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Abstract 

In the present work, a relatively novel method called attractor image coding (commonly 

known as fractal image coding) for lossy image compression is investigated. Roughly 

speaking, the original image is partitioned into several disjoint range blocks. For each 

range block, an affine transformation is constructed to approximate the range block 

by another part of the same image. Compression is obtained by compactly storing 

only the descriptions of these transformations. The decoded image is obtained by 

iteratively applying these transformations on any initial image. However, the attractor 

coding, being a block-based algorithm, suffers from the usual blocking artifacts which 

is highly disturbing to human visual system (HVS). The blockiness is mainly due to 

the independent processing of each block in encoding. Discontinuities may occur across 

the block boundaries in the decoded image that are smooth in the original image. The 

problem is more prominent when the bit rate is reduced. 

In this thesis, two variants of the existing attractor coding are proposed and exam-

ined in details. The main goal is to produce a decoded image which suffers less from 

blocking effects and they are summarized as follows: 

First, a novel attractor coding scheme with adjacent block parameter estima-

tions is proposed that exploits the redundancies of block parameters in smooth regions 

of an image. A criterion called J-minimum edge difference (J-MED) is proposed to se-

lect those blocks which can be estimated well from the adjacent blocks. The goal is to 
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produce a decoded image in which the blocking artifacts is not easily visible to the hu-

man vision systems (HVS). Experiments show that the proposed method can produce 

a decoded image with most blockiness not easily spotted out and, at the same time, 

achieve similar compression ability as those of variable range block size. 

Since the previous proposed method still employs disjoint range blocks in the for-

mulation, the blockiness exists in the decoded images. In this work, a novel attractor 

coding techniques using the partitioned iterated function systems with lapped 

range blocks (LPIFS) is proposed. Each range block is formulated to lap with 

its adjacent blocks through a weighting operator which is diminishing in magnitudes 

towards its boundaries. Range block preprocessing is proposed to compute the trans-

formation parameters in order to reduce the error. No large system of equations as 

used in previous work is needed. Moreover, the local domain block matching is pro-

posed. We show that this block matching technique is natural for general images and 

thus reduces the number of bits for specifying domain block addresses. Experimental 

results show that the image details are preserved and nearly all undesirable blocking 

artifacts are eliminated. 
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M the set of real numbers 
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|a;|| the norm of x 
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Chapter 1 

Introduction 

One of the most distinctive features of modern society is the massive amount of in-

formation being processed, transmitted, and stored by electronic means. The rapid 

development of internet, B-ISDN and mobile computing leads the prevalence of use of 

visual information. HDTV, video conferencing and digital camera are typical examples 

of applications with heavy demands of images. However digital images being repre-

sented in raw data format without any compression use a huge amount of storage space 

and consume much bandwidths in data transmission [11]. Therefore an effective rep-

resentation of images plays a role of increasing importance in the present information 

age. 

Image coding is one kind of source coding to represent an image by fewer bits 

by exploiting the signal redundancy. Mathematically, a good coder should represent 

an image by the number of bits close to its information entropy [12]. An image is 

represented in its most compact form and can be retrieved without any error or loss. 

This kind of coding scheme in which no loss is introduced is termed as lossless coding. In 

some applications, lossy representation is unavoidable in order to meet the bandwidth 

or storage requirements. Moreover, owing to the nature of human perception, some 

kind of image information can be removed such that the distortion induced is not 
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Chapter 1 Introduction 

perceived by human observer. Many coding algorithms have been devised to represent 

an image with some information loss which cannot be perceived by human eyes. Thus, 

lossy coding gains many research interests in the field of image compression and can be 

classified into three main categories, i.e., transform coding [10], wavelet and subband 

coding [49], and attractor coding [27]. The first two has been well developed and 

satisfactory results have been reported. Among them, attractor coding is still under 

studies and leaves rooms for further development. 

1,1 Overview of Attractor Image Coding 

In the present work, a relatively novel method called attractor image coding for lossy 

image compression is investigated. In most publications on related methods, the name 

fractal coding has been used. However, several critics [38] have pointed out that fractal 

coding is not appropriate to describe such method. Rather than using this misleading 

name, some researchers have started to use attractor coding which, in the author's 

opinion, can well describe the nature of this method. 

Attractor image compression is based on the concepts and mathematical results 

of iterated function systems (IFS) [2，21，35]. Signal redundancy is exploited by self 

similarity within an image [34]. Given an image, the attractor coding algorithm finds 

a contractive transformation on the space of images. Compression is obtained by 

compactly storing only the descriptions of this transformation. The initial work on 

such technique was originally proposed by Barnsley et al, who discussed the possibility 

of employing mathematical concepts from fractal geometry in image compression [3 . 

They demonstrated the power of the probabilistic IFS for compressing color images at 

compression ratios of over 10,000 to 1. While decoding can proceed automatically, the 

encoding procedure requires the human interaction in the segmentation of an image. 

2 



Chapter 1 Introduction 

It was not until the publication of Jacquin's PhD thesis in 1989 that a fully auto-

matic algorithm was invented [26, 27]. His work which based on partitioned iterated 

function systems (PIFS) provides the starting point for further research and extensions 

in many possible directions. Some of the main subjects have been addressed in great 

success: Fisher et al introduced adaptive partition in encoding to improve the image 

fidelity [16]. This work arose the interests to find a better partition scheme. On the 

other hand, Baharav et al proposed a fast decoding algorithm based on a hierarchical 

interpretation ofPIFS [1]. Lundheim presented a systematic analysis of fractal coding 

in which blocks of an image are seen as points in a finite-dimensional inner product 

space [32]. Using this mathematical framework, Leps0y and 0ien generalized Jacquin's 

algorithm by letting the translation term be spanned by several blocks and introduc-

ing orthogonalization in translation blocks [38, 39]. By introducing orthogonalization 

for all blocks, the optimization in encoding was shown to be computationally less ex-

pensive. Vines, on the other hand, developed an new variant of fractal coding by an 

orthonormal basis approach which is a hybrid method combining principles of trans-

form encoding with a fractal decoding [50]. Many hybrid coding methods combining 

attractor coding with transform coding were invented [5, 37，46]. On the theoretical 

aspects, attractor coding is found to be closely related to the multiresolutional analysis 

and wavelets that gives an indepth understanding of the coding principles [8, 13, 35 . 

1.2 Scope of Thesis 

Though several improvements have been made in different aspects of attractor coding, 

the attractor coding, being a block-based algorithm, suffers from the usual blocking 

artifacts which is highly disturbing to human visual system (HVS). The blockiness is 

mainly due to the independent processing of each block in encoding. Discontinuities 

may occur across the block boundaries in the decoded image that are smooth in the 

original image. The problem is more prominent when the bit rate is reduced. 
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Chapter 1 Introduction 

In this thesis, several modifications on the existing fractal-based scheme are proposed 

and examined in details. The main goal is to produce a decoded image which suffers 

less from blocking effects. The theme of each subsequent chapter is summarized as 

follows: 

Chapter 2 provides all definitions and underlying principles on which the sub-

sequent chapters base. The fundamental theorems and mathematical background are 

given. The coding algorithm based on the partitioned iterated function systems (PIFS) 

is described. The quadtree partitioning introduced by Fisher and the orthogonalization 

made by 0ien are introduced. Coding examples are given to illustrate the pros and 

cons of these coding methods. 

Chapter 3 presents a novel attractor coding scheme with adjacent block parameter 

estimations to exploit the redundancies of block parameters in smooth regions of an 

image. A criterion called (5-minimum edge difference (< -̂MED) is proposed to select 

blocks which can be estimated well from the adjacent blocks. The goal we want to 

achieve is to produce a decoded image in which the blocking artifacts is not easily 

visible to the human vision systems. Experimental results and discussions are provided. 

Chapter 4 presents a novel attractor coding techniques using the partitioned iter-

ated function systems with lapped range blocks (LPIFS). Each range block is formu-

lated to lap with its adjacent blocks through a weighting operator which is diminishing 

in magnitudes towards its boundaries. Range block preprocessing is proposed to com-

pute the transformation parameters in order to reduce the error. Unlike previous works, 

no large system of equations is needed. Moreover, the local domain block matching is 

proposed. We show that this block matching technique is natural for general images 

and thus reduces the number of bits for specifying domain block addresses. Experi-

mental results show that the image details are preserved and the undesirable blocking 

effect is eliminated. 
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Chapter 1 Introduction 

Chapter 5 concludes the original contributions in this thesis and raise some poten-

tial research directions based on the proposed methods. 
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Chapter 2 

Fundamentals of Attractor Coding 

This chapter presents all definitions and underlying principles on which the subse-

quent chapters base. The fundamental theorems and mathematical background are 

given. The attractor coding algorithm based on the partitioned iterated function sys-

tems (PIFS) is described. The quadtree partitioning introduced by Fisher and the 

orthogonalization made by 0ien are introduced. Their works are the foundations on 

which the author lays the ideas, which will be presented from the next chapter on-

wards. Some coding examples are included in the last part of this chapter to illustrate 

the pros and cons of these existing schemes and signify the importance of the author's 

contributions. 

2.1 Notations 

In this thesis, R denotes the set of real numbers. X denotes a digital image of 2" x 2" 

pixels. Whenever two or more images are involved, subscripts are added to distinguish 

them, e.g., I i and I2 denotes two distinct images. The set of all digital images is 

written as {X^}. The pixel value at {u, v) within an image 2^ is denoted b y � ” . W i t h 

the abuse of notations, an image 1 or an image sub-block can be seen as a set with 
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Chapter 2 Fundamentals of Attractor Coding 

its pixels iu，” as its elements. Therefore the usual set notations like î ,v ^ X are well 

defined and understood. 

All operators on an image or an image sub-block are represented by bold letters, for 

example the expectation operator is denoted by E. Subscripts are appended to denote 

two or more distinct operators of the same functionality. A NxN matrix or an image 

sub-block of size NxN is sometimes written as [xij]o<i,j<N in which Xi,j is its element 

at the {i + l)th row and the { j + l)th column. 

2.2 Mathematical Preliminaries 

Elementary analysis is the basic tool in this thesis. In nearly all literatures on at-

tractor coding, fundamental theorems like Banach's fixed point theorem are originally 

expressed in general metric space. Most of the propositions and analyses in this thesis 

can be stated and proved in a concise and neat way by considering an image as an 

element in a space. Thus the knowledge of some abstract spaces and general properties 

are necessary to understand the materials in this thesis. All prerequisite materials 

are introduced without proof in this section. Interested readers can consult books like 

31，44] on elementary analysis for the details. 

An image or an image sub-block can be seen as an element in a metric space (inner 

product space) by properly assigning a distance function (an inner product respectively) 

between any two images. For an image collection {Xj}, the inner product between two 

images X1,X2 is defined in the usual sense, i.e., 

<工1,工2�=5^pi,”C，VJ1,X2 e (¾} . (2.1) 

I1,X2 is said to be orthogonal when their inner product vanishes. Metric between 

two elements T1,T2 E {2i} can be defined in terms of the norm induced by the inner 

product: 

d(I1,I2)三 ||工1_工2|| 三 V '<X1-X2 ,X1-X2 > (2.2) 
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Chapter 2 Fundamentals of Attractor Coding 

and this definition gives the root-mean-square metric in (¾} : 

d{XuI2)三、^^|^说厂吃”)2，VXi,J2 G {JJ. (2.3) 

Therefore ( ¾ } is a metric space by equipping a metric d. Sometimes, the supremum 

metric is used instead whenever its use can simplify our work: 

d{X1a2)三 max \il, - il,l VX1,J2 e {Ii}. (2.4) 

Definition 2.1 (Contractive mapping) A mapping T : M ~> M on {M, d) is said to 

be a contraction if there exists s G (0,1) and a positive integer k s.t. V2i,X2 G A4, 

d{T%,T%)<sd{IuI2) (2.5) 

where T^ denotes the k-th iteration of T. s is called the contractivity of T. If k is 

equal to 1，then T is termed a strictly contractive transformation. If k is larger than 

1，T is called an eventually contractive transformation. 

Theorem 2.1 (Banach's fixed point theorem) Let {M, d) be a complete metric space 

1 and T : M ^ M is a contraction, there exists an unique X G M such that TX = X. 

Moreover, X can be found by 

I = lim T^Io (2.6) 
n—00 \ ‘ 

for any X^^M and X is called the fixed point of T. 

Banach's fixed point theorem implies that if an element is a fixed point for some 

contraction on a complete metric space, it can always be generated in a simple iterative 

manner. Thus, it is sometimes called an attractive fixed point of a contraction. 

Definition 2.2 (Collage) For any XeM and any transformation T : M — A4, TX 

is termed the collage ofI with respect to T. 

i/n mathematical analysis, a metric space is defined as complete if every Cauchy sequence is a 
convergent sequence. The collection of all images of 2 " x 2 " pixels being a finite-dimensional vector 
space is trivial to satisfy this condition. 
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Chapter 2 Fundamentals of Attractor Coding 

Theorem 2.2 (Collage approximation) Let T be a contraction on a complete metric 

space {M,d) with a fixed point X. Let si G R such that MX1,X2 G M, d{TI1,TI2) < 

sid{li,l2)- Then, for any X^^M. and any arbitrary small e > 0， 

d ( J o , T J o ) < 6 = ^ c/(J,Xo) < / ] ~ ' ' e . (2.7) 

丄——S丄一5i 

In particular, if T is a strictly contractive transformation, the following corollary is 

obtained by putting k = 1 and Si = s. 

Corollary 2.1 Let T be a strictly contractive transformation on a complete metric 

space (jM, d) with a fixed point X. Then, for any X^^M and any arbitrary small e > 0； 

d{Io. TIo) < € = ^ d{I,Io) < ^ e . (2.8) 
1 — s 

Theorem 2.2 implies that if an element 2o is close to its collage T2o with respect to 

a contraction T, then the fixed point of T is also close to 2o. Hence, if an image and a 

contraction with a set of parameters are given, this theorem tells us that minimizing the 

distance between the image and its collage by choosing an appropriate set of parameters 

can produce an attractive fixed point close to the original image. This idea lays the 

theoretical foundation of attractor coding: the task of the encoder is to minimize the 

distance between the original image and its collage. The decoded image is the fixed 

point of the contraction that is very close to the original image. The question is how 

to define a parametric contraction T such that the minimization is computationally 

tractable and simple. In the next section, the partitioned iterated function systems 

(PIFS) is introduced that is the basis on which the author's contributions build. The 

following theorem provides the theoretical foundation of block matching in attractor 

coding. 

Theorem 2.3 (Subspace approximation) Let 7i be a complete inner product space 2 

and 7io be its subspace. For any element X E 7i\7io, there exists an unique Xo G 7io 

^An inner product space is complete if its induced metric space is complete. Usually, a complete 
inner product space is called a Hibert space. 
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Chapter 2 Fundamentals of Attractor Coding 

such that 

d{Io,X) < d{Xi,X) 

for all Xi E %o and Xi + 2o. Moreover, Jo 一 工 is orthogonal to 2o. 

y 

I 
^ 

\ 

\ 

� � � � / ^ o 

Z 
7 ^ 

Figure 2.1: The subspace approximation of 2o by X in R^. 

This theorem states that approximation of a given vector by the linear span of one or 

more vectors is minimized if the error is orthogonal to the approximation, (see Fig. 2.1) 

Moreover, this approximation is unique. This theorem ensures the uniqueness of the 

approximation and characterize the approximation error during encoding in attractor 

coding. 

2.3 Partitioned Iterated Function Systems 

The idea of attractor image coding is to formulate a contraction for an image such that 

its fixed point is close to the original image, (see Fig. 2.2) Theorem 2.2 in the last 

section provides a convenient way to find such contraction: minimizing the distance 

between the original image and its collage by selecting the appropriate parameters of 

the contraction. The decoded image can be found by applying the contraction on any 

initial image recursively. Eventually, the decoded image emerges as its fixed point. 
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Chapter 2 Fundamentals of Attractor Coding 

However, what the structure of a contraction should be such that the minimization 

is computationally simple and tractable. Iterated function systems (IFS) is one kind 

of techniques to provide the basic structure of a contraction in fractal theory. Many 

variants of IFS have been devised on different metric spaces, e.g., probabilistic IFS, 

recurrent IFS, iterated fuzzy set systems and partitioned IFS [21, 23, 50]. In particular, 

partitioned iterated function systems (PIFS) gains most attention in the literatures on 

attractor coding techniques. 
Given: 

( P % / I ： ^ I 
M y ^ j|f A parametric 
| ^ ^ l f . ‘ and transformation T 
K i t i 

Original image X 

Find: the appropriate parameters of T with a fixed point s.t. 

P - E S - P 
m m i 徹 ^ ! 

Fixed point of T Fixed point of T 

Figure 2.2: Fundamental idea of attractor coding. 

Jacquin in his PhD thesis provided a simple and practical technique, partitioned 

iterated function systems (PIFS), which consists a family of affine transformations on 

each part of an image. Each affine transformation is constrained to apply on only 

one specific image block. Roughly speaking, the contraction being constructed ap-

proximates each part of an image by another part of the same image up to an affine 

transformation. Thus, instead of approximating the whole image at once, PIFS decou-

ples the approximation into a set of minimization problems on parts of an image. The 

following section gives the mathematical and algorithmic formulation of PIFS. 11 



Chapter 2 Fundamentals of Attractor Coding 

2.3.1 Mathematical Formulation of the PIFS 

Let J be the original image of 2^x2^ pixels. The following two linear operators and 

an all-one matrix are defined as follows: 

• Let Bf^ : ( ¾ } — lR2Bx2B be a linear operator that extracts a sub-block of size 

2^x2^ with the upper-left corner at {k, 1) from the image X. 

