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Abstract 

Query-by-shape is a fundamental operation in image database systems as it provides 

an intuitive way to access objects by their outlines. Shape matching and retrieval are the 

keys of shape query processing. 

We propose a two-stage framework for polygon retrieval which incorporates both qual-

itative and quantitative measures of polygons in the first and second stage respectively. 

The first stage uses Binary Shape Descriptor (BSD) as a mean to prune the search space. 

The second stage uses any available polygon matching or similarity measuring technique 

to compare model polygons with the target polygon. This two-stage framework uses a 

combination of model-driven approach and data-driven approach. It is more efficient 

than model-driven approach since it reduces the number of polygons needed to be com-

pared. By using binary string as index, it also avoids the difficulty and inefficiency of 

maintaining complex multi-dimensional index structure. This two-stage framework can 

be incorporated into image database systems for providing query-by-shape facility. 

We also propose two similarity measures for polygons, namely Multi-Resolution Area 

Matching (MRAM) and Minimum Circular Error Bound (MCEB), which can be used 

in the second stage of the two-stage framework. The MRAM method is an area-based 

technique incorporating multi-resolution Quadtree area coding. The MCEB method is 

developed based on an intuitive human perception of polygon resemblance by measuring 

the distance between corresponding vertices of different polygons. 

Experiments show that the two-stage approach is more efficient than the Normalized 

Coordinate System (NCS) approach with KD-Tree indexing. We also compare the effi-

ciency of the proposed MRAM method, the MCEB method, with the NCS method and 

the Hausdorff Distance method. Experiments show that the MRAM method is more effi-

cient than the other three methods in terms of running time. Visual ranking of polygons 

produced by the aforesaid methods are also compared and experiments show that the 

MCEB method produces better ranking than the other three methods. 
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Chapter 1 

Introduction 

Shape matching and shape similarity measuring are challenging problems in image pro-

cessing and computational geometry. Shape matching problem concerns with determining 

whether two shapes match each other or not under user specified tolerance. Shape similar-

ity measuring problem concerns with finding out numerical measures on how two shapes 

are similar to each other. Both problems involve the following issues: 

1. Shape representation and computation 

This issue is concerning how a shape can be represented in terms of its shape proper-

ties and whether the representation is invariant to translation, scale, and orientation. 

Besides, the method to extract the representation from a shape and the computation 

involved are also concerned. In general, translation invariant, scale invariant, and 

orientation invariant are desirable characteristics of shape representations but not 

necessarily. For example, user may want to retrieve a shape in particular orientation. 

An orientation invariant representation will not be suitable in such situation. 

2. Similarity measure 

Given a representation scheme, we then have to come up with matching or similarity 

measuring methods that work on the representation. The goal is that such compar-

ison methods should be efficiently computable and should produce visual ranking 

of shapes resembling human perception. 

1 
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3. Retrieval method 

Given a representation scheme and its comparison methods, we then have to decide 

how to organize and store the data. The goal is to enable efficient search for, or 

access to, shapes in the database. We have to determine whether index structure 

can be used on the representation scheme, and select suitable index structure if 

index can ever be used. 

Shape matching and shape similarity measuring have many applications. For example, 

they can be applied in hand writing recognition systems and image database systems. 

Query-by-shape is a fundamental operation in image database systems. It provides an 

intuitive way to access objects by their outlines. The task of a shape query is to find out 

the set of shapes, out of a set of model shapes, that are similar to or matched a given 

target shape. Figure 1.1 shows how an image database system provides the query-by-

shape facility. 

ta^ / \ r ' " H D — I ^ 

T V . n 网 

Shape _ _̂  r""""^ / Representation Query ^ ^ ^ - ^ 

Extraction \ 〉 • Generation * Processor * \ \ 

k ^ ^ 
ModdShapes , Databasepopulation 

/ _ J ^ Shape query 

TargetShape 

Figure 1.1: Query-by-shape 
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Assumptions 

In this paper, we only concentrate on the issues of shape representation, shape similarity 

measure, and shape indexing. Extracting shapes from images are not our concern. We 

assume that when an image is added into an image database, it is associated with a set 

of shapes representing the objects inside the image. This can be an automated process 

by incorporating any available feature extraction techniques like [45, 22, 21, 18], or it 

may require user intervention. Therefore, we assume that the inputs to our work are the 

shapes extracted from images and the shapes are in the form that we described below. 

Our work concentrates on 2D polygonal shapes instead of arbitrary shapes. We will 

use the word shape and the word polygon interchangeably hereafter. At present stage, our 

work only handles simple non-degenerate closed polygons as defined below. The relaxation 

of these constraints will be discussed in Chapter 8. 

Definition 1 A polygon is represented by an ordered list of vertices P = (¼,巧，• • •，Vn}, 

where n is the number of vertices of the polygon and VJ G R^. 

Definition 2 A polygon is simple if no two edges of the polygon cross each other. 

Definition 3 A polygon is non-degenerate if ^1 < i < n such that K., V{i+i) modn, and 

Vf̂ +2) modn are collinear. 

Figure 1.2 shows several examples of polygons that do not adhere to the above definitions. 

Shape queries 

We consider two kinds of shape queries, namely matching queries and similarity queries. 

A matching query tries to retrieve all model shapes in a database which are matched with 

the target shape subject to some predefined tolerances. A similar query tries to retrieve 

a number of model shapes that are most similar to the target shape. The tasks of these 

two kinds of queries are defined as follows: 
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^ N K 
(a) (b) (c) 

Figure 1.2: Open, complex, and degenerate polygons 

(a) An open polygon, (b) A polygon with crossing edges, (c) A degenerate polygon. 

1. Matching query 

R = {Pi I Pi G P 八 MATCH(J"i, T)} where R is the result of the query, P is the 

set of model polygons, T is the target polygon, and MATCH{-) denotes a polygon 

matching technique. 

2. Similarity query 

R = {Pi I Pi G P A 1 < i < n A Pi < 尸2 < . . . < Pm} where R is the result 

of the query, P is the set of model polygons, n is the number of polygons to be 

included in R, m is the number of polygons in P , n < m, and f\ < 7¾ ^ .. < Pm 

is the ranking produced by a polygon similarity measuring technique based on the 

degree of similarity between the model polygons and the target polygon. 

Most polygon similarity measuring techniques generate numerical values to measure 

the similarity between polygons. Such techniques can be used to handle both kind of 

queries. Matching queries can be handled by thresholding the numerical values. Similar 

queries can be handled by sorting polygons with respect to the numerical values. 
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Contributions 

The contributions of our work include the proposal of a two-stage framework for polygon 

retrieval, a polygon similarity measuring technique named Multi-Resolution Area Match-

ing (MRAM), a polygon matching technique using Circular Error Bound (CEB), and 

a polygon similarity measure called Minimum Circular Error Bound (MCEB). We have 

also studied the characteristics of several existing methods and compare their performance 

with our methods. 

The two-stage framework for polygon retrieval 

Considerable work has been carried out on shape matching problem. A literature survey 

is presented in Chapter 2. Traditional techniques use model-driven approach in which 

the target shape is compared individually against each model shape [14, 15, 9]. This 

approach is inefficient because of its linear searching complexity. Other techniques use 

data-driven approach in which features of shapes are extracted and mapped into a multi-

dimensional index structure. Matching is conducted by performing searching in the index 

tree [23, 28, 29]. The efficiency of data-driven approach highly depends on the efficiency 

of the Point Access Method (PAM, a data structure that support storage and retrieval of 

points in a multi-dimensional space) used. Roughly speaking, a large number of dimen-

sion is required when mapping shape features into multi-dimensional index structures and 

PAMs are inefficient under this situation. Moreover, when using PAM, additional com-

putation is required to maintain the complex multi-dimensional index structure whenever 

the database is modified. 

We propose a two-stage framework for the polygon matching and retrieval task. This 

two-stage frame uses a combination of model-driven approach and data-driven approach: 

1. The first stage of this two-stage framework incorporates qualitative measure of poly-

gons as a filtering function. It maps polygons into binary string using the Binary 

Shape Descriptor (BSD) [6] technique and uses these binary string as an index. 
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This index is then used retrieval subset of model polygons from the database for 

the second stage matching. 

2. The second stage of the framework incorporates any available quantitative polygon 

matching or similarity measuring technique to perform matching on the subset of 

polygons produced in the first stage. Techniques using both model-driven approach 

and data-driven approach can be used. 

This two-stage framework is more efficient than model-driven approach since it re-

duces the number of polygons needed to be compared. It also avoids the difficulty and 

inefficiency of manipulating complex multi-dimensional index structures. Instead, it uses 

string as index which is well studied and efficient indexing techniques are available. Even 

data-driven approach technique is used in the second stage, the framework helps to reduce 

the size of the index structure and thus improve the efficiency of the technique. 

Multi-Resolution Area Matching 

The MRAM technique we proposed is an area-based polygon similarity measuring tech-

nique incorporating Quadtree [37] area coding. Its multi-resolution nature makes it pos-

sible to further speed up the query processing task under the two-stage framework. 

Polygon matching using Circular Error Bound 

We propose a polygon matching technique using CEB which is based on an intuitive 

human concept of polygon resemblance. This technique can only be used to determine 

whether two polygons resemble each other under certain transformations and user speci-

fied tolerance. 

Minimum Circular Error Bound 

We extend the idea of CEB method and propose a polygon similarity measuring technique 

name MCEB. The MCEB technique computes translation invariant numerical values from 
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the distance between corresponding vertices of different polygons as the similarity mea-

sures between these polygons. 

Characteristics study and performance evaluation 

We have studied the characteristics of the Freeman Chain Code method [14, 15], the 

Moment method [25], the Rectangular Cover method [23], the Potential-based method 

9], the Normalized Coordinate System method [28, 29], the HausdorfF Distance method 

20, 2], and the PCA method [44]. We also compare the performance of the Normalized 

Coordinate System method and the HausdorfF Distance method with our MRAM method 

and MCEB method. 

Organization of this thesis 

The rest of this thesis is organized as follows. A literature survey is presented in Chapter 2. 

Before we describe the two-stage framework in details in Chapter 4, we introduce the 

idea of Binary Shape Descriptor (BSD) and the computation of Standardized Binary 

Shape Descriptor (SBSD) in Chapter 3 since they play an important role in the two-stage 

framework. We propose the MRAM technique in Chapter 5. Polygon matching technique 

using CEB, as well as the translation invariant polygon similarity measure MCEB, are 

described in Chapter 6 We present and discuss the experimental result in Chapter 7. 

Discussion and possible extension to the two-stage framework are presented in Chapter 8. 

Finally, conclusion is made in Chapter 9. 



Chapter 2 

Literature Survey 

Considerable work has been carried out on shape matching and shape similarity measur-

ing problem. In this section, we will discuss some of these methods such as the Free-

man Chain Code approach, the moment approach, the rectangular cover approach, the 

potential-based approach, the normalized coordinate system method, the Hausdorff Dis-

tance method, and the PCA method. Table 2.1 gives a summary of the characteristics of 

these aforesaid methods. 

2.1 The Freeman Chain Code Approach 

Idea 

The Freeman Chain Code method is proposed in [14, 15] and has been used in several 

works such as [38, 34]. In this method, a shape is first scan-converted into a frame 

buffer. The Freeman Chain Code of the digitized shape is generated by recording the 

turning directions of its boundary pixels. The turning direction of the boundary pixels 

are recorded in 4 discrete levels so a Freeman Chain Code is a string of an alphabet 

consisted of 4 symbols. Figure 2.1 illustrates the computation of Freeman Chain Code. 

The shape matching task is carried out by comparing the Freeman Chain Codes of the 

given shapes. Matching of shapes is performed by substring matching of the Freeman 

Chain Code. The similarity between shapes can be measured by number of coincide 

symbols in the Chain Codes. 

8 
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Figure 2.1: Freeman Chain Code with 4 directions 

The Freeman Chain Code recorded starting at the lower left corner is 12223343344111. 

