
On construction of 0-1 sorters from 2x2 switches

so Kin Tai

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

•The Chinese University of Hong Kong
June 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the Graduate
School.

/ t v / 统 系 館 書 圖 a

2 2 J i
• � U N I V E R S I T Y 1 勒j \\:P>\UBRARY SYSTEM/考//

i

Abstract
A 0-1 sorter means a sorter of single-bit inputs. It sends the signals 1 to the

upper output addresses. By treating the single-bit signal as the activity indicator
of input, the 0-1 sorter functions as a concentrator, which is an important device
in telecommunication switching.

A compressor is a network which, under proper switching control, can not
only function as a 0-1 sorter, but also as a cyclic 0-1 sorter, which can switch
signals 1 to any segment of circularly consecutive output addresses. A 2X-
interconnection network constructs a compressor out of compressors (see
Definition 3.3.3 and Theorem 3.3.6 of [9]), and thereby can be recursively
invoked for the construction of indefinitely large compressors. One instance of a
recursive 2X-constmction is the baseline network appended with the swap
exchange (Definition 3.4.9 of [9]).

Iterative cells [13] are 1X1 switching cells controlled by both in-band
signals and a single-bit external signal called the running parity. In the special
case of the baseline network appended with swap exchange, when the 2x2
switching cells in it are controlled as iterative cells, the resulting network can be
controlled as a cyclic 0-1 sorter by a proper set of the running parities. The
starting position of the circularly consecutive output addresses determines the
initial values of running parities. We derive an explicit formula for this
determination.

Although all recursive 2X-constmctions give functionally equivalent

i

switches in the strong sense (Corollary 4.1.16 of [9])，they are not equally useful.
For one thing, they incur different complexities in laying out the interstage
exchanges. In fact, the baseline network is among those that incur the highest
complexity in terms of the 2-layer Manhattan layout, while the divide-and-
conquer networks (Definition 3.5.9 in [9]) achieve the lowest complexities
(Theorems 4.2.15 in [9]). In view of this, we are interested in the generic 2X-
intercoimection rather than just those involved in the baseline network appended
with swap exchange. We derive an explicit formula for the initialization of
miming parities that control a generic 2X-construction network into a cyclic 0-1
sorter.

ii

摘要

一個0-1排序器表示只接收單位元輸入的排序器。它把信號’ 1’送

到較上的輸出。當那個單位元輸入是活動位時，0-1排序器便成爲一個集

中器。集中器在電訊交換中是一個重要的部份。

一個壓縮器是一個網絡°在正確的交換控制之下，壓縮器不單可以控

制成0-1排序器，更可成循環0-1排序器…它可把信號’ 1，輸出到任可一

段循環而連續的位址0 2X互連網絡利用壓縮器建造壓縮器(詳見[9]的定義

3.3.3與定理3.3.6)，因此可以造出無限大的壓縮器。遞歸2X建造法的其

中一個例子就是基線網絡加接一個對調交換(見[9]的定義3.4.9)�

循環單元[13]是一種由同頻帶信號與一個外來單位元信號所控制的交

換單元，而我們定義那一個外來信號爲運行奇偶位元。當所有基線網絡力口

接對調交換中的單元爲循環單元時，只要正確設定當中的運行奇偶位元，這

一個網絡便可成爲一個循環0-1排序器。而運行奇偶位元的設定是取決於

那一段循環而連續位址的首個位址。我們尋出一組顯式方程式去決定運行

奇偶單元的始値。

雖然由遞歸2X建造法，可以得到作用上相同的各個交換網絡(見[9]的

推論4.1.16)，它們不是同樣有效的。其中，排與排之間不同的交換有不同

的複雜性°事實上，基線網絡有最高的複雜性，而divide-and-conquer網絡

(見[9]的定義3.5.9)的則最低(見[9]的定理4.2.15)�因此，我們除了基線網

絡之外，更硏究類屬2X互連網絡，我們尋出一租顯性方程式控制類屬2X

互連網絡，令它成爲一個循環0-1排序器。

iii

Acknowledgement
I would like to thank Prof. S. — Y. R. Li for his thoughtful guidance. Also, I
would like to thank all the members in Telephone Lab for their willingness to
share the knowledge.

iv

Table of contents
Chapter 1 Introduction 1
1.1 The 0-1 sorter and concentrator 1
1.2 Review of literature on constructions 3

1.2.1 Odd-even merging network 4
1.2.2 The Fast Knockout algorithm 5
1.2.3 Reverse Banyan network prepended by running sum adder 10
1.2.4 Recursive construction using iterative cells 14
1.2.5 Comparison of construction algorithms 17

Chapter 2 Compressor based on baseline-swap network 22
2.1 Bit permutation induced exchange 22
2.2 Compressor 26
2.3 The baseline-swap network 28
2.4 New algorithm for running parity initialization 31
2.5 Input fairness 42
Chapter 3 The general architecture of 0-1 sorter 46
3.1 Recursive 2X-construction 46
3.2 Control a 2X-interconnection network as a cyclic 0-1 sorter 50
3.3 Recursive construction of larger 0-1 sorter 56
Chapter 4 Epilogue 59
4.1 Directions of further studies 59

4.1.1 Synchronization within the same stage 59

V

4.1.2 Layout complexity 60
4.1.3 Statistical initialization of running parity 62

4.2 Conclusion 63
REFERENCES 65

j

i i I I i
li .1 i
i

. 1

1]

1
！

丨 vi
i
i.

List of Figures
1.1 Iterative rule for odd-even merging networks 4
1.2 8x8 odd-even merging network 5
1.3 An 8-to-4 fast knockout concentrator 8
1.4 Stage changes of the 8-to-4 fast knockout 9
1.5 An 8-to-3 fast knockout concentrator with five I 's at input side 9
1.6 An 8x8 banyan network 10
1.7 An 8x8 reverse banyan network served as a 0-1 sorter 12
1.8 An 8-input running sum adder 13
1.9 Recursive construction of TV-input concentrator 14
1.10 Logical circuitry of iterative cell 16
1.11 The eight possible patterns of an iterative cell 16
1.12 A recursively constructed 8-input concentrator 17
1.13 Two phases for generating the running sum in the binary tree 19
1.14 An 8-input miming sum adder associated with binary tree 19
1.15 Recursively constructed 8-input concentrator with three active inputs 20
2.1 A SHUF(3) exchange 25
2.2 A BANY(3) exchange 25
2.3 A SWAP(4) exchange 26
2.4 Recursively constructed 8-input 0-1 sorter 28
2.5 SWAP(VSHIIF(4) = SWAP(4) 30
2.6 8-input compressor together with its RP's 33

vii

2.7 Translation ofD„ into E丨,and 34
2.8 Translation from D„ to E!, and in vector expression 36
2.9 Vector expressions for respective concentrators ofN=2" 38
2.10 Circuitry for a 16x16 compressor 41
2.11 Compressor together with reverse set of control to the original mode 44
3.1 A 2X-network 47
3.2 Two 8-input 2X-networks 48
3.3 2X-network with the external control on both stages 51
3.4 A 24x24 2X-network 53
3.5 A 16x16 2X-network 55
3.6 The generation of Z)，on the network level 5 7
4.1 An 8x8 reverse banyan network together with external control as cyclic 0-1

sorter 62

viii

Chapter 1 Introduction
The 0-1 sorter plays an important role in many applications, for example, in

concentration of active packet in telecommunication switching. In this chapter,
0-1 sorter and concentrator are defined. In addition, there will be a review of
literatures covering sorting algorithms and constructions of 0-1 sorters. Finally,
there will a section on the comparison of those constructions reviewed.

1.1 The of 0-1 sorter and concentrator
0-1 sorter serves as a significant module in telecommunication and

switching. For example, it is stated [14] that the very high throughput required
in broadband packet switches can be met by adopting banyan self-routing
interconnection networks. Relatively high traffic levels are expected on the
packet channels terminating on the inlets of these networks. The low efficiency
of packet channels at the user-network interfaces requires the process of
concentration to interface the broadband network with the low-rate inlets. The
basic function of a 0-1 sorter in broadband switching is to multiplex traffic
streams offered at the user-network interface, so that high utilization is achieved
in the packet channels entering the broadband network. The activity of a packet
is usually represented by the activity bit, which is either zero or one, so that a 0-
1 sorter is capable of selecting those active ones among all the input channels
for multiplexing. As a result, it has been widely applied for separating active
packets from inactive packets [2, 3, 11 and 15".

1

Beside the 0-1 sorter, there is another switch called compressor [9]. A
compressor can be viewed as a general form of 0-1 sorter that the starting point
of the concentrated packet string could be any among all the output ports for
compressor, rather than the first output port. A compressor receives active
packets from the input ports and distributes them in cyclic fashion across the
output buffers, which are located at the output ports of the network. The number
of packets in each output buffer could be differ at most by one among all output
ports, thereby achieving an efficient use of the buffer space. A similar device
that is called "distributor" is described in [5 and 6]. Although the compressor
plays an important role in the efficient usage of buffers, there is not many
literatures cover on compressor. With the usefulness of compressor regarding
the lack of literature available, it is worth studying further into the
implementation and architecture of it.

Before going into the review of those previously proposed 0-1 sorters and
concentrators, clarification have to be made. It may be mixed up that 0-1 sorter
is equivalent to a concentrator, actually they are not.

Definition 1.1.1 By an M-\o-N concentrator, M > TV, it means an M-input-M-
output device for routing single-bit signals such that the upper N outputs are all
greater than or equal to the lower M-N outputs.

In Definition 1.1.1, it can be seen there is an ordering among the inputs.

2

Since it is a device for routing single-bit signals, the ordering is 1 (active) > 0
(idle), where the bit is representing the activity of the signal. Actually, the
definition of 0-1 sorter is built upon the definition of concentrator, and it is
given as follow.