• Its transpose B'f，, : E^^ x2® — {2i} is an operator that inserts a 2^x2^ sub-block 

into an all-zero image of size 2^x2^ in the way that the upper-left corner of 

inserted sub-block at {k, 1). 

• Define U^ be a 2^x2^ square matrix with all entries being 1. 

I ( V ) - - - - - | 丨 Bf，i , . 

I I I ‘ >•] , 
i 2召 I i ^ Bti i i 
. L _ 一 _ 一 _ 一 I L 一 _ — — 一 一 I 

1 2̂  I 

Original image X 

Figure 2.3: The actions of B ^ and B ^ . 

Definition 2.3 (Range pool) The original image X is partitioned into a set of non-

overlapping blocks of size 2^x2^ called range blocks ^ 7^jj where (i,j) denotes the 

pixel coordinates of the upper-left corner of the block. The collection of all these range 

blocks is called the range pool which is denoted by R; 

R三{7̂ i，j : Ui,j 三 B^Zo with i = 2 � , j = 2Bq, 0<p, q < 2^"^}. (2.9) 

3 The term "target block" is used instead of range block in some literatures. 
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Chapter 2 Fundamentals of Attractor Coding 

Remark 2.1 Using this definition of R，every pixel in the image 1 is now covered by 

exactly one range block 1Zi,j G R. Therefore it can be easily verified that an image X of 

2^x2^ pixels can be written as the summation of all non-overlapping range block of 

size 2^x2^, i.e., 
2N-B_12N-B_1 

工 二 ^ 5 3 ^'2Bk,2Bi^2Bk,2^1^' 
k=o 1=0 

Definition 2.4 (Domain pool)^ The original image X is partitioned into a number of 

square blocks (possibly overlapping) of size 2^x2^ called domain blocks Vij where {i,j) 

denotes the pixel coordinates of the upper-left corner of the block. D should be chosen 

to be larger than B. The collection of all domain blocks is called the domain pool and 

is denoted as D. 

Remark 2.2 D may be designed to contain some "artificial" blocks not extracted from 

the image. These blocks, of course, are predefined and made known to both encoder 

and decoder. In this case, the vector quantization (VQ) is used in the attractor coding 

method [14，18]. 

Remark 2.3 There is no specific rule to govern the choice of the size and the position 

of a domain pool within an image. The most common choice of D is D = B + 1 and 

so a domain block size is four times of that of a range block. The common choice of D 

is the one in which all square blocks with half of their support overlapped: 

DE{A，,. ： A j 三 8 ¾ ¾ with i = 2 D - � j = 2^-\, 0<p, q < 2^"^} . 

(2.10) 

The choice of the domain pool size affects the performance of the coding scheme. In 

general, a larger domain pool gives a better performance in the cost of using more bits 

to represent the locations of domain blocks. 

^Domain pool is called library in some literatures. 
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After both range block collection and the library are defined, an affine transforma-

tion is defined on each 7 ¾ G R mapping a domain block to each range block. The 

action of this affine transformation can be seen to consist of three parts: the first part 

is to pick up an appropriate domain block from the domain pool, the second part is 

to transform the selected domain block, and the last part places the resultant block 

at the range block location, (see Fig. 2.4) Mathematically, for each lZi,j G R an affine 

transformation is constructed in the following way: 

1. Define P j j : {Xi}^R^^ ^̂ ^ as a operator which gets a domain block 7\i G D from 

工,i.6., P j j 三 B ^ r 

2. Define G i j : ]̂ 2̂ ><2̂ —).̂ 2̂ ><2̂  be an affine transformation which maps a domain 

block T>k,i to the range block location 7 ¾ up to an affine transformation. G { j 

consists of the following parts: 

• A decimation operator D : ]^2^x2^_).]^2^x2^ which reduces the domain block 

size from 2^x2^ to 2^x2^ by first dividing the 2^x2^ block into f x § num-

ber of non-overlapping 2^"^x2^"^ sub-blocks and then taking the average 

value of each sub-block. 

• A isometrical operator I j j : E^̂  x2^_ ]̂̂ 2^x2^ which transforms the given 

block by the combination of 90 degree rotations and reflections. There are 

altogether eight isometries of a square block. ^ 

• Scalar multiplication of the given block by the scaling coefficient Sij G R and 

an addition of a block U^ scaled by the offset coefficient Oij € E. 

Thus G i j can be written as 

GiA^k,i) = Si,j X BIij{Vk,i) + Oij X U^. (2.11) 

^An isometrical operator lij : X — X on some normed space X is by definition a norm-preserving 
operator, i.e., ||Iijx|| = ||a;|| for all x G X. In this application, only eight isometries are used: the 
identity operator, three operators by rotations of 90°, 180° and 270°, and four operators by reflections 
along both diagonals and along the vertical and horizontal center axes respectively. More isometries 
formulated by conformal mappings of a square block are also investigated by some researchers [41]. 
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3. Define B'& : ^2^x2^_>{J.} which puts the resultant block at the range block 

location. 

I _ o /S I 
I I i i,j I X Si i 

: ； < i ^ " 0 ~ % 
I I I 

‘ ^iJ 丨 XOi.j 

\ i u^ 
I I Al-. 
, 丨 1 I ^^^h3 
I I : Pij. =\^k,i D 
I I I j > ^ 

I ' ' " ^ 7 " 丨 
‘ I G • • I ^»j 

Original image X 

Figure 2.4: Illustrations of an affine transformation on a range block 7 ¾ in the PIFS. 

Having defined the affine transformation for each 7¾,,- G R, we define the overall 

transformation on the image space is defined as follows: 

Definition 2.5 (Overall transformation) The overall transformation T : ( ¾ } ^ ( ¾ } 

is defined by summing up all affine transformations of each lZi,j G R; 

1工三 Y^ B ' 5 c ^ P u ( I ) , VX G ( ¾ } . (2.12) 
î,jeR 

T is a transformation based on the PIFS. T consists of the following parameters of 

each range block 7 ¾ G R: 

1. The location of the domain block chosen, Pj j . 

2. The isometry used, Ijj. 

3. The scaling coefficient Si,j. 
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4. The offset coefficient Oi,j. 

These parameters completely specify the transformation T and hence the fixed point 
< 

of this transformation is determined by these parameters. By substituting (2.11) into 

(2.12), we get 
( \ 

TX 三 Y^ B'fj{s,j X D I , , P , , ) I + E <j{0iJ X U � . 
\ î,i€R / T^ijeR 

‘ ^ ‘ (2.13) 
linear term constant term 

This transformation T is called an affine transformation as it is composed of a linear 

term and a constant term. Up to this stage, the contractivity of the transformation 

T is not discussed. T still has the possibility to be a non-contractive transformation. 

Theorem 2.4 gives the condition for T to be a contraction. 

Theorem 2.4 (Contractivity of T) T : ( ¾ } ^ ( ¾ } is a strictly contractive transfor-

mation respect to the supremum metric if all scaling coefficients have absolute value 

less than 1，i.e., |sjj| < 1 for all lZij G R. 

Remark 2.4 However, it is only a sufficient condition to secure contractivity. T may 

still be a contraction even some Sij have magnitude greater than 1 [38]. 

2.4 Attractor Coding using the PIFS 

In the encoding procedure, the goal is to minimizing the distance between the original 

image and its collage. This is equivalent to finding the best parameters for every range 

block lZi^j G R such that the chosen domain block after the affine transformation is 

closest to 7^jj, i.e., 

min d{ Ki，j, GijPij{I) ) for each Uij e R. (2.14) 
Pi’j,Iid，8i’j’Oi’j 

This minimization problem is termed as collage minimization or collage optimization. 

P i j and l i j of each 1Zij can be exactly specified in binary format: the location is 
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represented by the horizontal and vertical coordinates in an image and each of the 

eight isometry is represented by 3(= l0g2 8) bits. However, the scaling and offset 

parameters are in general real numbers and quantization must be involved if they are 

stored in digital form. 

The collage minimization is carried out by exhaustive searching the domain pool for 

a suitable domain block and then finding the corresponding parameters, Si,j and Oi’j, 

and an isometry to minimize the distance. The domain block with its corresponding 

parameters and isometry that gives the minimum distance is stored. If the root-mean-

square metric is used in (2.14)，given a domain block with a certain isometry, both 

parameters, Sij and Oij, can be calculated explicitly by setting their corresponding 

partial derivatives of (2.14) to zero, i.e., 

^ d ( 7 ¾ , G , ,P , , (X ) ) = ^ J ^ E ( ^ . - ^ x ^ . - ^ u ) ' = 0, 

' ' “ " ' ' (2.15) 

^d( 7Z,j, G,jP,j(I) ) 二 ̂ j E ( ^ - ^ x ^ . - ^ M ) ' = 0 
O0i,j uOij y u,u 

(2.16) 

where i^^ G 7Zij and iĴ ^ € DI i jP j j (J ) are the pixels in the range blocks 7Zij and 

the decimated domain block DIj jPj j (X) respectively and they are both ordered lexi-

cographically in summation. By solving these simultaneous equations in Sij and Oij, 

we can obtain the explicit expression for the optimal parameters Sij and Oij as follows: 

o25 V 7^ 7^ _ f v 7 ^ � 2 
_ “ ^U,V ^U,V^U,V XZ^U,V ^U,V) /rt 1 y\ 

®'̂ ' 一 7 v 7^ )2 — o2B V~~~(P )2 ‘ (丄丄。 
\A^u,v ^u,vJ ^ ̂ u,vK^u,v/ 

V 7^ - C. V P 
^ _ ^U,V Û,V � ^ U , V Û,V /r, 1 Q\ 
0 � - ^ F 7 ^ • (2.18) 

These parameters (P^j, Ijj, Sij and Oij) constitute a representation of X. Compression 

is achieved by storing only the descriptions of the transformation T. In the decoding 

procedure, the quantized parameters are used to construct the contractive transfor-

mation T. This contractive transformation T is performed recursively on any initial 
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image Z � . The simplest and usual choice of initial image is the image with all pixel 

values equal zero. The decoded image emerges as the fixed point of T after several 

iterations. 

2.4.1 Quadtree Partitioning 

In the definition of range pool, all range blocks are of the same size. Since an image is 

in general a non-stationary signal, there are some regions of an image that are difficult 

to cover well by just one range block, i.e., the minimized distance between the original 

image and its collage on that region is still large. On the other hand, there are some 

low-activity regions that can be covered well even using a larger range block. In order 

to take into account of the varying local activities, different range block sizes and 

even other block geometries are allowed to ensure acceptable decoded image quality. 

Quadtree [16] and HV [17] partitioning are two typical examples using rectangles of 

different sizes as range blocks. Triangular partitioning, on the other hand, uses triangles 

of irregular sizes and orientations [14]. Among them, quadtree partitioning is the most 

common and easy way in implementation. 

For a quadtree partition with predefined I levels, the initial range pool contains 

blocks of the same size, say 2^ x 2^, at level 0. Initially the parameter i which serves 

as the level counter is set to be zero. The encoder starts to approximate each range 

block of level i (of size 2 � ] x 2^"®) in the range pool. On each level i, blocks that 

cannot be approximated well are splitted into four non-overlapping sub-blocks of level 

i + 1 (of size 25-卜1 x 2^~®~ )̂. This splitting process is repeated for each block until 

an acceptable approximation is found or the predefined level I is reached. 
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2.4.2 Inclusion of an Orthogonalization Operator 

As stated before, the transformation T must be contractive in order to find the decoded 

image by iterative method. One approach to secure contractivity is to constrain all 

magnitudes of scaling coefficients strictly less than one. If this constraint is relaxed, 

there is at least a theoretical possibility that the decoding algorithm may fail, i.e., 

divergence occurs. Some researchers showed that this constraint on the scaling coeffi-

cients often degrades the coding performance, both in error measure and visual quality 

38，16]. Based on these observations, a simple modification on the structure of the 

transformation T was proposed by 0ien. An orthogonalization operator is included in 

the linear term of the affine transformation [38，39]. 0ien showed that constraint on 

scaling coefficients is no longer necessary to secure convergence. The decoding algo-

rithm becomes exact convergence in a finite, image-independent number of iterations. 

The only modification is the inclusion of an orthogonalization operator in the affine 

transformation in (2.11): 

Definition 2.6 (Orthogonalization operator) 0 : M̂ ^ ^^^^R^^ ̂ ^̂  is defined to re-

move the DC component of the given block of size 2^ x 2^; 

0 ( B 5 J ) = Bf^.X - E(B^X) X U^ (2.19) 

where B^^X is an arbitrary 2^x2^ block and E : R^^^^^^R is the averaging operator 

of a given block. 

Then the affine transformation on each range block is alternatively defined as (see Fig. 

2.5): 

GiA^k,i) = Sij X OBIij{Vk,i) + Oij X U^. (2.20) 

Overall transformation T is still given by (2.12) using G i j defined by (2.20), i.e., 
( \ 

1?工三 $ : B ' 5 ( � x O D I i ’ , P “ ） Z + 5： B % { o , j X U^). 
y^ijeR J ni,jeR 

(2.21) 
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Original image X 

Figure 2.5: Illustrations of the orthogonalized affine transformation on a range block 
7¾,) in the orthogonalized PIFS. 

We term such T as the orthogonalized PIFS. Then, the optimal scaling and offset 

parameters can be obtained with the following equations: 

o2B y- •7^ -p _ (y- jTl \2 
_ “ ^U,V ^U,V^U,V yi^U,V ^U,vJ (cy 99� 

� • — 7v~~7^�2 _ 02B V~~(jV )2， {^.^^) yz^u,v ^u,vJ “ ^u,vVu,v) 
V 7^ 

Oi,j = I ^ f - (2.23) 

where i ^ 6 7^,j and i?,” G DIj jPj j (X) are the pixels in the range block 7Zi,j and 

the decimated domain block DIi jPj j (X) respectively and they are both ordered lex-

icographically in summation. The following theorem summaries the important facts 

about the orthogonalized PIFS: 

Theorem 2.5 (Orthogonalized PIFS) With the use of an orthogonalization operator 

and the domain pool defined in (2.10), the transformation T is shown to have the 

following three properties: 

• T is an eventually contractive affine transformation. 
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• There is no need to constrain the magnitudes of the scaling coefficients to secure 

contractivity, i.e., T is a contraction unconditionally. 

• The decoded image can be obtained in a finite, image-independent number of it-

erations in the decoder. Moreover, the number of iterations depends only on the 

sizes of the range and domain blocks only: 

1 oB B 
l o & D - B 2 =^ZTB' 

Remark 2.5 Since there is no constraint on the magnitudes ofthe scaling coefficients， 

the overall coding performance would not be degraded owing to the magnitude constraint 

on scaling coefficients. 

Remark 2.6 If the usual choices of B = 3 and D = 4 are used, the number of itera-

tions in the decoding of the orthogonalized PIFS is 3 only. Conventional PIFS usually 

requires more iterations for most images and the number of iterations is image depen-

dent. 

2.5 Coding Examples 

In this section, experiments are conducted on digital images to show how the attrac-

tor coding introduced in the last section actually works. The basic attractor coding 

algorithm using PIFS with constant range block size are experimented. Moreover, the 

effects of using quadtree partitioning and orthogonalization are demonstrated. After 

going through this section, the readers should fully understand the principles of PIFS 

and see the pros and cons of these existing schemes. 
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2.5.1 Evaluation Criterion 

Our quantatitive measure of the image quality of image X2 which is a reconstruction 

of the original image 2i is the peak-to-peak signal-to-noise ratio (PSNR) is defined as 

“ 2552 _ 
PSNR=lOlogio 1 ^ "1 , . ^ dB. (2.24) 

-2"x2" û,vK̂ u,v ^u,v)-

The images are of size 2" x 2" and the gray level of each pixel ranges from 0 to 255. 

Sometimes an image with high PSNR does not give a perceptually desired images. It 

is due to the frequency selectivity and masking effect in human vision system which 

cannot be not accurately reflected in PSNR. For example, blocking effect usually cannot 

be reflected in PSNR but is visibly annoying to human vision system. Thus both image 

visual quality and PSNR are employed to give fair judgment of the performance. 

2.5.2 Experimental Settings 

Two images are used here as our original images. Each of these images is partitioned 

into non-overlapping range blocks. Minimization of each range block is carried by 

exhaustively searching all domain blocks in the library and optimizing the scaling and 

offset coefficients with respect to the root-mean-square metric. The following settings 

are used: 

• The range pool containing range block of constant size 8 x 8 {B = 3) is used. 

Thus, there are altogether 4096 blocks in R for an image of 512 x 512 pixels. 

• The domain pool contains blocks of size 16x16，i.e., D = 5 + 1，that implies each 

domain block contains four times number of pixels than a range block. Therefore 

the decimation operator D averages the four neighboring pixels in the domain • 

block and downsamples by 2 in both vertical and horizontal directions. 

• All 8 isometries of a square block are used and 3 bits (= l0g2 8) are required to 

represent them. 
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• Both scaling and offset parameters are real numbers which require quantization in 

any compression scheme. The magnitudes of scaling parameters are constrained to 

be less than 1. The range of offset parameters is from —127 to 127 for an image of 

256 grey levels. Both parameters are uniformly quantized in their respective range 

and represented by 5 bits and 7 bits respectively which, in Fisher's experiments 

18]，gives the reasonable results in terms of decoded image quality and bit rate 

required. 