C haract erist ics 

This method is translation invariant. However, it is scale and orientation sensitive so 

normalization is required before the original shapes are digitized. Moreover, this method 

is sensitive to the selection of anchor pixel (the boundary pixel at where the recording of 

Freeman Chain Code is started). The storage complexity of this method is 0{k) where k 

is the number of boundary pixels of the digitized shape. The computational complexity 

is also 0[k). This method is indexable since the representations are simply strings. 

Variations 

In [7], an variance of the Freeman Chain Code method is proposed which use transfor-

mation invariant derivative of Freeman Chain Code to represent a shape. The derivative 

of a Freeman Chain Code is obtained by clockwise recording each convex corner, straight 

corner, and concave corner of the boundary pixels. Figure 2.2 illustrates the computation 

of derivative of Freeman Chain Code. The shapes being processing are first re-oriented 

by aligning their major axes with the a>axis. These normalized shapes are then scan-

converted into frame buffer with different resolutions and the derivatives of Freeman 

Chain Code under each resolution are recorded. In coarse resolutions, shapes tend to 
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have the same derivative. As the resolution increased, the derivatives of the shapes be-

come distinguishable. Based on this idea, the similarity measure of two shapes is defined 

as the finest resolution at which the derivatives of the two shapes still remain the same. 

™ ^ -
^ ^ ^ ^ ^ - — ^ -
A ^ 

^ 1: Convex corner 
1 2 丨 2 丨 2 ； t 2: Straight corner 

3: Concave comer 

Figure 2.2: Derivative of Freeman Chain Code 

The derivative recorded starting at the lower left corner is 12212132121222. 

This method is translation, scale and orientation invariant since normalization is 

taken into account. The storage and computational complexity of this method depends 

on the number of resolution levels where the derivatives of Freeman Chain Code are 

recorded. Reasonable matching and similarity measuring results will require derivatives 

being recorded up to certain fine resolution or else shapes will only be able to be classified 

into a few number of classes. 

2.2 The Moment Approach 

Idea 

This approach represents a shape using shape moments. Regarding the contour of a shape 

as a continuous 2D function, the (p, g)th moment of the function is defined as: 

roo roo 
rripq= / x^y^f{x,y)dxdy ( 2 . 1 ) 

J — oo J — oo 
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For a digitized shape which is scan-converted into a W pixels by H pixels frame buffer, 

its (p, Q')th moment can be defined as: 
w H 

m p ^ E E W z ’ � (2-2) 
i=l j = l 

where v{iJ) G {0,1}，which a value of 1 indicates that the pixel at position {iJ) is part 

of the digitized shape. The difference between the (p, q)th moments of two given shapes 

is used as the similarity measure of the two shapes. Two shapes are said to be matched 

with each other if the difference between their (p, q) moments is less than or equal to 

a predefined tolerance. More than one moments can be used together for the matching 

process. 

C haract erist ics 

The moment approach is translation, scale and rotation sensitive. Therefore, shapes have 

to go through preprocessing like translation normalization, scaling normalization and 

orientation normalization before they can be handled by the moment approach. For each 

shape, only the computed moment will be stored thus the storage requirement is 0 (1 ) and 

the computational complexity of the shape moment is 0{WH). Since the shape moment 

is just a numerical value, it can be easily indexed for efficient retrieval. 

Variations 

The computational requirement of shape moment is quite large because every pixel of 

the frame buffer is involved in the computation. In [25], an extension is proposed to the 

moment approach which computes the (p, g)th moment of a shape using its boundary 

pixels only. Since the number of boundary pixels of a shape must be less than or equal 

to the number of all its pixels, the new approach is more efficient than the original one in 

terms of computation. In general, the number of boundary pixels of a shape is far less than 

the number of all its pixels and this new approach introduces a significant improvement 

over the original approach. From the experiment stated in [25], this new method only 

requires about 3% to 4% running time of the old method. 
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2.3 The Rectangular Cover Approach 

Idea 

In [23], shapes are represented by rectangular covers and similarity between rectangular 

covers are used to measure the similarity between their corresponding shapes. A shape is 

first approximated by a rectilinear shape with certain resolution. Then the rectangle cover 

of this rectilinear shape is computed (Figure 2.3). A rectangle cover of a rectilinear shape 

is a set of rectangles which reconstruct the rectilinear shape when they are union together. 

The rectangular cover is constructed in the way that rectangles are placed sequentially 

with respect to the importance of the features they are representing. In other words, we 

can consider that the rectangles in the front of the a rectangular cover provides the basic 

shape features of the original shape while other rectangles are used to refine this basic 

shape and give details of the original shape. How well a rectangle cover represents its 

rectilinear shape depends on the number of rectangles allowed in the rectangle cover. A 

rectangle cover with few rectangles will only be able to provide a rough approximation of 

its rectilinear shape. A rectangle cover is stored using the following scheme: 

1. For each rectangle in the rectangle cover, the coordinate of its center is stored as its 

position. Its width and height is also stored as its size. 

2. The position of the first rectangle of a rectangle cover is used to normalize the 

position of other rectangles in the rectangle cover, by regarding its position as the 

origin. 

3. The size of the first rectangle is used to normalize the size of other rectangles, by 

regarding both its width and height as 1. 

4. The scaling factor, which is defined as the product of the width and the height of 

the first rectangle, is stored. The distortion factor, which is defined as the ratio of 

the width and the height of the first rectangle (height divided by width), is also 

stored. 
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(a) (b) (c) 

Figure 2.3: Computing the rectangular cover 

(a) The original shape, (b) The rectilinear approximation, (c) The rectangular cover. 

To process a matching query on two given shapes, their rectangular covers are com-

pared as follows. Rectangles in the two rectangular covers are examined in pairs, i.e. 

the first rectangles of the two covers are compared and the second rectangles of the two 

covers are compared, etc. The positions and sizes of a pair of rectangles are tested to find 

out whether the differences between them are within a set of predefined tolerances. The 

same testing procedure is applied to the scaling factors and distortion factors of the two 

rectangular covers as well. Only when the two rectangular covers pass all the above tests 

will their corresponding shapes be regarded as matched with each other. 

By ignoring part of the stored information, matching of shape under specific trans-

formation constraints can also be done. For example, to perform shape matching under 

scaling, the scaling factor of the rectangular cover is not compared in the matching pro-

cess. In case that the dimension of the rectangular cover of the target shape dismatches 

those of model shapes, only the minimum number of rectangles are compared. 

Characteristics 

This approach is translation and scale invariant but rotation sensitive so shapes have 

to go through orientation normalization before they are handled by this approach. The 

storage complexity of this approach is 0{l) where 1 is the number of rectangles used in 
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a rectangular cover. The computational complexity of comparing two rectangular cover 

is 0{l). However, computational complexity of the preprocessing depends on the method 

used for generating rectangular cover from a rectilinear shape. An 0 (n log n) algorithm is 

proposed in [13] for computing the rectangle cover where n is the number of vertices o f the 

rectilinear shape. [8] proposes a parallel algorithm for this task which run on 0(m/ log m) 

Concurrent-Read-Exclusive-Write (CREW) processors in O(log m) time where m is the 

number of pixels in the frame buffer on where input rectilinear shapes are rendered. Index 

can be constructed on the rectangular covers to speed up the matching. 

Discussion 

One problem of this approach is that it cannot handle similar queries efficiently. The 

proposed way to handle similar queries is to perform matching queries in a iterative 

manner with tolerance relaxed in each iteration. Model shapes can then be retrieved in 

groups in descending order of their similarity to the target shape. However, the scheme 

for tolerance relaxation and the efficiency of this method is not well defined. 

Another problem of this approach is that the rectangular cover of a shape is not 

unique. It is hard to determine which rectangular cover should be used to represent a 

shape if more than one rectangular covers are available. Some heuristic, e.g. choosing the 

rectangle cover with least number of rectangles, may help in making the decision but does 

not guarantee that there will not be more than one equally good representations. For 

example, the rectangular cover in Figure 2.4(b) and Figure 2.4(c) is better than the one 

in Figure 2.4(a) but they are equally good. The solution to this problem proposed in [23 

is to use all equally good representations of a shape. Thus, multiple entries representing 

the same shape will be introduced into the system. 
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(a) (b) (c) 

Figure 2.4: Different rectangular covers of the same shape 

2.4 The Potential-Based Approach 

Idea 

The author of [9] introduce a shape classification technique using an artificial potential 

field. The proposed potential model assumes that the contour of any 2D shape is uniformly 

charged (artificially). The idea is to place a small shape template inside the data shape 

(the shape to be classified) and let the template expands subject to the repulsive force and 

torque it experiences in the artificial potential field set up by the contours of the template 

and the data shape. The expansion is terminated when the template is expanded to a size 

that it touches the contour of the data shape. The above procedure is applied to every 

template in the system. The data shape is said to be belong to the group of the template 

shape having the largest area after the above operation. 

The Newtonian potential model is adopted in this approach so the potential related 

quantities can be derived analytically. This avoids the expensive numeric implementation 

of the discretization of the shape contours before calculating the repulsive force and torque. 

However, the expansion of a template inside a data, shape is still an iterative process. In 

each iteration, the repulsive force and the torque are computed and the template shape 

is translated, rotated, and expanded accordingly. Figure 2.5 illustrates these steps in an 

iteration of the matching process. The process is stopped when the growth of area in an 

iteration is negligible. 
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Figure 2.5: Basic matching iteration of Potential-Based Approach 

(a) the template is put inside the target shape (b) translating the template (c) rotating 

the template (d) increasing the size of the template 

Characteristics 

This approach is translation, scale and orientation invariant. The storage requirement 

is 0(n) where n is the number of vertices of the templates. However, since this is an 

iterative approach, the computation complexity of this approach is hard to analyze and 

it is not stated in [9]. According to the experiments performed in [9], it takes the system 

about 10 seconds to classify a shape on a Sun SPARCstation 10 with a database consists 

of 12 templates. This method is not indexable. 

Discussion 

As the computational requirement of this approach is quite large as shown in the experi-

ment in [9], this approach is not suitable for general shape matching purpose. However, it 

is suitable for systems which need to classify data shapes into a small number of classes. 

Besides, this approach has difficulty on handling concave shapes. For example, it will not 

work on matching the outline of the letter "H". If a small template of this shape is placed 
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at the center of a data shape which has exactly the same "H" shape but is larger than 

the template, the template will only be able to expand a little bit before it touches the 

contour of the data shape (Figure 2.6). Thus, a more sophisticated expansion operation 

are needed to handle this kind of shapes. 

卜 Data shape 

M 

" " " ^ ^ ^ ^ Template 

Figure 2.6: Problem of the Potential-Based approach 

2.5 The Normalized Coordinate System Approach 

Idea 

In [28，29], a system is proposed which uses a list of normalized coordinates to represent 

polygonal shapes. We will refer to this approach as Normalized Coordinate System (NCS) 

hereafter. These normalized coordinate lists are treated as multi-dimensional data points 

and are used to construct index tree using any available PAM. The KD-Tree [37] technique 

is adopted in [28, 29 . 

In principle, a KD-Tree is a binary tree with the distinction that it uses different part 

of a 7i"-dimensional key at different level to construct the sub-trees, i.e. the (i mod 7^)th 

element of the /<'-dimensional key is used to construct the sub-trees at level i + 1. For 

example, a 4D-Tree uses 4-dimensional vector (ao, «1,^2, ^3} as the key and ao is used to 

construct the sub-trees at level 1, 5, 9, . . . , while ai is used to construct the sub-trees at 

level 2, 6, 10, etc. Figure 2.7 shows an example of a 3D-Tree. 
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ffl<5，4，5> 

y x 
<1,7, 3 > Q @ < 9 . 2, 3> 

<4,1, 6 > 0 ^ @ <4, 9, 3> @ <9, 3, 3> 

< 2 , l , 4 > g T 

M <3’ 2，1> 

y x 
<4, l , 2 > @ @ < 4 , 4,4> 

@ < 4 , 4 , 5> 

Figure 2.7: An example of 3D-Tree 

The node number indicate the sequence where the nodes are inserted into the 3D-Tree 

a n d � . �d e n o t e s the key at each node. 

