FINDING STRUCTURE AND CHARACTERISTIC
OF WEB DOCUMENTS FOR CLASSIFICATION

By
WONG, Wa1 CHING

SUPERVISED BY :

Pror. WAI-CHEE FU ApaA

A THESIS SUBMITTED IN PARITAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF PHILOSOPHY
IN

COMPUTER SCIENCE & ENGINEERING

©THE CHINESE UNIVERSITY OF HONG KONG

JUNE, 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.






Finding Structure and Characteristic of
Web Documents for Classification

submitted by
WONG, Wai Ching

for the degree of Master of Philosophy
at the Chinese University of Hong Kong

Abstract

Large amount of data is available on the World Wide Web (WWW). If web
pages could be converted to a database, then the users could retrieve data more
efficiently. However, problems arise due to the semistructured nature of web data
and many researchers are working on these problems recently. In this thesis, we
address one of these problems: different wordings are used to represent the same

attribute in different web pages.

Web data, like most semistructured data, is self-describing; i.e. the schema
is contained within the data in a web page. Attributes of the schema would
be highlighted explicitly by wordings, called labels, in some web pages, e.g.
the wordings or label, "job position” is used to represent an attribute in a web
page. In fact, different web pages may use different labels to represent the same
attribute, e.g. "job title” is used instead of ”job position” in other pages. This
is a critical problem for retrieving the data of the attribute represented by ”job
title” and ”job position” if we do not know that these two labels represent the

same attribute. In this thesis, we propose a labels discovery algorithm to

discover labels that represent the same attribute.

The major contributions of this thesis are: (1) we introduce a hierarchical



structure constructed by five heuristic methods which represents the hierar-
chical relations of each data in a web page, (2) we propose a labels discovery
algorithm to discover labels representing the same attribute by using the rela-
tions among data in the hierarchical structure of web pages, and (3) we then
propose a web pages classification method by using the knowledge obtained in
the labels discovery algorithm. The labels discovery algorithm could discover
labels of the same attribute as shown in the experiments. Also, by using the
knowledge obtained in our algorithm, we obtain a high precision of classification

of web pages in the experimental results.
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Chapter 1

Introduction

There are over half a billion homepages on the World Wide Web (WWW) and
a thousand more are appearing each hour. WWW provides a vast resource for
information of almost all types, ranging from DNA databases to resumes to lists
of favorite restaurants. However, the semi-structured nature of information on
the web leads to a critical problem that users cannot directly sift through and

interpret all the information.

Users commonly retrieve web data by browsing and keyword searching. In
fact, browsing is not suitable for locating particular items of data [5] because
following links is tedious, and it is easy to get lost. Besides, browsing is not
cost-effective as users have to read the documents to find the desired data. For
example, if the users want to find the requirements of a particular job in the
web page, they have to locate the information by reading the whole web page.
On the contrary, keyword searching is sometimes more efficient than browsing.
But it often returns vast amounts of data, much more than the user can handle.
Sometimes the number of web pages returned by a search engine is in the order
of ten thousands. A tiresome exhaustive manual browsing is often needed to
accurately pinpoint the data that users require even though the returned web

pages are ranked.
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Different types of data are available on the web: text, image, sound, movie,
etc. In particular, the amount of textual data available on the web is estimated
to be in the order of one terabyte. The web can then be seen as a very large,
unstructured but ubiquitous database [7]. For that reason some researchers have
resorted to ideas taken from database techniques in order to retrieve data more
efficiently from the web. Databases, however, contain structured data and most
web data is semistructured in nature [9]. This means that web data does not have
a rigid structure and cannot be retrieved easily by using traditional techniques.
The main reason of this problem is that web pages publication usually does not
involve any publishing authority to critique, edit, or verify the accuracy of the

material. Due to this loose standard, web data will be stored in different formats.

1.1 Semistructured Data

Semistructured data [1, 9] is characterized by the lack of any fixed and rigid
schema, although, unlike unstructured raw data, typically the data has some
implicit structure, which is neither regular nor known a-priori to the system.
Information of semistructured data is normally associated with a schema and is
contained within the data. In other words, attribute names are stored with the
data, hence most semistructured data model are self-describing. In some forms
of semistructured data, there is no separate schema. In others, it exists but loose

constraints are placed on the data.

The lack of external schema information makes browsing and querying these
data sources inefficient and even impossible at worst. For instance, a user finding
a job instance in a traditional relational database would know the structure of
the job. The user would know all the attributes of this instance. As an example,
the schema of that database would tell us that each job has job name, description

and requirement. However, in a semistructured world, some jobs may have job
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name and description only. Other jobs may have job name, description and job

location, instead of requirement.

The web data is an example of semistructured data because the standard on
web page publication is loose. As stated in [20], data found over the web is gen-
erally fairly irregular. For example, the majority of home-pages of job openings
may contain some similar pieces of information (e.g. position, responsibilities,
qualifications) but some of these may be missing in some particular pages, and
extra information may be present in others. In [20], the authors said that irreg-
ularities are often the norm in data found over the web. They arise naturally
when one integrates data originating from several distinctly structured sources
that provide information about a common set of entities but which represent

these entities differently.

There are several ways to deal with the lack of fixed schema. If the semistruc-
tured data is somewhat regular but incomplete, then an object-oriented or re-
lational schema can be used to represent the data along with null values. This
approach fails if the semistructured data is very irregular. As a consequence,
trying to fit the data into a traditional database form will either introduce too

many nulls or discard most of the information [29].

A lot of recent work has been targeted to handle this problem [2, 6, 11, 14,
18, 28]. However, the previous approaches require users to specify a particular
structure for different set of web documents. This process mainly depends on
human input. There is an enormous amount of web documents and they contain
different types of information. It is an issue to specify the data model for each
type of information. These approaches are then suitable to some specific data.
On the whole, people are still trying to discover the mapping of web pages to

database.



Chapter 1 Introduction 4

1.2 Problem Addressed in the Thesis

Many problems on web data retrieval arise because of the semistructured nature
of web data. Many researchers are working on these problems, e.g. modeling
web data as database objects [21, 24, 19], finding structure of web page [20, 31],
extracting data on the web [12, 8, 15], etc. In this thesis, we focus on one
problem of the loose standard of web page publication: different wordings are
used to represent the same attribute. As a result, the objective of the thesis is to
develop a methodology that discover a set of wordings that represent the same

attribute in a collection of web pages.

1.2.1 Labels and Values

In the thesis, a web page is assumed to contain two main categories of infor-
mation: label and value. Web data, like most of semistructured data, is self-
describing. In a manner of speaking, the schema is described within the data in
a web page. Attributes of schema would be stored explicitly with their names by
wordings in the web pages and these wordings are called labels. Each label rep-
resents an attribute. Besides, the data of attributes in the web pages are called
value. To illustrate, there are two web pages in Figure 1.1. In Figure 1.1(a),
"POSITION” is a label used to represent an attribute in that web page. Then
the value of this label is " Co-Sale Manager - West Farms, CT(2 positions)”.
Details will be described in Chapter 3.

To determine the labels in web pages, a hierarchical structure is then
introduced to reveal the concept hierarchical relation of the data in the web page.
Based on the syntax and properties of HTML tags, we proposed five heuristics
to extract the hierarchical structure for each web page. From the structure, we

can observe that most of the values are the children of their corresponding labels
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AS OF: October 28, 1999

POSITION: Co-Sales Manager - West Farms, CT (2 positions)
DEPARTMENT: Retail

RESPONSIBILITIES: Ensures that the level and quality of customer
service in store is consistent and meets customers” and company''s
standards. Is an enthusiastic role model to reinforce guidelmes in
customes service, culture, and beliefs. Assists in the recruiting, training,

and dev of a diverse team of associates to have & clear

unds of Timbezland"’s mission and values. [deatifies objectives

M-ncmmmumxlhonudlm‘umnmhnud

goals. D P "*, to store i ot to
[—::: : Pwl eek d ol

colpmuymut counsel or spprov

in making

QUALIFICATIONS: Two to three years of mansgement expesience in &

reail Ability to jcote and interact well with all

levels of employees and customers. Proven ability to motivate and build
M-hualadumngumofw.m&ndw Willingness to
be supp of and a prop of making Timberland famous for
exceptional customer service. NOTE: Please contact Michael Gualandi
u(BW)Sﬂ-IW or John Griffin at (800) 258-0855 ext 1755, or fax
your resume to (908) 931-9774, if you are interested in applying for this
position.

uynmhnumlh qﬁ(mluhpmﬂw- e-mail your
resume to. )/

r—-Bark to Job Opportwities

in the web page.

Support Engineer 1
Job Number: 028599-775-12-18368

Location: Pabo Ao, CA

Description:
Acts 2 primary response for technical support. Provides entry level -mlm
for end users, slong with developers and corporate customers via telephone, wintt n

with customers who possess a wide range of skill levels lemmﬂn
probiems o cevelopment and other nternal organations

Reguirements:

Skits Required . | yeir related work required. Sokd ,M

standard computer sclence concepts required. Must have geoensl

mumolumwmnmumdhmadwhwm

in specific procucts. Must have suffickent technical depth to communicale with

development and other internal crganizations af a peer ievel Excellent customer
techrical sidly

Type: CONTRACT
Duration: 120+ Days

Pagrale: $16-$25

(b)

Figure 1.1: Example of wordings problem of attributes in web data

1.2.2 Discover Labels for the Same Attribute

For an attribute, labels are different in a set of web pages. For instance, in a

job database, there is one attribute, say, description which is used to describe

the duties of a job. Some web pages may use "description” but others may

use "responsibilities”. Yet another may use "job duties”. As it turned out,

we do not know which labels represent the same attribute. To illustrate this

problem, consider the two web pages shown in Figure 1.1. In Figure 1.1(a),

"RESPONSIBILITIES” represents the same attribute as ” Description” in Figure

1.1(b). Without knowing the attribute represented by each label, the information

exchange among different sources of data would be difficult.
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To solve this problem, we proposed a labels discovery algorithm to dis-
cover labels that represent the same attribute in the web pages. This algorithm
analyzes the text in the web documents based on the hierarchical structure of
the web documents. In a database, the data of the same attribute are similar
in nature. For example, for the requirement attribute of job opportunities web
pages, the word 'required’ may occur frequently. So, we can use this characteris-

tic to discover labels that represent the same attribute by comparing the values

of each label.

1.2.3 Classifying A Web Page

For the fact that about a thousand more web pages are appearing each hour, the
database of any specific type of web data must be updated frequently. In fact,
only a small portion of the new web pages belong to the database. Therefore
we need to classify the new web pages so as to extract data from them. This
is different from the more common classification problem: given a number of
classes, classify each given object as one of the classes. Here we are given only

one class at a time, and we want to see if an object belongs to the class.

The knowledge obtained from our approach in the thesis can be used as the
classifiers of a particular class. The knowledge is a set of label-sets where each
label-set represents an attribute of the class along with the attribute’s character-
istics. For different classes, the set of attributes and their characteristics would

not be the same and they can then be used to classify web pages.

1.3 Organization of the Thesis

The thesis is organized as follows.
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In Chapter 2, we will give some backgrounds on the problem of web data by
introducing some previous works in web data. We will pay particular attention
to the structure extraction of web pages and the particular data retrieval in web
pages. Moreover, most of the contents of web pages are text, therefore text
processing techniques would be required to extract specific feature from the web

pages. Some techniques of text processing will be introduced.

In Chapter 3, we will define the problem to be tackled in the thesis. First of
all, we will define the structure of a web page. Also, the format of storing data
in a web page will be described. We assume two main categories of data in a
web page: labels and values. Afterwards we will describe the problem of finding

similar labels.

In Chapter 4, we will introduce the hierarchical structure which is a concept
hierarchy of the data in web pages. The structure organizes the data according
to their concept hierarchical level. Five heuristics are used to construct the

hierarchical structure according to the properties of HTML tags.

In Chapter 5, we will describe our approach on discovering similar labels in a
class of web pages. The algorithm is based on the hierarchical structure extracted
from each web pages. Each label will have a feature describing the topic of that
label. Based on the feature, we then discover similar labels. In order to measure

the representative of the knowledge obtained, it is used to classify web pages.

We will give a conclusion work in Chapter 6.



Chapter 2

Background

In this chapter, we will first introduce some issues on web data structuring. To
illustrate these issues, some recent works are introduced. The data type on the
web is mostly text. They are stored as articles in web pages. In an attempt
to retrieve web data, text processing techniques must be applied to the content
of web pages. Text processing techniques are used in traditional information
retrieval on documents. For that reason, some techniques would be discussed

afterwards.

2.1 Related Work on Web Data

In this section, some recent works of treating web data as a database will be
discussed. There is no any research working on the topic discussed in this thesis.
Therefore, we will introduce some works that are related to web data. Firstly,
we will introduce an object-based information exchange model called object
exchange model (OEM) [21] which is used to model semistructured data.
Web data can be structured by this model [11, 24]. Afterwards, works on the
problem of mining structure of web documents will be discussed. Mining the

structure of web documents is critical to extracting information from them. The

8
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works of extracting schema and discovering typical structure will be discussed.

Last we wll discuss the work on information extraction of web data.

2.1.1 Object Exchange Model (OEM)

The Object Exchange Model (OEM) was introduced in the Tsimmis project at
Stanford [21] which was designed for semistructured data. Some projects are
based on this model to extract information from web data [19, 24]. The data in
the model is a labeled directed graph. Some vertices have labeled edges pointing
to another vertices. A movie document in OEM is shown in Figure 2.1. The

vertices in the graph are objects with the following structure:

Label | Type | Value | Object-ID

where the four fields are:

o Label: A variable-length character string describing what the object rep-

resents.

e Type: The data type of the object’s value. Each type is either an atom
type (such as integer, string, real number, etc.), or the type set. The
possible atom types are not fixed and may vary from information source to

information source.
e Value: A variable-length value for the object.

e Object-ID: A unique variable-length identifier for the object or null.

In Figure 2.1, each vertex has a data &x where x is a number. This is the
object-ID of the vertex. The word on the edge pointed from one vertex v, to
another vertex v, is the label of v;. For example, in Figure 2.1, there is a word
"Title” on the edge pointed from &1 to &2 and "Title” is the label of &2. In
the leaf node, e.g. &2, "Star Wars” is the value of &2.
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Ttile
"Star : "20th Century
Wars" Fox Film il e
"CA USA"

Awards

Figure 2.1: A movie document in OEM format

There are some works of extracting semistructured data based on the OEM.
One of them is the TSIMMIS [11]. It uses a configurable tool for extracting
semistructured data from a set of HTML pages and for converting the extracted
information into database objects [15]. The input to the extractor is a declarative
specification that states where the data of interest is located on the HTML pages,
and how the data should be "packaged” into objects. The output data is in the
form of the OEM.