Definition 1.1.2 An M^M device is a 0-1 sorter if it is an M-to-N concentrator
for all N < M. An MxM binary sorter will also be referred as an M-input
concentrator in the thesis.

In another words, a 0-1 sorter is similar to an M-Xo-N concentrator, except
that N can be any value, provided that N is not larger than M. For example, an 8-
to-4 concentrator guarantees that the first four outputs must be larger than or
equal to the last four outputs. Suppose that five I's are presented at the input
side of the 8-to-4 concentrator, there is no guarantee that the fifth output of the
8-to-4 concentrator must be a 1. On the other hand, for the same pattern
presented at the input side of an 8-input concentrator, the first five outputs must
be I's while the last three must be O's.

1.2 Review of literature on constructions
In this section, some previously proposed sorting algorithms as well as

constructions of concentrators and 0-1 sorters are reviewed. They are odd-even
merging network, the fast knockout algorithm, reverse banyan network

3

prepended by running sum adder and the recursive construction of 0-1 sorter. Of
the final three of the architectures, the latter two can be regarded as 0-1 sorters,
while the fast knockout can't be. The fact that a fast knockout concentrator is
not qualified to be a 0-1 sorter will be illustrated by an example.

1.2.1 Odd-even merging network
Merging is the process of arranging two descendingly-ordered lists of

number into one descendingly-ordered list. A sorting algorithm was presented in
1] by invoking the iterative rule for odd-even merging, and this iterative rule is

illustrated by Figure 1.1. Suppose we have two ordered sequences, and we want
to form a single ordered sequence out of the two sequences. It can be seen in
Figure 1.1 that the odd elements of the two sequences are diverted to a merger
of smaller size, while the even elements are diverted to another one. The output
of each of the two smaller mergers is the sorted sequence of their respective
inputs. Finally, the two small sorted sequences are interleaved and passed
through a single stage of comparison, then the output would be the sorted
sequence.

1

Even • .
： M e r g e :
bn ^ ”

Figure 1.1 Iterative rule for odd-even merging networks

4

In Figure 1.1, it is not necessary for m equals n, i.e. the two input sequences
maybe of different lengths. For the two smaller mergers, they can be constructed
by invoking the same iterative rule again. According to the zero-one principle
7], the odd-even merging network is able to sort all numbers other than zero
and one. An 8x8 odd-even merging network constructed using 2x2 cells are
illustrated in Figure 1.2.

ai c,
~ h

� Y , z^XT^
P Cs bo 入 p ^ ^ 1- Cg b � / \ - | U c? b4 Cg

Figure 1.2 8x8 odd-even merging network
1.2.2 Fast Knockout algorithm

In many human sport competitions, there is a knockout tournament to
determine the champion among all participants. In a knockout tournament, M
participants are divided into Mil pairs, and each pair of participants will have a
match to determine who can advance to the next stage. In each stage, half of the
participants advance to the next stage while half of them are eliminated. The
process continues until a champion of the tournament is determined. Simply
speaking, it is the selection of champion through a binary tree of comparisons.
In the knockout tournament with total M participants, log2M stages of matches
are required to determine the winner among the Mparticipants.

5

An M-io-N knockout concentrator [15] is a device with M inputs and M
outputs, although we only care about the first N. The inputs to the knockout
concentrator, which maybe the activity bits of the incoming signals, are
compared so that the N largest among the M inputs are separated out. Although
we are talking about sorting zero and one in the knockout, as well as the fast
knockout sorting algorithm in latter part, by zero-one principle [7], the two
algorithms are able to sort all numbers. In the knockout concentrator, the N
winners are selected one by one, each through a knockout tournament such that
losers of the Ath tournament enter the tournament competing for the (众+l)st
place.

The fast knockout algorithm [10] is an improved version of the knockout
algorithm, in terms of stages required to separate the N winners out of the M
inputs. This improvement is gained by making use of the transitive law on the
ordering of numbers. In the fast knockout algorithm, many small and partially
ordered sets are compared and merged. Finally, a partially ordered set containing
all the competing numbers is formed. Suppose we have two disjoint and
partially ordered sets of numbers. In one of the two sets, there is a number X
such that it is smaller than x numbers in its own set. In another set, there is a
number Y such that it is smaller than y numbers in its own set. Since the two sets
are partially ordered, the loser of the comparison between X and Y is sure to be
smaller than (x+jy+l) numbers in the merged set. Hence, the loser compete for
the (x+>H-2)nd place in the next round of comparison.

6

It is defined in [10] that an element of set S, where certain information
about the ordering among the number in the set is known, is called an i-element
if it is known to be smaller than at least i other elements. In addition, the set S is
said to be in the state {x̂ , x；, if it can be partitioned into a disjoint union
So减yj" .u^S^u... such that Si consists of /-elements of S for all i, for a fixed
n. Furthermore, the disjoint union of z sets in the state {x̂ , x；, is
represented as zx{xq, x”

In human knockout tournament, two competitors have a match to determine
who advance to the next stage. In the fast knockout concentrator, two numbers
are feed into the sorting cell to determine which one is the winner while the
other one is loser, and they will be competing for different places in the next
stage. At the start of the concentration process, there is no information on the
ordering of the numbers within the set and it is represented as

Mx{l,0, 0, ...,0}.
Two disjoint sets of the same state are to be merged into one set. Each /-element
is compared with an /-element in another set. According to the transitive law on
the ordering of the numbers, the loser in the comparison becomes a (2/+1)-
element in the merged set. And the stage change is as follow,

Xj, ..., …}
—ZX {Xq, Xi+XQ, . . ., X2i, • • •}?

and this is called the fast knockout stage.
Suppose M equals then m Fast Knockout stages are needed to merge M

7

disjoint sets into one set. Once all the numbers are in one set, then the
conventional knockout stages are needed to transform the set into {1, 1, ...，1}.

The conventional knockout stage is as follow:

「 _ ! p - — I I — — I 「 _

^ T ' T T，…,T" 2 " ‘ T 2 ^
� L— —J ^ ―‘

In another word, we start the concentration with Mx {1, 0，0,…，0}. After /og^M
fast knockout stages, they are merged into one ordered set. And then invoke the
conventional knockout stage until the set becomes {1, 1, 1, ..., 1} and
concentration is done.

An 8-to-4 fast knockout concentrator is shown in Figure 1.3. Also, the
stage evolution of an 8-to-4 fast knockout concentrator is shown in Figure 1 A.
Here we adopt the notation in [7] that a vertical arrow represents a comparison
between two elements and the larger one will go to the tail of the arrow. Using
2x2 sorting cell can perform the comparison.

，r
，f ，r

” 1 r
” ” 1 r ^ r

” ” ^ r
” ” ^ r

，； y r] [

Figure 1.3 An 8-to-4 fast knockout concentrator

8

Stage r State
8x{l,0, 0, 0}

1 4x{ l , 1,0，0}
2 2x{l,2, 0, 1}
3 lx{ l ,3 ,0 ,3}
4 l x { l , 2 , l , 2 }
5 lx{l, 1,2,1}
6 lx{l，l，l,2}
7 lx{l,l , l，l}

Figure 1.4 State changes of the 8-to-4 fast knockout
An M-to-N fast knockout concentrator is not qualified to be a 0-1 sorter,

and this will be illustrated in the following example. Consider an 8-to-3 fast
knockout concentrator that is shown in Figure 1.5. Also shown in Figure 1.5 are
five I's presented at the input side.

0 1

0 - A 1
1 i . i 1
0 - i i 0
1 i i 1——1
1 i 0
1 i i 0

1 i 1

Figure 1.5 An 8-to-3 fast knockout concentrator with five
I's at the input side

At the output side, although the first three outputs are I's, there is no guarantee
that the fourth and fifth outputs are also I's. It can be seen that for the last two
I's, they appear at the fifth and the eighth outputs, instead of the fourth and the

9

fifth. With this example, it can be seen that while fast knockout concentrator is
an M-Xo-N concentrator, it is not qualified to be a 0-1 sorter.

1.2.3 Reverse Banyan network preceded by a running sum adder
It was proposed in [3 and 14] that a reverse banyan network preceded by a

running sum adder is capable to be a 0-1 sorter. Before talking about the cascade
of reverse banyan network and running sum adder, the mirror image of reverse
banyan network, a banyan network, will be introduced and its non-blocking
conditions will be presented and discussed. An 8x8 banyan network is
illustrated in Figure 1.6.

鼷
Figure 1.6 An 8x8 banyan network

Banyan network is a unique-path routing network, i.e. from a particular input to
a particular output, there is one and only one path connecting them. In addition，

a N乂N banyan network consists of log^N stages of switching cells, and there are
Nil 2x2 switching cells in each stage. For a N^N banyan network, there are
{NHyog^N 2^2 switching cells in total.

Since Banyan-type networks are unique-path routing networks, it is

10

intuitive to think that they incur a very high chance of blocking even though the
destination addresses of the arriving packets are unique. However, if the arriving
packets satisfy certain conditions, it is guaranteed that the packets can be routed
without any internal conflict within the Banyan-type network. The banyan
network is non-blocking if the active inputs x；, x 讲(x>xi if j>i) and their
corresponding output addresses y^ satisfy the following:

1.yj<y2<…<：K^ oryi>y2>
2. Ifx<w<xp then w should also be an active input.

In another words, for the banyan network to be non-blocking, the corresponding
destination addresses of the inputs have to be either monotonically increasing or
decreasing. In addition, the incoming packets should be compact or concentrated,
i.e. leaving no idle input between any two active inputs.

Conforming to the above two conditions in a banyan network, paths
connecting a set of concentrated inputs and their corresponding outputs, which
are either monotonically increasing or decreasing, must can be established. With
this fact, a reverse banyan network is capable of being a 0-1 sorter, and the
rationale is as follow: A reverse banyan network is no more than a mirror image
of the banyan network. The inputs to the banyan network become the outputs of
the reverse banyan network, and outputs of the banyan network become the
inputs to the reverse banyan network. With this exchange of roles between input
and output, the non-blocking conditions for banyan network serves as a
supporting argument that a reverse banyan network can served as a 0-1 sorter.

