 2, and 3 can be replaced by the

new heuristic without deteriorating the performance of nearest neighbor search

in terms of disk access. Consequently, MINMAXDIST is not a must to be

calculated as the new heuristic does not make use of it. Therefore, a large

amount of computation cost can be saved.

4.5 N-Nearest Neighbor Search

� Q

bl

B

al
b2

A

a2

Figure 4.3: Node A cannot be discard

In Chapter 3, we have presented an N-nearest neighbor search algorithm that

is a strict extension from the nearest neighbor search algorithm in [6]. In this

section, We are going to present our proposed N-nearest neighbor algorithm for

- 41

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Q

MAXDIST1 ^ ^ ^ ^ ^ \ , ^ ^ " ^ ^ ,
al

MAXDIST2

A

a2

Figure 4.4: N-nearest neighbor search

R-Tree which is based on our improved nearest neighbor search algorithm.

In nearest neighbor search, MINMAXDISTA serves as an approximation to

the nearest neighbor of a query such that it is the upper bound of the dis-

tance between the query and the nearest object in node A. On the other hand,

MINMAXDISTA does not serve as an approximation to the N-nearest neigh-

bor of the query. One may argue that we use N-MINMAXDISTA, the N ^

minimum of maximum possible distance from the node A to the query, to play

a similar role to MINMAXDISTA in nearest neighbor search. However, there

are two problems if k-MINMAXDISTA is used. First of all, the number

of dimension must be larger or equal to N. Secondly, N-MINMAXDISTA

may not be the upper bound of the distance between the N-nearest neighbor

and the query. An example is given in Figure 4.4. In this example, there

42

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Algor i thm 4.3 New N-Nearest neighbor search algorithm for R-Tree

Procedure N - N N _ S e a r c h
Input : NODE

/* node to be visited */
NN-DISTN
/* distance from temporary N-nearest neighbor to the query */

Begin
If current node P is at leaf level
T h e n

For i :二 1 to no. of children of current node
If DISTp < NNJDISTN

Call InsertMN{P)
Upda te NN_DISTN

Else

Generate Active Branch List of current node

Calculate MINDIST

Sort the Active Branch List by ascending ordering of MINDIST

For i := 1 to no. of entries in the Active Branch List
Apply Heuristic 4 to prune objects
Call N-NN_Search

End

is a 2-dimensional bounding box A which have two children ai and a2. A 2-

nearest neighbor query Q has been given. MAXDISTi is the maximum pos-

sible distance from the boundary of dimension 1 of node A to the query while

MAXDIST2 is the maximum possible distance frorn the boundary of dimension

2 of node A to the query. Note that MAXDISTi and MAXDIST2 are smaller

than MINDISTa^. Therefore, the nearest object in node A will not be accessed

even though it may be one of the N-nearest neighbors. The example shows that

N-MINMAXDISTA cannot be used in the N-nearest neighbor search algo-

rithm. Consequently, we only use Heuristic 4 to do the pruning operation.

43

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

In Chapter 3, we have proved that Heuristic 4 is true. In our N-nearest neighbor

search algorithm, we will also use this pruning heuristic. On the contrary, Heuris-

tics 1 and 2 will not be used because MINMAXDIST is useless in N-nearest

neighbor search. Heuristic 1 states that if MINMAXDISTe < MINDISTA,

then node A will be discard. However, in N-nearest neighbor search, the pruning

heuristic is not necessarily true. Assume 2-nearest neighbor search is being per-

formed and a query Q has been specified. Figure 4.3 shows the example. Node

A has two child nodes ai and a2; Node B has two child nodes bi and b2. The

2-nearest neighbor should be ai and bi. Therefore, node A cannot be pruned

even though MINMAXDISTe < MINDISTA and hence Heuristic 1 cannot

be used. Similar argument can be applied to Heuristic 2.

In the algorithm, the current node will first be checked to see whether it is

at the leaf level or not. If it is a leaf, then its distance to the query will be

calculated, and if the distance is less than the distance from the N ^ nearest

neighbor, NN-DISTn, Insert^NN will be invoked to insert the object in the

nearest neighbor list and then we update N N J J I S T N . On the other hand, if

the current node is not at tlie leaf level, then the Active Branch List for further

search will be generated. The Active Branch List is a list which contains all

child nodes of current node that will be accessed in order to get the nearest

neighbor. The Active Branch List is sorted by ascending order of MINDIST.

Next, it iterates through tlie Active Branch List and recursively access child

nodes by calling NNSearch. After NNSearch has been called, pruning will

be performed by applying Heuristic 4. The recursive call and the second pruning

will be repeated until no entry in the Active Branch List remains unvisited.

44

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

CPU Time against Dimension on Nearest Neighbor Search

800 1 1 1 1 —I 1

700 - •

600 - R-Tree — f '
R*-Tree +-- /

R-Tree(new NN) -0- /
R*-Tree(new NN) -x—_ /

. 5 � � - / -
0) /

p 400 - / , -

^ /
300 - / / -

y ^ /

200 - Z / -

/ /
100 - / /'+ _

0 , ,~~~^^^--..::::::rt；^^
0 5 -• 10 15 20 25 30

Dimension

Figure 4.5: CPU Time for nearest neighbor search on uniform data

4.6 Performance Evaluation

Experiments have been done to show that the new nearest neighbor search algo-

rithm outperforms the original nearest neighbor searching algorithm. We have

implemented both R-Tree and R*-Tree in C under UNIX on a Sun Sparc com-

puter, and have used our implementation in a series of performance tests whose

purpose was to evaluate efficiency during searching by using both algorithms.

Both the original and the improved nearest neighbor search algorithm have been

used in these experiments. Experiments have been measured by CPU time used

on nearest neighbor search and dimension of data.

Both uniform and clustered data have been used in experiments. The dimension

of data varies from 4 to 32, and the number of data varies from 1000 to 40000.

Figures 4.5 and 4.6 present the result of experiments on uniform data, while

Figures 4.7 and 4.8 present the results of experiments on cluster data.

45

(I •‘

Chapter 4- An Improved Nearest Neighbor Search Algorithm for R-Tree

\
\

Speedup against Dimension on Nearest Neighbor Search ^

18 I 1 1 1 I 1 1 1
\

16 - R-Tree 如 人 ‘
R*-Tree +-- Z , /

14 - ^ 4 ' ' ' -

12. ^ -

t 1�- / , z -
I /

� . / : :

2 - Z - !
I.

ol ‘ ‘ ‘ ^ ‘ ‘ 1 ；
0 5 10 15 20 25 30

Dimension 丨

\

Figure 4.6: Speedup for nearest neighbor search on uniform data ；

R-Tree has dimensionality curses problem. That is, its performance will be

dropped rapidly when it is dealing with high dimension data. It is because high

dimension data introduce overlap to R-Tree. Therefore, the number of node ac-

cess and the time for the nearest neighbor search will be increased. Figures 4.5

and 4.7 show that the number of CPU time used for R-Tree on nearest neighbor

search will be increased with increasing rate.

R*-Tree also has the dimensionality curses problem even though R*-Tree is the

best variant of R-Tree. However, as shown in Figures 4.5 and 4.7, R*-Tree used

less CPU time on nearest neighbor search. Its performance is dropped when the

number of dimension of data increased, but it still has better performance than

R-Tree.

Bpth R-Tree and R*-Tree will gain when they use the new nearest neighbor

search algorithm instead of the original one. Figures 4.5 and 4.7 show that CPU

time used for both R-Tree and R*-Tree using tlie improved algorithm are smaller

46

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

CPU Time against Dimension on Nearest Neighbor Search

1200 I 1 1 1 1 1 1

1000 - R-Tree 一 / _
R*-Tree -+— /

R"Tree(newNN) •••• /
R*-Tree(new NN) -x…“ /

800 _ / -

S / / ^ / /
p 600 - / / -

^ .. /
400 - / / -

j / .
2 0 0 - ^ ^ ^ ^ ― ‘ -

^ _ ^ ^ ^ < ^ ' 丨
Ẑ “―-r：：：.-̂ -̂' n ‘

,zZ__̂ ŷ<<----̂ 卞 X �
Q 1 ĵj__x„„_̂^̂>̂"̂rr̂rt:̂-..-—,i—»̂.—�.,.丨.…:.：.-a—:.:.……發:〒:.:...•.‘‘...• • I \

0 5 10 15 20 25 30 ;
Dimension)

Figure 4.7: CPU Time for nearest neighbor search on clustered data

compared to the results of using the original algorithms, and the gains will be

increased with the number of dimension. There are two reasons for the new ,

algorithm outperforming the old one. First of all, the new algorithm does not ！

need to calculate MINMAXDIST which is a very time-consuming processing. ;
I

Furthermore, one less pruning heuristic is used to save time on processing. |

I

Both Figures 4.5 and 4.7 show that tlie performances of nearest neighbor search

on both R-Tree and R*-Tree drop rapidly as the number of dimension grows.

However, when the improved nearest neighbor search on both R-Tree and R*-

Tree is used, the processing time is shortened and its performance drops at a

slower rate. Figures 4.8 and 4.6 show that the speedup factor of the improved

nearest neighbor search algorithm increase with the number of dimension of

data.

Experiments have also been performed on real data. The number of data varies

from 10000 to 40000 and the number of dimension varies from 2 to 16. Figure

47

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Speedup against Dimension on Nearest Neighbor Search

18 I 1 1 1 1 1 1

16 - R-Tree 一 _
R*-Tree +-- ^

“ ^ ^ _

[/ . a 10 - , -

"g - z
^ /
CO 8 - Z -

‘ y _

4- z •
2- / - !
ol 1 1 1 1 ‘ ‘ ’

0 5 10 15 20 25 30
Dimension ,̂

Figure 4.8: Speedup for nearest neighbor search on clustered data

4.9 shows the result of CPU time used on nearest neighbor search. Figure 4.10

shows the speedup factor of tlie improved algorithm on real data. The results

of real data is similar to those of uniform data and clustered data. Since the

real data have a lot of overlapping, the performance of R*-Tree cannot outper- :

form R-Tree. When low dimension data are used, R*-Tree gives a substantial

improvement to R-Tree. However, when the number of dimension increases, its

performance is similar to R-Tree that it drops rapidly, and CPU time used on

searching is almost the same for both trees. It is because there are a lot of

overlapping when it is dealing with high dimension data. Its split and reinsert

procedures hardly reduce any overlap, therefore, most of the nodes of the tree

will be accessed. The figure shows the performance of both R-Tree and R*-Tree

will be the same.

Figure 4.10 shows that the speedup factor for real data is higher than that of

uniform data or clustered data. It is because the presence of overlapping makes

48

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

CPU Time against Dimension on Nearest Neighbor Search 500 I 1 1 1 1 n 1 I 1
R-Tree 一

450 - R*-Tree -—-- -
R-Tree(new NN)分-.

R*-Tree(newNN) .x......

4 0 0 - •

350 - - i -
. 3 � � - / -
0) /'

P 250 - fi -
‘ 2 � � - / -

15�- / _
100 - / ^ / - »

y ^ / ',
50 - ^ / ^ z-乂„....fl - :丨

^ ^ , - ' ' ' 双............--."•••»-•-•

_ _ ^ _ - / ^ 一 一 4 : ° - : :〉二 . : "避 \ 0 fcg^itrr^Trp:=::v^::: -x- .¥-. I I 1 \
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 ；

Dimension ^

‘,•
？

Figure 4.9: CPU Time for nearest neighbor search on real data)

the number of node access on nearest neighbor increases. The original search

algorithm has a lot of calculations of MINMAXDIST and the additional pruning ‘;

operation. Therefore, the improved search algorithm can reduce more CPU time ；

overhead and the speedup factor can be increased. ；
{
\ ii

The improved N-nearest neighbor search algorithm has also been tested. Both 1
！

the original and the improved N-nearest neighbor search algorithms are used. .

