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摘 要 

在 許 多 日 常 的 應 用 程 式 中 ， 我 們 收 集 到 不 同 時 間 性 的 數 據 ， 例 

如 ： 銷 售 記 錄 ， 股 票 買 黌 ， 病 錄 表 ， 地 理 學 和 天 文 學 的 枓 學 數 

據 。 這 些 資 料 包 舍 了 時 間 的 概 念 ， 記 錄 了 事 件 的 發 生 時 間 。 從 

這 些 順 序 的 數 據 中 我 們 能 更 清 楚 了 解 事 件 發 生 的 奄 態 、 趨 勢 ， 

從 而 找 出 各 樣 物 件 的 關 系 。 假 若 如 有 大 量 的 數 據 顯 示 某 些 事 件 

的 發 展 棋 式 ， 我 們 便 能 找 出 事 件 之 間 發 生 的 次 序 和 特 性 ° 在 這 

篇 論 文 裡 ， 我 們 探 討 有 關 從 時 序 性 的 數 據 中 ’ 尋 找 事 件 與 事 件 

之 間 的 關 系 和 ^ 1 態 ， 例 如 ： " 事 件 A 出 現 於 事 件 B 發 生 的 期 間 ” 。 

在 現 有 的 方 中 ， 大 部 分 的 運 算 都 将 時 間 的 發 生 看 作 點 狀 （ P o i n t _ 

b a s e d ) ， 並 作 先 後 排 列 。 因 此 ， 只 能 用 很 簡 單 的 型 式 表 達 事 件 的 

發 展 ， 缺 乏 能 力 表 逢 较 爲 複 雜 的 時 態 關 系 ， 例 如 ： 在 … 期 間 ， 互 

相 重 眷 等 。 加 上 在 日 常 應 用 的 程 式 中 ， 不 難 發 現 點 狀 （ P o i n t _ 

b a s e d ) 和 區 間 （ I n t e r v a l - b a s e d ) 的 時 序 性 數 據 並 存 於 資 料 中 。 我 們 有 

必 要 發 展 一 些 新 的 方 式 ， 去 支 援 區 間 數 據 的 運 算 ° 在 這 裡 我 們 

介 紹 了 兩 種 包 舍 區 間 時 態 的 數 據 棋 式 ， 分 別 爲 A p p S e q * L i n k S e q � 

這 兩 種 棋 式 不 但 簡 單 而 且 對 於 描 速 事 件 的 行 爲 很 有 用 。 我 們 並 

發 展 了 幾 個 方 法 ， 利 用 不 同 的 數 據 結 構 （ D a t a s t r u c t u r e )，去協助 

加 快 運 算 的 遇 程 。 在 這 些 方 法 中 ， 我 們 運 用 了 一 組 被 廣 沃 應 用 

於 描 紛 區 間 關 系 的 壞 態 ， 用 作 描 速 兩 件 事 件 之 間 的 關 系 。 速 過 

對 一 連 串 人 造 和 真 實 的 數 據 集 作 硏 究 來 驗 證 我 們 所 提 出 的 方 案 

能 有 效 地 應 用 於 大 量 數 據 中 。 
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Abstract 

Sequence of data can be collected in many applications. Examples range from 

sales records, stock exchange, patient records, to scientific databases in geophysics 

and astronomy. Such databases incorporate the concept of time which describes 

when an event starts and ends as historical records. The temporal nature of data 

provides us with a better understanding of trend or pattern over time so as to find 

any correlation between events. An important and interesting characteristic of event 

sequences can be found if the collection of events occur in a certain pattern. In 

this thesis, we are interested in discovering temporal relations between events which 

satisfy certain timing constraints, e.g."event A appears during the period when event 

B occurs". 

Existing algorithms for mining temporal pattern treats data as chronological or-

ders of event sequences and most of them support point-based events. Therefore, the 

physical ordering of events would be quite simple and there have been limited expres-

sive power in specifying temporal relations such as during, overlaps, etc. Moreover, it 

is likely that both point and interval-based data may exist and co-exist within many 

application domains. To address these problems, we introduce two kinds of patterns, 

namely AppSeq and LinkSeq, which accommodate temporal interval data. Both pat-

terns are simple and useful to describe the behavior of the events. We develop several 

methods for finding such interesting patterns in which we use different data struc-

tures to facilitate efficient mining process. In these methods, we propose to use a 

generalized taxonomy of temporal relationships which is highly expressive to describe 

the basic relationships between two events. A quantitative performance study was 

conducted through experiments on synthetic and real datasets and the results show 

the efficiencies of the proposed methods for large databases. 
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Chapter 1 

Introduction 

The research in this thesis grows out from the development of data mining in temporal 

databases. With the extension of mining temporal pattern which accommodates 

interval data, interesting and useful temporal information can be found. In this first 

chapter, we give a brief introduction of data mining and temporal database which 

provide the basic principles of the work being investigated. Related work on temporal 

reasoning and temporal data mining is also discussed. Then we address the motivation 

and approach of the work undertaken. 

1.1 Data Mining 

In the last decade, data mining or knowledge discovery in databases (KDD), has 

emerged as a significant field of research [59, 61, 38, 49, 27]. This emergence has been 

motivated by the rapid development of data warehousing which intelligent analysis of 

data is required. Moreover, with the advances in technologies such as the widespread 

use of bar codes in supermarket goods, monitoring devices in hospitals, sensors on-

board orbiting satellites for scientific and geophysical science investigation, enormous 

amount of data which most of them are of high dimension are collected. The explo-

sive growth of data makes it infeasible to analyze them manually and thus leads to a 

promising field of study, called data mining. Data mining is defined as the nontrivial 

extraction of implicit, previously unknown, and potentially useful information from 

data [27 . 

Data mining is developed from the confluence of research in machine learning, 

statistics and database systems [61, 38, 27]. The fundamental goals of data mining are 

prediction and description. From the existing variables in the databases, we predict 

unknown or future values of interest by the knowledge obtained. Also by finding 

1 



CHAPTER 1. INTRODUCTION 2 

frequent patterns which well describe the behavior of the data, we can have a better 

understanding about the system for further analysis. On the other hand, the size and 

complexity of data is generally large, efficient and scalable algorithms are needed. 

The discovered knowledge can be applied to commercial industry for making better 

marketing strategy, decision making system or expert system for medical diagnosis 

and geographical information system or scientific data as a tool for analyzing data. 

A survey of current data mining issues is given in Chapter 2. 

Although there have been many studies of data mining in transaction database, 

there are other applicative databases such as temporal databases, spatial databases, 

object-oriented databases and multi-media databases, etc., which requires specific 

data mining techniques to facilitate efficient and effective knowledge discovery on 

particular kinds of data. Advances in the research work on temporal data structures, 

temporal reasoning, indexing and query languages for temporal databases provides 

new challenges to the study of temporal data mining. However, there are still not 

many data mining techniques are extended to accommodate the specific properties 

of the temporal data. The focus of this thesis is on the methods of temporal data 

mining which extracts the temporal information stored in temporal databases. 

1.2 Temporal Data Management 

Temporal databases incorporate the concept of time to maintain past, present and 

future data [78, 83, 40]. They store time-varying information. As most database 

applications are temporal in nature, e.g., financial applications such as portfolio 

management, accounting, and banking, record-keeping applications such as person-

nel, medical-record, and inventory management, and scientific applications such as 

weather monitoring, the study of temporal databases has been an active field of re-

search in the past decade. 

Generally, a temporal database supports three distinct types of time attributes 

which are valid time, transaction time and user-defined time. Valid time stored the 

time when an event takes place with start time and end time values. Transaction 

time is the time when the event is recorded in the database and user-defined time 

is an uninterpreted time domain. Since valid time describes the occurrence pattern 

of events stored in the database, it promises greater utility as a source of domain 

knowledge than transaction time. Hence, the discussion of temporal pattern in this 

thesis will be focused upon valid time in temporal database. 

Each record stores the start time and end time during which the tuple is valid. 
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Data is collected in the form of event time sequences where each event lasts for a 

certain time interval. For instance, in hospital information systems which laboratory 

examinations or clinical records are stored for medical diagnosis of patients' behavior 

over a certain monitoring period. Records like "patient A had surgery from 10:00 to 

13:00 on 14 June" are stored. The temporal nature of data provides us a better un-

derstanding of trend or pattern over time so as to find any valuable information. For 

example, patterns like "60% of patients who took medicine A and then took medicine 

B after an hour, got a fever the following day" can be found. The frequent tempo-

ral patterns exhibited by patients may identify some correlations between drugs for 

further diagnosis. Other temporal data such as telecommunication network, weath-

ering and marketing data in which by analyzing sequences of time-stamped data, we 

can have a better understanding of the data which changes over time. Knowledge 

discovery in temporal databases thus catches the attention of researchers [69, 16]. 

Moreover, recent research on temporal databases has made important contribu-

tions in characterizing the semantics of temporal information and in providing expres-

sive and efficient means to model, store, and query temporal data [12, 40]. Different 

models of database management for efficient storage and access of temporal data are 

proposed. Optimization of query processing and indexing techniques are also under 

active investigation. For instance, an extended SQL standard, TSQL2, has been de-

veloped for temporal databases [72]. Within the TSQL2 standard, time is widely 

represented by intervals defined between start time and end time points. Queries 

with interval as primitive are adopted. In other words, both point-based and interval 

data are supported. We believe these significant investigations for the development 

of temporal databases, such as temporal data structure [10], temporal algebraic op-

erators [81], query processing [80, 12], indexing [23], etc., have paved the way for the 

study of temporal data mining. As existing mining techniques cannot be applied to 

temporal databases to handle the temporal interval data directly, new algorithms of 

knowledge extraction is needed to capture the temporal semantics. 

1.3 Temporal reasoning and temporal semantics 

On the other hand, considerable research effort has been directed to the temporal 

aspects of information systems. One of the work is temporal reasoning which involves 

the issues of time modeling and the representation of temporal relationships based 

on the underlying temporal domain. Basically, there are two primitive notion of 

temporal data, time point and time interval, which temporal reasoning systems based 



CHAPTER 1. INTRODUCTION 4 

on. Time points are assumed to be linear and an ordering relation is defined. While 

intervals are expressed in a pair of start time and end time points (/—,/+), with 

I— < /+ such that the ordering relations are expressed in terms of relations between 

their endpoints. Unlike time points, intervals can have complex inter-relations, for 

example, an interval may overlaps, meets or before another interval. 

Other different representations of the semantics of temporal information are pro-

posed also. They have different measures of ordering and metric relationships which 

helps to express and reason about time in many application domains. One of the for-

malisms for time modeling is temporal logics. They follow the syntax and semantics 

from modal logic to represent temporally definite statements by means of temporal 

operators [30’ 53]. The development of various forms of temporal logic has played a 

part in data mining research, particularly in temporal pattern matching and sequence 

mining. For instance, first order temporal logic is used as a way to represent temporal 

patterns [56,11]. Sequence such as (analyst A recommends ‘‘buy” for a stock until ana-

lyst B recommends "5e/f') can be expressed as "Analyst_Report ( a n a l y s t , s t o c k , 

recommendate) A ^ 0 Analyst_Report ( a n a l y s t , s t o c k , recommendate)" where 

{A, 0} are operators meaning "And" and "Next" respectively. However, temporal 

logics are computationally intractable and have an expressive power that exceeds the 

requirement of most temporal databases. Therefore, a number of formalisms that 

weakens the temporal logic expressiveness have been developed. 

Some of them define an algebra of temporal relationships according to a classical 

point of view. One of the most commonly used interval-based formalism is Allen's 

interval algebra [9]. It models the relationship between any two intervals as a subset 

of a set of thirteen basic relations, including before, meets, overlaps, starts, during, 

and finishes, together with their inverses, plus the relation equal. Binary operations 

of intersection and composition are defined on the set of relationships. Allen's interval 

algebra as well as first order temporal logic are most widely used in corporation with 

knowledge discovery process. 

We incorporate temporal reasoning as a mean for the representation of temporal 

knowledge in our framework. A strong emphasis is placed on the complexity of the 

mining result which should be easily read and comprehended. Hence, the selection of 

an appropriate set of temporal predicates is fundamental to provide useful temporal 

reasoning. In our problem, Allen's thirteen temporal relationships [9] is adopted to 

describe the basic binary temporal predicates and details would be covered in Chapter 

3. 
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1.4 Temporal Data Mining 

Temporal data constitutes a large portion of data collected in daily operations. In 

general, temporal data can be loosely defined as any data that contains temporal 

information. Examples include financial database for stock price index, telecommuni-

cations and medical databases. Searching for similar patterns in a temporal database 

is useful in many applications as we can discover and predict the risk, causality, and 

trend associated with a specific pattern. The accommodation of time into mining 

techniques provides a window into the temporal arrangement of events and thus an 

ability to suggest cause and effect or trends in rule sets. Temporal data mining is 

thus an important extension as it has the capability to infer causal and temporal 

proximity relationships that non-temporal data mining is not able to do. 

The time component we captured helps in analyzing the changes of the data 

over time of the system. We may find any causal relationships from the ordering of 

occurrences of events such as the first condition which is followed by the second one 

is identified as cause and effect relationship other than association if no knowledge of 

time is known. Likewise, the time component may assists in identifying the validity 

of rules like "Hiking Boots � Outerwear", Years • Months(3:5) during [ Years(1990), 

Years(1995) ]" [17]. It reveals that every spring time from 1990 to 1995, the customers 

who buy hiking boots also buy outerwear. Such a rule may not be valid before 1990 

or after 1995. We observe that by adding the temporal semantics to the rule set, 

more accurate and clear information is obtained. In addition, by discovering the 

change in knowledge obtained in the underlying data, it is possible to know how 

quickly the domain is likely to change which helps in better marketing strategies 

62]. For example, by identifying frequently or unexpected occurring patterns over 

event sequences such as stocks with similar price movement, customer's purchasing 

patterns over seasons as well as rare events happened for fraud detection, we gain 

more information from the sequences of records. 

In general, a set of historical data is collected in the form of event time sequences. 

Current temporal data mining techniques can be broadly classified into two categories: 

categorical and numerical data analysis. The former one focuses on the discovery of 

causal relationships among temporally-oriented events. Most of the events concerned 

are point-based categorical events where only the time when the transaction takes 

placed is recorded like sales records, telecommunication network alarms, etc. Some 

of the categorical data are interval-based events that the valid time are supported by 

the system such as patient database, scientific databases in geophysics and astronomy 
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areas, etc. The ordering of data is a valuable source of information which can direct 

future operations. Numerical data analysis concerns the discovery of similar patterns 

within the same time sequence or among different time sequences [25, 5, 20]. Numer-

ical values of the sequences are taken into consideration as a comparison for trend 

discovery and prediction and it is known as time series analysis [21, 33]. Different 

shapes of the changes of data over time are analyzed [6 . 

Previous work for knowledge discovery in temporal data mainly work on sequential 

pattern [1, 8, 51, 50]. Although potential knowledge can be extracted, these tech-

niques only treat data as series in chronological order. They consider the ordering 

of a string of events and thus mainly support point-based events. Hence most of 

these algorithms ignore time intervals which the data is stamped with. The physi-

cal ordering of events would be quite simple and there have been limited expressive 

power in specifying temporal relations such as during, overlaps, etc. To address these 

problems, we introduce two kinds of patterns namely AppSeq and LinkSeq, which 

accommodate temporal interval data, and discuss in details in Chapter 3. 

1.5 Motivation 

The motivation behind of this research is to extend the work of temporal data mining 

which examines interval-based data stored in temporal databases. In view of the 

emerging needs of temporal data mining and the problem of addressing temporal 

interval data, we aim to find common sequences that accommodates the temporal 

semantics of interval data. We introduce the problem of mining temporal patterns 

for interval-based events with the following observations. 

1. There are emerging need for the development of temporal databases that cap-

ture the temporal nature of data stored in many applications [78]. Studying 

information stored in temporal databases lead us to have a better understand-

ing of the evolving business. Moreover, the rapid development on research on 

temporal databases, different models of temporal data for storage and query 

processing are suggested. This favors the work for developing temporal data 

mining techniques. 

2. Mining sequence data for interval-based events is important as besides finding 

association between temporal data, the ordering or relation between events pro-

vide us some insight into causal relationships. Besides before/after relation, 

other descriptions of temporal relations can be specified for interval data, which 



CHAPTER 1. INTRODUCTION 7 

helps in understanding the general trend of the sequence data. However, most 

of the existing algorithms work on point-based data only. Simple ordering of 

events is considered where series or parallel ordering of events are taken place. 

Hence they cannot be applied to temporal database directly where valid time 

is supported. There is a need to extend the existing work of mining sequential 

pattern to accommodate interval-based events. 

3. Contrary to the case of time points, relationship among time intervals can be 

described in different ways. As interval can form different structures other than 

only before/after relation so that we can have a better understanding of how 

the evetns interact with each other. A generalized taxonomy of temporal rela-

tionships which is simple and highly expressive is needed to express the complex 

relations between intervals. Besides, as more complex relations involved, there 

are possibly vast number of temporal relationships can be found for a single 

sequence of events, and many of them may be too complicated and not useful 

to the user. We restrict our interest to simple and meaningful type of temporal 

pattern but yet the pattern found is highly expressive to reflect the complex 

relations among events. This motivates us to explore two interesting temporal 

patterns, AppSeq and LinkSeq in our work. 

4. We believe that both patterns are useful to describe the temporal behavior 

among events. For example, given clinical records storing time varying attributes 

we can find AppSeq and LinkSeq among data; given stock market data, we 

can analyse the changes of data among different intervals of time; etc. Hence, 

besides specifying the before/after relationship, by considering timing-interval 

restrictions, we obtain other interesting knowledge from temporal data. 

1.6 Approach 

In our framework, we mainly focus on temporal databases which store interval-based 

events and discover any interesting temporal relations among them, in order to find 

any correlation between events. For example, in the medical field, patterns like "60% 

of patients who contract disease A got the disease during the time where disease 

B is also contracted" can be found. The frequent temporal patterns of diseases 

exhibited by patients may identify some correlations between diseases that can provide 

invaluable information for diagnosis. 
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1.6.1 Focus and Objectives 

As mentioned before, there is tremendous forms of temporal patterns can be derived 

from a sequence of interval-based events. However, we notice that the complexity of 

the results increases as we introduce more complicated combinations, which may not 

be a desirable feature. Also, the computation time required would be increased and 

may not be feasible for mining purpose. Hence we do not consider complex temporal 

patterns. We here limit our focus on two temporal patterns which both reveal the 

temporal behavior among events. We believe that the temporal relations give some 

insight into causal relationships. As such, when a few events have happened, together 

they may become the cause of a following event. Both temporal patterns gives us 

a modeling of this idea. We introduce the patterns in Chapter 3 and methods for 

mining these patterns are given in Chapter 4 and 5. 

1.6.2 Experimental Setup 

To evaluate the performance of the proposed methods over a large range of data, we 

conducted several experiments on UltraSparc 5/270 workstation with 520MB of main 

memory. All methods are written in C. 

First, we consider a set of synthetic data in an application domain of a medical 

database. The database stores person-id, disease the person contracted and the corre-

sponding duration of time. For each person, we record a sequence of clinical records 

stating different diseases contracted. Each such sequence is potentially a maximal 

large sequence. An example of such a sequence might be "person A contracts disease 

X and during the treatment of disease X, disease Y is contracted". The number of 

events per sequence of each person is chosen from Poisson distribution around a mean 

and a few person may have many clinical records where each record refers to an event 

in a sequence. We will use the synthetic database for mining both patterns. 

Secondly, we work on a real data set which contains clinical records of Scoliosis 

patients. Scoliosis refers to spinal deformation. The database stores a list of mea-

surements on the patients, such as the number of curves, the curve locations, degree 

of curvature, curve directions, etc. It also records patents' personal information such 

as date of birth, family history, the class of Scoliosis contracted and the treatment. 

Sequences of records of about 900 patients are stored. Short sequences containing 

one or two records are obtained and for some patients, longer sequences are found. 

By examining the changes in values of some temporal attributes in the view of a se-

quence, we may discover any temporal knowledge stored in the database. We aim to 



CHAPTER 1. INTRODUCTION 9 

find any interesting patterns that occur frequently and hence discover any correlation 

between other non-temporal attributes. 