The conventional PIFS coding scheme is implemented using the above settings and 

the affine transformation defined in (2.11) on each range block. The effect of the 

inclusion of orthogonalization operator is investigated by replacing (2.11) by (2.20) 

and is termed as the orthogonalized PIFS coding method. Since there is no constraint 

on the magnitude of the scaling parameters, the range of scaling parameters can be 

extended to the whole real line. In practice, the range is re-defined to be (—2，2) that 

is sufficient to include nearly all scaling parameters without severe truncation on the 

largest. Moreover, the quadtree partitioning is demonstrated by just allowing different 

sizes of range blocks and domain blocks. ® 

In the decoding process, all parameters on each range block are retrieved to recon-

struct the contraction T. This contraction is applied on any initial image recursively. 

The decoded image is the fixed point of the contraction. Fig. 2.6 shows the typical 

decoded process of the image Lena. 

2.5.3 Results and Discussions 

All three methods are tuned to give similar bit rates for the same image. The numer-

ical results from this experiment are given in table 2.1 and the decoded image, Lena, of 

three methods are plotted in Fig. 2.7. The performance are in many ways encouraging 

®The coding results using quadtree partition are generated by Fisher's sample code using its 
default settings. The program source code and user manual can be freely downloaded from 
http://inls. ucsd. edu/y/Fractals/frac_comp. tar. Z. 
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^̂̂H J||PI%3 
• 國 

Imtial black image After one iteration 

國醒 
After two iterations After ten iterations 

Figure 2.6: Illustrations of the iterative decoding process in attractor coding using 
Lena as the original image and an all-zero image as the initial image. 
but several drawbacks are found. Some points are noted in these experiments: 
Observation 1: Visible blocking artifacts are observed in the range block bound-

aries in all three decoded images. They are particularly visible on the smooth regions 

like shoulder of Lena owing to the poor masking effect of our HVS. In the case of 

using quadtree partition, the blockiness is more severe as most smooth regions are now 

covered by larger range blocks. Though the PSNR is smaller for the decoded image 

obtained by quadtree partition, the discontinuities across the block boundaries are 

more obvious in these regions. Based on this observation, an adjacent block parameter 

estimation is proposed in the next chapter to use the constant range block size but 

result in lower PSNR comparable to adaptive partition. 
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Table 2.1: Performance of three attractor image coding methods 
Image Conventional PIFS Orthogonalized PIFS PIFS with quadtree partition 

bpp PSNR ~ h ^ PSNR — bpp PSNR 
T e ^ ^ 0.42 30.99 " o i T 31.66 "Q^io" 30.95 
1 ^ i t s 0.42 31.74 0.42 31.75 0.37 31.00 — 

Observation 2: Some image details like the hat texture and eye regions are lost and 

grainy textures are smoother in the decoded images. These losses can be explained by 

the fact that the root-mean-square metric in the collage minimization does not specially 

take the high frequency components into account. Moreover, the quadtree partition 

preserves more image details as it assigns smaller blocks to those high activity regions. 

Observation 3: The orthogonalized PIFS gives better results than the conventional 

PIFS in general. The performance improvement is mainly due to the unconstrained 

magnitudes of scaling parameters. Constraint on the magnitudes of scaling coefficients 

can reduce the chance of finding a good match for the range blocks. 

2.6 Summary 

In this chapter, all basic definitions and theoretical backgrounds of attractor coding 

are introduced. The coding method based on the partitioned iterated function systems 

(PIFS) is clearly defined. The quadtree partition and the inclusion of the orthogo-

nalization operator are presented. These coding methods are experimented on digital 

images in order to reveal their pros and cons. Blockiness and loss of details are observed 

in the decoded images. In the following chapters, some novel methods are proposed 

and analysed based on the observations of the drawbacks of the existing methods. 
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(a) Original image Lena (b) PIFS with quadtree partitioning: 0.40 

bpp, PSNR=30.95dB MTWWW 
圓 國 

(c) Conventional PIFS: 0.42 bpp, (d) Orthogonalized PIFS: 0.42 bpp, 
PSNR=30.99dB PSNR=31.66dB 

Figure 2.7: Experimental results of image Lena. 



Chapter 3 

Attractor Coding with Adjacent 

Block Parameter Estimations 

In the last chapter we have seen that attractor coding suffers from the visible blocking 

artifacts as the usual block-based coding schemes do. Blocking artifacts appear as the 

results of the independent optimization of each of the non-overlapping range blocks 

and so undesirable discontinuities across block boundaries may occur in the decoded 

image. This problem is quite difficult to deal with as it is not totally reflected by 

just observing the root-mean-square error. The root-mean-square minimization may 

produce a decoded image which is very close to the original but full of blockiness. Root-

mean-square metric is still commonly employed as it is quite difficult to find another 

"objective" measure which can reflect the degree of blockiness very well. Therefore 

instead of eliminating the blocking artifacts in the encoder, some researchers proposed 

some post-processing techniques to alleviate the blocking artifacts [9, 36, 40]. Their 

methods, relying heavily on the smoothness properties on most parts of images, average 

the pixel values on the block boundaries by some low-pass filters. These methods can 

produce a decoded image suffering less from blockiness but their approach is a remedy 

rather than a precaution: the blockiness is minimized in decoding after it is introduced 
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in the encoding procedure. In this chapter we propose a scheme which hides the 

blocking artifacts in encoding in the hope that the blockiness though still exists in the 

decoded image is not easily visible to the human vision systems. 

For most images, large regions are of low activity or smooth in nature. The statistical 

properties may be stationary on the low activity region covering quite a number of 

pixels. If the constant range block size is used, the best matching domain blocks of 

the range blocks in smooth regions are similar. Thus the parameters of the adjacent 

blocks in a smooth region contain redundancies. Adaptive partitions (i.e., variable 

range block size) like quad-tree partition and HV partition were proposed to exploit 

these redundancies. Higher compression ratio is achieved by assigning large block sizes 

to smooth portions and small block sizes to high activity regions of an image. However 

blocking effects appear at the boundaries of large blocks and they are particularly 

visibly annoying owing to the poor masking effect of HVS on smooth regions. This 

problem is quite serious in many adaptive partitioning scheme. However, it is not very 

serious when the constant range block size is used in the cost of representing more 

blocks in the smooth regions. 

In this work, we propose an attractor coding scheme with constant range block size 

that exploits the redundancies of block parameters in smooth regions by adjacent block 

parameter estimation [24]. The criterion to select the blocks that can be estimated 

well from the adjacent blocks is the (5-minimum edge difference (J-MED) which is a 

variant of the minimum edge difference (MED) model [7, 48]. The MED model was 

experimented in the framework of transform coding to estimate the DC coefficients. 

It is found that MED can successfully estimate about 80% of DC coefficients for most 

images in the DCT-based JPEG scheme. We found that the J-MED criterion is an 

effective tool to determine if a block and its adjacent blocks are similar. 

Roughly speaking, the proposed estimation scheme processes each block of the im-

age from left to right and from top to bottom in the conventional way. The major 

‘ 28 



Chapter 3 Attractor Coding with Adjacent Block Parameter Estimations 

modification is the inclusion of an adjacent block estimation before any domain block 

matching procedure. The current range block is first examined by the (J-MED criterion 

to see whether it can share some information with its adjacent block(s). In other words, 

the redundancies in coding are exploited by sharing the common information in these 

blocks. 

In the following sections, the J-MED criterion is introduced first followed by the 

details of the proposed estimation scheme. In the last section, results and discussions 

of the proposed methods are presented. 

3.1 5-Minimum Edge Difference 

Generally, most parts of an image are locally stationary and so adjacent blocks usually 

have similar characteristics like smoothness, textures and orientations of discontinuity. 

Thus it is very likely for these blocks to share the same domain blocks. Redundancies 

can be removed by using just one domain block for all these range blocks instead of 

using two or more domain blocks. In order to find out whether the parameters of 

the current block can share with its adjacent blocks, the ^-MED condition is used to 

identify these blocks out of the range pool. 

3.1.1 Definition 

Assuming that the attractor coding scheme with constant range block size is used. All 

range blocks are of size 2^x2^. Let 7 ¾ = B^^X be an arbitrary range block taken 

from the range pool. This range block has lli+2Bj = Bf_^^Bj^ and Ki,j+2B = Bfj_^^Bl 

as its lower and right adjacent range blocks respectively, i ^ € 7 ¾ is defined as the 

(^z,v)th pixel of the block Uij . Similarly, î ^̂ '̂̂  G ^i+2^j and 4二+2召 G ^ij+2B are 

the (w, t;)th pixels of the block 7^j+2^j and ^ j+2^ respectively. Define two difference 
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— 

，�^r,i,j 
— ~ ^ 

ei,i,j 

^i+2Bj 

Figure 3.1: 5-MED Criterion 

column vectors ^,i,j, ^ , j G R^^ as follows: (see Fig. 3.1) 

. j i , j _ ,-iJ+2^ • (2B_l,0 0̂,0 
Ahj 一 yU+2B 

^ _ V-1,1 0̂,1 
^hi,j — . 

•i’j 一 4,j+2^ 
/2^-1,2^-1 ^0,2^-l. 

and 

_ ji,j _ji+2B,j • 
'0,2^-l (0,0 
JJ 一 ,.i+2B,j 

- _ h,2^-l h,o 
Cr,i,j — . 

•i’j _ J+2^,j 
/2^-1,2^-1 ^2^-l,0. 

Definition 3.1 (S-MED criterion) i The 6-MED criterion is said to be satisfied if the 

following inequality holds: 

min{|| ,̂y||, \\er,ij\\} < S (3.1) 

where 5 G R is a predefined threshold. 

We found that if the 5-MED condition is satisfied, then the two adjacent blocks are 

most likely of low activity and having similar transformation parameters. This criterion 

requires minimal computation as the calculation is restricted on the boundary pixels 

of the blocks only. 
^5-MED criterion is termed as MED criterion in [24]. 

30 



Chapter 3 Attractor Coding with Adjacent Block Parameter Estimations 

3.1.2 Theoretical Analysis 

In order to understand how and why the proposed scheme works, we analyze the 

^-MED criterion using the first-order Gauss-Markov image model introduced here. 

The usefulness of ^-MED is fully demonstrated from this analysis which provides the 

theoretical principals on which the adjacent block parameter estimation bases. 

An image model is important in developing new algorithms in image processing as it 

is impossible to test all images by the proposed algorithms. In our work, the first-order 

Gauss-Markov model with correlation coefficient p is used for this purpose [28]. For a 

vector X of length N, the autocorrelation matrix E (XX^) of a Gauss-Markov process 

is given by 

• 1 p p2 … p N - { 

P 1 P ... f)N-2 

E(XX^) = ： •.. •.. ; (3.2) 

严 2 … . 1 p 

严 . . . p 1 

where E is the expectation operator. The correlation coefficient p is usually very close 

to one. It should be noted that this is a generally accepted model for local behavior 

only. It is not global as image is in general a non-stationary signal. 

Based on this model, we start to establish the theoretical foundation of the c -̂MED 

criterion. The fundamental question we concern is whether this criterion can effectively 

find out those blocks of low activity or similar characteristic. If the criterion can indeed 

serve this purpose, we want to know whether these blocks can be covered well by the 

same domain block. These two questions are in general hard to answer as we do not 

know every characteristic of all images. However if we assume that most parts of 

an image can be well modeled by the first-order Gauss-Markov model defined above, 

these two questions turn out to be simpler. The following two propositions provide the 

answers and thus the theoretical foundation of J-MED criterion: 
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Proposition 3.1 If a vector X satisfies the first-order Gauss-Markov process, then 

the difference of any two adjacent elements in X tends to zero ifp ^ 1. 

Proof: Let Xj_i, Xi G X he two arbitrary adjacent elements. The variance of the 

difference of any two adjacent elements is given by 

^{{Xi-i - Xi){Xi-i - Xi)) = E{Xi-iXi-i + XiXi - Xi-iXi - XiXi-i) 

=Fi{xi-ixi-i) + E{xiXi) - E{xi^ixi) - E{xiXi-i) 

=2 - 2p. 

As p ~^ 1，the variance of the difference tends to zero. • 

Proposition 3.1 tells us that if a part of an image satisfying the first-order Gauss-

Markov model, it turns out that ^-MED criterion is automatically satisfied on that part. 

In the other words, the (5-MED criterion is an effective tool to identify the parts of an 

image satisfying the first-order Gauss-Markov model. Once those blocks satisfying this 

model are found out, our estimation scheme tries to fit just one domain block to these 

blocks with the same transformation. 

Proposition 3.2 Consider two adjacent vectors Xi-i and Xi, both of length 2^, sat-

isfying the first-order Gauss-Markov process. If a vector Y is a good approximation to 

Xi_i up to a transformation T，i.e., d(Xj_i, T ( ? ) ) = di-i where dj_i?^0, then 

d{Xu T{Y)) < di.i + 却 - , ) (3.3) 

Furthermore i f p ^ 1 , then d{Xi,T{Y))<di^i. 

Proof: Consider the collection H of all vectors of size 2^ x 1 with each element in a 

vector is a random variable. An inner product can be assigned to this collection: (see 

appendix A) 

< Xu X2 >= E ( X i ^ i ) ， v x i , X2 € n. 
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Therefore the following triangular inequality holds: 

d{Xi,T{Y))三 y J < X i - T { Y ) J i - T { Y ) > 

= M i ^ i - T ( r ) r ( X , - T ( f ) ) ) 

< y/m^i-i - T{Y))T{Xj.i - T ( f ) ] y + V E ( ( X , - X j - i r ( X ^ - J ^ - i ) ) 

~~7̂  V 
= d ( X , _ i , T ( F ) ) + E Y , { x i - X i . , y 

A| W / 

= r f , _ i + ^ 2 ( l - p 2 ^ ) 

and ^2(l-p2^)^0 a s " l . • 

The estimation scheme tries to fit both blocks with the same transformation. Propo-

sition 3.2 tells us that it is at least theoretically possible to do so. A domain block 

being a good fit to the current block's neighbor up to a transformation may turn out 

to cover well to the current block with the same transformation. The error of this 

approximation is bounded by the error of the adjacent block fit up to an addition of a 

constant term y^2(l — p^^). This constant term vanishes if the correlation coefficient 

tends to one. 

One must note that there is a possibility that J-MED may identify some parts with 

other statistical properties which satisfy this criterion. These blocks may not be able 

to be covered well by the same domain block. Some modifications are necessary to 

tackle these blocks that will be discussed in the next section. 

3.2 Adjacent Block Parameter Estimation Scheme 

After the (5-MED criterion has been defined in the last section, the proposed adjacent 

block parameter estimation scheme is introduced here that is based on the J-MED 

criterion as the estimation predictor. Attractor coding schemes, both with and without 

the inclusion of an orthogonalization operator, are used here. The range pool contains 
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range block of size 2^ x 2^. Redundancies in specifying the block parameters on smooth 

regions are exploited by the proposed estimation. 

The proposed algorithm processes each block of the image from lower to right and 

from top to bottom just like the conventional approach. The major modification is in 

the domain block matching procedure. In the conventional attractor coding the domain 

matching is carried by exhaustive searching or some fast searching algorithm like the 

one proposed by Jacquin. The domain block with minimum distance to the range block 

up to a transformation is chosen. In the present scheme for each range block 7¾,) the 

(5-MED criterion is performed before the domain block searching. If the current range 

block l^i�j fails to fulfill the (J-MED criterion, its transformation parameters will be 

found just like the conventional case. Otherwise, either its right block 7^,j+2B or its 

lower block 7^+2B,j or even both has a block boundary close to that of the current 

block. We term such an adjacent block which has a boundary close to that of the 

current block as the similar adjacent block respect to the current block. The current 

block may be covered well by a domain block and has similar transformation parameters 

as its similar adjacent block(s). In order to remove this kind of redundancies, a joint 

optimization is performed on these blocks. 

3.2.1 Joint Optimization 

If the current block satisfies the J-MED criterion, it implies the current block and the 

adjacent block(s) are similar. Our goal is to exploit redundancies among these two or 

three blocks as much as possible. All these blocks are now approximated by exactly the 

same domain block with the same set of transformation parameters, i.e., Gi jPj j (X) . 

(see Fig. 3.2) A joint optimization of these blocks is performed to find a common set 

of transformation parameters (sjj, Oi,j, Ijj, T>k,i): 

min ( d { G i j P i j { I ) , n i j ) 
Si,j,Oi,j,li,j,Lfk,l 

+h*c?(Gti’,Pi,,(Z)，7^+2B)+ K^d{GijV,j {I) ,ni+2B,j) ) (3.4) 
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Original image X 

Figure 3.2: Joint optimization of three adjacent blocks. 

where bi,br € {0 ,1} that turn to be one if their respective blocks are involved in 

the optimization. However, we find that it is difficult to solve this joint optimization 

problem. Given a domain block T>k,i and an isometry Ijj , the optimal Sjj and oy 

are found by setting their respective partial derivative of (3.4) to zero. The optimal 

parameters are obtained by solving two simultaneous equations. However, the four 

combinations of bi and br, together with Sij and Oi,j, make the optimization problem 

more complex. Solving this problem requires much more computations than the original 

collage minimization. It is thus not feasible to compute the optimal solution. Therefore, 

instead of solving it directly, a sub-optimal but faster method is used. The parameters 

for the current block are found first. In other words, (3.4) is solved by setting 6/ 二 
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br = 0: 

min d {Gi jF i j {X) ,n i j ) . (3.5) 
^i,j^Oij,lij,Vk,l 

Then the values of bi and br are determined by observing the collage distance on the 

lower and right blocks using the block parameters of the current block respectively: 

d{GijFi j {I ) ,ni j^2B) < dr = ^ K = 1， （3.6) 

d{GijVij{I),ni^2B,j) < dT = ^ bi = 1 (3.7) 

where dr € R is a predefined error tolerance. This set of parameters is used for all these 

blocks in the decoder. Compression is obtained by storing only one set of parameters 

instead of two or more sets. Using this method, the number of computations in the 

joint optimization is reduced to the same order of the conventional PIFS. 