Experiments are to measure the CPU time used on nearest neighbor search

against the dimensions of the data. Figure 4.11 shows the CPU time used on

10-nearest neighbor search on real data. Figure 4.12 shows the speedup of CPU

used on 10-nearest neighbor search wlien the improved algorithm is used. The

results are similar to the results in nearest neighbor search. Similarly, the per-

formance of R*-Tree cannot outperform R-Tree. When the dimension of data

increases, the performance drops rapidly, and CPU time used on searching is

49

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

Speedup against Dimension on Nearest Neighbor Search

10 I 1 1 1 1 1 1 T >

- . y
8 - R-Tree — y ^ ' .

R*-Tree +-- X /

. - . , Z . % / /
0) / / ^ /:X w ^

2 - >?^ “ ,
z I

•I

i 0 I I I 1 1 1 1 1 '1 0 2 4 6 8 10 12 1 4 16 18 i'
Dimension

||

Figure 4.10: Speedup for nearest neighbor search on real data ,

,1

almost the same for both trees. Therefore, the performance of R-Tree and R*- ^

Tree is very similar when the same algorithm of search is performed. For the j

same tree structure, however, the improved N-nearest neighbor search algorithm ；

is much better than the original N-nearest neighbor search algorithm. Figure ；

4.12 shows the difference between two algorithms on the same tree structure. |
i .<
I'

50

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

CPU Time against Dimension on 10-Nearest Neighbor Search 2500 1 1 1 1 ~i 1 1 1
,x /j3 / / 2000 - R-Tree(New NN) 一 / / " R*-Tree(New NN) -+-- / / R-Tree .日… /' /

R*-Tree -x.— / /.

1500 - / / -

» / / . 0) / ,'
E 广‘’ P /•'
2 /
^ 1000 - /7 -

/7
nf' / •• ^ / / 1

/ ,..x 、：
500 - jEi'' ,..•••••••• - i;

_ ^ ^ ^ ^ i ^ ^ ^ ^ = ^ ^ ^ ！‘
0 ",̂ ^̂ ^̂ #̂̂ :̂:̂ ^̂ ""T̂ 丨 , ： ‘ 1 J

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 ；；

Dimension ‘；

Figure 4.11: CPU Time for 10-nearest neighbor search on real data

I
；!

I i|
Speedup against Dimension on Nearest Neighbor Search ” 10 I 1 1 1 1 1 1 1 1 ‘I

r«

f, 丨！.
8 - R-Tree 一 “ ,1

R'-Tree +-•

,义 ‘

.̂ z ‘ :
^ X
2. 力
� X /

4 - y ^ / -

Z _
0 I I I 1 1 1 1 1 0 2 4 6 8 10 12 14 16 18

-• Dimension

Figure 4.12: Speedup for 10-nearest neighbor search 011 real data
51

Chapter 4. An Improved Nearest Neighbor Search Algorithm for R-Tree

CPU Time against Dimension on 10-Nearest Neighbor Search

1000 1 1 1 1 1 1
(3

/,'Z
800 - R-Tree{NewNN) 一 / / "

R*-Tree(NewNN) -+-- ^' /
R-Tree •曰… /̂ .--"‘‘

R*-Tree -x - /'/

/•/
/:/• 600 - /:/ “ 2 ,'/ 2 //

E : /
口 .|-
1 , 0 •>•

400 - , -/ .^
/

/ »

/ ！

200 - M''' - I
,;.:• ''i

/ Z I I
.『.一•...'̂ _ ^ — ^ ^ * “ “ - " ^ ™ ^ ^ 丨、

"•,,�:.:-:-錢 ^ I
0 B^••^ 中 I ^̂ • ——‘ ‘ ‘ 1 丨丨1

0 5 1 0 1 5 2 0 2 5 3 0 ；,

-- Dimension •;

Figure 4.13: CPU Time for 10-nearest neighbor search on clustered data

',! ii|

ii
ll
li

Speedup against Dimension on Nearest Neighbor Search [18 I 1 1 1 r ！ 1
'J

16 - R-Tree 如 _
R*-Tree -̂ "-. ji, f'

1 4 - - ‘

- / _
I 1 。 - y ^ _
^ ^
« 8 - ŷ̂

X ^ :
0 1 1 1 ‘ ‘ ‘

0 5 1 0 1 5 2 0 2 5 3 0
Dimension

Figure 4.14: Speedup for 10-nearest neighbor search on clustered data

52

Chapter 5

Overlapping Nodes in R-Tree
"t
s

and R*-Tree |
I

• ,i
nl il
I 'l

:1

The main purpose of constructing index tree is providing an efficient method for ;!

information retrieval. Content-based index structures handle multidimensional j

data and they need to give a fast response to queries given by users. Since {

multidimensional data are usually large in size, efficiency of its index structure j

is very important. However, it is found that the performance of those content- j

based index structures are not satisfactory enough that, in worst case, the whole !|
II

index tree will be accessed. f'

In this Chapter, the main cause of the poor performance of R-Tree and R*-

Tree will be addressed. Overlapping, which is a common feature of R-Tree

and R*-Tree, will be described. An overlap-free index tree may not outperform

overlapping R*-Tree. For example, R+-tree is an overlap-free index tree and

it tries to provide overlap-free split which may make those nodes become less

quadratic. Therefore, their margin will be increased and its performance on

searching is worsen. However, overlapping nodes are still tlie main reason of

the poor searching performance in content-based indexing. The presence of

53

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

overlapping induces backtracking in searching which makes R-Tree and R*-Tree

perform badly. How the presence of overlapping affects the performance of R-

Tree and R*-Tree on both exact search and nearest neighbor search will be

briefly explained.

5.1 Overlapping Nodes

1

1̂ '!'
A i i

j!
• »1

,；!

0

p
I

I

'll
B |!

.1 • I
I

i'i
! “ f

’ >j

,i
Figure 5.1: Two disjoint bounding boxes before the insertion ‘

Overlapping of two nodes means that their minimum bounding boxes are not

disjoint and they have common region. Figure 5.2 shows two nodes A and B

overlap with each other and they have a common region C. On tlie other hand,

if two nodes do not overlapping with eacli other, or tliey are called disjoint, tliey

do not have a common region. Figure 5.1 shows two nodes A and B that do not

overlap with each other.

B-Tree, which is a unidimensional index structure, does not liave overlapping

54

i

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

A

0
r ^ ^ ^

B

Figure 5.2: Two bounding boxes overlap with each other after the insertion

nodes. It is because the index structure handles simple one dimension data.

Furthermore, a simple < operator is used for inserting data or searching query

so that disjoint nodes must remain disjoint. On the contrary, multidimension

data make their index structures become complicated. In both R-Tree and R*-

Tree, overlapping is not prohibited though it is not desired as well. R*-Tree

tries to minimize overlapping-,- but, it cannot guarantee that overlapping can be

avoided. In fact, R*-Tree is found to have a lot of overlapping nodes when they

are dealing with high dimension data.

In R-Tree, overlapping can be introduced when an object is being inserted. Ini-

tially, no overlapping exists in the tree. However, it is possible that overlapping

starts to occur by inserting an object to a node which is enlarged to overlap

with another node. Figure 5.1 shows an example to illustrate it. Two nodes A

and B do not have any overlapping initially. An object P is going to be inserted

into the index tree. By the insert algorithm of R-Tree, since B has less area

55

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

B c

A

E

D
：

Figure 5.3: Overlapping nodes created during splitting

enlargement than A if P is inserted into it, P will be inserted to B and B will

adjust its minimum bounding box so that the box encloses the object P. Figure

5.2 shows the result after the insertion. Now, nodes A and B overlap with each

other. Although R*-Tree tries to minimize overlapping, overlapping still exist

and R*-Tree cannot get rid of the problem.

Overflowing of a node may produce two overlapping nodes. Figure 5.3 shows

an example of overlapping nodes caused by splitting of a node when overflow

occurs. There is a node A which have four child nodes B, C, D and E. The

split algorithms of both R-Tree and R*-Tree cannot produce two overlap-free

nodes because splitting on either dimension axis cannot avoid overlapping. As

the dimension of data becomes higher, the risk of overlapping becomes higher

too.

- 56

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

5.2 Problem Induced By Overlapping Nodes

5.2.1 B acktracking

Backtracking means that the search process involves more than one node in

the same level to be accessed. It will occur when the target is not found in

the searched path and they want to search along another subtree. The reason

for possible backtracking to occur is that there exists more than one search

path when searching for an object. When a possible search path has been gone

through, it may be necessary to go through another one and backtracking is

thus occurred.

It is clear that backtracking makes the search process become inefficient because

more nodes will be accessed. Backtracking does not exist in exact search of B-

Tree because the search process is deterministic. At every stage of the search, an

accurate search path will be determined. No matter the query object is present

or not, the search process will be terminated after the leaf is accessed. On the

other hand, the search in R-Tree and R*-Tree is not deterministic. The presence

of overlapping nodes in the tree is a reason for backtracking to occur.

5.2.2 Inefficient Exact Search

The search algorithms of R-Tree are not efficient enough that, in worst case, it

may access all nodes in the index tree. In this section, exact search algorithm

of R-Tree is focused and its inefficiency is to be explained.

Since R-Tree allows overlapping bounding boxes, it cannot guarantee that a

unique search path for an exact search query exists, and the performance will

be degraded accordingly because of the frequently occurrence of backtracking.

The following example can illustrate why backtracking is likely to occur when

57

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

A

°P

B

Figure 5.4: Two overlapping bounding boxes enclose the same object

overlapping regions present.. .

Suppose an object P is going to be searched. After certain steps have been

carried out, node C is being accessed. There are two nodes A and B which are

child nodes of C and their bounding boxes overlap with each other. It is also

found that both of them enclose the query object P. The situation is shown in

Figure 5.4 and its corresponding R-Tree structure is shown in Figure 5.5. At

this point, we have to decide which node, A or B, should be accessed in order to

find the query object. Although two bounding boxes enclose the query object P,

it has one parent only, say B. That means, P can be found when we search along

the subtree of node B, but it cannot be found if we search along the subtree of

node A even though the bounding box of node A encloses P.

Although B is the parent of P, the fact is not known until both A and B have

been accessed. Before A and B are searched, all can be known is that both of

them may be the real parent of the query object P. Since tlie bounding box of

58

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

K ^ > D

^ ^ H ,
B I A

\ o p

Figure 5.5: An example of R-Tree structure if overlapping happened

A encloses P, we can proceed the searching along the subtree of A. After the

subtree of node A have been accessed and the target object is not found, it can

be concluded that it should be located somewhere else in the tree, if it does

exist. Therefore, backtracking exists to search along another subtree so as to

get the target. After the searching process have been backtracked to node C

and it is looking for another possible search path, it is found that the bounding

box of node B does enclose the query object. Then, the subtree of B is being

searched. Since the query object P located in the subtree of node B, it can be

found at the leaf level of the subtree and the searching process come to an end.

In real cases, overlapping nodes in R-Tree and R*-Tree are commonly found,

and multiple overlapping nodes will also be present. As we have shown in the

above example, additional work on searching along subtree of node A is useless,

but, it cannot be entirely eliminated. Therefore, the non-deterministic behavior

in searching often causes the bad performance of R-Tree and R*-Tree.

59

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

5.2.3 Inefficient Nearest Neighbor Search

B

A

P *

C

Figure 5.6: Three bounding boxes overlap with the same object

In this section, nearest neighbor search algorithm of R-Tree is focused and its

inefficiency is to be explained.