11

Analogous to the non-blocking conditions in the banyan network, any set of
inputs in the reverse banyan network must can be connected to the set of
consecutively-located outputs, provided that the output addresses of the
corresponding inputs are either monotonically increasing or decreasing [6].
Shown in Figure 1.7 is the scenario that active inputs are routed to the
concentrated output ports in the reverse banyan network.

Figure 1.7 An 8x8 reverse banyan network
served as a 0-1 sorter

In the above, it can be seen that a reverse banyan network possesses the
capability for being 0-1 sorter. However, the routing of signals in the reverse
banyan network remains a problem to be solved. By adding a running sum adder,
the function for the reverse banyan network to be a 0-1 sorter is completed. Let
N = 2". Define the running sum of an N^N switching device as a sequence of A�,
Aj, . "， s u c h that each Â counts the number of active input ports between
addressed 0 and k-\. A running sum adder calculates each A/^. If the calculated
value is binary {bj...b„), then the n-bit routing tag is attached in front
of the packet that enters input port k of the reverse banyan network for self-

12

routing. A running sum adder is depicted in Figure 1.8. It can be seen that a
running sum adder consists of only simple adders.

r——000

4 h
— 4 h

4 > t

K±)t

K ^
Figure 1.8 An 8-input miming sum adder

Suppose the activity bit '1' represents an active input while ‘0，represents
an idle one. Since signals are to be concentrated to consecutively located outputs
in the reverse banyan network, the destination address for two successive active
inputs differ by one only. Running sum adder computes a set of new dummy
destination tags for the active inputs and the individual bits of the tags are used
to control the state of the 2x2 switching cells in the reverse banyan network. For
example, in Figure 1.5, dummy destination tag ‘000’ will be attached to the first
active inputs. In addition, the result of the addition between ‘000，and ‘1’ (the
activity bit) will be ‘001’，and it will in turn be the dummy destination tag for
the next active input. The set of dummy destination tags generated by the
running sum adder will be consecutive, so that the active inputs will be routed in
a non-blocking way in the reverse banyan network.

In Figure 1.8, eight adders are used in the 8-input miming sum adder.
However, there is another construction for the running sum adder with the same

13

dimension. This implementation will be discussed in section 1.2.5 in more
detail.

1.2.4 Recursive construction using iterative cells
In [13], a recursive construction for 0-1 sorter is proposed. Although the

author of [13] regards it as a concentrator, it is actually a 0-1 sorter according to
definition 1.1.2. Since the process of concentration makes use of the activity bits
of the signals, which are either ‘0’ or ‘1，，the device is no more than separating
the signals with activity bits ‘1’ from those with activity bits ‘0，.

The recursive construction is depicted in Figure 1.9.

1 ^ ^ (A//2)-input 厂 1
2 : concentrator •

/ V (A//2)-input \
I / ； concentrator I

N-2 - T] - ^ * ‘ ^ N - 2
N-1 — N-1

Figure 1.9 Recursive construction of TV-input concentrator
It can be seen in Figure 1.9 that the recursive construction consists of two stages.
First of all, the first stage is a set of 2x2 switching elements. The states of the
front-end 2x2 switching elements are set so that one-half of the active inputs are
routed to the upper (M2)-concentrator. On the other hand, the remaining of the

14

active inputs are routed to the lower (iV/2)-concentrator. In the case that odd
number of active inputs are presented at the input side, the upper (7V/2)-
concentrator will have one more active input than the lower one. For the two
(AV2)-input concentrators in the second stage of an TV-input concentrator, they
can further be constructed using the same recursive algorithm. Finally, the
outputs from the two (N/2)-input concentrators are interleaved to obtain the final
concentrator output.

As mentioned, the first stage of 2x2 switching elements is needed to direct
the active inputs to the upper and lower (M2)-input concentrators alternatively.
In order to achieve this, a special 2x2 switching element, called iterative cell, is
employed. Unlike standard 2x2 switching elements such as those used in Figure
1.6 and Figure 1.7, each 2x2 element here is equipped with an extra non-data
input for control signaling. The control signal entering a 2x2 element is the
running parity (RP), i.e. the running sum modulo 2. The 2x2 element uses this
RP in its switching control and, at the same time, integrates the activity bits of
its two data inputs into the RP before passing the RP down to the rest 2x2
elements at the same stage. The logic circuitry is shown in Figure 1.10.

Similar to the case in 1.2.3 that the activity bit ‘1’ represents an active input
while '0' represents an idle one. Let the upper and lower outputs of the 2x2
element be labeled as 0 and 1, respectively. If exactly one of the two inputs is
active and the received RP is x, x is either 0 or 1, then the active input is

15

RPi

2x2

L"

Y

Y
Figure 1.10 Logical circuitry of iterative cell

connected to output When both inputs are active, a logic 1 of x sets the 2x2
switching element to cross state while a logic 0 sets it to bar state. Actually, the
state is controlled by signal d̂ in Figure 1.10. It is bar state ifd! is ‘1,, or cross
state ifd^ is '0'. The eight possible input patterns, and the corresponding state of
the 2x2 elements, are shown in Figure 1.11. It should be noted that the eight
possible input patterns and the corresponding state of the 2x2 element can be
realized by the circuitry in Figure 1.10.

？ X X x
o - f C ^ o o - f ^ - i 1 1 1 1 o - r ^ o i - r ^ o 0 L ^ o i L ^ i

O l i o

J 1 J A
0 0 0 0 1 一 乂 一 1 o l i o 1 I I I 1

1 0 0 1
Figure 1.11 The eight possible patterns of an iterative cell

According to the recursive construction, the two (M2)-input concentrators

16

are further constructed using the same algorithm, giving rise to four (M4)-input
concentrators, and so on. Unfolding the recursion, the concentrator is built

solely with iterative cells. In Figure 1.12, an 8-input concentrator is illustrated.

_

Figure 1.12 A recursively constructed 8-input concentrator
In each of the recursion, there is a stage of front-end iterative cells. For this
stage of front-end iterative cells, the RP has to be initialized and it is passed
down throughout all the iterative cells within the same stage. In addition, for the
second recursion, there are two (N/2)-input concentrators, hence two sets of
front-end iterative cells are formed, and they are within the same stage. For the
network to be a 0-1 sorter, all the RP's have to be initialized as ‘0,, and the
active inputs (with activity bit '1') will then concentrated at the output side, start
stacking at the top output. For the final exchange of the network, it is actually
the composition of two shuffle-type exchanges. In the 8-input concentrator, it is
the composition of two 4x4 shuffle exchanges, which are stacked in parallel,
with a 8x8 shuffle exchange.

1.2.5 Comparison of 0-1 sorters

17

A running sum adder is used, together with a reverse banyan network
(section 1.2.3), to form a 0-1 sorter. The running sum adder is used to generate
the routing tags, which are to be used for the routing in the following reverse
banyan network. An implementation of running sum adder is shown in Figure
1.8. In that implementation, it can be seen that the running sum is transmitted
serially from top to bottom. As the routing tags are generated and transmitted
one by one, from top to bottom, serially, there will be an eight-gate-time lag
between the generation of routing tags for the first input and the eighth input. It
can be said that the adders are arranged in eight stages, as they are operating in
serial.

Beside the serially constructed running sum adder as shown in Figure 1.8,
there is another construction for running sum adder. This implementation is
based on a binary tree [9]. Each leaf of the tree corresponds to an input to the
running sum adder. The calculation of running sum is in two phases. In phase 1,
each leaf will send an T upward if the corresponding input is active. At the
same time, each internal node receives a number L from the left-son and a
number R from the right-son. The internal node will send the sum of L and R to
its predecessor, while keeping the value of L in its own node. In phase 2, each
internal node will receive a value from its predecessor. This value will be sent to
the left son of the internal node. On the other hand, the sum of value from
predecessor and the value kept in that internal node in phase 1 will be sent to the
right son. The operation for the root is the same as those internal nodes, except

18

the value from its predecessor is fixed at zero, as the root has no predecessor.
For the leaves, they will receive a value from its predecessor, and this value will
in turn be the routing tag for the corresponding input, provide that the input is
active. On the other hand, the value received will be neglected if the input is an
idle one. An example is shown in Figure 1.13.

0 1 2 3 4 5

Phase 1 Phase 2
Figure 1.13 Two phases for generating the running sum in the binary tree
The two-phase algorithm, associated with the binary tree, for generating the

running sum can be realized by using adders. A running sum adder based on the
two-phase algorithm is illustrated in Figure 1.14.

X ~ 000

-e-r——(±>-g-

^ — ^

Figure 1.14 An 8-input running sum adder associated with binary tree
For the 8-input running sum adder in Figure 1.14, there are five stages of adders.

19

In general, an iV-input running sum adder would require (llogJSf-l) stages of
adders. Comparing to the serially connected adders, the above implementation
would shorten the time lag between the generation of the first and last routing
tags. This save in time would be significant when the dimension of the running
sum adder is large. This is crucial for high-speed data network, since
synchronization is needed before entering the reverse banyan network. If the
time lag between the generation of the first and last routing tags is large, the
synchronization would be hard to maintain. It is not shown in Figure 1.14 that
there are some elements for delay so that synchronization is kept in each stage
of the running sum adder.

While the running sum adder generate the routing tags for all inputs before
sending them to the reverse banyan network, the recursively-constructed 0-1
sorter (section 1.2.4) generates the routing tags within the network, each bit per
stage, by mean of running parity. Consider the scenario in Figure 1.15, in which
a recursively-constructed 0-1 sorter with three active inputs is shown.