A problem of this approach is that the extraction mechanism depends on user
input for describing the structure of HTML pages. This becomes an issue when
the structure of source files changes rapidly requiring frequent updates to the
specification file. Besides, this approach can only extract information from a set
of web pages with the same structure. In fact, web pages with the same type
of information have slightly different structure. Hence some information will be

lost in this approach.

The OEM is similar to a tagged file system [32]. The system uses labels in-
stead of positions to identify fields. For example, electronic mail messages consist

of label-value pairs (e.g. label "From” and value "wcwong@cse.cuhk.edu.hk”).


mailto:wcwong@cse.cuhk.edu.hk
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However, in web pages, the label-value pairs do not follow a strict and regular
format due to the irregularity of web data. What is more, in OEM, the label
is defined uniquely in the data model; in contrast, in this thesis, labels may be
different even if they describe the same attribute (it is the object class in OEM)
in the web pages. OEM cannot handle this problem.

2.1.2 Schema Extraction

The problem of extracting schema from semistructured data is considered in [20].
It considers a general form of semistructured data based on labeled, directed
graphs [10, 23]. The nodes in the graph represent objects and the labels on the
edges are the semantic information about the relationships between the objects.
The leaf nodes in the graph represent atomic objects that have values associated

with them. An example is shown in Figure 2.2.

Pm}ec! Name  Title Homepage Emall

ofelelele

Name  Homepage

Figure 2.2: An example of database

Data sets found on Internet have no explicit structure and are fairly irregular
but has implicit structure. The implicit structure in a particular data set may
be of varying regularity. The objective of [20] is to find a typing that fits the

data set. A typing is a schema of the data set. It contains a set of types in which
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each type labels data in the data set similar to a table in a relational database.
For instance, in Figure 2.2, there are two types: student and project. Student
type describes the data of a student in the database. A student data should have
several values: project, name, title, homepage and email as shown in the graph.
The typing of the database is specified by a datalog program which is shown in
Figure 2.3. The program shows the format of the types in the database. If a data
in a data set matches the format of one type then the data is said to be of this
type. In the typing program, the direction of the arrow over the label of an edge
denotes whether the edge is incoming (left) or outgoing (right). The superscript
denotes the type of the object at the other end of the edge. 0 indicates that
it is atomic object that have values. 1 indicates that it points to type 1 and 2

indicates that it points to type 2.

Pror—? 30 0
project: T, = Project Name , Homepage

Sl ——30 —30 20 —— 50
student: T, = Project Name ,Title , Homepage , Emazl

Figure 2.3: A typing program for Figure 2.2

Figure 2.4: Example database

The objective of [20] is to find typing that approximately type a data set.
The size of typing should be small and the typing should type the data in the
data set with minimum error. Suppose we are given the database shown on
Figure 2.4. To match all objects precisely to a type, it is true that four types are

required without errors and the following typing program is the perfect typing
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of the database.

type, = @?

type, = Tt”, (30, <°
lypes = (go, (Eo
typey = (FO, <°, (CTO

01,02,03,04 are mapped to type;,types, types, typey respectively. However the
size of a perfect typing is then very large which is roughly of the order of the size
of the data set. Therefore, it is necessary to reduce the size of typing but there
may be errors. For example, if we map o4 to type, then the size is reduced to 3

but there is no link a from o, to o4 and the link ¢ from o4 is missing.

The typing problem is first cast into the datalog program as shown in Fig-
ure 2.3 by assigning each object, excluding atomic object, a unique type. Then
the size of typing is large. So it computes the greatest fixpoint M of the typing
program. The function M (type;) returns a set of objects o; such that type; coin-
cides with the objects o; on a link 2" or €. For example, in Figure 2.4, there is
a type type; = (EO, T°. Then M (types) = {03,04} as both o3 and o4 have these
links 5" and 7°. Then a more precise typing is generated by using the greatest

fixpoint. An example of this process is shown in the following.

@@\
QO
@2

Figure 2.5: A simple database
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Example 1 Consider the database D in Figure 2.5. The program @ of this
database constructed initially is:

type; = 'Z?z, ?3,74 lypes = (El, _b)o

types = ‘El, ?0 types = ‘El, _b)o, T
The greatest fixpoint M for Q is: M(type,) = {01}, M(types) = M(types) =
{02,03,04}, M(types) = {04}. Then the perfect typing is obtained by letting 7,
= typey, T2 = [type, types] and 73 = [types). The program of this perfect typing
is:

n=2,d" n=.7

n=a.7% 2

The perfect typing program obtained will have many types to be similar to

each other. They could then be collapsed into one in order to reduce the size
and complexity of the typing program. Therefore the perfect types are clustered
using a greedy algorithm to compute k types such that the sum of the distances
of each type to the closest (among the k types) is minimized. It is similar to
k-clustering [16]. The greedy algorithm gives an O(log n) approximation of the

optimal solution.

The distance used to measure the distance between each types is the Manhat-
tan path between two type points on the binary hypercube defined by the typed
links in their definitions. That means the distance is the number of typed links in
the symmetric difference between the bodies of their rule definitions. Following

example shows the measurement of distance between two types, d(r;, 7).

Example 2 Consider the following three types:

=32 =1
7'1=70,b Tg"—"?o, b
—2 &1 &3
T3 = b y b ’ b

e ) 2 1
For 71, 7, the symmetric difference consists of {—b) \ % }, so d(1,72) = 2. For 1,

; A 1 ¢-3
taus, the symmetric difference consists of {@°, [ . % }, so d(m,m3) = 3. And



Chapter 2 Background 15

d(72,73) is also 3. [

2.1.3 Discovering Typical Structure

In [31], the proposed method discovers the typical structures of semistructured
documents. The structure of a document refers to the role and hierarchical
relationships of subdocument references. We use an example in the original
paper to explain. For example, the structure of a person document can tell
that the person has labeled fields Name, Address, Hobby, and Friend and that
the Address subdocument has labeled fields Street and Zipcode. It states that
documents describing the same type of information would have similar structure.
For example, every club documents has Name label and at least 10 Player labels;

every player document has Name label; 50% player documents have Nationality

label, etc.

The problem addressed is: given a collection of documents, find all "typical”
structures that occur in a minimum number of documents specified by the user.
The authors use OEM for representing the semistructured documents. They
state that every node in OEM represents a subdocument(e.g. a HTML file) and
has an identifier(e.g. URL). The arrows and their labels, identifiable by special

tags or a grammar, represent subdocument references and roles. An example is

shown in Figure 2.6.

The authors express the structures of several documents by a tree-expression
to generalize the structure. The tree-expression of a structure is a tree represen-
tation {/, : tey,... Ik : tex} in which te; is a tree-expression of a subtree pointed
by an edge labeled [; from the root node of the structure. In the tree-expression, ?
is used as the wild-card that matches any level. L denotes nil schema containing
no structure. For example, there are some tree-expressions of club documents

shown in Figure 2.7. The expression te; = {Player : {Name : L}, Name sAL )38
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"Manchester 'Red Devils]
United" Firs

ast

"Eric" "Cantona" "Andy”

Cole

Figure 2.6: The premiership document

a tree-expression of the structure of document &20 in Figure 2.6. There are two
subtree pointed from the node &20. The first one is pointed by the edge labeled
"Name” but the subtree pointed is a null subtree, i.e. the subtree does not have
any nodes, so the tree expression of this subtree is L. Another subtree is pointed

by the edge labeled "Player”. This subtree has a tree expression {Name :1}.

The typical structure discovery problem is to find all maximally frequent
tree expressions of a collection of documents. An algorithm similar to that for
mining association rules [3, 4] is used to find the typical structure of a collection
of structures. In [4], constructing larger candidate subsets is done by joining

smaller frequent subsets, and support counting is done by set containment test.

Similarly, the proposed method in [31] finds all frequent 1-tree-expressions
which are tree-expressions containing one leaf node. Then it finds frequent k-tree-
expressions pi...px—2pk-1pk by constructing two frequent (k-1)-tree-expressions
P1--.Pk-2Pk—1 and py...px—2pk. The support for each tree-expression is calculated

like mining association rules. If the support is greater than a pre-defined thresh-
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o5 7

®  Player

/¢/<? dR a
T TN TN TN

te2 te te

1 3 4

Figure 2.7: Tree-expressions of club documents

old MINISUP, then it is used to generate (k+1)-tree-expression. Lastly, all
non-maximally tree-expressions are pruned. A frequent tree-expression te is said
to be maximal if it is not weaker than other frequent tree-expressions, i.e. it
is not less informative than other frequent tree-expressions. For example, in

Figure 2.7, te, is weaker than tey as it is less informative than te,.

Typical structures of a large number of documents can be used to discover
the general information content and representation in the source. However, this
approach only considers the relation between documents, i.e. the hyperlink in-
formation of web documents. It pays little attentions to the content of web

documents.

2.1.4 Information Extraction of Web Data

There are some works on extracting particular data from the web documents.
One of these is [8] which extracts a relation of (author, title) pairs from the
web. The problem addressed in (8] is as follow. Let D be a large database
of unstructured information such as the web. Let R = ry,...,7, be the target

relation. Tuples of R occur in various locations in D using a variety of formats.
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The goal is to discover as many tuples of R as possible with few, if any, false

positives.

The algorithm proposed is called DIPRE - Dual Iterative Pattern Relation
Expansion. It relies on a duality between patterns and relations. The proposed
method first finds the pattern of the initial sample of book in a set of web pages.
A pattern is a five-tuple: (order, url-prefix, prefix, middle, suffix) where order
is a boolean value and the other attributes are strings. The order is used to
indicate the position of author and title in the pattern expressions. If order is
true, an (author, title) pair matches the pattern if there is a web document with
a URL which contains url-prefix as its prefix and which author and title are in
the following expression: prefix, author, middle, title, suffix. If order is false,

then the title and author are switched.

author title
[saac Asimov The Robots of Dawn
David Brin Startide Rising
James Gleick Chaos: Making a New Science
Charles Dickens Great Expectations
William Shakespeare the Comedy of Errors

Table 2.1: Initial sample of books

After finding the patterns of the initial sample, the method uses these patterns
to discover other (author, title) pairs. Then the patterns of the newly discovered
pairs are found in the collection of web documents. This process is repeated
until the relation pairs found is large enough. The initial sample of books used is

shown in Table 2.1 and the patterns of these books found is shown in Table 2.2.

URL Pattern Text Pattern

www.sff.net /locus/c.* <LI><B>title</B> by author (
dns.city-net.com/lmann/awards/hugos/1984.html | <i>title</i> by author (
dolphin.upenn.edu/dcummins/texts/sf-award.htm | author || title || (

Table 2.2: Pattern found in first iteration
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This approach can find particular data of relation pairs in the web. It can
help to retrieve the same type of information from different sources. However,
web data is semistructured in nature and some relations might be missing. For
example, a movie relation (name, director, actors, actresses, distributor) may
miss director in some pages or distributor in other pages. Therefore, it can not
discover a large set of data if the relation contains many attributes. It is for

simple data only and does not consider the document content.

2.2 Automatic Text Processing

Traditional information retrieval would pre-process the documents in order to
obtain the feature. Text processing techniques are applied to the documents
[26]. Most of the content of web pages is textual. To obtain knowledge from
the textual content, we have to apply text processing techniques before we can
analyze the web pages. In this thesis, we will use stopwords elimination to remove

stopwords from web pages and apply stemming to the remained words.

2.2.1 Stopwords Elimination

In traditional information retrieval, a word which appears in each of the docu-
ments in the collection is completely useless as an index term because it does not
tell us anything about which documents the user might be interested in. On the
other hand, a word which appears in just five documents is quite useful because
it narrows down considerably the space of documents which might be of interest

to the user. The words in first case are frequently referred to as stopwords.

Most web pages contain textual content and they can be seen as documents
in traditional information retrieval but with some structure. We want to discover

similar labels in a set of web pages in the thesis. Therefore the textual data should
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be distinguishable. Nevertheless, stopwords are not good discriminators. Thus,
they have to be removed from the set of web documents in order to improve the
precision of our algorithm. Articles, prepositions, and conjunctions are natural
candidates for a list of stopwords. Also, some verbs, adverbs, and adjectives can

be treated as stopwords.

2.2.2 Stemming

Frequently, the same word is presented in different forms in a collection of docu-
ments. Plurals, gerund forms, and past tense suffixes are examples of syntactical
variations. They would be treated as different word although originally they are
the same word. This problem can be partially overcome with the substitution of
the words by their respective stems. A stem is the portion of a word which is left
after the removal of its affixes (i.e., prefixes and suffixes). A typical example of a
stem is the word connect which is the stem for the variants connected, connecting,

connection, and connections. Stems reduce variants of the same root word to a

common concept.

In our methodology, we use affix removal as the stemming strategies. In
affix removal, the most important part is suffix removal because most variants
of a word are generated by the introduction of suffixes (instead of prefixes).
While there are three or four well known suffix removal algorithms, the most
popular one is that by Porter [22] because of its simplicity and elegance. Despite

being simpler, the Porter algorithm yields results comparable to those of more

sophisticated algorithms.

The Porter algorithm uses a suffix list for suffix stripping. The idea is to

apply a series of rules to the suffixes of the words in the text. For instance, the

rule,

§—%0
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is used to convert plural forms into their respective singular forms by substituting
the letter s by nil. Notice that to identify the suffix we must examine the last
letters in the word. Furthermore, we look for the longest sequence of letters
which matches the left hand side in a set of rules. Thus, application of the two

following rules

3868 —> 8§
s —> ¢

to the word stresses yields the stem stress instead of the stem stresse. By sepa-
rating such rules into five distinct phases, the Porter algorithm is able to provide

effective stemming while running fast. A detailed description of the Porter algo-

rithm can be found in [22].
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Web Data Definition

We first define some notions of web data that will be used in our problems. Note
that when we refer to a web page in this thesis, we refer to its textual content
only on the ground that most of the data on the web is text. The hyperlinks
would not be considered because we only concentrate on the web data stored in a
web page and not the relationship between web pages. Afterwards our problems

will be described in details.

3.1 Web Page

Web data is stored in web pages in a style that users can understand the concept
of the data easily, hence data of same kind of information is always put together
in the same web page. In common, almost all data in a web page belong to the
same kind of information. For example, in a soccer web page, almost all the
data in the web page is related to soccer. There are few non-related data, e.g.
advertisement, but this is only a small proportion of the data in the web page.

Therefore, each web page is used to present one main type of information.