The normalization of NCS approach is as follows. Assume that a n-sided polygon is 

represented by an ordered list of n 2D points. A pair of points in the original list of 

coordinates is chosen to form a basis vector. A new coordinate system (the normalized 

one) is defined using the basis vector as a unit vector along the a;-axis and each point in the 

original list is transformed to the new system. This process produces a list of normalized 

coordinates. Since the first two points of these normalized coordinates must be (0, 0) and 

(1, 0), they can be removed from the list. Thus, a n-sided polygon is represented by an 

ordered list of normalized coordinates with size of n — 2. Figure 2.8 show the normalization 

process. The Euclidean distance of the normalized coordinate lists of two given polygons 

is used as the similarity measure between the two polygons. Two polygons are said to 

be matched if the Euclidean distance of their normalized coordinate lists is less than or 

equal to a predefined tolerance. 

To maintain the index tree in practical size, only part of a normalized coordinate list, 

instead of the whole list, is used to construct the index tree. In [28, 29], experiments 
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. A - - ^ V (x5.y5) 
^ (x7,y7) \ ^ ^ 

X (x6,y6) 

(a) (b) 

Figure 2.8: Normalizing coordinate list 

(a) original coordinate list, (b) normalized coordinate list. 

have been carried out using 4 points, 6 points, and 8 points. For a shape matching 

query, a number (the same as the number of points used to construct the index tree) of 

consecutive points in the normalized coordinate list of the target polygon are selected and 

used to traverse the index tree. All entries on the index tree matched with the query data 

points are selected and the polygons they are representing are regarded as hypothesis. 

The Euclidean distance testing is performed on these polygons and the target polygon to 

verify the hypothesis. 

Characteristics 

This approach is translation, scale and orientation invariant since the normalization is 

built into the approach itself. The storage complexity of this approach is 0{n) where n 

is the number of vertices of the polygons. The computational complexity for both the 

preprocessing and matching is also 0{n). Since this approach use the Euclidean Distance 

to measure the similarity between two polygons, it requires the two polygons to have 

the same number of vertices and a one-to-one vertex correspondence between the two 

polygons. 
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Discussion 

Since only a portion of the normalized coordinate list is used, matches may be missed in 

the matching process. Consider a system which uses 4 points to organize the index tree. 

For a target polygon with n sides, where n > 4, 4 consecutive points are selected as the 

query data points to traverse the index tree. However, there may be no match found if 

the same 4 consecutive points are not selected for index construction when this polygon 

is inserted to the system. Hence, no hypothesis will be generated and the matching query 

fails. To solve this problem, [28, 29] propose to use more than one entries to represent a 

polygon when constructing the index tree. Consider the 4 points example again. For a n-

gon where n > 4, there are n possible 4 consecutive point sequences since the normalized 

coordinate list is ordered. Therefore, n entries is inserted into the index tree when such 

a polygon is added to the system. Another problem of this approach is that it cannot 

handle similar queries efficiently. The reason is the same as that of the rectangular cover 

approach. And this problem can only be handle either by performing a linear search on the 

model polygons or an iterative method with tolerance relaxation as stated in Section 2.3. 

2.6 The Hausdorff Distance Method 

Idea 

The Hausdorff Distance is a measurement of the distance between two point sets. It has 

been used for polygon matching and polygon similarity measuring tasks [20, 2]. Hausdorff 

Distance is defined as follows. 

Definition 4 Given two finite point sets A = { a i , . . . , a^} and B — { 6 i , . . . , 6^}, the 

Hausdorff Distance is 

H{A, B) = max(/i(A, B), h{B, A)) 

where 

h(A, B) = maxmin a — b 
\ ’ aeA beB 
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and II • II is some underlying norm on the points of A and B. 

The mechanism of the HausdorfF Distance method is as follows. Each point in set A is 

paired up with the nearest point in set B. The distance of each pair of points is computed 

and the maximum of these distance is used to describe the similarity from set A to set B. 

The same procedure is applied from set B to set A. The larger one among the two values 

(set A to set B, and set B to set A) is used as the HausdoriT Distance between the two 

sets. In words, the HausdorfF Distance tells that for any point in a set, there is at least a 

point in another set that is within certain distance from it. 

C haract erist ics 

The Hausdorff Distance is translation, scale and orientation sensitive, polygons have to 

be normalized before they can be compared. The storage requirement and computational 

requirement are 0{n) and 0{n^) respectively. This method is not indexable. 

Discussion 

The pairing found by the Hausdorff Distance method is not an one-to-one mapping. It 

means that some points in one set may be assigned to the same point in another set while 

some points in another set may not be assigned to any points at all. In such situations, 

the similarity measures between different polygons become the same. For example, the 

HausdorfF Distances between the polygon shown in Figure 2.9(a) and polygons shown 

in Figure 2.9(b) are all the same. This characteristic is undesirable when the HausdorfF 

Distance is used for polygon matching and it is the reason why this method produces 

polygon similarity measurements disagreed with human perception occasionally, as our 

experiments show (Chapter 7). 
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(a) (b) 

Figure 2.9: Problem of HausdorfF Distance method 

2.7 The PCA Approach 

Idea 

In [44], the authors proposed to perform fast pattern classification of attributed graphs 

using a PCA approach. One of the applications suggested in the paper is similar shape 

retrieval of polygonal shapes. 

A polygon P 二 {t>i,t*2,... , v^} is represented by a attributed graph formed by the 

angle of vertex Vi to Vj in radian, i.e., e(j = arctan(^^, Vj)^ V ” “ ” j , i • j, and ei,j = ||fi||. 

Figure 2.10(a) shows a polygon and the matrix of its attributed graph. After the attribute 

matrix is computed, the n eigenvalues of this matrix is computed and sorted in descending 

order. The similarity between two polygons is measured by the Euclidean Distance of the 

two sorted sets of eigenvalues of the polygons. 

Characteristics 

This approach is sensitive to translation, scale, and orientation. Thus, normalization is 

required before polygons are handled by this method. The storage requirement is 0{n). 

The computational complexity depends on the algorithm of computing the eigenvalues of 

the attribute matrix. In our implementation, we use the Jacobi method and the routine 
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Figure 2.10: Attributed graph representation of a polygon 

in [36] which runs in the time 0{n^). This method does not require the knowledge of the 

correspondence between polygon vertices and the sorted eigenvalues can easily be indexed. 

Discussion 

The quality of the visual ranking produced by this approach is hard to analysis since it 

measure shape similarity using values produced by matrix decomposition. From empirical 

experiments, we found that this method occasionally produces undesirable visual ranking 

of shapes. For example, Figure 2.11(a) shows 3 polygons and Figure 2.11(b) shows the 

visual ranking produced by the PCA method when the first polygon in Figure 2.11(a) is 

used as the target polygon. The polygons in Figure 2.11(b) are placed from left to right 

in descending order of their similarity to the target polygon. 

This approach can be made invariant to translation, scale, and orientation if we con-

struct the attribute graph matrix with other attributes than edge directions. It is the 

ei,j, i • j, entries that make the approach sensitive to orientation, and the �e n t r i e s that 

make the approach sensitive to translation and scale. Alternatively, we can have ei,i = 1 

and let e;j = |卜‘ —t>j||/max (e^j), i + j, || . || denotes the Euclidean Distance. This will 
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Figure 2.11: Undesirable visual ranking produced by PCA approach 

makes the attribute graph matrix invariant to translation, scale, and orientation. How-

ever, quality of visual ranking produced the by this alternative version of PCA may be 

different from the original one as different shape attributes are used. 
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Table 2.1: Summary of the characteristics of different methods 

^ ^ m a n Rectan- |p^tential-| ^,^^ |Hausdorff| ^ ^ ^ 
Cham Moment gular ^ased NCS Distance ^ ^ ^ 
Code Cover  

I^andation ~ ~ ^ ； ^ ~ ~ ^ " ^ " ^ ^ " ^ " " " ~ ^ ~ Yes " " ^ ^ " Nô  
invariant  
?cale. No No Yes Yes Yes No Nô  
invariant  
Orientation " ^ “ ^̂ ^ ^^ ^ " “ “ Yes No No^ 
invariant  

f e S m e n t �� 0(1) 0(Q 0(n) 0(n) 0(n) 0(n) 
Computat-
ional 0{k) 0{WH) 0{l) N/At 0{n) 0{n^) 0{n^) 
complexity  
Require 
vertex No No No No Yes No No 
correspond-
ence  
Indexable Y^ Yes — Yes No Yes No Yes 

1 is the number of rectangles a rectangle cover. 

k is the number of boundary pixels of a digitized shape. 

n is the number of vertices of polygons. 

W is the width of a frame buffer. 

H is the height of a frame buffer. 

卞 Complexity analysis not included in original paper. 

^ Yes, if distance between polygon vertices are used instead of angle. 



Chapter 3 

Binary Shape Descriptor 

The BSD technique plays an important role in our two-stage framework. It serves as a 

polygon classification tool in our framework and is used to filter out potential dissimilar 

model shapes from the database and thus reduces the number of comparison needed for 

processing a shape query. 

3.1 Basic idea 

BSD is a binary string recording the convexities and concavities of the vertices of a 

polygon. Let ‘0，denotes a convex vertex (interior angle less than 7r) and ‘1, denotes a 

concave vertex (interior angle larger than 7r). 

Definition 5 A Binary String Descriptor (BSD) is a string a1a2 . . . a„, where â  6 { 0 , 1 } 

and n is the number of vertices of the polygon the descriptor. 

Figure 3.1 shows several polygons and their corresponding BSDs. BSD is scale and orienta-

tion invariant since the measurement of convexity and concavity of a vertex is independent 

of these properties. However, the specific instance of the BSD of a polygon depends on 

the selection of the anchor vertex (the vertex of the polygon at which we start recording 

the BSD). 

26 
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�'<t�H 4 
BSD = 0 0 1 0 BSD = 000011 BSD = 010101 

(a) (b) (c) 

Figure 3.1: Polygons and their BSDs 

The anchor vertices are marked with *. BSDs are recorded clockwise. 

3.2 Standardized Binary String Descriptor 

A polygon can be represented by more than one BSD depending on the sequence of 

vertices being recorded. For example, a polygon represented by BSD "0010" can also be 

represented by “0100”, "1000" or "0001", depending on the anchor vertex (Figure 3.2). 

The idea of standardized BSD is introduced in [6] in order to obtain a unique BSD for a 

given polygon. 

y ^ BSDi=0010 

y ^ / BSD2 = 0100 

'^^v V BSD3 = 1 0 0 0 

^ x ^ BSD4 = 0001 

4 

Figure 3.2: Different BSDs for the same polygon 

BSD1...4 are the BSDs for the same polygon which are recorded with different anchor 

vertex 1 . . . 4. 
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Definition 6 Given a BSD B = {0,1}^, a rotated BSD Bi, for 1 < i < n, is another 

BSD generated by rotating the bits of B such that the iih. Most Significant Bit (MSB) of 

B becomes the MSB of Bi. 

Definition 7 Let M{Bi) denotes the magnitude of Bi when it is treated as a binary 

integer. The Standardized Binary String Descriptor (SBSD) of B is Bj such that 

M{Bj) = mmM{B,),l < i < n 
i 

For example, given a BSD B=“0010，，，B1,B2,B3 and B4 are “0010”, “0100”, “1000” and 

"0001" respectively. Since B4 is the one with the smallest magnitude, SBSD of B 二 B^ 

="0001" . 

SBSD inherits the scale and orientation invariant properties from BSD and it is inde-

pendent of the selection of anchor vertex. 