1.7 Outline and contributions 

This thesis focuses on the work of temporal data mining. A framework for mining 

temporal patterns is suggested. We introduce the notion of temporal representation 

which is capable of expressing the relationships between interval-based events. Two 

interesting types of temporal patterns are considered. We believe our findings can lead 

to useful systems in mining temporal patterns involving events that have a duration. 

We start our discussion by surveying current research in data mining in Chapter 

2. The aim of this survey is to provide a better understanding of the nature of 

knowledge discovery. Moreover, we present issues of temporal data and semantics in 

the context of temporal database management. This gives a background knowledge 

of the complexities of integrating temporal semantics into data mining techniques 

which would be discussed later. We also present the state of the art of temporal data 

mining by showing different directions of current work and identify related research 

challenges in the area. 

Chapter 3 provides an introduction of the mining problem. In a sequence of 

interval-based events, we are interested in finding temporal relationship between 

events along the time-line. In particular, we focus on two kinds of temporal pat-

terns, AppSeq and LinkSeq which both are simple and easy to understand. A general 

framework of the two temporal patterns are described. 

Chapter 4 investigates in greater depth of the first temporal pattern, AppSeq. We 

would further introduce the variations of AppSeq as Al and A2 patterns, where A2 

pattern being the variates of Al pattern. We introduce the notion of these temporal 

patterns and describe the methods for finding them. Experiments on both synthetic 

data and real data set are presented. 

Chapter 5 considers the problem with another point of view such that another kind 

of temporal pattern LinkSeq is suggested. We introduce several methods for mining 

the second temporal pattern by means of different data structures to facilitate efficient 

support counting process. A performance study was conducted through experiments 

on synthetic data sets and the results show the efficiency of the proposed methods. 

Finally, we give a conclusion and talk about our future work in Chapter 6 



Chapter 2 

Relevant Work 

In this chapter, we briefly introduce the current issues of research on data mining, 

their directions and challenges involved. We then study the recent work on temporal 

database management and temporal reasoning in Section 2.3 and 2.4 respectively. 

They provide some background knowledge about the problem we discussed later. 

In Section 2.5, we investigate some related work of various temporal data mining 

techniques together with their new challenges faced. One of the problems of accom-

modating interval data is addressed in this thesis. 

2.1 Data Mining 

In recent years, the rapid growth in the size of databases has led to an increased 

interest in the automatic extraction of knowledge from data [59, 61, 49, 27]. The term 

d a t a mining, or knowledge discovery in d a t a b a s e s (KDD), has been adopted 

to the general concept of seeking knowledge from data held in more or less structured 

databases [59, 27]. Strictly, K D D can be viewed as the overall process of extracting 

useful and interesting information from databases. This process includes the selection 

and preparation of data, manipulation and analysis of the result obtained. Data 

mining thus can be considered as part of the K D D process. Figure 2.1 shows an 

overview of the K D D process. It mainly divides into the following phases: 

U n d e r s t a n d i n g t h e d o m a i n : As K D D is a discovery driven process, we need 

to have a solid understanding of the domain in order to select the right subsets 

of data, suitable classes of patterns, and good criteria for interestingness of the 

pattern concerned. 

Cleaning d a t a : With some missing values or invalid data by incorrect input, 

10 
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Figure 2.1: KDD process 

different ways of exploiting useful data from databases are proposed. Selection 

of essential fields used in the mining process is also performed in this phase. 

Discovering p a t t e r n s or d a t a mining: Scalable and effective mining algo-

rithms are required for the extraction of interesting knowledge over a large set 

of data. Different strategies for scaling down the search space in the mining 

process are proposed. 

Postprocess ing of discovered pat terns : Further analysis of the discovered 

patterns with expert knowledge is performed. Any evaluation of the result can 

feedback to the mining process to improve the quality of information obtained. 

Present ing final result ; A user-friendly interface is recommended to visual-

ize the mining result for making the discovered patterns easier to understand. 

Interactive analysis of final result can be made also. 

Data mining incorporates methods and tools of three areas: machine learning, 

statistics, and databases [49]. All three areas aim at locating interesting regularities, 

patterns, or concepts from empirical data, while data mining emphasizes on auto-

matic knowledge discovery from huge data and the data can be corrupted by noise, 

errors or missing values. Moreover, there are many kinds of data and databases 

used in different applications which contain complex data types such as structured 

data hypertext, object-oriented databases, multimedia databases, spatial databases, 

temporal database [66], spatio-temporal databases [28] and transaction databases. 

Different techniques that facilitate efficient and effective extraction of information 

are needed. We summarize the issues and challenges of the development of data 

mining. 
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• Efficiency and Effectiveness As huge amount of data is being considered, 

scalability of the mining process becomes the main concern over the last decade. 

At the same time, effectiveness of the algorithms for finding useful patterns is 

also the key concerns for developing various mining methods. 

• Interestingness of knowledge obtained The discovered knowledge should 

accurately portray the contents of the database and be useful for certain ap-

plications. Most of the measures of interestingness currently used are based 

on statistical measure of frequency which provides "best", "optimal" or "most 

interesting" rules [43, 41]. We may interested in finding customer's buying pref-

erence from sales records and thus we look for any frequently occurring pattern. 

However, in some cases, we may interested in finding rare events such as fraud 

detection in credit card payment, plan failures from plan execution traces [86], 

or exceptional rules in medical field for diagnosis [82, 73]. Different measures of 

interestingness are made. 

• Various types of data With the development of various types of databases 

which involve complex data, it requires different mining techniques to cope with 

the specific intrinsic information embedded in the data. Example ranges from 

temporal data, spatial data and multimedia data to semi-structured web docu-

ments. 

• Robust to outliers As mentioned before, most of the real data contains in-

complete information or unexpected values regarded as noise, which requires 

careful handling to avoid any discrepancies of the mining result. 

• Interactive mining process Data mining techniques are usually application 

dependent, hence any expert knowledge incorporated interactively in the min-

ing process helps in producing useful results. Moreover, for any database, the 

amount of knowledge extracted may be far greater than that of the original data 

set. Therefore, a multi-stage of filters that reduce the query search space on the 

basis of source data, target pattern, statistics and significance of the mining 

result is needed. An interactive environment which provides a flexible way for 

users to determine the number of rules or pattern obtained in different instant 

is preferred. 

• V i s u a l i z a t i o n of mining r e s u l t Visualization of data mining result sup-

ports interactive mining process at multiple abstraction levels [42, 70]. Also, 
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it helps to present the mining result to users in a more user-friendly way by 

means of a nice graphical interface. 

Data mining techniques are usually used associated with decision support systems 

and knowledge base creation like data warehouses or expert systems where upon the 

newly discovered knowledge is used to improve system performance or provide better 

strategy. On the other hand, knowledge obtained can be used for detection of incon-

sistencies and integrity enforcement in some systems or semantic query optimization 

used in data warehouse. 

Among various data mining techniques, four major data mining tasks are associa-

tion, classification, clustering and sequence discovery. An excellent survey of different 

aspects of KDD was conducted in [27]. Here, we provide a brief introduction of each 

of these four areas as follows. 

2.1.1 Association Rules 

Mining association rules in transactional or relational databases has caught a lot 

of attention since [4]. Association rules typically find correlations between items in 

transaction data sets I that customers purchase several items in a single transaction. 

The relationship between items can be expressed as follows: 

Xi A ^2 A .. • A 义爪=> Yi A Y2 A . . . A X„ 

where X C /, Y C /, and X A V̂  = 0. An association rule which derives from a 

database of transactions consists of a set of items bought by a customer in a single 

visit to a store. For example, an association rule can be "if a customer buys milks, 

he/she usually buys bread in the same transaction". A set of rules are obtained for 

further interpretation. Usually we use support count and confidence value to measure 

the interestingness of the rules found. In other words, we focus on frequently occurring 

pattern. Applications include supermarket, inventory planning, attached mailing in 

direct marketing and promotional sales planning. 

An A p r i o r i level-wise method is proposed for mining the association rules. The 

algorithm starts from small data set to large ones using the anti-monotone Ariori 

heuristic: if any length k pattern is not frequent in the database, its length (k+l) 

super-pattern can never be frequent. The mining process mainly divides into two 

phases, namely the candidate generation phase and test-and-bed phases [4]. Since 

mining association rules may require repeatly scanning through a large transaction 

database to find different association patterns, the amount of computational cost 



CHAPTER 2. RELEVANT WORK 14 

could be very high. Efficient algorithms for mining association rules using various 

data structure and pruning strategies for performance enhancement are developed 

7, 57, 87, 71, 37]. For example, one of the recent work of finding frequent patterns 

for association rules is developed in [37]. A tree-like structure, FP-tree, is used for 

the mining process. 

As [37] suggested, FP-tree is proposed to deal with frequent pattern especially 

for large data set and long patterns. It is an extended prefix-tree structure storing 

crucial, quantitative information about frequent patterns. The FP-tree is constructed 

in such a way that 

• Only frequent length-1 items will have nodes in the tree. This ensure only poten-

tial frequent patterns which form from frequent length-1 items are considered. 

• The set of frequent items of each transaction is stored in the tree in such a 

way that each item is added as a node in the tree. Tree nodes are arranged 

by descending order of frequency of length-1 items with higher frequency nodes 

being placed close to the root node. For each transaction, a list of nodes are 

inserted from the root and placed according to the frequency of the items. 

• Multiple transactions sharing an identical frequent item set can be merged into 

one with the number of occurrences registered as count. It is easy to check 

whether two sets are identical if the frequent items in all of the transactions are 

sorted in descending order of frequency. 

• Two transactions which share a common prefix, according to some sorted order 

of frequent items can merge the shared part using one prefix structure with the 

count registers properly. If the frequent items are sorted in descending order of 

frequency, more prefix strings can be shared and hence the size of the tree is 

reduced. 

• Each transaction is mapped to one path in the tree, and the frequent itmeset 

information in each transaction is stored in the tree. Since the frequent itemset 

in any transaction is always encoded in a corresponding path of the frequent 

pattern tree, traversing the tree ensures the completeness of the result. 

The FP-tree of a transaction database is shown in Figure 2.2 with minimum 

support being 40%. By looking up each event in the header table, we find the cor-

responding paths containing the node and examine the prefix subpath of the node. 

With the use of the counter values stored in each node, the complete set of the fre-

quent patterns can be generated. Since the structure of FP-tree helps in keeping all 
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TID Items (sorted) freq. items 
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Figure 2.2: A sample FP-tree 

the important information for support counting of frequent patterns. No further look 

up from the database is needed. In other words, it generates frequent pattern without 

the candidate generation phase as well as scanning of database for support counting. 

This greatly reduce the high cost for mining frequent pattern and experimental results 

also show the advantages of using this approach. 

On the other hand, variations of association rules like mining sequential pattern, 

quantitative association rules from market basket data are suggested [8, 74, 75]. As 

sometimes the rules found are quite large in amount to digest and understand, further 

investigations about the interestingness of the rules discovered are carried out [43, 46, 

41]. ， 

2.1.2 Classification 

Classification is the process which finds the common properties among a set of objects 

in a database and classifies them into different classes, according to a classification 

model [3]. For a given set of records with its corresponding attributes, we categorize 

the records with similar attribute values within a group and describe the characteris-

tics of each classes. Based on the history, a classification function is developed for iden-

tifying new candidates for predication. In credit analysis, the card issuing company 

will have customer records containing a number of descriptors. So for the customer 

with a known credit history, the customer's record is tagged as "excellent", "good", 

"medium" or "poor". One of the classification rules can be "customers with excellent 

credit history have a debt/equity ratio of less than 10%”. Such class descriptions 
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are then used to classify future incoming data of the databases. Applications range 

from target mailing, franchise location, credit approval, treatment-appropriateness 

determination to scientific data analysis such as SKICAT [26 . 

Data classification has been studied substantially in statistics, machine learning, 

neural networks, and expert systems, and is an important theme in data mining. Ex-

amples are decision trees [60] and bayesian network classifiers [29] shown in Figure 2.3. 

As classification aims at classifying new records to an appropriate class, accuracy for 

the classification result becomes the main concern of the problem. Various methods of 

improving the accuracies of the results like using entropy values of information theory, 

penalty of wrong classification, multiple classifiers are proposed. On the other hand, 

in recent years, extension to accommodate spatial objects for geographical studies is 

suggested [45]. .. 
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(a) Sample decision tree (b) Naive Bayesian network 

Figure 2.3: Sample decision tree and Naive Bayesian network 

2.1.3 Clustering 

Clustering segments an original database into different subsets or clusters. Its task 

is to identify clusters or densely populated regions, according to some distance mea-

surement, from a large and multi-dimensional data set. Given a set of objects and a 

clustering criterion such as number of clusters required and distance measure of the 

objects, we groups the objects into clusters such that the objects in a cluster are more 

similar to each other than to objects in different clusters. As it finds any interesting 

structure directly from the data without using any background knowledge, like con-

cept hierarchies, clustering is useful for discovering groups and identifying interesting 

distributions in the underlying data. 

Clustering techniques have been studied extensively in statistics [47]. Algorithms 

like Partitioning Around Medoids (PAM) or Clustering LARge Applications ( C L A R A ) 
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are found to be inefficient from the computational complexity point of view. As for 

the efficiency concern, an algorithm called Clustering Large Applications based upon 

RANdomized Search (CLARANS) , was developed [54]. Experimental results showed 

that C L A R A N S outperforms PAM and C L A R A . As both PAM and C L A R A find k 

representative points of k clusters from N objects by analyzing all possible pairs of 

objects, it is therefore computationally inefficient for large values of N and k. For 

clustering large sets of points, with the use of a clustering feature tree (CF) which 

summarizes the information about sub-clusters of points, the algorithm Balanced It-

erative Reducing and Clustering (BIRCH) [88] is capable of finding good clusters with 

a single scan of the data. 

On the other hand, the traditional clustering algorithms like k-mean, or k-medoids 

approaches suffer from the fact that a cluster is represented b y j u s t one point. These 

methods cannot deal with irregular shapes and sizes of different clusters in data. To 

address this problem, a method called Clustering Using Representatives (CURE) [32 

using multiple representatives for a clusters is proposed. It chooses a set of well-

scattered points to represent a cluster and employs a novel hierarchical clustering 

algorithm that adopts a middle ground between the centroid-based and the all-point 

extremes. Also, a density-based clustering method (DBSCAN) [24], which supports 

arbitrary shapes of clusters is suggested. Clusters such as concave clusters, clusters 

with noise and with significantly different diameters that are located close to one 

another can be found. In addition, the number of clusters can be unknown in advance 

and no input of such parameter is required. 

The problem of high dimensionality can be tackled by using sub-space approach 

CLIQUE [2] for cluster analysis. As given a large set of multi-dimensional data 

points, the data space is usually not uniformly occupied by the data points. CLIQUE 

identifies the sparse and the crowded places by considering appropriate subspaces 

over the original dimensions, and hence maximize the similarity within a cluster and 

maximize the difference between other groups. This allows records with missing 

values to be used for clustering with more accurate results than replacing missing 

values taken from a distribution. 

2.2 Sequential Pattern 

Unlike the previous three classes of data mining problems where static data is cap-

tured, sequential pattern mining is a temporal knowledge extraction over a sequence 

of data where each data associates with an occurrence time. A linear ordering known 
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as serial ordering is obtained. The problem of mining sequential patterns can be 

stated as follows: Let I = {i1,i2, •. • in} be a set of items. An itemset, i is a subset 

of items and denoted as {i1i2 •. .ik), where ij is an item. A sequence is an ordered 

list of itemsets. A sequence a is denoted by (ai h^ a2 ^ • •. H> a^), where the 

sequence element aj is an itemset. A sequence a = (ai t^ a2 ^ . •. h^ »„) is called 

a subsequence of another sequence /3 = (/¾ t^ 他 H> . . . ^ |3m) if there exist integers 

1 < ji < j2 < . •. < jn < m such that ai G ft"a2 G /¾, •. • ’ <̂ n € "_^. A sequence 

with k itemsets (k = ^^ |o;j|) is called a k-sequence. We are interested in finding any 

k-sequence with support above a given threshold (minimum support), where support 

is the number of data sequences that contain the pattern. 

As many application domain have time attribute, data various from web log [73], 

telecommunication network [50], to marketing sales transactions [8] are collected. By 

analyzing the sequence of data, we obtain a better understanding of the trend or the 

behavior of a system. For example, consider the sales database of a book store which 

records the books bought by each customer over a period of time. Interesting patterns 

like "70% of the people who buys Jane Austen's Pride and Prejudice also buys Emma 

within a month." Stores can use these patterns for promotions, shelf placement, etc. 

Or in a web access database at a particular site, the discovered patterns are the 

sequences of most frequently accessed pages at that site. This kind of information 

can be used to restructure the web-site, or to dynamically insert relevant links in web 

pages based on user access patterns. 

2.2.1 Frequent Patterns 

Since the introduction of mining frequent patterns in a sequence database in [8], many 

studies have contributed to the efficient mining of sequential patterns or other frequent 

patterns in time-related data [51, 50, 87, 85, 37, 58, 36]. The mechanism proposed in 

8] relies on the Apriori heuristic first proposed in association mining [4]: any super-

pattern of a non-frequent pattern cannot be frequent. Frequent sequences of length k 

are built from frequent sequences of length k - 1 by applying a self-join operation 

to the latter set and computing the support of the resulting sequence. Finally, non-

maximal frequent sequences are removed from the result. Based on this heuristic, 

a generalized definition of sequential patterns that include time constraints, sliding 

time window, and user-defined taxonomy is proposed and a generalized sequential 

pattern mining algorithm, GSP is developed [75'. 

On the other hand, research on sequence mining has been oriented towards the 
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discovery of episodes that occur frequently within sequences [51, 50]. An episode is 

formally a conjunction of events which includes serial and parallel ordering of events. 

The results of sequence mining are episode rules of the form P[V] =>• Q[W] where 

V,W are time intervals. We may discover any causal relations among events. An 

extension work of finding frequent episodes [51’ 50], which uses temporal logic as a 

formalism for expressing temporal patterns defined over categorical data is suggested 

56]. It discovers frequent patterns which satisfy certain temporal logic expressions. 

Temporal logic programming is suggested as a mechanism for the discovery of frequent 

patterns expressible in temporal logic. First-order temporal logic, FOTL, is used to 

express patterns such as "Hold(Stock) until Bearish_Market_Sentiment", where Hold 

is a temporal predicate. Temporal operators such as since, until, next are considered, 

which cannot be expressed in terms of episodes. 

As Apriori employs a bottom-up search that enumerates every single frequent 

itemset, the exponential complexity is fundamentally inefficient for discovering long 

patterns or large data set with low minimum support. New algorithm, Sequential 

Pattern Discovery using Equivalence classes (SPADE) for fast discovery of sequential 

pattern is proposed [85]. By using a vertical id-list database format, where each 

sequence associate a list of objects in which it occurs, along with the time-stamps, 

all frequent sequences can be enumerated via simple id-list intersections. A lattice-

theoretic approach to decompose the original search space into smaller pieces (sub-

lattices) which can be processed independently is suggested. All sequences can be 

found by three scanning of the database. Other data structure like WAP-tree [58], 

which is used for mining sequential pattern, is a variation of FP-tree [37] as shown in 

Figure 2.2. WAP-tree is proposed for mining web logs data which point-based events 

are considered. By storing the critical information for access pattern mining, without 

the generation of large candidate set, WAP-tree facilitates efficient mining of access 

patterns. Besides, other technique like projection databases with the use of frequent 

item matrix [36] is introduced for mining sequential pattern. Its general idea is to use 

frequent items to recursively project sequence databases into a set of smaller projected 

databases and grow subsequence fragments in each projected database. Experimental 

results show that by reducing the high cost of candidate generation and test, these 

methods outperform Apriori-based GSP method. 
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2.2.2 Interesting Patterns 

As conventional mining techniques provide users with limited mechanism (based on 

minimum support) for specifying patterns of interest, the "unfocused" approach suf-

fers from two major drawbacks: (1) disproportionate computational cost for selective 

users, (2) overwhelming volume of potentially useless results. To tackle these prob-

lems, a simple and natural syntax of Regular Expressions (REs) is introduced to be 

used as a flexible constraint specification tool that enables user-controlled focus incor-

porated into the pattern mining process [31]. The RE constraints help in pruning the 

search space of patterns during computation as well as directing useful results which 

return to the users. A family of algorithms, namely Sequential Pattern mining with 

Regular expression consTraints (SPIRIT), is proposed for mining frequent sequen-

tial patterns that satisfy user-specified RE constraints. The suggested algorithms 

address the problems by narrowing down the target search space. Similar idea of 

imposing selection constraints on user-specified pattern is suggested [34]. A language 

for specifying episodes of interest is used. 