The performance of R-Tree on nearest neighbor search is worse than that on

exact match. As similar as exact search, backtracking is one of the reason that

make nearest neighbor search in R-Tree become inefficient. Another reason is

that even the real nearest neighbor of the query is obtained, it is not easy to

identify that it is the desired one. N. Roussopoulos, S. Kelley, and F. Vincent[6

has designed an efficient nearest neighbor search algorithm on R-Tree and its

variant, and it has been explained in Chapter 3. They provide two metrics for

ordering in nearest neighbor search: MINDISTs^nd MINMAXDIST. The use of

these two metrics is to prune all nodes which are impossible to contain the near-

est neighbor. Therefore, based on these two metrics, a set of nodes which may

contain the nearest neighbor can be obtained. There is a substantial difference

60

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

between nearest neighbor search and exact search. In exact search, we know the

object being examine is the desired one or not. If we know that the object is

what we want, the search process will be terminated. On the contrary, nearest

neighbor search is not as deterministic as exact search. We want a variable to

keep the temporary nearest neighbor. We will update the variable if we find

another object which is closer to the query. However, we cannot guarantee that

the one we got is the real nearest neighbor of the given query until all entries in

the set have been searched. In fact, we have to do the same procedure in nearest

neighbor search for the whole R-Tree.

The metrics, MINDIST and MINMAXDIST, are good approximations to the

actual distance between object and query. However, it is no more a good ap-

proximation in dense overlapping area. First of all, there will be a lot of potential

nearest neighbors of a given query, and they may be distributed into many sub-

trees. It implies that we have to search all such nodes in order to get the desired

object, and we can determine that it is the real nearest neighbor of the query

only after all those nodes are accessed. We can see that a lot of backtracking

and unnecessary node accesses on R-Tree will occur for a nearest neighbor search

query, and the situation is worse than that in exact search.

An example is given to illustrate the problem, the situation is shown in Fig-

ure 5.6 and its R-Tree structure is shown in Figure 5.6. Assume we are now

trying to find the nearest neighbor of a given query point P. A, B and C are

nodes of the R-Tree which are found that their bounding boxes enclose P. There-

fore, MINDIST values of these three nodes are zero. Without loss of generality,

assume that the searching order of these three nodes in the R-Tree is A, B and

then C. After we have searched subtree of A, we get a temporary nearest neigh-

bor ai with NN-DISTa, > 0. There are two cases to be occurred.

61

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

The first case is that the temporary nearest neighbor a,- is not the real nearest

neighbor to the query. Since MINDIST of A, B and C are equal to zero, the

condition NN-DISTa, < MINDIST cannot be satisfied. Heuristic 5 cannot

be applied to prune node B and C from the Active Branch List, and hence the

subtrees of B and C have to be searched. They have to be searched because

either bj or Ck, which are temporary nearest neighbor of the query under sub-

trees of B and C respectively, is the real nearest neighbor of P. In this case, it

is similar to the situation of exact search that after we have reached the leaf of

the tree and we find that the one we got is not the one we want, backtracking

is necessary to help us find the required object.

The second case is that the temporary nearest neighbor a, is the real nearest

neighbor. Even if a, is the real nearest neighbor, we cannot ensure whether it is

the required object because it is possible that there exists an object in node B

or node C which is the real nearest neighbor. After bj and Ck have been found

and their distances from the query are compared with that of a” we then know

that CH is the one we wanted. Therefore, no matter whether a,-, bj or Ck is the

real nearest neighbor to the query, backtracking does exist in this example, and

subtrees which do not contain the nearest neighbor have also been accessed.

The above example is a case that shows inefficient search on R-Tree. The poor

performance is not limited to a tree which have overlapping nodes that con-

tain the query. For example, if a node D which is at the same level as A, B

and C, and it does not contain query P, that is MINDIST。> 0. It is pos-

sible that uMNN_DISTwNN—DISn”NN-DISTck~) > MINDISTo, and

subtree of node D is then needed to be searched too as NN_DISTdi, which is

the distance from the nearest object in node D to the query, is smaller than

mm{NN.DISTa^,NN^DISn^,NN^DIST,,).

62

Chapter 5. Overlapping Nodes in R-Tree and R*-Tree

We have just shown the inefficiency of nearest neighbor in R-Tree and its vari-

ant. In fact, we cannot expect that searching an object on a multidimensional

index structure is as efficient as tliat on traditional index structure like B-Tree.

Pruning is necessary for nearest neighbor search. How to prune irrelevant ob-

jects from the searching list is very important, especially when overlapping cases

occurred.

63

Chapter 6

Redundancy On R-Tree

Real multi-media applications find that existing index structures cannot give a

satisfactory performance on data retrieval. Those applications handles compli-

cated high dimensional data which need multidimensional index structures. In

Chapter 2, the most popular index structures have been briefly described. In

Chapter 5, how overlapping nodes in R-Tree and R*-Tree afFect the performance

of searching has also been explained.

In this Chapter, we focus on improving performance on data retrieval. The

proposed solution is based on- introducing redundancy on an index tree. A new

multidimensional index structure Redundant R-Tree, which applies the idea of

adding redundancy on the index tree, will be introduced. Tlie construction

method and the properties of the tree will also be described.

i

6.1 Mot ivat ion

As we have mentioned in Chapter 5, the presence of overlapping node in R-Tree

induces backtracking in searching which worsens the performance. On the other

hand, R+-Tree, which is an overlap-free index structures, however, does not

64

Chapter 6. Redundancy On R-Tree

A _C

B

Figure 6.1: Two bounding boxes overlap with the same object ‘

give a satisfactory performance. In fact, minimizing overlapping is not the only

criterion for a content-based index structure to give a good performance. N.

Beckmann et al in [7] specified several optimization criteria, and they pointed

out that it is hard to optimize all of them in the same time. In fact, R*-

Tree, which is designed by tliem, tried to optimize those criteria, and many

experiments showed that R*-Tree gives the best performance. Nevertheless, R*-

Tree still suffers from the dimensionality curse problem that its performance

drops when the dimensionality of data is increased. It is because R*-Tree has a

lot of overlapping nodes when those data being dealt with induce backtracking

when a search query is being performed. Therefore, the performance can be

improved if backtracking can be minimized or even eliminated and it is the task

of adding redundancy on an index tree.

6.2 Add ing Redundancy on Index Tree

The concept of adding redundancy to an index tree is that, every node N should

contains all nodes n,- if and only if MBRN encloses n“ and there exist not a n^

65

Chapter 6. Redundancy On R-Tree

which is not contained by N but enclosed by MBRN- An example is given to

clarify the concept. In Figure 6.2, both bounding boxes of node A and B enclose

an object C. In R-Tree and R*-Tree, either A or B contain C. When redundancy

is added to index tree, both node A and B should contain C. In this case, if an

exact search query is given to find the object C, a unique search path for the

query can be provided. No matter node A or B is accessed first, the object must

be found without backtracking. In case the object is not found, it can be ensured

that the object does not exist in the index tree and there is no need to backtrack

other subtrees. In nearest neighbor search, backtracking can be reduced. If the :

query object is contained by bounding box of node A, MBRA, the subtree of ,

node A probably contains the real nearest neighbor. The special case is when the

query located very near to the boundary of the bounding box, the real nearest

neighbor may not be enclosed in the bounding box. However, in the original 丨

R-tree nearest neighbor search algorithm, real nearest neighbor may not be

obtained, or at least may not be recognized as tlie real nearest neighbor even

though the query located at the center of the bounding box until backtracking

is carried out to access other subtrees. It is obvious that performance have been

improved after redundancy is added to an index tree as it is expected to have

less node access in both exact and nearest neighbor search than that of original

R-Tree.

6.3 R-Tree with Redundancy

6.3.1 Previous Models of R-Tree with Redundancy

In order to add redundancy on an index tree, tlie structure of the tree should

be modified. Before our proposed index tree structure is introduced, we will

describe previous index tree structures with redundancy. The advantages and

disadvantages will also be discussed explaining why and how our proposed index

66

Chapter 6. Redundancy On R-Tree

Algor i thm 6.1 OverlapChild

Procedure O v e r l a p C h i l d (7 V i , N 2)
Input : N i

/* Node to be inserted by redundant entry */
N2
/* Redundant entry */

Begin
If N2 is a leaf

If OverlapTest(yVi, N2) = = TRUE
Return T R U E

Else
Return FALSE

Else
/* to test if any child of Ni contains N2 */
For all children n of Ni

If OverlapChild(n, N2) = = TRUE
Return T R U E

Return FALSE
End

tree structure is constructed.

In the first model, every non-leaf iiode has two kind of entries: normal child

pointers as tlie same as those in R-Tree, and a list of redundant entries. Let us

denote the model by MoclelA-

First of all, inserts all tlie data points the same way as we do to the R-Tree.

After that, starting from the lowest level of tree node, we try to add redundant

entries to every node. We test overlapping of the nodes on the same level. After

all nodes on one level have h.een tested, we move upwards to test overlapping

of their parent nodes until root node is reached. We illustrate the algorithm by

giving an example: A has children B and C, D has children E, F and G, where

A and D are on the same level i, and, B,C,E,FandG are on the same level

67

Chapter 6. Redundancy On R-Tree

Algori thm 6.2 AddOverlap

Procedure A d d O v e r l a p (i V i , N<2)
Input : N i

/* Node to be inserted by redundant entry */
N2
/* Redundant entry */

Begin
If N2 is not a leaf

For all children n of N2
/* to test whether they have overlapping region */
If OverlapTest(A^i, n) == TRUE

/* add redundant entries from n to Ni */
Call AddOverlap(A^i, n) 丨

Else
If N2 is contained by Ni

/* test if any child of Ni contains N2 already */ ‘
If OverlapChild(A^i, N2) = = FALSE

Add N2 to the redundant list of Ni.
End

�

z + 1 too, and they are not leaf nodes. Assume we are now testing overlapping

on level i + 1. We test pairs of nodes on level i + 1 to see if they are overlapping

with each other. For example, C and E are under testing now, and if they do

overlap with each other, we will add all leaf nodes enclosed by C{E) to E{C)

as its redundant entries. After all pairs are examined, we will test all entries

on level i and A, B will be tested. In order to reduce unnecessary redundancy,

we enfore that parent node does not liave any redundant entries that appear in

its children. That means, A will not get a data point p as its redundant entries

if either B, C or any tlieir descendents get p. The advantage of this model is

that it provides an easy method to add redundancy to the index tree. The

disadvantage of this model is that the index tree is not height-balanced which

cannot give a fair performance on searching different objects.

68

• Chapter 6, Redundancy On R-Tree
*

Algor i thm 6.3 StartOverlap

Procedure S t a r t O v e r l a p (i V i , N 2)
Begin

Set N to be the pointer to the lowest level of Level List
If N + NULL

Set Li to be the head of N
If Li + NULL

Set L2 to be tlie one next to Li
If L2 + NULL

If OverlapTest{L1,L2) =二 TRUE
Call AddOverlap{L1,L2)
Call AddOverlap{L2^L1)

Advance L2 to the next entry
Advance Li to the next entry

Advance N upwards on the Level List
Return

End

The second model is a modification of the first model. The first model has a

problem that the data objects are essentially on the same level. Some of them

may be accessed at root node while some of them may be accessed at the leaf

level which are the same as R-Tree. Let us denote the model by Modeh.

The algorithm of adding redundancy to the index tree is similar to the first

model. The only difference is how to add a redundant entry to a node. In the

first model, a list which store redundancy entries will be created. In this model,

redundant entries will make up a tree such that the resultant index tree is height-

balanced. The advantage of this model is that the tree is height-balanced which

gives a fair performance on searching of different object. The disadvantage of

this model is that it is difficult to avoid multiple access to the same node in a

search query. For example, in Figure 6.2, both node A and B have a redundant

entry C. If C has been accessed and now node B is being accessed, it is difficult

to prevent from accessing node C again in the same query.

69

Chapter 6. Redundancy On R-Tree

A B

^ ^
C

Figure 6.2: Example of R-Tree: Bounding box “
\ I I
I

6.3.2 Redundant R-Tree

In previous section, different models that apply redundancy on R-Tree has been

described. Their advantages and disadvantages have also been mentioned. A

finalized index structure for adding redundancy on R-Tree is now to be presented.