3.3 Number of equivalent classes for n-gons 

SBSD function is a many-to-one mapping, i.e. more than one polygon may have the same 

SBSD. For example, the SBSD of the polygons in Figure 3.3 are all "00001". Polygons 

having the same SBSD are said to be in the same equivalent class. For polygons with 

n sides, there are 2^ possible BSDs. However, some of them are invalid. For example, 

'00111' is invalid since a simple polygon should have at least three convex vertices, thus all 

valid BSD should have at least three '0's. Some BSDs are the same after standardization, 

for example, '00011’，'01100' and '10001，. For n-gons, the number of equivalent classes 

(E) is given in [6] as 
1 n 

E = ; E rnX^M - ( L 2 J + 2 ) 
meDn 

where Dn is the set of divisors of n, 

Xn{m) = 2^ — {Xn{mi) + . •. + X^ruk)) 

and mi, •.. , m^ are the multiples of m belonging to Dn\{m}. 
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“得 
SBSD = 00001 

Figure 3.3: Polygon in an equivalent class 

Table 3.1 shows the number of equivalent classes for polygons with sides from 3 to 

16, where n is the number of polygon vertices, E is the number of equivalent classes, and 

玄 ： 眷 shows the average number of BSDs in an equivalent class. From the table, we 

find that the number of equivalent classes is small when n is small. This is an undesirable 

characteristic since it means a lot of polygons will be group into the same equivalent 

class when n is small, and thus reduce the pruning effect of the two-stage framework. A 

possible extension to tackle this problem is discussed in Chapter 8. We also observe that 

~E increases when n increases. It shows that the average number of BSDs in an equivalent 

class increases with n. 
Table 3.1: iV-gons and number of their equivalent classes 

一 n 3 4 5 6 7 8 9 
2^ “ 8 — 16 32 64 128 一 256 512 
E 1 2 4 9 — 15 30 54 

— E — 8 8 8 7.11 8.53 8.53 9.48 
— n 10 11 12 13 14 15 16 

^ 1024 — 2048 4096 8192 16384 32786— 65536 ~ 
^ 101 — 181 343 624 1173 2183 4106 — 
E 10.14 11.31 11.94 13.13 13.97 15.01 15.96 — 



Chapter 4 

The Two-Stage Framework 

We propose a two-stage framework for polygon retrieval which incorporates both qualita-

tive and quantitative measures of polygons in the first and the second stage respectively. 

The main idea of the framework is to partition model polygons into groups according 

to their SBSDs. Instead of comparing the target polygon with every model polygons, 

we only compare it with the model polygons having SBSDs within a certain Hamming 

Distance tolerance from the SBSD of the target polygon. The selected model polygons 

are then passed to the second stage of the framework for quantitative similarity measure. 

Given two binary strings A = a1,a2,... , a^ and B — 61,62,... , b^, the Hamming 

Distance between A and B is defined as 

n 

HAMDIST{A,B) = Y^c, 
i = i 

where 
f 

0 if CLi = bi 
Ci 二 < 

1 if CLi + b i 

By using the Hamming Distance tolerance, the two-stage framework provides a sys-

tematic way for controlling the degree of search space pruning by allowing user to make 

tradeoff between quality of query result and speed of query processing. A small tolerance 

produces larger pruning effect by selecting fewer model polygons for comparison but with 

higher risk of excluding potential candidates and thus resulted in worse query results. 

30 
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On the other hand, large tolerance may produce better query results but has a smaller 

pruning effect. 

Figure 4.1 shows three polygons with their SBSDs. If we use polygon P as the target 

polygon and specify a Hamming Distance tolerance of 0, then only polygon P and polygon 

R will be selected at the first stage of the framework. However, if we specify a Hamming 

Distance tolerance of 1, then all polygon P, Q, and R will be selected at the first stage 

of the framework. > > • 
SBSD = 0000 SBSD = 0001 SBSD = 0000 

Figure 4.1: An example of polygon selection at the first stage of the two-stage framework 

The second stage of the framework incorporates any available polygon matching and 

similarity measuring techniques. For handling matching queries, the technique incorpo-

rated only need to determine whether two given polygons match each other under user 

specified tolerance. However, in order to handle similarity queries, the technique incor-

porated must be able to produce a ranking on the set of model polygons according to the 

degree of similarity between these polygons and the target polygons. One possible way of 

accomplishing this task is to incorporate polygon similarity measuring techniques which 

produce a numerical value as the similarity measure between two polygons. The ranking 

can then be produced by sorting the model polygons based on their similarity measure to 

the target polygon. 
Putting the two stages together, the framework should look like: 

1. Q = {Pi I Pi G P 八 HAMDIST�SBSD�Pi),SBSD�T��< ĉ } where Q is the set 

of polygons selected for second stage matching, P is the set of model polygons, T is 

the target polygon, SBSD{-) denoted the SBSD function, HAMDIST{-) denotes 
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the function that computes the Hamming Distance between two binary strings, and 

S is the user specified Hamming Distance tolerance. 

2. If the query is an matching query, execute (a). If it is a similarity query, execute 

(b). 

(a) R = {Qi I Qi e Q 八 A f A r C i / ( Q “ r ) } where MATCH{-) denotes the poly-

gon matching method selected. 

(b) R — {Qi I Qi e Q 八 1 S i < n] where n is the number of model polygons to 

be included in the answer to a query, m is the number of model polygons in a 

database, n < m, Q = {Q1,Q2,. •. , Qm}, and Qi < Q2 < . . . < Qm, which is 

the ranking produced by the polygon similarity measuring technique selected. 

3. R is the set of model polygons which is the answer to the query. 

This two-stage framework has three main advantages comparing to model-driven ap-

proach and data-driven approach: 

1. The two-stage framework is more efficient than traditional model-driven approach 

since it reduces the number of comparison by filtering out model shapes that are 

potentially dissimilar to the target shape. 

2. The two-stage framework avoids the difficulty and inefficiency of maintaining com-

plex multi-dimensional index structures in data-driven approach. It also avoids 

the extra index maintenance work during database modification and index re-

organization. 

3. Using the Hamming Distance tolerance, the two-stage framework provides user with 

systematic way for controlling the degree of search space pruning and quality of 

query result. 



Chapter 5 

Multi-Resolution Area Matching 

In this section, we propose a multi-resolution area-based polygon similarity measuring 

technique. We describe how the Multi-Resolution Area Information (MRAI) is computed 

and how similarity between polygons is measured using MRAI. We also describe how to 

take advantage of the multi-resolution characteristic of this technique to further speed up 

shape query processing. 

5.1 The idea 

The main idea of the MRAM technique is to measure the area difference between polygons 

in a multi-resolution manner. In this method, the area information of a polygon at several 

predefined resolutions are computed and stored using the Quadtree [37] approach. We 

then use the stored area information of two polygons to compute the area difference 

between the polygons from coarse resolution to fine resolution. 

The advantage of using a multi-resolution approach is that computation can be saved 

by introducing the concept of early rejection. As we described in Section 5.2, the size of 

the area information at a coarse resolution is smaller than the size of the area information 

at a fine resolution. Thus, the computational complexity for computing the area difference 

between two polygons at a coarse resolution is less than the one at a fine resolution. As the 

two polygons are compared from coarse resolution to fine resolution, the comparison can 

be terminated as soon as the area difference between the two polygons are large enough 
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to conclude that they are dissimilar. If dissimilarity are found at the coarse resolution, 

we can save a lot of computation by skipping unnecessary comparison at finer resolutions. 

5.2 Computing MRAI 

A polygon is first rotated such that the longest edge is aligned with y-axis and is normal-

ized to have a unit bounding box. After the normalization, it is scan-converted onto a 

frame buffer with W X W pixels. MRAI is then computed using a Quadtree like approach: 

1. MRAI is recorded starting at level 0. 

2. At level 0, the whole frame buffer is regarded as a cell. The portion of area covered 

by the polygon is recorded. 

3. At level k, cells are obtained by quartering every cell of level k — 1. The portion of 

area covered by the polygon in each level-A^ cell is recorded. There are 4^ cells at 

level k. 

The MRAI at each level is concatenated to form a complete MRAI vector. The size of 

this vector, L, is 
K . AK+l _ 1 

“ Z 4 � i ~ ^ 
t=0 ^ 

where K is the maximum resolution level of MRAI to be recorded. 

Figure 5.1 shows an example of computation of MRAI. In this example, the size of the 

frame buffer is 16 pixels by 16 pixels large and MRAI is recorded up to resolution level 

2. Figure 5.1(a) shows the cell partitioning of resolution level 0. The area information 

recorded at level 0 is (|||) . Likewise, Figure 5.1(b) shows the cell partitioning of resolution 

level 1 and the area information recorded at level 1 is (||, ||, ||, ||). The same operation 

is applied at resolution level 2. By concatenating the area information of the three levels, 

we obtain the complete area information as:〈譜，普,普,普,g,告,||, ^|,吾,f|,器,ff , f f , 
丄 16 16 13 _8_ 16 jJ. J_\ 
16' 16' 16' 16' 16' 16' 16' 16厂 
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, 棚 _ 糖 m m ^ ^ m 

(a) (b) (c) 

Figure 5.1: Computing Multi-Resolution Area Information (MRAI) 

(a) Resolution level 0 with 1 cell, (b) Resolution level 1 with 4 cells, (c) Resolution level 

2 with 16 cells. 

In our implementation, the frame buffer is 64 pixels by 64 pixels large and we record 

area information up to resolution level 3 so the size of a complete MRAI vector is 85. 

Algorithm 5.1 shows the computation of MRAI in our implementation. 

Algorithm 5.1 Computing multi-resolution area information 

/* Inputs: A[O..W — l][O..W — 1 ] is a 2D bit array containing the scan-converted 

polygon which a '1，indicates a pixel covered by the polygon; W is the width of the 

frame buffer; K is the maximum resolution level at which area information is to be 

recorded. */ 

/* Output: H[O..L — 1 ] is an array containing the multi-resolution area information 

where L — 4'、； ~^ */ 

s ^ K. b卜2^ 

for y 二 0 to 2^ — 1 do 

for X = 0 to 2^ - 1 do 

idx 卜 %^ + y . 2^ + x 

H[idx] — E;:J E;;J A[y . s + p][x . s + q] 
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H[idx]卜 ^ 

end for 

end for 

for 1 = K downto 1 do 

for y = 0 to 2口 一 1 do 

for X = 0 to 2H — 1 do 

idx 卜 ^^^ + W.2"+a; 

idxi <- ^ + 2 • y . 2' + 2 . x 

idx2 — ^ + 2 . y . 2' + (2 . a: + 1) 

idx3 — 宇 + (2 . y + 1) . 2' + 2 . a; 

idx^ <- ^ + (2 . y + 1) . 2, + (2 . â  + 1) 

H[idx] ^ \ . X]^i idxi 

end for 

end for 

end for 

return H 

5.3 Measuring similarity using MRAI 

We use the Lp distance to measure the similarity of two polygons at a specific level of 

resolution. Given polygon A and B, with their MRAI, the similarity of these two polygons 

at resolution level k is: 
4̂  , 

Sk{A,B)=^{^lAk^-Bk^f)-' 
i = i 

where Sk{A^ B) is the similarity measure of A and B at resolution level k, Aki and Bki 

are the portion of covered area in level k cells of polygon A and B respectively. In our 

implementation, we use p = 2, which is the Euclidean Distance. 

Definition 8 Two polygons A and B are said to be matched at level k if 5'fc(A, B) < Sk 

where Sk is a predefined threshold value for level k similarity measure. 
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Definition 9 Two polygons are said to be matched if they are matched at all levels, i.e. 

the two polygons are similar at level 0 , . . . , K. 

Note that the choice of parameter p can be made based on user's tolerance on local 

dismatches between shapes. Large p values tend to emphasize local dismatches between 

shapes during the matching process. Table 5.1 shows 3 MRAIs at resolution level 1. (b) 

is differ from (a) in a uniform manner in terms of local dismatches of cells, (c) matches 

(a) well but with a relatively large dismatch in one of its cells. 

Table 5.1: 3 MRAIs at resolution level 1 

0.5 0.5 0.6 0.6 0.5 0.7 

0.5 0.5 0.6 0.6 0.5 0.5 

(a) (b) (c) 

Table 5.2 shows the similarity measure ^i(-) when different values of p are used. When 

p = 1, (c) is considered to be more similar to (a) than (b) does. When p = 2, (c) and (b) 

are considered equally similar to (a). When p > 3, (c) is considered less similar to (a) than 

(b) does. This example shows that local dismatches between shapes are emphasized when 

the value of p increases. Thus, small p values have larger tolerance of local dismatches 

and tend to evaluate the similarity between shapes in a relatively global view. Large p 

values are relatively sensitive to local dismatches so they should not be used if the shapes 

to be processed are obtained from noisy channels. 