Assumption 1 A web page stores one main type of information. The type of

22
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information stored in a web page w; is denoted by I(w;). L

Web pages are clustered into different categories in the search engine accord-
ing to their textual contents. Web pages containing the same type of information
are considered to be in the same category. For instance, in Figure 3.1, the two
web pages are in the soccer category of a search engine as they contain the same
type of information. We say that these web pages in the same category belong to
the same class. A class of web pages is similar to a table in relational database.
Each web page in the class is considered as a record in the table. Each class also

has a number of attributes that describe the data stored.

S0P | LHECK EMAL | FUATES | 2ESCREE

K

o1 agTuss wder 10 suil vot of Torkioh towrasaeat. i1 nnt&u oL

WEEKEND
i ROUNDUP:

shustion In

* Valancla v Barcolona match statistics

o Blovak first divish n

o Hoctlc week could dedde Bayern's (ate
o Turkish flrst division fixtures May 5-7

THE FABLED GOCCER TRADERS

Figure 3.1: Two web pages in the same category of a search engine

Definition 1 A class of web pages is a set of web pages storing the same type of
information. If a class contains web pages wy, wy, ..., w,, then I(w,) = I(wy) =
.. = I(wy). Each class of web pages has a number of attributes (A,, A,, ..., A,)
describing the data stored in the class. [

The schema of a web page is stored with the data. The schema is the set
of attributes stored in the web pages. These attributes describe the data in the
web pages. There are wordings used to label the attributes in each web page.

The wordings used in a web page to label an attribute of a class is called a label
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and the data of an attribute in the web page is called a value. Each label has

its corresponding value in the web page.

Definition 2 A label / of a class C' labels the data stored in a web page of class
C. It corresponds to one of the attributes A; of class C'. We also denote the
attribute that correspond to the label A by A(l). Hence A(l) = A;. [

Definition 3 A value is the data of an attribute stored in a web page. Each

. value has its corresponding label in a web page. n

attribute | | attribute , | ... .. label ; value ,

value, | value, | .. .. [ > label,, value ,

|abel1 -> attribute g
label , => attribute

2

a table of database
web pages

Figure 3.2: Web pages vs. relational database

The general overview of a class of web pages in comparison to a table of
relational database is shown in Figure 3.2. Labels in a web page correspond to
the attributes of the class. There are corresponding values to the labels and they
are the data that users are most interested. A web page thus consists of a set
of label-value pairs. As labels describe the data in the web page, the schema or

structure of each web page can be represented by the set of labels in the web

page.

Definition 4 A web page consists of a set of label-value pairs ((y, v1), (I, v3), ..

g seey

(In,vn)) where [; is the label in the web page and v; is the corresponding value of

l;. The schema or structure of a web page is represented by a set of labels stored

in that web page (ly,[2,...,0). [ |
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The following is an example illustrating the occurrence of labels and values

in web pages.

Example 3 In a class of job opportunities web pages, we suppose that there are
four attributes, say, (category, name, description, requirement). A job opportu-

nities web page is shown in Figure 3.3. In this web page, the four data of the

attributes are stored with the labels.

pe: P g D 0 Overview o eer Oppo 3 _[olx]

nunicator ' Help

'.4? file: /research/p(

h

The Netherlands, Nijmegen g

s,

Job titte:
Principal Digital IC Design Engineer

Job description:
The Product Line Cellular develops and produces Baseband ICs for telecom terminals (eq.

mobile phones). These are in general complex digital or mixed-signal CMOS ICs consisting of :

amicroprocessor (80CS1, ARM), a digital signal processor (DSP)and digital and
mixed-signal peripherals (UARTs, IIC, A/D and DIA convertors, power management
functions).

The Principal Design Engineer is expected to play a leading role during the definition phase of
new proiects, making recommendlations on architecture, test strategy, tool flow, resource
requirements and technology for specific projects. On occasion the Principal Design Engineer
may be asked to lead project teams, and candidates should therefore have some experience
of leading teams of engineers. Candidates are further expected to be experienced engineers
who have knowledge of the complete digital design flow from specification to layout and
timing verification

M.Sc. degree in Electrical Engineering or comparable level, experience in developing digital
circuits for CMOS processes, able to work independently, good communication skills.

Move information:
Additional information on this position, contact:

Figure 3.3: A web page of job opportunities
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" Job category is the label, which is used to label the data of the attribute
category as well as represent that attribute in this web page. The value of that
label, i.e. the data of the attribute category, is " Design Eng”. The three labels,
" Job title”, " Job description” and "Job requirements”, are used to represent

the attributes name, description and requirement respectively. Their values are

" Principal Digital IC Design Engineer”, ” The Product Line ...... ” and "M.Se.
degree ...... ”. The attributes represented by the labels in the web page are sum-
marized by

A(Job category) = category

A(Job title) = name

A(Job description) = description

A(Job requirements) = requirement
In Table 3.1, we have the label-value pairs stored in the web page of Figure 3.3.
The structure of the web page is represented by the four labels (Job category,

Job title, Job description, Job requirements). [ |
label | value |
Job category Design Eng
Job title Principal Digital IC Design Engineer
Job description | The Product Line ......
Job requirements | M.Sc. degree ......

Table 3.1: Label-value pairs of example 3

Web page can be considered as an interface for users to easily locate the data
stored. Since labels are used to label the data, there is little doubt that values
are located just after their corresponding label in the web pages. We can make

an assumption about the positions of labels and values in the web pages.

Assumption 2 The location of a label is just preceding to its corresponding

value in the web page. |
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For example, in Figure 3.3, the label " Job category’ is located next to its value
”Design Eng” in the web page. Therefore a label can be used as an indication
of the location of its corresponding value in the web page. We can extract the

value by locating its corresponding label in the web page.

3.2 Problem Description

In a relational database table, an attribute has an unique reference name. On
the contrary, since the standards are quite loose for publishing web pages, dif-
ferent labels would be used to represent the same attribute in a class of web
pages. That is, the name of an attribute is not unique for all web pages in the
same class. Different reference name of attributes can confuse the determination
of the attribute of data in the web pages. As a result, data retrieval of web
pages becomes difficult. For example, in Figure 1.1, the two web pages use ” re-
sponsibilities” and ” description” to represent the same attribute. What is more,
we cannot determine whether "responsibilities” and ” description” represent the
same attribute. This is the main problem addressed in this thesis. In order to
describe the problem, we first define some notions relating to properties of labels

in a class of web pages.

From the observation of web pages, we can discover that the wordings used to
represent two attributes in a class of web pages are different in most web pages.
For example, in a class of job employment web pages, if ” responsibilities” is used
to represent the attribute, say, description, then it would not be used to represent
other attributes, e.g. name, category, requirements, salary, etc. Therefore, we

have an assumption on the labels.

Condition 1 Web pages in the same class will not use the same wordings to

represent different attributes. For two labels {; and I, in the same class, if



Chapter 3 Web Data Definition 28

A(ly) # A(ly) then &y # la. B

Definition 5 (Identical labels) Two labels [; and [, in the same class of web
pages are identical (I; = [;) if the wordings of /; and [, are the same. By

Condition 1, attributes represented by them are also the same, A(l;) = A(ly). n

Definition 6 (Similar labels) Two different labels /; and l; (I; # [3) in the

same class of web pages are similar (I; ~ [,) if the attributes represented by the

labels are the same, A(l,) = A(ly). |

The objective of this thesis is to discover similar labels in a class of web
pages. One problem caused by the loose standard in web pages publication is
the occurrence of similar labels in web pages of the same class. If similar labels
can be identified, then data of a particular attribute in the class of web pages

can be retrieved more efficiently.

For instance, we assume that a class of job employment web pages has the
attribute description. Two web pages use two different labels, ” description” and
"job summary”, to represent the attribute. If we do not know these two labels
are similar, then either ”description” or ”job summary’ may be considered as
the attribute description. If users want to retrieve the data of description, then
some data would be missed. Therefore, it is essential to discover that the two

labels are similar (” description” ~ ”job summary”) so as to retrieve all data of

a specific attribute.

Moreover, the attributes of a class can be defined in terms of labels. By
Definition 2, labels are used to represent attributes of a class. Due to the loose
standard of publishing web pages, multiple reference names may be used for each

attribute in the class of web pages. As it turns out, typically there is a set of
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similar labels for each attribute in a class of web pages. Hence an attribute in

the class could be represented by the similar labels set.

Definition 7 An attribute A; in a class of web pages, C, is represented by a
label-setL = {ly,ls,...,1,}. Each label in L occurs in some web pages of class ('

and the labels are similar to each other, i.e. they represent the same attributes,

Vi; € L, A(l;) = As. b

Attributes are used to name different data categories in a relational database.
They form the schema of a relational database. Likewise, the schema or structure
of a class of web pages can also be described by a set of label-sets where each

labels-set corresponds to an attribute in the class.

Definition 8 The structure or schema of a class of web pages, C, is a set of

label-sets {Li, La, ..., L,} where each labels-set L; represent an attribute A; in

the class C'. o

To illustrate the above definitions, we give an example of a class of employ-

ment web pages.

Example 4 Considering that a class of job openings web pages has three at-
tributes: name, description, requirement. Each attribute is represented by a set
of similar labels in the web pages: (title, position) for name, (description, du-
ties) for description, (qualifications, requirements) for requirement. Then the
structure of the class of job employment web pages is a set of label-sets for each

attribute.

((title, position), (description, duties), (qualifications, requirements))

In our collection of web pages, we observe that most of the web pages contain
a single record of data. Therefore, in this thesis, for simplicity, we consider single-

record web pages only, e.g. for job openings, each web page contains information
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about only one job opening. In relational database, a record contains one data
value for each attribute. For instance, there will only be one data for the name
of a job and one data for the requirement of job in a job employment record.
In web pages, one record is stored in one page so each attribute of the class
occurs at most once in the web page. Some attributes may be missing due to
the semistructured nature of web data. Consequently, there is at most one label

representing each attribute in the web page.

Condition 2 (Single-record web page) In a web page, only single record of
data is stored. Each attribute of the class would appear at most once in a web

page. |

Although we consider single-record web pages only, it is easy to extend our
works to multiple-records web pages. The boundary for each record in the
multiple-records web pages is required to be discovered first so that each record
can be extracted [13]. If boundary can be found then a web page can be sep-
arated into several sub-webpages. Each sub-webpage contains a single record.
Accordingly, we can consider each sub-webpage as a web page defined in this

thesis. We can apply our methods to these web pages.

From Conditions 1 and 2, we can deduce one property of labels in a web page

as follow.

Property 1 (Uniqueness of labels in one web page) Labels are unique
within one web page. That is, all labels are different within one web page w;
for a set of labels {l1,ls,...,0n} € w, I} # ly # ... # l,. Also, all labels are not
similar, {y £ ly o ... % L,. |

Proof: In Condition 2, only a single record is stored in a web page and each

attribute occurs at most once in a web page w. That means no two labels
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represent the same attribute in one web page. That is, if labels {l,, (5, ...,l,} € w
then A(ly) # A(l2) # ... # A(ln). In addition, in Condition 1, for two labels /;
and /i in the same class, if A(l;) # A(lx) then [; # l;. Therefore we can deduce
that all labels are different within one web page, l; # l; # ... # l,. Likewise,
by the definition of similar labels, all the labels in one web page are not similar,

ly &1y ... %1, as they represent different attributes. W
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Hierarchical Structure

Web data is structured by the HTML tags [30] in a web document. The data is
organized in a format that users could understand easily. Therefore, the labels
always appear just preceding their corresponding values in Assumption 2. For
example, the label ” Position Title” is located next to its corresponding value " IT

Specialist” in a web page.

However, the computer does not know which data in the web page is a label
as there is not any rule about which wordings should be labels or values. To
organize labels and values in a web page, authors would store them in different
patterns by using the properties of HTML tags. For instance, they may use the
heading tag H1, H2, ..., H6 to enclose label and use the list tag ul to enclose
the corresponding value under the heading tag. For this reason, in many cases,

we could discover label and value based on the properties of HTML tags.

Labels, like the headings describing the topic of a paragraph, describe the
data of their values. Their concept is more general than that of their values in
a web page. We say that they are at a higher concept hierarchical level than
their values. Therefore, we should reveal the concept hierarchical relation of
data in a web page. In our proposed method, a hierarchical structure of a

web page is constructed based on the concept hierarchical relation of data in

32
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the web page by five heuristics according to HTML tags’ characteristics. The

hierarchical structure shows the concept hierarchical level of data in a web page.

@ Introduction l__ T S

Job Openings Position Title:  Engage Menagez, Cross Industry Off exings
Ref No.: Shanghei |

Send Resume work location
i ® 1BM Chins Company Limited, Shanghai Branch, Shanghai
Responsibilines

® Qualify mvm opportunities
® Conductb qt lysis for
. Workmd\‘ I Itants and IT speciahists to develop eff

® Manage implr.m;nnn';x: pl;jncl teams and customer expectations
® Ensure projects are completed on time and on budges

Requirements

Bachelor/MM,
L]

Degree m B Sy or related fields
! S t0 6 years mgugmm related vork expenence
g seles engag and IT proj
® Busi ience in buxhng or marketi would be an advantege
. Knovledp of ap or data wereh pts and soluty
® Excellent written ml spoken English snd Chinese
@ Frequent travel is required

Apply torthe ok

Figure 4.1: A snapshot of a web page

4.1 Types of HTML Tags

Web pages are constructed by the HTML tags which provide the format of dis-
playing data stored in the web page. Figure 4.1 shows a web page storing the
data of job employment. The data is organized by the HTML tags as shown in
Figure 4.2. By using the properties of the tags and the relations among the tags,
we may be able to find the structure of web pages for a given class. Different

tags would provide different information to the structure of the data. Therefore,
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<HTML>
<HEAD>
<TITLE>IBM Hong Kong - Employment</TITLE>
</HEAD>
<BODY>
<TABLE>
<TR>
<TD>Position Title</TD>
<TD>Engagement Manager, Cross Industry Offerings</TD>
</TR>
<TR>
<TD>Ref. no:</TD>
<TD>Shanghai 1</TD>
</TR>
</TABLE>
<P>Work Location</P>
<UL>
<LI>IBM China Company Limited, Shanghai Branch, Shanghai</LI>
</UL>
<P>Responsibilities</P>
<UL>
<LI>Qualify service opportunities</LI>
<LI>Conduct business requirement analysis for customers</LI>

</UL>
<P>Requirements</P>
<UL>
<LI>5 to 6 years engagement related work experience</LI>
</UL>

</BODY>
</HTML>

Figure 4.2: A section of the HTML source of Figure 4.1

we divide the HTML tags into three groups with different structural informa-
tion: rigid structure tags, loose structure tags and non-structure tags.
As stated in Chapter 3, we consider only textual data in the web pages. The
structural information provided by the tags is based on the textual data only.
Other types of structural information would not be considered, e.g. images,

video, hyperlinks, sound, etc.