% 0 0

Figure 1.15 A recursively constructed 8-input concentrator with three
active inputs

20

Signal a, b and c are the three active signals, which are presented at input ports 0,
2 and 7，respectively. After passing through the three stages of iterative cells,
they will be concentrated at the top three output ports. In another words, the
destination addresses of signal a, b and c will be 000, 001 and 010 respectively.
Consider signal b in particular. The running parities to those iterative cells which
signal b goes through are 1, 0 and 0，from the first to the third stage. Actually,
this is the reverse of the destination address for signal b. It is similar for a, c, and
all other signals which have to be routed through the 0-1 sorter. The miming
parities can be viewed as the routing tag within the 0-1 sorter, and the use of this
routing tag started at the least significant bit at the first stage to the most
significant bit at the final stage. Comparing to the running sum adder，miming
parities are generated within the routing network, and there is no need for an
extra device for the running sum adder. In addition, the routing tags in the
recursively-constructed 0-1 sorter are generated and consumed at the same time.
On the contrary, the routing tags are generated in the running sum adder and
they are then used in the reverse banyan network. The performance of the
running-parity approach would degrade if the dimension of the 0-1 sorter is
large as synchronization is needed to be maintained within the same stage of
cells. For the complexity, the miming-parity approach saves the space for the
extra running sum adder as mentioned. However, the wiring for the running
parity within the same stage would complicate the layout and complexity is
larger than a baseline network of normal 2x2 switching cells.

21

Chapter 2
Compressor based on baseline-swap network

In those 0-1 sorters discussed in Chapter 1, the core elements of them are
the 2x2 switching cells (iterative cell can be viewed as a variation of 2x2
switching cell). In most cases, several 2x2 switching cells are aligned in a stage,
and there are a number of stages within the 0-1 sorter. Successive stages of 2x2
cells are connected by exchange. In this chapter, the class of bit permutation
induced exchanges [9] is presented. The bit permutation induced exchange is
important in proving that the topology of a recursively-constructed 0-1 sorter is
no more than a baseline network appended with a special exchange. In addition,
the definition of a switch called compressor, which can be functioned as cyclic
0-1 sorter under proper switching control, will be introduced. In particular, the
recursively-constructed 0-1 sorter can be modified to be a cyclic 0-1 sorter by
initializing the running parities to a particular set of values. The explicit formula
for this initialization will be given in this chapter.

2.1 Bit permutation induced exchange
In the previous chapter, four construction algorithms for concentrators and

0-1 sorters are revisited. It is common in all of them that the basic building
blocks are the 7X1 switching cells. In addition, for the baseline network
preceded by a running sum adder and the recursively-constructed 0-1 sorter, the

22

2x2 cells are aligned in stage. For example, an 2^-input 0-1 sorter based on the
baseline network consists k stages of 2x2 cells, and there are 2x2 cells in
each stage. That's also exactly the case for the recursively-constructed 0-1 sorter.
In this situation, a network is different from another by having a different
connection pattern between the 2x2 cells in successive stages. The connection
pattern between two stages of 2x2 cells is called exchange. There are many
possible exchanges. However, in most cases，the exchanges that are commonly
seen (e.g. banyan exchange and shuffle exchange) are in the class of bit
permutation induced exchange [9].

Before talking about the bit permutation induced exchange, the permutation
and representation of it will be covered first. A permutation on integers from 1
to n means a one-to-one function from the set of these n integers into itself. The
most succinct notation for permutations is the cycle representation in group
theory: For example, the cycle (125) represents the permutation such that 1—2,
2—5, 5 ^ 1 and k—k for all numbers other than 1,2 and 5. When two or more
permutations are applied successively, the result is the same as applying the
multiplication, from left to right, of the permutations. Hence, for example, the
permutation (125)(234) is the same as (13425).

For a 2^-input network, there are exactly input and output ports at every
stage of 2x2 cells. Each of the input and output ports can be represented by a k-
bit number in their stages. The interstage exchange is the connection between
the output ports of one stage to the input ports of the following stage. Actually,

23

this exchange is a one-to-one mapping induced by the permutation among the k-
bit numbers. The mapping would be represented by X巾 where a is the
permutation among number from 1 to k.

Definition 2.1.1 A 2�2众 exchange X is a one-to-one mapping among all 众-bit

numbers.

Definition 2.1.2 The order of a non-identity permutation a means the smallest
number m such that a(m) * m.

With this notation on exchanges, the connection pattern between stages can
be expressed in a more precise way. In addition, the result of the combination of
several exchanges can be worked out much more easily, since the combination is
no more than the multiplication of the permutations. The definitions of some
commonly seen exchanges are given below.

Definition 2.1.3 Fixed an integer n. The exchange ^ will be called the
2"x2" shuffle exchange of order d for \<d<n and denoted as SHUF(")力 It can be
simplified as SHUF^ when there is no ambiguity. In particular, the 2"x2" shuffle
exchange of order 1 is simply the 2"x2" shuffle exchange and denoted as SHUF�
or SHUF.

24

Figure 2.1 shows a SHUF� and the permutation of a SHUF(3) is (321). For each
output port, they are connected to the input port of the following stage with the
address such that it is the left shift of one bit of the originating output port
address.

Figure 2.1 A SHUF� exchange
Definition 2.1.4 Fix an integer n. The exchange will be called the 2"x2"
banyan exchange of order d and denoted as BANY(")力 or simply BANY^. In
particular, the T"乂T banyan exchange of order 1 is simply called the 2"x2"
banyan exchange and denoted as BANY(") or simply BANY.

Figure 2.2 shows a BANY(3) and the permutation of it is (31). Each output port
is connected to an input port of the following stage, where the input port address
is obtained by exchanging the first and the third bits of the originating output
port address.

二 \ z =

Figure 2.2 A BANY(3) exchange
Definition 2.1.5 Fix an integer n. The exchange „)(办i im)..�众-川 \d i

1 2 �

25

； w i l l be called the 2"x2" swap exchange of order d and denoted as
众 _[_~2~J + 1)
SWAP(")力 or simply SWAP .̂ In particular, the 2"x2" swap exchange of order 1 is
simply called the swap exchange and denoted as SWAP� or simply
SWAP.

An 8x8 swap exchange is the same as an 8x8 banyan exchange. Figure 2.3
shows a 16x16 swap exchange.

Figure 2.3 A SWAP(4) exchange

Swap exchange is not as popular as the banyan and shuffle exchanges, as it
doesn't draw much attention as the other two in literatures. However, swap
exchange will be part of the focus in the later part of the thesis as it is the
exchange appended to the baseline network after unfolding the recursively-
constructed 0-1 sorter.

2.2 Compressor
For the four 0-1 sorters and concentrators introduced in Chapter 1, they are

26

all devices with the same number of inputs and outputs. The definitions of
concentrator and 0-1 sorter are recited as follow.

By an M-to-N concentrator, M > N, it means an M-input-M-output device for
routing single-bit signals such that the upper N outputs are all greater than or
equal to the lower M-N outputs.

The single-bit signal may stand for the activity of an input port. A binary data
stream trails the activity bit and it is irrelevant to the switching inside the
concentrator.

An MxM device is a 0-1 sorter if it is an M-to-N concentrator for all N<M. Ar
MxM binary sorter will also be called an M-input concentrator.

In all those previously seen 0-1 sorters, they compress active inputs to
consecutive outputs starting at fixed output address, normally the first output
port. On the other hand, there is a switching device called compressor. Instead
of start stacking active inputs at a fixed output address, compressor concentrates
active inputs to circularly consecutive outputs starting at any given output
address. The compressor with proper switching control will be called cyclic 0-1
sorter.

27

Definition 2.2.1 A device is called a compressor if it can accommodate every
combination of concurrent connections subjected to the following two
conditions on active input/output address:
(a) The active output addresses are circularly consecutive;
(b) The mapping from the active input addresses to their corresponding output

addresses is monotonically increasing or decreasing.
Both the strings "00011110" and "11000011" are circular consecutive while

"00110110" is not. According to this definition, the 0-1 sorters discussed in
Chapter 1 are just a special case of compressor with particular control. With this
definition, the cyclic 0-1 sorter constructed can be used in various aspects in
switching. For example, it can be used as a distributor [5] in buffer allocation so
that traffic among the buffers can be evenly distributed.

2.3 Introduction to Baseline-swap network
The 8-input recursively-constructed 0-1 sorter is shown in Figure 1.12. The

final exchange is rearranged and it is shown in Figure 2.4.
� > >

For the 8-input 0-1 sorter in Figure 2.4, it is actually a baseline network
Figure 2.4 Recursively constructed 8-input 0-1 sorter

28

appended with a banyan exchange after the rearrangement. It is not surprising
that the first half of the network is a baseline network. Since the construction of
the 0-1 sorter is a recursive one and it is similar to the recursive 2-stage
construction, which generates a baseline network, except that the recursive
construction of 0-1 sorter appends a shuffle exchange at the end in each step of
the recursion.

Theorem 2.3.1 When two swap exchanges are vertically stacked
together, their concatenation with a 2�2众 shuffle exchange yields the swap
exchange.

Proof
For two swap exchanges that are vertically stacked together, the whole
exchange is SWAP^%. The associated permutation is (2 k){3 k-
1)...(^ ^ +1 k— ^ ^ +1). The associated permutation of the SHUF(幻 is

(k k-\ ... 1). The associated exchange of the concatenation is the product of the
k k

previous two permutations, which is (1 k){2 A:-l)...(— k- — +1). This

permutation would induce the exchange S W A P � . •

Theorem 2.3.2 Unfolding the recursive construction of the 2^-input concentrator
in section 1.2.4 would yield a 2^x2^ baseline network appended with a 2^x2^

29

swap exchange.