Matching of two polygons can be done in levels, that is, perform similarity measuring 

from coarse resolution (level 0) to fine resolution (the maximum resolution level K). 

Algorithm 5.2 shows our implementation of polygon matching using MRAI: 

Algorithm 5.2 Polygon matching using MRAI 
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Table 5.2: MRAM similarity measures with different p values 

P Si{a,b) Si(a,c) 

1 0.4 0.2 

2 0.2 0.2 

3 0.1587 0.2 

4 0.1414 0.2 

/* Inputs: K is the maximum resolution level at which area information is recorded; 

So,,K CLre the predefined thresholds for similarity measure at resolution level 0 to K; p 

is the parameter of the Lp function to he used; Hi [O..L — 1] and H2[O..L — 1] are the 

MRAI of the two polygons and L = 4二-1. */ 

/* Output: A boolean value (true orfalse ) indicating whether the two given polygons 

are matched or not. */ 

for 1 = 0 to K do 

idx^ f - 宇 

idx2 卜 idxi + 4' — 1 

s — (EiSL. l^iM - HM)" 

if {S > Si) then 

return false 

end if 

end for 

return true 

5.4 Query processing using M R A M 

Shape query processing can be further speeded up by taking advantage on MRAM's 

multi-resolution characteristic. The main idea is to locate those model polygons which 
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are dissimilar to the target polygon in coarse resolution level. Since in MRAM, polygons 

are compared from coarse resolution level to fine resolution level and the computational 

cost for comparison in coarse resolution is less than that of fine resolution level, early 

rejection of dissimilar model polygons will reduce the computation needed. We describe 

the procedures for handling matching queries and similarity queries using MRAM. Note 

that the model polygons mentioned in the following two sessions are those selected by the 

first stage algorithm of the two-stage framework according to the target polygon. 

Matching query 

Since level 0 MRAI is just a numerical value, it can serve as a database index for the 

model polygons. Matching queries are processed as follows. 

1. Only model polygons having level 0 MRAI in the range [̂ o — ^ , to + ^ ] are fetched 

for further matching where to is the level 0 MRAI of the target polygon and 知 is 

the predefined threshold for level 0 matching as stated in Section 5.3. Since model 

polygons are indexed on level 0 MRAI, this subset of polygons can be retrieved 

efficiently. 

2. Model polygons selected in ,the previous step are then compared with the target 

polygon individually using the approach described in Section 5.3. 

Similarity query 

Similarity queries are processed using following algorithm 

Q <- model polygons 

for i = 0 to K do 

sort Q in descending order of Si{Qj, T) where Qj e Q 

Q — {Qj I Qj e Q 八 1 S j < n,} 

end for 
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where T is the target polygon and Si (•) is the level i similarity measure of two polygons 

as stated in Section 5.3. In our implementation, no, ni, n2 and n3 are 100, 50, 25 and 10 

respectively. 

5.5 Characteristics and Discussion 

The MRAM method is sensitive to translation, scale, and orientation so polygons have to 

be normalized (Section 7.1.2) before they are handled by MRAM method. The storage 

requirement is 0{L) where L is the size of the MRAI which depends on the maximum 

resolution level, K, used and L — J2^=o 4' = ^ '̂3^" .̂ The computational requirement is 

also 0{L). 

The MRAM method is not fully indexable. One of the reasons is that the size of the 

MRAI extracted is rather large so that it is hard to be indexed efficiently. For example, 
I 

the MRAI is a 85-dimensional vector if the maximum resolution level is 3. The fact that 

the matching and similarity measuring processes are iterative also makes it difficult to 

index the MRAI. Though the whole MRAI can not be practically indexed, we can index 

part of it, e.g. only index the first few resolution levels of MRAI as stated in Section 5.4. 

This will definitely improves the performance of the MRAM method. 



Chapter 6 

Circular Error Bound and Minimum 

Circular Error Bound 

In this session, we introduce a polygon matching technique using Circular Error Bound 

(CEB) which can be used to determine whether two given polygon resemble each other 

within some predefined tolerance. This technique can be used to handle matching queries. 

We extend the idea of CEB and introduce a polygon similarity measuring technique named 

Minimum Circular Error Bound (MCEB). This method gives a translation invariant mea-

surement on the degree of resemblance between two given polygons. It can be used to 

handle similar queries. 

6.1 Polygon Matching using Circular Error Bound 

The polygon matching technique using CEB is based on an intuitive human perception 

of polygon resemblance. The intuitive perception of similar polygons is as follows. If two 

polygons are matched, then each vertex of one polygon should be close to its corresponding 

vertex of another polygon when the two polygons are overlapped. The correspondence 

between vertices is an one-to-one mapping. Therefore, the definition and the technique we 

proposed only work on polygons that have the same number of vertices. Before the two 

polygons are overlapped, translation, scaling and rotation are allowed to be performed on 

the polygons. 

41 
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Definition 10 A transformation T is a vector, i.e. T = {tx,ty,Sx^Sy,0) where t^ is 

translation in a>axis direction, ty is translation in y-axis direction, Sx is the scaling in 

x-axis direction, Sy is the scaling in y-axis direction and 0 is the rotation about the origin. 

T{Q) denotes the object obtained by applying T to Q where Q may be a polygon or a 

vertex. 

Definition 11 Given a tolerance vector E 二 (ei, e2,...，£打〉，Q = {U1,U2,... , " n } is 

said to be matched with P = ( ¼ , ^ , . . . , 14} if there exists a transformation T such that 

Q' = T(Q) = {Ui,U&,... ,U'J and Vi<i<,||^-/7/|| < Q, where ||.|| denotes the Euclidean 

norm (Figure 6.1). 

Definition 12 Given ^ , ê  and U“ the zth Circular Error Bound (CEB) , Ci, is a circle 

with €i as its radius and (Vi — U{) as its center. 

Note that Definition 11 assumes we already know the pairing of vertices between the two 

polygons, i.e. Vi should match Ui. 

令 
Figure 6.1: An intuitive definition of similar polygons 

The polygon matching task using CEB is formulated as follows: 
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"Given two polygons P and Q with a tolerance vector E, the task is to de-

termine whether a transformation T exists such that Q is said to be matched 

with P under Definition 11." 

By Definition 11, the transformation T is an arbitrary vector {t^, ty^ s^^ Sy^ 6). How-

ever, in nowadays applications, the transformations in polygon matching task are often 

restricted to some special cases, for example, translation and (or) scaling only. With 

restricted transformations, we have efficient solutions for the polygon matching task. In 

the following sections, we will present the solution for the polygon matching task when 

1. only translations are allowed 

2. only translations and uniform scaling in x-axis and y-axis directions are allowed 

3. only translations and independent scaling in x-axis and y-axis directions are allowed. 

6.1.1 Translation 

Assume that the transformation T in Definition 11 is restricted to T —�tx, ty, 1,1, 0) only. 

Proposition 1 Given P = {Vi^ V^2,... , K}, Q = { " i , "2, •.. , t4}, E — (e1,e2, •.. , ̂ n), 

Q is matched with P if and only if the n Circular Error Bounds Ci, C2,... , Cn of P and 

Q have common intersection (Figure 6.2). 

Proof 1 

If : Assuming Vi = (a^, bi) and Ui ~ (ĉ -, di)^ by Definition 12, Circular Error Bound Ci 

is a circle with Ci as its radius and {ai — c“ bi — di) as its center. If Ci, C2,. . . , Cn have 

common intersection, then for any point {t^, ty) in the common intersection, the distance 

between this point and the center of any Ci is less than or equal to the radius of Ci. 

Figure 6.2 illustrates this idea when both P and Q are triangles. Thus, Vi, 1 < i < n, 

y [ { a i - C i ) - 4 p + [ { b i - d i ) - t y ] ^ < Ci (6.1) 
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1 r^i 
(、，、)—̂fê  nK^y\ 
y^^r 

X 

Figure 6.2: Intersection of Circular Error Bounds 

Re-arranging Equation 6.1, we have 

Ĵ[ai - (c, + QY + [6, - {d, + ty)Y < Ci (6.2) 
which is equivalent to \\Vi — U'-\\ < ti where U^ — T{Ui) and T =〈仏〜，1,1,0� . By 

Definition 11, Q is matched with P. 

Only if : Assume that Vi = (â -, bi) and Ui = (c^, d{). By Definition 11，if Q is matched 

with P then 3T = {t^, ty, 1,1, 0) such that Vi<i<n, [ai - (c,- + t̂ ,)]̂  + [bi — (di + ty)Y < e|. 

Let a = ai — (c,- + t^), f 3 = b i — { d i + t y ) , 7 = a j - { c j + t $ ) , and 6 = b j — ( d j + t y ) , we 

have a^ + ^^ < e|,千 + P' < e), and 
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0 < {a5 — P^f 

2af3— < a � + ^2^2 

V y + 炉沪 + 2aP^S < o ? � + « 2 ^ + f p � + pH^ 

(a7 + "<^)2<(a2 + " 2 ) ( y + ^ ) 

(«7 + m' < 躬 

—cry — [58 < Citj 

-2cry — 2f3S < 2e,e^ 

«2 + fP + 72 + 沪-2cr/ - 2f]S < e? + � + 2e,q 

{a-^Y + {f3-Sr<{e,^e,r 

{[ai — {ci + t^)] - [aj — {cj + tx)]y^ 

{ [ h i — { d i + t y ) ] — [ 6 , — { d j + t y ) ] Y < { c i + e , y 

{ a i - C i ) - { a j - C j ) f + [ { b i - d i ) - { b j — d j ) Y < ( ^ + q ^ 

yHai - Ci) - {aj — Cj)Y + [{bi - di) - {hj — dj)Y < (ci + CjY (6.3) 

Because (<¾ — C i , b i — (¾), { a j — C j , b j — d j ) are the centers of Circular Error Bound C { 

and Cj respectively, and ê , Cj are their radius, Ci and Cj intersect each other. Therefore, 

Vi<ij<n, Ci and Cj intersect each other. Thus, Ci, C2,... , Cn have common intersection. 

6.1.2 Translation and uniform scaling in x-axis and |/-axis direc-

tions 

Assume that the transformation T in Definition 11 is restricted to T = (^x, ̂ y, ̂ , 5, 0), i.e. 

only translation and uniform scaling in x-axis and y-axis directions are allowed. 

Let Vi = (a^, hi) and Ui 二（ĉ ,c4). Consider the following equation 

\ci 一 Cjf + [di — djY]s^ - 2[{ai - aj){ci - Cj) + (¾ - bj){di — dj)]s 

+ [{ci - CjY + {d, — d j f — (6, + e,)2] < 0 (6.4) 
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Solving Equation 6.4, we get a range, 8ij, for s that the inequality holds. 

Proposition 2 Q is matched with P if and only if fli<i,j<nSij • 0 (Figure 6.3). 

夢 
e I I 
Ojj ^ 1 1 ^ 

_ I 1 

Sjk̂ --1----̂  
Sî  — ̂  + 

I I 
I I 

! K I 
^ Intersection 

Figure 6.3: S{j and its intersection 

Proof 2 

If : If n i ^ j y & j + 0, then 35 = (0,0,5,5,0) G 门15,’_̂，&§‘_? such that Circular Error 

Bounds C1,C2, . . . , Cn of P and Q' have common intersection, where Q' = S{Q). By 

Proposition 1, Q' is matched with P. Thus, 3T = (t̂；, ty^ 1,1,0) such that Vi<^<n||^ — 

f/f|| < e,- where t/f = T(t/；). Therefore, 3T = ToS 二 (t^,t^,5,s,0) such that Vi<,<^||K-

t/f|| < a where f / f = V{Ui). By Definition 11，Q is matched with P. 

