
DISCOVERING TEMPORAL PATTERNS FOR

lNTERVAL-BASED EVENTS

KAM, Po-shan

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

© T h e Chinese University of Hong Kong

June 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

/^^¾
5¾ 1 8 Ji W)i

•'\ UNIVERSITY""""/0
\ Xt 'L:;ARY S ^ ™ y < . ^
^ ^ ^ ¾ ¾ ^

論 文 題 目 ： 區 間 的 時 態 棋 式

作 者 • 甘 赞 珊

學 院 ： 香 港 中 文 大 學

學 部 ： 計 算 棧 枓 學 與 工 程

修 讀 學 位 ： 哲 學 頓 士

摘 要

在 許 多 日 常 的 應 用 程 式 中 ， 我 們 收 集 到 不 同 時 間 性 的 數 據 ， 例

如 ： 銷 售 記 錄 ， 股 票 買 黌 ， 病 錄 表 ， 地 理 學 和 天 文 學 的 枓 學 數

據 。 這 些 資 料 包 舍 了 時 間 的 概 念 ， 記 錄 了 事 件 的 發 生 時 間 。 從

這 些 順 序 的 數 據 中 我 們 能 更 清 楚 了 解 事 件 發 生 的 奄 態 、 趨 勢 ，

從 而 找 出 各 樣 物 件 的 關 系 。 假 若 如 有 大 量 的 數 據 顯 示 某 些 事 件

的 發 展 棋 式 ， 我 們 便 能 找 出 事 件 之 間 發 生 的 次 序 和 特 性 ° 在 這

篇 論 文 裡 ， 我 們 探 討 有 關 從 時 序 性 的 數 據 中 ’ 尋 找 事 件 與 事 件

之 間 的 關 系 和 ^ 1 態 ， 例 如 ： " 事 件 A 出 現 於 事 件 B 發 生 的 期 間 ” 。

在 現 有 的 方 中 ， 大 部 分 的 運 算 都 将 時 間 的 發 生 看 作 點 狀 （ P o i n t _

b a s e d) ， 並 作 先 後 排 列 。 因 此 ， 只 能 用 很 簡 單 的 型 式 表 達 事 件 的

發 展 ， 缺 乏 能 力 表 逢 较 爲 複 雜 的 時 態 關 系 ， 例 如 ： 在 … 期 間 ， 互

相 重 眷 等 。 加 上 在 日 常 應 用 的 程 式 中 ， 不 難 發 現 點 狀 （ P o i n t _

b a s e d) 和 區 間 （ I n t e r v a l - b a s e d) 的 時 序 性 數 據 並 存 於 資 料 中 。 我 們 有

必 要 發 展 一 些 新 的 方 式 ， 去 支 援 區 間 數 據 的 運 算 ° 在 這 裡 我 們

介 紹 了 兩 種 包 舍 區 間 時 態 的 數 據 棋 式 ， 分 別 爲 A p p S e q * L i n k S e q �

這 兩 種 棋 式 不 但 簡 單 而 且 對 於 描 速 事 件 的 行 爲 很 有 用 。 我 們 並

發 展 了 幾 個 方 法 ， 利 用 不 同 的 數 據 結 構 （ D a t a s t r u c t u r e)，去協助

加 快 運 算 的 遇 程 。 在 這 些 方 法 中 ， 我 們 運 用 了 一 組 被 廣 沃 應 用

於 描 紛 區 間 關 系 的 壞 態 ， 用 作 描 速 兩 件 事 件 之 間 的 關 系 。 速 過

對 一 連 串 人 造 和 真 實 的 數 據 集 作 硏 究 來 驗 證 我 們 所 提 出 的 方 案

能 有 效 地 應 用 於 大 量 數 據 中 。

Discovering Temporal Patterns
for Interval-based Events

submitted by

KAM, Po-shan

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Sequence of data can be collected in many applications. Examples range from

sales records, stock exchange, patient records, to scientific databases in geophysics

and astronomy. Such databases incorporate the concept of time which describes

when an event starts and ends as historical records. The temporal nature of data

provides us with a better understanding of trend or pattern over time so as to find

any correlation between events. An important and interesting characteristic of event

sequences can be found if the collection of events occur in a certain pattern. In

this thesis, we are interested in discovering temporal relations between events which

satisfy certain timing constraints, e.g."event A appears during the period when event

B occurs".

Existing algorithms for mining temporal pattern treats data as chronological or-

ders of event sequences and most of them support point-based events. Therefore, the

physical ordering of events would be quite simple and there have been limited expres-

sive power in specifying temporal relations such as during, overlaps, etc. Moreover, it

is likely that both point and interval-based data may exist and co-exist within many

application domains. To address these problems, we introduce two kinds of patterns,

namely AppSeq and LinkSeq, which accommodate temporal interval data. Both pat-

terns are simple and useful to describe the behavior of the events. We develop several

methods for finding such interesting patterns in which we use different data struc-

tures to facilitate efficient mining process. In these methods, we propose to use a

generalized taxonomy of temporal relationships which is highly expressive to describe

the basic relationships between two events. A quantitative performance study was

conducted through experiments on synthetic and real datasets and the results show

the efficiencies of the proposed methods for large databases.

i

Acknowledgments

This thesis is dedicated to my parents and my brother who support me to pursue

a master degree, and for their continuous support throughout my studies.

I wish to express my deepest gratitude to my supervisor, Prof. Ada Fu, for her

continuing support and guidance. I thank her for her encouragement, enlighting

discussions and advice which have been an invaluable resources for me. I would also

like to thank Prof. Pheng-ann Heng and Prof. Man-hong Wong for their comments

and insights on this work.

I am thankful to my friends, who inspired me to have my further study as a M.Phil

student. They are Chun-chun Tong, Hiu-lam Lam, Chi-man Lam, Chi-fung Wong,

Lai-kuen Mak, Hon-wai Fung and Sun-on Cheung. In the course of my graduate

studies, I have benefited from the interactions with many warm people around me.

I would especially like to thank Yuk-ming Chan, Tsui-ying Law, Kwong-wai Chen,

Ka-po Ma, Wai-chiu Wong, Wai-ching Wong, Chun-hing Cai, Tze-kin Lao, Yin-ling

Cheung and Po-man Wan for their endless encouragement and enthusiasm, and for

making these years truly enjoyable.

Finally, I want to thank God for His love and grace to me. I believe He works

with me throughout the years. I thank my brothers and sisters in church for their

prayers, continuous encouragement, love and the patience they showed me.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Data Mining 1

1.2 Temporal Data Management 2

1.3 Temporal reasoning and temporal semantics 3

1.4 Temporal Data Mining 5

1.5 Motivation 6

1.6 Approach 7

1.6.1 Focus and Objectives 8

1.6.2 Experimental Setup 8

1.7 Outline and contributions 9

2 Relevant Work 10

2.1 Data Mining 10

2.1.1 Association Rules 13

2.1.2 Classification 15

2.1.3 Clustering 16

2.2 Sequential Pattern 17

2.2.1 Frequent Patterns 18

2.2.2 Interesting Patterns 20

2.2.3 Granularity 21

2.3 Temporal Database 21

2.4 Temporal Reasoning 23

2.4.1 Natural Language Expression 24

2.4.2 Temporal Logic Approach 25

iii

2.5 Temporal Data Mining 25

2.5.1 Framework 25

2.5.2 Temporal Association Rules 26

2.5.3 Attribute-Oriented Induction 27

2.5.4 Time Series Analysis 27

3 Discovering Temporal Patterns for interval-based events 29

3.1 Temporal Database 29

3.2 Allen's Taxonomy of Temporal Relationships 31

3.3 Mining Temporal Pattern, AppSeq and LinkSeq 33

3.3.1 A1 and A2 temporal pattern 33

3.3.2 Second Temporal Pattern, LinkSeq 34

3.4 Overview of the Framework 35

3.4.1 Mining Temporal Pattern I, AppSeq 36

3.4.2 Mining Temporal Pattern II, LinkSeq 36

3.5 Summary 37

4 Mining Temporal Pattern I, AppSeq 38

4.1 Problem Statement 38

4.2 Mining A1 Temporal Patterns 40

4.2.1 Candidate Generation 43

4.2.2 Large fc-Items Generation 46

4.3 Mining A2 Temporal Patterns 48

4.3.1 Candidate Generation: 49

4.3.2 Generating Large 2A:-Items: 51

4.4 Modified AppOne and AppTwo 51

4.5 Performance Study 53

4.5.1 Experimental Setup 53

4.5.2 Experimental Results 54

4.5.3 Medical Data 58

4.6 Summary 60

5 Mining Temporal Pattern II, LinkSeq 62

5.1 Problem Statement 62

5.2 First Method for Mining LinkSeq, LinkApp 63

5.3 Second Method for Mining LinkSeq, LinkTwo 64

5.4 Alternative Method for Mining LinkSeq, LinkTree 65

iv

5.4.1 Sequence Tree: Design 65

5.4.2 Construction of seq-tree 69

5.4.3 Mining LinkSeq using seq-tree 76

5.5 Performance Study 82

5.6 Discussions 85

5.7 Summary 85

6 Conclusion and F u t u r e W o r k 8 7

6.1 Conclusion 87

6.2 Future Work 88

Bibl iography 97

V

List of Figures

2.1 K D D process 11

2.2 A sample FP-tree 15

2.3 Sample decision tree and Naive Bayesian network 16

2.4 An event structure 21

2.5 Versions of employee objects, and a time index 23

3.1 The thirteen possible relationships between two intervals X and Y . . 31

3.2 A sequence of interval-based events 33

3.3 Different temporal pattern representation 33

3.4 Differences between LinkSeq and AppSeq 35

4.1 Composition of two item-list, L2 and Li 43

4.2 The main algorithm 44

4.3 The candidate generation algorithm 45

4.4 Support counting for the candidates 47

4.5 The candidate generation algorithm of AppTwo 50

4.6 Forming L2 without C2 53

4.7 Distribution of temporal relations between events 54

4.8 Variation on minimum support 55

4.9 Execution time for each pass 56

4.10 Number of large items generated in each pass 56

4.11 Variation on window size 57

4.12 Scale-up: Number of sequences 58

4.13 Scale-up: Number of events per sequence 59

5.1 A seq-tree constructed for a sequence 66

5.2 Identical Pattern if same main-bh and sub-bh 67

5.3 Splitting of node C for different sub-bh 68

5.4 The seq-tree constructed using the given example 72

vi

5.5 Construction of sequence tree, seq-tree 73

5.6 Building main branch 74

5.7 Adding subsidiary branches 75

5.8 Mining frequent temporal pattern from seq-tree 81

5.9 Variation on minimum support 83

5.10 Scale-up: Number of sequences 84

5.11 Scale-up: Number of events per sequence 85

vii

List of Tables

4.1 Transform the database as seq-list and item-list 41

4.2 Partial Large 1-item list 43

4.3 The 3-candidates 44

4.4 Partial large 2-item list 45

4.5 Partial large 4-item list formed by AppTwo 49

4.6 Parameters 53

4.7 Number of AppSeq with different min_sup 57

4.8 Mining AppSeq in a scoliosis database 61

5.1 Large 1-items 69

5.2 Transform the database as sequence form 70

5.3 Mining LinkSeq by traversing seqJree 79

5.4 Number of LinkSeq obtained with different min.sup 83

viii

Chapter 1

Introduction

The research in this thesis grows out from the development of data mining in temporal

databases. With the extension of mining temporal pattern which accommodates

interval data, interesting and useful temporal information can be found. In this first

chapter, we give a brief introduction of data mining and temporal database which

provide the basic principles of the work being investigated. Related work on temporal

reasoning and temporal data mining is also discussed. Then we address the motivation

and approach of the work undertaken.

1.1 Data Mining

In the last decade, data mining or knowledge discovery in databases (KDD), has

emerged as a significant field of research [59, 61, 38, 49, 27]. This emergence has been

motivated by the rapid development of data warehousing which intelligent analysis of

data is required. Moreover, with the advances in technologies such as the widespread

use of bar codes in supermarket goods, monitoring devices in hospitals, sensors on-

board orbiting satellites for scientific and geophysical science investigation, enormous

amount of data which most of them are of high dimension are collected. The explo-

sive growth of data makes it infeasible to analyze them manually and thus leads to a

promising field of study, called data mining. Data mining is defined as the nontrivial

extraction of implicit, previously unknown, and potentially useful information from

data [27 .

Data mining is developed from the confluence of research in machine learning,

statistics and database systems [61, 38, 27]. The fundamental goals of data mining are

prediction and description. From the existing variables in the databases, we predict

unknown or future values of interest by the knowledge obtained. Also by finding

1

CHAPTER 1. INTRODUCTION 2

frequent patterns which well describe the behavior of the data, we can have a better

understanding about the system for further analysis. On the other hand, the size and

complexity of data is generally large, efficient and scalable algorithms are needed.

The discovered knowledge can be applied to commercial industry for making better

marketing strategy, decision making system or expert system for medical diagnosis

and geographical information system or scientific data as a tool for analyzing data.

A survey of current data mining issues is given in Chapter 2.

Although there have been many studies of data mining in transaction database,

there are other applicative databases such as temporal databases, spatial databases,

object-oriented databases and multi-media databases, etc., which requires specific

data mining techniques to facilitate efficient and effective knowledge discovery on

particular kinds of data. Advances in the research work on temporal data structures,

temporal reasoning, indexing and query languages for temporal databases provides

new challenges to the study of temporal data mining. However, there are still not

many data mining techniques are extended to accommodate the specific properties

of the temporal data. The focus of this thesis is on the methods of temporal data

mining which extracts the temporal information stored in temporal databases.

1.2 Temporal Data Management

Temporal databases incorporate the concept of time to maintain past, present and

future data [78, 83, 40]. They store time-varying information. As most database

applications are temporal in nature, e.g., financial applications such as portfolio

management, accounting, and banking, record-keeping applications such as person-

nel, medical-record, and inventory management, and scientific applications such as

weather monitoring, the study of temporal databases has been an active field of re-

search in the past decade.

Generally, a temporal database supports three distinct types of time attributes

which are valid time, transaction time and user-defined time. Valid time stored the

time when an event takes place with start time and end time values. Transaction

time is the time when the event is recorded in the database and user-defined time

is an uninterpreted time domain. Since valid time describes the occurrence pattern

of events stored in the database, it promises greater utility as a source of domain

knowledge than transaction time. Hence, the discussion of temporal pattern in this

thesis will be focused upon valid time in temporal database.

Each record stores the start time and end time during which the tuple is valid.

CHAPTER 1. INTRODUCTION 3

Data is collected in the form of event time sequences where each event lasts for a

certain time interval. For instance, in hospital information systems which laboratory

examinations or clinical records are stored for medical diagnosis of patients' behavior

over a certain monitoring period. Records like "patient A had surgery from 10:00 to

13:00 on 14 June" are stored. The temporal nature of data provides us a better un-

derstanding of trend or pattern over time so as to find any valuable information. For

example, patterns like "60% of patients who took medicine A and then took medicine

B after an hour, got a fever the following day" can be found. The frequent tempo-

ral patterns exhibited by patients may identify some correlations between drugs for

further diagnosis. Other temporal data such as telecommunication network, weath-

ering and marketing data in which by analyzing sequences of time-stamped data, we

can have a better understanding of the data which changes over time. Knowledge

discovery in temporal databases thus catches the attention of researchers [69, 16].

Moreover, recent research on temporal databases has made important contribu-

tions in characterizing the semantics of temporal information and in providing expres-

sive and efficient means to model, store, and query temporal data [12, 40]. Different

models of database management for efficient storage and access of temporal data are

proposed. Optimization of query processing and indexing techniques are also under

active investigation. For instance, an extended SQL standard, TSQL2, has been de-

veloped for temporal databases [72]. Within the TSQL2 standard, time is widely

represented by intervals defined between start time and end time points. Queries

with interval as primitive are adopted. In other words, both point-based and interval

data are supported. We believe these significant investigations for the development

of temporal databases, such as temporal data structure [10], temporal algebraic op-

erators [81], query processing [80, 12], indexing [23], etc., have paved the way for the

study of temporal data mining. As existing mining techniques cannot be applied to

temporal databases to handle the temporal interval data directly, new algorithms of

knowledge extraction is needed to capture the temporal semantics.

1.3 Temporal reasoning and temporal semantics

On the other hand, considerable research effort has been directed to the temporal

aspects of information systems. One of the work is temporal reasoning which involves

the issues of time modeling and the representation of temporal relationships based

on the underlying temporal domain. Basically, there are two primitive notion of

temporal data, time point and time interval, which temporal reasoning systems based

CHAPTER 1. INTRODUCTION 4

on. Time points are assumed to be linear and an ordering relation is defined. While

intervals are expressed in a pair of start time and end time points (/—,/+), with

I— < /+ such that the ordering relations are expressed in terms of relations between

their endpoints. Unlike time points, intervals can have complex inter-relations, for

example, an interval may overlaps, meets or before another interval.

Other different representations of the semantics of temporal information are pro-

posed also. They have different measures of ordering and metric relationships which

helps to express and reason about time in many application domains. One of the for-

malisms for time modeling is temporal logics. They follow the syntax and semantics

from modal logic to represent temporally definite statements by means of temporal

operators [30’ 53]. The development of various forms of temporal logic has played a

part in data mining research, particularly in temporal pattern matching and sequence

mining. For instance, first order temporal logic is used as a way to represent temporal

patterns [56,11]. Sequence such as (analyst A recommends ‘‘buy” for a stock until ana-

lyst B recommends "5e/f') can be expressed as "Analyst_Report (a n a l y s t , s t o c k ,

recommendate) A ^ 0 Analyst_Report (a n a l y s t , s t o c k , recommendate)" where

{A, 0} are operators meaning "And" and "Next" respectively. However, temporal

logics are computationally intractable and have an expressive power that exceeds the

requirement of most temporal databases. Therefore, a number of formalisms that

weakens the temporal logic expressiveness have been developed.

Some of them define an algebra of temporal relationships according to a classical

point of view. One of the most commonly used interval-based formalism is Allen's

interval algebra [9]. It models the relationship between any two intervals as a subset

of a set of thirteen basic relations, including before, meets, overlaps, starts, during,

and finishes, together with their inverses, plus the relation equal. Binary operations

of intersection and composition are defined on the set of relationships. Allen's interval

algebra as well as first order temporal logic are most widely used in corporation with

knowledge discovery process.

We incorporate temporal reasoning as a mean for the representation of temporal

knowledge in our framework. A strong emphasis is placed on the complexity of the

mining result which should be easily read and comprehended. Hence, the selection of

an appropriate set of temporal predicates is fundamental to provide useful temporal

reasoning. In our problem, Allen's thirteen temporal relationships [9] is adopted to

describe the basic binary temporal predicates and details would be covered in Chapter

3.

CHAPTER 1. INTRODUCTION 5

1.4 Temporal Data Mining

Temporal data constitutes a large portion of data collected in daily operations. In

general, temporal data can be loosely defined as any data that contains temporal

information. Examples include financial database for stock price index, telecommuni-

cations and medical databases. Searching for similar patterns in a temporal database

is useful in many applications as we can discover and predict the risk, causality, and

trend associated with a specific pattern. The accommodation of time into mining

techniques provides a window into the temporal arrangement of events and thus an

ability to suggest cause and effect or trends in rule sets. Temporal data mining is

thus an important extension as it has the capability to infer causal and temporal

proximity relationships that non-temporal data mining is not able to do.