Proof

The baseline network is trivial and it is similar to the result of the recursive 2-
stage construction. The final exchange is just a functional composition of
SWAP(k)k_i，SHUF(k)k.2，... SHUF(k)2，SHUF，By Theorem 2.3.1, the results
follow. •

The composition of a SWAP(4)2 and a SHIIF(4) is shown in Figure 2.5.
SWAP(4)2 , stack SHUF(4), the SWAP(4)，

of two 8x8 16x16 shuffle thel6xl6 swap
swap exchanges exchange exchange

Figure 2.5 x S H U F � = S W A P �

It should be noted that the 0-1 sorter in Figure 2.4 is a baseline network
appended with a banyan exchange. However, a BANY(3) is identical to a
SWAP� .The topology of a baseline network appended with a swap exchange at
the end will be referred as baseline-swap network in the remaining of the thesis.

30

2.4 New algorithm for running parity initialization
In the 2^x2^ baseline-swap network design, the 2 � 1 values of the running

parity RPo, which is fed to the first iterative cell at each front-end stage in the
recursive construction, are hard-wired to zero. As a result, all the active signals
are concentrated at the upper output ports from top to bottom. In both Figures
1.8 and 1.14, it can be seen that an initial address '000' is fed to the miming sum
adder. Hence the concentrated outputs start stacking at the top output port.
Actually, the 0-1 sorter constructed from a running sum adder with a reverse
banyan network is able to send active inputs to circularly consecutive outputs
starting at any given output address, once we offer an initial value, instead of
'000', for the computation of running sum. In section 1.2.5, the running sum
adder and running parity are compared, and they are of similar function. Hence,
it is expected that the baseline-swap network is able to be a cyclic 0-1 sorter by
setting the RP� to appropriate values.

The discussion of cyclic 0-1 sorter in this chapter will be based on 2"x2"
baseline-swap network constructed with iterative cells. And it will be shown, in
Chapter 3, that the baseline network appended with a swap exchange is just one
member of a large family of compressor. The compression is done by suitably
controlling the states of 2x2 switching cells within the cyclic 0-1 sorter. By the
construction of cyclic 0-1 sorter based on iterative cells, a recursive algorithm [8:
was derived to initialize the running parities in order to function as a distributor

31

and this is briefly discussed as follow. Suppose there are m active inputs to be
concentrated starting at the output port d. If d is an even number, RPQ of the first
stage is set to zero, otherwise, one is set. After R P � o f the first stage is
determined, the outputs are disinterleaved to be two output patterns of the
smaller 0-1 sorters. By looking at the starting addresses of the two output
patterns, the R P Q ' S of the respective 0 - 1 sorters can be determined in the similar
fashion to the RPQ of the first stage. By invoking the process recursively, all the
RPq's can be obtained.

Notations: Considering the A -̂input (A =̂2") compressor, RPjj is used to represent
the initial value of RP's at stage i, i = 0，1，…，nA, and t h e o n e , j 二 0，1，…’

1-1. In the algorithm, 7 will be expressed in binary format for manipulation and
it is represented as』丄2…jo with j“i as the most significant bit (MSB). Symbols
“V，，，"A" and "0" are representing logical function OR, AND and XOR,
respectively. An 8-input compressor composed with an 8x8 baseline network
and an 8x8 SWAP exchange, together with different RP's is shown in Fig. 2.6.

32

RP。，o 厂 RPi，。厂 R ^ t

Figure 2.6 8-input compressor together with its RP's
The starting point of the circularly consecutive outputs is given by
which may be represented in n-bit binary form as 从 with d^ being the
least significant bit (LSB) and being the MSB. If a 众-bit binary number is
represented in the form of a 众-dimension binary vector with the MSB at the top,
then

D 二 “ d .
d 1

L " 0 J

Lemma 2.4.1
A 2x2 cell is itself a compressor.
Lemma 2.4.1 is clear and the proof is omitted here.

33

Thus, when TV = 2, the TV-input compressor corresponds to a single iterative
cell. The function of RP is to determine which output port the first active input
will go. Thus RP is just simply the destination address of the first active input,
d^. When N>2, D„ is applied to the TV-input compressor for obtaining the initial
values of the RP's. By the recursive construction of the network, the given D„
has to be translated to E” and respectively. It is shown in Figure 2.7，

where E^=RPqq, and are starting points of the respective circularly
consecutive outputs of the two (N/2)-input compressors.

t 0 -T l 0
0 J - 0 u

1 一 - 1 1 W ^ (M2)-input 1
2 - 2 2 J L / K • compressor * 2

TV-input 3 - � \ • / A 3
compressor • ^ ^ \) x :

• / (M2)-input \
N-2_ -N-2 i compressor ： n-2
N-11 r N-l N-1 ±J- N-1

Figure 2.7 Translation of into E j ， a n d
Refer to Figure 2.7, the first active signal (from top to bottom) will be

directed to the upper (M2)-input compressor in the second stage if E�is zero, or
the lower (7V/2)-input compressor if Ej is one otherwise. Obviously, it can be
seen that the upper (M2)-input compressor is connected with even-indexed
output ports 0, 2, N-2 while the lower one is connected with odd-indexed
output ports 1, 3, N-\. With this observation, E, should be determined by dg,

34

the LSB in whose value (0 or 1) indicates whether D^ is odd or even. After
the first stage, the first and second active signals are separated into two
independent (M2)-input compressors, and the two active signals become the
first signals to be considered in their respective (7V/2)-input compressors. In the
second stage, the respective starting points, and of the two (M2)-input
compressors are needed to be determined and they will be shown to be obtained
by the remaining bits in D„，together with the LSB.

It is obvious that one of the and G„.； must be d….d” depending on
which (AV2)-input compressor received the first active input signal. The
rationale is as follow: After the inverse shuffle exchange between the two stages,
the destination address of the first active input becomes dod„_j...dj. Thus,
once the respective (M2)-input compressor routes the signal to its output port
j...dj, the appended shuffle exchange will send the signal to the destination
1 …dido (See the permutation induced by SHUF(n)). From the definition of
compressor, the second active signal at the input side must be routed to the
output address that is by 1 increment of Z)„, hence another address is (心

j@(doAdjA...d^_2), ..., d2®(d(/\dj), dj@do, d^P) . The second LSB is d / ^ d � a s the
carry from the addition of 1 to the LSB has to be considered, and similar for
other more significant bits.

Suppose that do = h the first active signal is routed to the lower (N/2)-
input compressor (G„.y is d^_j...dj), and the addition of 1 to D^ would affect the
more significant bits, and hence should be {d^_j®(doAdjA...d^J,...,

35

d2®(d(/\dj), dj®do).
On the other hand, if do= 0, then F„.j isd„_j...dj. The LSB of G,.； is di®d�= d”
the same as F„./s, as the carry has no effect on it. As a result, F^! : in this
situation. Hence, we have the following statement:

： 卜 - 1]

If Az = J 3 ，then clearly Ej= d�’ G„.;= ^ , d 2 3

乂 L (J
_ J ^0=0

and F„ 1=人 ,
+1 mod2'-i., do =1 f 0) (d„A � (" � A …a(_2)�“”

• • •

• • •

+ mod= Q + =(心八…八乂2)® .
0 d ^

、心 J I j I /̂o .
The translation ofZ)„ into E” F “ and G“ can be expressed in Figure 2.8.

V o 八…八"„_2)6)(1�

(d. Ad,

• / I 式㊉為 .

� / ,
d, • � ^ \ M

V "o y V .
d� V J Figure 2.8 Translation from D^ to E!，and G„.； in vector expression

36

Now we unfold the recursive construction of Figure 1.9 into an «-stage
network of 2x2 iterative cells. For 1< i < n, there are 2“ RP's to be initialized in
the 广 stage. By the recursive application of the formula in Figure 2.8, all the
RP-j's can be determined from the (see Figure 2.9). Therefore, we have the
following algorithm. The algorithm is different from that of [8], in which the
RP's are recursively obtained.

Algorithm 2.4.2 (Expression for RP̂)̂
If (i equals zero)

RPq.O = do;
Else if (j)_j equals zero)

RPij = do Oo Oi ••• Oi-2 di , where the operator Ok =
V； 乂—,_2 =0

<
八 ; " " = 1

Else
Let I equals to the number of consecutive "1 “ in the first run from j“i.

J — Q

RPij = di Ood� O ...CXi-^di—��di’where <Xi= \ , ！ i
L八山-2=1

* In the expression, the precedence of operations is always from left to right.
Also in the algorithm, d � • () d! •”.. •“�d^^j & d^ is the final expression for
RPij where <(\ represents a logical operation, which is either an OR operation
or AND operation.

37

[權 A . , 稱] • 广 V - V ‘ 风 凡

仏<2礼1 4 [辦 J
i——do®di
\ (d…风:

A J ^ / •
； / I J •

t 卜 \
�“�J \ ^ • \ • \ •

\ r / i d�㊉咸 J
� \ / •

U 厂 (. .

Figure 2.9 Vector expressions for respective concentrators o f N = T.
Notice that the array of initial values of RP's is in boldface
expressions.

Proof
The proof is obvious according to the above statements and Figure 2.9. •

The mechanism of the algorithm is described as follow:
1. If z is equal to zero, RP^j = d�and the algorithm stops here.
2. Let I be the number of "1" in the first run of digits in j“j“2. • jo, starting from

38

the MSB. Omit d�’ d,’ …’ di_2, di_j in the final expression for RPij
3. Delete the first I digits (the deleted I digits are all “1” if / 关 0) from j“ij“2."jo,

then the string belongs to one of the three cases:
(a) No digit left in j, i.e.y is an all one string:

RPij = d(,
(b) Only jo left and it is equal to zero:

RPij = d,j © 4；

(c) A stringj;叫j/�__".jo left, andy,_"+7�equals zero:
(i) Ignore 乂例.
(ii) Let X = 1. Starting with d̂ , append "v" if equals zero and

"A" if ji_(x+2) equals one. Delete the digit having been considered
in j. Append d糾.Increment x by I. Repeat Step (ii) until j is
exhausted.