3.2.2 Predictive Coding 

Adjacent blocks in some cases fulfill the J-MED criterion but fail to give satisfactory re-

sults on joint optimization. In other words, the collage distance in (3.6) or (3.6) injoint 

optimization exceeds a predefined error tolerance dr G R. The current block shares 

the same domain block and a few parameters with its adjacent block(s) (either right 

or lower or both) while other parameters are found explicitly for the adjacent block(s). 

These new parameters must be known to the decoder and so consume some bits to 

represent them. Predictive coding is found to be appropriate for these parameters. 

Both the conventional and orthogonalized PIFS are discussed here. 

Conventional PIFS: In the case of using conventional affine transformation, these 

blocks share the same domain block with its adjacent block(s). However, the isometry, 

offset and scaling coefficients for the adjacent block(s) are recomputed. Without loss 

of generality, the collage optimization of the lower block 7^j+2^j is (see Fig. 3.3) 

min d{si+2Bj x BIi+2B,jPij{I) + Oi+2Bj x U^, 7^+2B’�. 
^i+2B,j^O._^_2Bj,i-i+2B,j 

(3.8) 
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「 丨 x � I i j 
丨 V B ^ ： ^ ^ 
丨 « j I 
1 1 I Tli,j I xoij 

i —-- - : _ 丨 UB 
I I I ^i+2^,J I XOi+2B,j 
\ " \ ~ ~ ^'i+2Bj I h-2Bj 
1 i ‘ ®XSi+2S’ ‘ 一 

1 i ； P id = ] ^ k , i D 

I ' … 化 … i 
Original image X 

Figure 3.3: Predictive coding of two adjacent blocks in the conventional PIFS. 

With the sharing of a single domain block for two adjacent blocks, just three parameters 

remain for storage. The isometry !{+2^j is represented by 3 bits explicitly. For the offset 

parameter Oj+2^j and scaling parameter Si^2^j, they can be efficiently represented by 

the difference of those of the adjacent blocks and the reason is detailed as follows: 

Assuming the right adjacent block 1Zij fulfills the (^-MED criterion, we have 

^{Si+2Bj X BIi+2B,jPi+2B,j{X) + Oi+2Bj X U^}记 E{Sij X DIijP,_,2Bj(T) + O ĵ X U^} 

or 

K X {Si+2Bj - Si-ij) « -Oi^2B,j + Oi-ij 

where K 三 E{DIi+2~Pi+2B’j(Z)}三 E{DIi,jPi+2B,j(:T)}. By defining 

^Si^2B,j 三 >Si+2B,j. - Si,j, 

^Oi+2B,j 三 Oi+2Bj- - Oi,j. 

We obtain 

KAsi+2Bj « -Ao i+2Bj - (3.9) 

37 



Chapter 3 Attractor Coding with Adjacent Block Parameter Estimations 

Thus, A5j_|_2 ĵ is approximately directly proportional to A0j+2^j with a negative pro-

portional constant —K G R. By using this fact, both scaling and offset coefficients of 

two blocks can be stored compactly by first storing their respective differences followed 

by any entropy coder. 

Orthogonalized PIFS: In the case of using orthogonalized affine transformation, these 

blocks share the same domain block and offset coefficient. However, the adjacent block 

uses different isometry and scaling coefficient in order to give a better fit. Without loss 

of generality, if the lower adjacent block has a close boundary with the current block, 

the collage optimization of the current block is (see Fig. 3.4) 

m i n d{si^2B,j X O D I i + 2 B , & ( I ) + Oij x U ^ , Te^+s^,,-)- ( 3 .10 ) 
^i+2B,j^i+2B,j 

Only two additional parameters are involved instead of four in the conventional case. 

I I XSij Ii,j 

i V B ^ 1 ^ ~ — ， 
I ^ hJ I 

I I I 7?. . I 
丨 I 丨 ’ ' 丨 x o _ 
！ r - - " _ 丨 U B — 
； ； : ^ i + 2 B , j I 
_ I ‘ T\iB \ j 
丨 - 丁 - ^ i+2^J . ^i-h2B,j 
I ^ 1 — _ _ - ① 〜 石 ’ ! _ _ | 一 

1 I j Pij.三丨 ^k,i D 0 
I I • j ^ ——>- —— 

I ^"'Vk,i'" 丨 

Original image X 

Figure 3.4: Predictive coding of two adjacent blocks in the orthogonalized PIFS. 

The reason why two blocks share the same offset is detailed as follows: Assuming that 

two distinct offsets Oi,j and o^+2^j are used, two adjacent blocks are similar and so 

^{Si+2B,j X O B I i ^ 2 B j ^ i + 2 B , j { I ) + Oi+2B,j X U ^ ) « E{Sij X OBIijFi^2B,j{X) + Oi,j X U ^ ) 
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or 

5i+2BjE(ODI,+2B,,.P,+2B,,.(J)) + o,+2BjE(U^) « 5,,,E(ODIi,,P,+2Bj(X)) + o,,,E(U^) 

Since the composite operator EO maps all elements in the vector space to the element 

zero, Oij « Oj+2^j. Therefore sharing the same offset for these two blocks should not 

suffer from great loss in PSNR but reduces the number of parameters. In this case, 

only two parameters Si^2Bj,h+2Bj are involved: li+2^j are stored explicitly by 3 bits 

but Si+2B,j by predictive coding described as follows: 

Since two similar adjacent blocks fulfill the ^-MED criterion, we have 

Si+2BJ X OBIi+2B, jPi+2B, j { I ) + Oi+2Bj X U ^ W Sij X O B I i j P i + 2 B j { T ) + Oi+2Bj X U ^ 

O B I i ^ 2 B , j P i + 2 B j { I ) X {Si+2B,j - Si j ) « 0 

at the boundaries of two adjacent blocks. Hence, 

^Si+2B,j 三 ( S i + 2 B j . 一 Sij) 

« 0. 

Thus, Asi^2^j is close to zero for most of the cases. The isometry ^i+2^j is stored 

explicitly but the scaling coefficients of two similar adjacent blocks can be stored effi-

ciently by storing their difference followed by any existing entropy coder. 

3.3 Algorithmic Descriptions of the Proposed Scheme 

The proposed estimation scheme processes each block of the image from lower to right 

and from top to bottom. An adjacent block estimation is performed before the domain 

block matching procedure. The current range block is first examined by the J-MED 

criterion. If it satisfies the 5-MED criterion, a joint optimization is performed on these 

adjacent blocks. If it does not give a satisfactory results, predictive coding is applied 
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instead. Conventional domain block searching is used for those failing to satisfy the 

criterion. 

In the decoder, the locations where the block parameters are predictively coded or 

the same as their adjacent blocks are required. This information can be effectively 

coded by five symbols defined in Table 3.1. Besides the block parameters, each range 

block has an extra parameter Cj+2^j. One of the five symbols is assigned to Cj+2^j 

of each range block to represent the block nature. These symbols are coded by HufF-

Table 3.1: Symbols for indicating the range block nature 
Symbol Description 

NO new parameters from the image code 
JOL the same parameters of its left block 
JOU the same parameters of its upper block 
PCL parameters obtained from predictive coding of its left adjacent block 
PCU parameters obtained from predictive coding of its upper adjacent block 

man and run-length coding in order to take into account the non-uniform probability 

distribution. The proposed estimation scheme is summarized as an algorithm 1. 

The algorithm for the orthogonalized PIFS is obtained by replacing the affine trans-

formation to the orthogonalized one and those lines "store 5jj, Ojj, I^j, P^j" by "store 

5jj, Ij j , P i j " in algorithm 1. Moreover, the PIFS encoding method can be seen as a 

particular case of the proposed method. By putting 5 < 0, no range block can fulfill the 

(5-MED criterion as no vector norm is smaller than zero. Only the exhaustive domain 

block searching is performed. 

3.4 Experimental Results 

Simulations have been carried out on several images. Each of the images is partitioned 

into 8 X 8 disjoint square range blocks. 16 x 16 domain blocks are taken from the image 
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Algorithm 1 Proposed Estimation Scheme for the conventional PIFS 
Require: 6 > 0，dr > 0 and Vcy 二 - 1 

for each 1Zij G R do 
if Ci,j = —1 then 

Cij = NO 
^^^sij,oij,iij,Vk,i d{Gi,jPi,j{I)^^i,j) 
if i < 2^-^ then 

Compute 11¾,)] 
else 

1 ¾ , ; ! ! = � 
end if 
if j < 2" -B then 

Compute \\er,î j\ 
else 

— 
Cr,i,j — 00 

end if 
if min{|| ,̂j||, ||^j||} < S then 

if d(GijPij(I),7Zij+2B) < dr and Cij / - 1 then 
Cij = JOL 

else 
min,. .̂ ^5,o. .^,5,i. .̂ 2B d{sij+2B X Blij+2Bl"ij{I) + o^j+2^ x V^,Uij+2B) 
if d{sij+2B X DIi,j+2BPij(X) + Oij+2B X U^,7^+2B) < dr then 

Ci,j = PCL 
store Sij+2^, Ojj+2^, hj+2^ 

end if 
end if 
if d(GijPij(I),7Zi+2Bj) < dr and Cij + - 1 then 

Ci’j = JOU 
else 

min�+2B’,Oi+2B， j，Ii+2B’j ^ ( ^ i + 2 B j X DIi+2B,jPij(I) + Oi^2Bj X U^,7Zi+2Bj) 
if d(si+2Bj X DIi+2B,jPi,j(I) + Oi+2Bj X U^,7Zi+2Bj) < dr then 

Cij = PCU 
store Si+2^j,Oj+2^j,Ii+2Sj 

end if 
end if 

else 
store Si,j, Oi,j, Ii j , P i j 

end if 
end if 

end for 
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to form the library in which each of the domain blocks overlaps half of its support with 

its adjacent domain blocks, i.e., D is defined by (2.10). Without any estimation scheme, 

there are altogether 4096 blocks to be encoded for a 512 x 512 image. That means 4096 

sets of block parameters are required for the PIFS. The goal of the proposed method 

is to reduce the number of parameters without significant loss in the decoded image. 

In the experiments, the block parameters are quantized and coded in the same way 

as the coding examples in section 2.5.2. Two extra parameters, S and d>T, must be 

chosen carefully. 6 is chosen to be 8 which means (^-MED criterion is satisfied if the 

boundary pixels of the adjacent blocks are on average one pixel apart, dr, on the 

other hand, controls the tradeoff between the joint optimization and the predictive 

coding. It tells the encoder how large the error in joint optimization deserves the use 

of predictive coding instead. In order to reduce the extra loss owing to the inclusion of 

the estimation scheme, dr is chosen to be the RMSE of the decoded image produced 

by the PIFS without any estimation. 

Both the conventional and the orthogonalized PIFS are tested in our experiments. In 

the case of using the conventional PIFS, table 3.2 shows the number of blocks that can 

be estimated by their adjacent blocks of four different images. It is found that about 

10 — 14% blocks can be jointly optimized with its adjacent blocks and about 13 — 26% 

blocks can be coded by predictive coding. Table 3.3 compares the PSNR of the decoded 

images with and without estimation., It can be shown that the PSNR decreases by a 

very small amount while the bit rates can be reduced by about 20%. Table 3.4 and 

table 3.5 show the corresponding numerical results for the orthogonalized PIFS. It is 

found that about 9 — 13% blocks use joint optimization and about 14 — 26% blocks 

are coded in the predictive way. Fig. 3.7 and 3.8 show two decoded images, Lena and 

Fruits, produced by an adaptive quadtree partition and non-adaptive partition both 

with and without estimation. 

The following observations are found from the simulation results: 
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Observation 1: The percentages of these blocks are picture dependent in both 

cases. In general an image with more low activity regions can benefit more by coding 

most blocks by joint optimization and predictive coding. This shows that the proposed 

method is effective for removing redundancies in coding low activity regions. Fig. 3.5 

and 3.6 show the locations of blocks to be estimated in the images, Lena and Fruits. 

Most of these estimated blocks are located in the smooth regions of an image that can 

verify the proposed scheme removes redundancies in smooth regions. 

Observation 2: It can be seen that even the decoded images by adaptive scheme 

have similar PSNRs with those by our proposed estimation scheme, the undesirable 

blockiness is much visible. One can easily observe that the decoded images with esti-

mation are very close to those without estimation. Thus, unlike the adaptive-partition 

fractal coding schemes which introduce blocking effect on the smooth regions, the 

proposed adjacent block parameters estimation scheme does not produce additional 

blocking artifacts on the decoded images. 

Observation 3: It is found that, for the same image, the number of blocks estimated 

are roughly the same for the conventional and orthogonalized PIFS. That means the 

percentages of these blocks are quite independent of the affine transformation used. 

Therefore both gives very similar performance in terms of bit rate. One interesting 

thing is the conventional PIFS gives slightly more blocks in joint optimization but 

lesser in predictive coding compared with the orthogonalized counterpart. 

Observation 4: The structure of the PIFS, no matter conventional or orthogonal-

ized, is by no means modified in our proposed method. The domain block matching is 

the same as those in most existing schemes. Therefore all fast algorithms for encoding 

and decoding devised for the existing schemes can be applied. Moreover, no time-

consuming block matching is needed for those estimated blocks and so the encoding 

time is shorter. 
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Table 3.2: Number of range blocks to be estimated by joint optimization and coded by 
predictive coding in the conventional PIFS 

Image Dimension Total Number of blocks Number of blocks 
number estimated by coded by 

of blocks joint optimization predictive coding 
Lena ^12x512 4096 410 — 526 
Fruits 480x512 3840 404 ‘ 629 
Flower 480x512 3840 447 989 
Tiffany 512x512 4096 564 606 

Table 3.3: Performance of the proposed estimation method using the conventional 
PIFS 

Image Without estimation With estimation 
bpp PSNR bpp PSNR 

Lena " 5 .42 31.0 0.37 31.0 _ 
Fruits 0.42 31.7 0.36 "31.6 
Flower "042" 32.6 0.33 "32.5 
Tiffany 0.42 29.9 0.35 29.8 
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Table 3.4: Number of range blocks to be estimated by joint optimization and coded by 
predictive coding in the orthogonalized PIFS 

Image Dimension Total Number of blocks Number of blocks 
number estimated by coded by 

of blocks joint optimization predictive coding 
Lena ~512x512 4096 _ 373 565 
Fruits ] 8 0 x 5 1 2 — 3840 399 653 
Flower ^8Qx512 — 3840 — 436 1019 
Tiffany 512x512 4096 540 637 

Table 3.5: Performance of the proposed estimation method using the orthogonalized 
PIFS 

Image Without estimation With estimation 
bpp PSNR bpp PSNR -

Lena " 5 .42 31.66 0.37 31.63 “ 
Fruits " 5 .42 32.18 0.36 32.16 “ 
Flower T 3 T 33.13 0.33 33.10 
Tiffany 0.42 32.47 0.34 32.44 

45 



Chapter 3 Attractor Coding with Adjacent Block Parameter Estimations 

1 ^ ¾ 
M 

Figure 3.5: The locations of those blocks using joint optimization (white blocks) and 
those estimated by predictive coding (black blocks) of image Lena in the proposed 
estimation scheme using the conventional PIFS. 
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Figure 3.6: The locations of those blocks using joint optimization (white blocks) and 
those estimated by predictive coding (light-gray blocks) of image Fruits in the proposed 
estimation scheme using the conventional PIFS. 
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(a) original image Lena (b) quadtree partition: 0.40 bpp, 

PSNR=30.95dB 

• • 
(c) non-adaptive partition without estima- (d) non-adaptive partition with estimation: 
tion: 0.42 bpp, PSNR=31.0dB 0.37 bpp, PSNR=31.0dB 

Figure 3.7: Experimental result of image Lena. 



mBBuBB î m̂̂ HiH 
(a) original image Fruits (b) quadtree partition: 0.37 bpp, 

PSNR=31.0dB 

H9SIB9 HBIHH 
(c) non-adaptive partition without estima- (d) non-adaptive partition with estimation: 
tion: 0.42 bpp, PSNR=31.7dB 0.36 bpp, PSNR=31.6dB 

Figure 3.8: Experimental result of image Fruits. 
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3.5 Summary 

In this chapter, an estimation scheme is proposed to reduce the bits required in spec-

ifying the block parameters of the smooth regions on an image based on the PIFS of 

constant range block size. The criterion to select those blocks for estimation is the 

(5-minimum edge difference (J-MED) condition. If the ^-MED criterion is satisfied, the 

adjacent blocks are likely of low activities. A joint optimization is performed on these 

adjacent blocks. If it does not give a satisfactory results, predictive coding is applied 

instead. Conventional domain block searching is used for those failing to satisfy the 

criterion. 

Owing to the use of constant range block size, most blockiness of the decoded images 

are now hidden in the high-activity regions that, owing to the masking effect of HVS, are 

not easily observed. This novel attractor coding method can effectively code an image 

suffered with lesser blocking artifacts and achieve the compression ratio compatible 

to those using the variable block size. Since the structure of the transformation T is 

not modified in the proposed estimation method, all fast algorithms devised for the 

existing coding methods can be applied directly. 
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Chapter 4 

Attractor Coding using Lapped 

Partitioned Iterated Function 

Systems 

In the last chapter an estimation scheme is proposed to hide most of the blockiness 

such that the human eyes cannot easily spot them out even though the blocking effect 

still exists. The basic structure of the transformation is by no means altered in the 

proposed estimation scheme. An image is still partitioned into disjoint range blocks. 