Here are the details of the three types of tags.

1. Rigid Structure Tags. They provide structural information of the en-
closed textual data. For example, the table tag provides a tabular struc-

ture of text data within it. There is some relation between data within
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the same column or row in the table. In Figure 4.3, HTML codes of table
and the display of these codes in web pages are shown. From the table, we
could observe that there is relation between data within the same column,

e.g. "Name” is the heading of the column.

<table>
<tr><th>Name</th><th>Age</th><th>Salary</th></tr>
<tr><td>Peter</td><td>39</td><td>$10000</td</tr>
<tr><td>John</td><td>50</td><td>$12450</td></tr>
</table>

HTML codes of a table

Name | Age | Salary
Peter 39 $10000
John 50 $12450

Table displayed in web page

Figure 4.3: HTML codes and display of table in web page

2. Loose Structure Tags. They give structural information to the data
enclosed by themselves and other tags. For example, the heading tags, H1,
H2, ..., H6, make the enclosed data as headings of different importance.
Typically, H1 is the most important, H2 is comparably less important,
and so on down to H6, the least important. These tags give hierarchical

structure of the enclosed data.

3. Non-structure Tags. They do not provide any information to the struc-
ture of textual data in the web pages. They include tags that are used to
enclose data other than text and all single tags. For example, the image

tag, img.

The HTML tags in the three types of tags are shown in Table 4.1. The
table shows most of the HTML tags but there are some other tags that are not
included. Single tags that are not included in the table should be classified as
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non-structure tags as they do not enclose any textual data in the web pages.
Tags that enclose textual data are classified as loose structure tags if they are

not in the table.

| Types | HTML tags

Rigid structure tags | dir, div, dl, menu, ol, table, ul

Loose structure tags | title, hl, h2, h3, h4, h5, h6, p, b, i, em,
strong, font, big, small, strike, ti, u, a, cite,
dfn, code, samp, kbd, address
Non-structure tags | img, applet, map, area, hr, br, bgsound,
base, frame, input, isindex, link, meta,
param, sound, other single tags

Table 4.1: The three types of HTML tags

Since we want to extract the structure of a web page and non-structure tags do
not provide structural information to the textual data, they can be ignored. Rigid
structure tags and loose structure tags would be considered in the construction

of hierarchical structure.

4.2 Tag-tree

Web pages have some linguistic conventions in their page layout. These con-
ventions are determined by the HTML tags. HTML tags divide web pages into
regions. The start-tag and the corresponding end-tag define a discrete region.
Also, there are nested tags within the start-tag and end-tag to further divide the
region into sub-regions. By using this nested property of HTML tags, a tag-
tree [12] can be constructed. The tag-tree in [12] contains HTML tags only as
they focus on tags only. However, we would put the textual data in the tag-tree

because our objective is to discover relations of textual data in the web page.

The textual data in a web page is divided into separated data which is en-

closed by HTML tags. This separated data is called text data. Fach text data



Chapter 4 Hierarchical Structure 37

has its own meaning in the web page. They may be label or value.

Definition 9 A text data is the textual data enclosed by a pair of HTML tags,

start and end tags, in the web pages. [

For example, in the following HTML segment,
<ul>
<1i> Ability to work with senior management</1i>
<1i>60% of working time is in China</1i>
</ul>
"Ability to work with senior management’ and '60% of working time is in China’

are two text data. Then a web page consists of a set of text data.

From the definition of text data in a web page, we could define the content

of labels and values in the web pages in terms of text data.

Assumption 3 (Content of label) A label in the web page consists of exactly

one text data. [ |

Assumption 4 (Content of value) A value in the web page consists of one

or more text data. [ |

We assume that the label in a web page is a word or phrase which is enclosed by
a pair of HTML tags. By Condition 2, an attribute occurs only once in a web
page. So, there will be no other wordings used to represent the same attribute.
A label then consists of one text data in a web page. On the other hand, usually,
the data of an attribute would be organized in a list format or point format
such that it could be understood by users. Fach item of the formats is enclosed
by HTML tags. Therefore there can be several text data for one value in the
web page. For example, in Figure 4.1, the value of the label ” Responsibilities”
is divided into four items in which each item is enclosed by tags individually.

Therefore there are four text data in the value of that label in the web page.
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HTML tags could be enclosed by other tags. They are said to be nested in
other tags. The following definition describes the algorithm used to construct a

tag-tree by using this nested characteristic of HTML tags.

Definition 10 (Rules of tag-tree construction) Based on the nested prop-
erty of HTML tags, two rules are used to construct the tag-tree.

Rule 1: If the tag ¢; or text data d is directly nested in tag t,, then ¢, or d is
the child of t,.

Rule 2: If two tags (or text data), ¢; and t;, enclosed by the same tag are not
nested to each other and the position of ¢; in the web page is above t,, then t,

is the left sibling of ¢,. (]

In Figure 4.4, two examples show the rules of tag-tree construction. Circles
represent tags in the tree and small boxes represent the text data enclosed in the
tags. For Rule 1, as "tr” is nested in "table” directly, "table” is the parent of
"tr” in the tag-tree. Likewise, "datal” is a text data enclosed in the tag "td”,
therefore ”datal” is the child of "td” in the tag-tree. For Rule 2, the first "tr”
that encloses "datal” is above the second "tr” that encloses "data2”, so the first
tr is the left sibling of the second one. Note that single tags and text data do

not enclose other tags or data so they are the leaves of the tag-tree.

By applying these two rules to all the tags in a web page, we could obtain
a tag-tree from the web page. In Figure 4.2, we show a segment of an HTML
document. The snapshot of the corresponding web page is shown in Figure 4.1.

The tag-tree of the document extracted by the two rules is shown in Figure 4.5.

The tag-tree is useful in the extraction of data from web documents [12].
From the tag-tree, the relation among discrete regions is represented by the
tags in the internal node of the tree. The meaning of a subtree is represented
by the tag in the root node of the subtree. For instance, in Figure 4.5, the
subtree rooted at "TABLE” tells us that all the text data in it is organized
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<table> <table>

<tr><td>data</td></tr> <tr><td>data1</td></tr>

</table> <tr><td>data2</td></tr>
</table>

data1 data2

data

Rule 1 Rule 2
Figure 4.4: Example of the rules of tag-tree construction

in a table format. In addition, the number of rows is equal to the number of
children of the "table” node and the number of columns is equal to the number
of children of the "tr” node. Therefore it is more efficient to analyze the web
page by using the tag-tree. In the construction of the hierarchical structure, the
characteristics of HTML tags are used, so from the tag-tree we could determine

these characteristics more efficiently.

After the construction of tag-tree, it has to be pruned. As we have mentioned
in previous section, non-structure tags are useless in the formation of hierarchical
structure, they could be removed. The subtrees of non-structure tags are pruned.
However, some of the remaining tags in the tree would be required to be pruned.
The reason is that some non-structure tags may be enclosed by rigid structure
tags or loose structure tags. For example, the image tags may be enclosed in
table tag. Obviously, the pruned tree may have tags as the leaves. These tags

do not enclose any text data and they are useless in the hierarchical structure



Chapter 4 Hierarchical Structure 40

| Hrv
0
TABLE L] Lr ] 3
e R e e R e e e
Quality service 5 to 6 years engagement
m m m :‘BM S:ir:rCmnpl;y | opportunities related work experience
e imited, ghai Branch
Rotowo |Stwoghwil| s ghai Conduct businees requirement
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Cross Industry
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Figure 4.5: The tag-tree constructed from the web page in Figure 4.1

construction. So, they must be pruned. The pruning process is propagated

upward in the tree until no such tags remain.

Figure 4.6: The process of pruning non-structure tags in tag-tree

The pruning process is illustrated in Figure 4.6. Circles represent tags and
boxes represent text data. The dash line circle the tags to be pruned in the
tag-tree. Each time one such tag is removed from the tree and some tags may
become leaf nodes. The tag ¢t becomes leaf node after removing its two children.
Then t should be removed. The removal process is stopped unless the tree stll

contains non-structure tags. Finally, the leaves of the tag-tree are all text data.
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4.3 Hierarchical Structure Construction

A hierarchical structure is a concept hierarchical tree, in which each node
corresponds to a text data in the web page. A text data with more general
concept has a higher concept hierarchical level. The positions of data in the
web page may indicate the concept hierarchical relation with other data. If two
data are next to another one, then they are probably similar in the concept.
However, labels and values are exceptions. For example, the data " book title” is
always next to the title of a book, say, ” Thinking in C++" but "book title” has
a higher concept hierarchical level than ” Thinking in C++" which is an instance
of "book title”. Similarly, label has a higher concept hierarchical level than its

corresponding value as it is used to describe the value in the web page.

Definition 11 Label has higher concept hierarchical level than its value in

a web page. |

In the hierarchical structure, the root of the tree is at level 0, we say that
it is at the highest concept hierarchical level in the structure. A child of a node
at level 7 is at level 7 + 1. We say that the node in level : has higher concept
hierarchical level than the children of that node in level z + 1. By organizing
the data in a hierarchical structure, we could determine the concept hierarchical
relation more efficiently. In Figure 4.7, the hierarchical structure of the web page
in Figure 4.1 is illustrated. From the structure, we could observe that " IBM Hong
Kong - Employment” is the root node which has the highest concept hierarchical
level. In fact, it is the title of the web page and it describes all data in the web
page.

To construct the hierarchical structure, we use the characteristics of HTML
tags. Each tag has some meaning to the page layout. They are used to display

the text data in a format that is more convenient for the users to locate the
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IBM Hong Kong -
Employment

Work Location Resposbivies
Engagement Manager, Shanghai | Quality service | /0 AT e
Cross Industry opportunities 5 to 6 years engagement
Offerings IBM China Company related work experience
Limited, Shanghai Branch - -
Shanghai Conduct businees requirement
analysis for customers

Figure 4.7: The hierarchical structure extracted from the web page in Figure 4.1

information in the web page. Based on the properties of the tags and the relations
among them, we propose five heuristics to construct the hierarchical structure

from a web page.

Heuristic 1: Heading loose structure tags

In the loose structure tags, there are heading tags (H1, H2, ..., H6) which are
used to enclose the headings in the web pages. A heading briefly describes the
topic of the section it introduces. There are six levels of headings in HTML with
H1 being the most important and H6 the least. The text data enclosed by the
heading tags are used to describe the topic of data in the section of web page
under it. Therefore, its concept hierarchical level is higher than that of the data
in the section under it. Likewise, the title tag is used to enclose the title of
the web page. The title briefly describes the topic of the web page it introduces.
Therefore the text data in the title has the highest concept hierarchical level in

a web page.

The concept hierarchical level of the text data enclosed by heading tags is
in the order as the number of the heading tags. That is, the text data in H1
is higher than that in H2 which is higher than those in H3, etc. However, there
may be several headings with the same heading tag number. A web page is then

divided into discrete region by the heading tags. The data in the region divided
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by a heading tag is the children of the text data in that heading tag.

title data
<title>title data</titie> heading 1 title
...... heading 2 data
<H1>heading 1</H1> Ny
...... beatiing 3 heading heading
<H2>heading 2</H2> 9 ! .
...... heading 4 N\,
<H2>heading 3</H2> heaging heaging
<H3>heading 4</H3> |
...... heading 5 heading
<H1>heading 5</H1> 4
Regions divided by hierarchical structure
HTML segment headings

Figure 4.8: Example of Heuristic 1

An example is shown in Figure 4.8. We can see how the heading tags divide
the web page. Boxes represent the region of data under the heading. "heading
2 "heading 3" and "heading 4" are in the region of "heading I” as they are just
below it and above ”heading 5”. Since "heading 5" is in H1, it is not included in
the region of ”heading 1”. Moreover, "heading 4" is directly under "heading 3
so it is included in the region of "heading 3" not "heading 2°. The hierarchical
structure constructed is illustrated at the rightmost side of Figure 4.8. In the
example, we ignore the other data in the web page and the structure contains
only text data in the heading tags. This structure only displays the hierarchical
structure of text data in heading tags. As "title data”is the title of the web
page, it has the highest concept hierarchical level. Since "heading 27, "heading
P and ”heading 4" are in the region of "heading 1", they are under the subtree

of "heading 1”. Likewise, "heading 4 is the child of " heading 3”.
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Heuristic 2: Non-heading loose structure tags

Non-heading loose structure tags include all the loose structure tags excluding
heading and title tags. There is no difference in the concept hierarchical level
among them. That is, most of them have the same concept hierarchical level.
However, some of them will be higher than others. To explain this, we should
consider the difference between the headings and paragraph below them in an
article or book. Headings describe briefly the topic of their following paragraph
and they should have a higher concept hierarchical level as mentioned in Heuristic
1. As well, we should notice that the length of the headings must be shorter than
their following paragraph. That is, the number of words in the headings is much
fewer than the paragraph followed. Based on this pattern, we could distinguish

the different level of text data enclosed by non-heading loose structure tags.

As there is not any rules guiding people to put headings into heading tags,
people may use other tags to enclose the headings. Also, there is not any pattern
of using which non-heading loose structure tags to enclose the headings. So, in
order to reveal these headings, we could use the pattern of headings and their
paragraph in an article described above. Then we have the follow heuristic. For
the non-heading loose structure tags, if the length of a text data is shorter than
its follow one, then it has a higher concept hierarchical level and it is the parent
of the following text data. The length of text data is determined by the number
of words in the text data. For example, the following is a HTML segment.

<b>Position title</b>

<font>Principal Digital IC Design Engineer</font>
The length of text data ” Position title” is 2 and the length of ” Principal Digital
IC Design Engineer” is 5. Therefore, the concept hierarchical level of ” Position
title” is higher than that of ” Principal Digital IC Design Engineer” and ” Position

title” is the parent.
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Heuristic 3: Hierarchical rigid structure tags

Hierarchical rigid structure tags are rigid structure tags including all the list tags,
ul, ol, dir, div, d1. These tags provide lists of information. Lists may also be
nested and different list types may be used together, e.g. ul may be nested in
ol. The text data in the list is embedded in the list item tags, e.g. 1i is the list
item tag of ul. Therefore, these types of tags organize the text data in the order

of concept hierarchical level. These tags could be seen as a concept hierarchy

tree.