The time component we captured helps in analyzing the changes of the data

over time of the system. We may find any causal relationships from the ordering of

occurrences of events such as the first condition which is followed by the second one

is identified as cause and effect relationship other than association if no knowledge of

time is known. Likewise, the time component may assists in identifying the validity

of rules like "Hiking Boots � Outerwear", Years • Months(3:5) during [Years(1990),

Years(1995)]" [17]. It reveals that every spring time from 1990 to 1995, the customers

who buy hiking boots also buy outerwear. Such a rule may not be valid before 1990

or after 1995. We observe that by adding the temporal semantics to the rule set,

more accurate and clear information is obtained. In addition, by discovering the

change in knowledge obtained in the underlying data, it is possible to know how

quickly the domain is likely to change which helps in better marketing strategies

62]. For example, by identifying frequently or unexpected occurring patterns over

event sequences such as stocks with similar price movement, customer's purchasing

patterns over seasons as well as rare events happened for fraud detection, we gain

more information from the sequences of records.

In general, a set of historical data is collected in the form of event time sequences.

Current temporal data mining techniques can be broadly classified into two categories:

categorical and numerical data analysis. The former one focuses on the discovery of

causal relationships among temporally-oriented events. Most of the events concerned

are point-based categorical events where only the time when the transaction takes

placed is recorded like sales records, telecommunication network alarms, etc. Some

of the categorical data are interval-based events that the valid time are supported by

the system such as patient database, scientific databases in geophysics and astronomy

CHAPTER 1. INTRODUCTION 6

areas, etc. The ordering of data is a valuable source of information which can direct

future operations. Numerical data analysis concerns the discovery of similar patterns

within the same time sequence or among different time sequences [25, 5, 20]. Numer-

ical values of the sequences are taken into consideration as a comparison for trend

discovery and prediction and it is known as time series analysis [21, 33]. Different

shapes of the changes of data over time are analyzed [6 .

Previous work for knowledge discovery in temporal data mainly work on sequential

pattern [1, 8, 51, 50]. Although potential knowledge can be extracted, these tech-

niques only treat data as series in chronological order. They consider the ordering

of a string of events and thus mainly support point-based events. Hence most of

these algorithms ignore time intervals which the data is stamped with. The physi-

cal ordering of events would be quite simple and there have been limited expressive

power in specifying temporal relations such as during, overlaps, etc. To address these

problems, we introduce two kinds of patterns namely AppSeq and LinkSeq, which

accommodate temporal interval data, and discuss in details in Chapter 3.

1.5 Motivation

The motivation behind of this research is to extend the work of temporal data mining

which examines interval-based data stored in temporal databases. In view of the

emerging needs of temporal data mining and the problem of addressing temporal

interval data, we aim to find common sequences that accommodates the temporal

semantics of interval data. We introduce the problem of mining temporal patterns

for interval-based events with the following observations.

1. There are emerging need for the development of temporal databases that cap-

ture the temporal nature of data stored in many applications [78]. Studying

information stored in temporal databases lead us to have a better understand-

ing of the evolving business. Moreover, the rapid development on research on

temporal databases, different models of temporal data for storage and query

processing are suggested. This favors the work for developing temporal data

mining techniques.

2. Mining sequence data for interval-based events is important as besides finding

association between temporal data, the ordering or relation between events pro-

vide us some insight into causal relationships. Besides before/after relation,

other descriptions of temporal relations can be specified for interval data, which

CHAPTER 1. INTRODUCTION 7

helps in understanding the general trend of the sequence data. However, most

of the existing algorithms work on point-based data only. Simple ordering of

events is considered where series or parallel ordering of events are taken place.

Hence they cannot be applied to temporal database directly where valid time

is supported. There is a need to extend the existing work of mining sequential

pattern to accommodate interval-based events.

3. Contrary to the case of time points, relationship among time intervals can be

described in different ways. As interval can form different structures other than

only before/after relation so that we can have a better understanding of how

the evetns interact with each other. A generalized taxonomy of temporal rela-

tionships which is simple and highly expressive is needed to express the complex

relations between intervals. Besides, as more complex relations involved, there

are possibly vast number of temporal relationships can be found for a single

sequence of events, and many of them may be too complicated and not useful

to the user. We restrict our interest to simple and meaningful type of temporal

pattern but yet the pattern found is highly expressive to reflect the complex

relations among events. This motivates us to explore two interesting temporal

patterns, AppSeq and LinkSeq in our work.

4. We believe that both patterns are useful to describe the temporal behavior

among events. For example, given clinical records storing time varying attributes

we can find AppSeq and LinkSeq among data; given stock market data, we

can analyse the changes of data among different intervals of time; etc. Hence,

besides specifying the before/after relationship, by considering timing-interval

restrictions, we obtain other interesting knowledge from temporal data.

1.6 Approach

In our framework, we mainly focus on temporal databases which store interval-based

events and discover any interesting temporal relations among them, in order to find

any correlation between events. For example, in the medical field, patterns like "60%

of patients who contract disease A got the disease during the time where disease

B is also contracted" can be found. The frequent temporal patterns of diseases

exhibited by patients may identify some correlations between diseases that can provide

invaluable information for diagnosis.

CHAPTER 1. INTRODUCTION 8

1.6.1 Focus and Objectives

As mentioned before, there is tremendous forms of temporal patterns can be derived

from a sequence of interval-based events. However, we notice that the complexity of

the results increases as we introduce more complicated combinations, which may not

be a desirable feature. Also, the computation time required would be increased and

may not be feasible for mining purpose. Hence we do not consider complex temporal

patterns. We here limit our focus on two temporal patterns which both reveal the

temporal behavior among events. We believe that the temporal relations give some

insight into causal relationships. As such, when a few events have happened, together

they may become the cause of a following event. Both temporal patterns gives us

a modeling of this idea. We introduce the patterns in Chapter 3 and methods for

mining these patterns are given in Chapter 4 and 5.

1.6.2 Experimental Setup

To evaluate the performance of the proposed methods over a large range of data, we

conducted several experiments on UltraSparc 5/270 workstation with 520MB of main

memory. All methods are written in C.

First, we consider a set of synthetic data in an application domain of a medical

database. The database stores person-id, disease the person contracted and the corre-

sponding duration of time. For each person, we record a sequence of clinical records

stating different diseases contracted. Each such sequence is potentially a maximal

large sequence. An example of such a sequence might be "person A contracts disease

X and during the treatment of disease X, disease Y is contracted". The number of

events per sequence of each person is chosen from Poisson distribution around a mean

and a few person may have many clinical records where each record refers to an event

in a sequence. We will use the synthetic database for mining both patterns.

Secondly, we work on a real data set which contains clinical records of Scoliosis

patients. Scoliosis refers to spinal deformation. The database stores a list of mea-

surements on the patients, such as the number of curves, the curve locations, degree

of curvature, curve directions, etc. It also records patents' personal information such

as date of birth, family history, the class of Scoliosis contracted and the treatment.

Sequences of records of about 900 patients are stored. Short sequences containing

one or two records are obtained and for some patients, longer sequences are found.

By examining the changes in values of some temporal attributes in the view of a se-

quence, we may discover any temporal knowledge stored in the database. We aim to

CHAPTER 1. INTRODUCTION 9

find any interesting patterns that occur frequently and hence discover any correlation

between other non-temporal attributes.

1.7 Outline and contributions

This thesis focuses on the work of temporal data mining. A framework for mining

temporal patterns is suggested. We introduce the notion of temporal representation

which is capable of expressing the relationships between interval-based events. Two

interesting types of temporal patterns are considered. We believe our findings can lead

to useful systems in mining temporal patterns involving events that have a duration.

We start our discussion by surveying current research in data mining in Chapter

2. The aim of this survey is to provide a better understanding of the nature of

knowledge discovery. Moreover, we present issues of temporal data and semantics in

the context of temporal database management. This gives a background knowledge

of the complexities of integrating temporal semantics into data mining techniques

which would be discussed later. We also present the state of the art of temporal data

mining by showing different directions of current work and identify related research

challenges in the area.

Chapter 3 provides an introduction of the mining problem. In a sequence of

interval-based events, we are interested in finding temporal relationship between

events along the time-line. In particular, we focus on two kinds of temporal pat-

terns, AppSeq and LinkSeq which both are simple and easy to understand. A general

framework of the two temporal patterns are described.

Chapter 4 investigates in greater depth of the first temporal pattern, AppSeq. We

would further introduce the variations of AppSeq as Al and A2 patterns, where A2

pattern being the variates of Al pattern. We introduce the notion of these temporal

patterns and describe the methods for finding them. Experiments on both synthetic

data and real data set are presented.

Chapter 5 considers the problem with another point of view such that another kind

of temporal pattern LinkSeq is suggested. We introduce several methods for mining

the second temporal pattern by means of different data structures to facilitate efficient

support counting process. A performance study was conducted through experiments

on synthetic data sets and the results show the efficiency of the proposed methods.

Finally, we give a conclusion and talk about our future work in Chapter 6

Chapter 2

Relevant Work

In this chapter, we briefly introduce the current issues of research on data mining,

their directions and challenges involved. We then study the recent work on temporal

database management and temporal reasoning in Section 2.3 and 2.4 respectively.

They provide some background knowledge about the problem we discussed later.

In Section 2.5, we investigate some related work of various temporal data mining

techniques together with their new challenges faced. One of the problems of accom-

modating interval data is addressed in this thesis.

2.1 Data Mining

In recent years, the rapid growth in the size of databases has led to an increased

interest in the automatic extraction of knowledge from data [59, 61, 49, 27]. The term

d a t a mining, or knowledge discovery in d a t a b a s e s (KDD), has been adopted

to the general concept of seeking knowledge from data held in more or less structured

databases [59, 27]. Strictly, K D D can be viewed as the overall process of extracting

useful and interesting information from databases. This process includes the selection

and preparation of data, manipulation and analysis of the result obtained. Data

mining thus can be considered as part of the K D D process. Figure 2.1 shows an

overview of the K D D process. It mainly divides into the following phases:

U n d e r s t a n d i n g t h e d o m a i n : As K D D is a discovery driven process, we need

to have a solid understanding of the domain in order to select the right subsets

of data, suitable classes of patterns, and good criteria for interestingness of the

pattern concerned.

Cleaning d a t a : With some missing values or invalid data by incorrect input,

10

CHAPTER 2. RELEVANT WORK 22

1 r I

Data 1 Data ^ Pattern | _ ^ Result J
Collection F ^ Preparation §~^ Extraction | Analysis |

^ ^ ^ — 1 ^ n ^ .政,”々广1^'^^5 mmmmmmm^rn

1 •‘ ！ L
I Data Cleaning •
I Selection of fields • ViSUalizatiOPI 画
‘Data Transformation " l H ^ W H K M w J

Figure 2.1: KDD process

different ways of exploiting useful data from databases are proposed. Selection

of essential fields used in the mining process is also performed in this phase.

Discovering p a t t e r n s or d a t a mining: Scalable and effective mining algo-

rithms are required for the extraction of interesting knowledge over a large set

of data. Different strategies for scaling down the search space in the mining

process are proposed.

Postprocess ing of discovered pat terns : Further analysis of the discovered

patterns with expert knowledge is performed. Any evaluation of the result can

feedback to the mining process to improve the quality of information obtained.

Present ing final result ; A user-friendly interface is recommended to visual-

ize the mining result for making the discovered patterns easier to understand.

Interactive analysis of final result can be made also.

Data mining incorporates methods and tools of three areas: machine learning,

statistics, and databases [49]. All three areas aim at locating interesting regularities,

patterns, or concepts from empirical data, while data mining emphasizes on auto-

matic knowledge discovery from huge data and the data can be corrupted by noise,

errors or missing values. Moreover, there are many kinds of data and databases

used in different applications which contain complex data types such as structured

data hypertext, object-oriented databases, multimedia databases, spatial databases,

temporal database [66], spatio-temporal databases [28] and transaction databases.

Different techniques that facilitate efficient and effective extraction of information

are needed. We summarize the issues and challenges of the development of data

mining.

CHAPTER 2. RELEVANT WORK 12

• Efficiency and Effectiveness As huge amount of data is being considered,

scalability of the mining process becomes the main concern over the last decade.

At the same time, effectiveness of the algorithms for finding useful patterns is

also the key concerns for developing various mining methods.

• Interestingness of knowledge obtained The discovered knowledge should

accurately portray the contents of the database and be useful for certain ap-

plications. Most of the measures of interestingness currently used are based

on statistical measure of frequency which provides "best", "optimal" or "most

interesting" rules [43, 41]. We may interested in finding customer's buying pref-

erence from sales records and thus we look for any frequently occurring pattern.

However, in some cases, we may interested in finding rare events such as fraud

detection in credit card payment, plan failures from plan execution traces [86],

or exceptional rules in medical field for diagnosis [82, 73]. Different measures of

interestingness are made.

• Various types of data With the development of various types of databases

which involve complex data, it requires different mining techniques to cope with

the specific intrinsic information embedded in the data. Example ranges from

temporal data, spatial data and multimedia data to semi-structured web docu-

ments.

• Robust to outliers As mentioned before, most of the real data contains in-

complete information or unexpected values regarded as noise, which requires

careful handling to avoid any discrepancies of the mining result.

• Interactive mining process Data mining techniques are usually application

dependent, hence any expert knowledge incorporated interactively in the min-

ing process helps in producing useful results. Moreover, for any database, the

amount of knowledge extracted may be far greater than that of the original data

set. Therefore, a multi-stage of filters that reduce the query search space on the

basis of source data, target pattern, statistics and significance of the mining

result is needed. An interactive environment which provides a flexible way for

users to determine the number of rules or pattern obtained in different instant

is preferred.

• V i s u a l i z a t i o n of mining r e s u l t Visualization of data mining result sup-

ports interactive mining process at multiple abstraction levels [42, 70]. Also,

CHAPTER 2. RELEVANT WORK 13

it helps to present the mining result to users in a more user-friendly way by

means of a nice graphical interface.

Data mining techniques are usually used associated with decision support systems

and knowledge base creation like data warehouses or expert systems where upon the

newly discovered knowledge is used to improve system performance or provide better

strategy. On the other hand, knowledge obtained can be used for detection of incon-

sistencies and integrity enforcement in some systems or semantic query optimization

used in data warehouse.

Among various data mining techniques, four major data mining tasks are associa-

tion, classification, clustering and sequence discovery. An excellent survey of different

aspects of KDD was conducted in [27]. Here, we provide a brief introduction of each

of these four areas as follows.

2.1.1 Association Rules

Mining association rules in transactional or relational databases has caught a lot

of attention since [4]. Association rules typically find correlations between items in

transaction data sets I that customers purchase several items in a single transaction.

The relationship between items can be expressed as follows:

Xi A ^2 A .. • A 义爪=> Yi A Y2 A . . . A X„

where X C /, Y C /, and X A V̂ = 0. An association rule which derives from a

database of transactions consists of a set of items bought by a customer in a single

visit to a store. For example, an association rule can be "if a customer buys milks,

he/she usually buys bread in the same transaction". A set of rules are obtained for

further interpretation. Usually we use support count and confidence value to measure

the interestingness of the rules found. In other words, we focus on frequently occurring

pattern. Applications include supermarket, inventory planning, attached mailing in

direct marketing and promotional sales planning.

An A p r i o r i level-wise method is proposed for mining the association rules. The

algorithm starts from small data set to large ones using the anti-monotone Ariori

heuristic: if any length k pattern is not frequent in the database, its length (k+l)

super-pattern can never be frequent. The mining process mainly divides into two

phases, namely the candidate generation phase and test-and-bed phases [4]. Since

mining association rules may require repeatly scanning through a large transaction

database to find different association patterns, the amount of computational cost

CHAPTER 2. RELEVANT WORK 14

could be very high. Efficient algorithms for mining association rules using various

data structure and pruning strategies for performance enhancement are developed

7, 57, 87, 71, 37]. For example, one of the recent work of finding frequent patterns

for association rules is developed in [37]. A tree-like structure, FP-tree, is used for

the mining process.

As [37] suggested, FP-tree is proposed to deal with frequent pattern especially

for large data set and long patterns. It is an extended prefix-tree structure storing

crucial, quantitative information about frequent patterns. The FP-tree is constructed

in such a way that

• Only frequent length-1 items will have nodes in the tree. This ensure only poten-

tial frequent patterns which form from frequent length-1 items are considered.

• The set of frequent items of each transaction is stored in the tree in such a

way that each item is added as a node in the tree. Tree nodes are arranged

by descending order of frequency of length-1 items with higher frequency nodes

being placed close to the root node. For each transaction, a list of nodes are

inserted from the root and placed according to the frequency of the items.

• Multiple transactions sharing an identical frequent item set can be merged into

one with the number of occurrences registered as count. It is easy to check

whether two sets are identical if the frequent items in all of the transactions are

sorted in descending order of frequency.

• Two transactions which share a common prefix, according to some sorted order

of frequent items can merge the shared part using one prefix structure with the

count registers properly. If the frequent items are sorted in descending order of

frequency, more prefix strings can be shared and hence the size of the tree is

reduced.

• Each transaction is mapped to one path in the tree, and the frequent itmeset

information in each transaction is stored in the tree. Since the frequent itemset

in any transaction is always encoded in a corresponding path of the frequent

pattern tree, traversing the tree ensures the completeness of the result.

The FP-tree of a transaction database is shown in Figure 2.2 with minimum

support being 40%. By looking up each event in the header table, we find the cor-

responding paths containing the node and examine the prefix subpath of the node.

With the use of the counter values stored in each node, the complete set of the fre-

quent patterns can be generated. Since the structure of FP-tree helps in keeping all

CHAPTER 2. RELEVANT WORK 15

TID Items (sorted) freq. items

1 f.a,c,d,m,p f.c,a.m.p
2 a.b.c,f,l.m f,c.a,b,m
3 — b.f.h,j.o f.b
4 b,c,k,s,p c,b,p
5 I a,f,c,e,p,m f,c,a.m,p

Header table

.• head of / ^ ^ " ^

Item node-link, ^ ^ ^ f e ^ ^ ^ " ^
‘ … … … … ^ $ ^ - — - ^

C * (^ ‘ ‘ (¾ < b ^

a < ^ —丨 （ ^

b ‘ - ： ： 承 资 /

m • z < S) 、 命 /
•** -V ,'

.' 、-- ,'

p “ - • "

Figure 2.2: A sample FP-tree

the important information for support counting of frequent patterns. No further look

up from the database is needed. In other words, it generates frequent pattern without

the candidate generation phase as well as scanning of database for support counting.

This greatly reduce the high cost for mining frequent pattern and experimental results

also show the advantages of using this approach.

On the other hand, variations of association rules like mining sequential pattern,

quantitative association rules from market basket data are suggested [8, 74, 75]. As

sometimes the rules found are quite large in amount to digest and understand, further

investigations about the interestingness of the rules discovered are carried out [43, 46,

41]. ，

2.1.2 Classification

Classification is the process which finds the common properties among a set of objects

in a database and classifies them into different classes, according to a classification

model [3]. For a given set of records with its corresponding attributes, we categorize

the records with similar attribute values within a group and describe the characteris-

tics of each classes. Based on the history, a classification function is developed for iden-

tifying new candidates for predication. In credit analysis, the card issuing company

will have customer records containing a number of descriptors. So for the customer

with a known credit history, the customer's record is tagged as "excellent", "good",

"medium" or "poor". One of the classification rules can be "customers with excellent

credit history have a debt/equity ratio of less than 10%”. Such class descriptions

CHAPTER 2. RELEVANT WORK 16

are then used to classify future incoming data of the databases. Applications range

from target mailing, franchise location, credit approval, treatment-appropriateness

determination to scientific data analysis such as SKICAT [26 .

Data classification has been studied substantially in statistics, machine learning,

neural networks, and expert systems, and is an important theme in data mining. Ex-

amples are decision trees [60] and bayesian network classifiers [29] shown in Figure 2.3.

As classification aims at classifying new records to an appropriate class, accuracy for

the classification result becomes the main concern of the problem. Various methods of

improving the accuracies of the results like using entropy values of information theory,

penalty of wrong classification, multiple classifiers are proposed. On the other hand,

in recent years, extension to accommodate spatial objects for geographical studies is

suggested [45]. ..