Owing to the partitioning of an image into disjoint range blocks, blocking artifacts 

which is highly visibly annoying to human visual system occur. 

One solution to this problem is to allow range blocks to overlap. IFS with over-

laps has gained interests in theoretical studies of multifractal structure of self-similar 

measures [15]. However, little has been done in constructive and algorithmic direction. 

Reusens [43] proposed to use overlapping range blocks and average the pixel values 

on the overlapping regions during decoding. However, the image details within the 

overlapping regions are blurred because of the pixel averaging. Therefore the overlap-

ping regions are restricted to the boundary pixels of blocks only in order to minimize 

51 



Chapter 4 Attractor Coding using Lapped Partitioned Iterated Function Systems 

the undesirable blurring effect. It is expected that the blockiness removal is not so 

effective and considerable blockiness still exists in the decoded image. On the other 

hand, Forte and Vrscay [19，20] found that such blurring can be avoided if the global 

collage distance for all blocks is minimized simultaneously instead of minimizing col-

lage distance for each block independently. The collage minimization is formulated as 

a system of equations involving offset and scaling parameters and becomes a quadratic 

programming (QP) problem in these two parameters. However, a very large system of 

equations is involved in this optimization and so a large amount of computations and 

memories is used in encoding. 

In this work, we propose a new coding scheme using partitioned iterated function 

systems with lapped range blocks (LPIFS) [25]. The invention of this novel coding 

method is basically motivated by Malvar's lapped orthogonal transform (LOT) [33 

and its two generalized forms, GenLOT [42] and the biorthogonal local trigonometric 

bases [29]. Traditional transform coding methods like JPEG partition an image into 

disjoint blocks and apply one kind of energy-packing transforms on each of the blocks. 

The transform coefficients of each block are quantized and coded. Blocking artifacts 

thus occur in these methods. Based on this observation, LOT was proposed by Malvar 

to solve this problem. The transform is applied on overlapping blocks and the transform 

coefficients are optimized to alleviate the blockiness. Moreover, each of the bases in 

the LOT are orthogonal to each other and thus no aliasing occurs. 

In this novel coding method using LPIFS, an image is no longer partitioned into 

disjoint range blocks. Instead, each range block laps with its adjacent blocks through 

a weighting operator which acts as a window diminishing in magnitudes towards its 

window boundaries. Therefore the blocking artifacts are removed through this smooth 

weighting window. The transformation parameters are computed in such a way that 

most undesirable blurring is eliminated. Therefore most image details are preserved 

and no large system of equations is needed. 
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4.1 Lapped Partitioned Iterated Function Systems 

In this section, a novel mathematical formulation of PIFS in which the range blocks 

overlap is introduced. We term this new formulation of the PIFS as the lapped par-

titioned iterated function systems (LPIFS). Up to the author's knowledge, the same 

formulation is not presented or invented by the others. The fundamental difference be-

tween LPIFS and PIFS is the inclusion of the weighting operator on each overlapping 

range block that does not appear in the formulation of PIFS. 

The image X, being a summation of disjoint range blocks in the conventional PIFS, 

is now expressed as a weighted summation of all range blocks under the LPIFS settings. 

In order to highlight the property of overlapping in the image sub-blocks in LPIFS, a 

tilde is added to distinguish those of the same kinds in the PIFS. The range pool and 

domain pool are alternatively defined as follows: 

Definition 4.1 (Range pool) An image X is partitioned into a number of square range 

blocks of size 2^+1x2^^+1 The collection R of all overlapping range block 1Zij, i.e., 

{Ui,j : Hi^j 三 B f / i J with i = 2Bp,j = 2Bq, 0 < p , q < 2斤-丑 -1}. 

is defined as the range pool in the LPIFS. 

^i,j-2B+i 

r - ^ 

^ - y ^ 
7?.. / � 

Figure 4.1: The overlapping range blocks in R. 

Remark 4.1 Under this definition, each iZ{j contains 2^+^x2^+^ pixels and adjacent 

range blocks are just 2^ pixels apart. Every block overlaps each of its adjacent blocks 
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with half of its support. The size of each range block is four times of its counterpart in 

the PIFS and the number of range blocks is ( 2 " 一 万 - l ) x ( 2 ^ " ^ - 1 ) . 

Remark 4.2 Every sub-block B^B^ 2^q^ (with 0 < p, q < 2^~^) in X is now covered by 

four range blocks with this lapped partition, except those lying on the image boundary. 

To he more precise, each of B^e^ 2^q^f 0 < p, q < 2^~^ — 1，is covered hy four range 

blocks. Each of the boundary sub-blocks, B^^p。工 and B ^ 2 S ^ X with 0 < p, q < 2^~^ — 1， 

is covered two range blocks and each of the four sub-blocks, Bf^^X with k, 1 G { 0 , 2 " _ ^ — 

1}，at the corners is covered by one range block. 

Definition 4.2 (Domain pool) A domain pool or library D is defined as 

D={Vk,i ： Vk,i 三 B f / Y with k = 2^p , 1 = 2Bq, 0 < p , q < 2 ^ " ^ " 2 } . 

Remark 4.3 D contains domain blocks T>k,i of size 2^+^x2^+^ to keep the decimated 

T>k,i to be 2^+1x2^+1. It must be noted that any collection of sub-blocks of size larger 

than a range block is a valid library. This particular choice of D is just for the ease of 

implementation. 

4.1.1 Weighting Operator 

The LPIFS is formulated in a similar fashion as the convenient PIFS. All operators 

employed in the convenient PIFS appears in the present formulation. The major mod-

ification is the introduction of the weighting operator W introduced here. 

Definition 4.3 (Weighting operator) W : ]̂ 2̂ +̂ x2̂ +1 _^ ^2^+^x2^+^ is defined as a 

linear operator which multiplies each element in a given sub-block of size 2^+^x2^+^ 

by the corresponding weight Wu,v ^ 脱 with u, v e { 0 , 1 , . . •, 2 ^ + i — 1 } ; 

W ([iu,t;]o<w,v<2^+i)三[^w，u«w’t;]0Su’”<2B+i (4.1) 
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with the following constraint: 

Wu,v + W^+2B,v + ^u,v+2B + W^^2B,v+2^ = 1， • 0 < U, V < 2 ^ . ( 4 . 2 ) 

The function of W is to assign weights to the pixels in the affine-transformed domain 

block before it is inserted into the image. There are altogether 2^+^x2^+^ numbers 

of Wu,v in W . The weights Wu,v are chosen to provide smooth overlapping across block 

boundaries in order to minimize the blocking artifacts. There is only one constraint, 

i.e.,(4.2), on the choice of Wu,v' the sum of Wu,v for different adjacent range blocks on 

the same spatial location must be one. 

Proposition 4.1 The weighting operator W in definition 4-S satisfies the following 

matrix identity: 

Y , B ^ W U ^ + i = U^- (4.3) 
k,ie{o,2^} ’ 

and the following operator identity: 

E B f ’ , W B S i B ' 5 + � „ + , = I ， V 0 < m , n < 2 ^ - ^ - \ (4.4) 
fc,ie{o,2^} 

where I : R^̂  ^̂ ^ — M̂ ^ ^̂ ^ is the identity operator that maps an element to itself. 

Proof: For the matrix identity, 

E Bf,,WU^+i 二 ^ B f , K , . ] o < . , , < 2 B . . 
k,ie{o,2B} k,ie{o,2B} 

= X1 b^k+u,l+v]o<u,v<2B 

k,le{0,2B} 

= 5^ ^k+u,l+v 

k,le{0,2B} J 0<u,v<2^ 

—[lj0<u,u<2^ 
= u ^ 
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For the operator identity, consider [xu,v]0<u,v<2B G E^^^^^； 

5Z ^k,i^^mVk,n+l^'m+k,n+l[^u,v]0<u,v<2B = X^ ^k,l [^k+uHv^u,v]o<u,v<2B 
k,ie{0,2B} k,ie{o,2B} 

— 5 3 ^k+u,l+v^u,v 
k,le{0,2B} �0&，”<2B 

=[^u,v]o<u,v<2^ 口 

Using the weighting operator W and the range pool R, any image X can be expressed 

as the weighted sum of all range blocks in R. However, remark 4.2 tells us that not 

all 2^x2^ sub-blocks BfBp ’2�Z (with 0 < p,q < 2"-丑)are covered by exactly four ~ ~ 

range blocks 7 ¾ G R. The weights assigned to the boundary range blocks need some 

modifications in order to provide real weights for the boundary blocks. Accordingly, 

for those sub-blocks covered by just two range blocks, i.e, 6^5^ ̂ 2" and B^^Bq^ with 

0 < p, q < 2N-B _ 1，every pixel within these sub-blocks is the sum of two weighted 

pixels only. Therefore the sum of two weighted pixels is divided by the sum of two 

weights. For example, B & � I where 0 < q < 2^~^ is a sub-block just covered by 
~ ~ ^ 

two range blocks, namely,尺0’2�and 7^o,2^(g-i)- Therefore W for those 7 ^ B g with 

0 < q < 2N-B-1 are changed to map each i^,v to - ~ £ ^ iu,v for 0 < u < 2^ and 
’ W;u,WTWy2S+w ， 

map other iu,v to Wu,viu,v For the sub-blocks Bf^X with kJ G {0,2斤-丑—1}, each 

of these four sub-blocks is covered by just one range block. Therefore the weights on 

these blocks are divided by themselves, i.e., the weights are ^ ^ — 1. With the weights 

on the boundary blocks modified, corollary 4.1 follows: 

Corollary 4.1 Any image X G {Xi} can he expressed as the weighted summation of all 

range blocks: (compare with (2.10)) 

工 三 Y ^ B f ; ^ W ( ^ , , ) . (4 .5) 

î,j-eR 

The use of special techniques to handle boundaries of a finite-length signal is not 

new in the scope of signal processing. The bases in the LOT and the GenLOT of the 
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boundary blocks are altered [33，42]. In discrete wavelet transform (DWT), one way 

to handle the boundaries of the finite-length signals is to apply the boundary filters for 

perfect reconstruction (PR) [49 . 

4.1.2 Mathematical Formulation of the LPIFS 

i B'B+i i 
I I I » j 
！ ： ： i — — W 
I I I i ^i,j \ ‘ 

PI • _|oB+2 
I , , iJ -,^k,l ~ ~ - ~ ~ 
I 丨 丨 j——> ^iJ 

I ' ― 飞 ； … i 

Original image X 

Figure 4.2: Affine transformation on a range block in the LPIFS. 

Affine transformation is defined on each range block that maps a domain block within 

the same image to the specific range block. Affine transformation of either the conven-

tional PIFS (2.11) or the orthogonalized PIFS (2.20) can serve this purpose. 

For every Hij G R an affine transformation is defined in the following way: 

1. Define Pi’j : {XJ^R^^^^^^^^^ to be an operator which gets a domain block T>k,i 

from D, i.e., Pi’j 三 B f / 2 . 

2. Let G i j : ]̂ 2B+2x2B+2_̂ ĵ 2B+ix2B+i |̂ ^ thc affine transformation which approxi-

mates iZij by the affine-transformed domain block T>k,i. G j j can be defined in 
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one of the two ways: 

G i ， j ( 2 \ f ) = S i � j X B I i j { V k , i ) + O i j X U B + i (Conventional PIFS) (4.6) 

G i j { ^ k , i ) = S i j X O B I i j { V k , i ) + O i j X U B + i (Orthogonalized PIFS)(4.7) 

with D and Iij defined in the same way as (2.11) and (2.20) by replacing B by 

B + 1 in their definitions. 0 is defined in the definition 2.6 with B replaced by 

B + 1. 

3. Apply W defined in definition 4.1 on the block Gij{T>k,i). 

4. Define B ' f i : j^2^^^x2^^^_>{j.} which puts the resultant block at the range 

block location in the image. 

Similar to the overall transformation T in the PIFS, the overall transformation 

on the image space is constructed by taking all affine transformation G j j on each of 

the range blocks together. Since the range blocks overlap, every pixel value on the 

overlapping regions is the result of weighting of all covering range blocks by W . 

Definition 4.4 (Overall transformation) The overall transformation T : {Xi)^{Xi]-

of the proposed LPIFS is defined as: 

竹三 5： Bf;^WG,, ,P, , , (X), VX G { I i } (4.8) 
^t,iGR 

with Gij defined by either (4.6) or (4-V-

This is the overall transformation on the image space that is used in the proposed 

attractor image coding. The idea of the proposed coding method is similar to those 

using the PIFS: optimizing the collage by tuning the parameters of the transformation. 

Several properties of the transformation T are discussed before we go to cover the 

details of the coding method in the next section. 
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If all weights uju,v are chosen a priori, each Gi，j has the same number of transfor-

mation parameters as its counterpart in T defined in (2.12), i.e., G i j consists of the 

four parameters: 

1. The scaling coefficients Sij, 

2. The offset coefficients Oi，j, 

3. The isometry l i j and 

4. The domain block chosen P j j . 

~ ~ ~ 

These four parameters of each 7 ¾ G R completely specify the transformation T. 

Remark 4.1 states that there are altogether (2^"^ - 1 ) x (2^"^ - 1 ) number of H i j G R. 

Therefore the total number of parameters in specifying T is 4 x (2^~^ - 1 ) x (2^~^ - 1 ) . 

Proposition 4.2 T is an affine transformation on the image space {Xi} using either 

(j^.6) or (4'7) as the definition ofGi�j. Moreover, the contractivity of T is controlled 

solely by the linear term and is independent of the constant term. 

Proof: By putting (4-6) into (4.8), T can be rewritten as 

( \ 
1?工三 ^ ^ x B ' f / i w m A , . X + E % x B ' f , W U ^ . 

乂允‘’斤合 / 灸‘’斤& ( 4 9 ) 

If (4.7) is used instead, T is given by 

/ \ 
1：1三 X： 5,, X B ' f ; ^ W O D I , , P , , X + E % x B ' f W U ^ . 

� ‘ 6 " ) k e " (4.10) 

The first part of both equations (4-9) and (4.10) is the linear term and the second part 

is the constant term. Therefore T is an affine transformation on the image space (¾}. 

Being an affine transformation, we denote Ti, and Tc as the linear part and the 

constant part o / T respectively, i.e., f X 三 t^iJ + fc， VX G (¾}. Then，VX1,X2 e 
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{Xj} and any positive integer k, 

d ( i % , i % ) 三 | | f ^ i - i ^ 2 | 
( k-1 \ ( k-1 \ 

= I I t i X i + ^ t i T c - T iJ2 + 5： T i T c II 
\ i=0 / \ i=0 J 

= I I ( ¾ ¾ - t i X 2 ) II (4.11) 

where T^ denotes the k-th iteration ofthe transformation T. Therefore we can see that 

the contractivity condition in definition 2.1 depends only on Tx, and is independent of 

T c . • 

Up to this stage, the weights ŵ ^̂  are allowed to choose from any real values. The 

admission of different choice of W makes LPIFS a generalized technique to include 

PIFS as a special case. 

Proposition 4.3 If the weights Wu,v 切 W are chosen as follows: 

‘ 1 if\x2^^^<u,v<lx2^+\ 
Wu,v = 

0 otherwise. 
< 

Then, LPIFS becomes PIFS with non-overlapping range blocks of size 2^x2^ except 

those at the boundaries. 

Proof: From (4.8), T is the summation of B'f/^WGijPij(X) for each Uij G R. If 

W is chosen as above, B'̂ ^^^W can be written as B'^2^-ij+2J5-i- Each pixel in TX 

is now covered by just one transformed block. No range block overlapping occurs in 

this case. Therefore the range pool R can be rewritten to have non-overlapping range 

blocks. The size of these blocks is 2^x2^ except those lying on the boundaries. As the 

weights of the boundary range blocks are modified, these boundary blocks are larger than 

2^x2^. They extend their boundaries to the image boundaries. The range blocks at the 

four corners are (| x 2^)x(| x 2^). The other boundary range blocks are 2^x(| x 2^). 

Therefore it is the transformation of the PIFS with 2^ x 2^ range blocks except those 

lying on the boundaries. • 
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Other than the PIFS, the overlapping PIFS proposed in [43] can also be seen as a 

special case of the LPIFS. These overlapping range blocks are obtained by extending 

the non-overlapping range blocks of the PIFS by one pixel at the four sides. These 

overlapping range blocks are easily formulated in our range pool R if the weights Wu,̂  

are chosen as 
f 

1 if 2^-1 < w , ^ ; < 3 x 2 ^ - i - l , 

0.5 if u G {2丑一1 - 1，2B-i,3x2B-i — 1，3x2^—1} and 

2丑一1 < V < 3 x 2 ^ - 1 - 1， 

Wu,v = 0.5 if V e {2^-i - 1，2^-1,3x2^-1 - 1，3x2^"i} and 

2 ^ - ' < u < 3 x 2 ^ - ' - l , (4.12) 

0.25 if u, V e {2召-1 - 1，2^-1,3x2^-1 - l , 3 x 2 ^ " i } , 

0 otherwise, 
^ 

One can find that these weights are obtained by extending the non-zero weights in 

proposition 4.3 by one pixel at the four sides. Therefore proposition 4.4 is obtained. 

Proposition 4.4 The overlapping PIFS described in [43] is a special case ofthe LPIFS 

by defining the weights in W by (4.12). 