(iii) Append “© J/‘ at the end of the expression.

Example 1
Suppose we want to find out the expression for RP^ ^q. j equals ten and it is
expressed as

Wiio = 1010.
The number of “1” in the first run of digit is one, hence / = 1. It can be seen that
do will not be involved in the final expression for KP^^q. After deleting 力 from j,
the expression for j becomes

39

jjiio = 010,
Starting with X equals I, which is one in this example, d! is appended with a "A"
as ji equals one. With a “© d: ' is appended at the end, the final expression
becomes

RP410 = di/\d2\/d與 d4.
Example 2
In this example, the expression for RP63 has to be worked out. Since i is not
equal to zero in this example,7 has to be expressed in binary format as

jJJ^jjo 二 000011.

The first run of digits of the above j is four “0”, hence I equals zero as the first
run of digits is not a consecutive sequence of “1,,. Up to this step, it can be
concluded that all d � t o d̂ will in involved in the expression for RP^ j. As I
equals zero, none of the digits have to be deleted from j. The first digit, 75 in this
example, has to be ignored. Starting with x equals I, which is zero in this
example, d � i s appended with a "v" as人 is equal to zero. Since both力 and力 are
zero, the expression is appended with two more "v" with d � a n d d: in between.
The partial expression of RP̂ g is now "Ĵ vĴ v̂ /̂ v̂ /j “ after力 is considered. With
both j 丨 and j�are equal to one, two "A" are added to the expression together with
d̂ and d^ In the final step, “ ㊉ i s appended, and the final expression of RP^ 3
becomes

With the algorithm to determine all the RP's with a straightforward

40

approach in a compressor, the combinatorial logic circuitry can be realized for
implementation. It can be seen in the expressions for RP's that only the
operations of AND, OR and XOR are involved, and the circuitry for a 16x16
compressor is shown in Figure 2.10.
do _ dovdj®d2

: J)) ^ ^ ,1 D dQ\/d]Ad2®d3
^ ^ \ ~ . ^doAdj®d2 _

‘‘ J)) j) •> doAdi\/d2®d3
“))) ~ o dQAdjAd2@ds

T — ~ � 9 d风 w _ .
Odi 广

•‘ 口 J ：)) djAd2®ds
‘ j)) ^ d风

O d2
ds

Figure 2.10 Circuitry for a 16 x 16 compressor
While it is much more desirable to derive all the RP's to different stages in

a direct and explicit approach, the generation of some RP's may depends on
other RP's generated in earlier stages. By reusing signals, the total gate count for
the whole circuitry can be reduced.

Corollary 2.4.3 When the active packets are compressed into a cyclic
consecutive sequence, the idle ones are also compressed with the mapping of the

41

idle input addresses to their corresponding output addresses is monotonically
decreasing.

2.5 Input fairness
In all the 0-1 sorters discussed thus far, considering the M-TO-N

concentration process where only the first N outputs are concerned in the 0-1
sorter. If the total number of active inputs is no more than N, all the active
packets can be routed, otherwise, overflow occurs and some active packets must
be queued or discarded. Just like the running sum adder, there exists the inherent
bias against the lower inputs in the baseline-swap 0-1 sorter. The related issue is
the input fairness. As the signal RP is traversing from top to bottom, an active
signal is considered and routed to the next stage first before any signal lower
than it get to be routed to the following smaller 0-1 sorter. Active signals at
lower input ports have a higher chance of being blocked or have to be buffered
than those at the upper input ports under heavy traffic situations. It can be seen
at the output side that the top down sequence of active signals at the input side is
preserved. In this case, cyclic running sum adder network is introduced to
achieve the input fairness in reverse banyan network. In the cyclic structure,
partially computed running sum from the lowest adder is fed to the top adder. A
statistical approach is proposed in this section to cope with the issue of input
fairness in baseline-swap 0-1 sorter.

Two sets of control are applied to the baseline-swap network alternately

42

from time slot to time slot, so that in one time slot precedence will be given to
signals at upper ports while signals at the lower ports will be considered first in
the following time slot. The mechanism is as follow.

In the baseline-swap 0-1 sorter, all the RP's are set to zero so that the
packets will be concentrated at the upper part of the output ports. On the
contrary, we can take complement of all the RP's, i.e. logic one, and then the
compressor stacks the active packets upward from bottom to top. Notice that it
is also one of the output pattern of the compressor. To all of the compressors
discussed so far, the compression property is also tenable when the mapping
from the active input addresses to their corresponding output addresses is
monotonically decreasing.

The input fairness is achieved by:
a. In the zth time slot, all the RP's are set to zero so that packets at upper ports

are concentrated and the network is just a compressor for concentration;
b. In the (z+l)th time slot, the number of active packets, k, is used as the

starting output address in the compressor and it is expressed in binary form
as before. All the RP's are obtained by using algorithm 2.4.2. However,
complement of each calculated RP is taken before applying to the network,
i.e. logic one is applied to the iterative cell if zero is the calculated value.

A compressor being operated in the mode for (/+l)th time slot is described in
Figure 2.11.

43

华 = 1
V ^ [} [

r i 6

X X 〜 y y

y - | y M H \ y V 0 blocked

z— z
Figure 2.11 A compressor together with a reverse set of

control to the original mode
Suppose there are packets at input ports 0, 1, 2, 5 and 6. There are total 5 active
inputs and hence k equals 101 in binary form. With k equals 101, all the RP's
are calculated and complements are taken before applying to the iterative cells.
The routing of idle inputs are also shown in Figure 2.11 to illustrate the fact that
the mapping of them is the opposite of those active one.

Figure 2.11 shows that active signals at lower input ports achieve higher
priority under the operation of step b. The reasoning is as follow. By corollary
2.4.3, the input-output address mapping of idle inputs is monotonically
decreasing while the active ones is monotonically increasing in the compressor
if all the RP's are set to zero. If all the RP's are set to one instead, the direction
of mapping is just reversed and the first active signal at the input will be at the

44

lowest output.
Obviously, the network is also a compressor to the idle inputs. If the

mapping from the idle input addresses to their corresponding outputs is
monotonically increasing (here, the number of active packets is used as the
starting output address), the active ones are also compressed with the mapping
from their input addresses to corresponding output addresses which is
monotonically decreasing. Therefore, considering the idle inputs, RP,s are the
initial values to the compressor.

With this fact, the RP's are slightly modified so that from top to bottom the
last active signal at input side will be presented at the first output ports, and then
the second last active signal and so on. Following the above two steps in every
consecutive time slots, signals at lower input ports should have a similar chance
of blocking with signals at upper input ports after long time span.

45

Chapter 3 The general architecture of 0-1 sorter
In the previous chapter, it is shown that the recursively-constructed 0-

1 sorter is actually a baseline network appended with a swap exchange. The
baseline-swap network is capable to be a compressor. Actually, the baseline-
swap network is just a member of the family call 2X-networks which are
obtained by recursive 2X-construction [9], and it is the general architecture of 0-
1 sorter bases on. The baseline network is among those that incur the highest
complexity in terms of the 2-layer Manhattan layout, while the divide-and-
conquer networks (Definition 3.5.9 in [9]) achieve the lowest complexities
(Theorems 4.2.15 in [9]). In view of this, we are interested in the generic 2X-
interconnection rather than just those involved in the baseline network appended
with swap exchange. As the recursive 2X-construction itself also preserves the
compressor properties, network built based on the general architecture can be
viewed as a module in a much larger 0-1 sorter. With the recursive construction,
a 0-1 sorter with a large number of input ports can be realized by connecting
various modules as switching blocks in the 2X-network. We derive an explicit
formula for the initialization of running parities that control a generic 2X-
construction network into a cyclic 0-1 sorter, and it will be introduced in this
chapter.

3.1 Recursive 2X-construction
The recursive 2X-constmction network consists of two stages of switching

46

modules, the first stage and the second stage, as well as an exchange appended
to the second stage of switching modules. A 2X-network is shown in Fig. 3.1.
Actually, the name of 2X-network is originated from the “2” stages of switching
module and the final exchange (X) appended.

ist stage: n units of mxm stage: m units of n^n
switching module switching module

• mxm ^ ST 7 nxn ^ y 7 ^

麗
• mxfn • • nxn • •
• • • • •
• • • • •

Figure 3.1 A 2X-network
The topology of the network is described as follow. Suppose network with

a total of mn (i.e. m times n) input ports and the same number of output ports is
to be built, where both m and n are any positive integers other than one. The first
stage will be n units of switching module, each of them is a m^m one. For the
second stage, there will be m units of switching module and each of them is a
nxn one. Switching modules in the first and the second stages are labeled from 0

47

to n-\ and 0 to m-l from top to bottom, respectively. Then the j^^-output port of
the 产 module in the first stage is connected to the î -̂input port of module in
the second stage. In addition, there is an exchange appended to the second-stage
modules. The final exchange is just the inverse, or the mirror image, of the
exchange between the two stages of switching modules in the 2X-network, i.e.
the shuffling effect will be cancelled if the two exchanges are appended directly.

The recursive 2X-construction allows flexibility, as networks with the same
number of input ports can be of various possible topologies, depending on how
the (m, n) pairs are chosen. For example, the (m, n) pair of a 16-input 2X-
network can be either one of (2, 8), (4, 4) and (8, 2). The (m, n) pair of an 8-
input 2X-network can be either (2, 4) or (4, 2). Both the possible 2X-
constructions of an 8-input network are shown in Figure 3.2.