Our proposed new index structure which is called Redundant R-Tree is a R-tree

with redundancy. That means Redundant R-Tree is a variant of R-Tree. The

formation of a Redundant R-Tree is the same as that of a R-Tree except it will

be augmented with redundant entries. Its construction method as well as its

properties will also be described.

Our index structure will be based on Models- As mentioned in the previous

subsection, it has a drawback of using a lot of storage to store those redundant

entries. Furthermore, it is difficult to prevent multiple access to the same node

in the same query. In order to solve the problem, we design our tree structure

as in Figure 6.2. In the example, node A and node B share the same redundant

entry C. In this case, it is obvious that the demand of storage will be decreased.

In addition, it is easier to avoid multiple access to the same node in the same

query if this structure is being used.

70

Chapter 6. Redundancy On R-Tree

6.3.3 Level List

Levellist

B1
• ! _

^ B2 ^ B3 ^ B4
It.

I
I
I

I

.

I

• B5 > B6 ^ B7 ~^ B8 ^ B9 > BIO — B11̂ B12 ^ BO ：

I ^ I ^ ^ ^ * * i

Figure 6.3: Level List

In our index structure, there is an array of level lists. A level list is a difference

linked list which is used to link up all nodes of the tree which are in the same

level. Every entry in the level list has a pointer which points to the first object

at that level. For example, the î ^ entry of the level list would point to the first

object in level z, say A“. A” will in turn point to another node, say A � . An

example is given in Figure 6.3. Start from a level list, we can retrieve all nodes

which are on the same level in the tree.

The reason for constructing such the list is that it will make adding redundancy

on index tree easier. Assume redundant entries are being inserted into a node

7Vi. It is necessary to have an efficient way to find all N2 which are redundant

entries to Ni. Details about how to use the list will be described in the section

of inserting redundancy to R-Tree.

71

Chapter 6. Redundancy On R-Tree

6.3.4 Inserting Redundancy to R-Tree

Algori thm 6.4 Overlap-Test

Procedure O v e r l a p _ T e s t (A ^ i , N 2)
Input : N i

/* Redundant node inserted to Ni */
N2
/* Redundant node N2 */

Begin
For i :二 1 to no. of dimension

Set 6/1. to be lower bound of Ni on î ^ dimension :;
丄〜 7 ‘

Set hux, to be upper bound of Ni on ẑ ^ dimension j
Set bl2, to be lower bound of N2 on î ^ dimension
Set bu2, to be upper bound of N2 on i^^ dimension

If hui^ < bl2, or bu2, < bli^
Return FALSE

Return TRUE
End

A Redundant R-Tree is built in order to provide more efficient searching al-

gorithms than those of R-Tree. The whole constructing process is started at

building an R-Tree first. After we have built the R-Tree, we have to annotate

the tree so that redundant entries will be added to nodes if necessary. The

adding redundant entries started from the lowest level of the index tree. We

pick every pair of nodes in the same level to see whether they overlap with each

other. If it is the case, we will further test whether they overlap with another's

child nodes, and we will add those child nodes to the node in which they do not

belong to if they do have overlapping regions. The process is repeated until all

pairs in the same level have been examined, and then we move upwards and the

process is repeated again until tlie root of tree is reached. Actually, the index

tree may be described as a directed graph, as a node may liave more than one

- 72

Chapter 6. Redundancy On R-Tree

Algor i thm 6.5 Overlap

Procedure O v e r l a p (i V i , N 2)
Input : N i

/* Redundant node inserted to Ni */
N2 -

/* Redundant node N2 */
Begin

For i :二 1 to no. of children of N2

Set N2, to be the 1仇 children of N2

Call OverlapTest{NuN2,) :

If Ni and Ni overlaps with each other

Insert N2, to Ni |
I

!

Return
End

I
i
I

parent.

The algorithm of inserting the redundant entries to the index tree is now to be

described. First of all, OverlapStart, which is shown in Algorithm 6.6, will be

invoked after the R-tree has been constructed. OverlapStart is the main pro-

cedure to build the Redundant R-Tree. The procedure starts to add redundant

entries at the lowest level of the index tree. It tests every pair of nodes in the

same level whether those nodes overlap with each other or not. Here, the pair of

nodes to be tested are retrieved through the use of level list, and the testing is

done by invoking a procedure called OverlapTest which is shown in Algorithm

6.4. If the pair of nodes do overlap with each other, then OverlapStart tries

to add their overlapped child nodes to these two nodes by invoking a procedure

called Overlap which is shown in Algorithm 6.5.

73

Chapter 6. Redundancy On R-Tree

Algor i thm 6.6 Overlap_Start

Procedure O v e r l a p _ S t a r t
Begin

Set N to be the pointer to the lowest level of Level List
If N + NULL

Set Li to be the head of N
If Li ^ NULL

Set L2 to be the one next to Li
If L2 + NULL

Call OverlapTest[L1,L2)
If L1 and L2 overlap with each other

Call Overlap{Lij L2)
Call Overlap{L2, Li)

Advance L2 to t h e nex t e n t r y
Advance L i to the next entry

Advance N upwards on the Level List
Return

End

If two nodes A and B are in tlie same level and they overlap with each other, the

procedure Overlap will be invoked to add redundant entries to the overlapped

nodes. In this procedure, if there is a child node a,- of A which overlaps with B,

then node B will be updated so that the redundant entry a, will be inserted to

the node B. As the relation of overlapping is symmetric, the operation will be

done again so that it adds redundant entries to node A if necessary. Therefore,

similar to the previous operation, .¾, which is a child node of node B, will be

inserted as redundant entry of node A if bj overlaps with node A.

The procedure OverlapTest is used to test whether two bounding boxes overlap

with each other. Two bounding boxes have overlapping regions if and only if

their line segments overlap with each other in all dimensions. For example, node

A and B are two n-dimensional bounding boxes. Let A. and ft be line segment

of bounding boxes of node A and B in the 1仇 dimension respectively. Let Aa,

,‘ 74

Chapter 6. Redundancy On R-Tree

B1

B5 B6

~ ~ ^ 7 ^
B2

B8 B9

B l l

B3 L _ _ _ _ B4

B10 r
Bi2 r

L J B13

Figure 6.4: An example: overlapping bounding boxes

and Ab, be the lower and upper limits of A., while Ba, and Bb, be the lower and

upper limits of B” There are four cases to consider:

1. Aa, < Ba, < Ak̂ < ^ ;

2. ^a. < Aâ , < ^ . < • , ;

3. Axi < Bâ < Bk, < A 〜；

4. Ba, < Aa, < A,̂ < ^ .

For all pairs of line segment Â and B” if any one of these four cases are satisfied,

we can conclude that bounding boxes of A and B overlaps with each other.

Otherwise, if any pair of line segment Ai and B̂ such that none of the above

four cases is satisfied, we say that bounding box of A and B does not have

overlapping region. OverlapTest in Algorithm 6.4 uses a simplified test: for

any dimension, if the lower bound of a node is larger than the upper bound of

another node, these two nodes must not have any overlapping region.

75

Chapter 6. Redundancy On R-Tree

Levellist

B1
H

^ B2 ^ B3 ^ B4

L t M
• B5> B6 • B] ^ B8 • B9 -̂B!0"̂ 'Bll̂ B12̂ B13

Figure 6.5: An example: The index tree structure

After all pairs of nodes in the same level have been tested, the process will

be repeated at upper level, that is, testinging pairs of nodes in upper level.

The whole process will be repeated until it is now at root level. The inserting

redundancy process is then terminated and the Redundant R-Tree has been

constructed.

An example is given to illustrate the process of inserting redundancy to an index

tree. The example is shown in Figure 6.4. Three level lists: (^ i) , (¾ — ^3 —

B4) and (Bs — Be — B, — Bs — B<, — ^io — ^ i i — ^12 ^ ^) - When

OverlapStart is called, it starts to add redundancy at lowest level of the index

tree. Assume it is to add redundancy to the node of B2, B3 and B4. The first

entry of the level list {B2] B3 — B4), ^2, is L^ in OverlapStart. Its next

entry B3 is L2 in OverlapStart. Then the procedure tests whether these two

nodes have overlapping regions. Since they overlap with each other, Overlap

will be invoked to test if B2 overlaps with any child node of B3. Bg, B9 and Bw

76

Chapter 6. Redundancy On R-Tree

are children of B2. Bg and ^io do not overlap with B2 but Bs does. Therefore,

Bg will be inserted to B2 as its redundant entry. Similarly, Overlap will be

invoked to test if B2 overlaps with any child node of B3. B5, Be and B7 are

children of B [B^ and Be do not overlap with Bi but B j does. Therefore, B7

will be inserted to Bi as its redundant entry. Then, L2 is advanced to be B4

now. Since it does not overlap with B2 and it is the last entry in the level list,

Li is advanced to be B3 but L2 remains to be B4. Again, B3 does not overlap

with B4. As all pairs of nodes in the same level have been tested, nodes in

upper level will be tested. As tlie upper level list contains the root node only,

the inserting redundancy terminates. The resultant Redundant R-Tree is shown

in Figure 6.5.

6.3.5 Propert ies of Redundant R-Tree

a b ^ — ^ ^ >

“ M

1 厂\
’， 0^ \
‘‘ 1 NN_DIsi

d w

�‘ L

Figure 6.6: Nearest neighbor search

Redundant R-Tree is a variant of R-Tree and it inherits some properties of R-Tree

77

Chapter 6. Redundancy On R-Tree

which have been mentioned in Chapter 2. On the other hand, Redundant R-

Tree is designed so that a better performance on data retrieval can be achieved,

which implies that Redundant R-Tree has its own properties. Exact search and

nearest neighbor search algorithms of Redundant R-Tree can be designed by

making use of those properties.

The first property is about the inter-relation between bounding boxes and nodes.

Property 1 Let A and B he nodes in a Redundant R-Tree at level i and i+1

respectively. The bounding box of A encloses or overlaps with the bounding box

of B if and only if node A has an entry to node B.

Theorem 4 Property 1 is valid.

Proof:

(<H:

If node A has an entry to node B, then node B is either a normal child node

or a redundant entry of node A. If node B is a normal child node of node A,

then, according to properties of R-Tree, it is enclosed by the bounding box of

node A. If node B is a redundant entry of node A, OverlapTest{A, B) must be

evaluated to be true which determines node B is a redundant entry of node A.

OverlapTest{A,B) equals to true means that tlie bounding box of A encloses

or overlaps with the bounding box of node B. Therefore, if node A has an entry

to node B, then the bounding box of A encloses or overlaps with the bounding

box of node B.

(々)：

If the bounding box of node A encloses or overlaps with the bounding box of

node B, there are two possibilities. The first case is that node B is already

a child node of node A, and node A is trivial to liave an entry to node B.

The second case is that B is node a child node of node A. Nodes A and B^a.rent

78

Chapter 6. Redundancy On R-Tree

which is the parent of node B are in the same level. When OverlapStart is being

executed, OverlapTest{A, Bparent) will be evaluated. By properties of R-Tree,

Bparent must enclos6s iiode B which implies that Bparent overlaps with node A and

OverlapTest[A,Bparent) will be evaluated to be true. Then OverlapTest{A,B)

will be evaluated to be true also. Therefore, node B will be inserted to node A

as the latter's redundant entry. Hence, the statement is correct.

As both statements (4=) and (^) are proved to be correct, the theorem holds.
•

The second theorem is a generalization of Theorem 1.

Property 2 Let node A be ancestor of another node B in Redundant R-Tree.

If the bounding box of A encloses or overlaps with the bounding box of B, node

A has a path to node B.

Theorem 5 Property 2 is valid.

Proof: The proposition is to be proved by Mathematical Induction.