Salary ^ (^ " ^

< = j " * s ^ ^ - ^ ^ " ^ ^ ^ / ^ y ^ x ^
C ^ G r a u ^ Age ^ ^ / ^ v

^40 .̂̂ ^ '̂'"'̂ ^^40 ^ ^ J^ \>^^^

Emp—t I C ^ ^ P I > 0 0 0 0 0 0
Academia, ^̂ ^̂ \ _ ^ � V _ ^ V _ ^ ^ V___̂
lndurtĝ -̂̂ ^-^S!1^

C O r o u p ^ (^Group^^ 八1 ^^ A^

(a) Sample decision tree (b) Naive Bayesian network

Figure 2.3: Sample decision tree and Naive Bayesian network

2.1.3 Clustering

Clustering segments an original database into different subsets or clusters. Its task

is to identify clusters or densely populated regions, according to some distance mea-

surement, from a large and multi-dimensional data set. Given a set of objects and a

clustering criterion such as number of clusters required and distance measure of the

objects, we groups the objects into clusters such that the objects in a cluster are more

similar to each other than to objects in different clusters. As it finds any interesting

structure directly from the data without using any background knowledge, like con-

cept hierarchies, clustering is useful for discovering groups and identifying interesting

distributions in the underlying data.

Clustering techniques have been studied extensively in statistics [47]. Algorithms

like Partitioning Around Medoids (PAM) or Clustering LARge Applications (C L A R A)

CHAPTER 2. RELEVANT WORK 17

are found to be inefficient from the computational complexity point of view. As for

the efficiency concern, an algorithm called Clustering Large Applications based upon

RANdomized Search (CLARANS) , was developed [54]. Experimental results showed

that C L A R A N S outperforms PAM and C L A R A . As both PAM and C L A R A find k

representative points of k clusters from N objects by analyzing all possible pairs of

objects, it is therefore computationally inefficient for large values of N and k. For

clustering large sets of points, with the use of a clustering feature tree (CF) which

summarizes the information about sub-clusters of points, the algorithm Balanced It-

erative Reducing and Clustering (BIRCH) [88] is capable of finding good clusters with

a single scan of the data.

On the other hand, the traditional clustering algorithms like k-mean, or k-medoids

approaches suffer from the fact that a cluster is represented b y j u s t one point. These

methods cannot deal with irregular shapes and sizes of different clusters in data. To

address this problem, a method called Clustering Using Representatives (CURE) [32

using multiple representatives for a clusters is proposed. It chooses a set of well-

scattered points to represent a cluster and employs a novel hierarchical clustering

algorithm that adopts a middle ground between the centroid-based and the all-point

extremes. Also, a density-based clustering method (DBSCAN) [24], which supports

arbitrary shapes of clusters is suggested. Clusters such as concave clusters, clusters

with noise and with significantly different diameters that are located close to one

another can be found. In addition, the number of clusters can be unknown in advance

and no input of such parameter is required.

The problem of high dimensionality can be tackled by using sub-space approach

CLIQUE [2] for cluster analysis. As given a large set of multi-dimensional data

points, the data space is usually not uniformly occupied by the data points. CLIQUE

identifies the sparse and the crowded places by considering appropriate subspaces

over the original dimensions, and hence maximize the similarity within a cluster and

maximize the difference between other groups. This allows records with missing

values to be used for clustering with more accurate results than replacing missing

values taken from a distribution.

2.2 Sequential Pattern

Unlike the previous three classes of data mining problems where static data is cap-

tured, sequential pattern mining is a temporal knowledge extraction over a sequence

of data where each data associates with an occurrence time. A linear ordering known

CHAPTER 2. RELEVANT WORK 18

as serial ordering is obtained. The problem of mining sequential patterns can be

stated as follows: Let I = {i1,i2, •. • in} be a set of items. An itemset, i is a subset

of items and denoted as {i1i2 •. .ik), where ij is an item. A sequence is an ordered

list of itemsets. A sequence a is denoted by (ai h^ a2 ^ • •. H> a^), where the

sequence element aj is an itemset. A sequence a = (ai t^ a2 ^ . •. h^ »„) is called

a subsequence of another sequence /3 = (/¾ t^ 他 H> . . . ^ |3m) if there exist integers

1 < ji < j2 < . •. < jn < m such that ai G ft"a2 G /¾, •. • ’ <̂ n € "_^. A sequence

with k itemsets (k = ^^ |o;j|) is called a k-sequence. We are interested in finding any

k-sequence with support above a given threshold (minimum support), where support

is the number of data sequences that contain the pattern.

As many application domain have time attribute, data various from web log [73],

telecommunication network [50], to marketing sales transactions [8] are collected. By

analyzing the sequence of data, we obtain a better understanding of the trend or the

behavior of a system. For example, consider the sales database of a book store which

records the books bought by each customer over a period of time. Interesting patterns

like "70% of the people who buys Jane Austen's Pride and Prejudice also buys Emma

within a month." Stores can use these patterns for promotions, shelf placement, etc.

Or in a web access database at a particular site, the discovered patterns are the

sequences of most frequently accessed pages at that site. This kind of information

can be used to restructure the web-site, or to dynamically insert relevant links in web

pages based on user access patterns.

2.2.1 Frequent Patterns

Since the introduction of mining frequent patterns in a sequence database in [8], many

studies have contributed to the efficient mining of sequential patterns or other frequent

patterns in time-related data [51, 50, 87, 85, 37, 58, 36]. The mechanism proposed in

8] relies on the Apriori heuristic first proposed in association mining [4]: any super-

pattern of a non-frequent pattern cannot be frequent. Frequent sequences of length k

are built from frequent sequences of length k - 1 by applying a self-join operation

to the latter set and computing the support of the resulting sequence. Finally, non-

maximal frequent sequences are removed from the result. Based on this heuristic,

a generalized definition of sequential patterns that include time constraints, sliding

time window, and user-defined taxonomy is proposed and a generalized sequential

pattern mining algorithm, GSP is developed [75'.

On the other hand, research on sequence mining has been oriented towards the

CHAPTER 2. RELEVANT WORK 19

discovery of episodes that occur frequently within sequences [51, 50]. An episode is

formally a conjunction of events which includes serial and parallel ordering of events.

The results of sequence mining are episode rules of the form P[V] =>• Q[W] where

V,W are time intervals. We may discover any causal relations among events. An

extension work of finding frequent episodes [51’ 50], which uses temporal logic as a

formalism for expressing temporal patterns defined over categorical data is suggested

56]. It discovers frequent patterns which satisfy certain temporal logic expressions.

Temporal logic programming is suggested as a mechanism for the discovery of frequent

patterns expressible in temporal logic. First-order temporal logic, FOTL, is used to

express patterns such as "Hold(Stock) until Bearish_Market_Sentiment", where Hold

is a temporal predicate. Temporal operators such as since, until, next are considered,

which cannot be expressed in terms of episodes.

As Apriori employs a bottom-up search that enumerates every single frequent

itemset, the exponential complexity is fundamentally inefficient for discovering long

patterns or large data set with low minimum support. New algorithm, Sequential

Pattern Discovery using Equivalence classes (SPADE) for fast discovery of sequential

pattern is proposed [85]. By using a vertical id-list database format, where each

sequence associate a list of objects in which it occurs, along with the time-stamps,

all frequent sequences can be enumerated via simple id-list intersections. A lattice-

theoretic approach to decompose the original search space into smaller pieces (sub-

lattices) which can be processed independently is suggested. All sequences can be

found by three scanning of the database. Other data structure like WAP-tree [58],

which is used for mining sequential pattern, is a variation of FP-tree [37] as shown in

Figure 2.2. WAP-tree is proposed for mining web logs data which point-based events

are considered. By storing the critical information for access pattern mining, without

the generation of large candidate set, WAP-tree facilitates efficient mining of access

patterns. Besides, other technique like projection databases with the use of frequent

item matrix [36] is introduced for mining sequential pattern. Its general idea is to use

frequent items to recursively project sequence databases into a set of smaller projected

databases and grow subsequence fragments in each projected database. Experimental

results show that by reducing the high cost of candidate generation and test, these

methods outperform Apriori-based GSP method.

CHAPTER 2. RELEVANT WORK 20

2.2.2 Interesting Patterns

As conventional mining techniques provide users with limited mechanism (based on

minimum support) for specifying patterns of interest, the "unfocused" approach suf-

fers from two major drawbacks: (1) disproportionate computational cost for selective

users, (2) overwhelming volume of potentially useless results. To tackle these prob-

lems, a simple and natural syntax of Regular Expressions (REs) is introduced to be

used as a flexible constraint specification tool that enables user-controlled focus incor-

porated into the pattern mining process [31]. The RE constraints help in pruning the

search space of patterns during computation as well as directing useful results which

return to the users. A family of algorithms, namely Sequential Pattern mining with

Regular expression consTraints (SPIRIT), is proposed for mining frequent sequen-

tial patterns that satisfy user-specified RE constraints. The suggested algorithms

address the problems by narrowing down the target search space. Similar idea of

imposing selection constraints on user-specified pattern is suggested [34]. A language

for specifying episodes of interest is used.

Besides using frequencies as a measure of interestingness of a sequential pattern,

a notion of using minimum description length principle as a mean to evaluate mining

result is proposed [14]. Based on the number of bits in which a sequence can be

encoded under an appropriate coding scheme, sequences with large code length are

interpreted as potentially surprising patterns and these patterns are considered to be

interesting. Likewise, instead of finding frequently occurring patterns, [82, 11, 86

suggest another measure of interestingness to capture rare events. It is extremely

useful for error discovery as errors are supposed to be rare events and if we restrict

the search space to frequent sequences, these exceptional sequences would be easily

rejected and impossible to be distinguished from any trivial sequences. By pruning

out any predictive and redundant patterns that are out of interest, PlanMine which

proposed to deal with plan failure prediction [86] and Timeweaver which applied to

predict telecommunication equipment failures [82], reduce the size of the returned

rule set significantly. A probabilistic approach of unexpectedness is adopted in [11 .

A pattern P is deemed interesting if the ratio of the actual number of occurrences of

P exceeds the expected number of occurrences of P by some user defined threshold.

It is assumed that each event in the sequence occurs with some probability and

certain conditional distribution exist between neighboring events. Based on this, an

expected number of occurrences of a certain pattern in a sequence can be computed.

Unexpected patterns like "((vtrace N E X T lseek) N E X T lseek)" is found from a

CHAPTER 2. RELEVANT WORK 21

^̂ [̂ î|̂ ^̂ ^̂ ___̂ ^ X^ ~~~>__[2̂ 2]jljĵ |̂̂ ^̂ ^

x ^ ^ ^ ^ ^ ^ z
[0,5] b-day ~^ y^^^^^\\\Q\ixs

Figure 2.4: An event structure

series of operating system calls made by a sendmail program.

2.2.3 Granularity

The discovery of temporal patterns or relationships that involve multiple granular-

ities is addressed in [13]. It is stressed that events occurring in the same day, or

happening within k weeks from a specific day may capture our attention. With the

use of an event structure which is a set of temporal constraints on a set of variables

representing events, we target for patterns of events that match the even structure.

Consider the event structure depicted in Figure 2.4, variables such as Xo, X i , X2 and

^3 can be assigned as IBM-r ise , IBM-earnings-report, HP-r ise , and I B M - f a l l ,

respectively. This complex event type describes the scenario that the IBM earnings

were reported one buisness day after the IBM stock rose, and in the same or the

next week the IBM stock fell; while the HP stock rose within five business days after

the same rise of the IBM stock and within eight hours before the same fall of the

IBM stock. To facilitate this pattern matching process, the notion of a timed finite

automaton with granularities (TAG) is introduced. A T A G is essentially a standard

finite automaton with the modification that a set of clocks is associated with the

automaton and each transition is conditioned not only by an input symbol, but also

by the values of the associated clocks and the clocks of an automaton may be running

in different granularities.

2.3 Temporal Database

Temporal database records time-varying information. As most applications are tem-

poral in nature, e.g. financial applications, inventory management, scheduling appli-

cations and scientific applications, the development of temporal databases becomes

a vibrant research topic over the last two decades [78, 77, 39, 40] and a number of

bibliographies of research in the field have been published [52, 76, 44, 83]. All this

work has made important contributions in characterizing the temporal semantics of

CHAPTER 2. RELEVANT WORK 22

information and in providing expressive and efficient means to model, store and query

about temporal data.

Temporal database maintenance requires the consideration of different time di-

mensions [78]. Two orthogonal time dimensions have been proposed: valid time, i.e.

the period during which the information input is valid, and transaction time, i.e., the

time of the record is stored. While valid time allows us to keep track of the history

of the application domain throughout its evolution in time, transaction time allows

us to maintain the history of the evolution of the database.

Recent research on temporal databases can be roughly categorized into three areas.

The first area is the formulation of the semantics of time [12] which is closely related

to research issues in knowledge representation. Issues various from theoretical point

of view such as temporal logic [30] and infinite periodic time sequences to rather

applied questions such as how to represent time values in minimal space [10] and how

to utilize calendars [15]. Moreover, data types such as time points, time intervals

and temporal elements (sets of intervals) as the representation of time are discussed

78]. Since the data explicitly stored in a temporal database are often associated with

certain semantic assumptions, each assumption can be viewed as a way of deriving

implicit information from explicitly stored data.

The second area concerns the physical implementation issues which focus on ef-

ficient access methods and data organization strategies in temporal database [23 .

Conventional indexes have long been used to reduce the need to scan an entire re-

lation to access a subset of its tuples, to support the selection algebraic operator

and temporal joins to facilitate efficient temporal query processing. Many tempo-

ral indexing strategies are based on B+-trees, which index on the time point values

23, 22, 10, 68]. One of these indexing techniques is time index [23] which is shown in

Figure 2.5. It is capable of retrieving versions of object that are valid during a specific

time period. It is proposed to improve the performance of certain classes of temporal

queries such as when, during. The valid time intervals of various object versions will

overlap in arbitrary ways. Since one cannot define a total ordering on the interval

values, special attention is paid in the selection of the set of linearly ordered indexing

points on the time dimension.

The third category of the study on temporal database is the logical modeling of

temporal data where most of them emphasize an extension of relational data model

to capture temporal semantics and to support relational temporal query languages

79, 77]. These extended models generally augment relations of the snapshot data

model with several time attributes which store the relevant timestamps such as valid

CHAPTER 2. RELEVANT WORK 23

emp, 1̂1 ^iz ^

omp, 2̂1
emp3 ^3t ^32

emp̂ 041 4̂2

0mp5 hl >,
emp. 6«、 •

emp^ ^
0 1 2 3 4 5 6 7 8 9 10 11 12 13 now

» I 寺 I 1 I t I 寺 I t)寺 I • '

^ ^ ™ V ^ ^ ^ ^ ^ ^

0 3 即 0 j] 0] I 8 || I |lo|| I |l1 |丨 I |12|| I |nc||| ~ n

‘®'"®'"®"' '°"'®'"®''' <e,,�eJ [� � « � � ”] ie,„e„,e,„e„o.,r
(®,,.®2t' ®3l'®4t) i®12'®3l) (®12'®42' ®61} ^®12'®«' ®51'®7I, ®6I ̂

Figure 2.5: Versions of employee objects, and a time index

time and transaction time. New temporal operators are defined in these extended

data models, based upon traditional relational algebraic operators, to allow users

to query time attributes. The languages designed must support predicates on tem-

poral values, multiple calendars, schema versioning, periodic data, point-based and

interval-based semantics and have adequate expressive power and the ability to be

efficiently implemented. One of the notable work on temporal querying language is

TSQL2 [72]. TSQL2 is developed to consolidate approaches to temporal calculus-

based query languages and is a comprehensive temporal extension to SQL2 in which

time is represented by intervals.

2.4 Temporal Reasoning

Closely related to the study of formulation of the semantics of time in temporal

database is the research work on temporal reasoning in Artificial Intelligence (AI) or

Information System (IS) [53]. In temporal reasoning, there is a fundamental choice

between whether time points or time intervals [9, 48] are the primitive objects to

reason about action or time. One of the most influential theories of time, interval

algebra (IA) has been introduced by James Allen [9]. It addresses the problem of

representing temporal knowledge and performing temporal reasoning from the per-

spective of natural language understanding. The notion of relations between pairs of

intervals is introduced. The bases of Allen's approach consists of an interval-based

CHAPTER 2. RELEVANT WORK 24

temporal logic, together with a computationally effective reasoning algorithm based

on constraint propagation.

An interval I is represented as an ordered pair (/_,/+) of real numbers with

I~ < /+, denoting the left and right endpoints of the interval respectively. Relations

between intervals are composed as disjunctions of basic interval relations which are

known as interval operators that operate on two intervals (denoted by inti = (51,e1)

and ir1t2 = (<S2,e2)). A boolean value is returned as follows:

• inti overlaps ir1t2 = ((<Si < <S2 < ei) \J (s2 < Si < e2))

• inti during ir1t2 = ((<si > <S2)八(e! < e�))

參 inti meets int2 三(ei = s2)

• inti < ir1t2 三(ei < 62)

• inti < ir1t2 三 ((< s i < S2) V (^i < e2))

Based on these thirteen basic relations, we get 2̂ ^ = 8192 possible relations be-

tween intervals in the full algebra. Hence reasoning with this algebra (that is, rea-

soning about implied interval relations or determining the consistency of a set of

assertions), however has been shown to be NP-complete. Hence, point algebra (PA)

is introduced which based on the notion of a time point in place of an interval. The

basic relations of the PA that can hold between two points are <, = and >. The

relation between two points is a disjunction of the basic relationships which gives the

set { < , < , > , > , =，+�0，？}.

2.4.1 Natural Language Expression

Temporal representation and reasoning are necessary components of systems that

consider events that occur in the real world. In appointment scheduling and time

management, natural language expressions that refer to collections of intervals are

used prevalently and routinely. Thus, an effective means of representing the intervals

is essential. For example, some classes of expressions such as "the first day of every

month" refer to a collection of intervals explicitly. On the other hand, expressions like

"the U.S. Election Day: the first Tuesday after the first Monday in November" specify

the intervals implicitly. Formula which represent collections of intervals are proposed

48]. For example, assume that time t � i s Saturday, December 31,1994, midnight, the

collection of Thursdays can be described by the formula:

Thursdays = { < a; lday > | a = 5days + t � (m o d 7days)}

CHAPTER 2. RELEVANT WORK 25

The foundation of the collection representation is a set of primitive collections

called calendars. A calendar is a collection consisting of an infinite sequence of inter-

vals that span the time-line. Days, Months and Chinese-Calendar- Years are instances

of calendars.

2.4.2 Temporal Logic Approach

Besides using natural language expression for reasoning about time, a mathematical

model which use temporal logics is proposed. The logics are based on the concept that

instead of a predicate calculus statement being universally true or false, it may be

true or false at different moments of time. Temporal quantifiers are used to augment

the calculus. Temporal operators such as "since", "until", "next" are used.

2.5 Temporal Data Mining

Temporal data mining is the non-trivial extraction of implicit, potentially useful and

previously unknown knowledge from an implicit or explicit temporal content from large

quantities of data [67]. This accommodation of time into mining techniques provides

a window into the temporal arrangement of events and thus an ability to suggest

cause and effect.