一 h —J fe^v I D — ~^三i� � / D
I I • • ' > . > » > \ I 、 、 i 、 • • 、 , 、 、 • > 、 ^ s - s ^ / \ Z

1/ \ l 、、、、、、、、、 、”•、>、>•、、、、••、；•、••••���� VN SS # \ ^ A A A ：! fi^k /
一 Ŷ 攻…; \ 二 ： Y / ； ^財… Y 厂 Z y /

\ / ， p > i O m m t m f m m m i H I ^ I I ^ , , , , . „ , ； • • ‘ I \ / a y l — — i n i •？粉—t粉、“：納视淋 \ / \ / \ i \ I

_r] /y^ p̂r；!：丨 bi p r — i _ / V \
C "1 ly M feiSHi SSS V C ： 衾 HTfy v^ "v
D ^ A D ^ ^ ^ ^ ^？ - - L � \ A

(a) (m, n) = (2, 4) for an 8-input (b) (m’ n) = (4, 2) for an 8-input
network network Figure 3.2 Two 8-input 2X-networks

In Figure 3.2(a), the first-stage switching modules are 2x2 switching cells
while those in the second stage are 4x4 switching modules, which are in the
shaded boxes. In the shaded boxes, the 2X-construction method is applied until

48

all the switching modules within the network are 2x2 switching cells. The same
occurs in Figure 3.2(b). When the 2X-constmction method is applied recursively
to all the switching modules within the network so that all the switching
modules are 2x2 switching cells, the networks with the same number of input
ports are actually functionally equivalent. It means a network resulting from
recursive 2X-construction can be transformed into another, of the same
dimension, by shuffling 7X1 switching cells within the same stages. For example,
in Figure 3.2, network in Figure 3.2(a) can be transformed into Figure 3.2(b)
simply by swapping the second and third 2x2 switching cells in both the second
and third stages.

It should be noticed that the network in Figure 3.2(a) is the same as the one
in Figure 1.12. After the final exchange in Figure 3.2(a) is rearranged, it
becomes a baseline-swap network. In general, the baseline-swap network
topology is a special case of the 2X-network. It is constructed by applying the
recursive 2X-construction, choosing m equals two in every step, until all the
switching modules in the network are 2x2 switching cells.

It is also depicted In Figure 3.2 the sets of connections. Signals are
presented at input ports 3, 5, 6 and 7, and they are routed to output ports 7, 8, 1
and 2, respectively. In this connection assignment, the output addresses are
circularly consecutive. Also, the mapping from the active input addresses to
their corresponding output addresses is monotonically increasing. Since the 2X-
networks in Figure 3.2 allow the above connection assignments, it is illustrated

49

that 2X-network preserves the compressor properties. It is proved [9] that if all
the switching modules within the network are compressors, the 2X-constmction
preserves the compressor properties as well.

3.2 Control a 2X-iiiterconnection network as a cyclic 0-1 sorter
In the previous section, it is stated that a 2X-network is capable of being a

compressor, provided that every switching module within is compressor.
However, interaction between switching modules is required for the 2X-network
to function properly as a compressor. In this section, the control algorithm to the
network, which is mainly the interaction between modules of the same stage,
will be introduced.

As mentioned, compressor can route the signals to any set of circularly
consecutive outputs. Hence, out-band control to a compressor is needed to
inform the device which set of output ports should the signals be routed to. In
addition, according to Definition 2.2.1, suppose we have chosen that the
mapping from the active input addresses to their corresponding output addresses
is monotonically increasing. Then the only information for compressor to know
is the output address of the first (starting from the top) active input. With the
output address of the first active input, the other signals will be routed to from a
circularly consecutive set while the mapping from the active input addresses to
their corresponding output addresses is monotonically increasing.

50

：0 0

n-\ • • m-\ • •
Figure 3.3 2X-network with the external control on both stages

The network in Figure 3.1 is recited in Figure 3.3 for the illustration of the
control. Different from Figure 3.1, Figure 3.3 shows that out-band control signal
is required for both first stage and second stage switching modules. The external
controls to the two stages are different. In the first stage, all the modules are
serially connected as out-band control is generated and passed down from top to
bottom. On the other hand, out-band controls to the second stage modules are
independent from each other.

The control algorithm is described as follow. Suppose the output address of
the first active input is D, As D is any integer from 0 to mn-1, it can be
written as D = xm+y, where 0^<n, 0<y<m. The value y is fed into the top most
switching module, module 0, in the first stage. Since the modules in the first
stage are serially connected, the out-band control signal has to be passed down
to the following module. Suppose the number of active input presented at each
of the first stage modules are kp, 0<p<n. Then the value (y+ko) mod m will be
passed down as out-band control to module 1. In general, module i receives

51

i-l i (y+'^k.) mod m as out-band control and passes down (y+ ^k.) mod m to the
«=0 i=0

following stage. Simply speaking, the out-band control in the first stage is the
running sum modulo m, with an initial value y. As stated, it is required that all
the switching modules within are compressors for the 2X-network to be a

i-l
compressor. Similar to D to the 2X-network, (y+^k.) mod m is actually the

i=0

starting address of the first active input among the m inputs of the switching
i-l

module i on the first stage. Once (y+^k^) mod m is fed in as the out-band
i=0

control to module i of the first stage, signal will be routed in a way that they
i-l

start stacking at output port (y+^k.) mod m of module i. Also, the mapping of

the active input addresses to their corresponding output addresses is
monotonically increasing. In the second stage, every out-band control to each of
the switching module are independent. It is obtained by comparing y with the
position of the module. The second stage modules are labeled from 0 to m-l
from top to bottom. If i >y the out-band control to module i will be x. On the
other hand, if i<y, the out-band control to module i will be (x+1) mod n.

Algorithm 3.2.1 (Control to 2X-network with (/w, n) as parameters)
D is the output address of the first active input, and it is expressed as D
二 xm+jK, where 0^<n, 0<y<m. The number of active input presented at each of
the first stage modules are kp, 0<p<n.
Control of module i of stage 1:

52

If (i equals 0)
Control = y;

i-l
Else Control = (y+ ^ k.) mod m.

i=0

Control of module i of stage 2:
If(i

Control = X；

Else Control = (x+1) mod n.

Example 1
A 24x24 compressor is to be constructed, and the (m, n) pair is (6, 4). Suppose
D equals 20 and there are 5 active inputs, located at 0，7, 13, 20 and 21. The
network is shown in Figure 3.4. —̂

_

Figure 3.4 A 24x24 2X-network
53

As D equals 20, it can be expressed as D = 6x+y, where x and 少 equal 3 and 2,
respectively, in this case. As y equals 2，signal P at module 0 of the first stage
will be routed to output 2. The running sum modulo m is passed down to module
1，but now with value 3 since 1 is added as there is one active input presented at
module 0. Signal Q is routed to output 3 as the miming sum modulo m is now 3.
The procedure is applied to each of the first stage module until the running sum
modulo m is passed down to the last module. Hence miming sums modulo m to
modules 2 and 3 are 4 and 5 respectively. After the routing of the first stage,
signal P, Q, R, S and T are now presented at the input sides of modules 2, 3，4, 5
and 0 of the second stage, respectively. As y equals 2, the out-band control
signal to modules 2, 3, 4 and 5 will be x, which is 3 in this case. On the other
hand, the out-band control signal to modules 0 and 1 will be (x+1) mod n, which
is 0 in this case. It can be seen at the output side of the network that the signals
from a circularly consecutive sequence, and the mapping of input addresses to
their corresponding output addresses are monotonically increasing.

Example 2
It is going to show in this example the control to a 2^x2^ 2X-network, which is a
little bit simpler than those in non-2�2" 2X-networks. Consider a 16x16 2X-
network, where k equals 4 and it is shown in Figure 3.5.

54

1 1 u

Figure 3.5 A 16x16 2X-network
Suppose D equals 11 in this case. Different from the previous example, D is
only needed to be expressed in binary format. D is expressed as 1011(2) in this
case. The out-band control signal to the first stage of switching module is the
last two bits of D. In general, for a 2^x2^ 2X-network with a particular (m’ n)
pair, the last log m bits of D can be viewed as y while the first log n bits can be
viewed as x in the above mentioned control algorithm, lip) will be fed into
module 0 of the first stage in this example. Since there are two active inputs
presented at module 0, the running sum modulo 4 will be (11(2)+10(2)) mod 4,
which equals 01(2)，and this value will in turn be fed into module 1. This process
is carried on until the running sum reaches the last module of the first stage.
Since the initial value of the running sum modulo 4 to the first stage is 11(2), the
out-band control value to module 3 in the second stage will be 10(2) while the
other three are all 11(2). This result simply follows algorithm 3.2.1 where x
equals 10(2) equals 11(2). Once all the values are determined, the signals can

55

be routed to the particular set of addresses.

3.3 Recursive construction of large 0-1 sorter
A 2X-network can be used to further construct a larger compressor with

more input and output ports. For instance, by using the 24x24 and 16x16
compressors in the above two examples as building blocks, a 384x384
compressor can be built, where the 24x24 and 16x16 compressors are used as
the switching modules in the 384x384 compressor. As mentioned, first stage
switching modules are serially connected and each of the module has to further
generate the out-band control signal, which is simply the running sum modulo m’
to the following module. Hence, in building a large 2X-network using smaller
2X-networks as switching modules, those smaller 2X-networks should be
capable of further generating the out-band control signal beside receiving them.
Actually, the generation of out-band control signal by the 2X-network is very
simple, and it is described as follow. The running sum modulo m after the last

module of the first stage will be [(y + ^k.) mod m]. For the second stage, we
i=0

need to consider the last module only. The out-band control to the last module of
the second stage must be x. Let the number of signals presented at the input side
of this last module is k'. Then like those first stage modules, the miming sum
modulo n of this last module is (x+k') mod n. Then the out-band control signal,

ti-i D，, will ho D' = [(x+A:') mod + [(jv + ^ A：.) mod m\. If the compressor is a
/=o

56

2众x2众 network, D ‘ is simply the concatenation of the two running sums of the
two stages. For example, the last modules of both first and second stages, in
Figure 3.5, together with the signals, are illustrated in Figure 3.6.