Let P(n) be the proposition of Property 2. Let n be tlie difference in level be-

tween node A and B. -

When n 二 1, the proposition is proved to be correct by Theorem 4. Assume the

proposition is correct wlien n 二 k where k is larger tlian or equal to one. When

n = k + 1, let node C be the parent of node B such that the difference in level

between node A and C is k. If the bounding box of node A encloses or overlaps

with the bounding box of node B, by properties of R-Tree, the bounding box of

node A encloses or overlaps with the bounding box of node C. As the difference

in level between nodes A and C is k and the proposition holds when n 二 k, node

A. has a path to node C. Because node C is the parent of node B, node C has

79

Chapter 6. Redundancy On R-Tree

a path to node B, and consequently, node A has a path to node B. Therefore,

the proposition is correct when n = k + 1 which means that it is also true for

all positive integer k.

Thus, the proposition P(n) is proved to be correct by using Mathematical In-

duction. •

The converse of the statement is not necessarily true. That means, if a node

A has a path to node B, then node B may not be enclosed or overlapped with

the bounding box of node A. However, it may not be an undesirable property.

Consider that a nearest neighbor query has been given which is located very

near to the boundary of the bounding box. Its nearest neighbor may be located

outside the bounding box of current node. If the converse of the statement is

allowed, then the nearest neighbor may be accessed even the bounding box of

the current node does not enclose or overlap with the nearest neighbor.

The following theorem tells a geometric property of bounding boxs in the index

tree.

Property 3 Let NNJDIST he the distance between temporary nearest neighbor

and query. Let 0=f0i,02,...,0^J be a query andP=(pi,p2”",Pm) he the tempo-

rary nearest neighbor ofan query 0. Let M=(L, U) be the current bounding box

where L=(h,l2,...,lm) is the lower, bounds and U=(u1,u2,...,um) is the upper

bounds of the bounding box respectively.

If NNJDIST < mm(\o, — k\, Mi = [l,2,...,m]； and NN_DIST < mm(]o, — u.|,

Vz = [1,2, ...,m]), then we can be sure that the nearest neighbor is located within

the current bounding box of node M and it can be obtained after node M has been

accessed.

Theorem 6 Property S is correct.

80

Chapter 6. Redundancy On R-Tree

Proof: If NN—DIST < min(|o, — kl Vz = [l ,2, . . . ,m]) and NN—DIST <

min(|j9i — Ui\, Vz = [1,2,..., m]), every object which locates outside the bounding

box cannot be the nearest neighbor because the distance between the object

and the query must be larger or equal to the minimum distance between the

query and the boundaries of the bounding box, which is larger than or equal to

the distance between the query and the temporary nearest neighbor. Further-

more, by Theorem 5, we guarantee that all objects which are enclosed by the

same bounding box can be found in the same subtree. The real nearest neigh-

bor, which has smaller or equal distance to the query than that of temporary

one, must locate within the bounding box and the postconditions are satisfied.

Therefore, the statement is proved to be correct. •

Figure 6.6 is an example to illustrate Theorem 6. Let M be a Redundant node

in Redundant R-Tree. Let 0 be the query and P is the nearest neighbor in

node M to the query, and the distance is NN_DIST. Let a,b,c,dhe distances

from the query to the boundaries of node M. If the precondition stated in the

theorem is true, that is, NN_DIST < a, NN_DIST < b, NN_DIST < c and

NN-DIST < d are satisfied", and then the nearest neighbor is located within

the bounding box of node M. By Theorem 5, the nearest neighbor must be found

under the subtree of node M. In case P is found to be the nearest neighbor

in node M, then it is the real nearest neighbor to the query among all objects

indexed by the index tree.

The theorem is very important to Redundant R-Tree because we can make use of

it to design its own efficient searching algorithms so as to reduce the numbers of

node accesses when search queries are being performed. The search algorithms

will be discussed in Chapter 7.

" 81

Chapter 7

Searching in Redundant R-Tree

The construction method and some properties of Redundant R-Tree have been

described in Chapter 6. Since there are differences between R-Tree and Redun-

dant R-Tree, it is obvious that new searching algorithms should be designed for

the new index structure so that the characteristics of the new index structure

can be utilized and a better data retrieval performance can be achieved. In this

Chapter, algorithms of exact-search and nearest neighbor search of Redundant

R-Tree will be described. Examples will also be provided to demonstrate how

these algorithms work.

7.1 Exact Search

In this section, a complete exact search algorithm of Redundant R-Tree will be

given. Several examples will also be shown to demonstrate liow the algorithm

works.

In Redundant R-Tree, every bounding box contains all child nodes which are

enclosed by the bounding box. That means, if we search a query points A which

are contained by a bounding box B, we can find A by accessing the subtree

82

Chapter 7. Searching in Redundant R- Tree

y

Levellist

\ B1

H

^ B2 ^ B3 ^ B4

Q M
• B5'̂ B6 • B7 " ^ B8 • B9 '̂B10^^^Bll^ B12̂ BB

Figure 7.1: Tree structure of Redundant R-tree

of node B. Compared it to the original R-Tree algorithm in which we cannot

guarantee that the subtree ofnode B is parent of A although the bounding box

of node B encloses A. It may be the case that another bounding box C which

overlaps with B and encloses A, and one of its subtree contains A. We have

described the overlapping nodes in R-Tree in Chapter 5. After a Redundant R-

Tree is constructed, exact search query can be performed more efficiently. The

exact search algorithm is given in Algorithm 7.1.

The exact search algorithm is designed for Redundant R-Tree. Since Redundant

R-Tree is a variant of R-Tree, its search algorithm is similar to the exact search

algorithm of R-Tree. Again, the exact search algorithm of Redundant R-Tree is

based on the containment test. That is, a node will be accessed if the query is

enclosed by the bounding box of the node. Otherwise, it will be left unvisited.

If there are more than one node which bounding boxes enclose the query, we

just simply choose one node to visit. The process is repeated until we reach

83

Chapter 7. Searching in Redundant R- Tree

B1

B2 B3 B4

A A A
B5 B6 B7 B8 B9 B10 B l l B12 B13 \1

Q

Figure 7.2: Exact search on Redundant R-Tree

the leaf level of the tree. Then we try to find the desired object. If the query

object is found, then it reports that the object is found and the search process

terminated. Otherwise, the search process will be continued until either the

query is found or all objects of the node have been accessed. If it is the latter

case, then it reports that the object is not found, and the search process will be

terminated. No matter whether the object is found or not, no backtracking will

be present. It is because, by the property of Redundant R-Tree, we know that

the object is not present in the tree. It is very different to the original R-Tree

exact search algorithm that the object may exist in somewhere of the tree which

implies that the search process must proceed and backtracking takes place.

Recalls the example given in Figure 3.1. The Redundant R-Tree constructed

in this example is shown in -Figure 7.2. Now, an query Q is specified. The

searching will be started at the root of the tree, Bi. As the bounding box of Bi

encloses the query, the searching will continue and all child nodes of Bi will be

84

Chapter 7. Searching in Redundant R- Tree

Algori thm 7.1 Exact search algorithm for Redundant R-Tree

Procedure E x a c t — S e a r c h
Input : Q

/* Exact search query */
O u t p u t : Resul t

/* Result of the query: found or not found */
Begin

Result := Not_Found
If current node P is at leaf level

If P is equal to the query Q
Return P

Else
For i : = 1 to number of children of P

Set Pi to be the î ^ children of P
If the bounding box of Pi encloses the query Q
T h e n

Result :二 Exact_Search
Return Result

Return
End

checked. We know that the bounding box of B2, which is the first child node

of Bi, encloses the query. The searching will continue and all child nodes of

B2 will be checked. Bounding boxes of some child nodes of B2 do not enclose

the query and therefore they will not be accessed. Instead, we find that the

bounding box of B7, which is a child node of B2, encloses the query. Therefore,

the searching process proceed to access the node B7. Since B7 has an entry to

the query Q, the query is found and the searching process is terminated. In this

example, three nodes have been accessed, while five nodes should be accessed if

the query is searched on tlie original R-Tree shown in Figure 3.1. Hence, there

is an improvement.

If another query 5' is specified, then the searching will be started again at B [

As the bounding box of Bi encloses the query, the searching will continue and all

85

•

Chapter 7. Searching in Redundant R- Tree

child nodes of Bi will be checked. We know that the bounding box of B2 encloses

the query and therefore searching will continue and all child nodes of B2 will

be checked. However, bounding boxes of all child nodes of B2 do not enclose

the query. Since we cannot proceed further and no backtracking is allowed,

the searching process is terminated. In fact, the query S does not exist in the

tree, and the searching process can be terminated because of the property of

Redundant R-Tree. In this example, two nodes have been accessed to indicate

that the query does not exist in the tree, while three nodes should be accessed

if the query is searched on the original R-Tree shown in Figure 3.1.

7.2 Nearest Neighbor Search

In this section, pruning heuristics of nearest neighbor search of Redundant R-

Tree will be described. A complete nearest neighbor search algorithm will then

be given, and an example will also be shown to demonstrate how the algorithm

works.

Since Redundant R-Tree is a variant of R-Tree, its nearest neighbor search algo-

rithm should be based on the nearest neighbor search algorithm of R-Tree with

some modifications.

First of all, we focus on pruning heuristics used in nearest neighbor search al-

gorithm of Redundant R-Tree. As we have proved that the improved nearest

neighbor search algorithm stated in Chapter 4 outperforms the nearest neighbor

search algorithm in [6], Heuristic 5 is used in the nearest neighbor search algo-

rithm of Redmidant R-Tree. In addition, one more pruning heuristic is used so

that a better performance can be achieved.

Let 0 = (01,02,...,0^) be a query and P 二 (pi,p2,".,Pm) be the temporary

86

Chapter 7. Searching in Redundant R- Tree

Algori thm 7.2 Nearest neighbor search algorithm for Redundant R-Tree

Procedure N N _ S e a r c h
Input : N O D E

/* node to be visited */
NN^DISTtemp
/* distance from temporary nearest neighbor to the query */

Begin
If current node P is at leaf level
T h e n

For i := 1 to no. of children of current node
If DISTp < NN_DIST

Set current node to be nearest neighbor
Update NNJDIST

Else

Generate Active Branch List of current node

Calculate MINDIST
Sort the Active Branch List by ascending ordering of MINDIST

For i :二 1 to no. of entries in the Active Branch List
Apply Heuristic 5 and 6 to do pruning

Call NN—Search

End

nearest neighbor of an query O. Let M 二�L, U) be the current bounding box

where L 二 [h,h, ...,lm) is the lower bounds and U 二 (w i , w 2 , . . . , �) i s the upper

bounds of the bounding box respectively. The additional heuristic is presented

as follows:

Heuristic 6 If the conditions NNJDISTtemp < mm(\o^ — k\, Vz = [1,2，."，m])

and NN-DISTtemp < mm(\o, — ^ / 丄 Vz = [l,2,...,m]J are satisfied, then the

nearest neighbor can be obtained after all candidate child nodes of the current

node have been accessed.

87

Chapter 7. Searching in Redundant R- Tree

T h e o r e m 7 Heuristic 6 is correct.

Proof: If the conditions NN-DIST— < min(|o, — h\, Vz = [l ,2 , . " ,m]) and

NN.DISTtemp < min(|o, — u,\, Vz 二 [l,2 , ." ,m]) are satisfied, by Theorem 6，

the nearest neighbor must be located within the bounding box of current node

M, that is, bounding box of M encloses the nearest neighbor. Property 3 states

that the bounding box of A encloses the bounding box of B if and only if node

A has an entry to node B. Therefore, the nearest neighbor must be obtained

after all candidate child nodes of node M which are entries in the Active Branch
I

List of node M have been accessed. •

Based on the improved nearest neighbor search algorithm and Heuristic 6, the

nearest neighbor search algorithm on Redundant R-Tree is obtained and it is

given in Algorithm 7.2.