Proposition 4.4 tells us that the PIFS is a special case of the LPIFS. Interestingly, 

the LPIFS can be expressed as the weighted summation of the PIFS. The details are 

described in proposition 4.5. 

Proposition 4.5 Let T^ • {Xj)^{2i) ,m = 0,1,2,3 be four transformations of the 

PIFS defined as follows: 

1饥工三 5： B ' f ; ' G , j F i j { I ) , VX € ( ¾ } (4.13) 
nijeRm 
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with their corresponding range pool Rm, m = 0,1，2,3，defined as follows: 

Ri 三 { n i j : Uij = B f / ^ J with i = 2^+V,i = 2^+^g} 

R2 三{Uij : Ki,j = B f / i l with i = 2 ^ i p + 2B,j = 2^+ig} 

R3 三 { U i , j : Ui,j = Bf/^I with i 二 2 ^ + V , j = 2^+ig + 2 ^ } 

R4 三{nij : Ki,j - B f / i Z with i = 2^+V + 2^,i = 2 ^ q + 2^} (4.14) 

where p, q are non-negative integers with 0 < i,j < 2^. All R^ contain range blocks 

of size 2^+1 X 2^+1 and Tm share the same library D in LPIFS. P^j and Gij for each 

range block are defined in the same manner as (4-6) or (4.7) in LPIFS. Then T can 

be expressed as: 

T X ^ E [ f E < / i W B f / i ) x J . (4.15) 
m=o 1 \nijeRm / _ 

Proof: Obviously, R can be partitioned into four disjoint subsets R^, m = 0，1, 2,3 in 

(lH), i.e., R 三 U^=oRm. From (4.8)， 

TX = E B ' f ;^WG, ,P , , (X) 
î,j-eR 

二 E E B f ; ^ W G , , P , ; ( X ) 
m=0 UijeRm 

= E E B ' f / i w B f , i B ' f / i � p � . ( : r ) 
m=o nijeRm 

= E \i E B'f/iWBf,) I E Bf;^G,,P,,(X)) 
m=o L V^i,j eRm / V^t,jeRm / . 

= E \i E B ' f ; ' W B f A x J . • 
m=0 LV̂ i,jERm / . 

4.2 Attractor Coding using the LPIFS 

In the last section, the formulation of the LPIFS is introduced. Based on the LPIFS, 

the task of the attractor coding is to parameterize the LPIFS such that its fixed point 
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is close to the original image. Theorem 2.2 tells us that we can minimize the distance 

between the original image and its collage, i.e., rf(TX,X) in order to give a fixed point 

close to the original. In the PIFS, the range blocks are disjoint and so the optimum 

parameters on each range block can be found independent of the other parts of an 

image. However, in the proposed LPIFS, the range blocks are no longer disjoint. The 

question is whether the independent collage minimization in PIFS can give the closest 

collage to the original image in the case of LPIFS. The answer is no. 

The problem comes from the weighting operator W . Collage minimization over each 

range block produces error for several reasons. The domain block pool may be unable 

to produce perfect match for a range block. Even if such block is found, quantization 

of the transformation parameters sacrifices the optimality of the parameters found and 

thus gives quantization noise. If we simply apply the independent processing of range 

blocks in the LPIFS, the weighting operator W mixes up the errors of the adjacent 

blocks on the overlapping regions [43]. Thus the weighting operation further increases 

the collage distance. Therefore the ordinary encoding procedure cannot produce the 

closest collage in this case and the decoded image may suffer from severe blurring of 

the image details. 

Algorithm 2 Proposed Attractor Coding Algorithm using the LPIFS ~ ~ 
for each 7 ¾ G R do 

Compute W^iy-
Compute AWiZi j 
min,,.,o,„i,.,P,, d{WGijF,j{I), A W 7 ^ ) 
store Si’j, Oi，j, l i j , Pi’j 

end for 

In the proposed attractor coding using LPIFS, the weights in W are carefully chosen 

to provide smooth overlapping. The proposed algorithm processes each block of the 

image from left to right and from top to bottom just like the conventional case. For 

each range block Hi,j e R the preprocessing operator A is applied first to modify the 

given block to take the errors of its adjacent blocks into account. No large system 
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of equations adopted in [20] is needed since the proposed preprocessing decouples the 

system of equations into a number of independent equations. Each range block can be 

processed independently now. Then, the weighted collage distance over the aliasing-

eliminated block is minimized by tuning the parameters of the affine transformation 

G, i.e., 

min ci(WGijPij(J) , A W ^ j ) . (4.16) 
St,j,Ot,j,Ii,j,^fc,/ ， ‘ 

These parameters (Si’j, Oi,j, lij,T>k,i) constitute the image code in the proposed method. 

Weighted distance is used in the minimization because the block pixels contribute in 

different weights in approximating the range block. Therefore, using weighted distance 

can give a weighted optimal solution. In the decoder all parameters are retrieved from 

the code to reconstruct the LPIFS. The decoded image is the fixed point obtained by 

recursively applying the transformation T on any initial image. The proposed attractor 

coding algorithm is listed in algorithm 2. In the following subsections, the choice of 

weighting operator W , range block preprocessing A and the decoder convergence are 

clearly defined and analyzed. 

4.2.1 Choice of Weighting Operator 

W controls the amount of contributes of different transformed blocks to a pixel. A good 

choice of weights Wu,v is crucial to the overall performance of LPIFS. The weighting 

operator should be optimized for the nature of general images. There are altogether 

2五+1 X 2丑+1 number of ŵ v̂ in W . It is difficult to tune the optimized values of all 

weights Wu,v Instead, our approach is to deduce all weights which are sufficiently good 

in image coding. Here we list several properties for a good choice of Wu,v should possess: 

Property 1: W should provide smooth transition from one range block to another. In 

other words, W works like a window over a range block providing smooth overlapping 

for several blocks over the same region. Therefore the elements of the matrix WU^+i 
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should be diminishing gradually from the center towards the boundaries: 

/̂̂ u,. < ^.,.+1, 0 < u < 2^+1, 0 < t; < 2^ - 1, 

Wu,v < Wu+i,v. 0 < V < 2 ^ + 1 , 0 < u < 2 ^ - 1 . 

Property 2: Each ；̂以’忍 represents the weight of a pixel in the transformed domain 

block towards an image location. It is natural to assign non-negative weights for all 

pixels in a block, i.e, ŵ ^̂  > 0. Consider the case that the weights satisfy property 

1 with some are negative. That means there is a gradual transition from the central 

positive weights towards the boundary negative weights. In this case, the absolute 

values of Wu,” decrease from the center of WU^+i and then increase at the boundaries. 

That means in the weighted collage minimization (4.16) less weights are assigned to 

some pixels that do not locate at the block boundaries. The weighted minimization 

may produce a domain block that does not fit very well at the lightly-weighted pixels 

which do not locate at the block boundaries. Ringing errors may thus occur in the 

image. Therefore all Wu,v are chosen to be non-negative. Together with the constraints 

(4.2), \wu,v\ < 1 for all 0 < u,v < 2^+\ 

Property 3: Wu,v is symmetric in the sense that the matrix WU^+i is invariant 

up to reflections and rotations. The image TX is formed by many weighted copies 

of transformed domain blocks. If W is not symmetric, the image may contain some 

periodic fluctuations which is highly disturbing to HVS. Therefore symmetry of weights 

is important in applying the LPIFS to image coding. If the matrix W U ^ i is invariant 

up to reflections and rotations, then 

Wu,v = W2B+l-u,V = ^u,2B+i-v = W2B+1_u,2B+1_v 

= W y ^ u 二 ^/^2B+1-U,u 二 ^v,2^+^-u 二 ^2B+1-V,2B+1-UJ • • < U, V < 2^. (4.17) 

Thus the number of parameters in specifying W is reduced to 2叫广+1 

Property 4: W provides smooth transition from one range block to another. There-

fore, the weights at the boundaries of W should be small in magnitudes, i.e., Wu,v ~ 0 
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at the boundary. 

There are many choices of W that fulfill these four properties. In our studies, the 

cosine weights is proposed to be used for the weights Wu,v 

Definition 4.5 (Cosine weights) Cosine weights are a 2^+^x2^+^ matrix with its el-

ements Wu,v defined as follows: 

’ 〜 + • - 幾 ” 。 一 - _ 
with 

Wu,v = ^2^+i-u,v 二 ̂ w,2B+i-v = W2B+i_u,2B+i-v^ • 0 < U,V < 2丑. 

The cosine weights in definition (4.5) satisfies all four desirable properties. It is con-

structed by using the linear combination of a real values and the first basis of the 2^+i 

LOT [33]. (see fig. 4.3) The derivation and the reasons for this choice are discussed in 

the following paragraphs. 

1-i^.-
0 0 

Figure 4.3: The plot of 16x16 weights 1¾. 

The reason for this choice becomes clear when the block matching is examined in 

terms of inner product. All range blocks, U^+\ and the decimated domain blocks are 

seen as elements in an inner product space of dimension 2^+^x2^+^ The weighted col-

lage minimization in (4.16) can be seen as the approximation of each range block by the 

linear combination of the decimated domain block OT>Iij{T>k,i) and the matrix U^+i. 

Without loss of generality, assuming that the orthogonalized affine transformation G i j 
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in (4.7) is used, theorem 2.3 tells us that a range block ^ j is best approximated by 

the linear span of the domain block and U^^^ when the error is orthogonal to the 

approximation, i.e., 

< W i l i j - WGij{Vk,i)^WGij{Vk,i) > = 0 

where W l Z i j — WGij{Vk,i) is the approximation error. A good choice of weights 

Wi,j must minimize this error for most range blocks of general images. In other words, 

nearly all energies of most range blocks should be concentrated in the WGij{T>k,i) such 

that its orthogonal complement, i.e., the error, is minimized. Expanding WGij{T>k,i)y 

we get 

W G , , , ( ^ , 0 = Si ’ j X W O B I i j { V k , i ) + Oi,j X W U ^ + ^ 

This is only the approximation ofjust one weighted range block only. Every sub-block 

BfjX (with i = 2Bp,j = 2^g,0 < p,q < 2"—丑 -1) in I is covered by four range 

blocks. That means B f jX is approximated by four weighted decimated domain blocks 

and weighted U^: 

B ^ J « E (。， , -n B 3， „W O D I “ � _ „ C ^ ) + Oi.m,j-nB^,n^U^^'). 
m,ne{0,2^} 

Therefore a range block is no longer just covered by a DC component and a deci-

mated domain block that is found to be statistically incompatible to general image 

characteristics [51]. The first term in the summation depends on the domain block 

chosen. The domain block is chosen from the domain pool and such a large number 

of different domain blocks are difficult to be characterized by an image model. It is 

expected that finding the optimized weights of W such that most of the energy are 

contained in WODIi_m,j-n(^, / ) is a very complicated task. On the other hand, the 

second term depends on the weights only. Our aim is to find the weights such that 

nearly all energies of a block concentrate in the four blocks WU^+^ 

It is well known that Karhunen-Loeve transform (KLT) is the optimal transform 

in the sense that KLT concentrates maximum energies into the first few bases. In 
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processing digital images, discrete cosine transform (DCT) is a good energy-compacting 

transform to replace KLT in most images [28]. Most energies are concentrated in the 

first two bases of DCT and all other bases are nearly negligible. If the weights in W 

are designed to be the summation of the first two bases of DCT, we expect that most 

of energies of a block can be concentrated in W U ^ i . Therefore, the first basis of the 

lapped orthogonal transform (LOT) [33] of length 2^+^ that is the linear combination 

of the first two bases of DCT of length 2^ is chosen to construct W . 

We are now going to derive the cosine weights in definition 4.5. The weights Wu,v 

with 0 < u, V < 2^ are derived here and the remaining are obtained by the symmetry 

described in property 3. Starting from the first basis of LOT of length 2^+^: 

/ 5 - ^ c o s ^ t l . , V 0 < . < 2 - . 

It is only left half of the basis of length 2^. The right half is the mirror image of this 

half. The coefficients at the two boundaries are negative that is not desirable for the 

weighting operator W by property 2. Therefore the entire basis is shifted by a constant 

such that all coefficients are non-negative. However how much should the basis shift? 

Property 4 tells us to choose the amount of shifting in the way that the boundary 

coefficients to be zero. As the boundary coefficient {u = 0) has the least magnitude, 

the shifted basis is obtained by deducting each coefficient by the boundary coefficient 

(以 = 0 )： 

y ^ - V ^ c � s ^ ^ i 7 r - ( # - y ^ c � s “ 7 r ) ， V 0 < i . < 2 ^ 

and the new shifted basis is 

^ ( c o s ^ - c o s ^ t l . ) , V 0 < . < 2 -

Therefore the weights Wu,v are the product of two separable one-dimensional basis: 

1 ( 7T 2U + 1 \ ( 7T 2V + 1 \ w n z ^ oB @ ( c o s ^ - c o s ^ ^ 7 T ) ( c o s ^ - c o s ^ ^ 7 r J , V 0 < l / , i ; < 2 . 
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The cosine weights are nearly obtained. However the constraint (4.2) is not fulfilled 

in this stage. All weights are multiplied by the same constant in the way that the 

resultant Wu,v satisfy the constraint (4.2) and the cosine weights in definition 4.3 are 

obtained. Experiments have been performed that the cosine weights is undoubtedly 

better than the rectangular window. 

4.2.2 Range Block Preprocessing 

The collage minimization takes into account of the error of the previous processed 

blocks by modifying the current range block before the collage minimization. We term 

such a process as preprocessing. No large system of equations are needed since the 

proposed preprocessing decouples the system of quadratic equations into a number 

of independent equations. Each range block can be processed independently with 

the aliasing error eliminated. The cause of aliasing is analyzed first followed by the 

formulation of the aliasing elimination A. 

Consider a range block 1ti,j E R within an image X. This block laps with its three 
~ ~ ^ 

adjacent range blocks, namely 7^i_2Bj_2s, ^i-2^,j and l^ij-2^, in the proposed LPIFS. 

As the proposed LPIFS processes each range block in the lexicographical order, the 

other three range blocks have already been processed when the proposed algorithm 

starts to process it i j . Consider the four sub-blocks of size 2^x2^ within ^ j . The 

three adjacent range blocks overlap with Hi j on the sub-blocks B^X, Bf_^^sjT and 

Bfj+2sI. Large error on these three blocks occurs if the transformation parameters of 

iZ- - are not found properly. The overall error Cij between the original image and its 
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collage on the sub-block B ^ Z is given by 

^J = B^.X - B ^ o W G , , P , , ( X ) 

-B^^WGi , ,_2BP, , , _2B(J) 

-BfB,oWG,_2B,,P,_2B,,.(J) 

一 B^s ,2BWGi_2B J_2B Pi_2^J_2B (X) (4.19) 

or in more compact form: 

^i,j = B ^ J - E Bf，,WG“,’,—rEV,,—,(Z). (4.20) 
k,le{^,2B} 

Similarly, define ^j+2^, ^+2^j and ^+2^j+2^ as the error on the sub-blocks B � I , 

Bf+2B jZ and B f ._̂ 2̂ ^ within Hi,j respectively: 

^j+2B 二 B ? j I - E B^iWGi_kj+2B-iPi-k,H2B-I(X), (4.21) 
k,le{0,2^} 

î+2B,j = ^f+2^J^ - J2 ^k,l^^i+2^-kJ-l^i+2^-k,j-l(V> (4.22) 
fe,/G{0,2^} 

ii+2^j+2^ = Bf^2^j_^2^X - Y^ B^jWGi+2^-k,j+2^-lPi+2^-kJ+2^-1 W-23) 
fc,ie{0,2^} 

and the optimal encoder should minimize these four errors on every ^ j , i.e., 

min Y^ Wei+kj+iW '̂ (4.24) 
k,le{0,2B} 

If no preprocessing is applied, only direct weighted minimization is used to find the 

block parameters in the proposed LPIFS, i.e., mmsi .̂ oi,j,iij,Vk,i d {WGi jP i j { I ) , W ^ i j ) . 

For the range block Hi j the distance between the collage and the original image on 

iti,j is minimized. If we let e^j be the error on the sub-block Bf jX produced by the 

transformation for Hi,j, i.e, 

6ij 三 B ^ W ^ � - - B^oWG,, ,P, , , (X). (4.25) 
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Similarly, the errors for the other three range blocks covering B � Z are: 

eij-2B 三 B ^ B W ^ [ 2 B - B � B W G i ’ p 2 B P ,，P 2 B ( I ) ’ （4.26) 

ei-2Bj 三 B^，oW^_2B’,—BfB，oWG“2B，,Pi—2B，j(I)， （4.27) 

6i_2Bj-2B 三 BfB’2BW7^—2B’j_2B - B̂ B̂ 2B WGj_2B j_2BPj_2B J_2^ (X). (4.28) 

Then, we can work out the upper bound for (4.19): 

l|eull = ||B5X- E Bl,WGi.,j-iFi.kj-i{T)\\ 
fc,ie{o,2^} 

= i | E B f , W B f , B 5 X - E Bf ,WG,_, ,_ ,P,_ , ,_KX)|| 
k,ie{0,2B} k,ie{0,2B} 

= I I E B ^ W ^ _ , , , _ z - E B l W G , . , j . i F i . , j . i { I ) W 
k,ie{0,2B} k,ie{0,2^} 

< E I I ( B f , , W ^ _ , . , _ , - B ^ W G , _ , , , _ , P , _ , , , _ , ( X ) ) II 
k,le{0,2B} 

=\ei,j\\ + ||eij_2B|| + ||ei_2B,j|| + \\ei_2Bj_2B\ 

三 X) W^i-i,j-kl. 
k,le{0,2B} 

Equality holds only when these four errors are parallel, i.e., there exists ki, k2, ks e R 

such that 

Cij = hei,j-2B 二 k2ei—2B，j = hei_2Bj-2B. (4.29) 

Thus proposition 4.6 follows: 

Proposition 4.6 If only weighted collage minimization is applied without any range 

block preprocessing, the overall error iij between the original image and its collage on 

the sub-block BfjX is upper hounded by 

1¾!! < 5Z lk“j.-fcl 
k,1e{0,2^} 

with ei-i,j-k, k,l e {0,2召}，defined in (4.25) to (128). 