We first consider list tags without nested list. Usually, in the list of data, the
list items are all related. Their concept hierarchical level are also the same. So,
all the text data in the list is under the same parent in the hierarchical structure.
We illustrated this case in Figure 4.9. The text data "item one”, " item two” and
"item three” are the list items and so they all under the same parent. Their
location in the list determine their order in the tree. As "item one” is above

"item two”, it is the left sibling of ”item two” in the tree.

<ul> parent
<li>item one</li>
<lisitem two</li> / \
<li>item three</li> - -
item item item

</ul> one two three

: hierarchical

list tag segment

structure

Figure 4.9: List tags without nested lists

List may contain other lists. One of the list item may be used to describe the
topic of a list of information. Therefore, the nested lists have a lower concept
hierarchical level. In addition, the nested lists are the children of their preceding

text data. This case is shown in Figure 4.10. Like the previous case, " item one”
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and "item two” are under the same parent and "item one” is the left sibling of

"item two”. A list is under "item two”, so the list items are children of "item

”

two”. They are not the children of "item one” because they are not directly

below it.

<ul>
. i parent
<li>item one</li>
<li>item two</li> 7 N
<u'> item item

& . a one two
<li>subitem 1</li>

li>subitem 2</li> / \

</ul> subitem subitem’
</ul> 1 2

list tag segment hierarchical structure

Figure 4.10: List tags with nested lists

Heuristic 4: Tabular rigid structure tag

Tabular rigid structure tags include table tag. This tag organizes the data into
a tabular structure as shown in Figure 4.3. The concept hierarchy of the text
data is implied in the table. However, there are two types of table that could
occur in the web pages. One has header entry but another does not. The concept
hierarchy in these two types of table are different. Also, each table may have an
associated caption enclosed by the tag caption. It describes briefly the topic of

the data in the table. So, the concept hierarchical level of the caption is higher

than all data in the table and it is the parent.

In web pages, the header entry is enclosed by the tag "th”. If the header
entries are in the first row, then this type of table is similar to a table in relational
database. The headings describe the type of data in the columns under them.

Therefore, the headings have higher concept hierarchical level and they are the
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<table>

<caption>An example of table</caption>

<tr><th>head1</th><th>head2</th></tr>
<tr><td>data11</td><td>data21</td></tr> An example
<tr><td>datal2</td><td>data22</td></tr> of table

</table> / \

An example of table
head1 head2
headl head2

datall data2l / \ / \

datal2 data22 datat1 data12 data21 data22 ]

HTML segment and

hierarchical structure of table
corresponding table

Figure 4.11: Hierarchical structure of table with header entry

<table>
<caption>An example of table</caption> An example
<tr><td>data11</td><td>data21</td></tr> of table
<tr><td>data12</td><td>data22</td></tr>
<fable> / \
_An example of table datat1 datal2
datall data2l
datal2 data22
l data21 data22
HTML segment and hierarchical structure
corresponding table of table

Figure 4.12: Hierarchical structure of table without header entry

parent of the data in the corresponding columns. An example is shown in Figure

4.11. Therefore the header entry has higher concept hierarchical data in the

table.

If there is no header entry, then we could consider the leftmost entry of each
row in the table having higher concept hierarchical level than other entries in the
same row. Usually, in the web pages, the first entry of each row would be used
as the header for each row if there is no header entry in the table. Each row
would be considered as the same level in the hierarchical structure. An example
is shown in Figure 4.12. The leftmost entry of a row is the parent of the other

entries in the same row.
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Heuristic 5: Rigid structure tags and loose structure tags

This heuristic is used to relate the text data from rigid structure tags and loose
structure tags. There are two types of loose structure tags: heading and non-
heading. They relate to the rigid structure tags in different ways. As stated in
Heuristic 1, text data in the title tag describes the topic of the data stored in
the web page, so it is at the highest hierarchical level among all data enclosed

by rigid structure tags and loose structure tags.

In addition, the heading tags are often used to divide the web pages into
several regions and the text data enclosed by the heading tags are used to describe
the text data in the corresponding region. All the data, including those in loose
and rigid structure tags in the region has lower concept hierarchical level than

the text data of the heading tag above the region.

For the non-heading loose structure tags, if the text data is just above the
rigid structure tags, then it acts as a heading that describes the topic of the data
of rigid structure tags. Therefore it has higher concept hierarchical level than

the data in the rigid structure tags. That is, it is the parent in the hierarchical

structure.

Using Tag-tree to construct Hierarchical Structure

The tag-tree could be used to construct the hierarchical structure more efficiently.
There are several subtrees in the tag-tree. For example, the left of Figure 4.13
is a subtree of the tag-tree in Figure 4.5. The root of the subtree is "TABLE”
tag so it is called "TABLE” subtree. It is also a subtree of the "BODY” subtree.
According to the five heuristics, structure is extracted from each subtree. The
right of Figure 4.13 is the structure extracted from the "TABLE” subtree by

Heuristic 4. The root node of the structure indicate that it is extracted from
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a "TABLE” subtree. The right of Figure 4.14 is the structure extracted from
the "UL” subtree by Heuristic 3. As there is only one text data under the "UL”
subtree, the structure consists of only one node. Structure is then extracted from

each subtree and the root node of the structure shows the HTML tag from where

the structure is extracted.

,:: : Position Title

[ Ref. no I lShanghai 1 J Engagement Manager, Shanghai 1

Cross Industry Offerings

Position Title

Engagement Manager,
Cross Industry Offerings

Figure 4.13: The structure extracted from a "TABLE” subtree

UL
UL
LI .
IBM China Company
I Limited, Shanghai Branch
IBM China Company Shanghai
Limited, Shanghai Branch
Shanghai

Figure 4.14: The structure extracted from a "UL” subtree

If two subtrees are under the same node in the tag-tree then the structure
extracted from these two subtrees are merged to a new structure by the five
heuristics. For example, in Figure 4.5, "TABLE” subtree and "P” subtree are
under the same node "BODY” so the structures extracted from them are merged
according to the five heuristics. Figure 4.15 shows the process of merging the
structures from three subtrees. We assume that the "BODY” node only has these
three subtrees. By Heuristic 5, the structure from "P” subtree is the parent of

that from "UL” subtree and is the right sibling of that from "TABLE” subtree.
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Now the new structure is rooted with "BODY” node. Finally the structure
from "TITLE” subtree is in the highest level in the hierarchical structure so
the structure of "BODY” subtree is the children. The hierarchical structure is

constructed as shown in Figure 4.7.

TABLE
/ \ p UL
Position Title Ref. no ]
Work Location IBM China Company
Limited, Shanghai Branch
Shanghai
Engagement Manager, Shanghai 1
Cross Industry Offerings
BODY
Position Title Ref. no Work Location
IBM Chi
Engagement Manager, Shanghai 1 FES Ching Cor-npany
Ceui ooty Offeinie Limited, Shanghai Branch
s sy & Shanghai

Figure 4.15: The structure of "BODY” subtree

4.4 Hierarchical Structure Statistics

Hierarchical structure organizes data in the order of their concept hierarchical
level in the web pages. So, we would like to determine whether this rule is obeyed
in a set of web pages. One of the evaluation of the performance of hierarchical
structure is measured by studying the position of labels and their corresponding
values in the structure. Labels have higher concept hierarchical level than their

values, so they should be the parent of their values in the hierarchical structure.
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Therefore, we would like to determine this relation by studying a class of web
pages. Labels and values could be distinguished manually if the set of web pages

is in the same class.

We extract a set of hierarchical structure from 7651 web pages in the same
class. In the set of structure, there are total 158,285 nodes in the 7651 hierarchical
structures. The labels and values are determined manually from the structure
according to the attributes of the class. The class we used is the job employment
class and we know that some attributes should be in the class, e.g. job title, job
requirements, job description, work location, etc. According to these pre-defined
attributes, we could determine which text data should be labels and represent
which attributes in the web pages. Also, based on the attributes represent by

the text data, we could determine which one is the value of the corresponding

label.

In the set of nodes, we find that there are 28,527 nodes containing text data
that should be labels and there are 49,583 nodes containing text data that should
be values. We could observe that some labels would have more than one text
data as values. For example, the requirements of a job would have 3 values which
represent 3 different required skills of the job and the values are enclosed by
different tags. So, for one label, the value may be located in different neighbour
nodes. Therefore, we discover the location of each value corresponding to their

labels in the hierarchical structure.

In Figure 4.16, the blackened node is the label and then the possible position
of its values would be parent, left sibling, right sibling and children. In Table 4.2,
the distribution of the location of values relative to their corresponding labels
is shown. In the set of web pages, we observe that almost all the values are
located at the children node of their labels. However, there are some located at
the right sibling. No values are located at the parent and left sibling nodes. In

the table, others means the positions other than the four neighbour nodes and
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parent

left
sibling

children

Figure 4.16: The possible neighbour of a node

right
sibling

Location of values

Number of values

Parent 0.00%
Left sibling 0.00%
Right sibling 6.09%
Children 93.20%
Others 0.71%

Table 4.2: Location of values statistics

the node itself. Very few values are located at other positions. That means only

few cannot be organized in the order. The hierarchical structure could organize

almost all labels and values in the concept hierarchical order.
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Similar Labels Discovery

Web pages in the same class store the same type of information and each class has
a number of attributes as stated in definition 1. The attributes are stored as labels
with their values in each web pages. However, the labels may be different for the
same attributes in a class of web pages: for two labels [, and {5, A(l;) = A(l3) but
ly # l. We said that these two labels are similar {; ~ [, as defined in definition
6. If similar labels could be discovered then we could know that whether two

values belong to the same attributes.

To deal with the similar labels problem, we introduce labels discovery algo-
rithm based on the hierarchical structure to reveal similar labels. Before looking
into our algorithm we would like to introduce the structure-expression of the
hierarchical structure extracted from a web page. This expression could make

the algorithm more efficiently than using a tree structure.

5.1 Expression of Hierarchical Structure

The hierarchical structure is a tree in which each node corresponds to one text
data in a web page. Each node has four possible neighbour nodes: parent, left

sibling, right sibling and children. Information of a node could be obtained from

53



Chapter 5 Similar Labels Discovery 54

its neighbour nodes. For example, values are always in the child nodes of their
labels as shown in previous chapter. Therefore, we would like to express a node
associated with the data in its neighbour nodes. We then express each node as

a structure-expression with the following format.

The structure-expression of a node n in a hierarchical structure is associated
with five data sets {d,,d,,d, d,,d.}. They are the sets of text data from the node
itself d,, from the parent d,, left sibling d;, right sibling d, and child d. nodes.
They are called own data set, parent data set, left sibling data set, right sibling

data set and children data set respectively. These notations are summarized in

Table 5.1.

Symbols | Data sets Descriptions
d, own data set text data from the node itself
d, parent data set text data from the parent node
d; left sibling data set | text data from all left sibling nodes
d, right sibling data set | text data from all right sibling nodes
d, children data set text data from all child nodes

Table 5.1: Notation of data sets

The left sibling, right sibling and children data sets may contain text data
from more than one node. Some of these data sets except own data set may be
empty as some nodes may not have parent, left sibling, etc. Recall that text data
is the textual content from the web pages, so each text data consists of a set of

words. Therefore the content of each data set is a set of distinct words.

Definition 12 (Structure-expression of a node) A node n in the hierarchi-
cal structure is expressed as {d,,d,,d;,d,,d.}. Each data set d; consists of a set

of words {wy,w,...,w,} from the text data of the corresponding nodes. [ |

Example 5 In Figure 5.1 is an example of hierarchical structure. The node

” Position Title” should be expressed with the five data sets as follows:
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| Position Title l | Ref. no:I Work Location

Engagement Manager, Shanghai 1

IBM Hong Kong -
Employment

Responsibilities

Quality service

Requirements

Cross Industry opportunities 5 10 6 years engagement
Offerings IBM China Company related work experience
Limited, Shanghai Branch = :
Shanghai Conduct businees requirement
analysis for customers
Figure 5.1: A hierarchical structure of web page
d, = (Position, Title)
d, = (IBM, Hong, Kong, Employment)
d=¢

d, = (Ref, no, Work, Location, Responsibilities, Requirements)
d. = (Engagement, Manager, Cross, Industry)
" Position Title” does not have left sibling in the hierarchical structure, so the

left sibling data set is empty, denoted by ¢. |

Each node in the hierarchical structure is expressed in a structure-expression.
Then a hierarchical structure consists of a set of nodes {n;,n,,...} where each
node has five data sets. This expression could let us retrieve the surrounding

data of a node more efficiently.

5.2 Labels Discovery Algorithm

Labels always are stored with their values in the web pages. The labels represent
attributes in the class of web pages. They are used to describe the topic of
their values in a web page. Some values of the same attribute have similar
characteristics. That is, the values of similar labels may contain some common
words. For example, ”requirements” and ”qualifications” represent the same

attribute and the word "required” occur in both values of these labels. Therefore,
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by comparing the values of each labels, we could determine the similarity between
them and then discover similar labels. Labels discovery algorithm bases on this

characteristic to reveal similar labels.

In a set of hierarchical structure extracted from a class of web pages, there
are nodes containing labels, values or others, there are two categories of nodes:

label node and non-label node in the structure. They are defined in the

follows.

Definition 13 (Label node) Label node contains text data in its own data set

such that the text data is used as label in the web page. n

Definition 14 (Non-label node) Non-label node contains text data in its own
data set such that the text data is not label but may be value or others in the

web page. |

We now have problems on labels. If we do not know which nodes contain labels,
how can we discover similar labels? Furthermore, in oder to discover similar
labels, only label nodes are useful. Non-label nodes are useless and acts as noise
in similar labels discovery. Therefore we have to eliminate non-label nodes in
each hierarchical structure. By using the properties of labels, we then set some

rules to eliminate non-label nodes from the hierarchical structure.

Labels discovery algorithm then consists of three phases to discover similar
labels from the set of hierarchical structures of web pages in the same class.
Phase one removes non-label nodes from the set of hierarchical structures of web
pages. Label nodes are then identified from the remaining nodes in phase two.

Lastly, phase three discover similar labels by measuring the similarity of the label

nodes.
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5.2.1 Phase 1: Remove Non-label Nodes

In phase 1 of labels discovery algorithm, non-label nodes are revealed and elim-
inated from the hierarchical structures of a class of web pages. These non-label
nodes would not be used in the similar labels discovery and they may cause error
to the result. In order to remove non-label nodes, we will then illustrate the de-
termination of non-label nodes. If non-label nodes could be determined then the
removal process would be easy. In fact, it is not the case. Here we will illustrate

the problem and the solution.