Besides using frequencies as a measure of interestingness of a sequential pattern, 

a notion of using minimum description length principle as a mean to evaluate mining 

result is proposed [14]. Based on the number of bits in which a sequence can be 

encoded under an appropriate coding scheme, sequences with large code length are 

interpreted as potentially surprising patterns and these patterns are considered to be 

interesting. Likewise, instead of finding frequently occurring patterns, [82, 11, 86 

suggest another measure of interestingness to capture rare events. It is extremely 

useful for error discovery as errors are supposed to be rare events and if we restrict 

the search space to frequent sequences, these exceptional sequences would be easily 

rejected and impossible to be distinguished from any trivial sequences. By pruning 

out any predictive and redundant patterns that are out of interest, PlanMine which 

proposed to deal with plan failure prediction [86] and Timeweaver which applied to 

predict telecommunication equipment failures [82], reduce the size of the returned 

rule set significantly. A probabilistic approach of unexpectedness is adopted in [11 . 

A pattern P is deemed interesting if the ratio of the actual number of occurrences of 

P exceeds the expected number of occurrences of P by some user defined threshold. 

It is assumed that each event in the sequence occurs with some probability and 

certain conditional distribution exist between neighboring events. Based on this, an 

expected number of occurrences of a certain pattern in a sequence can be computed. 

Unexpected patterns like "((vtrace N E X T lseek) N E X T lseek)" is found from a 
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Figure 2.4: An event structure 

series of operating system calls made by a sendmail program. 

2.2.3 Granularity 

The discovery of temporal patterns or relationships that involve multiple granular-

ities is addressed in [13]. It is stressed that events occurring in the same day, or 

happening within k weeks from a specific day may capture our attention. With the 

use of an event structure which is a set of temporal constraints on a set of variables 

representing events, we target for patterns of events that match the even structure. 

Consider the event structure depicted in Figure 2.4, variables such as Xo, X i , X2 and 

^3 can be assigned as IBM-r ise , IBM-earnings-report, HP-r ise , and I B M - f a l l , 

respectively. This complex event type describes the scenario that the IBM earnings 

were reported one buisness day after the IBM stock rose, and in the same or the 

next week the IBM stock fell; while the HP stock rose within five business days after 

the same rise of the IBM stock and within eight hours before the same fall of the 

IBM stock. To facilitate this pattern matching process, the notion of a timed finite 

automaton with granularities (TAG) is introduced. A T A G is essentially a standard 

finite automaton with the modification that a set of clocks is associated with the 

automaton and each transition is conditioned not only by an input symbol, but also 

by the values of the associated clocks and the clocks of an automaton may be running 

in different granularities. 

2.3 Temporal Database 

Temporal database records time-varying information. As most applications are tem-

poral in nature, e.g. financial applications, inventory management, scheduling appli-

cations and scientific applications, the development of temporal databases becomes 

a vibrant research topic over the last two decades [78, 77, 39, 40] and a number of 

bibliographies of research in the field have been published [52, 76, 44, 83]. All this 

work has made important contributions in characterizing the temporal semantics of 
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information and in providing expressive and efficient means to model, store and query 

about temporal data. 

Temporal database maintenance requires the consideration of different time di-

mensions [78]. Two orthogonal time dimensions have been proposed: valid time, i.e. 

the period during which the information input is valid, and transaction time, i.e., the 

time of the record is stored. While valid time allows us to keep track of the history 

of the application domain throughout its evolution in time, transaction time allows 

us to maintain the history of the evolution of the database. 

Recent research on temporal databases can be roughly categorized into three areas. 

The first area is the formulation of the semantics of time [12] which is closely related 

to research issues in knowledge representation. Issues various from theoretical point 

of view such as temporal logic [30] and infinite periodic time sequences to rather 

applied questions such as how to represent time values in minimal space [10] and how 

to utilize calendars [15]. Moreover, data types such as time points, time intervals 

and temporal elements (sets of intervals) as the representation of time are discussed 

78]. Since the data explicitly stored in a temporal database are often associated with 

certain semantic assumptions, each assumption can be viewed as a way of deriving 

implicit information from explicitly stored data. 

The second area concerns the physical implementation issues which focus on ef-

ficient access methods and data organization strategies in temporal database [23 . 

Conventional indexes have long been used to reduce the need to scan an entire re-

lation to access a subset of its tuples, to support the selection algebraic operator 

and temporal joins to facilitate efficient temporal query processing. Many tempo-

ral indexing strategies are based on B+-trees, which index on the time point values 

23, 22, 10, 68]. One of these indexing techniques is time index [23] which is shown in 

Figure 2.5. It is capable of retrieving versions of object that are valid during a specific 

time period. It is proposed to improve the performance of certain classes of temporal 

queries such as when, during. The valid time intervals of various object versions will 

overlap in arbitrary ways. Since one cannot define a total ordering on the interval 

values, special attention is paid in the selection of the set of linearly ordered indexing 

points on the time dimension. 

The third category of the study on temporal database is the logical modeling of 

temporal data where most of them emphasize an extension of relational data model 

to capture temporal semantics and to support relational temporal query languages 

79, 77]. These extended models generally augment relations of the snapshot data 

model with several time attributes which store the relevant timestamps such as valid 
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Figure 2.5: Versions of employee objects, and a time index 

time and transaction time. New temporal operators are defined in these extended 

data models, based upon traditional relational algebraic operators, to allow users 

to query time attributes. The languages designed must support predicates on tem-

poral values, multiple calendars, schema versioning, periodic data, point-based and 

interval-based semantics and have adequate expressive power and the ability to be 

efficiently implemented. One of the notable work on temporal querying language is 

TSQL2 [72]. TSQL2 is developed to consolidate approaches to temporal calculus-

based query languages and is a comprehensive temporal extension to SQL2 in which 

time is represented by intervals. 

2.4 Temporal Reasoning 

Closely related to the study of formulation of the semantics of time in temporal 

database is the research work on temporal reasoning in Artificial Intelligence (AI) or 

Information System (IS) [53]. In temporal reasoning, there is a fundamental choice 

between whether time points or time intervals [9, 48] are the primitive objects to 

reason about action or time. One of the most influential theories of time, interval 

algebra (IA) has been introduced by James Allen [9]. It addresses the problem of 

representing temporal knowledge and performing temporal reasoning from the per-

spective of natural language understanding. The notion of relations between pairs of 

intervals is introduced. The bases of Allen's approach consists of an interval-based 
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temporal logic, together with a computationally effective reasoning algorithm based 

on constraint propagation. 

An interval I is represented as an ordered pair (/_,/+) of real numbers with 

I~ < /+, denoting the left and right endpoints of the interval respectively. Relations 

between intervals are composed as disjunctions of basic interval relations which are 

known as interval operators that operate on two intervals (denoted by inti = (51,e1) 

and ir1t2 = (<S2,e2)). A boolean value is returned as follows: 

• inti overlaps ir1t2 = ((<Si < <S2 < ei) \J (s2 < Si < e2)) 

• inti during ir1t2 = ((<si > <S2)八(e! < e�)) 

參 inti meets int2 三(ei = s2) 

• inti < ir1t2 三(ei < 62) 

• inti < ir1t2 三 ( ( < s i < S2) V (^i < e2)) 

Based on these thirteen basic relations, we get 2̂ ^ = 8192 possible relations be-

tween intervals in the full algebra. Hence reasoning with this algebra (that is, rea-

soning about implied interval relations or determining the consistency of a set of 

assertions), however has been shown to be NP-complete. Hence, point algebra (PA) 

is introduced which based on the notion of a time point in place of an interval. The 

basic relations of the PA that can hold between two points are <, = and >. The 

relation between two points is a disjunction of the basic relationships which gives the 

set { < , < , > , > , =，+�0，？}. 

2.4.1 Natural Language Expression 

Temporal representation and reasoning are necessary components of systems that 

consider events that occur in the real world. In appointment scheduling and time 

management, natural language expressions that refer to collections of intervals are 

used prevalently and routinely. Thus, an effective means of representing the intervals 

is essential. For example, some classes of expressions such as "the first day of every 

month" refer to a collection of intervals explicitly. On the other hand, expressions like 

"the U.S. Election Day: the first Tuesday after the first Monday in November" specify 

the intervals implicitly. Formula which represent collections of intervals are proposed 

48]. For example, assume that time t � i s Saturday, December 31,1994, midnight, the 

collection of Thursdays can be described by the formula: 

Thursdays = { < a; lday > | a = 5days + t � ( m o d 7days)} 
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The foundation of the collection representation is a set of primitive collections 

called calendars. A calendar is a collection consisting of an infinite sequence of inter-

vals that span the time-line. Days, Months and Chinese-Calendar- Years are instances 

of calendars. 

2.4.2 Temporal Logic Approach 

Besides using natural language expression for reasoning about time, a mathematical 

model which use temporal logics is proposed. The logics are based on the concept that 

instead of a predicate calculus statement being universally true or false, it may be 

true or false at different moments of time. Temporal quantifiers are used to augment 

the calculus. Temporal operators such as "since", "until", "next" are used. 

2.5 Temporal Data Mining 

Temporal data mining is the non-trivial extraction of implicit, potentially useful and 

previously unknown knowledge from an implicit or explicit temporal content from large 

quantities of data [67]. This accommodation of time into mining techniques provides 

a window into the temporal arrangement of events and thus an ability to suggest 

cause and effect. 

2.5.1 Framework 

It has been recognized recently that time dependent information is important in data 

mining [69]. Temporal patterns concerning temporal features of the rules such as as-

sociations should be investigated and discovered from temporal databases since they 

can provide accurate information about an evolving business domain. A prototype 

system architecture for mining temporal patterns is introduced [16]. A generic defini-

tion of temporal pattern is presented. Temporal pattern is defined as a triplet (Patt, 

PeriodicExp, IntervalExp), where Patt is a general pattern which may be a trend, 

a classification rule, an association rule, a causal relationship, etc., PeriodicExp is a 

periodic time expression and IntervalExp is a general interval expression. It takes 

absolute time as a measure of interest in the discovery of patterns. A temporal data 

mining language, Temporal Query and Mining Language (TQML) is suggested to be 

integrated into the framework. However, since the snapshots, i.e. IntervalExp, are 

derived without any knowledge of temporal patterns existing within the data, many 

interesting temporal patterns may be lost. On the other hand, the idea of adding 



CHAPTER 2. RELEVANT WORK 26 

temporal semantics to existing data mining tasks is suggested in [62]. It introduces 

the integration of temporal reasoning into knowledge discovery process. Two conven-

tional data mining algorithms are extended to handle temporal semantics which are 

attribute-oriented induction [63] and association rule [64 . 

2.5.2 Temporal Association Rules 

Since the introduction of association rules [4], it has been extended in different ways to 

deal with quantitative and categorical data. However, most of them overlook the time 

components, which are usually attached to the transactions stored in the databases. 

Thus existing algorithms cannot be applied to temporal databases directly as the 

temporal information is being ignored. Until recently, the problem of integrating 

temporal issues on association rules has been addressed [19, 65, 64 . 

The integration of calendar [15], which is a set of time intervals, into the discov-

ery of association rules is proposed [65]. The concept of calendric association rules 

is defined where the rules found associate with the instances of the calendar. By 

segmenting the data over different time intervals, we may discover some interesting 

pattern which is previously ignored. For example, if beer and chips are sold together 

primarily between 6PM and 9PM on week days, when viewing the data over a week, 

we may not get enough support for such a pattern "beer ~> chips (support:25%, 

confidence:75%)". However, if we segment the data over two intervals, 7AM-6PM 

and 6PM-9PM, and consider only the data from weekdays, we may find that the 

support for the beer and chips rule in the segment 6PM-9PM jumps to 50%. Hence 

by analyzing data using a finer time granularity, we may find that some interesting 

rules exist only in certain time intervals but not occur in the whole period of time. 

Likewise, by determining any periodic intervals of some rules, the problem of mining 

cyclic association rules is introduced [55] which detects the periodical behavior of 

rules over time. For instance, if we find any association rules over monthly sales data, 

we may observe seasonal variation where certain rules are held at approximately the 

same in each year. However, this periodicity has limited power in describing real-life 

variations. Complicated patterns such as the first working day of every month cannot 

be described by simple periodic expression. 

Similar idea with calendric association rules that segments the data into several 

intervals is suggested [19, 16, 18]. However, instead of gaining enough support to 

discover any interesting rules, the discovery of association rules with known valid 

periods and periodicities is concerned. It introduces the notion oftemporal association 
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rules where absolute time is taken into consideration. We would find rules like"during 

summer, customers who buy bread and butter, also buy milk" if we consider the 

period between May and September instead of over a year. The temporal information 

extracted provides detailed information to reflect the dynamic changing data in reality 

rather than a static one. In particular, we may interested in finding the longest 

interval that an association rule holds or behaves periodically [18 . 

On the other hand, by discovering any relationships between items which satisfy 

certain timing constraints such as during, overlaps in a temporal database, we might 

find some interesting associations between items recorded in the tuples [84]. We first 

group the tuples under certain timing constraint, we then examine the tuples in each 

of the group and find any association between groups of items. For example, if the 

duration of item A and item B overlap or intersect with each other, then A and B 

correlate. 

The idea of adding temporal semantics to existing data mining techniques is raised 

in [64]. It extends the association rule mining technique to handle temporal semantics 

by examining the temporal relation between associated items. By first finding the 

associated attributes, we then look for any temporal relationships between them. The 

temporal nature of data is then captured. For instance, original association rules may 

tell us that Investment_portfol ioJC is associated with Insurance450licy_Y. How-

ever, temporal associations may tell us that Investment_portfol ioJC usually occurs 

after the start of Insurance_policy_Y. This may indicate the customers start with an 

insurance policy and becomes a gateway for other services such as Investment4)0rtf0li0JC. 

2.5.3 Attribute-Oriented Induction 

Another extension of work for accommodating temporal semantics into existing data 

mining techniques is attribute-oriented induction [63]. A temporal interval gener-

alization framework (TIGF) to facilitate the generalization of time interval data is 

introduced. The integration of T I G F into existing algorithm for the induction of 

characterization rules is presented. 

2.5.4 Time Series Analysis 

Time series analysis focuses on symbolic patterns or numerical curve patterns in the 

sequences and is useful for many applications such as stock market data, financial 

data, telecommunication network data, etc. Besides analysing the change of shapes 

or before/after relationship, like mining of cyclic association rules, partial periodic 
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patterns of sequences is suggested [35]. By taking the partial period as an interval, 

methods for finding partial periodic patterns in time series are proposed. An example 

of a partial periodic pattern may state that "Jim reads the Vancouver Sun newspa-

per from 7:00 to 7:30 every weekday morning, but his activities at other times do not 

have such regularity". Hence, instead of taking the whole sequence into consideration 

to look for any periodic patterns, partial periodic patterns is preferred. This idea of 

taking an interval of time of an event happens is similar to our problem which focused 

on interval-based events. However, unlike ours, periodicity instead of temporal rela-

tions among events is considered. Moreover, the length and timing of the interval for 

the partial periodic pattern are determined by the behavior of the repeating pattern 

while for us, the length and timing of the interval are based on the occurrences of the 

events themselves. 

As most of the conventional data mining techniques do not accommodate interval 

data which is found to be useful in many applications, based on the previous work 

on temporal data mining especially mining sequential pattern, we extend the cur-

rent work to accommodate interval data. In the following chapters, two interesting 

temporal patterns are introduced. 



Chapter 3 

Discovering Temporal Patterns for 
interval-based events 

In this chapter, we describe the mining problem in more details. We aim to find 

temporal patterns, defined in terms of Allen's taxonomy of temporal relationships, in 

sequences of interval-based events stored in temporal database. We first formulate the 

concept of event sequence in Section 3.1 and introduce Allen's taxonomy of temporal 

relationships in Section 3.2. We introduce two temporal patterns, namely AppSeq 

and LinkSeq in Section 3.3. It is argued that both patterns are capable of expressing 

the complex relationships between interval-based events. An overview framework for 

mining such interesting patterns are given in Section 3.4. Finally, we summarize our 

discussion in Section 3.5. 

3.1 Temporal Database 

We adopt a discrete model of time, where each integer represents a point or instant 

in time upon the time-line. The granularity of time can be scaled between different 

segment sizes such as seconds and years, where the smallest possible granule size is 

defined as a chronon. The actual duration of a chronon is application specific. 

Temporal database supports three types of time elements which are introduced in 

the previous chapter. They are namely transaction time, valid time and user-defined 

time. Such database captures the past and present data where the temporal attributes 

change values with time. Applications such as medical database, scientific databases 

in geophysics and astronomy, data are stored with the associated valid time. For 

instance, in health care database, patient record stores when the patient charge in 

and the time he/she discharge or any operation which takes a few hours to finish. 

29 
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Such kind of data is stored in temporal database as historical records. 

Each tuple associates a pair of ordered time points stating the period during which 

the information stored are valid. In our work, we focus on the valid time of the data 

stored as it indicates the evolution of data in time. All the events stored in temporal 

database happen in a linear time order where each event lasts for a period of time. 

We denote these events as interval-based events. 

Here we describe our problem formally and introduce some terminologies used. 

Assume that in a temporal database, each database record contains a pair of ordered 

time points tg and t̂  where ts < t̂  and both are positive integers. They are the s tar t 

t i m e and end t i m e which together specify the valid time of the information stored. 

A record may have other attributes, for simplicity, we consider here a single temporal 

attribute and denote it as an event . We assume a set E of event types. 

Definition 1 [Event] An event E has an associated time of occurrence and it is 

specified by a triple {A,ts,te), where A G E is an event type and ts and t^ are the 

start time and the end time, respectively. We also use E.tg and E.te to indicate these 

times. • 

Let us consider an example of a medical database. We are given a temporal 

database T>, each record in the database contains a person-id, name of disease and 

the start time and end time. Here, we suppose an event represents the contraction 

of a certain type of disease. In the general setting, we assume that each event is 

associated with one person. We assume the database is a set of sequences, each 

sequence consists of events for a particular person. There is at most one sequence for 

each person. 

Definition 2 [Sequence] A sequence of events is defined as a list of events where each 

event is associated with the same person: for personj, we have the following sequence 

S j ; 

Sj = ({Auts,, teJ, (^2, ts,,te,)...(An, tsn^ten)) 

The events are ordered by the end times where ^e, < ^e,+i for all i = 1 , . . . , n — 1 . I 

This definition is similar to that of customer-sequence proposed in [8], where all the 

tuples associated with the same person can be grouped together to form a sequence. 

The events are ordered by the end time to ensure the former event ends on/before 

the following one as an order for interval-based events. 
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Figure 3.1: The thirteen possible relationships between two intervals X and Y 

3.2 Allen's Taxonomy of Temporal Relationships 
Relationship among time intervals can be described in different ways. A l l e n ' s t a x -

o n o m y o f t e m p o r a l r e l a t i o n s h i p s [9] is adopted to describe the basic relationships 

among events. It takes the notion of a temporal interval as primitive and obtains a 

set of temporal relations between intervals. As it provides a simple and natural syn-

tax for specifying temporal relations between two intervals, the thirteen relationships 

are useful for describing the inter-relations between interval-based events. Figure 3.1 

summarizes Allen's thirteen temporal relationships. The relations between intervals 

can be expressed in terms of relations between their endpoints, we call this the end-

point constraints. For instance, consider the sequence {Ei =(A,5 ,10) , E2 =(B,8,12)) , 

we have "A overlaps B " since Ei.t^ < E2.ts, Ei.t^ > E2.ts and Ei.te < E2.te. 