Only if : By Definition 11, if Q is matched with P then 3T = {tx,ty,s,s,Q) such that 

Vi<i<n, [di — {sci +tx)Y + [bi — {sdi ^ty)Y < c]. As shown in Proof 1, the n Circular Error 

Bounds Ci, C2,. . . , Cn have common intersection. Thus, we have Vi<^^<^ 

y / [ { a i - s c i ) — { a j - s c j ) Y + [ ( ¾ - s d ^ ) - { b j - s d j ) Y < q + 6 j ( 6 . 5 ) 

Re-arranging Equation 6.5, we have Equation 6.4. Thus, 3<s such that Vi<,-j<n, Equa-

tion 6.4 holds. Therefore, if 8{j denotes the range of s where Equation 6.4 holds for a 

specific ij p a i r ,门丄询 ^打知 + 0-
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6.1.3 Translation and independent scaling in x-axis and y-axis 

directions 

Assume that the transformation T in Definition 11 is restricted to T = {tx^ ty, s^, Sy, 0), 

i.e. independent scaling in x-axis and y-axis directions as well as translation are allowed. 

Let Vi = (a^, bi) and Ui — (q , di). Consider the following equation 

{ a i — G j ) — { c i — C j ) s a ; f + [ { b i - b j ) — { d i — d j ) s y ] ^ < ( e , - + C j Y ( 6 . 6 ) 

Equation 6.6 defines an ellipse, E{j, on the Sx-Sy plane. 

Proposition 3 Q is matched with P if and only if yi<i,j<rMij have common intersection 

(Figure 6.4). 

Sy| E.̂  

( � � )- ~ ^ W^'"^'^^ ^ " ^ ^¾) 
v , ^ r i : : ^ 

T 
Figure 6.4: Ê -j and its intersection 

Proof 3 

If : If Vi<^j<nEij have common intersection, then for any point (ŝ；, 5^) in the common 

intersection, Circular Error Bounds Ci, C2,... , Cn of of P and Q', intersect each other, 

where Q, = S{Q) and S =�0’0,sn«s"，0�. By Proposition 1, Q' is matched with P. 

Thus, 3T = {t^,ty, 1,1,0) such that Vi<^<^, ||V；- - /7f|| < Q where U[' = T(t//) . Therefore, 

3T' - T 0 S = {t^,iy,s^,sy,^) such that Vi<,-<n, ||K _ U['W < e, where U[' 二 T'{Ui). By 

Definition 11, Q is matched with P. 
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Only if : By Definition 11, if Q is matched with P then 3T = {tx^ty^s^^Sy^O) such that 

Vi<i<n, [ai — {sxCi + tx)Y + [bi — {sydi + ty)Y < e?. As shown in Proof 1, the n Circular 

Error Bounds C\, C2 , . . . , Cn have common intersection. Thus, we have Vi<^-j<n 

y [ { d i - SxCi) — {aj — Sa:Cj)Y + [ { b i - S y d i ) - { b j - S y d j ) Y < Q + Cj (6.7) 

Re-arranging Equation 6.7, we have Equation 6.6. Thus, 3(5a ,̂ 5^) such that Vi<ij<n, 

Equation 6.6 holds. Therefore, if E,j defines an ellipse on the S -̂Sy plane, then 3(<Sa;,〜） 

simultaneously resides in E^j for 1 < z , j < n. That is, Vi<ij<n^j have common intersec-

tion. 

6.2 Minimum Circular Error Bound 

The polygon matching techniques presented in Section 6.1 only deal with matching queries 

subject to some tolerances (the tolerance vector E) and restrictions on transformation. By 

extending the idea of these techniques, we propose a similarity measure of polygons named 

Minimum Circular Error Bound (MCEB). Since MCEB is defined as the optimal value 

over all possible translations, it is a translation invariant similarity measure of polygons. 

Definition 13 The Minimum Circular Error Bound ( , where ^ G E, of a polygon Q = 

{U1,U2,...，Un} comparing to another polygon P = {Vi, V2,... , K } is defined as 

f 二 min max Vi — TiUA 
^t,,tyT={t.,ty)l<i<n 

( c a n be calculated as follows. Let VJ = (a^, bi) and Ui = (c^, di). Further assume that 

the tolerance vector E = (ei, e2,.. . , e^) where Ci == t2 = .. • = tn. The Circular Error 

Bound Ci is a circle with q as its radius and (â - — Q, hi — di) as its center. If two Circular 

Error Bounds Ci and Cj intersect each other, we have 

^J[{ai - Ci) - [aj - Cj)]2 + [{bi - di) - {bj - dj)]^ < a + Cj (6.8) 

Since q = Cj, we denote the value of q and Cj as Cij. The minimal value of C{j that 

Equation 6.8 holds is 

Qj = ŷ[(a,. — Ci) - {aj - Cj.)]2 + [{bi — di) — (¾ - dj)Y 
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The MCEB of the two polygons Q and P is 

( = m a x 6ij 
l<i,j<n 

such that for Ci = e2 = . . . = Cn > f , Vi<i,j<n Ci and Cj intersect each other. That is, for 

ci = €2 = • • • = Cn > ( , Circular Error Bounds C1,C2,... , Cn of Q and P have common 

intersection and Q is matched with P under Proposition 1. 

6.3 Characteristics 

MCEB method is translation invariant but its sensitive to scaling and orientation so scale 

normalization and orientation standardization are required. The storage complexity is 

0{n) and the computational complexity is 0{n^). This method is not indexable. 



Chapter 7 

Experimental Results 

Several experiments have been carried out. We will describe how we conduct the experi-

ments and discuss the experimental results. 

We compare the running time of the two-stage framework with the KD-Tree indexed 

NCS method using databases with different size and polygons with different number of 

vertices. We also compare the relative running time of the Hausdorff Distance method, 

the MRAM method, the MCEB method, and the NCS method without indexing. Besides 

running time, we also compare the quality of the visual ranking produced by the four 

methods. 

7.1 Setup 

We will now describe the environment and the programs that we constructed for the 

experiments as well as how the testing data are generated. An experiment is consisted of 

three steps as described follows. 

1. A polygon data set is generated using one of the two polygon generators described 

in Section 7.1.1. 

2. Several database construction programs are applied to the polygon data generated in 

step 1 to extract information need for query handling. These programs are described 

in Section 7.1.2. 

50 
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3. A program is created for each polygon similarity measuring technique which allows 

user to select a target polygon from a list of templates and then carries out matching 

queries or similar queries. These programs are described in Section 7.1.3. 

7.1.1 Polygon generation 

We create two polygon generators for generating polygon data to be used as testing data. 

Each polygon is generated using Algorithm 7.1. 

The two polygon generators differ in the distribution of number of polygons in equiv-

alent classes. The first generator does not assume any distribution of the number of 

polygons in the equivalent classes. The second generator assumes that the distribution 

is uniform. Both polygon generators take two parameters. One is the number of vertices 

of the polygons to be generated. Another one is the total number of polygons to be 

generated. 

Algorithm 7.1 Polygon Generation 

/* Input: n is the number of vertices of the polygon to be generated. */ 

/* Simple{) is used to check whether x[] and y[] represent a non-crossing polygon */ 

/* StandardizeDirection{) is used to re-organize x[] and y[] such that vertices are 

placed clockwise. */ 

/* random(�returns a random value in the range [0,1]. */ 

finish — false 

while (not finish) 

for i = 1 to n do 

x[i] = random{) 

y[i] = randomQ 

end for 

if Simple{x]^, yQ) then 

StanardizeDirection{xW, yW) 



Chapter 7 Experimental Results 5 2 

finish = true 

end if 

end while 

return xQ, y\] as the ordered coordinate list of the generated polygon 

The Simple{) function in Algorithm 7.1 use a brute force method to determine whether 

the given ordered coordinate list contains crossing edges. The function will pick up all 

possible edge pair and check if the two edges cross each other. Algorithm 7.2 gives the 

outline of the Simple{) function. 

Algorithm 7.2 Determining whether a given ordered coordinate list contain crossing 

edges 

/* Input: xQ and y\] contain the ordered coordinate list, n is the number of vertices of the given 

polygon. */ 

/* cross{xi, j/i, X2,2/2, ^3, ys, x4, y4) determines whetherAB and CD cross each other, where A = 

{xuyi), B - {x2,y2), C 二�2?3，？/3〉，and D : (â4,y4>. */ 

for i = 1 to n — 2 do 

for j = i + 1 to n — 1 do 

if cross{x[i], y[i],x[i+ l],y[i+ l],x[j],y[j],x[j+ l],y[j+ 1]) then 

return false 

end if 

end for 

end for 

return true 

7.1.2 Database construction 

We have created several programs to generate database files required for the query han-

dling programs described in Section 7.1.3. 
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Polygon normalizer 

We create a program which takes the output of the polygon generators as input and 

standardizes the orientation of the polygons in such a way that the longest edge of the 

polygon is aligned with the y-axis. If there are more than one edges having the longest 

length, the program simply picks the first one it encountered. After the polygon is re-

oriented, it is then scaled to have a unit bounding box. Figure 7.1 illustrates the idea of 

polygon orientation standardization and scale normalization. 

I V I % I / I 
i \ z 丨 Z—…―.J 

(a) (b) (c) 

Figure 7.1: Orientation standardization and scale normalization of polygons 

The dash line box is an unit bounding box. (a) the original polygon, (b) the polygon 

after orientation standardization, (c) the polygon after scale normalization. 

SBSD database builder 

This program takes the normalized polygon data and computes the SBSD of the polygons 

using the definition of Section 3.2. 

M R A I database builder 

This program takes the normalized polygon data and computes the MRAI of the polygons 

using Algorithm 5.1. The frame buffer used is 64 pixels by 64 pixels large and MRAI are 

recorded up to resolution level 3. 



Chapter 7 Experimental Results 5 4 

NCS KD-Tree indexing builder 

This program takes the normalized polygon data and construct the KD-Tree for NCS. 

We use 4 vertices as the key, meaning that the key is a 8 dimensional key. For a n-gon, 

n entries, corresponding to the n possible 4 vertices sequences, are inserted to the index 

tree. The whole index tree is saved for future queries. 

7.1.3 Query processing 

We have created several programs to handle shape queries using the two-stage approach. 

Template selector 

This program extracts the first hundred of polygon out of a polygon database and let the 

user select one of them as the target polygon of a shape query. 

SBSD filter 

This program takes the output of the template selector, computes the SBSD of the target 

polygon, and then selects all model polygons inside the database that within the user 

specified Hamming Distance tolerance from the SBSD of the target polygon. 

Matching query handler 

A matching query handler is created for each of the aforesaid methods. These marching 

query handlers take a tolerance as input and then find out the set of model polygons, 

from those selected by the SBSD filter, that matched the target polygon subject to the 

tolerance. These programs load all the data they need, e.g. MRAI, KD-Tree, etc., into 

memory during operation. 

Similar query handler 

A similar query handler is created for each of the aforesaid methods. These similar query 

handlers take a integer number, m, as input and then find the m model polygons, from 
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those selected by the SBSD filter, that are most similar to the target polygon. The output 

polygons are ranked with respect to their similarity to the target polygon. These programs 

also load the data they need into memory during operation. 

Result display program 

This program takes the output of any matching query handler or similar query handler 

and display the polygons. 

7.2 Running time comparison 

In this session, we compare the running time of the two-stage framework with the NCS 

approach using KD-Tree indexing. We also compare the running time of different polygon 

similarity measuring techniques under the two-stage framework. All the experiment are 

conducted on a UltraSparc 1/140 workstation. 

7.2.1 Experiment I 

In this experiment, we test the running time of the two-stage framework with the KD-

Tree indexed NCS method. Three different methods, namely the Hausdorff Distance 

method, the MRAM method, and the MCEB method are implemented using the two-stage 

framework. Five polygon databases are used in this experiment. Each of them contains 

9000 polygons with the same number of sides. The five databases contain polygons of 4 to 

8 sides respectively. The distribution of the number of polygons inside equivalent classes 

is assumed to be uniform. Table 7.1 summaries the information of these databases. 

The average matching query processing time of the four methods on these databases 

are shown in Table 7.2. The fastest method in handling each of databases are boxed. A 

chart corresponding to Table 7.2 is shown in Figure 7.2. 