11� Y

n r
0 1 � 0 0 �

“ I ^ ‘
zr = 0001(2)

Figure 3.6 The generation of Z)' on the network level
In the concatenation, it can be seen that the less significant bits are from the first
stage, while the more significant bits are from the second stage. In Figure 3.6,
Olp) is the running sum modulo 2 from the first stage and 00(2) is the running
sum modulo 2 from the second stage. Their concatenation, 000 Ip), will be
treated as D in the following module and the first signal in it will be routed to
output port 000 Ip).

As mentioned, the baseline-swap network in [13] is an example of 2X-
network. The baseline-swap network is composed of iterative cells, and the out-
band control associated with the iterative cells also resembles the control
algorithm in the 2X-network indeed. In the 0-1 sorter, since the concentrated

57

signals should start stacking at the first output port, D equals to zero. For a 2^x2^
0-1 sorter, it is constructed by choosing (m, n) pair as (2, and the 2众 1x2众

network is further constructed by 2X-constmction. 2X-construction is
recursively applied until all the elements within are all 2x2 iterative cells. The
iterative cell can be viewed as a 2x2 compressor, receiving the running parity so
that it will guide whether the upper or the lower output port the first active
signal should go. With this recursive 2X-constmction, a large 0-1 sorter can be
built using smaller compressors as the building blocks.

58

Chapter 4 Epilogue
In Chapter 2, the baseline-swap network has been introduced and its usage

as a compressor has been investigated. Furthermore, it is generalized in chapter
3 that baseline-swap network is just a member in the family of 2X-networks. For
the algorithms proposed in chapter 2 and 3 concerning about the routing of the
signals and generation of running parities, they are theoretically feasible. In this
chapter, the implementation problems and the further directions of research will
be investigated.

4.1 Directions of further studies
4.1.1 Synchronization within the same stage

Consider a 2^x2^ baseline-swap network constructed using iterative cells. In
the first stage, running parity is propagating from the top iterative cell to the last
iterative cell of the same stage. In this implementation, there maybe the situation
that packets are ready to be sent to the second stage at the upper half of iterative
cells, while those iterative cells at the lower half are still waiting for the running
parity to determine the bar/cross state of the cells. Synchronization would be
hard to maintain. This problem would be accentuated if k is very large and the
number of iterative cells per stage increases, as the running parity has to pass
through more iterative cells in serial.

One of the possible solutions to this is to add dummy content to the packet,
i.e. a training sequence is added prior to the real processing of data packet. With

59

the dummy content, it can be guaranteed that all the running parities reach the
last iterative cells of their respective stages and the routing is determined before
the real data enters the first stage of iterative cells. Hence synchronization can
be maintained.

In section 1.2.5, it is mentioned that the rutming sum adder can be
constructed using the two-phase algorithm, which is associated with the binary
tree. The main advantage of this implementation over the serially connected
running sum adder in Figure 1.8 is that the running sum adder associated with
the binary tree maintains a better synchronization. A similar technique can be
applied to the baseline-swap network of iterative cells. Instead of passing the
running parity from top to bottom, the iterative cells of the same stage can be
viewed as the leaves of a binary tree and the running sum of each iterative cell is
passed up to the root. Then the running parities to different iterative cells are
passed down from the root, and the iterative cells would receive them at the
same time as they are all at the lowest level of the binary tree.

4.1.2 Layout complexity
It is stated in Chapter 3 that a 0-1 sorter of certain dimension can be

constructed with different topologies by choosing different {m, n) pairs in the
recursive 2X-construction. With different (m，n) pairs in each of the recursive
step, the 0-1 sorter constructed would induce different complexities. For
interconnection network of 2x2 cells, the major component of the layout

60

complexity depends on the exchange between any two stages. For all
interconnection networks of 2x2 cells, the lower bound for the layout
complexity is associated with the divide-and-conquer network [9]. For the 0-1
sorter by recursive 2X-constmction, a similar network can be obtained by
choosing appropriate (m, n) pairs in different steps. However, for such a 0-1
sorter, it would induce higher complexity than a divide-and-conquer network.
The higher complexity is due to the extra wiring for carrying the running parities
within the same stage of iterative cells, which cannot be found in a general
interconnection network.

As the explicit set of formulae for determining the running parities in
baseline-swap network is derived, it may be possible to derive a similar set for
any other network resulting from recursive 2X-constmction. However, they are
not as simple as the case for baseline-swap network. Consider the reverse
banyan network constructed by choosing n equals 2 in every step in the
recursive 2X-costruction, which is illustrated in Figure 4.1. For the baseline-
swap network, since m equals 2 in the first stage and switching modules are
serially connected. As a result, the one-bit running parity can be transmitted
from top to bottom at every front-end stage of iterative cells. However, in the
construction of reverse banyan network, the first-stage switching modules are
not 2x2 cells while the second-stage elements are. Hence, the running sum
modulo m is transmitted serially, which is a signal of log m bits. In order to
obtain the explicit set of formulae similar to the one for baseline-swap network

61

in any other 2X-networks such as reverse banyan network, single-bit signals
have to be combined to form the running sum modulo m before they can be
transmitted to the next module. The transmission of more than one bit signal
complicates the process of finding the explicit formulae. The derivation of the
explicit formulae for running parities depends on the running sum of those
previous modules, while those formulae for baseline-swap depends on /)„ solely.

^ ̂ 圏
Figure 4.1 An 8x8 reverse banyan network together with

external control as cyclic 0-1 sorter

4.1.3 Statistical initialization of running parity
According to algorithm 3.2.1, it can be seen that the running parities to the

switching module in the second stage of the 2X-network is either x or If
only one value is obtained and applied to all the second-stage modules, the
workload for computation would be less, and this maybe seen as a statistical
way of concentration. With statistical concentration, the performance of the 0-1
sorter can be investigated and see whether it is acceptable.

62

4.2 Conclusion
Compressor is a concentration network that compresses active inputs to

circularly consecutive outputs starting at any given output address. In many
ATM switching design, this kind of network plays an essential role as a
distributor in buffer allocation and building of virtual FIFO queue [4]. A
compressor can be constructed from iterative cells whose bar/cross state
controlled by in-band signals from the two inputs plus an external signal, the
running parity. First of all, the family of bit permutation induced exchanges is
introduced in the thesis. The family contains many commonly seen exchanges,
such as banyan exchange and shuffle exchange. Swap exchange is also defined,
according to the bit permutation induced exchange. It is shown that the
recursively-constructed 0-1 sorter is actually a baseline network appended with
a swap exchange at the end. As this network topology is capable to be a
compressor, the thesis investigates an explicit and immediate algorithm for
initializing each RP in the baseline-swap network based on iterative cells. This
algorithm is deduced from the calculation of the running sum stage by stage.
With this algorithm, a practical logical circuitry can be realized. Besides, the
construction of the baseline-swap network is later generalized to be the recursive
2X-constmction. With the recursive 2X-construction, 0-1 sorter of the same
dimension can be of various topologies. Furthermore, the 2X-construction can
be applied recursively, so that 0-1 sorter of large dimension can be obtained by

63

connecting smaller 0-1 sorter according to the 2X-construction. The algorithm
for the initialization of RP in any 2X-network for it to be compressor is also
proposed, which is essential in building a large 0-1 sorter.

64

t

REFERENCES

1] K. Batcher, "Sorting networks and their applications," Proc. Spring Joint
Computer conference, 1968, pp. 307-314.

"2] J. Giacopelli et al., "Sunshine: A high performance self-routing broadband
packet switch architecture," IEEE J. Select. Areas Commun., vol. 9, pp.
1289-1298, Oct. 1991.

；3] A. Huang and S. Knauer, “Starlite: A wide band digital switch," Proc.
GLOBECOM'84, Nov. 84, pp. 121-125.

[4] H. S. Kim, "Multichannel ATM switch with preserved packet sequence,"
Proc. ICC'92, pp. 1634-1638.

；5] H. S. Kim and A. Leon-Garcia, “A self-routing multistage switching
network for broadband ISDN," IEEE J. Select. Areas Commun., vol. 8, no.
3, pp. 459-466, Apr. 1990.

:6] H. S. Kim and A. Leon-Garcia, "Nonblocking property of reverse banyan
networks," IEEE Trans. Commun., vol. 40, no. 3, pp. 472-476, Mar. 1992.

[7] D. E. Knuth, The Arts of Computer Programming, Vol 3: Sorting and
Searching, Addison-Wesley, 1973.

[8] J. G. Lee and B. G. Lee, "A new distribution network based on controlled
switching elements and its applications," IEEE/ACM Trans. Networking,
vol. 3，pp. 70-81, Feb. 1995.

[9] S.-Y. R. Li, Switching Theory and Broadband Applications, Academic
Press, Sep. 1, 2000.

[10] S.-Y. R. Li and C. M. Lau, "Concentrators in ATM switching," Proc.
GLOBECOM'95, vol. 3, pp. 1746-1750.

[11] S. C. Liew and K. W. Lu, “A 3-stage interconnection structure for large
packet switches," Proc. ICC'90, pp. 316.7.1-316.7.7.

12] P. S. Min, H. Saidi, and M. V. Hegde, “A nonblocking architecture for
broadband multichannel switching," IEEE/ACM Trans. Networking, vol. 3,
no. 2, pp. 181-198, Apr. 1995.

13] M. J. Narasimha, "A recursive concentrator structure with applications to
self-routing switching networks," IEEE Trans. Commun., vol. 42, pp. 896-

65

898，Feb/Mar/Apr. 1994.
"14] A. Pattavina, "Design of a packet concentrator for broadband networks,"

Proc. ICC'90, vol. 3, pp. 817-821.
15] Y,S. Yeh，M. G. Hluchyj, and A. S. Acampora, “The knockout switch: A

simple, modular architecture for high-performance packet switching,"
IEEE J. Select. Areas Commun., pp. 1274-1283, Oct. 1987.

66

•'丨

CUHK L i b r a r i e s

圓•圓111
DD3fi03MEl