It is known that these thirteen relationships can be used to express any relationship 

held between two intervals and they provide a basis for the description of temporal 

patterns. Some of the relations are mirror image of the other, for example, “X overlaps 

Y " implies the same relation as " Y is overlapped-by X ” . We only focus on seven 

primitive temporal relations with the order of items preserved. T h e seven relations 
are shown in the shaded area in Figure 3.1. Let us call this set of seven temporal 
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relations Rel . If rel G Rel and events X and Y in a sequence have endpoints 

satisfying the constraints of X rel Y, then we say that X rel V is t r u e in this 

sequence. For simplicity, we use symbols to represent the corresponding Rel in the 

figures of the following chapters. 

As the endpoint constraints suggested, the order of events is important in the 

representation of temporal relations. We observe from the given seven primitive 

relations, for any two intervals X and Y , (X.te < V.te) or (X.ts > Y.ts if X.te = Y.te). 

Hence, in the following sections, we further restrict the order of the events as setting 

their end times in strictly ascending order while start times in descending order if 

equal end times. 

We obtain a set of b i n a r y p r e d i c a t e s if we consider any temporal relations 

between two events only. By combining the binary predicates, a sequence of events 

can be expressed as different t e m p o r a l p a t t e r n s V. As we observe that, discovering 

all possible patterns can be computationally inhibitive and also the amount of results 

to the user can be overwhelming. We restrict our attention to the following two 

temporal patterns as they both provide simple and meaningful results showing the 

temporal behavior between events. 

1. A p p S e q : ((• • • (Ai reli A2) rel2 A3) • • • relk-i Ak). We expands one event at 

a time and find the temporal relations between the preceding events to the 

following one. We may obtain pattern like "(((A overlaps B) before C) overlaps 

D". From the sequence, we get the idea of how the events are related to each 

other along the time-line. This is the first temporal pattern we are going to 

study and discuss in the next chapter. 

2. L i n k S e q : ((Ai re/i A2) k {A2 rel2 A3) •. • k (Ak-i r e k - i Ak)) where k is A N D 

operation. We form the sequence by linking the common events in each binary 

predicate. Patterns like "(A overlaps B) h (B before C) k, (C overlaps D)" are 

found. From the sequence, we obtain the individual temporal relations between 

two events clearly. It is the second temporal pattern we would investigate in 

Chapter 5. 

We believe that both patterns are useful to describe the temporal behavior among 

events. They are simple and easy to understand. Besides knowing the ordering of 

events happen, we obtain a better understanding of how the events interact with each 

other. As both patterns are formed from binary predicates, they are closely related 

to each other or are different representations of a sequence. We first introduce the 
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Figure 3.2: A sequence of interval-based events 

framework for mining AppSeq. Then we continue to study the second pattern LinkSeq 

and describe it in details in Chapter 5. 

3.3 Mining Temporal Pattern, AppSeq and LinkSeq 

The first pattern is formed by combining the events one by one with the associated 

relations between the former group of events to the following one. The appending 

event has a greater end time than that of any preceding events. Consider a sequence 

shown in Figure 3.2, we combine the binary predicate “(A overlaps B)" with the 

following event "C" having the associated temporal relation as "before" by considering 

the endpoint constraints of the binary predicates and the following event. In result, 

we have the pattern “((A overlaps B) before C) overlaps D". As the pattern formed 

by appending one event at a time, we call this AppSeq. 
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Figure 3.3: Different temporal pattern representation 

3.3.1 A1 and A2 temporal pattern 

Taking one step further, besides expanding patterns by only a single event, we may 

be interested in discovering temporal pattern where two patterns of sizes greater than 

one are combined via a temporal relation. We can see that in Figure 3.3，two different 
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patterns "((A overlaps B) before C) overlaps D,, and "(A overlaps B) before (C during 

D)" hold in the sequence by considering different ways of combinations. 

It is easy to see that the number of such possible descriptions is exponential in 

the sequence size. We restrict our interest to those patterns formed by appending one 

event at a time and we find temporal relations between a preceding group of events 

with the following one. That is, we consider temporal patterns of the form 

((...(Ai re/i A2) rel2 43)丨 re/^-i Ak) 

We further call these the A 1 t e m p o r a l pa t tern . There are two main reasons for 

this restriction: 

1. We believe that the temporal relations give some insight into causal relation-

ships. As such, when a few events have happened, together they may become 

the cause of a following event. The temporal patterns in the above form gives 

us a modeling of this idea. 

2. Discovering all possible patterns can be computationally inhibitive and also the 

amount of results to the user can be overwhelming. To verify the argument 

about the computation complexity, we have implemented the mechanism to 

discover temporal pattern obtained by appending composite pattern of size two 

at a time, it results in the patterns such as “(A overlaps B) before (C during 

D)". We show by experiments that even a small extension in this way results in 

a much increased computational cost. 

We name the other temporal pattern as A 2 t e m p o r a l p a t t e r n . Both A1 and A2 

temporal patterns are derived from AppSeq, but they are slightly different in nature 

and we look for both of them. This leads to the differences between our mining 

methods which would be discussed in the next chapter. 

3.3.2 Second Temporal Pattern, LinkSeq 

One the other hand, our second temporal pattern known as LinkSeq is formed by 

linking two or more binary predicates with the common event as the binding point. 

Such a composition results in the form of “(A overlaps B) & (B before C) & (C 

overlaps D)" for the sequence shown in Figure 3.2. We extract the temporal knowledge 

by taking two events as a pair and investigate the relations between such binary 

predicates as a sequence. 

LinkSeq looks similar to that of AppSeq in a sequence. We obtain both patterns by 

emphasizing two different temporal structure formed among events. In fact, AppSeq 
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Figure 3.4: Differences between LinkSeq and AppSeq 

is more general than that of LinkSeq. We illustrate this idea by giving an example. 

Consider the sequence shown in Figure 3.4(a). For AppSeq, we form the composite 

pattern "(A overlaps B) before C" which is going to append event D to form a new 

sequence. However, when we consider LinkSeq, the relation between C and D may not 

gain enough support to be discovered during the mining process. Hence the process of 

obtaining longer sequence of LinkSeq terminates. Unlike LinkSeq, AppSeq generalizes 

and groups some distinct relations as one relation which then gains enough support 

for the pattern. In result, more patterns can be found by AppSeq. 

On the other hand, AppSeq expands one event at a time with the appending event 

having a greater end time than that of any preceding events. When we come across the 

temporal relation "finishes" or "equal" for the last two events of the sequence shown 

in Figure 3.4(b), we may only obtain "(A overlaps B) before C" and “(A overlaps B) 

before D" for AppSeq. However, for LinkSeq, we can obtain longer pattern as "(A 

overlaps B) & (B before C) k (C finishes D)" as we consider pairs of binary predicates. 

Hence LinkSeq includes the last event with equal end time as that of the preceding 

events. By considering the above two cases, we notice that each of the pattern reveals 

some temporal behavior of the events along the sequence and are closely related to 

each other. It is argued that both patterns are interesting and useful to describe the 

temporal behavior among interval-based events. 

3.4 Overview of the Framework 

As mentioned before, we pay special attention in mining two temporal pattern, 

AppSeq and LinkSeq. With the different formation of the patterns, we proposed 
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several methods using different strategies to tackle the problem. We here briefly 

describe our approach for mining both patterns. 

3.4.1 Mining Temporal Pattern I, AppSeq 

Regarding AppSeq, we form the pattern by appending one event at a time. Based 

on this idea, besides expanding one event, we examine a second pattern formed by 

appending two events (i.e. a binary predicate) each time This results in an even 

number of events in the pattern which we denote it as A2 temporal pattern. It is 

actually an extension of the original pattern which we name it as A1 temporal pattern. 

Since both A1 and A2 temporal patterns are similar in formation, we first introduce 

the method, AppOne, by considering the simplest form of AppSeq as shown in Figure 

3.3(a). We then further extend the method for finding the other kind of pattern as 

shown in Figure 3.3(b) as the second method, AppTwo. 

A basic strategic similar to the Apriori-like approach [7] is used and using a layout, 

which we call item-list, in the mining process for both AppOne and AppTwo. For 

comparison, a performance study for both methods through experiments on synthetic 

data is conducted. 

In addition, as both patterns are formed from binary predicates, we observe that 

both methods suffer from the high cost of generation of binary predicates during the 

early stage of the mining process. To deal with this problem, we further investigate 

an improved mechanism that we can form the binary predicates directly from data 

without undergoing any candidate generation phase. We would discuss the methods 

in details in Chapter 4. 

3.4.2 Mining Temporal Pattern II, LinkSeq 

With different formation of our second temporal pattern, LinkSeq, we extract the 

temporal knowledge using different data structures which results in several methods 

to perform the mining task. 

First, intuitively, we may find LinkSeq by deriving from AppSeq. As all the fre-

quent events which form the AppSeq must form the corresponding binary predicates 

with each other, we can form LinkSeq by linking the binary predicates with the order 

of events preserved which is already inherited in AppSeq. However, as mentioned 

in the previous section, AppSeq may miss the last event if its end time is the same 

as that of the preceding one. We may not find the complete set of LinkSeq as it 

suggests. Despite of this, the method is useful when we consider both LinkSeq and 
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AppSeq together as result. We denote this method as LinkApp. 

As the formation of LinkSeq from combining the binary predicates suggests, we 

can modify the previous AppOne method to accommodate the needs for the second 

pattern, using the Apriori-like approach. We call this L inkTwo method. 

Besides using an Apriori-like approach which divides the mining process into can-

didate generation phase and support counting phase, inspired by the recent work on 

mining frequent pattern [37], we propose to use a tree-like structure, namely seq-

tree to store the sequence data. By exploring the compact information stored in the 

seq-tree, we develop an efficient mining method for the pattern LinkSeq as LinkTree. 

We would discuss these alternatives for mining LinkSeq in Chapter 5. Experimen-

tal results showing the performance of these methods are presented also. 

3.5 Summary 

In this chapter, we introduce the two temporal patterns, called AppSeq and LinkSeq. 

Unlike most previous approaches of mining sequential patterns which considers only 

point-based events, we consider interval-based events, which we believe are important 

in many applications. We employ Allen's taxonomy of temporal relationships as a 

mechanism to express temporal patterns between interval-based events. We discover 

that the number of temporal relationships can be prohibitively large and also many 

of such patterns may be complicated and of little value to the users. We therefore 

consider two types of temporal patterns which is simple and meaningful. We describe 

the mining methods for the two patterns in details in Chapter 4 and 5. 



Chapter 4 

Mining Temporal Pattern I, 

AppSeq 

In this chapter, we discuss our first temporal pattern, AppSeq, which further subdi-

vides into A1 and A2 introduced previously. We start by giving the notion of tem-

poral pattern in the following section. Methods for mining the A1 and A2 pattern 

are described in Section 4.2 and 4.3 respectively and a modified approach proposed 

in Section 4.4. Experimental results are presented in Section 4.5. Finally, Section 4.6 

summarize our discussion on mining AppSeq. 

4.1 Problem Statement 

As mentioned in Chapter 3, we assume each event E has an associated time of oc-

currence as E.ts and E.te. We obtain binary temporal predicates if we consider two 

events only. To express complex relation among more events in a sequence, we form 

A1 temporal pattern by appending one event at a time via a temporal relation and 

have following definition: 

Definition 3 [Temporal Pattern, A1] A temporal pattern is defined recursively as 

follows: 

• If E is a single event type in E , then E is a temporal pattern, it is also called 

an atomic pattern. 

• I f X and Y are two temporal patterns, and rel € Rel^ then {X rel Y) is also a 

temporal pattern. This is a c o m p o s i t e p a t t e r n . 

The size of a temporal pattern is the number of atomic patterns in the pattern. I 

38 
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Based on this definition, we have "A" and "B" as atomic patterns for the sequence 

shown in Figure 3.2. The sizes of all atomic patterns are the same as 1. Composite 

patterns include "A overlaps B" and “((A overlaps B) before C) overlaps D" with 

size of pattern being 2 and 4 respectively. We mainly focus on finding any composite 

pattern which consists of a group of atomic patterns. 

Definition 4 [Mapping] An atomic temporal pattern X has a mapping in a se-

quence S if we can find an event E of type X in the sequence. We denote this map-

ping by M(X,S) = {E}. We associate a time duration to the mapping as follows: 

M{X,S).ts = E.ts M(X,S).te = E.t, We say that X holds in S. 

A composite pattern (X rel F ) in which Y is an atomic pattern and rel G Rel 

has a mapping M((X rel Y),S) in a sequence S ifX has a mapping M(X,S) in 

S and we can find an event E 雀 >l(X,5') of type Y in S to be mapped a s A^(K,5') 

such that if we consider some imaginary event Z with start time ofM(X^ S).ts and 

end time ofM[X,S).U, then Z rel E is true. 

In this case, M{X rel Y, S) = M(X, S)U{E}. We say that the relation {X rel Y) 

holds in S. The mapping M{(X rel Y),S) has an associated time interval given by 

M{{X rel Y),S).ts = min{M(X,S).ts,M(Y,S).ts} 

M({X rel Y),S).U = M{Y,S).U 

• 

In the above mapping of a composite pattern in a sequence, union of two time 

intervals takes place. We form a minimum time interval that includes the events in 

the composite pattern. The resultant interval is determined by the minimum of the 

start times and the maximum of the end times of X and Y respectively. For example, 

for the sequence shown in Figure 3.3(a), we obtain a composite pattern “(A overlaps 

B) before C" with the resultant interval being [5,18 . 

Moreover, user can specify the maximum length of time interval that is of interest, 

known as the window-size, win_size. The intuition is that if some events do not 

happen close enough to each other, we would not be interested to find any correlation 

between them. 

Definition 5 [window-size] Ifw is a given window-size, a temporal pattern P holds 

within w in a sequence S if there is a mapping M{P, S) such that M[P,S).te — 

M{P,S).ts<w. • 
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D e f i n i t i o n 6 [fc-item] Let A “ i 二 l , . " ,A; be a bag ofk event types in E , reU G R e l , 

i = l,..,k-l, a k-item has the form 

{ { A i , A2,…乂^^, {re/i,re/2, ".relk-ih ^ ) 

where V is a temporal pattern in terms of the events types A1,A2, ...,Afc and the 

relations re/i , . . . , relk-i, and k > 1. • 

Given a window-size w, let M be a subset of the set of events in a sequence 5 , 

M s u p p o r t s an A:-item {{Ai，A2，〜Afc}’{re/i,re/2r.re/fc_i}’P} if M is a mapping 

for the temporal pattern V and M.te - M.ts < w. We also say that each event in M 

supports V. For example, if the window-size is 100’ the given sequence in Figure 3.2 

supports both the temporal pattern "((A overlaps B) before C) overlaps D" and "(A 

overlaps B) before (C during D)" . 

The s u p p o r t of a temporal pattern V in a set of sequences V is defined as the 

total number of different mappings in all sequences in V for the pattern over the total 

number of sequences in V . i.e., 

… … l { M ^ S\S G V, M supports V} 
support(V^V)= — 

The s u p p o r t of a k-item is the support of the temporal pattern in the A:-item. 

A l a r g e A:-item is a fc-item having support greater than a threshold, namely 

min.sup provided by users, that is, support(V,V) > minsup. Our aim is to find the 

large /c-items for all k. 

4.2 Mining A1 Temporal Patterns 

Here we propose a method, AppOne, for mining frequent A 1 temporal pattern as 

shown in Figure 3.3(a). Let us use an example to illustrate how the method works. 

The example is a patient database of the form shown in Table 4.1. Each tuple contains 

a person-id, the disease contracted by the patient and the duration o f t h e disease. The 

database can be used to find if some diseases are likely to cause some other diseases 

and their temporal relations. It is assumed that the minimum support is 33% and 

the window-size is set to be 30 time units. 

We use a layout of event sequence that is different from the one used in finding 

sequential pattern [8]. Instead of transforming the original database into a list of 

sequences, the seq-l is t , where each sequence corresponds to one person, we use an 

i t e m - l i s t to represent the temporal data. Each event is associated with a list of 
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person-id disease start end 

1 A 5 10 

1 g g 12 person-id seq-list 

i C ^ ~ ~ ^ 1 (A,5,10),(B,8,12),(C,20,24), 

i E U ~ ~ ~ ^ (E,17,28),(F,14,28),(B,28,32) 

i F H ~ ~ ^ 2 (A,12,20),(B,16,22),(C,24,28), 

1 B ^ ~ ~ ^ (E,28,31),(F,27,31),(G,33,35) 

^ 2 X U ~ ~ ^ 3 (A,8,12),(I,8,12),(D,8,18) 

2 B i ^ ~ ~ ^ 4 (D,7,12),(A,17,22),(J,22,24), 

2 C 24 28 (G,15,26) 

2 E ^ ~ ~ ^ 5 (D,10,15),(A,17,22),(G,15,26) 

2 F ^ ~ ~ ^ 6 (A,14,18),(B,16,22),(C,32,36), 

2 G ^ ~ ~ ^ (E,28,38),(F,26,38) 

3 A ~ ~ 8 " T T seq-list 

3 I 8 12 item pid-list 

3 D 8 _ _ ^ ~~k~~(1,5,10),(2,12,20),(3,8,12), 

4 D 7___l_l_ (4,17,22),(5,17,22),(6,14,18) 

4 A 17 22 B (1,8,12),(1,28,32),(2,16,22), 

4 J 22 24 (6,16,22) 

4 G 15 26 C (1,20,24),(2,24,28),(6,32,36) 

5 D 10 15 D (3,8,18),(4,7,12),(5,lQ,15)7~ 
5 A 17 22 E (1,17,28),(2,28,31),(6,28,38) 

5 G 15 26 F (1,14,28),(2,27,31),(6,28,38), 

6 A 14 18 G (2,33,35),(4,15,26),(5,15,26) 

6 B 16 22 I (3,8,12) 一 

6 C 32 36 J (4,22,24) 

6 E 28 38 item-list 

6 F 26 38 

Original database 

Table 4.1: Transform the database as seq-list and item-list 

\ 
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person-id, start time and end time {pid, ts, te). Table 4.1 illustrates the differences 

between the two approaches using the above example of patient records. Note that 

each item is an atomic or composite pattern and the tg and t̂  in the item-list indicates 

an time interval for this pattern. Similar idea of transforming the database into the 

form which we called item-list is used in [85 . 

A basic strategic similar to the Apriori-gen approach [7] is used. With seq-list, we 

need to scan the database once in each iteration. The item-list approach avoids this 

problem since it enables us to count support by direct composition of the lists. The 

size of these lists and number of candidates shrink as the sequence length increases, 

which facilitates fast computation. This motivates us to choose item-list format to 

store the large A;-items for efficient support counting. 

Initially, we compute the large 1-items in a single database scan by storing the 

large atomic patterns into an item-list. Let us refer to the set of large A:-items as Lk. 

We then generate candidates by combining a (k — l)-item in Lk-i , with a single event 

in Li. A fc-candidate is of the form {A, B} where A is a (k — l)-item and B is an 

l-item. For a given database, let us refer to the set of all A:-candidates generated by 

our method as Ck-

A major task in the generation of large fc-items is to determine if any A:-candidate 

is contained in a sequence. For each candidate, we examine the L^-i and Li item-

lists and determine the temporal relations between the composite pattern and atomic 

pattern that have sufficient supports. We then generate new large A>items and obtain 

the Lk item-list by merging the composite and atomic patterns with the temporal 

relation. The composition of two item-lists to form Lk is depicted in Figure 4.1. 

We only need to scan the database once to create the Li item-list in the first 

pass. For further iterations, we simply join the item-lists to obtain the large A:-items. 

Hence the computation time mainly depends on the size of the item-lists for Lk and 

Ck which would shrink for later iterations. The main algorithm is shown in Figure 

4.2. The algorithm terminates when we cannot find any large A:-items after the end of 

the current pass. The discovery process is mainly divided into the following phases: 

Sort phase: We first group the records with person-id as the major key and end time 

as the minor key for sorting in ascending order while start time in descending 

order as shown in Table 4.1. 