We observe that the NCS method with KD-Tree indexing is the fastest method when 

the polygons being handled are with small number of sides, e.g. 4 sided as shown in 

experiment I. When the number of sides of polygons increases, the three methods using 
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Table 7.1: Polygon databases for running time experiment I 

n-gon Equivalent classes Polygons per class Total 

4 2 4500 9000 

5 4 2250 9000 

6 9 1000 9000 

7 15 600 9000 

8 30 300 9000 

Table 7.2: Average running time of experiment I 

HausdorfF 
n-gon M R A M M C E B NCS with KD-Tree 

Distance 

4 0.0833 sec 0.1633 sec 0.3833 sec |0.0333 sec| 

5 |0.Q5Q0 sec| 0.1000 sec 0.2333 sec 0.0833 sec 

6 |0.Q333 sec| 0.0500 sec 0.1167 sec 0.1167 sec 

7 |0.0167 sec| 0.0333 sec 0.0833 sec 0.1500 sec 

8 |Q.Q167 sec| |0.Q167 sec| 0.0500 sec 0.2000 sec 
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Figure 7.2: Average running time of experiment I 

the two-stage framework are relatively faster than the NCS method. Using experiment I 

as example, the MRAM method become the fastest when the sides of polygons is larger 

than or equal to 5. When the number of sides increases to 6 or more, all the method using 

the two-stage framework are faster than the NCS method. 

This is the expected result and can be explained as follows. For a polygon database 

with m n-sided polygons, mn entries will be inserted into the system using NCS method 

with KD-Tree indexing, as described in Section 2.5. For the two-stage framework, m 

entries will be inserted into the database no matter how many sides the polygons have. 

When handling shape queries, the NCS method has to consider all the mn entries which 

are organized in an index tree. However, the two-stage framework approach only have 

to consider ^ entries where E is the number of equivalent classes and the distribution 

of polygons in equivalent classes is assumed to be uniform. As the number of sides of 

polygons, n, increases, the NCS method have more entries to consider while the two-stage 

framework approach has less, since E increases with n. 
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7.2.2 Experiment II 

In this experiment, we test the running time of the four methods on databases with 

different size. 5 databases are used in this experiment which contain 7200, 9000, 10800, 

12600, 14400 6-sided polygons respectively. The average matching query processing time 

of the four methods on these databases are shown in Table 7.3. The fastest method in 

handling each of databases are boxed. A chart corresponding to Table 7.3 is shown in 

Figure 7.3. 

Table 7.3: Average running time of experiment II 

Total number HausdorfF 
M R A M M C E B NCS with KD-Tree 

of polygons Distance 

7200 |0.Q333 sec| 0.0333 sec 0.1000 sec 0.0500 sec 

9000 |0.0333 sec| 0.0500 sec 0.1167 sec 0.1167 sec 

10800 |0.0333 sec| 0.0500 sec 0.1500 sec 0.1333 sec 

12600 |Q.050Q sec| 0.0667 sec 0.1667 sec 0.1500 sec 

14400 |0.Q5Q0 sec| 0.0833 sec 0.2000 sec 0.1833 sec 

We observe that the running time of all the methods increase as the number of polygons 

in databases increase. It is because the number of database entries needed to be processed 

increase as the total number of database entries increase for both the two-stage framework 

and the KD-Tree indexed NCS method. However the percentage of increase in running 

time for the two approaches is different. Table 7.4 shows a normalized version of the 

result in Table 7.3. The results of each method is normalized using the running time of 

that method on the database with 7200 polygons. 

We found that the rate of increase of the KD-Tree indexed NCS method is larger 

than those of the three methods using the two-stage framework approach. For example, 

when the number of database entries doubled from 7200 to 14400, the running time of 

the KD-Tree indexed NCS method is more than 300% of that on the database with 7200 
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Figure 7.3: Average running time of experiment II 

Table 7.4: Normalized average running time of experiment II 

Total number Hausdorff 
M R A M M C E B NCS with KD-Tree 

of polygons Distance 

7200 1.00 1.00 1.00 1.00 

9000 1.00 1.50 1.17 2.33 

10800 1.00 1.50 1.50 2.67 

12600 1.50 2.00 1.67 3.00 

14400 1.50 2.50 2.00 3.67 
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entries. Yet, the running time of other three methods are less than 300% of their running 

time on the database with 7200. 

This result can be explained as follows. When a n-gon is added into a database, n 

entries will be inserted to the KD-Tree index in the case of the NCS method. However, only 

one entry will be inserted to the database used by those two-stage framework methods. 

Assuming an uniform distribution on the number of polygons in equivalent classes, the 

probability that this newly inserted entry have to be handled by the second stage polygon 

similarity measuring technique is l/E{n), where E{n) is the number of equivalent classes 

of n-gons. Thus, the effective increase in the number of database entries to be processed 

per polygon added is n for the KD-Tree indexed NCS method, and l|E{n) for methods 

using the two-stage framework. 

7.2.3 Experiment III 

In this experiment, the running time of handling similar query is compared. The databases 

used are the same as in Section 7.2.1. However, the NCS method used in this experiment 

is different from the one in Section 7.2.1. Since the NCS method with KD-Tree index-

ing cannot handle similar queries, we modify it such that no indexing is used. We use 

the polygon similarity measuring technique of the NCS method, i.e. measuring polygon 

similarity by Euclidean Distance of vertex coordinates, in the second stage of the two 

stage framework. The average similar query processing time of the four methods on the 

databases are shown in Table 7.5. The fastest method in handling each of databases are 

boxed. 

The result obtained in this experiment agrees with the computational complexity 

of the four methods described in Section 2. Recall that the computational complexity 

of the MRAM method, the MCEB method, the Hausdorff Distance method, and the 

NCS method are 0(L), 0(n), 0(n^), and 0(n^) respectively where L is the size of the 

MRAI used in the MRAM method. Thus, the NCS method successes in being one of 

the fastest method in the experiment. Though the MCEB method and the Hausdorff 
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Table 7.5: Average running time of experiment III 

HausdorfF 
n-gon M R A M M C E B NCS 

Distance 

4 0.1833 sec 0.1833 sec 0.4167 sec |0.1667 sec| 

5 |0.0833 sec| 0.1000 sec 0.2500 sec |0.0833 sec| 

6 |0.Q5QQ sec| |0.Q5QQ sec| 0.1167 sec |0.0500 sec| 

7 |0.Q333 sec| |0.Q333 sec| 0.1000 sec |0.0333 sec| 

8 |0.Q167 sec| |0.Q167 sec| 0.0500 sec |0.0167 sec| 

Distance method have the same computational complexity, the MCEB method has a 

smaller constant factor so it is relatively faster than the Hausdorff Distance method. 

In general, L is far larger than n. However, since the MRAM method uses a multi-

resolution comparing strategy with early rejection, it is also one of the fastest method in 

the experiment. When the number of sides of polygons increases, the four methods tend 

to have the same running time. It is because in these cases, the number of equivalent 

classes is relatively large and the number of entries to be compared in a shape query is 

relatively small. Thus, the running time is dominated by the setup cost of the programs 

rather the comparison cost of different methods. 

7.3 Visual ranking comparison 

Three experiments are carried out to compare the visual ranking of polygons produced 

by different methods. We will now describe these experiments and their results. 

7.3.1 Experiment I 

In this experiment, 50 polygons are generated (Figure 7.4). Given the first and the last 

polygon, 48 intermediate polygons are generated using linear interpolation. This method 
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gives us a set of polygons as well as an ordering according to their similarity to the first 

polygon. For each similarity measuring technique, we perform a similar query using the 

first polygon as the target polygon. We compare the visual ranking produced by each 

method with the original ordering. The number of polygon mis-ranked is used as the 

quality measure of a visual ranking where a small number indicate a good quality visual 

ranking. 

:.^^^^^^^^:..^^^^^^^^:.^^^^^^^^::.^^^^^^^::•.^^^^^^^::.^^^^^^^::.•^^^^^^^::?^^^^^^^i，..jjjj^j^jj^j^:?-.jjjjjjjjjjjjjjjjjjjj^;: 
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Figure 7.4: Polygon data for visual ranking experiment I 

Polygons are in black color and is arranged top to bottom, left to right. The first one and 

the last one are used to generate the 48 intermediate polygons by linear interpolation. 

From experiment, we find that all the four methods produce visual rankings exactly 

as the original ordering. 

7.3.2 Experiment II 

In this experiment, 50 polygons are generated using the same interpolation technique as 

described in Section 7.3.1, but with different pair of polygons for interpolation process. 

The 50 polygons are shown in Figure 7.5. The visual rankings produced by the four 

methods are also compared as described in Section 7.3.1. 

From experiment, we find the Hausdorff Distance method produces a visual ranking 
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Figure 7.5: Polygon data for visual ranking experiment II 

with a quality measure 13. The visual ranking produced by the Hausdorff Distance 

method is shown in Figure 7.6. All other three methods succeed in producing visual 

rankings exactly the same as the original ordering. Thus, the Hausdorff Distance method 

is not as good as others in handling this polygon data set. 

7.3.3 Experiment III 

In this experiment, 40 polygons (Figure 7.7) are generated using the same technique as 

the previous two experiments. The first 20 polygons are generated by interpolating the 

first and the 20th polygon. The last 20 polygons are generated by interpolating the 21th 

and the last polygon. Similar queries are performed using the four methods with the first 

polygon as the target polygon. 

We find that the MRAM method and the NCS method fail to produce visual ranking 

the same as the original ordering while the MCEB method and the Hausdorff Distance 

method success in doing so. Both the MRAM method and the NCS method produce 

visual ranking with quality measure 19. The visual ranking produced by the MRAM 

method is shown in Figure 7.8 and the one produced by the NCS method is shown in 

Figure 7.9. 
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Figure 7.7: Polygon data for visual ranking experiment III 
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7.3.4 Conclusion on visual ranking experiments 

From these three experiments, we find that the MCEB method is the only one that 

produces desirable visual ranking in all experiments. Other methods all fail to do so in 

either one of the experiments. 

Figure 7.10 and Figure 7.11 show the results of similar queries produced by the four 

methods on the databases created for the running time experiments in Section 7.2. The 

queries are made using the first polygon as the target polygon and the 10 polygons that 

are most similar to the target polygon based on the four methods are retrieved. 
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Figure 7.10: Similar query result I 



11 :^ns9j Aionb j^^imig 'll'l aJnSij 

WYMn (p) 

) �( �z _ ^^P^A 
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Chapter 8 

Discussion 

In this session, we will talk about the shortcomings of the two-stage framework and 

possible extensions to tackle them. We also discuss the relaxation of the restrictions of 

the two-stage framework. 

8.1 N-ary Shape Descriptor 

From Table 3.1, we observe that the number of equivalent classes are relatively small when 

the polygons being handled are with small number of sides. For example, all triangles 

will be in one equivalent class and all polygons with 4 sides will be partitioned into two 

equivalent classes. Therefore, SBSD may not be a good method for polygon classification 

in the two-stage approach in these situations since the pruning effect is not to good. 

A possible solution to this problem is to record the angle of a vertex in more discrete 

levels, rather than convex and concave only. The idea is to generalize the BSD into A^-ary 

Shape Descriptor (NSD) such that number of equivalent classes increases. NSD is defined 

as follow. 

Definition 14 Let NSD^ denotes a NSD with k discrete levels of a polygon and A,-

denotes the interior angle of the ith vertex of the polygon, then NSD^ = a1a2 . •. ̂ n-i^n 

where n is the number of vertices of the polygon and 

77r (7 + l W 
c ^ , = j , j e { 0 , l , . . . ,k — i } / ~ ^ A < ' ~ ^ ^ 
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Like SBSD, the Standardized 7V-ary Shape Descriptor (SNSD) of a NSD can be defined 

as follow. 

Definition 15 

SNSD^ = min M(NSD^) 
l<j<n \ ” 

where 

NSDj = ajCtj+i •.. an-1CLnCL1a2... o,j-i 

and M(NSDj) denotes the magnitude of NSD^ when it is regarded as a base-k integer. 

For example, if NSD^ is used, there will be 2 equivalent classes for triangles instead 

of 1 in the BSD case. If NSD^ is used, there will be 6 equivalent classes for triangles. 

Figure 8.1 shows 6 triangles and Table 8.1 shows the SBSD, SNSD^ and SNSD^ of these 

triangles. 