In the web pages, instead of the data of the main type of information, there
are other minor information. For example, in Figure 5.2, there are two job
employment web pages from the same company and each one stores data of one
job opportunity. In the web pages, instead of the job employment data there is
the information of the application methods, ” Interested in applying for this job
...... which is not a data of the job stored in the web page. Moreover, data of
advertisements or company’s information are both not the main data of the job
class of web pages. Main data of a web page means the data of the main type of
information in the web page. For example, the main data of job employment web
pages is the data of a job, including position, requirements, description of the
job, ..., etc. The main data of books web pages is the data of a book, including
title, authors, publishers, ..., etc. Then the others are not the main data of
the class such as advertisement in a book web pages, company information of
a job employment web pages. In the construction of hierarchical structure, this

information will become several non-label nodes in the structure.

However, this type of non-label nodes is not easily discovered as they may
appear in different place in the web page and different format. For example, the
advertisements may be located at the top in some web pages but at the bottom

in other web pages. In addition, there are different types of information that is
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Figure 5.2: Two job employment web pages from one company

not main data in the web pages. Therefore, there is no specific characteristics of

this data. It is difficult to determine their existence in the web pages.

Non-label nodes also contain values in the web page. Among the nodes in the
hierarchical structure, the number of non-label nodes are more than label nodes
as each label may have more than one text data as its value in the web page.
To identify which node contains values is difficult because the textual content of
values may be long or short and are different in different web pages. For example,
the value of a job’s title may be short as " IT Specialist” but the values of a job’s

description would be long. Therefore it is not easy to determine them by their

content.

It is difficult to determine the characteristics of non-label nodes but we could
determine them by using the properties of labels. If the data in the node does
not obey the properties of labels, then we could determine that the node is non-

label node. Therefore we define the rules of identify non-label nodes by using
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the characteristics of labels.

Definition 15 (Rule of non-label nodes identification) A node n asso-
ciated with five data sets {d},d},d},d;',d}' in the hierarchical structure is a

non-label node if it satisfies either one of the following conditions.
1. The right sibling data set d and the children data set d” of n are empty,
d} = d} = ¢. That is, n does not have right sibling and child nodes in the

hierarchical structure.

2. Thereis anode m = {d}',d7,dj",d",d} in the same hierarchical structure
that have the same own data set as n, d* = d7.
3. There is a node in another web page that has the same own data set, left

sibling data set, right sibling data set and children data set as node n. 1

We would then give the arguments and examples of the three rules of non-

label nodes identification.

Rule 1 Each label in a web page has its corresponding value. From the statis-
tics of hierarchical structure in Chapter 4, the values are located at the right
sibling nodes and mainly at child nodes of their corresponding labels in the
structure. Therefore, if a node n does not have right sibling nodes and children

nodes, then the text data in n is not a label. Then we considered n as non-label

node.

In Figure 5.3, there are four cases of node that would be considered in Rule
1. Case 1 has right sibling and child nodes, then n is a label node. Case 2 has
no right sibling nodes but two child nodes, then n is also a label node. Case 3
has one right sibling node but no child node, then n is also a label node. Case
4 has no right sibling and child nodes, then n is a non-label node. Therefore, in

these four cases, n is considered as non-label node in case 4. i

ld:,‘ denotes the own data set of node n where o for own data set, p for parent data set, [

for left sibling data set, r for right sibling data set, ¢ for children data set. These notations
will be used in the remaining of thesis
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$ Fo

case | case 2 case 3 case 4

Figure 5.3: Four cases of a node in a hierarchical structure in Rule 1 of non-label
nodes identification

Rule 2 In Property 1, in one web page, all labels are different and each label
occurs once. A label consists of one text data in the web page. As labels are
unique within one web page, if a text data ¢ is label, then it will not be located
in another position of the web page. Therefore ¢t will not be in two nodes of
hierarchical structure. Reminded that content of own data set of a node n is
from the text data of n itself. For a web page w, suppose that the node n is a
label node in w, then Vn; € w, d? # d* if n # n;. Therefore, if the own data set

of two nodes are equal, then they are non-label nodes. n

Rule 3 Very few web pages in the same class would have the same label-value
pair. The reason is that different authors will use their own style to represent
the same data and it is rare that two authors will use the same wordings to
represent the same thing. For example, in most cases, the name of a job will be
different for two different companies even the two jobs are working on the same
field. However, there are cases that the same label-value pair are stored in two
different web pages. For example, the authors of a book in books web pages may

be stored in another page as the authors may publish many books.

However, the text data next to these label-value pairs would always be dif-

ferent in different web pages. For example, there may be book title next to the
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authors in some pages but in others there may be publisher next to the authors.
Therefore, if we look at the neighbour of a label in the hierarchical structure
then we could discover that they would be different in almost all pages in the
same class. Although there may be some cases that they will all the same, the

number become much fewer and they could be ignored.

As a result, if the neighbour and the node itself occur exactly the same pattern
in another page, then we could determine them as non-label nodes. To determine
a non-label node, the own data set, left sibling data set, right sibling data set
and children data set of a node should be the same as another node in another
web page. We omit the parent data set because it is too strict to the condition
of having all the neighbour to be the same. This will only identify few non-label
nodes. In order to identify more, we loose the condition to omit the parent data
set as this omission will discover more non-label nodes and the errors are very

small as shown in our experiments. [ |

From a class of web pages, non-label nodes in hierarchical structure are iden-
tified by using the above rules. Then they are removed from the hierarchical
structure. The remaining nodes would have a higher possibility to be label
nodes as it is difficult to identify all non-labels. Some non-label nodes may be

remained but the number will be greatly reduced.

5.2.2 Phase 2: Identify Label Nodes

After phase 1, the number of non-label nodes is largely reduced but there are
still some remained in each web page. However, the proportion of label nodes is
increased and the number is more than non-label nodes. Therefore, in this phase,

we will discover candidate label nodes that have the higher possibilities to be

label nodes.

Although different labels are used to represent the same attributes in different
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pages, there are some labels that many web pages in the same class would use.
That is, there are identical labels in different web pages. Therefore in the set of

web pages, there are nodes that have the same own data set.

Furthermore, it is rare that the non-label node with the same own data set
would be in many web pages. The data in the non-label node are values and
other type of information instead of the main type of the class. For values, they
would not be the same text data in many web pages as data of an attributes
would be different for different records. For example, the name of a job would

not appear exactly the same in many web pages as there are many different jobs

in a class of job employment web pages.

There are other information instead of the main information of the class
stored in the web pages. Different web pages may have different type of this
information. As this is not the main information, the same data of one type of
this information would not be stored in many web pages of the class. Therefore,

for these types of non-label nodes, very few have the same own data set in many

web pages.

According to these characteristics, we could discover candidate label nodes
by the frequency of the nodes in the set of web pages. The frequency is counted
by the number of nodes with the same own data set. Each node is distinguished
by their own data sets. For example, if there is another node with the same own
data set of node n then the frequency of n is 2. We then count the frequency of

each of such nodes in the set of nodes remained in phase 1.

For the same attribute, the values would be similar in their content. Some
words always appear in different values of the same attribute. For example, in
Figure 5.4, there are four web pages segment which each displays the label and
values of the attribute job requirement. In four values, we could discover that

some words always appear, e.g. experience, skills, etc. Therefore for the values
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of different labels, there are different characteristics for different labels. As a

result, the values could be used to discover similar labels.

Requirements:

Creative Salesperson with S years of direct sales experience; proven sales skills plus
results; training/coaching experience; excellent interpersonal and motivational skills and
strong organizational skills are a must. Other desired (but not required ) qualifications
include commissioned sales experience, tele -sales experience, strong background in
retall sales, familiarity with telecommunications industry.

Required

C, C++ Programing experience, Object—oriented software design, image capture, and
manipulation, Unix operating system,interface experience with various image capture and
output devices.

The ideal candidate will possess

e Existing Clearance
e Required Skills:
© Digital Systems
© Receiver
© Wideband
© Individual must have detailed knowledge of wideband EW receiver systems, Must be able
to understand technical issues associated with digjtal system design and provide guidance
to engineering staff.
e Desired Skills:
© Market Development
© Program Management
o System Design
o Customer Interface
e Degree; Masters
e Major(s): EE, Systems

Required Experience and Skills

o BS Computer Science or equivalent

e Minimum 2 years working on Internet site with electronic commerce or
comparable application experience

» Hands-on knowledge of Oracle, Java and Perl in a Solaris Apache server run
time environment

® Experience building and scaling a web site to high volume transactions (not
with two years EXP)

® Project management documentation skills

e Up-to—date on current technologies and what’s new and viable for web sites

o Nice to have:

o PL SQL, Oracle triggers and storage procedures and
Snapshot/Replication

Figure 5.4: Four web page segments

In most case, the values are located at the child nodes of their corresponding
labels. Some also are located at the right sibling nodes. Therefore to extract the
content of values, we consider both child nodes and right sibling nodes. Although
other data will also be included, we could also include all the data of value and
the other data will not affect characteristics of values. Then all the data of these

two nodes are combined to form the feature of the node.
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Definition 16 The union of the child and right sibling data sets of a node n,
drUd? are called the feature of n, denoted by f,.. The feature is a set of distinct

words {wy, wa, ...y Wy }. |

The feature for every same own data set nodes are generated. These nodes
will then be converted to a new format which only contains the own data set and
the feature. The own data set may contain the label and the feature contains

the value of the label. The content of a node n is now a set of two data sets

{d5, fa}-

Then the support of these nodes is calculated. The support of each node is
defined as follow.

Definition 17 (Support) In a set of N web pages in the same class, the fre-

quency of a node n with the same own data set is F'(n). Then the support of

n, Sup(n), is defined as follow.

F(n)
N

Sup(n) = (5.1)

Nodes with same own data set are merged by union their feature to produce a
new node. For k nodes ny,n,,...,n; with d2' = d?* = ... = d"*, they are merged
to form a new node m = {d7, f} such that d* = d™ = d™ = ... = d" and
fm = fay U fa; U..oU fir,. Then there would be a new set of nodes produced
M = {my,mg,...,m;} where the own data set of each node is distinct. Each node
in M is associated with its support value. In addition, each word in the feature

has a count. The count of a word w; is the number of nodes with the same own

data set containing w; in the feature.

With a high support, a node has a high possibility to be a label node. There-
fore, there is a pre-defined threshold min_support such that if the support of a
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node is greater than the threshold then it is candidate label node. Otherwise,
it is non-candidate label node. The own data set of candidate label node
contains label. In contrast, the own data set of non-candidate label node has
a little chance to contain label. That is, few nodes in the non-candidate label

nodes would contain a label.

Definition 18 (Candidate label node) If the support of a node m is greater

than the min_support threshold &,,,, Sup(m) > €5, then m is a candidate label
node, otherwise it is non-candidate label node. The own data set of this node is

said to contain label. i

Furthermore, the words in the feature of a candidate or non-candidate label
node m are the characteristics of m. In traditional information retrieval, each
document is represented by an n-dimensional vector, where n is the number of
distinct keywords or terms in the collection of documents. The vector is the
knowledge of the document. It could be used for query, classification. Likewise,
the feature of a node is the knowledge of the node. It represents the data in own
data set of the node. Hence, each word in the feature is a characteristic of the
feature. There is a value called confidence indicating the significance of a word

in the feature of a node. The confidence is calculated by the count of each word

in the feature.

Definition 19 (Confidence) Suppose a candidate or non-candidate label node
m is formed by merging a set of F'(m) nodes, N, with the same own data set and
a word w; occurs in the feature of freg,(w;) nodes in N. Then the confidence of a

word w; in the feature of a candidate or non-candidate label node m, C'on f,, (w;),

is defined as follow.
_ fregm(wi)

Confm(w,-) = T(m)_ (52)
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Example 6 Given 100 nodes with the same own data set, they are merged to
form a new node m. Then the frequency of m, F/(m) = 100. The feature of m is
union by all feature of 100 nodes. If a word w; occurs in the feature of 50 nodes
that formed m, then the frequency of w; in node m, freg,(w;) = 50. So the

confidence of w; in the feature of node m is calculated as

50
Confm(w,-) = 10—0- =0.5

In short, here is the summary of phase 2 algorithm.

1. Discover nodes with same own data set. From a set of nodes N =
{n1,nz,...,nx}, discover nodes with same own data set and count their

frequency in the set. Support of each node is calculated.

2. Generate feature for each node. A feature f,, is generated by union
the right sibling and children data sets for each node n; € N. Then the

node in N is converted to a set of two data sets, n; = {d, f...}.

3. Identify candidate label nodes. The set of nodes N is transformed to
M = {my,my,...,my} by merging nodes in N with the same own data set
to a node m; and all feature of the nodes with same own data set are union
to a new feature f,,,. Each node in M is associated with a support. If
m; € M and Sup(m;) > € then the node m; is candidate label node,

otherwise, m; is non-candidate label node.

5.2.3 Phase 3: Discover Similar Labels

From the candidate and non-candidate label nodes obtained in phase 2, phase 3
discovers nodes containing similar labels. Therefore we have to measure the sim-

ilarity of the nodes. The similarity is calculated by the feature of each node. In
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this section, we will first introduce the similarity function used in the algorithm.

Afterwards the algorithm of phase 3 will be introduced to discover similar labels.

Similarity Function

In the traditional information retrieval, each document is represented by an n-
dimensional vector, where n is the number of distinct keywords or terms in the
collection of documents [25]. The vector is the knowledge of the document. It
could be used for query and classification. Similarly, a query is also represented
by an n-dimensional vector. The similarity between a query and a document
is measured by the closeness of the corresponding vectors in the n-dimensional
space. Likewise, classification also find the closeness of the vectors of two docu-

ments in the n-dimensional space.

Each entry in the document vector corresponds to a word in the collection
of documents. Basically, the simplest format of a document vector is binary.
That is, each component of a vector is either 0 or 1 (where 0 and 1 represent
the absence and the presence, respectively, of a term in the document or query).
Furthermore, the value in the vector of a word could be used to indicate the
significance of the word in the document [27]. The value could be document
frequency and term occurrence frequency. The document frequency of a term is
the number of documents having the term. Usually, the more documents having
the term, the less useful the term is in discriminating those documents having
it from those not having it. In addition, the term occurrence frequency is the
number of times the term occurs in the document. If a term occurs many times,
then it is likely that the term is significant in representing the contents of the

document because the author keeps on using it.

A similarity function is defined to measure the closeness between any two

vectors. Let the two vectors be X = (zy,...,zi,...2s) and Y = (Y1, ..., iy ooy Yn)-
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In information retrieval, Cosine function between two vectors is used frequently

as the similarity function and it is given as follows.