Proposition 4.6 gives the account of the problem when the collage is found only by 

the weighted collage minimization. The collage produced from the direct minimization 
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on individual range block can only give the upper error bound that is generally not 

tight enough. The upper bound is not tight because the condition in (4.29) is not 

guaranteed and thus not satisfied in most of the cases. It means that the encoder 

used in existing PIFS is not the optimal one for the LPIFS. Some modifications on 

the encoder must be made to achieve a closer collage. One obvious way is to carry 

out the minimization of (4.24) directly. However, it depends on four range blocks and 

thus all these errors on the whole image becomes a system of quadratic equations [20 . 

The equations depend on the others and make the solutions difficult to be found in a 

simple manner. Instead, a technique called range block preprocessing is proposed to 

solve this problem. 

Preprocessing is proposed to achieve a tighter bound of the error in (4.19). Given «̂  一 

an range block 7¾,)., the following three modifications on the three sub-blocks of 7 ¾ 

are performed: 

B ^ o W ^ j f - Ko^id -B^2-WG,,,_2BP,,,_2B(X) 

-B^B^0^Gi_2BjFi_2Bj{I) 

— B f s 2^ W G j _ 2 B J_2B P j _ 2 S ,j-2B ( ! ) 

B ^ 2 B W ^ , , - — B^^,sW7Zij -B^B^2BWG,_2BjP,_2Bj(I) 

B^，。W^，,+ B f B , � W ^， , _ -BfB^2^WGij_2BPij_2H^) 

where <- denotes the assignment. These three modifications on WiZ i j can be expressed 

compactly by defining an operator A on the weighted range block. 

Definition 4.6 (Range block preprocessing operator) A : ]̂ 2石+1父2月+1_̂股2石+1父2五+1. 
( \ 

A W H i j = B ' l , B ^ o ^ J - E B l , W G , . k j - i I ' i . k j - i { I ) 
k,1e{0,2B} 

\ {k,iy^{o,o} / 

+ B'̂ 2B {Bl,BWHiJ - B^B^,sWG,_2BjPi-2Bj{l)) 

+ Bfa,o (B�B’oW^’ , . 一 BfB,2BWG,,,_2BP,-,._2B(X)) 

+ B f B , 2 B B f B , 2 B W ^ j (4 .30) 
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where WHij e M^^^' x2^+i 肌 在 仇 已 range ofB%, k, 1 G { 0 , 2 ^ } is modified to R^^^' ><2^+1 

(not E^^ ^^^ as usual). 

By preprocessing the weighted range block by A before the collage minimization, the 

weighted minimization becomes (4.16). In plain words, the preprocessing A takes the 

errors accumulated from the previous blocks into the present minimization. Thus, 

the collage distance being minimized will not suffer from mixing up with the errors 

produced by the previous blocks. 

4.2.3 Decoder Convergence Analysis 

In the proposed coding method, the decoded image is the fixed point of the transfor-

mation T and it is found by iterative method. Thus it is natural to ask the question 

whether T is a contraction. If G j j is defined by (4.6), the sufficient condition for T to 

be a contraction is very similar to that of the conventional PIFS. 

Proposition 4.7 T : {Xi)^{Xi} is a strictly contractive transformation respect to the 

supremum metric ifGi,j is defined by (4.6) and | � , | < 1 for all 1Zij € R. (compared 

with theorem 2.4) 

Proof: If the supremum metric is used, for any X1,X2 G {Xi}； 

d ( f J 1 , T J 2 ) 三 ||fX1-TX2|| 

= | | t ^ ( J 1 - X 2 ) | | 

= ^ x | ^ | 

where 2^5 € T^ and Tx, is the linear part ofT. If Gij is defined by U-6), then each 

iJj 6 Tx, can be written as 

/ • f7i _ 7.2 � \ 
•TL — V^ I c ^Pm,qn\^Pm,qn ^Pm,qn) 
^u,v ~ Z ^ \ ^m,n^m,n 7 

m,n \ / 
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for some Wm,nj Sm,n cmd i^,qn — ijfm,qn G Xi -J>2. The summation over (m, n) is due to 

the weighting operator W and the other is due to the averaging and decimation operator 

D. Hence 

d{TIuTI2) = maxlC-l 

E ( ^Pm ,qn (^Pm ,qn 一 Vm .gn ) \ 
I Wm,nSm,n 7 I 

m,n \ ^ ) 
( ^ (i^ 一 p ) \ / V ^ I n,i 0 ^Pm,qn\ Pm,qn Pm ,qn > 

t 乙 1 ^m,n Sjn,n 7 
m,n \ 兮 / 

y- (i^ 一 2.2 \ 
<r • 川 ^ a v Q ^Pm,qn\'pm,qn 'pm,qnJ 
^ 2_^ ^m,n IlidX bm,n . 

m,n ”爪，扣 4 
y- fx'i _ p ) 

_ ^ ^ „ _ ^Pm ,qn V�Pm An Pm ,Qn ‘ 
—IIl<AX b^ fl ‘ 

m,n ’ 4 
y- f,-i _ ,'2 \ 

< max乙外…外了 P�q) 
一 P.q 4 

^ ^ ^ l 4 " 4 l 

= d { X i ^ l 2 ) -

Hence T is a strictly contractive transformation. • 

If the orthogonalized G i j is used instead, i.e., (4.6), the contractivity is not easily 

verified by deducing the contractivity condition in definition 2.1. However, experiments 

show that convergence of the iterative decoding method is obtained for all cases under 

our settings. 

4.3 Local Domain Block Searching 

In the last section, the attractor coding method based on LPIFS is discussed. Just like 

PIFS, for each range block, a domain block searching is required to find the best fit in 

encoding. The number of blocks in the domain pool is usually very large. It takes a 

lot of computations and time in block matching if exhaustive searching is performed. 

Moreover, many bits are used to represent all domain block locations in such a large 
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pool. If some domain blocks have higher probabilities to give a good match, fewer bits 

should be allocated to represent their locations in order to reduce the bits required. 

They should also have higher priority in matching in order to reduce the encoding time. 

Then the problem is what kind of searching method and how to represent the block 

locations are appropriate for attractor coding. This section addresses this problem and 

a local domain block searching algorithm is devised and analyzed. 

Roughly speaking, the proposed searching method starts from the block with the 

same center of the range block, i.e., the local domain block. If it does not result in a 

good match, it will search blocks further away from the range block until a right domain 

block is found. Similar local searching algorithms have been proposed and verified by 

experiments [4，5, 22, 47]. The effectiveness of this searching method replies on the 

fact that the local domain block can fit the range block in most cases. Therefore the 

encoding time can be shorter and fewer bits are needed to represent the block locations. 

Barthel et. al. suggested that the best block is usually the one overlaps with the range 

block. Experiments performed by Prigaard et. al. suggested the otherwise. The 

location of the best block is quite random but the local domain block usually can give 

a good match even though it is not the best one in the pool. In the following section, 

a theoretical analysis is provided which shows that the domain block overlapping with 

the range block can usually provide a nearly-best fit. 

4.3.1 Theoretical Foundation 

The analysis is based on the first-order Gauss-Markov model. Consider a vector X 三 

(0̂ 0，xi, •..，X2B+i_i) of length 2丑+1 with each Xi e X being a random variable. Assume 

X satisfies the first-order Gauss-Markov process with correlation coefficient p. Based 

on X, define another vector Y of length 2召 as follows: 

Y 三{X2B-1,X2B-1+1^..., a;3x2s-1_1). 
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Obviously, the elements in Y is extracted from the center of X. Under this settings, Y 

simulates the range block in attractor coding. X , being longer than ？，simulates the 

local domain block. We are now going to see whether the decimated X can fit Y well 

up to the affine transformation. Following the encoding procedure of attractor coding, 

X is first decimated by 2 to form X^2 of length 2^ as follows: 

i? _ /^0 + ^1 工2+工3 0^2^+1-2 + X2B+1^1 V 
义 山 2 三 ( ^ ~ ， ^ ~ ， . . . ， 2 ). 

Then an affine transformation is applied on X^2- The two parameters in affine trans-

formation are tuned such that X^2 is close to Y. Since each Xi G X is zero mean (by 

the assumption of the model), the optimal offset should be zero. Therefore only one 

scaling parameter s G E remains in the discussions. Hence Y is now approximated by 

sX^2 and the distance between Y and 5X4,2 is given by 

d{Y, sX^2)三 E((f-sje;2)(i^-sA2),) 

= E ( T r [ { Y - s X ^ 2 ) ' { y - s X ^ 2 ) ] ) 

=Tr \E{Y'Y)] — s X Tr f E ( ? ' ^ ) ] - s x Tr [£(¾^')] + Tr [ £ ( ^ ^ 2 ) " 

. J L J L J L 

where ‘ and Tr denote the transpose operator of a vector and the trace of a square 

matrix respectively. By expanding the elements in each matrix and expressing them 

in terms of p, d{Y, 5X;2) can be written as follows: 
2^-1-1 

d{Y, sX^2) 二 s2^-\l + p)-2s Y. p^l + p) + 2^ 
i=0 

二 2^ + 5(1 + p) ( 2 B - 1 - 2 ( 1 _ 1 , : 1 ) ) . (4.31) 

d{y^ sX12) tends to zero as p ^ l when s is chosen to be one. Hence we get the following 

proposition. 

Proposition 4.8 If X 三(0；0，工1，-.-’巧石+1-1) is a vector of length 2^+i satisfying 

the first-order Gauss-Markov process, then X is a good match to the vector Y 三 

{X2B-1,X2B-1+1, •..，X3x2^-i-i) up to the decimation hy two followed by the affine trans-

formation if the correlation coefficient p tends to one. 
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4.3.2 Local Block Searching Algorithm 

For each ^ j G R, the proposed algorithm starts from the local block first and searches 

the blocks further away from 1tij. To be more precise, the domain pool in definition 

4.2 is reformulated as four nested domain pools as follows: 

~ ~ 

Definition 4.7 (Nested domain pools) For each 7 ¾ G R； 

D o 三 { 巩 厂 左 = 2 — 2 石 ， / = ^ - 2 召 } 

Di 三 { 2^ :A : = 2 + 2Bp,Z=j + 2 B ^ S - 2 S p , g S 2 } 

•2 三{%，f:A: = i + 2〜，Z = j + 2 B g , - 8 S p , g S 8 } 

D 3 三 { 巩 厂 於 = 2 \ / = 2 丑 ： 0 分 ， 9 < 2 斤 - 召 — 2 } 

where 2 ¾ 三 B f f z . 

Obviously, Do C Di C D2 C D3 and U!=oDi = D. Moreover, the definitions of Di,i = 

0,1，2，3，depend on the position of iZij. 

Rather than exhaustively searching all domain blocks in D, Do is searched first, then 

Di, D2 and finally D3 till an appropriate domain block is found. If all four domain pools 

are searched for each range block, it is equivalent to simply using D but in different 

searching order of the domain blocks only. Moreover, when the search pool is enlarged, 

a better fit may be found in the cost of more bits to represent the block locations. That 

means there is a trade-off between decoded image quality and compression ability. Not 

all pools are needed for each range block. A stopping criterion is required to define the 

desired domain block. Therefore we formulate this problem as the optimization of a 

set of rate-distortion functions. 

Definition 4.8 {Rate-distortion function) For each 1Zij E R； Rij{Dij) is the number 

of bits required for 1Zij to achieve the mean square error Dij. 

~ ~ 

By defining Rij {Dij ) for each 1Zij e R, an optimization problem is formulated on how 

to allocate bits to different Hij under the bit budget R such that the overall distortion 
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is minimized: 

min ^ Di,j with the constraint ^ Rij{Dij) < R (4.32) 
^ijeR T^ijeR 

~ ~ 

where the minimization is taken on all rate-distortion function R i j {D i j ) for all 7li j G R. 

This is a typical optimization that appears in microeconomic theory [30]. Lagrange 

showed that the solution of (4.32) is equivalent to that of the following optimization 

problem: 
( ( \\ 

min E A , i + A X： ^ j ( A j ) - R (4.33) 
V^ijeR \ni,jeR ) ) 

where A G R is called the Lagrange multiplier. By taking partial derivatives of (4.33) 

with respect to each ftj(A,j)5 we get 

- . 0 m � D i ’ j = X for any K^j G R. (4.34) 
OrCij[Uij) 

(4.34) implies that the solution of (4.32) satisfies the marginal condition: the bits should 

be allocated to those Hi j such that the reduction of the distortion is maximized. There 

have been many coding algorithms based on efficient bit allocations. Many of them 

relies on the time-consuming iterative methods to find the optimal allocations [4，52 . 

However, there is still no method to ensure the solution to be global optimal. In this 

work, a non-iterative but sub-optimal method is devised for the block searching of the 

proposed attractor coding method. 

Roughly speaking, the block searchitig algorithm tunes the domain pools of H i j such 

that all marginal distortion, i.e., ^ ^ ^ ^ ^ D [ j , are approximately the same (as - A ) . 

The proposed method starts from small Ri j and enlarges the domain pool progressively 

until (4.34) is approximately satisfied. To be more precise, the local domain block 

searching algorithm is formulated as follows: a predefined quality factor A G R is set 

up to control the overall bit rates. For each Hi j € R, collage minimization is performed 

using Do as the search region: 

d o = min d{WGijVk,i, A W U i j ) for Vk,i € Do- (4.35) 
Si,j,Oi,j,Ii,j,T>k,i 
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and r*o bits are required to store all parameters, namely Si,j,Oi,j,li,j,T>k,i. Initialize 

the counter i = 1 and perform the following minimization followed by computing the 

optimality condition: 

di = min d{WGijVk,i, A W U i j ) for Vk,i G D̂  (4.36) 

Si,j,Oi’jJi’j,�k,l ， ， ， 

and ri bits are used to store Si’j,Oi’j,Ii,j,T>k’i. Checking the optimality criterion: 
- & —山-1 < A. (4.37) 

Ti — Vi-i 

If it is not the case, i is incremented by one to i + 1 and repeat (4.36) and (4.37) until 

the criterion is satisfied or D3 is reached. Once the procedure is completed, the bit rate 

Ri j and the distortion Di j are r^-i and dj_i respectively if the criterion is satisfied by 

Dj. Otherwise, they are r3 and 而 respectively that implies the use of D3. 

4.4 Experimental Results 

The proposed attractor coding methods using LPIFS are experimented on several im-

ages. Each of the images is partitioned into 16 x 16 overlapping range blocks, i.e., 

B = 3. Domain pool in definition 4.2 is used with B = 3, i.e., 

D={Vk,i ： Vk,i 三 B5,,,Z with k = 2 ¾ 1 = 2'q, 0<p, q < 2^"^}. (4.38) 

With B = 3，the weights in W is as follows: 

〜 4 - 脊 ) ( 1 - 寄 ) ’ — « (439) 

with Wu,v == ^ î6-t/,v = Wu,i6-v = Wi6-n,i6-v Both definitions of Gij, (4.6) and (4.7), 

are experimented. The range of the scaling parameters in the orthogonalized case is 

(—1.5，1.5). In order to examine the effects of the LPIFS in the overall coding perfor-

mance. No local domain block searching is used at this stage. The block parameters 

are quantized and coded in the same way of the PIFS as described in section 2.5.2. 
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The coding results are tabulated in Table 4.1 and 4.2. The decoded images, Lena, are 

given in fig. 4.5 and the zoom-in view of the decoded images are provided in fig. 4.7. 

The following observations are found in the experiments: 

Observation 1: It can be found that attractor coding using the LPIFS results in 

similar PSNRs to those using the PIFS at the same bit rates for all four images but 

better visual quality for all images tested. In fact, the decoded images of the LPIFS 

suffer from lesser blocking artifacts than those of the PIFS since the range blocks are 

no longer disjoint in this case. Fig. 4.7 shows the zoom-in views of the decoded image 

Lena. It can be seen that the blocking effect is more prominent in the one produced 

from the PIFS. However there are nearly no blockiness in the case of the LPIFS. 

Observation 2: As the structure of the LPIFS differs from that of the PIFS, it 

is necessary to study the decoder convergence of the LPIFS. It is advantageous that 

the fixed point of T can emerge in a few iterations. It implies lesser computations and 

shorter time for decoding. Therefore the errors versus the number of iterations for four 

images are plotted in fig. 4.4. It is found that, for Gj^ defined by (4.6), the number 

of iterations for convergence is image-dependent. It is shown that less than twenty-

iterations are sufficient for the transformation T in LPIFS to converge to its fixed 

point. It is about twice the number of iterations required in the PIFS which requires 

about ten in general [18]. The convergence rate of the LPIFS with G^j defined by (4.7) 

is detailed in the latter part of this section. 

Observation 3: When one compares two definitions of G^j, (4.6) and (4.7), it is 

found that (4.7) can give a better performance in terms of bit rates and PSNRs. It 

is mainly due to the constraint on the magnitudes of the scaling parameters in (4.6). 