^ \ ^ ^ ^ ^ < ^ 
(a) (b) (c) 

^ ^ v 
(d) (e) (f) 

Figure 8.1: Triangles with different interior angles 

8.2 Distribution of polygon equivalent classes 

The distribution of number of polygons in equivalent classes is not studied in [6]. As the 

BSD techniques is used in our two-stage framework as a polygon classification method, 
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Table 8.1: SBSD, SNSD<, and SNSD^ of triangles 

SBSD NSD4 NSD8 

Figure 8.1(a) 000 001 002 

Figure 8.1(b) 000 001 003 

Figure 8.1(c) 000 000 011 

Figure 8.1(d) 000 001 012 

Figure 8.1(e) 000 001 021 

Figure 8.1(f) 000 000 111 

the distribution of equivalent classes will affect the performance of the framework since it 

will affect the pruning effect of the first stage of the framework. 

From empirical experiments, we find that the distribution of equivalent classes is not 

uniform. The experiments are conducted as follows. Experiments on polygon with 4 sides, 

5 sides, 6 sides, and 7 sides are carried out. In each experiment, 100000 simple degenerate 

closed polygons are generated using the algorithm described in Section 7.1.1. The SBSDs 

of the generated polygons are computed and the distribution of the SBSDs are recorded. 

Table 8.2, Table 8.3, Table 8.4, and Table 8.5 shows the distributions of equivalent 

classes of the polygons with 4 sides, 5 sides, 6 sides, and 7 sides respectively. From the 

results, we find that the distribution varies with the number of sides of the polygon and it 

is not uniform. To have better pruning effect using BSD technique, we can split equivalent 

classes with large number of polygons into different classes. This can be done by using 

the NSD technique described in Section 8.1. 

Table 8.2: Distribution of equivalent classes of 4-sided polygons 

SBSD 0000 0001 

Percentage 43.06% 56.94% 
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Table 8.3: Distribution of equivalent classes of 5-sided polygons 

S B S D 00000 00001 00011 00101 

Percentage 10.16% 77.61% 3.09% 9.14% 

Table 8.4: Distribution of equivalent classes of 6-sided polygons 

S B S D 000000 00001 000011 000101 000111 001001 

Percentage 1.55% 49.33% 11.27% 21.84% 0.08% 14.43% 

S B S D 001011 001101 010101 

Percentage 0.50% 0.50% 0.50% 

Table 8.5: Distribution of equivalent classes of 7-sided polygons 

S B S D 0000000 0000001 0000011 0000101 0000111 

Percentage 0.18% 18.61% 14.18% 21.26% 0.41% 

S B S D 0001001 0001011 0001101 0001111 0010011 

Percentage 30.25% 1.13% 1.10% 0.44% 1.92% 

S B S D 0010101 0010111 0011011 0011101 0101011 

Percentage 3.10% 1.16% 1.93% 1.19% 3.14% 
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8.3 Comparing polygons with different number of ver-

tices 

One of the problems of the two-stage framework is that only model polygons having 

the same number of sides as the target polygon will be selected for the second stage 

comparison. It is because the first stage of the framework select model polygons based on 

the Hamming Distance between their SBSDs and the SBSD of the target polygon. Since 

Hamming Distance only exist when the two input strings have the same length and two 

SBSDs have the same length only if their associated polygons have the same number of 

sides, only model polygons having the same number of sides as the target polygon can be 

selected in the first stage based on the Hamming Distance criteria. 

A possible extension for the two-stage framework to tackle this problem is to reduce 

the vertices of the target polygon and initiate shape queries using this simplified target 

polygon in addition to the original one. The idea is to simplify the target polygon by 

making use of the curvature (turning angle) information of the vertices, i.e. remove 

the vertices with the smallest turning angle. Figure 8.2 illustrates the idea of polygon 

simplification using curvature information. 

<kk] 
(a) (b) (c) 

Figure 8.2: Polygon simplification using curvature information 

(a) the original polygon (b) one vertex removed (c) two vertices removed 
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We suggest two schemes for specifying the simplification of target polygon: 

1. User specifies the number of vertices to be removed. For example, the target polygon 

originally has n vertices and the user specify to remove 2 vertices, then the system 

should automatically initiate 3 shape queries using the original target polygon, the 

one with one vertex removed, and the one with two vertices removed. The advantage 

of this scheme is that user have a definite control over the degree of simplification. 

2. User specifies a threshold value for the turning angle. When the system find that 

the turning angle of a vertex is less than the threshold, it automatically remove the 

vertex and initiate an additional shape query using the simplified target polygon. 

This process should be recursively applied to the simplified target polygon until no 

more vertex should be removed. The advantage of this scheme is that the simpli-

fication process will adjust itself according to the condition of the polygon to be 

processed. 

The suggested extension only enable the comparison between the target polygon and 

model polygons with less number of vertices. With similar scheme, we can also make 

comparison between the target polygon and model polygons with more number of vertices 

possible. When a polygon is added to the database, this polygon then processed by either 

ofthe suggested simplification schemes. For each simplified polygon, as well as the original 

one, its corresponding data (SBSD, MRAI, KD-Tree index entries, etc) will be inserted 

into the database. This way, the target polygon can be effectively compared to model 

polygons with more number of vertices. One shortcoming of this scheme is that multiple 

database entries will be generated for a polygon. 

8.4 Relaxation of assumptions 

As stated in Chapter 1, our work assumes that the polygons being handled are simple 

non-degenerate closed polygons. However, the two-stage framework can handle polygons 

without these restrictions. The restrictions for the two-stage framework are actually the 
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union of the restrictions, in a more strict sense, imposed by the techniques incorporated 

in both the first stage and the second stage of the framework. 

Among the three assumptions, the requirement of polygon being non-degenerate is 

just a restriction introduced to reduce the complexity of polygonal shapes by removing 

vertices that are not important. The other two restrictions may or may not be relaxed 

depending on the techniques chosen. Table 8.6 gives a summary on the restrictions of the 

techniques we described in Chapter 2 and proposed in Chapter 5 and Chapter 6. 

8.4.1 Non-degenerate 

As mentioned, this restriction is introduced to reduce the complexity of polygons to be 

handled. This is good for techniques whose computational complexity depend on the 

number of vertices of polygons. 

1. The BSD technique can work on degenerate polygons with the modification that the 

case of interior angle equal to n is classified either as convex or concave. Nevertheless, 

removing degenerate vertices will reduce the length of the BSD and thus reduce the 

computational requirement of the BSD technique. The same situation applies to 

the Potential-Based approach, the NCS method, the Hausdorff Distance method, 

the PCA method, and MCEB method. 

2. Whether the polygons are degenerate or not is indifferent to the Freeman Chain 

Code method, the Moment method, the Rectangular Cover method, and the MRAM 

method. It is because the Freeman Chain Code method works on the boundary 

pixels and the other three methods work on area information of polygons. Thus, 

they can handle degenerate polygons as well as non-degenerate polygons. 

8.4.2 Simple 

1. Though the BSD technique is developed for simple polygons, it also works on com-

plex polygons. However, the angles being recorded will not be interior angles but 
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the turning angle of next edge with respect to the previous one. Another result 

of applying BSD technique on complex polygons is that the analysis of number of 

equivalent classes will be invalid since the analysis is conducted base on simple poly-

gons. However, the technique still works and can serve as a polygon classification 

method even a full study on the number of equivalent classes is not available. 

2. The Chain Code approach requires the polygons being handled to be simple since 

there will be difficulty of determining the boundary to trace when the algorithm 

encounters a crossing of edges. 

3. Whether the Moment approach and the MRAM method work on complex polygons 

or not depends on the scan-conversion technique incorporated in these two methods. 

If the scan-conversion technique used can handle complex polygons as well as simple 

polygons, then these two method can be used to handle complex polygons as well 

since both of them work on digitized shapes rendered in frame buffers. 

4. The Potential-Based approach cannot handle complex polygons. It is true that 

its computation of artificial potential field only make use of the edges of polygons 

so the computation is valid even for crossing edges. However, this method has to 

place the template shapes "inside" the shapes to be classified. The "inside" of a 

complex polygon is hard to define since a complex polygon may have more than 

one closed regions. Thus, placing the template shape inside any closed region of a 

complex polygon will only limit its growth within that closed region but not the 

whole polygon. 

5. The Rectangular Cover approach will be able to handle complex polygons if the 

rectangular cover generator can handle complex polygons as well as simple polygons. 

6. The NCS method, the HausdorfF Distance method, the PCA method, and the MCEB 

method have no problem handling complex polygons since they all work on ordered 

point sets. 
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8.4.3 Closed 

1. The Moment approach, the Rectangular Cover approach, and the MRAM method 

require the polygons being handle be closed because all these methods work on the 

area of the polygons and area is only computable when the polygons are closed. 

2. The Potential-Based approach will not work on open polygon since it has to place 

the template shapes inside the polygons to be classified. This cannot be done on an 

open polygon. 

3. Other methods have no problem on handling open polygons. The Freeman Chain 

Code approach only makes use of the boundary of the polygons and it still works 

even when the boundary is not closed. The MCEB method, the HausdorfF Distance 

method, the PCA method, and the NCS method can handle open polygons since all 

of them work on ordered coordinate lists which are also available even the polygons 

are open. 
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Table 8.6: Restrictions for different techniques 

Non-degenerate Simple Close 

B S D Preferable^" No No 

Freeman Chain Code No Yes No 

Moment No Depends^ Yes 

Rectangular Cover No Depends^ Yes 

Potential-Based Preferable "̂ Yes Yes 

N C S Preferable^ No No 

Hausdorff Distance Preferable^ No No 

P C A Preferable^ No No 

M R A M No Depends^ Yes 

M C E B Preferable^ No No 

t Computational complexity reduced if the polygons are non-degenerate. 

i Depends on the feature extraction technique used. 
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Conclusion 

We have proposed a two-stage framework for the polygon retrieval task which incorporates 

qualitative and quantitative measures of polygons in the first stage and second stage 

respectively: 

1. The first stage uses SBSD as a mean to prune the search space and reduce the 

number of polygons needed to be compared with the target polygon. 

2. The second stage incorporates any available polygon matching and similarity mea-

suring technique to compare model polygons with the target polygon. 

This two-stage framework is more efficient than model-driven approach since it reduces 

the number of polygons needed to be compared with the target polygon. It also avoids 

the difficulty and inefficiency of maintaining complex multi-dimensional index structures 

as data-driven approach methods do. Instead, it uses string as index which is well studied 

and efficient indexing techniques are available. The MRAM method, the MCEB method, 

and the Hausdorff Distance method are implemented using the two-stage framework and 

are compared with KD-Tree indexed NCS method. The experiments show that the three 

methods using two-stage framework are more efficient than the KD-Tree indexed NCS 

method when polygons to be handled have sufficiently large number of sides (5, in our 

experiments). The efficiency gain of using the two-stage framework approach increases as 

the database grows. 

78 
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We also propose two polygon similarity measuring techniques named MRAM and 

MCEB. The MRAM method is an area-based technique incorporating multi-resolution 

Quadtree area coding. It compares polygons from coarse resolution to fine resolution and 

takes advantage of early rejection when dissimilarity is found in coarse resolution. Our 

experiments show that the MRAM method, implemented using the two-stage framework 

approach, is not only more efficient than the KD-Tree indexed NCS method but also the 

fastest one among the three methods using the two-stage framework approach. 

The MCEB method measures the similaritybetween two polygons by a number derived 

from the distance between corresponding vertices of the two polygons. Our experiments 

shows that the MCEB method is less efficient than the MRAM method but more efficient 

than the Hausdorff Distance method and the NCS method. Our experiments also show 

that the MCEB produces visual ranking of polygons better than the MCEB methods, the 

Hausdorff Distance method, and the NCS method. 

The contributions of our work include the proposal of the two-stage framework for 

polygon matching，the MRAM method, the polygon matching technique using CEB, 

and the translation invariant polygon similarity measure MCEB. We have also studied 

the characteristics of several existing methods and compare their performance with our 

methods. 

There are some possible extensions to our two-stage framework. For example, we can 

enhance the BSD method or even use other polygon classification technique in the first 

stage of the framework in order to have a more uniform distribution on the number of 

polygons per equivalent class. Another extension is to enable the matching of polygons 

with different number of vertices under the two-stage framework. 
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