Consider the nearest neighbor search example given in Chapter 5 to see how the

nearest neighbor search algorithm works. Assume P is the nearest neighbor of a

given query. The searching started at the root, and after certain steps the subtree

of node A has been accessed, a, denotes the temporary nearest neighbor after

the subtree of node A has been accessed. Since P is located within the bounding

box of node A, by Theorem 6, a, is P. K the query is not located very near to the

boundary of bounding box of node A, that is, the conditions NN_DISTump <

min(\pi — hI, Vz = [1, 2,..•, m] and NN—DISTtemp < min(\p^ — u,|, Vz 二 [1，2,..•, m

are satisfied, then, by Heuristic 6’ the searching process will terminate after all

candidate child nodes of node A have been accessed. Therefore, the subtree

of node B and C will not be accessed even if NN.DISTa, > MINDISTs or

NN-DISTa, > MINDISTc. In the nearest neighbor search algorithm of R-

Tree, node B and node C may also be accessed. It is because the nearest neighbor

P may be a child node of either node A, B or C. Furthermore, MINDISTA,

MINDISTs and MINDISTc are all equal to zero which implies that it is

88

Chapter 7. Searching in Redundant R- Tree

possible to exist an object P' such that it is a child node of either node A, B or

C, and DISTp, < DISTp.

As the correctness of theorems and pruning heuristics have been proved, the

nearest neighbor search algorithm is shown to be correct and it will not miss

the nearest neighbor. For the case described above, nearest neighbor search of

redundant R-Tree is more efficient than that of R-Tree as subtrees of node B and

C do not need to be accessed. When the numbers of data is very large, R-Tree

usually has many overlapping regions and the number of objects enclosed by a

bounding box is very large too. It implies that the preconditions of Heuristic 6

are very likely to occur. If there is no overlapping region, redundant R-Tree is

just a original R-Tree, and hence the performance will be the same in this case.

7.3 Avoidance of Mul t ip le Accesses

We assume that all queries will be executed sequentially, i.e. there is no con-

current querying. Since a node may have more than one parent node, it is

necessary to eliminate the possibility of multiple accesses of a node in the same

search query. In order to do that, a global logical clock in the system should be

given. The clock will only be updated once when a new search query is specified

and stay unchanged throughout the same query. During the searching process,

when a node is being accessed, its timestamp will be checked first and then

a new timestamp will be given to the node. The timestamp is used to check

whether it has been accessed on this searching transaction. If the timestamp of

the node is the same as the value of current logical clock, it can be ensured that

the node have been accessed in this transaction, and there is no need to access

it again. Hence, the node will be ignored. The chance of multiple accesses on

the same node is eliminated.

89

Chapter 8

Experiment

In this Chapter, a series of experiments will be performed and their results will

also be presented. These experiments are used to compare the performance of

searching in different content-based index structures. Both exact and nearest

neighbor search will be performed on R-Tree, R*-Tree, Redundant R-Tree and

Redundant R*-Tree.

8.1 Experimental Setup

We implemented both R-Trees, R*-Tree, Redundant R-Tree and Redundant

R*-Tree in C under UNIX on a Sun Ultra-Sparc computer, and used our im-

plementation in a series of performance tests to verify the practicality of the

structure and to evaluate the efficiency during searching by both algorithms.

Both exact and nearest neighbor search will be used in these experiments.

Clustered, uniform and real data will be used in the experiments. The size of all

data set varies from 10000 to 40000. The set of clustered data has 100 clusters

and its dimension varies from 4 to 32. The dimensions of the uniform data vary

from 4 to 32, and the dimensions of real data vary from 2 to 16.

90

- Chapter 8. Experiment

8.2 Exact Search

” Disk Access against Dimension on Exact Search

100 I 1 [1 1 ~T 1

z
80 - R-Tree 如 / '

R*-Tree +-- /
Redundant R-Tree -••- /
Redundant R*-Tree .x“… /

« 6�- / • « /
s .

丨 」 / 一 . 20 - J z"+z .

y ^ z . . . , / -
yC--^- ,.,..-x-" .

0 ^ - " ,....-x-- -.*-.-•<:-•--- Q 丑
》 “ — . , . . . , . , . „ . 8 - -身 - " . : :…- ° “̂“

ol 1 1 1 ^ ‘ ‘
0 5 10 15 20 25 30

Dimension

Figure 8.1: Exact search on 10000 clustered data

8.2.1 Clustered Data

In the first set of experiment, one hundred exact search query are performed on

the clustered data. The experiments are used to compare the performance of

R-Tree, R*-Tree, Redundant R-Tree and Redundant R*-Tree on exact search.

Results of this set of experiments ar.e shown in Figures 8.1 to 8.2.

First of all, the performance of the index structures on exact search are evaluated

by average disk accesses per exact search query. Figure 8.1 shows the average

disk accesses per query against the numbers of dimensions of data. Both R-Tree

and R*-Tree perform badly when the numbers of dimensions of data increase.

It is because when they are dealing with high dimension data, they have a

lot of overlapping nodes and the performance will be degraded rapidly. The
91

- Chapter 8. Experiment

” CPU Time against Dimension on Exact Search

2 I 1 i 1 1 1 '
1 . 8 - R - T r e e — ^ ‘

FT-Tree + - . o ^ ^
Redundant R-Tree -曰… �

1.6 - Redundant R*-Tree -x-… / -

1.4 - / •

！ 1 /
“0.3- j/—-+ -

�,. / z , _
�.'“ \ 0,,,,--/. / “

\ y^""""]7--r.--^!-.' .,/' .、 V."-S £1

„„ \ yC'-t;>- ./'---B fl--" .
0.2 - B -}>fi^:^^—-Gz汰 °

^ - ' ' ' ' ' .X.

ol 1 1 1 1 ^ ‘
0 5 10 15 20 25 30

Dimension

Figure 8.2: Exact search on 10000 clustered data

curves resulted by the increasing rate of bad performances. As what have been

described in Chapter 5, there are many backtrackings in exact search on both

R-Tree and R*-Tree that cause many unnecessary node access. Furthermore,

R_Tree performs worse than R*-Tree because R*-Tree tries to avoid overlapping

nodes which can improve its own performance. On the other hand, Redundant

R-Tree and R*-Tree outperform R-Tree and R*-Tree because unique search path

can be provide for each query.

Figure 8.2 shows the CPU Time used against the numbers of dimensions of data.

Similar to the results above, Redundant trees used less CPU Time for searching.

However, as larger nodes take more time for processing, the gains of CPU Time

saved in Redundant trees are not as many as the gains of the number of disk

accesses saved. ..

92

- Chapter 8. Experiment

Disk Access against Dimension on Exact Search
100 I 1 [1 1 1 r 1 1

ir

80 - R-Tree 如 / •
R*-Tree - — /

Redundant R-Tree -日… , ! y ^
Redundant R*-Tree -x-— y

f ^
60 - / -

% /i
8
< ^ / I .2 J /
Q _ , - ^ /

40- X " ^ / -
/ i .
广 / V „ -A

/ / / $: : 〕 ， - - * < : - - - - - 0

/ / / • ' .

20 • / . ,� "-7''--r •
y^ ..' ！ /

Z ' . j . '
^-'Z---

女.:::7二:.:::寺..:-.--次.一.. 0 ‘ I I 1 1 1————" ‘
0 2 4 6 8 10 12 14 16 18

Dimension

Figure 8.3: Exact search on 10000 real data

8.2.2 Real D a t a

In this set of experiment, one hundred exact search query are performed on the

real data. The experiments are used to compare the performance of R-Tree,

R*-Tree, Redundant R-Tree and Redundant R*-Tree on exact search. Results

of this set of experiments are shown in Figures 8.3 to 8.4.

First of all, the performance of the index structures on exact search is eval-

uated by average disk accesses per exact search query. Figure 8.3 shows the

average disk accesses per query against the numbers of dimensions of data. R*-

Tree is more capable of avoiding overlapping nodes, so its performance is better

than R-Tree especially when low dimensional data are being handled. However,

when the numbers of dimensions of data increase, R*-Tree cannot effectively

reduce overlapping nodes and its performance is almost the same as that of R-

Tree. Since R-Tree has many overlapping nodes, tlie Redundant R-Tree performs

93

- Chapter 8. Experiment

CPU Time against Dimension on Exact Search 1 1 1 1 1 1 I "
4 - R-Tree 一 f> •

FT-Tree + - • /
Redundant R-Tree • • - /

Redundant R*-Tree -x-+ / /

： / :
^ 2.5. /
I /f
\ 2- / i •

0 y ； , 7

1.5 • z Z ! .g.>:.:r::----日

_ ^ / /!
1 ^ ^ / /-7 -
1 - / / ：

,.---』--.-•-----•-日-•---•广过 / Q ET.- / /
/ / .

0.5 - /
/ y

.A z.z...
Z

,,......x...7'..".'..x
p 禾 ^---^-……f I I 1 1 1

0 2 4 6 8 10 12 14 16 18
Dimension

Figure 8.4: Exact search on 10000 real data

slightly worse than R*-Tree. However, the numbers of disk accesses of redun-

dant trees increases steadily that make Redundant R-Tree performs better than

R*-Tree when high dimensional data are being handled. Redundant R*-Tree,

on the other hand, gives the best performance as few overlapping nodes when

low dimensional data are being handled and the steady growth of the numbers

of disk accesses that makes it perform better than Redundant R-Tree when high

dimension data are being handled.

Figure 8.4 shows the CPU Time used against the numbers of dimensions of data.

Similar to the results above, R-Tree performs the worst while Redundant R*-

Tree gives the best performance on average. R*-Tree gives better performance

than Redundant R-Tree when low dimensional data are used, but Redundant R-

Tree performs better than R*-Tree when high dimensional data are used. Since

larger nodes induce more overhead for processing, the gains of CPU Time saved

in Redundant trees are not as many as the gains of the number of disk accesses

94

- Chapter 8. Experiment

saved.

8.3 Nearest Neighbor Search

Disk Access against Dimension on Nearest Neighbor Search 10000 I 1 1 1 n n 1
R-Tree 如

R*-Tree + - •
Redundant R-Tree . • . - #

8000 - RedundantR*-Tree -x-.... / -

6000 - / _ % / /

0) / /
1 -. / /
I / /

4000 - / / -

j
2000 - A-"""'̂ ‘

^
, ^ < : ^ j_i..-..^„.:-*-c〔§

p .̂..̂ ^̂ -̂ î , -o--‘-----,��--::.:•"------".*-V I ‘
0 5 10 15 20 25 30

Dimension

Figure 8.5: Nearest neighbor search on 40000 clustered data

In this section, the performance of nearest neighbor search on different index

structures will be tested. The most nearest neighbor will be searched for each

query. Nearest neighbor search algorithms described in Chapters 4 and 7 will

be used to search on original trees and Redundant Trees respectively. Several

metrics will be used to evaluate the performance. Those metrics are the numbers

of node accesses per query, the numbers of disk accesses per query, and the

percentage of node accesses per query.

8.3.1 Clustered Data

In the first set of experiment, one hundred nearest neighbor search query are

performed on the clustered data and each query is need to find tlie most nearest

95

- Chapter 8. Experiment

Node access against Dimension on Nearest Neighbor Search Node access against Dimension on Nearest NeighborSearch
10000 I 1 1 ~ i 1 1 1 1 I — r I I “ I ‘ ‘

14 • -

R*.y[ee ^ - Redundant R-Tree ^
Redundant R*-Tree -+--

8000 - J • 12 - .

/ 1。. ， / •
« 6000 • / • « ^ / /
1 / / S � / ^ ^ ^ x = ^ .

L / . i ： _ / ^ .

J/ ‘. 乂 .

2000 - A-""""̂ ‘

_ ^ [‘
„ , , - . ^ . : ^ ^ ^ ^ ' . , I . . o l 1 1 1 ‘ ‘ ‘
° ° ^ 10 1 5 _ _ 2 0 . 30 0 5 . . _ . . 30

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.6: Node access against dimension on 40000 clustered data

neighbor. The experiments are used to compare the performance of R-Tree, R*-

Tree, Redundant R-Tree and Redundant R*-Tree on nearest neighbor search.

Results of this set of experiment is shown in Figures 8.5 to 8.7.