Initial phase: During the first pass, we determine the large atomic patterns called 

1-items, which would be used repeatedly for forming composite patterns in later 

iterations. We store the large 1-items as item-list as shown in Table 4.2. 
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item count item count item count 
A before C 3 E 3 (A before C) ‘ ~ " 

(1.5,24) (1.17.28) c ^ ― 二 丨 “ ^ 
(2,12,28) (2,28,31) (1’5，28) 

(6,14,36) (6,26,38) (6,14,38) 

\ / 3-large item: 
\ / (A before C) overlaps E 
(A before C) & E relation 

(1,5,24) -> (1,17,28) overlaps 
~(2,12,28) -> (2,28,31) meets 
~(6,14,36) -> (6,26,38) overlaps 

3-Candidate: (A before C) & E 

Figure 4.1: Composition of two item-list, h^ and Li 

item count item count item count item count item count 

~ A 6 ^ 4 C 3 D 3 - E 3 “ 

(1,5,10) (1,8,12) (1,20,24) (3,8,18) (1,17,28) 

(2,12,20) (1,28,32) (2,24,28) (4,7,12) (2,28,31) 

(3,8,12) (2,16,22) (6,32,36) (5,10,15) (6,28,8) 

(4,17,22) (6,16,22) 

(5,17,22) 

(6,14,18) I 

Table 4.2: Partial Large 1-item list 

C a n d i d a t e g e n e r a t i o n : In each subsequent pass, we add one large atomic pattern 

to a composite pattern in the Lk- i set to form a new potentially large item, such 

fc-items are called the candidates. Details are described in the next subsection. 

L a r g e A>items g e n e r a t i o n : After generating the candidates, we scan the item-list 

for counting the support for the candidate, i.e. the number of sequences that 

support the temporal patterns within the window. At the end of the k-th. pass, 

the algorithm determines the large A:-items. We would further elaborate the 

mechanism of generating large items in Section 4.2.2. 

4,2.1 Candidate Generation 

We use an array to store the candidates. The logical form of the candidates is shown 

in an example in Table 4.3. The candidate generation to obtain Ck from Lk-i is done 
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Main Algorithm Input : A set of atomic patterns. Output: All large fc-items in UkLk 

Algorithm 4.1 Main Algorithm 
1 Li 二 {l-large items} //tuples containing items with minimum support 

2 for (k=2; Lk-i / 0; k++) do 

3 If k=2 then generate C2 from Li (Refer to section 4.2.1) 

4 else Ck — candidate_gen(Lfc_1,L2, L i ) 

5 Lk = large」tems(C*fc) (Refer to section 4.2.2) 

6 end 

Figure 4.2: The main algorithm 

item 1 item 2 

A overlaps B C ‘ 

A overlaps B E 

A overlaps B F 

A before C E 

A before C F 

B before C E 

B before C F 
• • 
t • 

Table 4.3: The 3-candidates 

by adding one large 1-item each time. We generate the candidates by combining 

the events in atomic patterns with those in composite patterns. For the first set of 

candidates, we consider all the combinations from Li to form C2. Since our binary 

temporal pattern of the form A rel B implies that the end time of B is at least as late 

as that of A, we make sure that this is true when we generate a candidate of the form 

{A, B}. In the following passes, large A;-items are formed for k > 2. Such A:-items are 

composite patterns. We generate Ck from Lk-i- In this case, knowledge regarding 

the temporal relations between the composite patterns and the atomic patterns is 

applied. We would prune any irrelevant candidates in this phase. 

The algorithm for the candidate generation is given in Figure 4.3, in which we 

describe the pruning step. For instance, for the 2-item with a pattern of "C during 

E" shown in Table 4.4, we aim to find any temporal relation between the 2-item and 

event A. In the previous pass, we have found that no pattern of the form "C rel A" 

or "E rel A" is large, we therefore exclude the possibility of having the candidate 

of "(C during E)" with "A" in the generation of large 3-item. Table 4.3 shows the 
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I npu t : Lk-1,L2 , L i ( where k > 2 ) 

Output: Ck ( candidate set ) 

Algorithm 4.2 candidate_gen(Lfc_1,L2, Li) 
1 for each pair of composite patterns 6,- G Lk_ i and atomic patterns aj G L i do 

2 Let bi be the k - 1-item with {{..{anrelriai2)...relrk-2aik-i) where relri G Rel 

3 if {anrel i ja j ) G L2 or {aik-irehjaj) G L2 for any rehj then 

4 Generate the candidate element {bi ,a j} 

5 end 

6 end 

Figure 4.3: The candidate generation algorithm 

item count item count item count item count 

A overlaps B 3 A before C 3 B before E 3 C during E 2 

(1,5,12) (1,5,24) (1,8,28) (1,17,28) 

(2,12,22) (2,12,28) (2,16,31) (6,28,38) 

(6,14,22) (6,14,36) (6,16,38) 

Table 4.4: Partial large 2-item list 

generation of 3-candidates. 

L e m m a 1 Algorithm J^.2 generates all the potentially large k-items. 

P r o o f In Algorithm 4.2, we try to form a /c-candidate from one {k - l)-item and an 

1-item. Let X be the (/c- l)- i tem and Y be the 1-item. Let event type au be the first 

event type in X and aik-i be the last event type in X. In the pruning, we make sure 

that either au or aik-i can form a pattern with Y by one of the seven relations and 

the pattern has support > min.sup. Suppose that (X rel Y) has support > min.sup. 

There are seven relations in Rel . Let us consider each of them 

1. X before Y: if X before Y holds in a sequence then each of the events mapped 

to X will be before those mapped to Y. 

2. X equal Y\ if X equal Y holds in a sequence then this means the starting time 

of the event mapped to an in X is equal to the starting time of the mapping to 

. Y and hence the relation of starts is true for them. 

3. X meets Y: if X meets Y holds in a sequence then this implies that the event 

mapped to aik-i in X meets the mapping of Y. 
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4. X overlaps Y: if X overlaps Y holds in a sequence then the event that is mapped 

to dik-i in X may overlaps/starts/during with the mapping of Y. 

5. X during Y\ if X during Y holds in a sequence then all the events mapped to 

X have the during relation with the mapping of Y. 

6. X starts Y: if X starts Y holds in a sequence then the event mapped to a“ in 

X starts the mapping of V. 

7. X finishes Y: the event with the latest end time in X finishes Y. 

Therefore in all cases, X, Y will be generated as a A:-candidate. • 

4.2.2 Large A>Items Generation 

This phase is further divided into two subphases. They are the support counting 

phase and the generation of large items. 

Support Counting: First, we need to find the supports for the candidates gen-

erated. We determine the number of sequences that support each temporal relation 

of the composite pattern in each candidate. We compare the endpoint values of el-

ements in Lk-i and Li and determine if any temporal relation holds between the 

composite and atomic items. Large A:-items are formed if their support is greater 

than the threshold given. 

To facilitate efficient counting, we use a hash tree to store Li and also the relevant 

part of the 1-item-list and a hash tree to store L^-i and part of the {k — l)-item-list. 

We use the value of the event as a key for hashing in the hash tree for L [ For the 

hash tree for composite patterns, we use the values of all the events included and the 

temporal relations together to form a key by simple concatenation. The leaf nodes of 

the hash tree corresponds to some large fc-item I and it also records the mappings for 
i 

the pattern in /. The mappings are stored in the form of item-list, with the person-

‘ ids, start times and end times. For each candidate, we use the composite pattern 

and event as search keys and find from the hash trees the corresponding Lk-i and Li 

items. 
I 

During the search in the hash tree, hashing is done in the internal nodes until we 

reach the leaf nodes where we perform exact matching for the composite or atomic 

pattern. We consider a pattern P for a large [k — l)-item and a pattern P' for a 

large l-item. We can identify any temporal relation that holds between a mapping 

for P and a mapping in P', since the start times and end times are recorded in 
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Input: Ck 

Output:Lfc 

Algorithm 4.3 large�tems(Cfc) 

1 for each candidate c € Ck do 

2 for each relation re/j € Rel do 

3 c.count.reli = support count of c with respect to re/,- from Lk-i, La 

4 satisfying the winsize threshold. 

5 if c.countjreli > minsup then 

6 Lk = Lk U {bi reli aj) where 

7 bi G Lk-i and aj E L i , bi and aj are the elements of c, 

8 {bi reli o,j)-ts = min(fe,i5, aj.tg) and 

9 {bi reli aj).te = o,j-te 

10 end 

11 end 

12 end 

Figure 4.4: Support counting for the candidates 

the corresponding hash trees. If some composite pattern is found, the count for the 

candidate with respect to the specific temporal pattern is increased by 1. The counts 

are kept as auxiliary information to the table for the candidate items. There are 

seven counts for each candidate, one for each of the temporal relationship. 

F o r m i n g L a r g e fc-Items: The second subphase is to form large A;-items. Table 

4.4 shows a partial set of the large 2-items. After identifying any temporal relation 

between the items in Ck, we generate L^ from Lk-i and Li with the corresponding 

temporal relation. Each new item in Lk is a composite pattern and is used for the 

next pass. The resultant interval is obtained from the union of two intervals of (A:-1)-

item and 1-item. For instance, as shown in Table 4.4, the start time and end time of 

the mapping of composite pattern "A overlaps B" are {[5,12], [12,22], [14,22]}. The 

‘ algorithm for forming the large items is summarized in Figure 4.4. 

L e m m a 2 Algorithm \.l generates all large k-items. 

Proof : If a fc-item I is large, then its support is at least minsup, and in any sequence 

that supports the I, the set of events E mapped to the temporal pattern in I would 

appear within an interval that is smaller than the user specified window size threshold. 

Therefore, for a subset D of E, the support is at least as great as that of E, and the 

events would also appear within an interval that is smaller than the window size 
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threshold. All such subsets D has been considered in the candidate generation, and 

hence we are guaranteed to discover all large A:-items. • 

L e m m a 3 Every large k-item generated by Algorithm 4.1 represents a frequent tem-

poral pattern. 

Proof : Based on the formation of large A:-item, we generate a resultant interval 

of the composite pattern from the union of two intervals of k — 1-item and 1-item. 

Hence, the resultant interval obtained should be the minimum interval that includes 

both k - 1-item and 1-item, i.e. the associated time of occurrence of k-item formed. 

On the other hand, for the support counting phase in A:-th iteration, we determine 

any temporal relations between k - 1-item and 1-item by examining their endpoint 

values. As the end time of the 1-item is equal to or greater than that of A:-item, 

by using the endpoint constraints shown in Figure 3.1, we obtain the corresponding 

temporal relations having enough support to form large items. In result, we obtain 

the temporal relation between preceding events, k - 1-item, with the appended event, 

1-item, as AppSeq. Hence every A:-item formed generates a corresponding frequent 

temporal pattern. • 

With the lemmas above, we show that the method, AppOne, correctly finds the 

complete set of frequent A1 temporal patterns. As we can see from the mining 

process, there are only two scans of the original database. In the formation of large 

items, composition of two item-lists takes place for each candidate. Thus the main 

cost of the above method is the composition of item-lists, |Lfc_i| and |Li|, which is 

determined by the size of candidate set, \Ck\ and |Li|. As mentioned before, the size 

of the item-lists are comparatively smaller than that of the original database and the 

size of candidate set would shrink in later iterations. Hence, at the early stage of the 

mining process, more time and memory are spent on the generation of large number 

of Lk. 

4.3 Mining A2 Temporal Patterns 

In the previous section, in mining the A1 temporal pattern, we generate large k-

items by adding one atomic pattern in Li at a time. Here we consider a slightly 

more complex form of temporal patterns which we call A2 temporal pattern. The A2 

temporal pattern is defined recursively as the following: (1) a temporal pattern of size 

2 is an A2 temporal pattern. E.g. “A overlaps B". (2) if X is an A2 temporal pattern, 
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item count item count item count 

(A overlaps B) 2 (A before C) 2 (A overlaps B) 3 

before overlaps before 

(C during E) (B before E) (E finishes F) 

(1,5,28) (1,5,28) (1,5,28) 

(6,14,38) (6,14,38) (2,12,31) 

(6,14,38) 

Table 4.5: Partial large 4-item list formed by AppTwo 

and Y is a temporal pattern of size 2, then {X rel Y) where rel G Rel is also an 

A2 temporal pattern. Example of such a composition is shown in Figure 3.3(b). The 

patterns we generate are in even number of events, i.e. 2A:-items. We therefore focus 

on temporal relations among events by adding one 2-item each time. By modifying 

the previous method, AppOne, to accommodate the adding of 2-item in this case, 

we derive method method, called AppTwo, for mining A2 temporal pattern. In fact, 

AppTwo works similarly as AppOne, except for the candidate generation phase and 

the formation of large 2/c-items. 

4.3.1 Candidate Generation: 

In the formation of C2, the process is the same as before. Next we start to generate 

C2k, where k > 2, we examine L2k-2 and L2 and use compositions of the elements in 

the two item-list of L2k-2 and L2. When we prune any irrelevant candidates in this 

phase, we need to consider two newly added atomic patterns this time, say aji and 

aj2, where ajireljaj2 G L2. The two added items can be combined with a composite 

pattern, say bi, where bi G L2fc-2 if both of the following conditions hold: 

1. there is a relation between the leftmost atomic pattern of bi and at least one of 

Gji and flj2. 

2. there is a relation between the rightmost atomic pattern of b{ and a^i or cij2. 

For example, consider the 2-item "A overlaps B" shown in Table 4.4. Since we can find 

“A before C" and "B before E" as large 2-items, we then include the combination 

of "A overlaps B" with "C during E" as one of the 4-candidates. The candidate 

generation algorithm for the second method is shown in Figure 4.5. 

L e m m a 4 Algorithm 4-4 generates all the potentially large 2k-items. 
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Input : L2k-2,L2 ( where k > 2 ) 

Output: Ck ( candidate set ) 

Algorithm 4.4 candidate_gen_second(L2)t-2, ^2) 
1 for each pair of composite items 6j € L2k-2 and composite item bj 6 ^2 do 

2 Let bi be the 2k - 2-item with (..(cii2re/r2ai4)—re/r2fc_4aiU-2) where re/n G Rel 

3 and bj be the 2-item with {ajireljiaj2) 

4 if [(ai2re/ijaji) e L2 or {ai2relijaj2) G L2 and 

5 {ai2k-2rehjaji) e L2 or {ai2k-2rehjaj2) e L2] for any relij then 

6 Generate the candidate element {bi,bj} 

7 end 

8 end 

Figure 4.5: The candidate generation algorithm of AppTwo 

P r o o f In Algorithm 4.4, 2A;-candidates are generated from one 2k - 2-item and one 

2-item. Let X be the 2k — 2-item and Y be the 2-item. â 2 has the earliest start time 

in X and ai2k-2 has the latest end time in X. aji has the earliest start time in Y and 

aj2 has the lastest end time in Y. In the pruning, we make sure that both â 2 and 

Gi2k-2 have at least one of the seven relations with either aj i or aj2 in Y . Suppose 

that X is related to Y. There are seven relations in Rel. We again consider each of 

them 

1. X before Y: if X is before Y then all the events in X will be before Y. 

2. X equal Y\ this means the starting time of the event â 2 in X is equal to the 

starting time of the aji in Y and the ending time of event ai2k-2 in X is equal 

to the ending time of the aj2 in Y and hence â 2 starts aji and ai2k-2 finishes 

aj2. 

3. X meets Y: this implies that ai2 in X before a^i in Y and ai2k-2 in X meets 

ctji in Y. 

4. X overlaps Y: in this case, the starting time of event ai2 in X before starting 

time of ttji in Y and the ending time of event ai2k-2 in X before the end-

ing time of dj2 in Y and hence ai2 (before/meets/overlaps) Oji and ai2k-2 (be-

fore /meets/overlaps/during/starts) cij2. 

5. X during Y: the starting time of event â 2 in X before the ending time of event 

aj2 in Y and the ending time of event ai2k-2 in X before the ending time of 
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event aj2 in Y and hence â 2 and ai2k-2 (before/meets/overlaps/during/starts) 

ttj2. 

6. X starts Y: the event with the earliest start time in X starts aji in Y and the 

ending time of event ai2k-2 in X before ending time of event aj2 in Y and hence, 

tti2 starts ttji and ai2k-2 (before/meets/overlaps/during/starts) aj2. 

7. X finishes Y: the starting time ai2 in X before ending time of event aj2 in 

Y and the event with the lastest time in X finishes aj2 in Y and hence, a,2 

(before/meets/overlaps) aj2 and ai2k-2 finishes â 2-

Therefore in all cases, X^ Y will be generated as a 2A:-candidate. I 

4.3.2 Generating Large 2A>Items: 

We also divide this into two phases namely support counting and the generation 

of large items. In general, the second method works in the same manner as the 

first method in that we generate incrementally larger 2A:-items by combining the two 

composite patterns of a 2A;-candidate. The difference is that we shall use the item-list 

of L2k-2 a n d L2. 

We observe that some patterns formed by the combination of L2 are quite complex, 

not very natural and not easily understandable. Table 4.5 shows the 4-items for the 

above example. As we can see, one of the 4-items, "(A before C) overlaps (B before 

E)" is ambiguous to represent the relation between events. To deal with this, we 

further restricts our A2 temporal pattern with those temporal relations between L2k-2 

and L2 to before and meet only. In results, we can obtain meaningful and interesting 

temporal patterns. In our example, "(A overlaps B) before (C during E)" can be 

obtained. 

4.4 Modified AppOne and AppTwo 

As we use an Apriori-like approach for generating A1 and A2 temporal pattern in our 

methods, we suffer from the high cost of handling a huge number of candidate sets 

in the first few iterations, especially, C2, as no pruning strategy is applied. To deal 

with this problem, we try to use another way to generate L2 without C2 generation. 

A tree-like structure storing all the information for all binary predicates is proposed. 

By traversing the tree once, we can obtain the list of L2 directly from data. The 

method runs as follows. 
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1. A scan of database derives a list of Li which are potential candidates for forming 

large sequences. 

2. We scan the database again. For each sequence, we examine every pair of 1-

items and form a set of binary predicates. Using the above database shown in 

Table 4.1, let us take the first sequence as an example, we obtain the binary 

predicates as shown in Figure 4.6. After scanning all the sequences, we obtain 

the complete set of binary predicates which are potential candidates for forming 

L2. 

3. We then construct a tree of depth being two using the binary predicates col-

lected. For each distinct binary predicate, a branch is created by taking the 

parent node being the precedent event and the child node being the second 

event. We store the temporal relation, the corresponding count, pid, start and 

end time as a list associated with the child node. If there exist a branch repre-

senting the binary predicate, then increment the corresponding count by 1 and 

insert the pid, start and end time to the associated list. The tree formed by 

scanning the first sequence of the given database is shown in Figure 4.6. 

4. By traversing the whole tree once for each child from the root, we obtain L2 by 

giving out the branches having counter values greater than threshold. 

As we can see, all the binary predicates are generated from Li for each sequence, they 

are in fact potential candidates for forming L2 as both events of the binary predicate 

are frequent events. By further examining the corresponding support for the temporal 

relations between the pair of events which has been already stored in the tree, we 

obtain the list of L2 in result. 

For further iterations, we form Lk using the previous two methods for mining 

A1 and A2 temporal patterns. The only difference is the formation of L2 which no 

candidate is formed in this phase. We can see that the size of tree formed depends 

solely on the number of binary predicates. We observe that the maximum size of 

the tree is |Li| x |Li| x \Rel\ which may greater than |C2|. However, we suppose 

the number of binary predicates formed is far less than that of |C2|, by generating 

all possible cases, the formation of L2 without C2 is expected to be more efficient. 

This assumption holds when repetition of the binary predicates is high such that less 

distinct binary predicates are formed. We obtain modified A p p O n e and modified 

A p p T w o by applying the technique to both AppOne and AppTwo respectively. As 

a comparison, we study the performance of all these methods in the next section. 
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pid binary predicates 
(A overlaps B), (A before C), (A before E), (A before F), (A before B), 
(B before C), (B before E), (B before F), (B before B), 
(C during E), (C during F), (C before B) 
(E finishes F), (E meets B), (F meets B), 

j C ^ ^ ^ " ^ 
^g^2^^^^^^ o 

0:1 b;1 b:1 b;1 b:1 b:1 b:1 b:1 b:1 b:1 

(1,5,12) (1,5,32) (1,5,24) (1.5.28) (1,5,28) (1,8,24) (1,8,28) (1,8,28) (1,8,32) (””幻 

Figure 4.6: Forming L2 without C2 

|D| Number of sequences 

|P| Average number of events per large item 

Ns Number of maximal potentially large item 

N Number of event types 

Table 4.6: Parameters 

4.5 Performance Study 

To evaluate the performance of the proposed methods over a large range of data, we 

conducted several experiments on an UltraSparc 5/270 workstation with 520MB of 

main memory. All methods in are written in C. We consider synthetic data in an 

application domain of a medical database same as that of the given example. For 

each person we record a sequence of clinical records stating the different diseases 

contracted. 