2.5.1 Framework

It has been recognized recently that time dependent information is important in data

mining [69]. Temporal patterns concerning temporal features of the rules such as as-

sociations should be investigated and discovered from temporal databases since they

can provide accurate information about an evolving business domain. A prototype

system architecture for mining temporal patterns is introduced [16]. A generic defini-

tion of temporal pattern is presented. Temporal pattern is defined as a triplet (Patt,

PeriodicExp, IntervalExp), where Patt is a general pattern which may be a trend,

a classification rule, an association rule, a causal relationship, etc., PeriodicExp is a

periodic time expression and IntervalExp is a general interval expression. It takes

absolute time as a measure of interest in the discovery of patterns. A temporal data

mining language, Temporal Query and Mining Language (TQML) is suggested to be

integrated into the framework. However, since the snapshots, i.e. IntervalExp, are

derived without any knowledge of temporal patterns existing within the data, many

interesting temporal patterns may be lost. On the other hand, the idea of adding

CHAPTER 2. RELEVANT WORK 26

temporal semantics to existing data mining tasks is suggested in [62]. It introduces

the integration of temporal reasoning into knowledge discovery process. Two conven-

tional data mining algorithms are extended to handle temporal semantics which are

attribute-oriented induction [63] and association rule [64 .

2.5.2 Temporal Association Rules

Since the introduction of association rules [4], it has been extended in different ways to

deal with quantitative and categorical data. However, most of them overlook the time

components, which are usually attached to the transactions stored in the databases.

Thus existing algorithms cannot be applied to temporal databases directly as the

temporal information is being ignored. Until recently, the problem of integrating

temporal issues on association rules has been addressed [19, 65, 64 .

The integration of calendar [15], which is a set of time intervals, into the discov-

ery of association rules is proposed [65]. The concept of calendric association rules

is defined where the rules found associate with the instances of the calendar. By

segmenting the data over different time intervals, we may discover some interesting

pattern which is previously ignored. For example, if beer and chips are sold together

primarily between 6PM and 9PM on week days, when viewing the data over a week,

we may not get enough support for such a pattern "beer ~> chips (support:25%,

confidence:75%)". However, if we segment the data over two intervals, 7AM-6PM

and 6PM-9PM, and consider only the data from weekdays, we may find that the

support for the beer and chips rule in the segment 6PM-9PM jumps to 50%. Hence

by analyzing data using a finer time granularity, we may find that some interesting

rules exist only in certain time intervals but not occur in the whole period of time.

Likewise, by determining any periodic intervals of some rules, the problem of mining

cyclic association rules is introduced [55] which detects the periodical behavior of

rules over time. For instance, if we find any association rules over monthly sales data,

we may observe seasonal variation where certain rules are held at approximately the

same in each year. However, this periodicity has limited power in describing real-life

variations. Complicated patterns such as the first working day of every month cannot

be described by simple periodic expression.

Similar idea with calendric association rules that segments the data into several

intervals is suggested [19, 16, 18]. However, instead of gaining enough support to

discover any interesting rules, the discovery of association rules with known valid

periods and periodicities is concerned. It introduces the notion oftemporal association

CHAPTER 2. RELEVANT WORK 27

rules where absolute time is taken into consideration. We would find rules like"during

summer, customers who buy bread and butter, also buy milk" if we consider the

period between May and September instead of over a year. The temporal information

extracted provides detailed information to reflect the dynamic changing data in reality

rather than a static one. In particular, we may interested in finding the longest

interval that an association rule holds or behaves periodically [18 .

On the other hand, by discovering any relationships between items which satisfy

certain timing constraints such as during, overlaps in a temporal database, we might

find some interesting associations between items recorded in the tuples [84]. We first

group the tuples under certain timing constraint, we then examine the tuples in each

of the group and find any association between groups of items. For example, if the

duration of item A and item B overlap or intersect with each other, then A and B

correlate.

The idea of adding temporal semantics to existing data mining techniques is raised

in [64]. It extends the association rule mining technique to handle temporal semantics

by examining the temporal relation between associated items. By first finding the

associated attributes, we then look for any temporal relationships between them. The

temporal nature of data is then captured. For instance, original association rules may

tell us that Investment_portfol ioJC is associated with Insurance450licy_Y. How-

ever, temporal associations may tell us that Investment_portfol ioJC usually occurs

after the start of Insurance_policy_Y. This may indicate the customers start with an

insurance policy and becomes a gateway for other services such as Investment4)0rtf0li0JC.

2.5.3 Attribute-Oriented Induction

Another extension of work for accommodating temporal semantics into existing data

mining techniques is attribute-oriented induction [63]. A temporal interval gener-

alization framework (TIGF) to facilitate the generalization of time interval data is

introduced. The integration of T I G F into existing algorithm for the induction of

characterization rules is presented.

2.5.4 Time Series Analysis

Time series analysis focuses on symbolic patterns or numerical curve patterns in the

sequences and is useful for many applications such as stock market data, financial

data, telecommunication network data, etc. Besides analysing the change of shapes

or before/after relationship, like mining of cyclic association rules, partial periodic

CHAPTER 2. RELEVANT WORK 28

patterns of sequences is suggested [35]. By taking the partial period as an interval,

methods for finding partial periodic patterns in time series are proposed. An example

of a partial periodic pattern may state that "Jim reads the Vancouver Sun newspa-

per from 7:00 to 7:30 every weekday morning, but his activities at other times do not

have such regularity". Hence, instead of taking the whole sequence into consideration

to look for any periodic patterns, partial periodic patterns is preferred. This idea of

taking an interval of time of an event happens is similar to our problem which focused

on interval-based events. However, unlike ours, periodicity instead of temporal rela-

tions among events is considered. Moreover, the length and timing of the interval for

the partial periodic pattern are determined by the behavior of the repeating pattern

while for us, the length and timing of the interval are based on the occurrences of the

events themselves.

As most of the conventional data mining techniques do not accommodate interval

data which is found to be useful in many applications, based on the previous work

on temporal data mining especially mining sequential pattern, we extend the cur-

rent work to accommodate interval data. In the following chapters, two interesting

temporal patterns are introduced.

Chapter 3

Discovering Temporal Patterns for
interval-based events

In this chapter, we describe the mining problem in more details. We aim to find

temporal patterns, defined in terms of Allen's taxonomy of temporal relationships, in

sequences of interval-based events stored in temporal database. We first formulate the

concept of event sequence in Section 3.1 and introduce Allen's taxonomy of temporal

relationships in Section 3.2. We introduce two temporal patterns, namely AppSeq

and LinkSeq in Section 3.3. It is argued that both patterns are capable of expressing

the complex relationships between interval-based events. An overview framework for

mining such interesting patterns are given in Section 3.4. Finally, we summarize our

discussion in Section 3.5.

3.1 Temporal Database

We adopt a discrete model of time, where each integer represents a point or instant

in time upon the time-line. The granularity of time can be scaled between different

segment sizes such as seconds and years, where the smallest possible granule size is

defined as a chronon. The actual duration of a chronon is application specific.

Temporal database supports three types of time elements which are introduced in

the previous chapter. They are namely transaction time, valid time and user-defined

time. Such database captures the past and present data where the temporal attributes

change values with time. Applications such as medical database, scientific databases

in geophysics and astronomy, data are stored with the associated valid time. For

instance, in health care database, patient record stores when the patient charge in

and the time he/she discharge or any operation which takes a few hours to finish.

29

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS30

Such kind of data is stored in temporal database as historical records.

Each tuple associates a pair of ordered time points stating the period during which

the information stored are valid. In our work, we focus on the valid time of the data

stored as it indicates the evolution of data in time. All the events stored in temporal

database happen in a linear time order where each event lasts for a period of time.

We denote these events as interval-based events.

Here we describe our problem formally and introduce some terminologies used.

Assume that in a temporal database, each database record contains a pair of ordered

time points tg and t̂ where ts < t̂ and both are positive integers. They are the s tar t

t i m e and end t i m e which together specify the valid time of the information stored.

A record may have other attributes, for simplicity, we consider here a single temporal

attribute and denote it as an event . We assume a set E of event types.

Definition 1 [Event] An event E has an associated time of occurrence and it is

specified by a triple {A,ts,te), where A G E is an event type and ts and t^ are the

start time and the end time, respectively. We also use E.tg and E.te to indicate these

times. •

Let us consider an example of a medical database. We are given a temporal

database T>, each record in the database contains a person-id, name of disease and

the start time and end time. Here, we suppose an event represents the contraction

of a certain type of disease. In the general setting, we assume that each event is

associated with one person. We assume the database is a set of sequences, each

sequence consists of events for a particular person. There is at most one sequence for

each person.

Definition 2 [Sequence] A sequence of events is defined as a list of events where each

event is associated with the same person: for personj, we have the following sequence

S j ;

Sj = ({Auts,, teJ, (^2, ts,,te,)...(An, tsn^ten))

The events are ordered by the end times where ^e, < ^e,+i for all i = 1 , . . . , n — 1 . I

This definition is similar to that of customer-sequence proposed in [8], where all the

tuples associated with the same person can be grouped together to form a sequence.

The events are ordered by the end time to ensure the former event ends on/before

the following one as an order for interval-based events.

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS31

Relation |symbol Relat ionfor~~ Pictorial Endpolnts
Inverse Example Constraint

X before Y b YafterX ^|_|丫| | x.t,<Y.t,

X equal Y e Y equal X y j | ^/ ： 二 ，

X|

X meets Y m Y met-by X ' “ | x.t̂ = Y.t3

X X . t 3 < Y . t ,
X overlaps Y 0 Y overlapped-by X | 1 x.t^>Y.t,

y| I x.t。<Y.t。

XduringY d YcontainsX 丫,1——I ^ ^¾ = ^ :

X X t = Y t
X starts Y s Y started-by X | 1 x't，：Yt，

I I ��
X

X finishes Y f Yfinished-byX v̂ I | x K y l '

Figure 3.1: The thirteen possible relationships between two intervals X and Y

3.2 Allen's Taxonomy of Temporal Relationships
Relationship among time intervals can be described in different ways. A l l e n ' s t a x -

o n o m y o f t e m p o r a l r e l a t i o n s h i p s [9] is adopted to describe the basic relationships

among events. It takes the notion of a temporal interval as primitive and obtains a

set of temporal relations between intervals. As it provides a simple and natural syn-

tax for specifying temporal relations between two intervals, the thirteen relationships

are useful for describing the inter-relations between interval-based events. Figure 3.1

summarizes Allen's thirteen temporal relationships. The relations between intervals

can be expressed in terms of relations between their endpoints, we call this the end-

point constraints. For instance, consider the sequence {Ei =(A,5 ,10) , E2 =(B,8,12)) ,

we have "A overlaps B " since Ei.t^ < E2.ts, Ei.t^ > E2.ts and Ei.te < E2.te.

It is known that these thirteen relationships can be used to express any relationship

held between two intervals and they provide a basis for the description of temporal

patterns. Some of the relations are mirror image of the other, for example, “X overlaps

Y " implies the same relation as " Y is overlapped-by X ” . We only focus on seven

primitive temporal relations with the order of items preserved. T h e seven relations
are shown in the shaded area in Figure 3.1. Let us call this set of seven temporal

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS32

relations Rel . If rel G Rel and events X and Y in a sequence have endpoints

satisfying the constraints of X rel Y, then we say that X rel V is t r u e in this

sequence. For simplicity, we use symbols to represent the corresponding Rel in the

figures of the following chapters.

As the endpoint constraints suggested, the order of events is important in the

representation of temporal relations. We observe from the given seven primitive

relations, for any two intervals X and Y , (X.te < V.te) or (X.ts > Y.ts if X.te = Y.te).

Hence, in the following sections, we further restrict the order of the events as setting

their end times in strictly ascending order while start times in descending order if

equal end times.

We obtain a set of b i n a r y p r e d i c a t e s if we consider any temporal relations

between two events only. By combining the binary predicates, a sequence of events

can be expressed as different t e m p o r a l p a t t e r n s V. As we observe that, discovering

all possible patterns can be computationally inhibitive and also the amount of results

to the user can be overwhelming. We restrict our attention to the following two

temporal patterns as they both provide simple and meaningful results showing the

temporal behavior between events.

1. A p p S e q : ((• • • (Ai reli A2) rel2 A3) • • • relk-i Ak). We expands one event at

a time and find the temporal relations between the preceding events to the

following one. We may obtain pattern like "(((A overlaps B) before C) overlaps

D". From the sequence, we get the idea of how the events are related to each

other along the time-line. This is the first temporal pattern we are going to

study and discuss in the next chapter.

2. L i n k S e q : ((Ai re/i A2) k {A2 rel2 A3) •. • k (Ak-i r e k - i Ak)) where k is A N D

operation. We form the sequence by linking the common events in each binary

predicate. Patterns like "(A overlaps B) h (B before C) k, (C overlaps D)" are

found. From the sequence, we obtain the individual temporal relations between

two events clearly. It is the second temporal pattern we would investigate in

Chapter 5.

We believe that both patterns are useful to describe the temporal behavior among

events. They are simple and easy to understand. Besides knowing the ordering of

events happen, we obtain a better understanding of how the events interact with each

other. As both patterns are formed from binary predicates, they are closely related

to each other or are different representations of a sequence. We first introduce the

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS33

A C

‘ I I I i I I r J o ' i ^ ' V i ^ ' j o ' •书'
B D

Figure 3.2: A sequence of interval-based events

framework for mining AppSeq. Then we continue to study the second pattern LinkSeq

and describe it in details in Chapter 5.

3.3 Mining Temporal Pattern, AppSeq and LinkSeq

The first pattern is formed by combining the events one by one with the associated

relations between the former group of events to the following one. The appending

event has a greater end time than that of any preceding events. Consider a sequence

shown in Figure 3.2, we combine the binary predicate “(A overlaps B)" with the

following event "C" having the associated temporal relation as "before" by considering

the endpoint constraints of the binary predicates and the following event. In result,

we have the pattern “((A overlaps B) before C) overlaps D". As the pattern formed

by appending one event at a time, we call this AppSeq.

over laps
^ ^ ^ ^ " " " " " " T = ^ 一 - | be fo re

be fore] D] _ _ . , - - - ^ ^ _ J T r T r t r ： = ^

_ _ _ ^ ^ ^ " " " " S ^ _ _ i | over iaps 丨 dur ing] - ^ ‘ "•̂ “X one event _ ,^ I ^ ~~,_
over laps 丨 C 丨 _ ^ - - ^ ^ ~ ~ - ^ i . ^ - - - ‘ ^ ^ ~ ~ ~ ~ ^

^ _ ^ " " - - ^ ‘ j A B 丨 C D
-— ^ r one event I j

A ° two events

" " r W i " A ' i ^ ' j o ' " > - | | | | [? ^ : : 1 | |] 洞 � 1 1 0 ,
I B D , 丨 R 丨 f^ n ~~

匕一嘛 — ‘ w • \ u J

((A ove r laps B) be fo re C) over laps D (A over laps B) be fore (C dur ing D)

� (b)

Figure 3.3: Different temporal pattern representation

3.3.1 A1 and A2 temporal pattern

Taking one step further, besides expanding patterns by only a single event, we may

be interested in discovering temporal pattern where two patterns of sizes greater than

one are combined via a temporal relation. We can see that in Figure 3.3，two different

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS34

patterns "((A overlaps B) before C) overlaps D,, and "(A overlaps B) before (C during

D)" hold in the sequence by considering different ways of combinations.

It is easy to see that the number of such possible descriptions is exponential in

the sequence size. We restrict our interest to those patterns formed by appending one

event at a time and we find temporal relations between a preceding group of events

with the following one. That is, we consider temporal patterns of the form

((...(Ai re/i A2) rel2 43)丨 re/^-i Ak)

We further call these the A 1 t e m p o r a l pa t tern . There are two main reasons for

this restriction:

1. We believe that the temporal relations give some insight into causal relation-

ships. As such, when a few events have happened, together they may become

the cause of a following event. The temporal patterns in the above form gives

us a modeling of this idea.

2. Discovering all possible patterns can be computationally inhibitive and also the

amount of results to the user can be overwhelming. To verify the argument

about the computation complexity, we have implemented the mechanism to

discover temporal pattern obtained by appending composite pattern of size two

at a time, it results in the patterns such as “(A overlaps B) before (C during

D)". We show by experiments that even a small extension in this way results in

a much increased computational cost.

We name the other temporal pattern as A 2 t e m p o r a l p a t t e r n . Both A1 and A2

temporal patterns are derived from AppSeq, but they are slightly different in nature

and we look for both of them. This leads to the differences between our mining

methods which would be discussed in the next chapter.

3.3.2 Second Temporal Pattern, LinkSeq

One the other hand, our second temporal pattern known as LinkSeq is formed by

linking two or more binary predicates with the common event as the binding point.

Such a composition results in the form of “(A overlaps B) & (B before C) & (C

overlaps D)" for the sequence shown in Figure 3.2. We extract the temporal knowledge

by taking two events as a pair and investigate the relations between such binary

predicates as a sequence.

LinkSeq looks similar to that of AppSeq in a sequence. We obtain both patterns by

emphasizing two different temporal structure formed among events. In fact, AppSeq

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS35

r — ~ ~ ~ B ~ "c"~~~i

i T ^ ^ u �
rrxiz. n ^

j - - B - - C

- ^ i 5 Z] - J ~ ~ ! i �
A D r - - - B - " C — ,

r B C I (1 I V
L ^ � ^ ~ " ~ ! r ^ - h ^ ^ ^ ^ H ^

A D
linkSeq:(A overlaps B) & (B before C) & (C overlaps D): 1 l inkSeq:{A overlaps B) & (B before C) & (C finishes D)

(A overlaps B) & (B before C) & (C starts D); 1

(A overlaps B) & (B before C) & (C during D): 1 appSeq: ((A overlaps B) before C)

appSeq: (((A overlaps B) before C) overlaps D): 3 ((A overlaps B) before D)

(a) (b)

Figure 3.4: Differences between LinkSeq and AppSeq

is more general than that of LinkSeq. We illustrate this idea by giving an example.

Consider the sequence shown in Figure 3.4(a). For AppSeq, we form the composite

pattern "(A overlaps B) before C" which is going to append event D to form a new

sequence. However, when we consider LinkSeq, the relation between C and D may not

gain enough support to be discovered during the mining process. Hence the process of

obtaining longer sequence of LinkSeq terminates. Unlike LinkSeq, AppSeq generalizes

and groups some distinct relations as one relation which then gains enough support

for the pattern. In result, more patterns can be found by AppSeq.

On the other hand, AppSeq expands one event at a time with the appending event

having a greater end time than that of any preceding events. When we come across the

temporal relation "finishes" or "equal" for the last two events of the sequence shown

in Figure 3.4(b), we may only obtain "(A overlaps B) before C" and “(A overlaps B)

before D" for AppSeq. However, for LinkSeq, we can obtain longer pattern as "(A

overlaps B) & (B before C) k (C finishes D)" as we consider pairs of binary predicates.

Hence LinkSeq includes the last event with equal end time as that of the preceding

events. By considering the above two cases, we notice that each of the pattern reveals

some temporal behavior of the events along the sequence and are closely related to

each other. It is argued that both patterns are interesting and useful to describe the

temporal behavior among interval-based events.

3.4 Overview of the Framework

As mentioned before, we pay special attention in mining two temporal pattern,

AppSeq and LinkSeq. With the different formation of the patterns, we proposed

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS36

several methods using different strategies to tackle the problem. We here briefly

describe our approach for mining both patterns.

3.4.1 Mining Temporal Pattern I, AppSeq

Regarding AppSeq, we form the pattern by appending one event at a time. Based

on this idea, besides expanding one event, we examine a second pattern formed by

appending two events (i.e. a binary predicate) each time This results in an even

number of events in the pattern which we denote it as A2 temporal pattern. It is

actually an extension of the original pattern which we name it as A1 temporal pattern.

Since both A1 and A2 temporal patterns are similar in formation, we first introduce

the method, AppOne, by considering the simplest form of AppSeq as shown in Figure

3.3(a). We then further extend the method for finding the other kind of pattern as

shown in Figure 3.3(b) as the second method, AppTwo.

A basic strategic similar to the Apriori-like approach [7] is used and using a layout,

which we call item-list, in the mining process for both AppOne and AppTwo. For

comparison, a performance study for both methods through experiments on synthetic

data is conducted.