First of all, the performance of the index structures on nearest neighbor search is

evaluated by average disk accesses per nearest neighbor search query. Figure 8.5

shows the average disk accesses per query against the numbers of dimensions of

data. Both R-Tree and R*-Tree perform badly when the mmbers of dimensions

of data increase. It is because when they are dealing with high dimensional

data, they have a lot of overlapping nodes and the performance will be degraded

rapidly. The curves resulted by the increasing rate of bad performances. As

what have been described in Chapter 5, there are a lot of backtrackings in

nearest neighbor search on both R-Tree and Redundant R*-Tree that cause

many unnecessary node access. On the other liand, Redundant R-Tree and

R*-Tree outperform R-Tree and R*-Tree because the searching is much more

96

, 'V

Chapter 8. Experiment

Node Access against Dimension on Nearest Neighbor Search Node Access against Dimension on Nearest Neighbor Search

10000 r 1 1 1 1 1 1 1 1] 10 I 1 1—~I ‘ ‘ ‘ ‘ ‘
R-Tree 如 A . T ^ 如

R'-Tree + - • 只-丁啡 • —

8000 - . 8 - •

r. f ^ . 1 6 . _ x ^ ^
I / I 4 y^^^^^ .
“ 4000 • y j • 4 - <^

/ 7
2000 . / / • 2 • / y 1.

„ ^.-^.........-v--^"丨 _ 丨 1 彳 o l 1 ‘ 1 1 1 1 1 ‘
\ r 4 ~ ~ 6 8 i o ^ ^ i e 18 0 2 4 6 8 . 1 0 12 14 16 18

Dimension Dimension

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.7: Percentage of node access against dimension on 40000 clustered data

deterministic by making use of redundancy on index trees.

Average node access per query is shown in Figure 8.6. Similar to the result

measured by average disk accesses per query, both R-Tree and R*-Tree perform

badly when the numbers of dimensions of data increase, while Redundant R-

Tree and Redundant R*-Tree outperform R-Tree and R*-Tree. The difference

of node accesses between Redundant trees and original trees is larger than the

difference of disk accesses. It is because each node in R-Tree and R*-Tree is

fitted into one page size, while the size of each node in Redundant trees may

be larger than one page. The numbers of node accesses are proportional to the

numbers of backtrackings during searching. The result shows that the numbers

of node accesses of Redundant trees are closed to the height of trees which show

that fewer backtracking occurred. Tlie percentage of node accesses per query

are shown in Figure 8.7. Similar to the result in measuring the number of node

accesses, searching on Redundant trees needs fewer percentage of node accesses

97

- Chapter 8. Experiment

Disk Access against Dimension on Nearest Neighbor Search
1000 I 1 1 1 1 1 1

800 - R-Tree — “
R*-Tree + …

Redundant R-Tree - • -
Redundant R*-Tree -x•••••

0, 600 - / .
w /
0) / \ _. /

400 - / -

X
2��- ^ ^ .

^ y ^ ' z〉 - :‘：
Q ^c::C^^_-_K-~»~4a,<.:::r:tl...-..........-.-� X.....1 -X - . . .� . . - -�_

0 5 10 15 20 25 30
Dimension

Figure 8.8: Nearest neighbor search on 40000 uniform data

on average.

8.3.2 Uniform Data
In the second set of experiment, 100 Nearest neighbor query are performed on

the uniform data. Results o f th i s set of experiment is shown in Figures 8.8 to

8.10.

Once again, the performance of our proposed Redundant R-Tree and Redundant

R*_Tree outperform R-Tree and R*-tree in this set of experiment. However,

since the uniform data have less overlapping, the performance of R-Tree and

R*-Tree is slightly better than that of dealing with clustered data. Therefore,

the speedup factor of Redundant R-Tree and R*-Tree is slightly smaller.

Figure 8.8 shows the average disk accesses per query against tlie numbers of

dimensions of data. Both R-Tree and R*-Tree perform badly when mmiber of

98

- Chapter 8. Experiment

Node access against Dimension on Nearest Neighbor Search Node access against Dimension on Nearest NeighborSearch

800 I r- 1 1 1 1 1 I “ 1 ~> I ‘ ““‘
14 - “

700 - • Redundant R-Tree 如
Redundant R'-Tree + -

12 • •

600 - / • J
- . / 1 � . ^ -

500 - / - ^ t ^ ~ ~ < ^

L . / . ! ‘ / / ^ .
賽 . y . 羞 • c c / -

200 • ^/ -

Z 2 . .

™ • / + — •

7 +---------Z'
„ r：：：!-— ： . I I ol 1 1 1 ‘ ‘ ‘

0 6 10 15 20 25 30 0 5 10 15 20 25 30
Dimension 0丨卿5咖

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.9: Node access against dimension on 40000 uniform data

dimension of data increased. However, R*-Tree is shown to perform better than

R-Tree. It is due to the fact that overlapping in uniform data is less that that of

clustered data. Since R*-Tree is more capable of avoiding overlapping nodes, it

significantly outperforms R-Tree. As R-Tree performs badly, the performance of

Redundant R-Tree is similar to that of R*-Tree because too much overlapping

nodes in R-Tree cause larger node size in Redundant R-Tree. On the contrary,

Redundant R*-Tree gives the best performance since R*-Tree has better perfor-

mance than R-Tree.

Average node accesses per query is shown in Figure 8.9. Similar to the result

measured by average disk accesses per query, R-Tree gives the worst perfor-

mance. R*-Tree performs better. Redundant R-Tree and Redundant R*-Tree

access fewer nodes on average. As the size of node in Redundant trees is larger

or equal to the size of node of original trees, Redundant R-Tree accesses fewer

99

- Chapter 8. Experiment

Node Access against Dimension on Nearest Neighbor Search Node Access againsl Dimension on Nearest Neighbor Search

10000 1 , 1 1 1 1 1 1 1� 1 1 ~> I I ‘ ‘ ‘
R-Tree 如 . . ^ l ' ^ 如

R'-Tree + . . R*—I^ +一

8000 • • 8 - ‘

/ _ ^
¥ ^^^ c Sf "^“ -^ •

s _ . !Z • ^ 6- X ^
/ I / _ V ^

i / I z
Z 4000 • 乂 • [Z -

/ f .
2000 - / / - 2 -

/ y
„ ^---^.-……4---Z ol ‘ 1 1 1 1 1 ‘ ‘
°0~~r~t~~6 ““8 io ^ U ^ 18 0 2 4 6 8 J0 12 14 16 18

Dimension D i m e _ n

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.10: Percentage of node access against dimension on 40000 uniform data

nodes on average than R-Tree and R*-Tree. As similar as before, Redundant R*-

Tree accesses the fewest number of nodes. Tlie percentage of node accesses per

query are shown in Figure 8.10. Similar to the result in measuring the number

of node accesses, searching on Redundant R*-Tree needs the fewest percentage

of node accesses.

8.3.3 Real D a t a

Experiments have also been done on real data. Figures 8.11 and 8.13 show the

results.

In the real data, there are a lot of overlapping and it makes the performance

of R-Tree and R*-Tree become worse. When it is compared to those results of

using uniform and clustered data, the results of using real data show R-Tree and

R*-Tree give worse performance.

100

- Chapter 8. Experiment

“ D i s k Access against Dimension on Nearest Neighbor Search 10000 1 1 1 1 "T 1 1 1

R-Tree 如
R*-Tree + - .
R-Tree - o -

8000 - R'-Tree . *— -

/ / / .
6000 - /1/^^ -

% / /
S / /
< /
I /
0 4000 - ^ z / “

/ 1
2000 - / / .

/ ,J
^ y ^ ,,-^''' „_̂ _-,.:.-.:.:.:.二:§:二二二•--̂

0 ^^：二二本二…-¢-:.:...̂ .̂ --- r__,——.——
0 2 4 6 8 10 12 14 16 18

Dimension

Figure 8.11： Nearest neighbor search on 40000 real data

Figure 8.11 shows the average disk accesses per query against the numbers of

dimensions of data. Both R-Tree and R*-Tree perform badly when the 皿 瓜 匕 6 [3

of dimensions of data increase. Initially, R*-Tree is shown to perform better

than R-Tree, since R*-Tree is more capable of avoiding overlapping nodes. As

the dimension of data increased, more overlapping nodes are created which make

both R-Tree R*-Tree perform badly and their performance are almost the same.

On the contrary, Redundant R-Tree and R*-Tree perform better than original

trees.

Average node accesses per query is shown in Figure 8.12. Similar to the result

measured by average disk accesses per query, R-Tree gives the worst perfor-

mance. R*-Tree performs better when the dimension of data is low, and their

performance are almost the aame when high dimensional data are being dealt

with. &64皿4己打1 R-Tree and Redundant R*-Tree access fewer nodes on average.

The percentage of node accesses per query are shown in Figure 8.13. Similar

101

- Chapter 8. Experiment

Node Access against Dimension on Nearest Neighbor Search Node Access against Dimension on Nearest Neighbor Search
10000 I 1 1 1 1 1 1 1 1 101 1 1 1 1 i 1 1 1

R-Tree ^ R-Tree ^
R*-Tree + - • R*-Tree + - .

8000 • • 8 • -

/ ^ ^
6000 . / ^ ^ - ^ • 6 - ^ > ^ ^ = r r r r r $: C l I ^] ^ ^ Z .

i 丨广 i X
^ / ！ .__,__Z
I / •o= y
Z 4000 • ^ - Z 4 - / -

/7
2000 • / 1 • 2 - •

乂,乂
0 f - - - ^ ^ 4 ~ " ^ " 丨 • I 1 1 1 0 I 1 1 1 1 > 1 1 1

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Dimension Dimension

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.12: Node access against dimension on 40000 real data

to the result in measuring the numbers of node accesses, searching on Redun-

dant R-Tree and R*-Tree have fewer percentage of node accesses. There is a

difference that the percentage of node accesses of the Redundant trees tend to

decrease with the numbers of dimensions of data. It is because high dimensional

real data induce a lot of overlapping nodes. The presence of overlapping nodes

make Redundant Trees become larger in size. The increase of their size are faster

than the increase of the height of trees which is proportional to the number of

node accesses per search query. Therefore, those curves for redundant trees have

negative slopes.

8.4 Discussion

The results show tliat Redundant R-Tree and R*-Tree outperform the original

R-Tree and R*-Tree on both exact and nearest neighbor search. However, it

should be noted that the performance of redundant tree can be affected by the

102

- Chapter 8. Experiment

Node Access(%) against Dimension on Nearest Neighbor Search Node Access(%) against Dimension on Nearest Neighbor Search
100 I 1 1 1 1 [1 1 1 1 1 I 1 1 1 1 1 1 1 1

R-Tree 如 R-Tree 如
R*-Tree -+•-. R'-Tree -4--

80 • • 0.8 - -

•k

���
？ 60 • • ？ 0-6 . 。 \ •
« V \ \
« » \ \

I y : ^ I Vx

I 40. r^^"i ” ““ \ ^ .

20 - 乂 / • 0.2 — ^ \ ^ •

Z , y ^ ^
Q I 4- f 1 I I I I I Q 1 I 1 I I 1 1 1 1 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Dimension Dimension

(a) R-Tree and R*-Tree (b) Redundant Trees

Figure 8.13: Percentage of node access against dimension on 40000 real data

degree of overlapping of their nodes. As we have mentioned before, too much

overlapping nodes in trees make larger nodes size in Redundant trees which

induces overheads on both processing and the numbers of page accesses for each

search query. Furthermore, too much overlapping nodes would also increase

the size of the trees. Figures 8.14 and 8.15 show the ratio of storage against

the numbers of dimensions of uniform and real data respectively. In order to

optimize their performance, an effective methods for reducing overlapping should

be used.