4.5.1 Experimental Setup 

The synthetic data generation program took the parameters shown in Table 4.6. The 

data generation model was based on the one used for mining sequential pattern [8 

with some modification to model the patient database. We first formed a table T of 

large items in which the number of items was set to Ns. We generated each large 
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Figure 4.7: Distribution of temporal relations between events 

item by first picking a number of events from a Poisson distribution with mean fi 

equal to |P| and we chose the event types randomly. We then picked a temporal 

relation between events and formed a pattern. Temporal relations are chosen from 

the set Rel . We generated patterns that contain the seven temporal relations accord-

ing to a distribution shown in Figure 4.7. We used the values of {1,2,3,4,5,6,7} to 

represent starts, overlaps^ before, during, finishes, meets, equal respectively. The 

distribution of Figure 4.7 was determined arbitrarily by our intuitive expectation of 

the likeliness of the relations. Each person was then assigned a potentially large item 

which was chosen from the table T of items. The time interval of each event followed 

an exponential distribution with mean fi equal to 5. For each item, the time where 

the first event took place was chosen randomly within the time interval [0,500] of 

time units. The following events of the item then followed the temporal relation held 

between events. For the temporal relation before, the time where events were sepa-

rated followed an exponential distribution with mean |j, equal to 5. For the relation 

overlaps, the time interval where two events overlaps was restricted to an exponential 

distribution with mean ^ equal to 3. For the during relation, the time that the latter 

event delays under an exponential distribution with mean /i equal to 3. We generated 

the dataset by setting A^5=2000, N=1000, |D|=lOK and |P|=5 with 1MB of data. 

We studied the efFect of different values of minsup, winsize, number of sequences 

and events per sequence, etc., for the two methods. 

4.5.2 Experimental Results 

First, we studied the efFect of minimum support on the processing time. We used 7 

values of minimum support (min.sup) as shown in Figure 4.8, and 100 time units for 
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window size {win.size) for the test. Figure 4.8 shows the decrease of the execution 

time when the minimum support increases for both patterns. As the support threshold 

increases, less large items are generated and hence the size of the candidate set in 

each iteration decreases dramatically. The execution time would thus decrease for 

less time is required for support counting and hash tree searching of large items. 

Comparing the two methods, AppOne and AppTwo, AppTwo needs much more time 

than that of AppOne. This is due to large amount of computation time in pruning 

the candidates as the addition of two atomic patterns are considered instead of one. 

We observe that both modified AppOne and modified AppTwo did help a little in 

the mining process, especially for large support threshold. They generate L2 without 

forming C2 at the early stage of the process. However, in the following iterations, the 

high cost of candidate generation still dominate in the miiiing process, especially for 

small support threshold as more iterations are involved. 

15000^ , , . . 1 . 15000| . ^ p ‘ ‘ ‘ 

\ ——Mod«iedAppOne \ i ModittedAppTwo 
\ AppOne \ ！ T̂wo 

\ \ i 
10000- \ 10000- \ I 

i \ i \ 
5000 • \ 5000 \ ^ . 

V \ ol I N 1 1 tr 1 o' ‘ ‘ ‘ ‘ T 1 
ff07 0.08 0.09 0.1 0,11 0.12 0.13 0,14 0 07 0 08 0 09 0.1 0.11 0.12 0.13 0.,4 Minimum Support (%) Minimum Support (%) 

(a) A1 pattern (b) A2 pattern 

Figure 4.8: Variation on minimum support 

Figure 4.9 shows the execution time at each pass for finding two patterns. We set 

the min.sup = 0.0008 for A1 temporal pattern and minsup = 0.001 for A2 temporal 

pattern. For AppOne, from the fifth pass onwards, much less time is needed. As 

more large items are formed at the first few passes, the support counting of Lk where 

k < 5 dominates the execution time. However, for further iterations, as the size of 

the item-list shrinks, the support counting process is much faster. However, AppTwo 

does not behave like AppOne. It ran with fewer passes but took more time in the 

candidate pruning and support counting phase of L4 as there is a very large C4 being 

generated. Both the modified AppOne and AppTwo use little time in the second 

pass to form L2. Since we use the iterative Apriori-like approach for the following 

passes, the execution time used in the following passes is more or less the same as 
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that of AppOne and AppTwo. The number of large items generated in each pass is 

shown in Figure 4.10. We set min.sup = 0.0008 for AppOne and min.sup = 0.001 

for AppTwo. The number of large items generated by AppOne is greater than that 

of AppTwo when compare with the same length of patterns, i.e. |L4| of AppOne is 

compared with |L4| of AppTwo. 

1000( 1 1 1 1 1 I I 7] 7000( — r 
^ ModifiedAppOne ~ ^ Modified AppTvw 

鄉 • • AppOne [ •»- AppTwo | 

!]: A q / \ : 
y V : ：/ • \ 

°2 3 4 5 6 7 8 9 10 2 3 4 
Pass Number Pass Number 

(a) A1 pattern (b) A2 pattern 

Figure 4.9: Execution time for each pass 

4500| 1 1 1 1 1 1 1 [ 7CX)| ‘ 

:八 t\ _ 
F \ :卜 \ 
|2000- \ |300- \ ^ 
^ 1500- \ 2 \ 

\ 咖- \ 
1000 - \ - \ 

. v ^ . • • ^ - - ^ 
0 ‘ ‘ ‘ 1 ‘ 丨 ^ ^ ^ > 0 ^ 1 

2 3 4 5 6 7 8 9 10 2 3 4 
Pas8 Number Pass Number 

(a) A1 pattern (b) A2 pattern 
Figure 4.10: Number of large items generated in each pass 

We then studied the effect of window size on the processing time. We chose 

the values of minsup being 0.0008 for AppOne and modified AppOne, 0.001 for 

AppTwo and modified AppTwo. In Figure 4.11, we can see that when the window 

size increases, the execution time increases for both patterns. This is because more 

sequences are included and the time for support counting phase increases. Also the 

number of iterations increases and which also requires a longer execution time. Both 
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no. of max. seq. 

min_sup resulting seq. length no. of max. seq. 

0.0007 30872 10 min^up resulting seq. length 

0.0008 16836 10 0.0009 J ^ 4 

0.0009 5946 9 0.0010 746 4 

0.0010 2600 9 0.0012 83 3 

0.0012 153 6 0.0014 16 2 

0.0014 19 4 Number of A 2 patterns 

Number of A 1 patterns 

Table 4.7: Number of AppSeq with different minsup 

the modified AppOne and modified AppTwo work better than that of the original 

methods since the time for generating L2 is reduced. 

^ ° ° ° | + Modilled AppOne ‘ ‘ ‘ ‘ 8000| " • “ ModBiod AppTwo ‘ ‘ ‘ _ . - . ' ' * ’ 
0 AppOne _ . _ • . • . M ' T * " , - ' * ^ 
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- j ^ . . . . : z 
40 60 80 100 120 140 160 40 60 80 100 120 140 160 

Window Size Window Sire 

(a) A1 pattern (b) A2 pattern 

Figure 4.11: Variation on window size 

Table 4.7 shows the number of AppSeq obtained with various values of minsup 

and winsize is set to be 100 time units. For both patterns, the number of patterns 

decreases rapidly as the minsup increases. However, the number of A2 pattern is 

far less than that of A1 pattern. This may be due to the complex structure of A2 

pattern so that less number of patterns can be formed. 

Scale-Up Experiment 

Our next target is to consider the scale-up effects. We examined how the per-

formance varies with the number of sequences. Figure 4.12 shows how the methods 

scale up as the number of sequences is increased ten-fold, ranging from 10K to 100K 

and with minsup = 0.0025 for both patterns. The execution time for AppOne and 
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AppTwo increase with increasing number of sequences. However, regarding modified 

AppOne and modified AppTwo, since large number of Li and L2 are generated, the 

approach of generating L2 from data improves the performance greatly. 

4 x10' 
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(a) A1 pattern (b) A2 pattern 

Figure 4.12: Scale-up: Number of sequences 

We finally studied the scale-up as we increase the average number of events per 

sequence. The number of sequences used is 10K and kept constant. We vary the 

average number of events per sequence from 2.5 to 25. Figure 4.13 shows the scala-

bility results of the methods. We set min.sup = 0.0025 for the four methods. From 

the figure, the execution time increases rapidly with the increasing number of events 

per sequence. As the average number of events per item increases, items with longer 

patterns are formed. Then more large items are formed and it results in more candi-

dates being generated in each iteration. This increases the computation time for the 

hash tree searching for support counting dramatically. Moreover, as items with longer 

pattern are formed which results in a greater number of iterations, the execution time 

is thus lengthened. From the figure, both modified AppOne and modified AppTwo 

outperform AppOne and AppTwo respectively. 

4.5.3 Medical Data 

For our real-life data experiment, we use a data set which contains clinical records 

of Scoliosis patients, i.e. patients who suffer from spinal deformation. A scoliosis 

patient may has one or several curves in his/her spine. Among them, the curves with 

severe deformations are identified as major curves. In this experiment, we aim to find 

any frequent temporal patterns, A1 temporal pattern, in the data set and found the 

corresponding common features they cover. The database stores about 900 patients 
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Figure 4.13: Scale-up: Number of events per sequence 

where each record stores person-id, date of birth, family history, class of scoliosis 

contracted and treatment. It also stores measurements on the patients, such as the 

number of curves, the curve locations, degree of curvature and direction of each curve, 

etc. 

Most of them are numerical data which are temporal in nature such as age, height, 

weight and degree of curvature. Some of them are categorical and non-temporal data. 

We pay special attention to the spine curvature values as they reflect the level of spine 

deformation. With consecutive records of each visit, a sequence of curvature values 

are captured for each patient. By examining the changes in values in the view of a 

sequence, we may discover any temporal knowledge stored in the database. 

We start by eliminating any missing data in the database as each angle measured 

of the spine is crucial for diagnosis. Then we extract some of the useful and essential 

attributes in finding frequent sequence. We further partition the curvature degrees 

into different interval values to find any common pattern like the way for mining 

quantitative data [75]. For each patient, we obtain at most four curvature values for 

different parts of the spine for each visit. We map the curvature values into an event 

in our model by simple concatenation. For example, a patient's spine has four curve 

degrees which are 10.0, 20.0, 22.0, 0.00 with different directions and location. We 

first match the corresponding numerical values into different intervals say interval 1, 

2, 2, 0 if we take 10.0 degree as an interval range. We then represent the data as 

an event in our model as "1220". Our intuition is that, each spine is characterized 

by combining the four degrees as a whole, together with the curve direction and 

location. We therefore regard the four curvature values as the feature of a spine. 

Then we represent the data as a single event. Obviously, we can form tremendous 
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different types of events depending on the segment for each interval values of the 

curvature degrees. We keep the person-id to distinguish the sequences. And we 

transform the number of visit as the ordering time by taking the start time and end 

time being the number of visit instead of using the actual visit date for simplicity. 

Moreover, for consecutive visits with no change in the curvature values, we merge the 

records by setting the end time being the last visit. Hence we obtain a sequence of 

both points and interval-based events for we take each event representing different 

spine deformation . 

We use AppOne to find any interesting temporal pattern in this database. As we 

would like to view the whole treatment process for each patient, we set the winsize as 

the largest number of visit stored in the database. Table 4.8 presents the statistics of 

finding large temporal pattern in the scoliosis database with various min^up. Since 

we look for any sequence with two or more visits involved, we found from the database 

that only 463 patients have two or more visits. Thus when we talk about minsup, 

we suppose to focus on the 463 potential sequences stored. The number of large items 

decreases rapidly as the minsup increases. As the values for curvature degrees are 

diverse and the distribution are sparse, not many common sequence can be found and 

most of them are short in length, terminated in L2. However, from the practical point 

of view, we do not expect to find too complex temporal relation as they are difficult to 

be interpreted. The results obtained depends on the way in partitioning the curvature 

values into intervals that a wide range of values may grouped into the same category. 

As we look for the changes for the spine deformation, we would like to classify any 

similar spines while distinguishing any special ones. Thus expert knowledge of any 

indication of curvature values may help in the partition and better results can be 

obtained. The common sequences found can be used with other attributes such as 

the type of scoliosis, treatment, family history, etc., stored in the database for further 

investigation. One of the results found is as follows: "3100 before 3200 ~> isIS , 

conf(0.7), sup(0.022)" which is read as "70% of patient whose spine deforms from 

category 3100 to 3200 (changes in the second part of the spine) are determined as 

having Idiopathic Scoliosis. The results may lead us to have some interesting findings 

from the data. 

4.6 Summary 

In this chapter, we propose several methods for discovering interesting temporal pat-

terns, AppSeq. We consider a special type of temporal pattern which is simple and 
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min.sup no. of sequences iterations total time(s) 

0.009 42 4 0.27 

0.011 28 3 0.25 

0.015 15 3 0.19 

0.019 7 3 0.16 

0.024 5 3 0.15 

0.030 0 2 0.09 

Table 4.8: Mining AppSeq in a scoliosis database 

meaningful. We show that an iterative method with the flavor of the Apriori-gen 

function can be used for the mining. With the use of the item-list format, we can 

perform fast and simple composition of temporal patterns for both candidate genera-

tion and support counting. A set of experiments has been conducted to demonstrate 

the overall performance of the methods. 

For comparison we consider the mining of a slightly more complex type of tem-

poral pattern, A2 which is a modification of the original temporal pattern Al. From 

experiments, we find that the computation time required for the first pattern,Al, is 

much more acceptable. On the other hand, the approach of generating L2 without 

C2 do help in some of the cases since no compositions of item-lists is needed. This 

approach especially favors for the case when large support threshold is held. 

Moreover, we use a real set data containing clinical records of Scoliosis patients. 

We are interested in finding any A l temporal pattern within the data. AppOne is 

used for the mining purpose and we obtain some experimental results which may need 

further examination with expert knowledge for interpretation. 

For the mining method, we here propose an Apriori-like approach forming large 

number of Ck during the intermediate steps. We would investigate other data struc-

ture as well as algorithms which help to reduce the high cost in candidate generation 

of the mining process. 



Chapter 5 

Mining Temporal Pattern II， 

LinkSeq 

We introduce our second temporal pattern, known as LinkSeq, in this chapter. We give 

the notion of temporal representation of LinkSeq in Section 5.1. Methods for mining 

the temporal patterns are given in Section 5.3 and 5.4 using different data structures 

to facilitate efficient support counting process. Experimental results showing the 

performance of the methods are presented in Section 5.5. Finally, we have a summary 

in Section 5.7. 

5.1 Problem Statement 

As discussed previously in Chapter 3, we form another pattern by linking the binary 

predicates with the common event as the binding point. Such composition results 

in the form of ((Ai re/i A2) & (^2 rek ^ 3 ) . . . & (Ak-i rek-i A^O). We extract 

the temporal knowledge by taking two events as a pair and investigate the relations 

between the events in the binary predicates as a sequence. According to the formation 

of the pattern, LinkSeq is defined as follows: 

Definition 7 [Temporal Pattern, LinkSeq] A temporal pattern is defined recursively 

as follows: 

• A temporal pattern of size 2 of the form (X rel Y), i.e. binary predicate, is a 

LinkSeq 

• I f X is a LinkSeq, and Y is a binary predicate with a common event type Ak-i 

such that X=((Ai reh A2) k (A2 rel2 A3)... k (Ak-2 rek-2 Ak-i)) and Y = 

(Ak-i relk-i Ak), then X k Y is also a LinkSeq 

6 2 
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The size of a temporal pattern is the number of distinct events in the pattern. I 

With this definition of temporal pattern, we have "(A overlaps B) Sz (B before C) 

& (C during D)" as one of the Linkseq formed for the sequence of Figure 3.2 with 

size equals to 4. We focus on the temporal relations between each pair of events by 

adding one binary predicate each time. The idea of window-size and support defined 

in the previous section is also applicable here with little modification as follows. 

Definition 8 [window-size] Ifw is a given window-size, a temporal pattern P holds 

within w in a sequence S ifAk.te — Ai.tg < win_size where Ai is the first event in 

a temporal pattern and Ak is the last event. I 

Definition 9 [A:-item] Let A{, i = 1,. . . , k be a bag of k event types in E , reli G Rel , 

i — l,..,k-l, a k-item has the form 

((Ai re/i A2) k (A2 rek A3) k . •. {Ak-i rek-i Ak)) 

• 

An event sequence support k-item if the temporal pattern holds in the event 

sequence. The support of a temporal pattern V in a set of sequences V is defined 

as the total number of occurrence of the patterns over the total number of sequences 

T> . i.e., 

" m ^x l { ^ holds within 515 G V\ 
support[V,V) 二 — 

The support of a fc-item is the support of the temporal pattern in the k-item. 

A large A;-item is a A:-item having support greater than a threshold, namely 

minsup provided by users, that is, support(V,V) > min.sup. 

5.2 First Method for Mining LinkSeq, LinkApp 

LinkSeq looks similar to that of AppSeq in a sequence. We obtain both patterns by 

emphasizing two different temporal structure formed among events. As we observe 

that we may find LinkSeq by deriving from AppSeq, we have the following mechanism. 

1. We first obtain Lk of AppSeq with all the frequent events involved. 

2. For each Lk, we derive the corresponding LinkSeq by examining every pairs of 

events within the pattern. We do so by looking up the list of L2 which is found 

previously and follow the order of events to link them up as a sequence. 
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The intuition is that, if the frequent events form the AppSeq, they must form large 

items as L2 during the process. As in the formation of AppSeq, the order of events 

are preserved and thus can form the LinkSeq also. One point to note is that AppSeq 

excludes the case when the last event embedded in the pattern has same end time 

as the preceding events. In other words, shorter sequence is formed. Despite of this, 

we can derive LinkSeq easily if AppSeq is already given. As this approach forms 

LinkSeq from AppSeq, we denote the method as LinkApp. In Section 5.5, we show 

our results which we find LinkSeq from AppSeq using LinkApp. 

5.3 Second Method for Mining LinkSeq, LinkTwo 

Another way to tackle the mining problem is to modify AppOne which is introduced 

in Section 4.2 in the previous chapter, to accommodate the needs for the second 

pattern. As the formation of LinkSeq suggests, no mapping of start time and end 

time of composite pattern is needed. We obtain LinkSeq by linking up the binary 

predicates with the common event as the binding point and keeping the orders of the 

binary predicates along the sequence. Hence we come up with the following method, 

namely LinkTwo, as it links up two events at a time. LinkTwo works similarly as 

AppOne except for the candidate generation phase and the formation of large A>items. 

C a n d i d a t e Generat ion : In the formation of C2, the process is the same as 

before. However, as we found in the previous chapter, we can form L2 without C2 

using the approach developed for modified AppOne, we would choose this approach 

for generating L2 for LinkSeq also. 

Next we start to generate Ck, where k > 3, we examine Lk-\ and L2 and use 

compositions of the elements in the two item-list of Lk-i and L2. We prune any 

irrelevant candidates by examining any common event between Lk-i and L2, say 

aji relj aj2 G L2 where aji is the common event. The two added items can be 

combined with a LinkSeq, say bi, where bi G Lk-i if it has the common event aji as 

the last event in the pattern. For example, consider the 2-item shown in Table 4.4, 

since we can find "A before C" and "C during E" as large 2-items, we then include 

the combination of "(A before C) & "(C during E)" as one of the 3-candidates. 

G e n e r a t i n g L a r g e A:-Items: In general, LinkTwo works in the same manner as 

AppOne in that we generate incrementally larger A:-items by combining two patterns, 

Lfc_i and L2, of a A;-candidate. However, the formation of large A:-items would be 

much simple than that of AppOne. For support counting phase, we shall use the 
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item-list of Lk-i and L2 and we examine the pid attribute only to ensure all events 

are associated with the same person as a sequence. In the second sub-phase to form 

large fc-items, no union of start time and end time of the two patterns is needed as 

we simply use & to link up the binary predicates. No further investigation of the 

temporal relations is performed. 