In addition, as both patterns are formed from binary predicates, we observe that

both methods suffer from the high cost of generation of binary predicates during the

early stage of the mining process. To deal with this problem, we further investigate

an improved mechanism that we can form the binary predicates directly from data

without undergoing any candidate generation phase. We would discuss the methods

in details in Chapter 4.

3.4.2 Mining Temporal Pattern II, LinkSeq

With different formation of our second temporal pattern, LinkSeq, we extract the

temporal knowledge using different data structures which results in several methods

to perform the mining task.

First, intuitively, we may find LinkSeq by deriving from AppSeq. As all the fre-

quent events which form the AppSeq must form the corresponding binary predicates

with each other, we can form LinkSeq by linking the binary predicates with the order

of events preserved which is already inherited in AppSeq. However, as mentioned

in the previous section, AppSeq may miss the last event if its end time is the same

as that of the preceding one. We may not find the complete set of LinkSeq as it

suggests. Despite of this, the method is useful when we consider both LinkSeq and

CHAPTER 3. DISCOVERING TEMPORAL PATTERNS FOR INTERVAL-BASED EVENTS37

AppSeq together as result. We denote this method as LinkApp.

As the formation of LinkSeq from combining the binary predicates suggests, we

can modify the previous AppOne method to accommodate the needs for the second

pattern, using the Apriori-like approach. We call this L inkTwo method.

Besides using an Apriori-like approach which divides the mining process into can-

didate generation phase and support counting phase, inspired by the recent work on

mining frequent pattern [37], we propose to use a tree-like structure, namely seq-

tree to store the sequence data. By exploring the compact information stored in the

seq-tree, we develop an efficient mining method for the pattern LinkSeq as LinkTree.

We would discuss these alternatives for mining LinkSeq in Chapter 5. Experimen-

tal results showing the performance of these methods are presented also.

3.5 Summary

In this chapter, we introduce the two temporal patterns, called AppSeq and LinkSeq.

Unlike most previous approaches of mining sequential patterns which considers only

point-based events, we consider interval-based events, which we believe are important

in many applications. We employ Allen's taxonomy of temporal relationships as a

mechanism to express temporal patterns between interval-based events. We discover

that the number of temporal relationships can be prohibitively large and also many

of such patterns may be complicated and of little value to the users. We therefore

consider two types of temporal patterns which is simple and meaningful. We describe

the mining methods for the two patterns in details in Chapter 4 and 5.

Chapter 4

Mining Temporal Pattern I,

AppSeq

In this chapter, we discuss our first temporal pattern, AppSeq, which further subdi-

vides into A1 and A2 introduced previously. We start by giving the notion of tem-

poral pattern in the following section. Methods for mining the A1 and A2 pattern

are described in Section 4.2 and 4.3 respectively and a modified approach proposed

in Section 4.4. Experimental results are presented in Section 4.5. Finally, Section 4.6

summarize our discussion on mining AppSeq.

4.1 Problem Statement

As mentioned in Chapter 3, we assume each event E has an associated time of oc-

currence as E.ts and E.te. We obtain binary temporal predicates if we consider two

events only. To express complex relation among more events in a sequence, we form

A1 temporal pattern by appending one event at a time via a temporal relation and

have following definition:

Definition 3 [Temporal Pattern, A1] A temporal pattern is defined recursively as

follows:

• If E is a single event type in E , then E is a temporal pattern, it is also called

an atomic pattern.

• I f X and Y are two temporal patterns, and rel € Rel^ then {X rel Y) is also a

temporal pattern. This is a c o m p o s i t e p a t t e r n .

The size of a temporal pattern is the number of atomic patterns in the pattern. I

38

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 39

Based on this definition, we have "A" and "B" as atomic patterns for the sequence

shown in Figure 3.2. The sizes of all atomic patterns are the same as 1. Composite

patterns include "A overlaps B" and “((A overlaps B) before C) overlaps D" with

size of pattern being 2 and 4 respectively. We mainly focus on finding any composite

pattern which consists of a group of atomic patterns.

Definition 4 [Mapping] An atomic temporal pattern X has a mapping in a se-

quence S if we can find an event E of type X in the sequence. We denote this map-

ping by M(X,S) = {E}. We associate a time duration to the mapping as follows:

M{X,S).ts = E.ts M(X,S).te = E.t, We say that X holds in S.

A composite pattern (X rel F) in which Y is an atomic pattern and rel G Rel

has a mapping M((X rel Y),S) in a sequence S ifX has a mapping M(X,S) in

S and we can find an event E 雀 >l(X,5') of type Y in S to be mapped a s A^(K,5')

such that if we consider some imaginary event Z with start time ofM(X^ S).ts and

end time ofM[X,S).U, then Z rel E is true.

In this case, M{X rel Y, S) = M(X, S)U{E}. We say that the relation {X rel Y)

holds in S. The mapping M{(X rel Y),S) has an associated time interval given by

M{{X rel Y),S).ts = min{M(X,S).ts,M(Y,S).ts}

M({X rel Y),S).U = M{Y,S).U

•

In the above mapping of a composite pattern in a sequence, union of two time

intervals takes place. We form a minimum time interval that includes the events in

the composite pattern. The resultant interval is determined by the minimum of the

start times and the maximum of the end times of X and Y respectively. For example,

for the sequence shown in Figure 3.3(a), we obtain a composite pattern “(A overlaps

B) before C" with the resultant interval being [5,18 .

Moreover, user can specify the maximum length of time interval that is of interest,

known as the window-size, win_size. The intuition is that if some events do not

happen close enough to each other, we would not be interested to find any correlation

between them.

Definition 5 [window-size] Ifw is a given window-size, a temporal pattern P holds

within w in a sequence S if there is a mapping M{P, S) such that M[P,S).te —

M{P,S).ts<w. •

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 40

D e f i n i t i o n 6 [fc-item] Let A “ i 二 l , . " ,A; be a bag ofk event types in E , reU G R e l ,

i = l,..,k-l, a k-item has the form

{ { A i , A2,…乂^^, {re/i,re/2, ".relk-ih ^)

where V is a temporal pattern in terms of the events types A1,A2, ...,Afc and the

relations re/i , . . . , relk-i, and k > 1. •

Given a window-size w, let M be a subset of the set of events in a sequence 5 ,

M s u p p o r t s an A:-item {{Ai，A2，〜Afc}’{re/i,re/2r.re/fc_i}’P} if M is a mapping

for the temporal pattern V and M.te - M.ts < w. We also say that each event in M

supports V. For example, if the window-size is 100’ the given sequence in Figure 3.2

supports both the temporal pattern "((A overlaps B) before C) overlaps D" and "(A

overlaps B) before (C during D)" .

The s u p p o r t of a temporal pattern V in a set of sequences V is defined as the

total number of different mappings in all sequences in V for the pattern over the total

number of sequences in V . i.e.,

… … l { M ^ S\S G V, M supports V}
support(V^V)= —

The s u p p o r t of a k-item is the support of the temporal pattern in the A:-item.

A l a r g e A:-item is a fc-item having support greater than a threshold, namely

min.sup provided by users, that is, support(V,V) > minsup. Our aim is to find the

large /c-items for all k.

4.2 Mining A1 Temporal Patterns

Here we propose a method, AppOne, for mining frequent A 1 temporal pattern as

shown in Figure 3.3(a). Let us use an example to illustrate how the method works.

The example is a patient database of the form shown in Table 4.1. Each tuple contains

a person-id, the disease contracted by the patient and the duration o f t h e disease. The

database can be used to find if some diseases are likely to cause some other diseases

and their temporal relations. It is assumed that the minimum support is 33% and

the window-size is set to be 30 time units.

We use a layout of event sequence that is different from the one used in finding

sequential pattern [8]. Instead of transforming the original database into a list of

sequences, the seq-l is t , where each sequence corresponds to one person, we use an

i t e m - l i s t to represent the temporal data. Each event is associated with a list of

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 41

person-id disease start end

1 A 5 10

1 g g 12 person-id seq-list

i C ^ ~ ~ ^ 1 (A,5,10),(B,8,12),(C,20,24),

i E U ~ ~ ~ ^ (E,17,28),(F,14,28),(B,28,32)

i F H ~ ~ ^ 2 (A,12,20),(B,16,22),(C,24,28),

1 B ^ ~ ~ ^ (E,28,31),(F,27,31),(G,33,35)

^ 2 X U ~ ~ ^ 3 (A,8,12),(I,8,12),(D,8,18)

2 B i ^ ~ ~ ^ 4 (D,7,12),(A,17,22),(J,22,24),

2 C 24 28 (G,15,26)

2 E ^ ~ ~ ^ 5 (D,10,15),(A,17,22),(G,15,26)

2 F ^ ~ ~ ^ 6 (A,14,18),(B,16,22),(C,32,36),

2 G ^ ~ ~ ^ (E,28,38),(F,26,38)

3 A ~ ~ 8 " T T seq-list

3 I 8 12 item pid-list

3 D 8 _ _ ^ ~~k~~(1,5,10),(2,12,20),(3,8,12),

4 D 7___l_l_ (4,17,22),(5,17,22),(6,14,18)

4 A 17 22 B (1,8,12),(1,28,32),(2,16,22),

4 J 22 24 (6,16,22)

4 G 15 26 C (1,20,24),(2,24,28),(6,32,36)

5 D 10 15 D (3,8,18),(4,7,12),(5,lQ,15)7~
5 A 17 22 E (1,17,28),(2,28,31),(6,28,38)

5 G 15 26 F (1,14,28),(2,27,31),(6,28,38),

6 A 14 18 G (2,33,35),(4,15,26),(5,15,26)

6 B 16 22 I (3,8,12) 一

6 C 32 36 J (4,22,24)

6 E 28 38 item-list

6 F 26 38

Original database

Table 4.1: Transform the database as seq-list and item-list

\

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 42

person-id, start time and end time {pid, ts, te). Table 4.1 illustrates the differences

between the two approaches using the above example of patient records. Note that

each item is an atomic or composite pattern and the tg and t̂ in the item-list indicates

an time interval for this pattern. Similar idea of transforming the database into the

form which we called item-list is used in [85 .

A basic strategic similar to the Apriori-gen approach [7] is used. With seq-list, we

need to scan the database once in each iteration. The item-list approach avoids this

problem since it enables us to count support by direct composition of the lists. The

size of these lists and number of candidates shrink as the sequence length increases,

which facilitates fast computation. This motivates us to choose item-list format to

store the large A;-items for efficient support counting.

Initially, we compute the large 1-items in a single database scan by storing the

large atomic patterns into an item-list. Let us refer to the set of large A:-items as Lk.

We then generate candidates by combining a (k — l)-item in Lk-i , with a single event

in Li. A fc-candidate is of the form {A, B} where A is a (k — l)-item and B is an

l-item. For a given database, let us refer to the set of all A:-candidates generated by

our method as Ck-

A major task in the generation of large fc-items is to determine if any A:-candidate

is contained in a sequence. For each candidate, we examine the L^-i and Li item-

lists and determine the temporal relations between the composite pattern and atomic

pattern that have sufficient supports. We then generate new large A>items and obtain

the Lk item-list by merging the composite and atomic patterns with the temporal

relation. The composition of two item-lists to form Lk is depicted in Figure 4.1.

We only need to scan the database once to create the Li item-list in the first

pass. For further iterations, we simply join the item-lists to obtain the large A:-items.

Hence the computation time mainly depends on the size of the item-lists for Lk and

Ck which would shrink for later iterations. The main algorithm is shown in Figure

4.2. The algorithm terminates when we cannot find any large A:-items after the end of

the current pass. The discovery process is mainly divided into the following phases:

Sort phase: We first group the records with person-id as the major key and end time

as the minor key for sorting in ascending order while start time in descending

order as shown in Table 4.1.

Initial phase: During the first pass, we determine the large atomic patterns called

1-items, which would be used repeatedly for forming composite patterns in later

iterations. We store the large 1-items as item-list as shown in Table 4.2.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 43

item count item count item count
A before C 3 E 3 (A before C) ‘ ~ "

(1.5,24) (1.17.28) c ^ ― 二 丨 “ ^
(2,12,28) (2,28,31) (1’5，28)

(6,14,36) (6,26,38) (6,14,38)

\ / 3-large item:
\ / (A before C) overlaps E
(A before C) & E relation

(1,5,24) -> (1,17,28) overlaps
~(2,12,28) -> (2,28,31) meets
~(6,14,36) -> (6,26,38) overlaps

3-Candidate: (A before C) & E

Figure 4.1: Composition of two item-list, h^ and Li

item count item count item count item count item count

~ A 6 ^ 4 C 3 D 3 - E 3 “

(1,5,10) (1,8,12) (1,20,24) (3,8,18) (1,17,28)

(2,12,20) (1,28,32) (2,24,28) (4,7,12) (2,28,31)

(3,8,12) (2,16,22) (6,32,36) (5,10,15) (6,28,8)

(4,17,22) (6,16,22)

(5,17,22)

(6,14,18) I

Table 4.2: Partial Large 1-item list

C a n d i d a t e g e n e r a t i o n : In each subsequent pass, we add one large atomic pattern

to a composite pattern in the Lk- i set to form a new potentially large item, such

fc-items are called the candidates. Details are described in the next subsection.

L a r g e A>items g e n e r a t i o n : After generating the candidates, we scan the item-list

for counting the support for the candidate, i.e. the number of sequences that

support the temporal patterns within the window. At the end of the k-th. pass,

the algorithm determines the large A:-items. We would further elaborate the

mechanism of generating large items in Section 4.2.2.

4,2.1 Candidate Generation

We use an array to store the candidates. The logical form of the candidates is shown

in an example in Table 4.3. The candidate generation to obtain Ck from Lk-i is done

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 44

Main Algorithm Input : A set of atomic patterns. Output: All large fc-items in UkLk

Algorithm 4.1 Main Algorithm
1 Li 二 {l-large items} //tuples containing items with minimum support

2 for (k=2; Lk-i / 0; k++) do

3 If k=2 then generate C2 from Li (Refer to section 4.2.1)

4 else Ck — candidate_gen(Lfc_1,L2, L i)

5 Lk = large」tems(C*fc) (Refer to section 4.2.2)

6 end

Figure 4.2: The main algorithm

item 1 item 2

A overlaps B C ‘

A overlaps B E

A overlaps B F

A before C E

A before C F

B before C E

B before C F
• •
t •

Table 4.3: The 3-candidates

by adding one large 1-item each time. We generate the candidates by combining

the events in atomic patterns with those in composite patterns. For the first set of

candidates, we consider all the combinations from Li to form C2. Since our binary

temporal pattern of the form A rel B implies that the end time of B is at least as late

as that of A, we make sure that this is true when we generate a candidate of the form

{A, B}. In the following passes, large A;-items are formed for k > 2. Such A:-items are

composite patterns. We generate Ck from Lk-i- In this case, knowledge regarding

the temporal relations between the composite patterns and the atomic patterns is

applied. We would prune any irrelevant candidates in this phase.

The algorithm for the candidate generation is given in Figure 4.3, in which we

describe the pruning step. For instance, for the 2-item with a pattern of "C during

E" shown in Table 4.4, we aim to find any temporal relation between the 2-item and

event A. In the previous pass, we have found that no pattern of the form "C rel A"

or "E rel A" is large, we therefore exclude the possibility of having the candidate

of "(C during E)" with "A" in the generation of large 3-item. Table 4.3 shows the

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 45

I npu t : Lk-1,L2 , L i (where k > 2)

Output: Ck (candidate set)

Algorithm 4.2 candidate_gen(Lfc_1,L2, Li)
1 for each pair of composite patterns 6,- G Lk_ i and atomic patterns aj G L i do

2 Let bi be the k - 1-item with {{..{anrelriai2)...relrk-2aik-i) where relri G Rel

3 if {anrel i ja j) G L2 or {aik-irehjaj) G L2 for any rehj then

4 Generate the candidate element {bi ,a j}

5 end

6 end

Figure 4.3: The candidate generation algorithm

item count item count item count item count

A overlaps B 3 A before C 3 B before E 3 C during E 2

(1,5,12) (1,5,24) (1,8,28) (1,17,28)

(2,12,22) (2,12,28) (2,16,31) (6,28,38)

(6,14,22) (6,14,36) (6,16,38)

Table 4.4: Partial large 2-item list

generation of 3-candidates.

L e m m a 1 Algorithm J^.2 generates all the potentially large k-items.

P r o o f In Algorithm 4.2, we try to form a /c-candidate from one {k - l)-item and an

1-item. Let X be the (/c- l)- i tem and Y be the 1-item. Let event type au be the first

event type in X and aik-i be the last event type in X. In the pruning, we make sure

that either au or aik-i can form a pattern with Y by one of the seven relations and

the pattern has support > min.sup. Suppose that (X rel Y) has support > min.sup.

There are seven relations in Rel . Let us consider each of them

1. X before Y: if X before Y holds in a sequence then each of the events mapped

to X will be before those mapped to Y.

2. X equal Y\ if X equal Y holds in a sequence then this means the starting time

of the event mapped to an in X is equal to the starting time of the mapping to

. Y and hence the relation of starts is true for them.

3. X meets Y: if X meets Y holds in a sequence then this implies that the event

mapped to aik-i in X meets the mapping of Y.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 46

4. X overlaps Y: if X overlaps Y holds in a sequence then the event that is mapped

to dik-i in X may overlaps/starts/during with the mapping of Y.

5. X during Y\ if X during Y holds in a sequence then all the events mapped to

X have the during relation with the mapping of Y.

6. X starts Y: if X starts Y holds in a sequence then the event mapped to a“ in

X starts the mapping of V.

7. X finishes Y: the event with the latest end time in X finishes Y.

Therefore in all cases, X, Y will be generated as a A:-candidate. •

4.2.2 Large A>Items Generation

This phase is further divided into two subphases. They are the support counting

phase and the generation of large items.

Support Counting: First, we need to find the supports for the candidates gen-

erated. We determine the number of sequences that support each temporal relation

of the composite pattern in each candidate. We compare the endpoint values of el-

ements in Lk-i and Li and determine if any temporal relation holds between the

composite and atomic items. Large A:-items are formed if their support is greater

than the threshold given.

To facilitate efficient counting, we use a hash tree to store Li and also the relevant

part of the 1-item-list and a hash tree to store L^-i and part of the {k — l)-item-list.

We use the value of the event as a key for hashing in the hash tree for L [For the

hash tree for composite patterns, we use the values of all the events included and the

temporal relations together to form a key by simple concatenation. The leaf nodes of

the hash tree corresponds to some large fc-item I and it also records the mappings for
i

the pattern in /. The mappings are stored in the form of item-list, with the person-

‘ ids, start times and end times. For each candidate, we use the composite pattern

and event as search keys and find from the hash trees the corresponding Lk-i and Li

items.
I

During the search in the hash tree, hashing is done in the internal nodes until we

reach the leaf nodes where we perform exact matching for the composite or atomic

pattern. We consider a pattern P for a large [k — l)-item and a pattern P' for a

large l-item. We can identify any temporal relation that holds between a mapping

for P and a mapping in P', since the start times and end times are recorded in

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 47

Input: Ck

Output:Lfc

Algorithm 4.3 large�tems(Cfc)

1 for each candidate c € Ck do

2 for each relation re/j € Rel do

3 c.count.reli = support count of c with respect to re/,- from Lk-i, La

4 satisfying the winsize threshold.

5 if c.countjreli > minsup then

6 Lk = Lk U {bi reli aj) where

7 bi G Lk-i and aj E L i , bi and aj are the elements of c,

8 {bi reli o,j)-ts = min(fe,i5, aj.tg) and

9 {bi reli aj).te = o,j-te

10 end

11 end

12 end

Figure 4.4: Support counting for the candidates

the corresponding hash trees. If some composite pattern is found, the count for the

candidate with respect to the specific temporal pattern is increased by 1. The counts

are kept as auxiliary information to the table for the candidate items. There are

seven counts for each candidate, one for each of the temporal relationship.