103

- Chapter 8. Experiment

Ratio of Storage against Dimension

18 I 1 1 1 1 1 1

16 - Redundant R-Tree 如 -
Redundant R*-Tree -+—

；； /：
a /
i i�_ / _
•2 8 - / -

) 乂 ：
- _ — ^ + z ^ — + Z + -

+--—- h h —

ol 1 1 1 ' ^ ‘
0 5 10 15 20 25 30

Dimension

Figure 8.14: Ratio of storage on 40000 uniform data

Ratio of Storage against Dimension
25 I 1 1 1 1 I r ~ 1 1

Redundant R-Tree 如
Redundant R*-Tree -+-- /

“ , 产 _
1 1 5 - .. ,y I . 厂 « , „ /i .
X 10 - //

•_ , / •
<̂ --+---------‘

0 I L 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Dimension

Figure 8.15: Ratio of storage on 40000 real data

104

Chapter 9

Conclusions and Future Research

9.1 Conclusions

Several content-based index structures such as R-Tree, R+-Tree and R*-Tree,

and their searching methods have been briefly introduced. The cause of the

inefficiency of nearest neighbor search in R-Tree have also been presented. In

order to improve the performance, a new pruning heuristic for nearest neighbor

search have been derived. It is shown tliat the new pruning heuristic can replace

those old pruning heuristics, while the replacement will not increase the number

of node access of any nearest "neighbor search query, which means that the per-

formance will not be degraded. Since the new heuristic does not make use of a

metric MINMAXDIST which is very computational expensive, the performance

is improved. Based on the new pruning heuristic, an improved nearest neighbor

search algorithm as well as an improved N-nearest neighbor search algorithm for

R-Tree and its variants have been designed. A series of experiments have been

carried out, and the results show that the new nearest neighbor search algorithm

uses less CPU time for processing, while it does not increase number of node

access. Therefore, the improved nearest neighbor search algorithm outperforms

the original one.

105

Chapter 9. Conclusions and Future Research

Besides, we found that the general performance of searching on R-Tree and its

variants are not satisfactory. Overlapping nodes of R-Tree have also been de-

scribed. The presence of overlapping nodes induces many backtrackings during

searching, and it therefore degrades the performance on data retrieval. We try

to improve it by adding redundancy to the tree. The idea of adding redundancy

on R-Tree have been introduced. We have presented the motivation of the de-

sign of our Redundant Tree, which is a variant of R-Tree with redundancy, and

we have examined algorithms to build the Redundant Tree. Also, exact and

nearest neighbor search algorithms of Redundant Tree have been given. Based

on the properties of Redundant Tree, our proposed algorithms try to reduce the

number of node access during searching. We have performed experiments to

compare these algorithms with the original algorithms. The proposed searching

algorithms in Redundant Tree perform better than those of R-Tree and R*-Tree.

We conclude that Redundant Tree outperforms R-Tree and R*-Tree.

9.2 Future Research

Future research could examine methods to use less storage to build a Redundant

R-Tree. Also, we should minimize the sorting overhead in the nearest neighbor

search. In fact, the problems can be solved by reducing but not strictly elim-

inating overlapping nodes in the index tree. Therefore, a better algorithm for

splitting should be designed so that a moderate degree of overlapping is allowed.

R-Tree, which does not eliminate any overlapping node on purpose, shows its

inefficiency on searching because of tlie presence of overlapping node. R+-Tree,

which does eliminate all overlapping nodes on purpose, shows its inefficiency on

searching because there are many nodes with large margins. A mixture of R*-

Tree and R+-Tree may be a good choice because R*-Tree tries to keep minimal

margin of bounding boxes, while R+-Tree tries to eliminate overlapping nodes.

106

Chapter 9. Conclusions and Future Research

In fact, keeping margin and overlapping minimum are important to the perfor-

mance of searching.

X-Tree is a variant of R-Tree and it is designed by Stefan Berchtold et al，in [9].

In [9], Berchtold designs a split algorithm which uses split history of a node so

that the split will be overlap-minimal. Besides, he introduces supernode to the

tree structure. When a split makes two heavy overlapping nodes, a supernode

will be produced instead of splitting. We are doing experiments to compare

performance between Redundant Tree and X-Tree, and result will be released

soon.

A more efficient algorithm for introducing redundancy should be designed. Also,

redundancy idea can be extended to other multi-dimensional index structures,

for example Vp-Tree.

107

Bibliography

1] Rohini K. Srihari, ''Automatic indexing and Content-Based Retrieval of

Captioned Images", IEEE Computer, volume 28, number 9, pages 49-59,

September, 1995

'2] Anne Brink, Sherry Marcus, V.S. Subralimanian, ''Heterogeneous Multi-

media Reasoning”, IEEE Computer, volume 28, number 9, pages 33-39,

September, 1995

'3] Virginia E. Ogle, ”Chabot: Retrievalfrom a Relational Database oflmages，’,

IEEE Computer, volume 28, number 9, pages 40-48, September, 1995

.4] Antonin Guttman, ”R-Trees: A Dynamic Index Structure For Spatial

Searching，，, Proceedings of ACM SIGMOD Int. Conf. on Mangagement of

� Data, pages 47-57, 1984

'5] Timos Sellis, Nick Roussopoulos, Christos Faloutsos ”The R+-Trees: A

Dynamic Index For Multi-Dimensional Objects”, Proceedings of the 13th

Very Large Database(VLDB) Conference, pages 507-518, 1987

6] Nick Roussopoulos, Stephen Kelley, Frederic Vincent, ''Nearest Neighbor

Queries，，, Proceedings of ACM SIGMOD Int. Conf. on Mangagement of

Data, pages 71-79, 1995

108

'7] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger,

”The W-Tree: An Efficient and Robust Access Methodfor Points and Rect-

angles'', Proceedings of ACM SIGMOD Int. Conf. on Mangagement of Data,

pages 322-331, 1990

'8] Tzi-cker Chiueh, ”Content-Based Image Indexing"^ Proceedings of the 20th

Very Large Database(VLDB) Conference, pages 582-593, 1994

9] Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, ”The X-Tree: An In-

dex Structure for High-Dimensional Data”, Proceedings of the 22nd VLDB

Conference, 1996

10] Peter N. Yianilos, ,,Data Structures and Algorithms for Nearest Neighbor

Search in General Metric spaces", Proceedings of the Third Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 311-321, 1992

11] King-Ip Lin, H. V. Jagadish, Cliristos Faloutsos, ”The TV-tree - an In-

dex Structure for High-dimensional Data”, Very Large Database(VLDB)

Journal, volume 3, pages 517-542, 1995

12] Hanan Samet, ”The Design and Analysis of Spatial Data Structures，，,

Addison-Wesley, 1989

13] Venkat N. Gudivada, Vijay V. Raghavan, "Content-Based Image Retrieval

Systems”, IEEE Computer, volume 28, number 9, pages 18-22, September,

1995

.14] Niblack W. et al, ,，The QBIC Project: Querying Images By Content Us-

ing Color, Texture and Shape”, SPIE 1993 International Sumposium on

Electronic Imaging: Science and Technology, Conferencel908, Storage and

Retrieval for Image and Video Databases, volume 1908, pages 173-187,

February 1993

109

15] Niblack W. et al, ”The QBIC Project: Query By Images Content Using

Multiple Objects and Multiple Features: User Interface Issues，,, Proceedings

of the 1st International Conference on Image Processing, volume II，pages

76-80, 1994

.16] Niblack W. et al, "The QBICProject: Indexing for Complex Queries on a

Query-By-Content Image Database”, International Conference on Pattern

Recognition, volume 1, pages 142-146, 1994

.17] Niblack W. et al, ”Query by Image and Video Content: The QBIC System'\

IEEE Computer, volume 28, number 9, pages 23-32, September, 1995

18] Dimitris Papadias, Yannis Theodoridis, Timos Sellis, Max J. Egenhofer,

Topological Relations in the World of Minimum Bounding Rectangles: A

Study with R-trees, Proceedings of ACM SIGMOD Int. Conf. on Mangage-

ment of Data, pages 92-103, 1995

19] Michael Freeston, A General Solution of the N-dimensional B-trees, Pro-

ceedings of ACM SIGMOD Int. Conf. on Mangagement of Data, pages

80-91, 1995

'20] S.B. Yao, Approximating Block Accesses in Database Organizations, Com-

nmnications of the ACM, pages 260-261, 1987

"21] Patrick Valduriez, Join Indices, ACM Transactions on Database Systems,

pages 218-246, 1987

22] Ibrahim Kamel, Christos Faloutsos On Packing R-Tree, Proceedings of In-

formation and Knowledge management(CIKM), pages 218-246, November

1993

110

23] Nick Roussopoulos, Daniel Leifker Direct Spatial Search on Pictorial

Databases Using Packed R-Trees, Proceedings of ACM SIGMOD, pages

17-31, 1985

24] Yannis Theodoridis, Timos Sellis A Model for the Prediction of R-Tree

Performance, Proceedings of Database Systems, pages 161-171, 1996

111

. � . . ’ � . : : � ^ i ; c r : ' : V : � : � - . . - � •;•• : - •• .?-‘..:....-.,.:.• r • 1 . ‘ • • . .
:.:•...:、::.•-::.•. • ..,... . -,, . .+ •.••:....:’；... . : •….. •

:...::.:.,:...r： ‘ ：• , ：•' . , . -". ‘•. - ‘,... ‘‘ -. .
Y . . . , , “ • . •‘ — , - • • I
1 . , :..: - .‘ • . ‘ . ‘ .j" ‘ ‘ . . -

:i; . . , •‘.. . . . • ‘
^ , . ‘ ； • • . • - • • . .
r- - • . . ' . ; . ‘ ’. .' . - . h, . ‘ , -• • - ., • '-
(. . : . . , . ‘ ；•• ‘

''?： . r •

；‘. • . 、 • -

‘ ‘ . . “ . r •

:'•

;• •

!• .

1-
‘ »

.1

^

；>.•

‘ ‘ . • > . . ‘ •
！； • ‘ 、 .

1 . • : 、 ： • . : • :• •• • • , • ： . ‘ - . -.'

^ •• " “..:••:、：• :• ： , v " " . � : : • : : : . , ^ • •• ： ^ • . .
？ • r. • - • . . - . - . . . , . . .
f , , , - - • ; • • : : ; • > ' , ? . : :• - . ¾ - ' ' - ¾ . , : V > . : . - ; , - ; : - „ • • -;-. • \ : 〜 ： 二 . 、 ' ： … ： . / • • -. , , • . :.

i ' , i - : ^ v : v : , , : - L ,•••,;,-,：••. \;:̂ -̂̂ .,,：,̂ -̂•-•：：̂"¾•；'''：•••5V••̂：̂^ ; , : . ; ' y ' ' : " ; ' •••/'： . ; . , , r ^ ： ' ' ' , r ' , . •‘ .'>' .：••.•：.；-•• •： •、:.：.：. .： : : " ;
'^<._ ." ./••.... .. •..、. ,.••••• •‘•、： .,..‘ ••• •• <.:: •_.. . .. •；'：•••• . •.. .. :,. • :..1 ,• •'„•. . . - . . ' , .. .，. '_ . : , ‘ ‘ ..’
f'.-^.x；...:.., :,;.:.k.:...:/..:,..,..,,:.��'》 '.:.t. Q; :^ : ; . : j , : i k :L , ' i : : ''^^:.I-V.v： ^ d^;fe.^i!l..4J^Afel::L^^ -:A.>..;W:^.:^';-:-: ^ i . • •/••.••..• :̂ •r；.-̂：ĵ.•̂. "“:.. •• ‘ ‘ v'j：' .̂ . : . î“::（-〜.•.,：、...-:.".:::..,:..:义：：0.;.::,」:....,:..《..,::.、:二../... .A.-,.. ., /7 : : , .1 . : . . . , .1 . , . . , , . , . : :1¾. .,..V:i.,:. . , 1-.., 1 . . : . . ., .L. --...... .. -'-•-：..•• :• -..••..,.•.......-. __I_：； -_......:

CUHK L i b r a r i e s

11111_111圓圓11111
DD3SflTS33

j