5.4 Alternative Method for Mining LinkSeq, LinkTree 

For the above methods, we use an Apriori-like approach which divides the mining 

process into candidate generation phase and support counting phase. We use item-

list to facilitate the checking of pid for each candidate. As we can see, for LinkSeq, no 

examination of start time and end time is required. We then argue that the relative 

order of events provides sufficient information for mining LinkSeq, rather than the 

start time and end time as that for AppSeq. Nevertheless, when we transform the 

database into item-list, we may not keep the order of events properly. Hence instead 

of using item-list in our mining process, inspired by the idea of frequent pattern tree, 

or F P - t r e e for short, suggested in [37] recently for mining frequent patterns [7], we 

propose to use a tree-like structure to store the sequence data, namely seq-tree . In 

Chapter 2, we have introduced the structure of a FP-tree and the key idea of the 

mining algorithm. As FP-tree suggested, it avoids generating a huge set of candi-

dates by keeping useful information and storing it into a compact data structure. No 

further scanning of original database is needed for later mining process. Experimental 

results show that the use of FP-tree for mining frequent pattern outperforms previ-

ous Apriori-like method. This motivates us to investigate a tree-like structure that 

captures all essential information for the mining process. As for LinkSeq, we focus 

on the relative order of binary predicates which basically depends on the start time 

and end time of each event, we propose to use seq-tree to store the relative order of 

binary predicates and reduce the high cost of support counting for large candidate 

set. Hence we have the following alternative method for mining the temporal pattern 

and denote as LinkTree. 

5.4.1 Sequence Tree: Design 

We design the structure of a seq-tree with the following observations. First, the 

relative order of events is a crucial information in determining the temporal patterns. 

Hence, we use the end time and start time to determine the order of nodes to be 

1 



CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 66 

b 

G > " G X ! X ^ X 5 
. . . . . • • 

Figure 5.1: A seq-tree constructed for a sequence 

placed along the paths of the tree. We consider the former event as the parent node 

and the latter event as the child node for each binary predicate. 

Secondly, the number of occurrences of each binary predicate is recorded as count 

which counts the number of sequences that include the binary predicate. With the 

count kept in the seq-tree, by traversing the tree once, we obtain a list of frequent 

binary predicates in a sequence by examining the counter values. No further scanning 

of database is needed. 

Thirdly, for any frequent events which appear in the same sequence, the frequent 

events are placed along the same path from the root node of the tree. This ensures 

the correctness of the frequent patterns found as all the events along the same path 

comes from any sequence that contains the same sequence of binary predicates. No 

generation of candidates and scanning of database for support counting are required 

and hence must less costly for mining the temporal pattern. 

In addition, as our problem deals with complex temporal structure other than 

before/after, more complex structure of the seq-tree is required to capture the essential 

information to form LinkSeq. Let us consider the sequence shown in Figure 3.2. At 

the first glance, we obtain the longest temporal pattern as "(A overlaps B) k (B 

before C) k (C during D)". We store such pattern by m a i n b r a n c h (or main-bh) 

in our seq-tree. However, other patterns such as "(A before C) h (C during D)", 

"(A before D)", etc., are also interesting to be found. We then store such patterns 

by s u b s i d i a r y b r a n c h or (sub-bh). The resultant seq-tree is shown in Figure 5.1. 

In fact, both main-bh and sub-bh are same in structure. They both are used to 

store binary predicates. We divide the set of binary predicates into these two groups 

for the construction of seq-tree described later. We here further introduce several 

terminologies for the following discussion. 

Definition 10 [main branch] Main branches (or main-bh in short) are defined as a 

sequence of binary predicates which forms the longest temporal pattern. I 

Definition 11 [subsidiary branch] Subsidiary branches (or sub-bhJ are defined as a 

set of binary predicates which shows the temporal relations between any two events of 
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B 
I I \ f main-bh: (A overlaps B), ( B overlaps C) 

I I I I 7 sub-bh: (A before C) 

A C 

B 
I I \ ^ main-bh: (A overlaps B), ( B overlaps C) 

~~I ] sub-bh: (A overlaps C) 
A 

C 

Figure 5.2: Identical Pattern if same main-bh and sub-bh 

a sequence other than those stored in the main branch. • 

A branch is actually an edge between two nodes in the seq-tree. While main 

branches form the skeleton of the tree, subsidiary branches store other temporal 

relations between any two events which are useful for mining the complex structure 

of the temporal pattern. 

Main branches basically reveal the overall temporal behavior of the events of a 

sequence. However, we may find some discrepancies between two sequences having 

the same form of main-bh. For instance, in Figure 5.2, we obtain two sequences with 

different sub-bh as "(A before C)" and "(A overlaps C)” though both give the same 

main-bh as "(A overlaps B), (B overlaps C)" which suggests two different temporal 

patterns. Hence, we say two sequences have the same (or identical) temporal pattern 

if they share the same main-bh and sub-bh. 

Definition 12 [path] A path exists between two nodes if we found a branch coming 

from a node to another one directly or a sequence of branches starting from a node, 

via some intermediate nodes and finally link to the target node. The length of a path 

is the number of branches being visited. • 

By finding any paths via both main-bh and sub-bh in the seq-tree, we can obtain 

the set of temporal patterns. For instance, using the seq-tree shown in Figure 5.1, 

a path (A beJ^ C ^^^^ D) is found and we obtain the corresponding pattern "(A 

before C) k (C during D)". Thus each path corresponds to a pattern we obtain from 

a sequence. For the seq-tree, we need to ensure each valid path corresponds to a 

temporal pattern. Let us consider an example shown in Figure 5.3(a), two sequences 

have the common partial main-bh as "(A overlaps B), (B before C)" which we can 

merge them into one path. However, we would come across an invalid path obtained 

from the tree as {A ""^¾" ^ ove^^s 巧 . j j e n c e , we need to exclude such case by 

splitting the node C as shown in Figure 5.3(b). We then can distinguish two paths 

showing clearly "(A overlaps C) & (C before E)" and "(A before C) k (C overlaps 
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D)". Hence, we realize that only sequences having identical patterns can share same 

paths in the seq-tree. 

B D 
I I I I \ , main-bh: (A overlaps B). ( B overlaps C), (C ov#rlapt D) 

I I I I / sub^h: (A befor* C), (A b«1or« D), (B b«for« D) 
A C 

B E 
I I I I V mftin^h: (A ov*rUps B). ( B ov*rlapt C), {C b*for_ E) 

I I I ~ p / tub-bh: (A ov*rtaps C), (A b*for* E), (B bafor* E) ^ / ^ ^ ^ " ^ ^ ^ ^ ^ ^ C ^ ^ ^ 

G>̂ ^̂ $x:;;| ^̂ >̂ $|x̂ l2 
v _ y Only (A before C) & (C overlaps D) 

Ambiguity: Does (A overlaps C) & (C overlaps D) exist? No or (A overlaps C) & (C before E) 

(a) Before splitting of node (b) After splitting of node 

Figure 5.3: Splitting of node C for different sub-bh 

With the above observations, a tree-like structure, seq-tree is proposed based on 

the following considerations. 

1. Only L\ are included as tree nodes so that only potential large patterns are 

kept. 

2. Tree nodes of a path are arranged by the order of events happened in the cor-

responding sequence, i.e. the end and start time of events. This preserved the 

relative order of events which is an important information used in the mining 

process. 

3. Each branch between two nodes stores the primitive temporal relation between 

the events of the binary predicate. Associated with the temporal relation, a 

count is used to store the occurrences of such binary predicate. 

4. For each sequence, there is one corresponding path of the tree constructed. If 

several sequences share an identical temporal pattern, they can merge into one 

path. 

5. Similarly, in case, if two sequences share a common prefix pattern, the shared 

parts can be merged using one prefix structure. Hence, we can encode the 

temporal pattern into a compact form with all the information being stored in 

the seq-tree for further mining process. 

We here introduce the design and construction of seq-tree. We consider an example 

of the database shown in Table 4.1 for illustration. Suppose the minimum support is 

33% and the window-size is set to be 30 time units. 
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item count 

A 6 

B 4 

C 3 

D 3 

E 3 

F 3 

G ~ 3 ~ ~ 

Table 5.1: Large 1-items 

5.4.2 Construction of seq-tree 

First, we scan the database to derive a list of large 1-items as shown in Table 5.1. 

Then, we transform the database into sequences in which we group the events which 

belonged to the same person as a sequence with only large 1-items, Li , are included. 

For each sequence, we find all possible binary predicates formed by Li exist in the 

sequence and divide them into two groups. Each sequence consists of two kinds of 

branches: main-bh and sub-bh where the construction of seq-tree is mainly based on 

the main-bh. 

We generate the binary predicates of main-bh by considering consecutive large 

1-item as a pair. Since we sort the records with end time of the events, we ensure the 

previous event stops as late as the following one. In other words, the longest pattern 

can be formed by linking all the consecutive large 1-item into a sequence as main-bh. 

By considering other temporal relations between any two events, we form a set of 

binary predicates as the sub-bh. The binary predicates formed in each sequence are 

listed as shown in Table 5.2. 

Secondly, we use the table of the binary predicates obtained to construct the 

seq-tree. We start from creating the root labeled with “nulP. Look up from the 

transformed database, for the first sequence, we construct the first path of the tree 
„ . 1 1 / . overlaps:l j^ before:l ^ during:l j^ finishes:l „ meets:l ^A ^r , ,i , 

from main-bh as: {A ^ B ~^ C ^ E ~)• F ~"^ B). Note that 

the event type is stored as nodes with the former event taken as the parent node and 

the following event being the child node. Each branch stores the temporal relation 

and the corresponding count between the pair of nodes is indicated after “:”. As we 

notice that, starting from the third node onwards along the path, we obtain sub-bh 

for the node with the preceding nodes. Hence by looking up the table of binary 

predicates, we add the corresponding sub-bh between the nodes as shown in Figure 
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person-id sequence form 

1 main-bh: (A o B), (B b C), (C d E), (E f F), (F m B) 

sub-bh: (A b C), 

(A b E), (B b E), 

( A b F ) , ( B b F ) , ( C d F ) , 

(A b B)’ (B b B), (C b B), (E m B) 

2 main-bh: (A o B), (B b C), (C m E), (E f F), (F b G) 

sub-bh: ( A b C ) , 

(A b E), (B b E), 

( A b F ) , ( B b F ) , ( C o F ) , 

( A b G ) , ( B b G ) , ( C b G ) , ( E b G ) 

3 main-bh: (A s D) 

sub-bh: nil 

4 main-bh: (D b A), (A d G) 

sub-bh: (D b G) 

5 main-bh: ( D b A ) , ( A d G ) 

sub-bh: (D m G) 

6 main-bh: (A o B), (B b C), (C d E), (E f F) 

sub-bh: (A b C), 

(A b E), (B b E), 

( A b F ) , ( B b F ) , ( C d F ) 

Table 5.2: Transform the database as sequence form 
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5.4 with small dotted lines. 

For the second sequence, since its main-bh shares a common prefix {A _^L^s, 

B ^^¾"^ C) with the existing path of the tree and the corresponding sub-bh A ^^¾"^ 

C is the same, the count of each branch along the prefix is incremented by 1 until 

reaching the node C. A new branch is created starting from node E as (C ^ ^ 

E J'.^s:i F 6¾:! G). We observe that though the nodes of the second sequence 

excluding the last node are the same as that of the first sequence, different temporal 

relations in main-bh would lead to new branches. 

Regarding the third sequence, the sequence shares only the common node A and 

we have a new branch for A ^^^'^ D. As there is only one binary predicate for 

the sequence, no sub-bh is added. The scan of the fourth sequence leads to the 

construction of the second branch of the tree, D ^^¾"̂  ^ du^^.i。Again, we 

add the corresponding sub-bh. For the fifth sequence, we observed that it shares a 

common main-bh as D ^^^¾'^ A ^ i ^ . i G. However, different sub-bh D ^-¾'^ G is 

found with the existing path. Hence, a new branch from A to G is added instead of 

merging the two sequences together. For the last sequence, since its event types and 

corresponding relations for both main-bh and sub-bh is identical to that of the first 

sequence excluding the last event, the prefix path is shared with the count of each 

relation along the path being incremented by 1. 

To facilitate tree traversal, a Li look-up table is built in which each event points 

to its occurrence in the tree via a head of node-link. Nodes with the same event type 

are linked via such node-links as shown with dotted arrows. After scanning all the 

sequences, the tree with associated node-links is shown in Figure 5.4. The example 

leads to the following definition of a sequence tree. 

Definition 13 [seq-tree] A sequence tree (or seq-tree) is a tree-like structure defined 

below. 

1. It consists of one root labeled as “null”，a set of event prefix subtrees as the 

children of the root, and Li look-up table. 

2. Each node in the event prefix subtree consists of event type, node-link, and a 

list of branches, where event type registers which event this node represents, 

node-link links to the next node in the seq-tree which has the same event type, 

or null if there is none. The list of branches link the current node to other 

nodes along the same path. Each branch stores the temporal relations between 

two connected nodes and the corresponding count which registers the number of 
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Figure 5.4: The seq-tree constructed using the given example 

occurrences of binary predicate represented by the two connected node associated 

with a temporal relation. 

3. Each entry in the Li look-up table consists of two fields, (1) event type and (2) 

head of node-link, which points to the first node in the seq-tree carrying the same 

event type. 

• 

Based on this definition, we obtain an algorithm for the seq-tree construction as 

follows. We scan the database twice. In the first pass, it determines the set of large 

1-items which would form large fc-items in the mining process. In the next scan, we 

transform the original database to sequence form with the sorted order of the end 

time and start time of the events. We find all the binary predicates and group them 

into two categories as main-bh and sub-bh. Then, we build the corresponding seq-tree 

based on the above data structure defined. The construction algorithm is shown in 

Figure 5.5. The construction process is mainly divided into the following steps: 

L a r g e 1 - i tems : During the first pass, we determines the large 1-item which any 

frequent temporal patterns are formed by this set of large items. 
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Input: A temporal database D and minimum support min.sup 

Output: A sequence tree, seq-tree 

Algori thm 5.1 seq-tree construction 

1 Li = {1-large items} //tuples containing items with min.sup 

2 for each sequence, Sk do 

3 gen_main_branch(5A:) / /by considering consecutive large 1-item as a pair 

4 gen_subsidary_branch(5fc) / /by examining other temporal relations between any two events 

5 end 

6 Create the root of a seq-tree, T, labeled as "null" 

7 for each sequence, Sk do 

8 for each node along main-bh do 

9 build_main_branch(5fc, T) 

10 add_subsidary_branch(5fc, T) 

11 end 

12 end 

13 Add node-link to the nodes with the same event type 

Figure 5.5: Construction of sequence tree, seq-tree 

G e n e r a t e sequence form: In the next pass, we group the records into sequences 

for different persons. We form the main-bh by examining the temporal relations 

between two consecutive events along the sequence. Then we find any temporal 

relations between any two events as sub-bh. Both main-bh and sub-bh of the 

sequences for the given example is summarized in Table 5.2. 

Build main branch: Based on the main-bh and sub-bh, we collect the essential 

information and construct the corresponding seq-tree. We first use main-bh to 

add branches to the tree. We insert nodes from the root by first examine any 

common prefix, including identical sub-bh, if not, create new node and branch 

which links the new nodes with corresponding relations of the binary predicate. 

If any sequence shares the same main-bh and same sub-bh stored in the seq-tree, 

we simply increment the corresponding relation counts by 1. The algorithm for 

building main branches is summarized in Figure 5.6. 

Add subsidiary branch: Upon each sequence, besides building the tree with the 

main-bh, we need the sub-bh to store other temporal relations between every 

pair of events along the sequence. We add both main-bh and sub-bh together 

for each node. After adding the main-bh for a node, we add the corresponding 

sub-bh by looking up the table storing the binary predicates. Notice that sub-bh 
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Input : A sequence Sk, root of the seq-tree, T 

Output: The seq-tree with the added path of the corresponding sequence Sk 

Algorithm 5.2 build_main_branch(5fc,T) 
1 for the pair (F,rel,E) / / (F rel E) is a binary predicate in the main-bh of Sk 

2 if T has a child N such that N.event=F 

3 if N has a child M such that M.event=E and M.rel=rel 

4 increment M.rel.count by 1 

5 else 

6 create a new node M, let M.event=E and M.rel=rel 

7 add a branch N and N to M 

8 end 

9 else 

10 create a new node N, let N.event=F 

11 create a new node M, let M.event=E and M.rel=rel 

12 add a branch from T to N and a branch from N to M 

13 end 

14 end 

Figure 5.6: Building main branch 

exists only from the third nodes onwards along main-bh with preceding nodes. 

We add the sub-bh between two nodes as shown in Figure 5.4 with dotted 

lines. In case, we have sequences having the same main-bh but different sub-bh, 

splitting of nodes is needed. The algorithm for adding subsidiary branches is 

shown in Figure 5.7. 

L e m m a 5 Given a sequence database D and user-defined minimum support minsup, 

its corresponding seq-tree contains the complete information of D for mining LinkSeq. 

Proof : As we observe from the construction process, each sequence in the database is 

mapped to one path in the seq-tree. The order of events is preserved as we insert each 

new sequence from the root and follow the order stored in main-bh. For each sequence, 

all temporal relations for the binary predicates are stored in the seq-tree by main-bh 

and sub-bh. Hence, all possible temporal relations between events along the sequence 

are stored. The associated support count records the number of sequences which 

shares the same set of temporal pattern. Thus, the seq-tree contains the complete 

information of the database in relevance to mining LinkSeq. • 

L e m m a 6 Without considering the root, the height of the seq-tree is bounded by the 
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Input: A sequence Sk, root of the seq-tree, T 

Output: The seq-tree with added subsidiary branches of the sequence Sk 

Algorithm 5.3 add_subsidiary_branches(^,T) 

1 for the pair (F,rel,E) / / (F rel E) is a binary predicate in the sub-bh of Sk 

2 if T has a child N such that N.event=F 

3 From the corresponding main-bh to a node M such that M.event=E 

4 if(M.sub.event(p)=F not exist) //new sub-bh is added 

5 M.sub.event(p) = F 

6 M.sub.rel(p) = rel 

7 add a branch from N to M as sub-bh 

8 else 

9 if(M.sub.rel(p)=rel) //same sub-bh with existing branch 

10 increment M.sub.rel(p).count by 1 

11 else //same main-bh but different sub-bh 

12 create a new node M' 

13 create a new path from N to M' //separate into two different branches and adjust 

corresponding counters 

14 mark the node as a splitting node //having same main-bh but different sub-bh 

15 end 

16 end 

17 end 

18 end 

Figure 5.7: Adding subsidiary branches 
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longest temporal pattern of the sequences in the database, and the size of the tree is 

bounded by the number of sequences. 

Proof : As we can see the maximum number of nodes along a path is determined by 

the maximum number of events obtained in the corresponding sequence. Hence the 

height of the tree is bounded by the longest temporal pattern in any sequence in the 

database. Regarding the size of the seq-tree, as we can see the complex structure 

of the main-bh and sub-bh, as in case if any sequence having same main-bh but 

different sub-bh, splitting of nodes is needed. The size of the tree would be quite 

large. However, the chances of having same main-bh but different sub-bh is not 

that high, we expect more sequences share the same path in the tree and the size 

of the tree is smaller than the original database. Also, the number of main-bh in 

seq-tree cannot be more than that of the number of distinct frequent sequences in the 

database. Hence the size of the seq-tree is bounded by the number of sequences and 

the height is bounded by the longest pattern. • 

In fact, the longest pattern obtained is determined by the window-size specified 

by users. Hence, the height of the seq-tree is also bounded by it. As the paths of 

the tree is constructed based on main-bh, the window-size here refers to time interval 

between the first binary predicate and the last binary predicate formed in main-bh. 

Thus some of the binary predicates of the subsequence or sub-bh are excluded if 

the longest pattern formed by main-bh exceeds the limit. This leads to different 

mining results when we compare the performance of the previous methods. Hence in 

the following sections, we assume the window-size is set to the maximum value that 

includes all the binary predicates of the sequences. 

5.4.3 Mining LinkSeq using seq-tree 

In this section, we study how to explore the information stored in the seq-tree for 

mining the complete set of frequent temporal patterns. We observe some interesting 

properties of the seq-tree structure which facilitates the mining process. 