F o r m i n g L a r g e fc-Items: The second subphase is to form large A;-items. Table

4.4 shows a partial set of the large 2-items. After identifying any temporal relation

between the items in Ck, we generate L^ from Lk-i and Li with the corresponding

temporal relation. Each new item in Lk is a composite pattern and is used for the

next pass. The resultant interval is obtained from the union of two intervals of (A:-1)-

item and 1-item. For instance, as shown in Table 4.4, the start time and end time of

the mapping of composite pattern "A overlaps B" are {[5,12], [12,22], [14,22]}. The

‘ algorithm for forming the large items is summarized in Figure 4.4.

L e m m a 2 Algorithm \.l generates all large k-items.

Proof : If a fc-item I is large, then its support is at least minsup, and in any sequence

that supports the I, the set of events E mapped to the temporal pattern in I would

appear within an interval that is smaller than the user specified window size threshold.

Therefore, for a subset D of E, the support is at least as great as that of E, and the

events would also appear within an interval that is smaller than the window size

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 48

threshold. All such subsets D has been considered in the candidate generation, and

hence we are guaranteed to discover all large A:-items. •

L e m m a 3 Every large k-item generated by Algorithm 4.1 represents a frequent tem-

poral pattern.

Proof : Based on the formation of large A:-item, we generate a resultant interval

of the composite pattern from the union of two intervals of k — 1-item and 1-item.

Hence, the resultant interval obtained should be the minimum interval that includes

both k - 1-item and 1-item, i.e. the associated time of occurrence of k-item formed.

On the other hand, for the support counting phase in A:-th iteration, we determine

any temporal relations between k - 1-item and 1-item by examining their endpoint

values. As the end time of the 1-item is equal to or greater than that of A:-item,

by using the endpoint constraints shown in Figure 3.1, we obtain the corresponding

temporal relations having enough support to form large items. In result, we obtain

the temporal relation between preceding events, k - 1-item, with the appended event,

1-item, as AppSeq. Hence every A:-item formed generates a corresponding frequent

temporal pattern. •

With the lemmas above, we show that the method, AppOne, correctly finds the

complete set of frequent A1 temporal patterns. As we can see from the mining

process, there are only two scans of the original database. In the formation of large

items, composition of two item-lists takes place for each candidate. Thus the main

cost of the above method is the composition of item-lists, |Lfc_i| and |Li|, which is

determined by the size of candidate set, \Ck\ and |Li|. As mentioned before, the size

of the item-lists are comparatively smaller than that of the original database and the

size of candidate set would shrink in later iterations. Hence, at the early stage of the

mining process, more time and memory are spent on the generation of large number

of Lk.

4.3 Mining A2 Temporal Patterns

In the previous section, in mining the A1 temporal pattern, we generate large k-

items by adding one atomic pattern in Li at a time. Here we consider a slightly

more complex form of temporal patterns which we call A2 temporal pattern. The A2

temporal pattern is defined recursively as the following: (1) a temporal pattern of size

2 is an A2 temporal pattern. E.g. “A overlaps B". (2) if X is an A2 temporal pattern,

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 49

item count item count item count

(A overlaps B) 2 (A before C) 2 (A overlaps B) 3

before overlaps before

(C during E) (B before E) (E finishes F)

(1,5,28) (1,5,28) (1,5,28)

(6,14,38) (6,14,38) (2,12,31)

(6,14,38)

Table 4.5: Partial large 4-item list formed by AppTwo

and Y is a temporal pattern of size 2, then {X rel Y) where rel G Rel is also an

A2 temporal pattern. Example of such a composition is shown in Figure 3.3(b). The

patterns we generate are in even number of events, i.e. 2A:-items. We therefore focus

on temporal relations among events by adding one 2-item each time. By modifying

the previous method, AppOne, to accommodate the adding of 2-item in this case,

we derive method method, called AppTwo, for mining A2 temporal pattern. In fact,

AppTwo works similarly as AppOne, except for the candidate generation phase and

the formation of large 2/c-items.

4.3.1 Candidate Generation:

In the formation of C2, the process is the same as before. Next we start to generate

C2k, where k > 2, we examine L2k-2 and L2 and use compositions of the elements in

the two item-list of L2k-2 and L2. When we prune any irrelevant candidates in this

phase, we need to consider two newly added atomic patterns this time, say aji and

aj2, where ajireljaj2 G L2. The two added items can be combined with a composite

pattern, say bi, where bi G L2fc-2 if both of the following conditions hold:

1. there is a relation between the leftmost atomic pattern of bi and at least one of

Gji and flj2.

2. there is a relation between the rightmost atomic pattern of b{ and a^i or cij2.

For example, consider the 2-item "A overlaps B" shown in Table 4.4. Since we can find

“A before C" and "B before E" as large 2-items, we then include the combination

of "A overlaps B" with "C during E" as one of the 4-candidates. The candidate

generation algorithm for the second method is shown in Figure 4.5.

L e m m a 4 Algorithm 4-4 generates all the potentially large 2k-items.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 50

Input : L2k-2,L2 (where k > 2)

Output: Ck (candidate set)

Algorithm 4.4 candidate_gen_second(L2)t-2, ^2)
1 for each pair of composite items 6j € L2k-2 and composite item bj 6 ^2 do

2 Let bi be the 2k - 2-item with (..(cii2re/r2ai4)—re/r2fc_4aiU-2) where re/n G Rel

3 and bj be the 2-item with {ajireljiaj2)

4 if [(ai2re/ijaji) e L2 or {ai2relijaj2) G L2 and

5 {ai2k-2rehjaji) e L2 or {ai2k-2rehjaj2) e L2] for any relij then

6 Generate the candidate element {bi,bj}

7 end

8 end

Figure 4.5: The candidate generation algorithm of AppTwo

P r o o f In Algorithm 4.4, 2A;-candidates are generated from one 2k - 2-item and one

2-item. Let X be the 2k — 2-item and Y be the 2-item. â 2 has the earliest start time

in X and ai2k-2 has the latest end time in X. aji has the earliest start time in Y and

aj2 has the lastest end time in Y. In the pruning, we make sure that both â 2 and

Gi2k-2 have at least one of the seven relations with either aj i or aj2 in Y . Suppose

that X is related to Y. There are seven relations in Rel. We again consider each of

them

1. X before Y: if X is before Y then all the events in X will be before Y.

2. X equal Y\ this means the starting time of the event â 2 in X is equal to the

starting time of the aji in Y and the ending time of event ai2k-2 in X is equal

to the ending time of the aj2 in Y and hence â 2 starts aji and ai2k-2 finishes

aj2.

3. X meets Y: this implies that ai2 in X before a^i in Y and ai2k-2 in X meets

ctji in Y.

4. X overlaps Y: in this case, the starting time of event ai2 in X before starting

time of ttji in Y and the ending time of event ai2k-2 in X before the end-

ing time of dj2 in Y and hence ai2 (before/meets/overlaps) Oji and ai2k-2 (be-

fore /meets/overlaps/during/starts) cij2.

5. X during Y: the starting time of event â 2 in X before the ending time of event

aj2 in Y and the ending time of event ai2k-2 in X before the ending time of

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 51

event aj2 in Y and hence â 2 and ai2k-2 (before/meets/overlaps/during/starts)

ttj2.

6. X starts Y: the event with the earliest start time in X starts aji in Y and the

ending time of event ai2k-2 in X before ending time of event aj2 in Y and hence,

tti2 starts ttji and ai2k-2 (before/meets/overlaps/during/starts) aj2.

7. X finishes Y: the starting time ai2 in X before ending time of event aj2 in

Y and the event with the lastest time in X finishes aj2 in Y and hence, a,2

(before/meets/overlaps) aj2 and ai2k-2 finishes â 2-

Therefore in all cases, X^ Y will be generated as a 2A:-candidate. I

4.3.2 Generating Large 2A>Items:

We also divide this into two phases namely support counting and the generation

of large items. In general, the second method works in the same manner as the

first method in that we generate incrementally larger 2A:-items by combining the two

composite patterns of a 2A;-candidate. The difference is that we shall use the item-list

of L2k-2 a n d L2.

We observe that some patterns formed by the combination of L2 are quite complex,

not very natural and not easily understandable. Table 4.5 shows the 4-items for the

above example. As we can see, one of the 4-items, "(A before C) overlaps (B before

E)" is ambiguous to represent the relation between events. To deal with this, we

further restricts our A2 temporal pattern with those temporal relations between L2k-2

and L2 to before and meet only. In results, we can obtain meaningful and interesting

temporal patterns. In our example, "(A overlaps B) before (C during E)" can be

obtained.

4.4 Modified AppOne and AppTwo

As we use an Apriori-like approach for generating A1 and A2 temporal pattern in our

methods, we suffer from the high cost of handling a huge number of candidate sets

in the first few iterations, especially, C2, as no pruning strategy is applied. To deal

with this problem, we try to use another way to generate L2 without C2 generation.

A tree-like structure storing all the information for all binary predicates is proposed.

By traversing the tree once, we can obtain the list of L2 directly from data. The

method runs as follows.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 52

1. A scan of database derives a list of Li which are potential candidates for forming

large sequences.

2. We scan the database again. For each sequence, we examine every pair of 1-

items and form a set of binary predicates. Using the above database shown in

Table 4.1, let us take the first sequence as an example, we obtain the binary

predicates as shown in Figure 4.6. After scanning all the sequences, we obtain

the complete set of binary predicates which are potential candidates for forming

L2.

3. We then construct a tree of depth being two using the binary predicates col-

lected. For each distinct binary predicate, a branch is created by taking the

parent node being the precedent event and the child node being the second

event. We store the temporal relation, the corresponding count, pid, start and

end time as a list associated with the child node. If there exist a branch repre-

senting the binary predicate, then increment the corresponding count by 1 and

insert the pid, start and end time to the associated list. The tree formed by

scanning the first sequence of the given database is shown in Figure 4.6.

4. By traversing the whole tree once for each child from the root, we obtain L2 by

giving out the branches having counter values greater than threshold.

As we can see, all the binary predicates are generated from Li for each sequence, they

are in fact potential candidates for forming L2 as both events of the binary predicate

are frequent events. By further examining the corresponding support for the temporal

relations between the pair of events which has been already stored in the tree, we

obtain the list of L2 in result.

For further iterations, we form Lk using the previous two methods for mining

A1 and A2 temporal patterns. The only difference is the formation of L2 which no

candidate is formed in this phase. We can see that the size of tree formed depends

solely on the number of binary predicates. We observe that the maximum size of

the tree is |Li| x |Li| x \Rel\ which may greater than |C2|. However, we suppose

the number of binary predicates formed is far less than that of |C2|, by generating

all possible cases, the formation of L2 without C2 is expected to be more efficient.

This assumption holds when repetition of the binary predicates is high such that less

distinct binary predicates are formed. We obtain modified A p p O n e and modified

A p p T w o by applying the technique to both AppOne and AppTwo respectively. As

a comparison, we study the performance of all these methods in the next section.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 53

pid binary predicates
(A overlaps B), (A before C), (A before E), (A before F), (A before B),
(B before C), (B before E), (B before F), (B before B),
(C during E), (C during F), (C before B)
(E finishes F), (E meets B), (F meets B),

j C ^ ^ ^ " ^
^g^2^^^^^^ o

0:1 b;1 b:1 b;1 b:1 b:1 b:1 b:1 b:1 b:1

(1,5,12) (1,5,32) (1,5,24) (1.5.28) (1,5,28) (1,8,24) (1,8,28) (1,8,28) (1,8,32) (””幻

Figure 4.6: Forming L2 without C2

|D| Number of sequences

|P| Average number of events per large item

Ns Number of maximal potentially large item

N Number of event types

Table 4.6: Parameters

4.5 Performance Study

To evaluate the performance of the proposed methods over a large range of data, we

conducted several experiments on an UltraSparc 5/270 workstation with 520MB of

main memory. All methods in are written in C. We consider synthetic data in an

application domain of a medical database same as that of the given example. For

each person we record a sequence of clinical records stating the different diseases

contracted.

4.5.1 Experimental Setup

The synthetic data generation program took the parameters shown in Table 4.6. The

data generation model was based on the one used for mining sequential pattern [8

with some modification to model the patient database. We first formed a table T of

large items in which the number of items was set to Ns. We generated each large

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 54

0.25| r- 1 1 1 1

: K \ I
’ \

0.06 - ^ ^

°1 2 3 4 5 6 7 t*mpoml nlattont

Figure 4.7: Distribution of temporal relations between events

item by first picking a number of events from a Poisson distribution with mean fi

equal to |P| and we chose the event types randomly. We then picked a temporal

relation between events and formed a pattern. Temporal relations are chosen from

the set Rel . We generated patterns that contain the seven temporal relations accord-

ing to a distribution shown in Figure 4.7. We used the values of {1,2,3,4,5,6,7} to

represent starts, overlaps^ before, during, finishes, meets, equal respectively. The

distribution of Figure 4.7 was determined arbitrarily by our intuitive expectation of

the likeliness of the relations. Each person was then assigned a potentially large item

which was chosen from the table T of items. The time interval of each event followed

an exponential distribution with mean fi equal to 5. For each item, the time where

the first event took place was chosen randomly within the time interval [0,500] of

time units. The following events of the item then followed the temporal relation held

between events. For the temporal relation before, the time where events were sepa-

rated followed an exponential distribution with mean |j, equal to 5. For the relation

overlaps, the time interval where two events overlaps was restricted to an exponential

distribution with mean ^ equal to 3. For the during relation, the time that the latter

event delays under an exponential distribution with mean /i equal to 3. We generated

the dataset by setting A^5=2000, N=1000, |D|=lOK and |P|=5 with 1MB of data.

We studied the efFect of different values of minsup, winsize, number of sequences

and events per sequence, etc., for the two methods.

4.5.2 Experimental Results

First, we studied the efFect of minimum support on the processing time. We used 7

values of minimum support (min.sup) as shown in Figure 4.8, and 100 time units for

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 55

window size {win.size) for the test. Figure 4.8 shows the decrease of the execution

time when the minimum support increases for both patterns. As the support threshold

increases, less large items are generated and hence the size of the candidate set in

each iteration decreases dramatically. The execution time would thus decrease for

less time is required for support counting and hash tree searching of large items.

Comparing the two methods, AppOne and AppTwo, AppTwo needs much more time

than that of AppOne. This is due to large amount of computation time in pruning

the candidates as the addition of two atomic patterns are considered instead of one.

We observe that both modified AppOne and modified AppTwo did help a little in

the mining process, especially for large support threshold. They generate L2 without

forming C2 at the early stage of the process. However, in the following iterations, the

high cost of candidate generation still dominate in the miiiing process, especially for

small support threshold as more iterations are involved.

15000^ , , . . 1 . 15000| . ^ p ‘ ‘ ‘

\ ——Mod«iedAppOne \ i ModittedAppTwo
\ AppOne \ ！ T̂wo

\ \ i
10000- \ 10000- \ I

i \ i \
5000 • \ 5000 \ ^ .

V \ ol I N 1 1 tr 1 o' ‘ ‘ ‘ ‘ T 1
ff07 0.08 0.09 0.1 0,11 0.12 0.13 0,14 0 07 0 08 0 09 0.1 0.11 0.12 0.13 0.,4 Minimum Support (%) Minimum Support (%)

(a) A1 pattern (b) A2 pattern

Figure 4.8: Variation on minimum support

Figure 4.9 shows the execution time at each pass for finding two patterns. We set

the min.sup = 0.0008 for A1 temporal pattern and minsup = 0.001 for A2 temporal

pattern. For AppOne, from the fifth pass onwards, much less time is needed. As

more large items are formed at the first few passes, the support counting of Lk where

k < 5 dominates the execution time. However, for further iterations, as the size of

the item-list shrinks, the support counting process is much faster. However, AppTwo

does not behave like AppOne. It ran with fewer passes but took more time in the

candidate pruning and support counting phase of L4 as there is a very large C4 being

generated. Both the modified AppOne and AppTwo use little time in the second

pass to form L2. Since we use the iterative Apriori-like approach for the following

passes, the execution time used in the following passes is more or less the same as

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 56

that of AppOne and AppTwo. The number of large items generated in each pass is

shown in Figure 4.10. We set min.sup = 0.0008 for AppOne and min.sup = 0.001

for AppTwo. The number of large items generated by AppOne is greater than that

of AppTwo when compare with the same length of patterns, i.e. |L4| of AppOne is

compared with |L4| of AppTwo.

1000(1 1 1 1 1 I I 7] 7000(— r
^ ModifiedAppOne ~ ^ Modified AppTvw

鄉 • • AppOne [•»- AppTwo |

!]: A q / \ :
y V : ：/ • \

°2 3 4 5 6 7 8 9 10 2 3 4
Pass Number Pass Number

(a) A1 pattern (b) A2 pattern

Figure 4.9: Execution time for each pass

4500| 1 1 1 1 1 1 1 [7CX)| ‘

:八 t\ _
F \ :卜 \
|2000- \ |300- \ ^
^ 1500- \ 2 \

\ 咖- \
1000 - \ - \

. v ^ . • • ^ - - ^
0 ‘ ‘ ‘ 1 ‘ 丨 ^ ^ ^ > 0 ^ 1

2 3 4 5 6 7 8 9 10 2 3 4
Pas8 Number Pass Number

(a) A1 pattern (b) A2 pattern
Figure 4.10: Number of large items generated in each pass

We then studied the effect of window size on the processing time. We chose

the values of minsup being 0.0008 for AppOne and modified AppOne, 0.001 for

AppTwo and modified AppTwo. In Figure 4.11, we can see that when the window

size increases, the execution time increases for both patterns. This is because more

sequences are included and the time for support counting phase increases. Also the

number of iterations increases and which also requires a longer execution time. Both

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 57

no. of max. seq.

min_sup resulting seq. length no. of max. seq.

0.0007 30872 10 min^up resulting seq. length

0.0008 16836 10 0.0009 J ^ 4

0.0009 5946 9 0.0010 746 4

0.0010 2600 9 0.0012 83 3

0.0012 153 6 0.0014 16 2

0.0014 19 4 Number of A 2 patterns

Number of A 1 patterns

Table 4.7: Number of AppSeq with different minsup

the modified AppOne and modified AppTwo work better than that of the original

methods since the time for generating L2 is reduced.

^ ° ° ° | + Modilled AppOne ‘ ‘ ‘ ‘ 8000| " • “ ModBiod AppTwo ‘ ‘ ‘ _ . - . ' ' * ’
0 AppOne _ . _ • . • . M ' T * " , - ' * ^

細 - ^ . ^ ; ; _ 1 _ ： 7000 . - " " ^ " ^ ^ ^

• ，么 • i y ^ ^ ^
2500 . / / 5000- ‘‘ /

1 / / I ' 7

! • 丨 | 棚 . 1

t500- J / 3000- , V

1000. / / 2000- •

500 • ' / tOOO - , ^ ^

- j ^ : z
40 60 80 100 120 140 160 40 60 80 100 120 140 160

Window Size Window Sire

(a) A1 pattern (b) A2 pattern

Figure 4.11: Variation on window size

Table 4.7 shows the number of AppSeq obtained with various values of minsup

and winsize is set to be 100 time units. For both patterns, the number of patterns

decreases rapidly as the minsup increases. However, the number of A2 pattern is

far less than that of A1 pattern. This may be due to the complex structure of A2

pattern so that less number of patterns can be formed.

Scale-Up Experiment

Our next target is to consider the scale-up effects. We examined how the per-

formance varies with the number of sequences. Figure 4.12 shows how the methods

scale up as the number of sequences is increased ten-fold, ranging from 10K to 100K

and with minsup = 0.0025 for both patterns. The execution time for AppOne and

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 58

AppTwo increase with increasing number of sequences. However, regarding modified

AppOne and modified AppTwo, since large number of Li and L2 are generated, the

approach of generating L2 from data improves the performance greatly.