No constraints are imposed on those scaling parameters by using (4.7). Therefore, the 

collage optimization would not suffer from optimal solution owing to the constrainted 

magnitudes of one of the block parameters. 

After studying various aspects of the coding method using the LPIFS, the local 
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domain block searching is now embedded into the coding method. (4.7) is used as 

the definition of Gi,j. Moreover, not all eight isometries are used in the domain block 

matching for all range blocks. It was reported that the PSNRs of the decoded image 

does not increase much by incorporating eight isometries but the bit rate increases 

owing to the use of extra 3 bits for representing the isometries [45]. Therefore no 

isometry is used for those domain blocks in Di,i = 0,1,2. For D3, four isometries 

by 90° rotations are attempted first. If it does not satisfy the rate-distortion optimal 

condition, the remaining four isometries obtained by rotations and reflections are used 

to give the best match. Since the offset can be seen as the weighted DC of each 

range block, the offset parameters of adjacent blocks exhibit strong correlation. The 

most simplest way to exploit the redundancies, DPCM is applied followed by adaptive 

arithmetic coding [6]. The range of the scaling coefficients is ( -2 ,2 ) . Each of them is 

uniformly quantized and 5 bits are used for representation followed adaptive arithmetic 

coding. Table 4.3 and Fig. 4.8 show the bit rate against the PSNRs of four images by 

tuning the values of the Lagrange multiplier A. Fig. 4.9 shows the decoded images of 

Lena and Fruits using different Lagrange multiplier A. 

The following observations are found in the experiments: 

Observation 1: A serves as a quality factor for the proposed attractor coding 

method. The larger the A is, the smaller the bit rate is required in the cost of reduced 

PSNR for all images, (see table 4.3) If A is chosen to be a small number, the rate-

distortion optimality criterion (4.37) can be satisfied by some domain block with large 

error in the range block approximation. Therefore, more blocks are chosen from the 

small domain pools which require less bits in specifying them. 

Observation 2: In order to study the distributions of domain blocks, the numbers 

of blocks chosen from different domain pools are listed in table 4.4 for the image Lena. 

It can be observed that most domain blocks are drawn from the smallest pool D� . More 

blocks are taken from Do as A increases. When A is large, over half of the total number 
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of blocks are taken from Do that shows the local block searching can save a lot of bits 

by reduce the searching regions. Moreover, the encoding time is shorter as most range 

blocks need only a few domain blocks in collage optimization. 

Observation 3: It can be found from fig. 4.9 that the decoded images does not 

severely suffer from blocking artifacts like those of the PIFS. However, when the bit 

rate decreases, it can be found from fig. 4.9 that some parts of the decoded images 

become blurred. It is expected nearly all range blocks choose its local domain block as 

A becomes large. Therefore the collage is not very tight to the original image. 

Observation 4: The convergence rate of the iterative decoding procedure is studied. 

The number of iterations required to reach the fixed point of different images are 

tabulated in table 4.5 It is found that the number of iterations is not very dependent 

on A chosen but image only. Less than ten iterations are required for all images that 

are relatively a small number compared with the LPIFS with (4.6) as the definition of 

Gi,j. (see fig. 4.4) 

Observation 5: The inclusion of the local domain block searching does not affect 

the structure of the LPIFS. Moreover, the encoding algorithm without any local block 

searching, i.e., algorithm 2，can be seen as a special case of the one with local block 

searching. By putting A to be a negative number, the rate-distortion optimality crite-

rion (4.37) is not possible to be satisfied. Therefore, the local domain block searching 

becomes an exhaustive searching over the whole domain pool D in definition 4.2. 
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Table 4.1: Numerical results of the attractor coding using the LPIFS with (4.6) as the 
definition of G i j using the quantization and coding methods described in section 2.5.2 
for the range block parameters 

Image LPIFS PIFS 
bpp PSNR bpp PSN5" 

Flower" 0.41 33.2厂 0.42 ^ . 5 6 
Fruits ~~OAr 31.54 0.42 ^ . 7 4 
Lena "OAT 31.43 T i T 31.01— 
Tiffany 0.41 31.20 0.42 31.35 

Table 4.2: Numerical results of the attractor coding using the LPIFS with (4.7) as the 
definition of G^j using the quantization and coding methods described in section 2.5.2 
for the range block parameters 

Image LPIFS PIFS 
bpp PSNR bpp PSNR— 

Flower" 0.41 33.96 0.42 ~^.lQ 
Fruits 一 0.41 32.08 0.42 ^ . 1 6 
Lena — 0.41 32.0厂 0.42 "^ .63 
Tiffany 0.41 31.60 0.42 31.89 

Table 4.3: Numerical results of the attractor coding using the LPIFS with (4.7) as the 
definition of G j j with local domain block searching 

Image bpp PSNR A Image bpp PSNR A 
Flower T 2 3 ^ 31.23 100 Lena~~ 0.248 30.2T" 80 

0.243 31.30 80 0.253 "̂ CL34 60 
0.252 31.41 45 0.279 ~ 3 0 l i ~ ~ W 
0.273 31.59 15 0.295 "30^7 9.5 
0.284 31.67 6.5 0.310 " 3 0 6 0 ~ ~ 6 X 

Fruits T 2 ^ 30.41 80 Tiffany ^ 2 3 ^ 30.63 80 
0.264 30.54 60 0.242 30.6T" 60 
0.273 30.63 45 0.249 ~3Q?^~~45~ 
0.307 30.84 15 0.273 30.86 15 
0.329 30.95 6.5 0.299 30.92 6.5 
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Table 4.4: Statistics of the domain blocks chosen in different Dj, i = 0，1，2,3 together 
with different number of isometries in the proposed local domain block searching 

Image Domain pool chosen, A 
number of isometries used 

D o , l D i , l D 2 , l D3，4 D3，8 
Flower l f f V 505 167 696 575 6.5 “ 

1977 463 193 617 " 1 ^ ~ ~ l 5 ~ 
2329 459 M — 437 299 45 “ 

~W47 397 T e T " 368 241 ~8Q~ 
2630 391 l 5 ^ 328 213 100" 

Fruits T203 519 158 996 841 6.5 “ 
l 4 8 6 515 184 857 "675~~ l5~ 
1945 500 ~J9T~ 635 440 " l 5 ~ 

^ 7 487 199 569 3^~"~60~ 
2230 " W ~ 201 502 314 ~W~ 

T ^ ~ ~ 1431 738 259 879 662 T ^ 
1480 ~7l8~ 270 863 638 ~Kb~ 

~ m ^ 679 "^6T" 794 5 ^ ~ ~ ^ 
lM2 635 264 691 STz~~l5~ 
2041 589 263 620 456 ~ W 

~W63 589 ~YU 492 ~ 3 8 ! ~ " W 
2362 575 239~ 455 338 ~ W 
2479 ~573~ 215 ~ 3 8 ^ 317 80 — 

Tiffany 1^70 731 219 795 6 5 ^ " 6.5 
T969 664 "^5T" 613 469 ~J5~ 
~ 2 3 ^ 639 260 406 277 "45~ 
2537 591 243 356 242 ~60~ 
2657 580 237 305 190 80~ 
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Table 4.5: Number of iterations required for the iterative decoding procedure of the 
coding method using the LPIFS with G j j defined by (4.7) with different values of A 
(the number in the parenthesis is the number of iterations required in the LPIFS with 
Gi,j defined by (4.6) ) 

Image Number A Image Number A 
of iterations of iterations 

Flower 8 “ 100 Lena~~~ 8 — 80 
(11) 6 80 (8) 8 — 60 

8 " ^ 5 ~ 8 " T T " 
7 15 8 — 9.5 
7 _ " ^ 8 — 6.5 

Fruits 4 ~W~ Tiffany 9 80~ 
(8) 4 ~ W (17) 9 " W " 

4 _ " ^ W 7 — 45 
4 " " I T " 9 “ 15 
4 6.5 7 6.5 

4500| 1 1 1 1 1 1 1 1 
4000 - H -
3500 - / 1 -

广。。-/ “ 

| 2 5 0 0 - / 1 -
f2OOO - 1 -

1 5 � � ( � -

1000 \、. 1 -

、 、 : 、 
5 0 0 j � � L _ 

\ ^t'-lK^..___________^^ 

nl 1~�. ^ *~~ * ~~~"H. aT" A 来 • " 1 
2 4 6 8 1 0 1 2 1 4 1 6 18 Number of iterations 

Figure 4.4: The plot of the collage distance against the number of iterations in the 
iterative decoding procedure of the coding method using the LPIFS with G i j defined 
by (4.6) for images, Flower (star), Fruits (dash), Lena (dashdot), and Tiffany (solid). 
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M M 
(a) original image Lena (b) decoded image of the coding method using 

� the PIFS: 0.42 bpp, PSNR=31.01dB 

M M 
(c) decoded image of the coding method using (d) decoded image of the coding method using 
the LPIFS with G i j defined by (4.6) : 0.41 the LPIFS with G i j defined by (4.7): 0.41 
bpp, PSNR=31.43dB bpp, PSNR=32.03dB 

Figure 4.5: Experimental result of image Lena. 
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^ ^ ^ ^ ^ Q M ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ n ^ ^ ^ B 

(a) original image Pruits (b) decoded image of the coding method using 
the PIFS: 0.42 bpp, PSNR=31.74dB 

lBHlB9 MMMMM 
(c) decoded image of the coding method using (d) decoded image of the coding method using 
the LPIFS with G i j defined by (4.6) : 0.41 the LPIFS with G i j defined by (4.6): 0.41 
bpp, PSNR=31.54dB bpp, PSNR=32.08dB 

Figure 4.6: Experimental result of image Fruits. 
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(a) Zoom-in view of the image in fig. 4.5 (b) (b) Zoom-in view of the image in fig. 4.5 (d) 

Figure 4.7: Zoom-in views of the decoded image Lena. 

31.8| 1 1 1 1 1 1 1 1 " 
• . ‘ 

31.6- -
• . •‘ 

31.4- -

31.2- -
DC Z qi _ -C/D '̂ 
n_ _ 一 

_ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Z 
3 0 . 8 - ^ ^ ‘ ^ 一 ‘ ‘ -

^ ^ z 
30.6- z z -

Z 一 . - - . ’ ‘ ’ . 
/ . 一 , . ^ -30.4- : Z " -. z • 

z y. 
30 pl I 1 1 1 —I 1 1 ‘ 1 

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 
Bits per pixel 

Figure 4.8: The plot of the PSNRs against the bits per pixel of the coding method 
using the LPIFS with Gi j defined by (4.7) with different values of A for the images, 
Flower (dotted), Fruits (dashed), Lena (dashdot), and Tiffany (solid). 



M M 
(a) decoded image Lena of the coding method {b) decoded image Lena of the coding method 
using the LPIFS with G i j defined by (4.6): using the LPIFS with G i j defined by (4.7): 
A = 6.5，0.31bpp, PSNR=^.60dB A = 80, 0.25bpp, PSNR=30.26dB 

_ _ 

^ ^ ^ ^ ^ ^ ^ g ^ ^ ^ B ^ ^ ^ ^ ^ ^ ^ 0 ^ ^ ^ 9 
(c) decoded image Fruits of the coding (d) decoded image Fruits of the coding 
method using the LPIFS with G i j defined method using the LPIFS with G i j defined 
by (4.6): A = 6.5，0.329bpp, PSNR=30.95dB by (4.7): A = 80’ 0.257bpp, PSNR=30.41dB 

Figure 4.9: Experimental result of images, Lena and Fruits, using the coding method 
using the LPIFS with local domain block searching. 
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4.5 Summary 

In this chapter, a novel attractor image coding using the LPIFS is proposed. The major 

modification of the LPIFS over the PIFS is the inclusion of a weighting operator W in 

the affine transformation of each overlapping range block. Every range block laps with 

its adjacent blocks in the LPIFS. The proposed LPIFS can be seen as a generalized 

technique to include the existing PIFS as a special case. 

In applying the LPIFS to image coding, the encoding procedure is similar to the 

existing method except the preprocessing of each range block before performing the 

domain block matching. The range block preprocessing can effectively eliminate the 

errors of the processed adjacent blocks and thus a closer collage can be obtained without 

involving any large system of equations. In order to provide smooth overlapping of the 

adjacent blocks, the cosine weights are chosen for the weighting operator that satisfy 

all desirable properties to be a good weighting operator. Our experiments show that 

the decoded images suffer from very low blocking effects only. 

Furthermore, the local domain block searching is embedded into the encoder, this 

kind of searching is analyzed using the Gauss-Markov image model and experimented 

using real images. It is found that the use of this local block searching can effectively 

reduce the bits required in specifying the domain block addresses and shorten the 

encoding time. 
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Chapter 5 

Conclusion 

5.1 Original Contributions 

Attractor image coding is still under investigations on both theories and implemen-

tations by many researchers. My work is just an opening of some potential research 

directions in this field. The main contributions, together with the corresponding pub-

lications, of this thesis are summarized as follows (in the order they are treated in the 

text, not in the order of importance): 

1. Analysis of the ^-MED criterion: 

The theoretical foundation of the <5-MED criterion, on which the proposed adja-

cent block parameter estimations built, is presented based on the Gauss-Markov 

image model. It can be shown that if the range block satisfies the J-MED cri-

terion, it is likely to locate at the most smooth regions of an image where the 

proposed estimatin scheme performs. 

2. Attractor coding with adjacent block parameter estimations [24]: 

Attractor coding embedded with adjacent block parameter estimations is pro-

posed to alleviate the blocking effects. Experimental results have shown that the 
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proposed method can effectively code the block parameters of the smooth regions 

and conceal the undesirable blockiness. 

3. Lapped partitioned iterated function systems (LPIFS): 

A novel image transformation called the LPIFS is formulated based on the ex-

isting PIFS. By tuning the weights in the weighting operator, the PIFS can be 

seen as a special case of the proposed LPIFS. Moreover, several properties of the 

LPIFS are investigated. 

4. Attractor coding using the LPIFS [25]: 

A novel attractor coding method using the LPIFS is presented and examined. It 

is shown that most blockiness that appears in the decoded image of the PIFS is 

eliminated in that of the LPIFS. The number of iterations required in decoding 

is within ten that is acceptable for image coding. 

5. Local domain block searching with rate-distortion optimal stopping 

criterion: 

A local domain block searching has been experimented and examined using the 

Gauss-Markov image model. It is found that this kind of searching is suitable 

for general images. Most range block can find a suitable domain block in a small 

domain pool. Encoding time becomes shorter and the number of bits in specifying 

the domain block addresses is reduced. 

5.2 Subjects for Future Research 

1. Fast encoding algorithm for the attractor coding using the LPIFS : 

The most time-consuming part in the encoding using the LPIFS is the weighted 

collage minimization. One possible research direction is to formulate a better 

LPIFS such that fast algorithm of the weighted collage minimization exists. This 
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approach is mainly inspired by the LOT which is designed for sufficiently smooth 

in block overlapping and fast in implementation. 

2. Including the quadtree partition and other block geometries in the 

LPIFS : 

The LPIFS is formulated to extract square domain blocks of size four times larger 

than a range block. One possible generalization is to include quadtree partition 

and other block geometries in the domain pool. The basic formulation of the 

LPIFS is by no means altered by the elements in the domain pool. Better coding 

results are expected. 

3. Hybrid coding : 

It is possible to combine several existing image coding techniques into a single 

coding method. The two proposed methods can be slightly modified and embed-

ded into some existing hybrid methods like [5，37, 46 . 

4. Applying the proposed methods to color images : 

Though all proposed methods are devised for gray-scale digital images, it is ob-

vious of practical interest to extend the methods to color images. The extension 

to color images should not raise any big theoretical problems though several 

implementation issues must be resolved. 
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Chapter A 

Fundamental Definitions 

In this appendix, we give the definitions of the abstract spaces and the examples of 

these spaces mentioned in this thesis. 

Definition A.1 (Metric space) A metric space (M, d) is a set M equipped with a 

metric d : M x M ~^ M satisfying the following three conditions: 

• W ， y e M, d{x, y) = 0 =4> x = y. 

• Mx, y e M, d{x, y) = d{y, x). 

• Va:, y, z e M, d(x, z) < d{x, y) + d{y, z). 

Definition A.2 (Normed space) A normed space is a vector space X in which every 

element x € X is associated a nonnegative real number ||a:||, called the norm of x, in 

such a way that 

• \\x + y\\ < |kl| + lbll, ^x,y e A'. 

• ||ax|| == |a|||x||, Vx e X and a G E. 

• ||a;|| > 0 forx / 0. 
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Definition A.3 (Inner product space) An inner product space % is a vector space in 

which each pair of vectors x, y G H is associated a real number < x, y >, called the 

inner product of x and y, such that the following rules hold: 

• < X，y > = < y, X >， Vx, y G U . 

• < X + y�z > = < X, z > + < y, z〉， Vx, y and z G 7i. 

• < ax, y >= a < x, y〉， Mx G % and a G K . 

• < x,x >> 0， Vx G 7i. 

• < x,x > = 0， V x G U. 

Remark A.1 It must be noted that both the definitions of a normed space and a inner 

product space assume the use of real vector space. 

Example A.1 Any vector space M^ is an inner product space by defining < x, y >= 

x'y where x, y E R^. ‘ denotes the transpose of a vector. 

Example A.2 For the vector space X with vectors of length N and each element of a 

vector is a random variable. X is an inner product space by defining < Xi, X2 > as 

<XuX2>=E{^x]x^) 
i 

where x{ is the i-th element ofXj,j = 1,2 and E is the expectation operator. 
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Original Images 

• 圓 
(a) Flower (b) Fruits 

驪 _ 
(c) Lena (d) Tiffany 
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