Y
Cosine(X,Y) = - (5.3)
VX - X)e (YY)
where X - Y is the dot product given below,
X-Y=Y zy (5.4)

i=1

and the big dot (e) denotes the familiar scalar multiplication. If the value of an
entry in the vector z; is 0 then the word w; does not occur in the document. In
the dot product, if the word w; does not appear in either one of the document
then the value z;y; of w; is 0. Therefore the dot product is greater than 0 only
when there is common words between the two documents. Hence the similarity
function measures the degree of words overlap between two documents. So the
cosine function could be rewritten to indicate the degree of words overlap between

two documents Dy and Dy.

. Zw.EDwa.GDy TilYi
Overlap(Dx, Dy) = - - (5.5)
JZW,GDwa.GDy ‘Ti Zw,EDx/\w,'EDy yi

Similarly, in our algorithm, each node has its feature which each element is a
word associated with a confidence. The feature is used to describe the own data
set of each node. It indicates the meaning of the own data set of the node. Each
entry in the feature is a characteristic of the feature. The confidence of a word
indicates the significance of the word in the feature. The feature plays the same
role as the vector of a document in the traditional information retrieval. The
vector of a document indicates which words occur in the document. To find the

similarity between the own data set of each node we could measure the similarity

between the features of each own data set.

The similarity function between two features in our algorithm is based on the

cosine function discussed above. In our algorithm, the feature could be used to
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denote the attribute that may be represented by the label in the own data set
of a node. For the same attribute, the data will be similar. That is, some words
always occur in the data of the same attribute of different records. The feature
in the node n contains the value of the corresponding label in the own data set
of n. Therefore the features of two nodes n, and n, must have overlap on words
if the own data set of ny and n, contains similar labels. The more two features
overlap, the more they are similar. As a result, the similarity function between

two features is defined according to the cosine function in traditional information

retrieval.

Definition 20 (Similarity function of two features) There are two nodes
ny and np with the features f,, and f,, respectively. In the features, there are
words w; associated with confidence. Then the similarity function between the
two features f,, and f,, is defined as follow.

‘ ¢ n \ % C na (Wi
similarity( fo,, fn,) = Zwlefnlnfnz onf, 2(10 ) X Con fr, (w;) :
\/Z"’"ef"l Conf’“ (wi) ZUJ.’Efnz Confnz(wi)

(5.6)

Example 7 There are two features with the confidence of the word in the
bracket.
(apple{0.776}, orange{0.349}, banana{0.662}, mango{0.955})
(apple{0.446}, banana{0.965}, lemon{0.489})
Then the similarity value between these two feature is:

0.776 x 0.446 + 0.662 x 0.965
V(0.7762 + 0.3492 + 0.6622 + 0.9552) + (0.4462 + 0.9652 + 0.4892)

= 0.532

After we defined the similarity function between two features, we could define

the similarity function between two nodes. From Property 1, the label is unique



Chapter 5 Similar Labels Discovery 70

within one web page. It means that the labels within one web page are not
similar. That is, if a node once occurs with another node in the same web pages,
then they are not similar at all. Therefore the similarity value between them is
0. Otherwise, the similarity function between two features of the nodes will be
used to measure the similarity value of the nodes. Here is the formula used to

calculate the similarity value between all the nodes.

Definition 21 (Similarity function of two nodes) There is a set of web

pages W = {w;,w,,...,w,}. Suppose that there are two nodes n; and n, in
the set of web pages with the features f,, and f,, respectively. The similarity

function of n; and n, is defined as follow.

0 if Jw; € W s.t. ny,ny € wy;
Sim(ny,ny) = . (5.7)
stmilarity( fn,, fn,) otherwise.

Algorithm

After phase 2, there are two set of nodes: candidate label nodes N. and non-
candidate label nodes N,. Candidate label nodes contain label in their own data
set and non-candidate label nodes have a lower possibilities to contain label. In
phase 3, similar nodes will be discovered from these two sets of nodes and then
merged to form a new node. Then we could discover similar labels. The process

is called MergeSimilarNode.

First the similarity values between all the candidate label nodes will be mea-
sured as these nodes are said to contain labels. In fact non-candidate label nodes
may contain labels as well. Therefore, we need to discover these nodes from the
non-candidate label nodes by measuring the similarity between the candidate la-
bel nodes and them. The reason is that if there is a label { in the non-candidate

label nodes, then there may be a similar label of { in the candidate label nodes.
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However, there is some labels in the non-candidate label nodes that have no
similar labels in candidate label nodes. Then we could not discover these labels
but these labels occur only in very few web pages as the support of the nodes
containing them is small. There is a pre-defined threshold called min_sim, &,

such that if sim(ny,ny) < €5, then n;, and n, are said to be different.

Consequently, each node may have more than one node with similarity value
greater than min_sim as there may be many nodes containing similar labels. We
could model these as a graph to explain clearly. In the graph, each vertex is a
node and each edge means the similarity value between the two nodes greater
than min_sim. The weight of the edge is then the similarity value. In Figure 5.5,
we shows one example of this graph. The value Sim(n, ng) on the edge between
ny and ng is the similarity value of these two nodes. Later, we would use this
graph to explain our process.

Candidate label Non-candidate label
ndoes nodes

Sim(n ,,n,) @
o),

Sim(n ,,n,
Sim(n ,,n,)

Sim(n 4,n,) /@
Sim(n ony)

Figure 5.5: Graph representation of the relation of nodes

Two nodes n; and n;y are similar if and only if the similarity value of them
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Sim(ny,nz) is the highest for both. That is, ny is the highest similarity value
among other nodes to n; and vice versa. To explain, we could use the graph in
Figure 5.5. Node n; has two possible similar nodes n, and n3. We assume that
Sim(ny,nz) > Sim(ny,n3). Then for ny, if Sim(ny,n2) > Sim(ng,ng) then n,
and n, are similar, otherwise they are not similar in this situation. In this phase,

all these similar nodes pairs are discovered at the first step.

Afterwards, for each similar nodes pair, the two similar nodes are merged.
The features of the two nodes are unioned. The confidence of each word in the
feature is then updated. In addition, the new node will contain a set of own data
sets which the elements come from the own data sets of the two similar nodes.

The two similar nodes are then removed from the set where they belong.

The occurrence of either one of the similar nodes will be considered as an
occurrence of the new node. Therefore the support of the new node is calculated
by summing the support of the two similar nodes. This is illustrated as follow.
If the frequency of two similar nodes n, and n, are F(n,) and F(n;) in N web
pages then the frequency of the new node m is F(m) = F(n;)+ F(n;). Therefore

the support of m is calculated below.

Sup(m) = )
_ F(ny)  F(ng)
=N tN

= Sup(ny) + Sup(na)

As one of the merged nodes is candidate label node, Sup(m) > &4, The new

node is considered as candidate label node. It is then added to the candidate

label nodes set N,.

After all similar node pairs are merged, this process is then repeated to the
new set of nodes. The similarity values between the nodes will be calculated again
as the feature of the new nodes are updated. We use the graph representation

to illustrate this process. From Figure 5.5, if ny and n, are similar then they
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merge to form a new node n;n, as in Figurefig:graphl. Note that after two nodes
are merged, their similarity values with other nodes may be changes as the new
node’s feature is changed. Sometimes the similarity value will be smaller than

minsim. As in Figure 5.6, nyn, has no edge to ny. Therefore each round we could

Candidate label Non-candidate label
ndoes nodes
@\\ :
Sim(n ;n,,n,)

Sim(n 4,n7)/GID

Sim(n ,,n,)

Q

Figure 5.6: Graph representation of nodes after one round of MergeSimilarNode

discover different similar nodes according to the features of new nodes. As each
time similar nodes are merged, the feature would become more representative
to the node and the similar nodes could then have higher similarity value and
dissimilar nodes could then have lower similarity value. The process is repeated
until there is no similar node pairs are revealed. The process is shown briefly in

Figure 5.7 and the notations used in the figure is summarized in Table 5.2.

At the end of phase 3, there are two sets of of nodes, candidate label nodes N,
and non-candidate label nodes N,. Each node m; in these sets consists of a set
of own data sets Dy, = {di",d3",...,d"} and a feature f,, m; = {Dp., fim.}.
The candidate label nodes are considered to contain labels and the non-candidate

label nodes contain non-labels. Therefore non-candidate label nodes could be
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Symbols | Descriptions

N, candidate label nodes set
N, non-candidate label nodes set
Es min_sim

sim_node(n;) | the node similar to n; with the high-
est similarity

maz_stm(n;) | the highest similarity value of n;
merge(n;,n;) | merge the nodes n; and n;

Table 5.2: Notations in MergeSimilarNode process

removed. Candidate label nodes are the result of phase 3 finally.

In the set of own data sets in the candidate label nodes, each own data sets
d;'’ contain a label ;. All the labels in D,,, of a node m; are similar. That
is, each candidate label node m; represents an attribute A; of the class of web
pages. From the set of own data sets D,,,, we could obtain a set of similar labels
{0, 57, 1} where 1T ~ 13 ~ ... ~ [ and they all represent an attribute
A; in the class A(I[") = A(l3") = ... = A(}"") = Ai. The features f,,, of each
node are the characteristics of the corresponding attributes A;. The features
could be used to describe the set of similar labels in the same node. Then we
replace the set of own data sets by the set of labels obtained from it. These are

the results obtained from a class of web pages by labels discovery algorithm.

In short, the output of the labels discovery algorithm is described briefly as

follows. From a class of web pages, a set of nodes are obtained.
M = {my,m,...,my} with m; = {Ln,, fm;}
where L,,, is a set of labels
Ly, = {0, .., with I ~ 1~ Lo~

and f,, is a feature consists of a set of words with their confidence.
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Algorithm 5.1 MergeSimilarNode(N., N,, &)

1 Q« ¢

2 for each nodes n; € N, do

3 maz_sim(n;) + 0;

4 sim_node(n;) + ¢;

5 for each nodes n; € N, and n; # n; do
6 if Sim(ni,n;) > €, and Sim(n;,n;) > maz_sim(n;) then
7 maz_sim(n;) < Sim(n;, n;);

8 sim_node(n;)  nj;

9 end if

10 end for

11 for each nodes n; € N,, do

12 if Sim(n;, n;) > €, and Sim(n;, n;) > maz_sim(n;) then
13 maz_sim(n;) + Sim(n;, n;);

14 sim_node(n;) « n;;

15 end if

16 if Sim(n;,n;) > €, and Sim(n;, n;) > maz_sim(n;) then
17 maz_sim(n;) « Sim(n;, n;);

18 sim_node(n;) « n;;

19 end if

20 end for

21 end for

22 for each nodes n; € N. do

23 n; + sim_node(n;);

24 if sim_node(n;) = sim_node(n;) then
25 ng < merge(n;, n;);

26 add ng to Q;

27 if n; € N, then

28 remove n; from Np;

29 end if

30 else

31 add n; to @Q;

32 end if

33 end for

34 N, + Q;

Figure 5.7: MergeSimilarNode process
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5.3 Performance Evaluation of Labels Discov-

ery Algorithm

Experiments using web pages have been carried out. 4000 web pages are used.
They are all job employment web pages from 34 different companies. Each web
page contains one job employment. These companies are chosen arbitrarily from
the company listings of yahoo search engine [17]. Then from these web pages we

would show the results in different phases of labels discovery algorithm.

5.3.1 Phase 1 Results

Phase 1 of labels discovery algorithm removed non-label nodes from the hier-
archical structure constructed from the web pages. Each web page consists of
a set of nodes. From the 4000 hierarchical structures of the job employment
web pages, there are 96,264 nodes. We determine 12,984 nodes containing labels
manually. Therefore 13.49% nodes are label nodes. There are many non-label

nodes. This has been improved substantially after phase 1.

After phase 1, there are 16,782 nodes remained. That is, 83.57% nodes are
identified as non-label nodes and removed. This reduces the size of nodes dra-
matically. In the remaining nodes, there are 12,455 label nodes. The proportion
of label nodes is increased from 13.49% to 74.22%. That means large amount
of non-label nodes are eliminated in phase 1. 94.80% non-label nodes are iden-
tified correctly and eliminated. However, 529 label nodes are identified wrongly
as non-label nodes and eliminated. These nodes are only a small proportion,
4.07%, of label nodes. Although few label nodes are removed, it is only a small
proportion and similar labels could still be discovered. These removed labels
could be discovered later by the results of the algorithm. In fact, the error of

mis-identification of non-label nodes is very small, only 0.67%. So phase 1 could
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Before | After

Number of nodes 96,264 | 16,782
Number of label nodes 12,984 | 12,455
Proportion of label nodes 13.49% | 74.22%

Proportion of non-label nodes | 86.51% | 25.78%

Table 5.3: Statistics of Phase 1
improve the quality of data to be processed.

In short, we could observe that phase 1 of labels discovery algorithm could
largely reduce the number of non-label nodes in a set of hierarchical structures
but retain almost all label nodes. The statistics are shown in Table 5.3. Non-label
nodes are regarded as noise in the algorithm as they will decrease the accuracy of
similar labels discovery. From the statistics of phase 1, noise is reduced greatly in
this phase. Therefore we could say that the rule of non-label nodes identification

defined in definition 15 can identify large amount of non-label nodes correctly.

5.3.2 Phase 2 Results

Phase 2 of labels discovery algorithm discovers candidate label nodes from the
remained nodes after phase 1. Nodes with same own data set are merged. From
the 16,782 nodes remained in phase 1, there are 163 nodes with distinct own data
set. 76 nodes contain labels and 87 nodes contain non-labels. Their support is
then evaluated according to their frequency in the set of web pages. As well,
their features are formed. Stopwords are then removed from the features of each

node and stemming is applied to the words in the feature.

Statistics on the support values and features of each node are shown in Table
5.4. The average support of nodes is 0.025739 which is very low. The low support
means that each node occurs in few web pages only. This should be explained by
the reason that many different labels are used to represent the same attributes. In

addition, in Figure 5.8, we could observe the distribution of each node’s support
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average support 0.025739
average support of label nodes 0.041786
average support of non-label nodes 0.011721
average feature length 152.79
average feature length of label nodes 267.89
average feature length of non-label nodes | 52.24

Table 5.4: Statistics of Phase 2

value. It shows that most of the nodes having support smaller than 0.1. However,
there are some nodes having large support. Also, in the 163 nodes, over half of
them are non-label nodes. These nodes have low support as the average support
of non-label nodes is 0.011721. In contrast, label nodes have a higher support
that the average support is 0.041786. The distribution of support values of
label and non-label nodes is shown in Figure 5.9. We could observe that most
label nodes have higher support values than that of non-label nodes. A large
proportion of non-label nodes have very low support values. Therefore we could
observe that non-label nodes always have small support. Accordingly, from the

results, a node with a high support has a higher chance to be label node.