4 x10'
2|Xl0 I , , , , , , A ^ Modified AppTwo | ’ ‘ ‘ ‘ ‘ ‘ I

•H- Modified AppOne / ^ . AppTwo /
+ AppOne / 2 ^ ” / •

1.8 ： ^ “ / • /
/ , p /

/ ^8 • /

1.6- z . /•

/ 16- /
1.4 • / • /

/ 1.4 • / •
/ /

1.2 • / ？ … / I / t'- /
|1- ,> . I - z
p .' .'

0.8- , ' 08- , '
,' ,'

0.6- , ' 0.6- '•
力入 'V

0.4- Z . ' " - , . ' • ' •
- Z ' ' ' ' • 。2. 乂‘.'.'.:' : ： , ' <̂ . . ^^~I “ ‘

’ 1 ‘ _ ‘ ‘ I • • I 10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 60 90 100

Number of Seqeunces (K) Number of Seqeunces (K)

(a) A1 pattern (b) A2 pattern

Figure 4.12: Scale-up: Number of sequences

We finally studied the scale-up as we increase the average number of events per

sequence. The number of sequences used is 10K and kept constant. We vary the

average number of events per sequence from 2.5 to 25. Figure 4.13 shows the scala-

bility results of the methods. We set min.sup = 0.0025 for the four methods. From

the figure, the execution time increases rapidly with the increasing number of events

per sequence. As the average number of events per item increases, items with longer

patterns are formed. Then more large items are formed and it results in more candi-

dates being generated in each iteration. This increases the computation time for the

hash tree searching for support counting dramatically. Moreover, as items with longer

pattern are formed which results in a greater number of iterations, the execution time

is thus lengthened. From the figure, both modified AppOne and modified AppTwo

outperform AppOne and AppTwo respectively.

4.5.3 Medical Data

For our real-life data experiment, we use a data set which contains clinical records

of Scoliosis patients, i.e. patients who suffer from spinal deformation. A scoliosis

patient may has one or several curves in his/her spine. Among them, the curves with

severe deformations are identified as major curves. In this experiment, we aim to find

any frequent temporal patterns, A1 temporal pattern, in the data set and found the

corresponding common features they cover. The database stores about 900 patients

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 59

3000 - ^ ModifiedAppOne , , - 3000 - ^ - Modrtied AppTwo .乂'
-»- AppOne / ' •»• AppTwo , ' / y

/ /

2500 - / 2500 • /
/ / y fi'

/ / 2000 • , 2000 • y ,, ,
I Z I /
I 1500 • Z I 1500 - z
p / K ?•

/ f
/' y

1000 • / , 1000- Z
• • y y ,, .Z

500 • , z 500 - Z
, ' 分 ''匆

。 ‘ ， " . " _ ^ . - — - - — — 。,，'.•'. . ^ — — - ―
2,5 5 7.5 10 12.5 15 17.5 20 22.5 25 2.5 5 7.5 10 125 15 17.5 20 22.5 25

Number of Event，Per Sequenco Number of Events Per Sequence

(a) A1 pattern (b) A2 pattern

Figure 4.13: Scale-up: Number of events per sequence

where each record stores person-id, date of birth, family history, class of scoliosis

contracted and treatment. It also stores measurements on the patients, such as the

number of curves, the curve locations, degree of curvature and direction of each curve,

etc.

Most of them are numerical data which are temporal in nature such as age, height,

weight and degree of curvature. Some of them are categorical and non-temporal data.

We pay special attention to the spine curvature values as they reflect the level of spine

deformation. With consecutive records of each visit, a sequence of curvature values

are captured for each patient. By examining the changes in values in the view of a

sequence, we may discover any temporal knowledge stored in the database.

We start by eliminating any missing data in the database as each angle measured

of the spine is crucial for diagnosis. Then we extract some of the useful and essential

attributes in finding frequent sequence. We further partition the curvature degrees

into different interval values to find any common pattern like the way for mining

quantitative data [75]. For each patient, we obtain at most four curvature values for

different parts of the spine for each visit. We map the curvature values into an event

in our model by simple concatenation. For example, a patient's spine has four curve

degrees which are 10.0, 20.0, 22.0, 0.00 with different directions and location. We

first match the corresponding numerical values into different intervals say interval 1,

2, 2, 0 if we take 10.0 degree as an interval range. We then represent the data as

an event in our model as "1220". Our intuition is that, each spine is characterized

by combining the four degrees as a whole, together with the curve direction and

location. We therefore regard the four curvature values as the feature of a spine.

Then we represent the data as a single event. Obviously, we can form tremendous

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 60

different types of events depending on the segment for each interval values of the

curvature degrees. We keep the person-id to distinguish the sequences. And we

transform the number of visit as the ordering time by taking the start time and end

time being the number of visit instead of using the actual visit date for simplicity.

Moreover, for consecutive visits with no change in the curvature values, we merge the

records by setting the end time being the last visit. Hence we obtain a sequence of

both points and interval-based events for we take each event representing different

spine deformation .

We use AppOne to find any interesting temporal pattern in this database. As we

would like to view the whole treatment process for each patient, we set the winsize as

the largest number of visit stored in the database. Table 4.8 presents the statistics of

finding large temporal pattern in the scoliosis database with various min^up. Since

we look for any sequence with two or more visits involved, we found from the database

that only 463 patients have two or more visits. Thus when we talk about minsup,

we suppose to focus on the 463 potential sequences stored. The number of large items

decreases rapidly as the minsup increases. As the values for curvature degrees are

diverse and the distribution are sparse, not many common sequence can be found and

most of them are short in length, terminated in L2. However, from the practical point

of view, we do not expect to find too complex temporal relation as they are difficult to

be interpreted. The results obtained depends on the way in partitioning the curvature

values into intervals that a wide range of values may grouped into the same category.

As we look for the changes for the spine deformation, we would like to classify any

similar spines while distinguishing any special ones. Thus expert knowledge of any

indication of curvature values may help in the partition and better results can be

obtained. The common sequences found can be used with other attributes such as

the type of scoliosis, treatment, family history, etc., stored in the database for further

investigation. One of the results found is as follows: "3100 before 3200 ~> isIS ,

conf(0.7), sup(0.022)" which is read as "70% of patient whose spine deforms from

category 3100 to 3200 (changes in the second part of the spine) are determined as

having Idiopathic Scoliosis. The results may lead us to have some interesting findings

from the data.

4.6 Summary

In this chapter, we propose several methods for discovering interesting temporal pat-

terns, AppSeq. We consider a special type of temporal pattern which is simple and

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 61

min.sup no. of sequences iterations total time(s)

0.009 42 4 0.27

0.011 28 3 0.25

0.015 15 3 0.19

0.019 7 3 0.16

0.024 5 3 0.15

0.030 0 2 0.09

Table 4.8: Mining AppSeq in a scoliosis database

meaningful. We show that an iterative method with the flavor of the Apriori-gen

function can be used for the mining. With the use of the item-list format, we can

perform fast and simple composition of temporal patterns for both candidate genera-

tion and support counting. A set of experiments has been conducted to demonstrate

the overall performance of the methods.

For comparison we consider the mining of a slightly more complex type of tem-

poral pattern, A2 which is a modification of the original temporal pattern Al. From

experiments, we find that the computation time required for the first pattern,Al, is

much more acceptable. On the other hand, the approach of generating L2 without

C2 do help in some of the cases since no compositions of item-lists is needed. This

approach especially favors for the case when large support threshold is held.

Moreover, we use a real set data containing clinical records of Scoliosis patients.

We are interested in finding any A l temporal pattern within the data. AppOne is

used for the mining purpose and we obtain some experimental results which may need

further examination with expert knowledge for interpretation.

For the mining method, we here propose an Apriori-like approach forming large

number of Ck during the intermediate steps. We would investigate other data struc-

ture as well as algorithms which help to reduce the high cost in candidate generation

of the mining process.

Chapter 5

Mining Temporal Pattern II，

LinkSeq

We introduce our second temporal pattern, known as LinkSeq, in this chapter. We give

the notion of temporal representation of LinkSeq in Section 5.1. Methods for mining

the temporal patterns are given in Section 5.3 and 5.4 using different data structures

to facilitate efficient support counting process. Experimental results showing the

performance of the methods are presented in Section 5.5. Finally, we have a summary

in Section 5.7.

5.1 Problem Statement

As discussed previously in Chapter 3, we form another pattern by linking the binary

predicates with the common event as the binding point. Such composition results

in the form of ((Ai re/i A2) & (^2 rek ^ 3) . . . & (Ak-i rek-i A^O). We extract

the temporal knowledge by taking two events as a pair and investigate the relations

between the events in the binary predicates as a sequence. According to the formation

of the pattern, LinkSeq is defined as follows:

Definition 7 [Temporal Pattern, LinkSeq] A temporal pattern is defined recursively

as follows:

• A temporal pattern of size 2 of the form (X rel Y), i.e. binary predicate, is a

LinkSeq

• I f X is a LinkSeq, and Y is a binary predicate with a common event type Ak-i

such that X=((Ai reh A2) k (A2 rel2 A3)... k (Ak-2 rek-2 Ak-i)) and Y =

(Ak-i relk-i Ak), then X k Y is also a LinkSeq

6 2

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 63

The size of a temporal pattern is the number of distinct events in the pattern. I

With this definition of temporal pattern, we have "(A overlaps B) Sz (B before C)

& (C during D)" as one of the Linkseq formed for the sequence of Figure 3.2 with

size equals to 4. We focus on the temporal relations between each pair of events by

adding one binary predicate each time. The idea of window-size and support defined

in the previous section is also applicable here with little modification as follows.

Definition 8 [window-size] Ifw is a given window-size, a temporal pattern P holds

within w in a sequence S ifAk.te — Ai.tg < win_size where Ai is the first event in

a temporal pattern and Ak is the last event. I

Definition 9 [A:-item] Let A{, i = 1,. . . , k be a bag of k event types in E , reli G Rel ,

i — l,..,k-l, a k-item has the form

((Ai re/i A2) k (A2 rek A3) k . •. {Ak-i rek-i Ak))

•

An event sequence support k-item if the temporal pattern holds in the event

sequence. The support of a temporal pattern V in a set of sequences V is defined

as the total number of occurrence of the patterns over the total number of sequences

T> . i.e.,

" m ^x l { ^ holds within 515 G V\
support[V,V) 二 —

The support of a fc-item is the support of the temporal pattern in the k-item.

A large A;-item is a A:-item having support greater than a threshold, namely

minsup provided by users, that is, support(V,V) > min.sup.

5.2 First Method for Mining LinkSeq, LinkApp

LinkSeq looks similar to that of AppSeq in a sequence. We obtain both patterns by

emphasizing two different temporal structure formed among events. As we observe

that we may find LinkSeq by deriving from AppSeq, we have the following mechanism.

1. We first obtain Lk of AppSeq with all the frequent events involved.

2. For each Lk, we derive the corresponding LinkSeq by examining every pairs of

events within the pattern. We do so by looking up the list of L2 which is found

previously and follow the order of events to link them up as a sequence.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 64

The intuition is that, if the frequent events form the AppSeq, they must form large

items as L2 during the process. As in the formation of AppSeq, the order of events

are preserved and thus can form the LinkSeq also. One point to note is that AppSeq

excludes the case when the last event embedded in the pattern has same end time

as the preceding events. In other words, shorter sequence is formed. Despite of this,

we can derive LinkSeq easily if AppSeq is already given. As this approach forms

LinkSeq from AppSeq, we denote the method as LinkApp. In Section 5.5, we show

our results which we find LinkSeq from AppSeq using LinkApp.

5.3 Second Method for Mining LinkSeq, LinkTwo

Another way to tackle the mining problem is to modify AppOne which is introduced

in Section 4.2 in the previous chapter, to accommodate the needs for the second

pattern. As the formation of LinkSeq suggests, no mapping of start time and end

time of composite pattern is needed. We obtain LinkSeq by linking up the binary

predicates with the common event as the binding point and keeping the orders of the

binary predicates along the sequence. Hence we come up with the following method,

namely LinkTwo, as it links up two events at a time. LinkTwo works similarly as

AppOne except for the candidate generation phase and the formation of large A>items.

C a n d i d a t e Generat ion : In the formation of C2, the process is the same as

before. However, as we found in the previous chapter, we can form L2 without C2

using the approach developed for modified AppOne, we would choose this approach

for generating L2 for LinkSeq also.

Next we start to generate Ck, where k > 3, we examine Lk-\ and L2 and use

compositions of the elements in the two item-list of Lk-i and L2. We prune any

irrelevant candidates by examining any common event between Lk-i and L2, say

aji relj aj2 G L2 where aji is the common event. The two added items can be

combined with a LinkSeq, say bi, where bi G Lk-i if it has the common event aji as

the last event in the pattern. For example, consider the 2-item shown in Table 4.4,

since we can find "A before C" and "C during E" as large 2-items, we then include

the combination of "(A before C) & "(C during E)" as one of the 3-candidates.

G e n e r a t i n g L a r g e A:-Items: In general, LinkTwo works in the same manner as

AppOne in that we generate incrementally larger A:-items by combining two patterns,

Lfc_i and L2, of a A;-candidate. However, the formation of large A:-items would be

much simple than that of AppOne. For support counting phase, we shall use the

CHAPTER 5. MINING TEMPORAL PATTERN II，LINKSEQ 65

item-list of Lk-i and L2 and we examine the pid attribute only to ensure all events

are associated with the same person as a sequence. In the second sub-phase to form

large fc-items, no union of start time and end time of the two patterns is needed as

we simply use & to link up the binary predicates. No further investigation of the

temporal relations is performed.

5.4 Alternative Method for Mining LinkSeq, LinkTree

For the above methods, we use an Apriori-like approach which divides the mining

process into candidate generation phase and support counting phase. We use item-

list to facilitate the checking of pid for each candidate. As we can see, for LinkSeq, no

examination of start time and end time is required. We then argue that the relative

order of events provides sufficient information for mining LinkSeq, rather than the

start time and end time as that for AppSeq. Nevertheless, when we transform the

database into item-list, we may not keep the order of events properly. Hence instead

of using item-list in our mining process, inspired by the idea of frequent pattern tree,

or F P - t r e e for short, suggested in [37] recently for mining frequent patterns [7], we

propose to use a tree-like structure to store the sequence data, namely seq-tree . In

Chapter 2, we have introduced the structure of a FP-tree and the key idea of the

mining algorithm. As FP-tree suggested, it avoids generating a huge set of candi-

dates by keeping useful information and storing it into a compact data structure. No

further scanning of original database is needed for later mining process. Experimental

results show that the use of FP-tree for mining frequent pattern outperforms previ-

ous Apriori-like method. This motivates us to investigate a tree-like structure that

captures all essential information for the mining process. As for LinkSeq, we focus

on the relative order of binary predicates which basically depends on the start time

and end time of each event, we propose to use seq-tree to store the relative order of

binary predicates and reduce the high cost of support counting for large candidate

set. Hence we have the following alternative method for mining the temporal pattern

and denote as LinkTree.

5.4.1 Sequence Tree: Design

We design the structure of a seq-tree with the following observations. First, the

relative order of events is a crucial information in determining the temporal patterns.

Hence, we use the end time and start time to determine the order of nodes to be

1

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 66

b

G > " G X ! X ^ X 5
. • •

Figure 5.1: A seq-tree constructed for a sequence

placed along the paths of the tree. We consider the former event as the parent node

and the latter event as the child node for each binary predicate.

Secondly, the number of occurrences of each binary predicate is recorded as count

which counts the number of sequences that include the binary predicate. With the

count kept in the seq-tree, by traversing the tree once, we obtain a list of frequent

binary predicates in a sequence by examining the counter values. No further scanning

of database is needed.

Thirdly, for any frequent events which appear in the same sequence, the frequent

events are placed along the same path from the root node of the tree. This ensures

the correctness of the frequent patterns found as all the events along the same path

comes from any sequence that contains the same sequence of binary predicates. No

generation of candidates and scanning of database for support counting are required

and hence must less costly for mining the temporal pattern.

In addition, as our problem deals with complex temporal structure other than

before/after, more complex structure of the seq-tree is required to capture the essential

information to form LinkSeq. Let us consider the sequence shown in Figure 3.2. At

the first glance, we obtain the longest temporal pattern as "(A overlaps B) k (B

before C) k (C during D)". We store such pattern by m a i n b r a n c h (or main-bh)

in our seq-tree. However, other patterns such as "(A before C) h (C during D)",

"(A before D)", etc., are also interesting to be found. We then store such patterns

by s u b s i d i a r y b r a n c h or (sub-bh). The resultant seq-tree is shown in Figure 5.1.

In fact, both main-bh and sub-bh are same in structure. They both are used to

store binary predicates. We divide the set of binary predicates into these two groups

for the construction of seq-tree described later. We here further introduce several

terminologies for the following discussion.

Definition 10 [main branch] Main branches (or main-bh in short) are defined as a

sequence of binary predicates which forms the longest temporal pattern. I

Definition 11 [subsidiary branch] Subsidiary branches (or sub-bhJ are defined as a

set of binary predicates which shows the temporal relations between any two events of

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 67

B
I I \ f main-bh: (A overlaps B), (B overlaps C)

I I I I 7 sub-bh: (A before C)

A C

B
I I \ ^ main-bh: (A overlaps B), (B overlaps C)

~~I] sub-bh: (A overlaps C)
A

C

Figure 5.2: Identical Pattern if same main-bh and sub-bh

a sequence other than those stored in the main branch. •

A branch is actually an edge between two nodes in the seq-tree. While main

branches form the skeleton of the tree, subsidiary branches store other temporal

relations between any two events which are useful for mining the complex structure

of the temporal pattern.

Main branches basically reveal the overall temporal behavior of the events of a

sequence. However, we may find some discrepancies between two sequences having

the same form of main-bh. For instance, in Figure 5.2, we obtain two sequences with

different sub-bh as "(A before C)" and "(A overlaps C)” though both give the same

main-bh as "(A overlaps B), (B overlaps C)" which suggests two different temporal

patterns. Hence, we say two sequences have the same (or identical) temporal pattern

if they share the same main-bh and sub-bh.

Definition 12 [path] A path exists between two nodes if we found a branch coming

from a node to another one directly or a sequence of branches starting from a node,

via some intermediate nodes and finally link to the target node. The length of a path

is the number of branches being visited. •

By finding any paths via both main-bh and sub-bh in the seq-tree, we can obtain

the set of temporal patterns. For instance, using the seq-tree shown in Figure 5.1,

a path (A beJ^ C ^^^^ D) is found and we obtain the corresponding pattern "(A

before C) k (C during D)". Thus each path corresponds to a pattern we obtain from

a sequence. For the seq-tree, we need to ensure each valid path corresponds to a

temporal pattern. Let us consider an example shown in Figure 5.3(a), two sequences

have the common partial main-bh as "(A overlaps B), (B before C)" which we can

merge them into one path. However, we would come across an invalid path obtained

from the tree as {A ""^¾" ^ ove^^s 巧 . j j e n c e , we need to exclude such case by

splitting the node C as shown in Figure 5.3(b). We then can distinguish two paths

showing clearly "(A overlaps C) & (C before E)" and "(A before C) k (C overlaps

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 68

D)". Hence, we realize that only sequences having identical patterns can share same

paths in the seq-tree.