P r o p e r t y 1 For any large 1-item, ai, all possible temporal pattern that contains a{ 

can be obtained by following ai ,s node-links, starting from the a{ ,s in the Li look-up 

table. 

This property is based directly on the construction process of seq-tree that any 

nodes with the same event type is linked by node-links. This facilitates the extraction 

of valid path by traversing the seq-tree once following a‘，s node-links. 
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P r o p e r t y 2 For any node, there is only one branch connecting two nodes. 

For any sequence, main-bh stores the temporal relations with the preserved order 

of events. The temporal relations are unique of consecutive events for a sequence. 

Hence no two branches exist between two nodes of main-bh. Similarly, the temporal 

relations kept are unique for any two events for sub-bh in a sequence. On the other 

hand, during the construction process, only identical pattern shares the same path 

along the tree. Any discrepancy of sub-bh between two sequences having the same 

main-bh would lead to splitting of nodes. Hence, no two different branches would 

connect two nodes. In other words, when we found a valid path from a node to 

another node, we obtain a specific temporal pattern. 

P r o p e r t y 3 To calculate the frequent temporal patterns for a node a!- in a path, only 

the prefix sub-path of node a{ in the path need to be accumulated, and the support 

count of every relation in the prefix path should carry the same count as the last 

branch connected with a{. 

Let the nodes along the path with event types a i , . • • , an in such an order that ai is 

the root of the prefix sub-tree, a„ is the leaf of the subtree in the path, and a{ (1 < i 

< n) is the node being referenced. Based on the construction process, for each prefix 

node Qk (1 < k < i), and branches, they occur together with ak exactly ai.rel.count 

times. Thus every such prefix node should carry the same count as the last branch 

connected to ai. A postfix node a^ (for i < m < n) along the same path co-occurs 

with node cti. However, the patterns with â n will be generated at the examination of 

the postfix node a^, enclosing them will lead to redundant generation of the patterns 

that would have been generated for a^. Therefore, we only need to examine the prefix 

sub-path of tti in the path. 

Based on the constructed seq-tree, we here outline the mining method LinkTree. 

Without generating large number of candidates, we explore the information stored 

in the seq-tree as follows. As in the construction of the seq-tree, all the nodes along 

the same path belong to the same sequence with each pair having one parent node 

and child node showing the order. Thus the ordering information is kept and the & 

is induced among all the pairs of nodes along the same path. 

Using the seq-tree of the given example, we start from the last event of the Li 

look-up table, i.e. event type G. Actually, the order of event in the Li look-up table is 

arbitrarily assigned. Note that the mining process can be performed independently for 

each tti starting from the look-up table as only prefix sub-path of node a{ are included 
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when mining for ai. Other paths of the tree are ignored. Here, for simplicity, we start 

with node G. According to the paths leading to node G, three paths are found: 
{ 〈 乂 overla^s-.3 ^ before:3 ^ meefs: l ^ finishes:l ^ before:l ⑦ 〈 p before:2 ^ durin^:l � 

[D bel^'2 j{ dw^.i G) with different sub-bh} By examining the counter values of 

all the branches connecting node G, we have the following Lk containing G. We first 

consider all the intermediate nodes connecting node G via main-bh and sub-bh. For 

L2, we consider any binary predicates having enough support count. From the first 

path containing node G, we find from both main-bh and sub-bh and obtain "(A before 

G):1", "(B before G):1", "(C before G):1", "(E before G):1" and "(F before G):1". 

However, all of them do not have enough support. For the following two paths, only 

"(A during G):2" has enough support. Hence, we have "(A during D)" as L2. For L3, 

we look for any path connecting to node G with length being 2, reaching 3 nodes along 

the path. This time, we can start with the intermediate nodes which are included in 

L2 previously found and we have "(D before A) & (A during G)" by traversing the 

main-bh of the last two paths. Since we find no more path having length greater than 

2 with enough support count, the search for L4 for node G terminates. 

For node with event type F, we only focus on the prefix along the selected path 

to avoid any repetition of patterns generated. By considering any path that reaches 
1 T^ 1 , . , p ,, (/ . overlaps:3 „ before:3 ^ during:2 „ finishes:2 门\ 

node r , we obtam two prenx paths {(A ~ 4 B ~ > C ~ 4 h ~"> t ) , 
,.overlaps:3 „ before:3 ^ meets:l ^i finishes:l „, ^ ^ . , . ., , • ,. , . 

(A ~ 4 n ——>• C ——y t, ——y p ) j . Considering the binary predicates in 

both main-bh and sub-bh, we have L2 as “(A before F):3", "(B before F):3", "(C 

during F):3" and "(E finishes F):3". For L3, again we search for any path having 

length being 2 by starting with the L2 found previously and we have "((A before E) 

k (E finishes F)):3", “((A before C) k (C during F)):2", “((A overlaps B) & (B before 

F)):3", "((B before C) & (C during F)):2", "((B before E) k (E finishes F)):3", "((C 

during E) h (E finishes F)):2". Then we proceed to find L4 by finding path having 

length being 3 and we have "((A overlaps B) k (B before C) k (C during F ) ) : 2 " , 

"((A overlaps B) k (B before E) k (E finishes F)):3", “((A before C) k (C duing E) 

k (E finishes F)):2", "((B before C) k (C during E) k (E finishes F)):2". For L5, 

we have the longest pattern “((A overlaps B) h (B before C) h (C during E) h (E 

finishes F)):2". As we cannot find any path with length longer than 4, the search for 

large sequence associated with F terminates. 

Consider nodes with event type E, we derive two prefix paths { � A ^̂ 1̂¾ '̂̂  B ^̂ ^¾'̂  

C - 1 ' E), {A ^ # s : 3 B ^¾=^ C ^^' E)}. Similarly, by first finding the binary 

predicates as L2, we obtain "(A before E):3", “(A before E):3", “(C during E):3". 

For L3, we have "((A overlaps B) k (B before E)):3", "((A before C) k (C during 
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node LinkSeq 

G (A during G):2, 

((D before A) k (A during G)):2 

~F (A before F):3, (B before F):3, (C during F):2, (E finishes F):3, 

((A before E) k (E finishes F)):3, ((A before C) k (C during F)):2, 

((A overlaps B) k (B before F)):3, ((B before C) & (C during F)):2, 

((B before E) k (E finishes F)):3, ((C during E) & (E finishes F)):2, 

((A overlaps B) k (B before C) k (C during F)):2, 

((A overlaps B) k (B before E) k (E finishes F)):3, 

((A before C) k (C during E) & (E finishes F)):2, 

((B before C) & (C during E) & (E finishes F)):2, 

((A overlaps B) k (B before C) k (C during E) k (E finishes F)):2 

E (A before E):3, (B before E):3, (C during E):2, 

((A overlaps B) & (B before E)):3, ((A before C) k (C during E)):2, 

((B before C) & (C during E)):2, 

((A overlaps B) & (B before C) k (C during E)):2 

D _0 

C (A before C):3, (B before C):3, 

((A overlaps B) k (B before C)):3 

B (A overlaps B):3 

A (D before A):2 

Table 5.3: Mining LinkSeq by traversing seqJree 

E)):2", "((B before C) k (C during E)):2". The longest pattern gives L4 as “((A 

overlaps B) & (B before C) & (C during E)):2" and terminates the search. 

For nodes with event type D, we only find a path with length being 2 as (A ^^-^¾"^ 

D). However, it does not have enough support. Hence no Lk is found and the search 

for node D terminates. 

For other nodes with event type C, B and A, same mining mechanism is used as 

finding any path from the seq-tree as Lk. The LinkSeq generated from each node are 

summarized in Table 5.3. 

The mining process mainly focuses in the discovery of any valid path starting 

from an event in the Li look-up table to other preceding nodes along the path of 

the seq-tree with different path lengths. The valid paths with enough support count 

obtained is used for the generation of temporal patterns. The algorithm for mining 

temporal pattern from seq-tree is shown in Figure 5.8. It can be summarized by the 
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following steps: 

Look-up table : Start from any event of the Li look-up table. The order of events 

in the look-up table is arbitrarily assigned. As we can find each corresponding 

pattern associate with the event separately, the order of events of which we start 

with the mining process is independent with the results obtained. 

P a t h e x t r a c t i o n : After determining the associated event for the temporal pattern, 

we extract any path of the seq-tree that leads to the associated event for further 

support counting. Only prefix of the path is considered. 

Valid path : By finding any valid path that links the associated event to other pre-

ceding nodes with k — 1 length, we generate potential k-item. By further exam-

ination of the counter values, those having enough support count become large 

A>item in result. 

P a t t e r n generat ion: From the kAtem obtained, we generate the corresponding 

temporal pattern, LinkSeq, easily as one A:-item corresponds to one temporal 

pattern. 

During the search of any valid paths leading to the ending node a{ along the prefix 

path, we start from any neighboring nodes with length of path being 1 to form L2. 

We then form L3 by starting from the corresponding nodes which previously found 

in L2, say bi. Again we find any neighboring nodes of b{ and form L3 with path 

length being 2. The intuition is that any nodes connecting bi would end up with ai 

also. This is obvious as when we can find a valid path from a neighboring node, say 

Cj, reaching bi as an intermediate node, would reach ai through the branch previous 

found in L2. Thus the mining process is performed recursively along the prefix paths 

found to generate all Lk. 

L e m m a 7 Algorithm 5.4 finds all the potentially large k-items by traversing the tree 

and examining any valid paths. 

P r o o f W i t h lemma5, we are certain that all the binary predicates along the sequences 

are kept in the tree. As we find all binary predicates between events along the 

sequences and the ordered of events are preserved in the paths of the tree, any possible 

temporal pattern of the sequence can be found by finding any valid path linking the 

nodes. Also only identical pattern shares the same path, all the events stored along 

the path belong to the same sequence. With property 1, any possible temporal pattern 
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Input: A seq-tree T, minimum support minsup 

Output: The set of frequent temporal patterns 

Algori thm 5.4 Mining frequent temporal patterns with seq-tree 
1 if T has only one branch 

2 return all valid paths generated from the branch for each node in that branch with rel.count 

> minsup 

3 else 

4 for each node with event type Cj in the Li look-up table 

5 extract all prefix paths associates with Cj 

6 for each k> 2 

7 if there exist a path from node with event type e,- to other preceding nodes of length 

=k-1 with rel.count > min.sup 

8 generate corresponding Lk 

9 end 

10 end 

11 end 

12 end 

Figure 5.8: Mining frequent temporal pattern from seq-tree 

including the associated events can be found. Hence by scanning all the events in the 

Li look-up table and traversing the tree, we generate all large A:-items. • 

L e m m a 8 Any large k-item formed from Algorithm 5.4 represents a frequent tempo-

ral pattern. 

P r o o f Based on property 2, we ensure a path starting from any node would only lead 

to a deterministic node. Hence, no path represents a non-exist temporal pattern in 

any sequence. In other words, each path we found corresponds to a temporal pattern. 

By examining the counter values, we generate large fc-item which represents a specific 

frequent temporal pattern. I 

With the properties and lemmas above, we show that the algorithm correctly finds 

the the complete set of frequent temporal patterns, LinkSeq. Without any candidates 

generated during the process, we obtain all the Lk by traversing the tree independently 

for each â  in Li look-up table. For each frequent event Oi, an extracted set of prefix 

paths is extracted. The mining process is then performed recursively along the prefix 

paths to generate all Lk. As the seq-tree is usually smaller than the size of the 

database, the mining process takes less storage than that of the previous methods, 
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LinkApp and LinkSeq, where large number of candidates are formed. 

5.5 Performance Study 

We use the same set of synthetic data introduced in the previous chapter. We compare 

the performance of four methods, including LinkApp, modified LinkApp, LinkTwo 

and LinkTree. Modified LinkApp is basically same as LinkApp except it generates L2 

without C2 using the approach developed in Chapter 4, while the other three methods 

are described in the previous sections. Note that LinkTwo also forms L2 without C2 

as we found in the previous chapter that, this approach helps in improving the mining 

process. 

We start by studying the effect of minimum support {minsup) on the process-

ing time. We used 6 values of minsup as shown in Figure 5.9. The window size 

{winsize) is set to be 200 time units for the test. The figure shows that the execu-

tion times for the four methods decrease when the minimum support increases. As 

less large items are formed when the support threshold increases, the size of the can-

didate set in each iteration for the three methods, LinkTwo, LinkApp and modified 

LinkApp, decreases dramatically. Thus less time is required for support counting. On 

the other hand, for LinkTree, as less Lk are formed during the process, the time for 

searching valid path decreases for greater support threshold. We observe that Link-

Tree outperforms the other three methods, especially for small support threshold. It 

is likely that only a slight increase in the execution time for LinkTree. As no gener-

ation of candidates is needed, we avoid the high cost of support counting phase for 

large number of candidates generated during the process. Comparing the other three 

methods, LinkTwo works better. As for both LinkApp and modified LinkApp, we 

generate AppSeq first in each iteration before we get LinkSeq. Further computation 

time is needed to search from the corresponding binary predicates in L2, in addition 

to find Lk. 

Table 5.4 shows the number of LinkSeq obtained with different values of min.sup. 

The number of sequences decreases with increasing value of min.sup. 

We then study the scale-up effects which we examine how the performance variates 

with the number of sequences. The number of sequences is increased ten-fold, ranging 

from 10K to 100K. We set the min_sup = 0.001 for the four methods. Figure 5.10 

shows the scalability results. LinkApp grows rapidly when comparing with the other 

three methods. LinkTwo and modified LinkApp scales linearly in the same manner. 

As more large items are formed in the first few passes of the mining process, the 
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Figure 5.9: Variation on minimum support 

min_sup no. or resulting sequences max. sequence length 

0.0007 31837 10 

0.0008 17414 10 

0.0009 6022 9 

0.0010 2623 9 

0.0012 m 6 

0.0014 ^ 4 

Table 5.4: Number of LinkSeq obtained with different minsup 
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Figure 5.10: Scale-up: Number of sequences 

approach of generating L2 without C2 did help in generating LinkSeq for LinkTwo 

and modified LinkApp. On the other hand, LinkTree scales much better than the 

other three methods. As the number of sequences grows up, the difference between 

LinkTree and the other three methods becomes larger and larger. This shows the 

advantage of eliminating the generation of large number of candidates during the 

process. 

We finally studied the scale-up as we increase the average number of events per 

sequence. The number of sequences used is 10K and kept constant. We vary the 

average number of events per sequence from 2.5 to 25 and set minsup = 0.0025 for 

the four methods. Figure 5.11 shows how the methods scale up as the number of events 

per sequence is increased. Like the case for increasing the number of sequences, the 

execution time for LinkApp grows dramatically with increasing number of events per 

sequence while LinkTwo and modified LinkApp scales up linearly in the same manner. 

As there are tremendous number of L2 formed with increasing number of events in the 

sequences, LinkApp suffers from the high cost of C2 in the first few passes. LinkTwo 

and modified LinkApp uses the same approach to avoid this problem. Regarding 

LinkTree, when the number of events per sequence increases, the execution time for 

LinkTree increases more rapidly than that of LinkTwo and modified LinkApp. This 

may due to the fact that longer sequences are formed, and thus longer paths along 

the tree are obtained. Hence longer execution time for searching the valid paths for 

generating Lk is required. 
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Figure 5.11: Scale-up: Number of events per sequence 

5.6 Discussions 

As we can see, the use of sequence tree structure facilitates efficient support counting 

of large items. The LinkSeq is in general simple in nature and only relative order 

of events are concerned. This information is maintained by the seq-tree formed as 

we insert all nodes from the root. We then suggest to apply similar mechanism for 

mining AppSeq. However, when we look into the formation of AppSeq and LinkSeq, 

we found that AppSeq is more complex in structure and requires the mapping of 

start time and end time of the composite patterns during the mining process. This 

involves the storage of pid-list with pid, start and end time of each composite item 

represented by the node. For example, for the composite item "A overlaps B" with the 

end time being [5,12],[12,22],[14,22] associated with node B. As a result, more memory 

is needed to store the pid-list and more processing time is needed for looking up the 

corresponding temporal relations between the composite pattern and the following 

atomic pattern along the path. Hence, an overhead of increasing the processing time 

in the mining makes it not favourable to employ the tree structure for mining AppSeq. 

5.7 Summary 

In this chapter, we propose several methods for discovering the second temporal pat-

tern, LinkSeq. LinkSeq is found comparatively simpler in structure than that of 

AppSeq as examination of start time and end time is neglected. Only the orderings 

of the binary predicates are essential for the mining process. Thus a tree-like struc-

ture with a mining algorithm, LinkTree, is proposed. Besides, we suggest to extract 
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LinkSeq from AppSeq and by modifying the previous method, AppOne, we obtain our 

second method, LinkTwo. We compare the performance of the methods with a set of 

experiments. Overall, LinkTree is suitable for mining LinkApp when the minimum 

support threshold reduces. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

Based on previous studies on temporal data mining and mining in sequence data, 

we proposed and studied methods for mining temporal patterns for interval-based 

events. We extend the current work to accommodate temporal interval data which 

has long been overlooked in the past. Discovery of temporal pattern involving interval 

data is useful in a number of complex data analysis scenarios. As other than serial 

and parallel ordering of events, inter-relations such as "overlaps, during", etc., can 

be found which enriches the expressive power of the temporal patterns. Interesting 

relationships among events can be found and thus, give some insight into causal 

relationships. Two interesting patterns, namely AppSeq and LinkSeq, are suggested 

to describe the complex relations among events. Both patterns are simple and useful 

to capture the temporal behavior of the events. 

We developed several methods for discovering the two interesting patterns and a 

set of experiments are used to compare the performance of the methods. Regarding 

AppSeq, for comparison we consider the mining of a slightly more complex temporal 

pattern, A2, which is a variate of the original pattern, A l . An Apriori-like approach 

which an iterative method is used for mining both patterns. We propose to use an 

item-list format to store the temporal data to facilitate fast computation in the sup-

port counting phase. From experiments, we find that the computation time required 

for the original pattern, A 1 , is much more acceptable. On the other hand, using the 

approach of generating binary predicates without generating 2-candidates with the 

use of a tree-like structure is proved to be useful in improving the efficiency. We can 

further investigate other data structures as well as algorithms that facilitate efficient 

mining process. 

87 
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Another temporal pattern, LinkSeq, forms in a similar way as that of the previ-

ous pattern, AppSeq, but is found comparatively simpler in structure. An iterative 

method, LinkTwo, using item-list is suggested. Besides, a tree-like structure with 

a mining algorithm, LinkTree, is proposed for finding LinkSeq. It stores crucial in-

formation in a compact way as a tree such that only two scanning of the database 

is required to find all the frequent pattern. Without generating any candidates, we 

obtain the complete set of temporal patterns by traversing the tree. This approach 

was shown to be efficient for mining LinkSeq. 

In fact, there are tremendous way to express the temporal relations between in-

terval data. We discover that the number of temporal patterns can be prohibitively 

large and also many of such patterns may be complicated and of little value to the 

users. Hence we restrict our interest to two types of temporal patterns which are 

simple and meaningful. 

6.2 Future Work 

So far, as we have only considered the discovery of frequent or "large" temporal 

patterns. We may consider the generation of association rules of the form A ~>rd, B 

where A and B are some temporal patterns. The meaning of such a rule is that for 

some temporal relation reli, among the support of all frequent patterns of the form 

A reli B, the percentage of support for the pattern A reU B is sufficiently high. This 

can give some indication of causal relationship among temporal patterns of events 

and can be studied. 

Contrary to the case of time points, instead of taking the ordering of events as a 

measure for finding interesting pattern, we may take the length of time interval that 

interacts between two events as a measure other than only temporal relations. For 

instance, "A overlaps B" where the overlapping interval lasts for 4 time units. This 

can be read as "event B overlaps with event A for 4 time units before event A ends". 

As more accurate information is extracted, we can further study this approach by 

taking into consideration of time intervals where the event lasts. 

On the other hand, so far we mainly work on two approaches in the discovery of 

both patterns. One is an Apriori-like approach with the use of item-list to facilitate 

efficient support counting process. The other is a tree-like structure which is used 

for mining LinkSeq. In fact, other data structure like frequent item matrix which 

proposed recently to find sequential pattern [36], may help in our mining problem. 

We can further investigate this approach in the future. 
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