Sup(n) > €swip
€sup | No of nodes | Label nodes | Label nodes included
0.0418 28 71.43% 26.32%
0.0257 34 67.65% 30.26%
0.0117 39 66.67% 34.21%
0.0045 49 59.32% 46.05%
0.0018 80 52.50% 55.26%
0.0015 85 51.76% 57.89%

Table 5.5: Proportion of label nodes for different &,

In Table 5.5, we shows the statistics of label nodes for different min_support
€sup- For different threshold values, the number of nodes with support higher
than the threshold (candidate label nodes), the proportion of label nodes in
these nodes and the proportion of label nodes with support greater than the

threshold are shown. For example, for Esup = 0.0418, there are 28 nodes with
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Figure 5.8: Distribution of support of nodes
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support > 0.0418 and in these 28 nodes, there are 71.43% label nodes. As well,
there are 26.32% of all label nodes with support > 0.0418. As we do not have
any methods to choose &,,, the threshold values are chosen from the median and
mean support of all nodes, label nodes, as well as non-label nodes. The median
support of all nodes, label nodes and non-label nodes are 0.0018, 0.0045 and
0.0015 respectively. The mean support for these three categories are shown in
Table 5.4. It is obvious that the threshold chosen should make no non-label nodes
become candidate label nodes. However, it is difficult to include no non-label
nodes as candidate label nodes as fewer label nodes will be included as candidate
label nodes. We could observe this from the Table 5.5. ‘When the proportion
of label nodes increase for different threshold, the label nodes included as the
candidate label nodes become fewer. Therefore, we should choose the threshold
such that more label nodes are included and more non-label nodes are excluded.
However, it is difficult to discover a method for choosing such value, so we choose

the value arbitrarily from the six values.

Another interest point of the results is that the average feature length of label
nodes, which is 267.89 words, is greater than that of non-label nodes, which is
52.24 words. That is more words are in the feature of label nodes than non-label
nodes. The reason is that values of labels are located in the feature of each label
nodes and they provide information of the labels in the nodes. On the other
hand, non-label nodes do not provide any information in the web page so their
features are not representative of the non-labels in the nodes. Therefore the

feature could then be used to determine similar labels as it provides information

of the labels in the nodes.
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5.3.3 Phase 3 Results

Phase 3 of labels discovery algorithm discovers similar labels and their features.
There are two thresholds that affect the results of the algorithm. They are
min_sup €sup and min_sim ;. &4, affects the number of label nodes regarded as
candidate label nodes and the number of labels that could not be discovered. ¢,
affects the result of similar labels discovery. These could be illustrated by the

results of experiment.

30 T T T T
Ea=0.4
25+ s
20 A
g £=0.3
= 15 —x .
2 * x
£s=0.2
10F 1
E'=0.1
5 .
0 1 1 1 A
0 0.01 0.02 0.03 0.04

min_support &

Figure 5.10: Number of labels with support < ,,,

Figure 5.10 shows the number of label nodes regarded as non-candidate label
nodes after phase 3 for different values of ¢,,, and £, We could observe that
with a lower €4, fewer label nodes are regarded as non-candidate label nodes.
However, with a lower &,,, more non-label nodes are regarded as candidate label
nodes and they will remain in the final result. In addition, the similarity threshold

€5 also affect the number of label nodes remained as non-candidate label nodes as
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shown in Figure 5.10. The reason is that if ¢, is higher then higher similarity value
between two nodes should be high enough to be similar and merged together.
That means fewer nodes will be considered as similar and then fewer label nodes
in non-candidate label nodes will be discovered as similar nodes to candidate
label nodes. However, lower &, will let more dissimilar nodes merged together.
Figure 5.11 shows the number of wrong similar labels for different values of the
two thresholds. In a candidate label node, there is a set of labels {ly, 12,13, 14}
where [} ~ I3 ~ I3 but l4 is dissimilar to them, then /4 is called the wrong similar
label to this node. In the Figure, if ¢ is lower then the number of wrong similar
labels is higher. Therefore the choice of &,,, and ¢, could affect the results of the
algorithm.

14 T T

12F

10

no of wrong similar labels

0 1 1 1 1
0 0.01 0.02 0.03 0.04
min_support i

Figure 5.11: The number of wrong similar labels

Now we would show the similar labels discovered by the algorithm. Figure
5.12 shows the five nodes with highest support for e, = 0.0117 and &, = 0.3.
The wordings in a box are similar labels. In each box, all the wordings are correct

similar labels. They represent the same attribute in the job employment class.
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(" job department (tocation) ~ (position (required skill set ) | (P —————
job purpose support =0.622 | title salary required qualifications
essential duties job title required years programming experience edvcition
key responsibilities work group personal attributes abilities
typical responsibilities position title personal qualifications required support = 0.11425
job summary support =0.61125 | Position information
key tasks basic qualifications
job scope degree computer science equivalent
key duties responsibilities desired qualifications
position description candidate possess following
description preferred requirements
responsibilities desired
position summary experience & skills required
responsibilites background required
position responsibilities ideal candidate
basic function preferences
job duties job requirements
scope skills
duties & responsibilities requirements experience
primary responsibilities candidate qualifications
|_Job duties essential ) required
support = 0.81625 position requirements
qualifications
requirements
experience
(Job responsibilities )
support = 0.4715

Figure 5.12: The five highest support nodes with ,,, = 0.0117 and ¢, = 0.3

In the node with support=0.81625, all the labels describe the duty of a job,
e.g. "job purpose”, "typical responsibilities”, "job summary”, "key tasks”, "job
scope”, etc. We should observe that most of similar labels could be discovered
correctly. However, there are few errors. For example, "job department” is not
similar to the labels in the node with support=0.81625. There are only very few

labels are wrong. Therefore the labels discovery algorithm could discover similar

labels in a class of web pages correctly.

5.4 Classifying a Web Page

Given any web page, we are interested to know if it belongs to a certain class.

For example we may want to locate web pages that contain job descriptions. So
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we scan web pages and determine if each belongs to the class of pages for jobs.
Note that this is different from the more common classification problem: given
a number of classes, classify each given object as one of the classes. Here we are
given only one class at a time, and we want to see if an object belongs to the
class. If there are multiple classes, the same object can be discovered to belong

to more than one class.

In labels discovery algorithm, we obtain a set of nodes which each contains a
set of similar labels and a feature. Each node represents an attribute in the class
of web pages. The feature is the characteristics of the corresponding attribute.
This set of nodes could be used as the knowledge of the class of web pages.
It also could be used as a classifier for the class. So we use the set of nodes to
determine whether a web page belongs to the class. In next section, the similarity

measurement of a web page to a class is defined.

5.4.1 Similarity Measurement

For a web page w to belong to a class C, the information stored in w is the same
as that in the web pages in C'. A class has a set of attributes used to describe
the data stored in the class of web pages. Therefore, each web page in the class
should be stored similar data with some common attributes. In definition 4, the
structure of a web page is represented by a set of labels in that web page. In
addition, in definition 8, the structure of a class of web pages is a set of labels-
sets. The labels in the web page that belong to that class should be similar
or identical to the labels in the set of labels-sets of the class. Therefore, by

comparing the labels in the web page w to that of a class C', we could determine

if w belongs to C.

In an attempt to measure the similarity between labels in a web page w and

a class C' of web pages, the hierarchical structure of the web page w should be
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constructed as this could reveal the labels and values in w. Then each node
is expressed as structure-expression. That is, a node n; has a set of data set
{dy,dy,di",dY,dy'}. Then w consists of a set of nodes. Each node is then
compared with those nodes in the knowledge obtained from labels discovery
algorithm and has a similarity value. The similarity values indicate whether
they are one of the labels in the class. If a node has high similarity then this

node should contain a label that is in the class.

To compare the nodes between the web page w and the class C', each node
in w should have a feature as described in the labels discovery algorithm. The
right sibling and children data sets are union to form the feature of the node.
Therefore w now consists of a set of nodes N = {ny,n,,...,n;} where each node
n; contains an own data set d}' and a feature f,,. However, unlike the nodes

in the knowledge, the words in the feature in the nodes of w are not associated

with confidence values.

There are two cases for the similarity measurement. First, if the own data
set of a node n in w appears in a labels set of one node m in the class structure,
then we said that the similarity value between the two nodes is 1. Otherwise,

the features f, and f,, of two nodes will be compared by the following similarity

function.

; Zw'ef Nf, Confm(wi) M

sim_feature(f,, fn) = =en S
e e

where M is the number of words matched in the two features, |f, N f|, and Ny,

(5.8)

is the number of distinct words in f,, |f,|. If the intersection of the two features
is large, then the two features would be similar as they contain many common
characteristics. That is, the more two features have common words, the more
they are similar. As well, if the common words have higher confidence then these

words would be significance in the feature and the two features are more similar.

Then the similarity function between the node in w and C' could be introduced

accordingly. In the structure of a class of web pages, there is a node m; containing
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a set of labels L and a feature f,,. Then in a web page, there is a node n;
containing an own data set dy’, which may be a label, and a feature Jn;» The

similarity function of n; and m; is defined as follow.

] 1 if &5’ € L;
sim._node(n;, m;) = (5.9)

sim_feature(f,,, fm;) otherwise.
Each node n; in w is compared to all nodes M¢ = {mi,ma,...,m;} in the
class C'. Then n; has a set of similarity values. The highest one is regarded as

the similarity value of n; to C. The similarity function between a node n; in a

web page and a class C is defined below.

sim_class(nj,C') = max sim_node(n;,m;) (5.10)
mleMC

Consequently, each node in the web page w has a similarity value the class

C. We could define the similarity function between a web page w and the class

C based on the similarity value of each node in w to C. We have two pre-defined

thresholds €, and ¢, such that if w has enough number of nodes in its hierarchical

structure (greater than ¢,) that has a large similarity value (greater than &,,)

then it is classified as the given class C'. The condition to be satisfied to classify

a web page w with a set of nodes {ny,ny,...,n} to belong to a class C' is then
defined as follow.

{n; : sim_class(n;,C) > epn}| > €n (5.11)

These two thresholds could be obtained by using a training set of positive exam-

ples and a training set of negative examples. From the results, we use the two

values that can provide the optimal result as the thresholds.

5.4.2 Performance Evaluation

Experiments on the classification of web pages have been carried out. We use

the structural knowledge obtained from the 4000 job employment web pages
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in Section 5.3.3 for classification. There are 10897 web pages used to test the
performance of the knowledge obtained in the labels discovery algorithm. In
the 10897 web pages, there are 3651 job employment web pages and 7246 web
pages of other classes. The 3651 job employment web pages are from 23 different
companies arbitrarily chosen from the company list in yahoo search engine. These
23 companies are different to the 34 companies used in the experiments of labels
discovery algorithm. The reason is that a company usually used the same format
to represent its job employment data. That is structure of the web pages are
the same. Therefore if the web pages from the same company are used to be
classified then the performance should be very good. On the other hand, the
7246 non-related web pages used as noise to the experiment are retrieved from
yahoo search engine. By using the yahoo search engine, web pages are iteratively
retrieved by following the links in the retrieved web pages. These web pages are

obtained by removing those web pages containing the keyword job.

Em
En| 0.5 0.6 0.7 0.8 0.9
1 {99.92% | 99.92% | 99.92% | 99.92% | 99.64%
2 199.10% | 98.74% | 98.74% | 95.59% | 95.59%
3 | 89.43% | 88.88% | 88.88% | 88.50% | 88.50%
4 [ 72.20% | 72.20% | 72.20% | 72.06% | 72.06%
5 | 36.65% | 36.65% | 36.65% | 36.65% | 36.64%

Table 5.6: Correctness for classification of positive web pages

Em
& 0.5 0.6 0.7 0.8 0.9
1| 96.41% | 96.41% | 96.41% | 96.42% | 96.42%
2 199.77% | 99.77% | 99.77% | 99.77% | 99.78%
3 199.99% | 99.99% | 99.99% | 99.99% | 99.99%
4 1100.00% | 100.00% | 100.00% | 100.00% | 100.00%
5 |100.00% | 100.00% | 100.00% | 100.00% | 100.00%

Table 5.7: Correctness for classification of negative web pages

The knowledge we used in the experiment is obtained with the threshold

values, €4, = 0.0117 and &, = 0.3. For different threshold, ¢,, and ¢,, we would



Chapter 5 Similar Labels Discovery 88

first measure the accuracy of distinguishing positive web pages, which refer to
the correct pages, and the accuracy of distinguishing negative web pages, which
refer to the wrong pages. The results are shown in Tables 5.6 and 5.7. Table 5.6
shows the accuracy of correctly identifying the web pages in the class. Table 5.7
shows the accuracy of correctly identifying the web pages that do not belong to
the class. From the result, we could observe that the effect of ¢,, is lower than
that of &, on the accuracy of distinguishing web pages. The result shows that the

structural knowledge could distinguish the web pages accurately at a precision

of about 99%.
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Conclusion

Seeing that large amount of data is available on the World Wide Web, we need
to manage web data so as to query and search more efficiently. However, due
to the semistructured nature of web data problems are arisen. Different labels

representing the same attribute is one of these problems and it was discussed in

this thesis.

First we define the characteristics of web data. Web pages containing the
same type of information belong to the same class. Each class contains a number
of attributes used to describe the data stored in the class of web pages. However,
the attributes appear in different format in the web pages. We call the data
used to represent the attribute in a web page to be label. Then the data of the
attribute is called value. Due to loose standard of web pages publishing, different
labels are used to represent the same attributes and we called them similar labels.

Therefore similar labels are required to be discovered.

In an attempt to make the web data more convenient for discovering similar
labels, a hierarchical structure, which is constructed by five heuristic methods,
is introduced for each web page. The structure organizes data in the web page
according to the concept hierarchical relation of data in the web page. As label

describes briefly its value, it has higher concept hierarchical level than value. As

89



Chapter 6 Conclusion 90

a result, from the structure we could discover that most values are in the children
and right sibling nodes of their labels. From this relations, we could then propose

labels discovery algorithm to discover similar labels.

Labels discovery algorithm consists of three phases. Phase one removes non-
label nodes. Phase two identifies candidate label nodes. Phase three discover
similar labels. The similarity between labels is calculated by their values. From
the hierarchical structure, a feature containing values is formed for each label.
By comparing the features of two labels we could determine whether they are
similar labels. Experiments show that the algorithm could discover similar labels
successfully from a class of web pages. The similar labels and their features are
then used to classify web pages. From the experiments of web pages classification,
high accuracy of classification is obtained. The similar labels and their features

could be useful for web pages classification.
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