B D
I I I I \ , main-bh: (A overlaps B). (B overlaps C), (C ov#rlapt D)

I I I I / sub^h: (A befor* C), (A b«1or« D), (B b«for« D)
A C

B E
I I I I V mftin^h: (A ov*rUps B). (B ov*rlapt C), {C b*for_ E)

I I I ~ p / tub-bh: (A ov*rtaps C), (A b*for* E), (B bafor* E) ^ / ^ ^ ^ " ^ ^ ^ ^ ^ ^ C ^ ^ ^

G>̂ ^̂ $x:;;| ^̂ >̂ $|x̂ l2
v _ y Only (A before C) & (C overlaps D)

Ambiguity: Does (A overlaps C) & (C overlaps D) exist? No or (A overlaps C) & (C before E)

(a) Before splitting of node (b) After splitting of node

Figure 5.3: Splitting of node C for different sub-bh

With the above observations, a tree-like structure, seq-tree is proposed based on

the following considerations.

1. Only L\ are included as tree nodes so that only potential large patterns are

kept.

2. Tree nodes of a path are arranged by the order of events happened in the cor-

responding sequence, i.e. the end and start time of events. This preserved the

relative order of events which is an important information used in the mining

process.

3. Each branch between two nodes stores the primitive temporal relation between

the events of the binary predicate. Associated with the temporal relation, a

count is used to store the occurrences of such binary predicate.

4. For each sequence, there is one corresponding path of the tree constructed. If

several sequences share an identical temporal pattern, they can merge into one

path.

5. Similarly, in case, if two sequences share a common prefix pattern, the shared

parts can be merged using one prefix structure. Hence, we can encode the

temporal pattern into a compact form with all the information being stored in

the seq-tree for further mining process.

We here introduce the design and construction of seq-tree. We consider an example

of the database shown in Table 4.1 for illustration. Suppose the minimum support is

33% and the window-size is set to be 30 time units.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 69

item count

A 6

B 4

C 3

D 3

E 3

F 3

G ~ 3 ~ ~

Table 5.1: Large 1-items

5.4.2 Construction of seq-tree

First, we scan the database to derive a list of large 1-items as shown in Table 5.1.

Then, we transform the database into sequences in which we group the events which

belonged to the same person as a sequence with only large 1-items, Li , are included.

For each sequence, we find all possible binary predicates formed by Li exist in the

sequence and divide them into two groups. Each sequence consists of two kinds of

branches: main-bh and sub-bh where the construction of seq-tree is mainly based on

the main-bh.

We generate the binary predicates of main-bh by considering consecutive large

1-item as a pair. Since we sort the records with end time of the events, we ensure the

previous event stops as late as the following one. In other words, the longest pattern

can be formed by linking all the consecutive large 1-item into a sequence as main-bh.

By considering other temporal relations between any two events, we form a set of

binary predicates as the sub-bh. The binary predicates formed in each sequence are

listed as shown in Table 5.2.

Secondly, we use the table of the binary predicates obtained to construct the

seq-tree. We start from creating the root labeled with “nulP. Look up from the

transformed database, for the first sequence, we construct the first path of the tree
„ . 1 1 / . overlaps:l j^ before:l ^ during:l j^ finishes:l „ meets:l ^A ^r , ,i ,

from main-bh as: {A ^ B ~^ C ^ E ~)• F ~"^ B). Note that

the event type is stored as nodes with the former event taken as the parent node and

the following event being the child node. Each branch stores the temporal relation

and the corresponding count between the pair of nodes is indicated after “:”. As we

notice that, starting from the third node onwards along the path, we obtain sub-bh

for the node with the preceding nodes. Hence by looking up the table of binary

predicates, we add the corresponding sub-bh between the nodes as shown in Figure

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 70

person-id sequence form

1 main-bh: (A o B), (B b C), (C d E), (E f F), (F m B)

sub-bh: (A b C),

(A b E), (B b E),

(A b F) , (B b F) , (C d F) ,

(A b B)’ (B b B), (C b B), (E m B)

2 main-bh: (A o B), (B b C), (C m E), (E f F), (F b G)

sub-bh: (A b C) ,

(A b E), (B b E),

(A b F) , (B b F) , (C o F) ,

(A b G) , (B b G) , (C b G) , (E b G)

3 main-bh: (A s D)

sub-bh: nil

4 main-bh: (D b A), (A d G)

sub-bh: (D b G)

5 main-bh: (D b A) , (A d G)

sub-bh: (D m G)

6 main-bh: (A o B), (B b C), (C d E), (E f F)

sub-bh: (A b C),

(A b E), (B b E),

(A b F) , (B b F) , (C d F)

Table 5.2: Transform the database as sequence form

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 71

5.4 with small dotted lines.

For the second sequence, since its main-bh shares a common prefix {A _^L^s,

B ^^¾"^ C) with the existing path of the tree and the corresponding sub-bh A ^^¾"^

C is the same, the count of each branch along the prefix is incremented by 1 until

reaching the node C. A new branch is created starting from node E as (C ^ ^

E J'.^s:i F 6¾:! G). We observe that though the nodes of the second sequence

excluding the last node are the same as that of the first sequence, different temporal

relations in main-bh would lead to new branches.

Regarding the third sequence, the sequence shares only the common node A and

we have a new branch for A ^^^'^ D. As there is only one binary predicate for

the sequence, no sub-bh is added. The scan of the fourth sequence leads to the

construction of the second branch of the tree, D ^^¾"̂ ^ du^^.i。Again, we

add the corresponding sub-bh. For the fifth sequence, we observed that it shares a

common main-bh as D ^^^¾'^ A ^ i ^ . i G. However, different sub-bh D ^-¾'^ G is

found with the existing path. Hence, a new branch from A to G is added instead of

merging the two sequences together. For the last sequence, since its event types and

corresponding relations for both main-bh and sub-bh is identical to that of the first

sequence excluding the last event, the prefix path is shared with the count of each

relation along the path being incremented by 1.

To facilitate tree traversal, a Li look-up table is built in which each event points

to its occurrence in the tree via a head of node-link. Nodes with the same event type

are linked via such node-links as shown with dotted arrows. After scanning all the

sequences, the tree with associated node-links is shown in Figure 5.4. The example

leads to the following definition of a sequence tree.

Definition 13 [seq-tree] A sequence tree (or seq-tree) is a tree-like structure defined

below.

1. It consists of one root labeled as “null”，a set of event prefix subtrees as the

children of the root, and Li look-up table.

2. Each node in the event prefix subtree consists of event type, node-link, and a

list of branches, where event type registers which event this node represents,

node-link links to the next node in the seq-tree which has the same event type,

or null if there is none. The list of branches link the current node to other

nodes along the same path. Each branch stores the temporal relations between

two connected nodes and the corresponding count which registers the number of

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 72

f root j

1-item L, look-up table ^"--^^""^^^"^---^^^>>>_^^^^^^^^^^

IT >v---<r^ -一一―、、、 ^P"^^

A ,"一 ,:(5^^;询、
, # Ts, '%y M\
B � � - — “ � � , _ A : ' V..X li 人 \

/7:/:^8)丨:::“,\.\ i ^ '\
// \ /：••• , V ^ ^ - t - r \\ \ bi v y .̂m

c � � / / /..::... / / T ：:..:.. •. •. i r A .
、 、 啤 / / -3 i \v,b：\ \ ： h \ \

“ 戲 氣 佩 \ 絲
• I , . • . 2 / . . . \ . . • . ,. / ~"

:‘I •• : .. : / :: ： ： \ n : ̂ \ _•..: :
'• \ii\ 〜 ； A •：• •：•： \ i^ '{\ \ \

^ : ： I: : '.. ： / : \ : : I
E � - � U ; i / ^ d ' ; ;id ^ ； ； ; ； 1

i !\n~i E v . t----{ E) ： \ \ ；
\\\ i , s ^ w ; ； •, ; V i ；；；

F、、'\ i\ \b2 , V ! i \： b ,： ！：;
、、i_ •• ... •• '2 .: ： ； ..: “： ：： : I
>、：b,•： •<. ： ;• • I
r>^'- :>^l • \ : . r ^ ; � • • 1

, r e < ^ r h - 0 - i j 1

G � � , ' V. I b: : b 丫 t- ,. /
T~--A H、； b •’ / '

» \ , . h • : 卞\ U • . f
\ b.......D •• b： b、、\ / main-bh
* •• • . _̂<x*"l"-ŝ • I 、 . yf"*—-̂ . • /

、、、一^5:..... K ^) " A ' ^ s u _
Figure 5.4: The seq-tree constructed using the given example

occurrences of binary predicate represented by the two connected node associated

with a temporal relation.

3. Each entry in the Li look-up table consists of two fields, (1) event type and (2)

head of node-link, which points to the first node in the seq-tree carrying the same

event type.

•

Based on this definition, we obtain an algorithm for the seq-tree construction as

follows. We scan the database twice. In the first pass, it determines the set of large

1-items which would form large fc-items in the mining process. In the next scan, we

transform the original database to sequence form with the sorted order of the end

time and start time of the events. We find all the binary predicates and group them

into two categories as main-bh and sub-bh. Then, we build the corresponding seq-tree

based on the above data structure defined. The construction algorithm is shown in

Figure 5.5. The construction process is mainly divided into the following steps:

L a r g e 1 - i tems : During the first pass, we determines the large 1-item which any

frequent temporal patterns are formed by this set of large items.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 73

Input: A temporal database D and minimum support min.sup

Output: A sequence tree, seq-tree

Algori thm 5.1 seq-tree construction

1 Li = {1-large items} //tuples containing items with min.sup

2 for each sequence, Sk do

3 gen_main_branch(5A:) / /by considering consecutive large 1-item as a pair

4 gen_subsidary_branch(5fc) / /by examining other temporal relations between any two events

5 end

6 Create the root of a seq-tree, T, labeled as "null"

7 for each sequence, Sk do

8 for each node along main-bh do

9 build_main_branch(5fc, T)

10 add_subsidary_branch(5fc, T)

11 end

12 end

13 Add node-link to the nodes with the same event type

Figure 5.5: Construction of sequence tree, seq-tree

G e n e r a t e sequence form: In the next pass, we group the records into sequences

for different persons. We form the main-bh by examining the temporal relations

between two consecutive events along the sequence. Then we find any temporal

relations between any two events as sub-bh. Both main-bh and sub-bh of the

sequences for the given example is summarized in Table 5.2.

Build main branch: Based on the main-bh and sub-bh, we collect the essential

information and construct the corresponding seq-tree. We first use main-bh to

add branches to the tree. We insert nodes from the root by first examine any

common prefix, including identical sub-bh, if not, create new node and branch

which links the new nodes with corresponding relations of the binary predicate.

If any sequence shares the same main-bh and same sub-bh stored in the seq-tree,

we simply increment the corresponding relation counts by 1. The algorithm for

building main branches is summarized in Figure 5.6.

Add subsidiary branch: Upon each sequence, besides building the tree with the

main-bh, we need the sub-bh to store other temporal relations between every

pair of events along the sequence. We add both main-bh and sub-bh together

for each node. After adding the main-bh for a node, we add the corresponding

sub-bh by looking up the table storing the binary predicates. Notice that sub-bh

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 74

Input : A sequence Sk, root of the seq-tree, T

Output: The seq-tree with the added path of the corresponding sequence Sk

Algorithm 5.2 build_main_branch(5fc,T)
1 for the pair (F,rel,E) / / (F rel E) is a binary predicate in the main-bh of Sk

2 if T has a child N such that N.event=F

3 if N has a child M such that M.event=E and M.rel=rel

4 increment M.rel.count by 1

5 else

6 create a new node M, let M.event=E and M.rel=rel

7 add a branch N and N to M

8 end

9 else

10 create a new node N, let N.event=F

11 create a new node M, let M.event=E and M.rel=rel

12 add a branch from T to N and a branch from N to M

13 end

14 end

Figure 5.6: Building main branch

exists only from the third nodes onwards along main-bh with preceding nodes.

We add the sub-bh between two nodes as shown in Figure 5.4 with dotted

lines. In case, we have sequences having the same main-bh but different sub-bh,

splitting of nodes is needed. The algorithm for adding subsidiary branches is

shown in Figure 5.7.

L e m m a 5 Given a sequence database D and user-defined minimum support minsup,

its corresponding seq-tree contains the complete information of D for mining LinkSeq.

Proof : As we observe from the construction process, each sequence in the database is

mapped to one path in the seq-tree. The order of events is preserved as we insert each

new sequence from the root and follow the order stored in main-bh. For each sequence,

all temporal relations for the binary predicates are stored in the seq-tree by main-bh

and sub-bh. Hence, all possible temporal relations between events along the sequence

are stored. The associated support count records the number of sequences which

shares the same set of temporal pattern. Thus, the seq-tree contains the complete

information of the database in relevance to mining LinkSeq. •

L e m m a 6 Without considering the root, the height of the seq-tree is bounded by the

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 75

Input: A sequence Sk, root of the seq-tree, T

Output: The seq-tree with added subsidiary branches of the sequence Sk

Algorithm 5.3 add_subsidiary_branches(^,T)

1 for the pair (F,rel,E) / / (F rel E) is a binary predicate in the sub-bh of Sk

2 if T has a child N such that N.event=F

3 From the corresponding main-bh to a node M such that M.event=E

4 if(M.sub.event(p)=F not exist) //new sub-bh is added

5 M.sub.event(p) = F

6 M.sub.rel(p) = rel

7 add a branch from N to M as sub-bh

8 else

9 if(M.sub.rel(p)=rel) //same sub-bh with existing branch

10 increment M.sub.rel(p).count by 1

11 else //same main-bh but different sub-bh

12 create a new node M'

13 create a new path from N to M' //separate into two different branches and adjust

corresponding counters

14 mark the node as a splitting node //having same main-bh but different sub-bh

15 end

16 end

17 end

18 end

Figure 5.7: Adding subsidiary branches

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 76

longest temporal pattern of the sequences in the database, and the size of the tree is

bounded by the number of sequences.

Proof : As we can see the maximum number of nodes along a path is determined by

the maximum number of events obtained in the corresponding sequence. Hence the

height of the tree is bounded by the longest temporal pattern in any sequence in the

database. Regarding the size of the seq-tree, as we can see the complex structure

of the main-bh and sub-bh, as in case if any sequence having same main-bh but

different sub-bh, splitting of nodes is needed. The size of the tree would be quite

large. However, the chances of having same main-bh but different sub-bh is not

that high, we expect more sequences share the same path in the tree and the size

of the tree is smaller than the original database. Also, the number of main-bh in

seq-tree cannot be more than that of the number of distinct frequent sequences in the

database. Hence the size of the seq-tree is bounded by the number of sequences and

the height is bounded by the longest pattern. •

In fact, the longest pattern obtained is determined by the window-size specified

by users. Hence, the height of the seq-tree is also bounded by it. As the paths of

the tree is constructed based on main-bh, the window-size here refers to time interval

between the first binary predicate and the last binary predicate formed in main-bh.

Thus some of the binary predicates of the subsequence or sub-bh are excluded if

the longest pattern formed by main-bh exceeds the limit. This leads to different

mining results when we compare the performance of the previous methods. Hence in

the following sections, we assume the window-size is set to the maximum value that

includes all the binary predicates of the sequences.

5.4.3 Mining LinkSeq using seq-tree

In this section, we study how to explore the information stored in the seq-tree for

mining the complete set of frequent temporal patterns. We observe some interesting

properties of the seq-tree structure which facilitates the mining process.

P r o p e r t y 1 For any large 1-item, ai, all possible temporal pattern that contains a{

can be obtained by following ai ,s node-links, starting from the a{ ,s in the Li look-up

table.

This property is based directly on the construction process of seq-tree that any

nodes with the same event type is linked by node-links. This facilitates the extraction

of valid path by traversing the seq-tree once following a‘，s node-links.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 77

P r o p e r t y 2 For any node, there is only one branch connecting two nodes.

For any sequence, main-bh stores the temporal relations with the preserved order

of events. The temporal relations are unique of consecutive events for a sequence.

Hence no two branches exist between two nodes of main-bh. Similarly, the temporal

relations kept are unique for any two events for sub-bh in a sequence. On the other

hand, during the construction process, only identical pattern shares the same path

along the tree. Any discrepancy of sub-bh between two sequences having the same

main-bh would lead to splitting of nodes. Hence, no two different branches would

connect two nodes. In other words, when we found a valid path from a node to

another node, we obtain a specific temporal pattern.

P r o p e r t y 3 To calculate the frequent temporal patterns for a node a!- in a path, only

the prefix sub-path of node a{ in the path need to be accumulated, and the support

count of every relation in the prefix path should carry the same count as the last

branch connected with a{.

Let the nodes along the path with event types a i , . • • , an in such an order that ai is

the root of the prefix sub-tree, a„ is the leaf of the subtree in the path, and a{ (1 < i

< n) is the node being referenced. Based on the construction process, for each prefix

node Qk (1 < k < i), and branches, they occur together with ak exactly ai.rel.count

times. Thus every such prefix node should carry the same count as the last branch

connected to ai. A postfix node a^ (for i < m < n) along the same path co-occurs

with node cti. However, the patterns with â n will be generated at the examination of

the postfix node a^, enclosing them will lead to redundant generation of the patterns

that would have been generated for a^. Therefore, we only need to examine the prefix

sub-path of tti in the path.

Based on the constructed seq-tree, we here outline the mining method LinkTree.

Without generating large number of candidates, we explore the information stored

in the seq-tree as follows. As in the construction of the seq-tree, all the nodes along

the same path belong to the same sequence with each pair having one parent node

and child node showing the order. Thus the ordering information is kept and the &

is induced among all the pairs of nodes along the same path.

Using the seq-tree of the given example, we start from the last event of the Li

look-up table, i.e. event type G. Actually, the order of event in the Li look-up table is

arbitrarily assigned. Note that the mining process can be performed independently for

each tti starting from the look-up table as only prefix sub-path of node a{ are included

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 78

when mining for ai. Other paths of the tree are ignored. Here, for simplicity, we start

with node G. According to the paths leading to node G, three paths are found:
{ 〈 乂 overla^s-.3 ^ before:3 ^ meefs: l ^ finishes:l ^ before:l ⑦ 〈 p before:2 ^ durin^:l �

[D bel^'2 j{ dw^.i G) with different sub-bh} By examining the counter values of

all the branches connecting node G, we have the following Lk containing G. We first

consider all the intermediate nodes connecting node G via main-bh and sub-bh. For

L2, we consider any binary predicates having enough support count. From the first

path containing node G, we find from both main-bh and sub-bh and obtain "(A before

G):1", "(B before G):1", "(C before G):1", "(E before G):1" and "(F before G):1".

However, all of them do not have enough support. For the following two paths, only

"(A during G):2" has enough support. Hence, we have "(A during D)" as L2. For L3,

we look for any path connecting to node G with length being 2, reaching 3 nodes along

the path. This time, we can start with the intermediate nodes which are included in

L2 previously found and we have "(D before A) & (A during G)" by traversing the

main-bh of the last two paths. Since we find no more path having length greater than

2 with enough support count, the search for L4 for node G terminates.

For node with event type F, we only focus on the prefix along the selected path

to avoid any repetition of patterns generated. By considering any path that reaches
1 T^ 1 , . , p ,, (/ . overlaps:3 „ before:3 ^ during:2 „ finishes:2 门\

node r , we obtam two prenx paths {(A ~ 4 B ~ > C ~ 4 h ~"> t) ,
,.overlaps:3 „ before:3 ^ meets:l ^i finishes:l „, ^ ^ . , . ., , • ,. , .

(A ~ 4 n ——>• C ——y t, ——y p) j . Considering the binary predicates in

both main-bh and sub-bh, we have L2 as “(A before F):3", "(B before F):3", "(C

during F):3" and "(E finishes F):3". For L3, again we search for any path having

length being 2 by starting with the L2 found previously and we have "((A before E)

k (E finishes F)):3", “((A before C) k (C during F)):2", “((A overlaps B) & (B before

F)):3", "((B before C) & (C during F)):2", "((B before E) k (E finishes F)):3", "((C

during E) h (E finishes F)):2". Then we proceed to find L4 by finding path having

length being 3 and we have "((A overlaps B) k (B before C) k (C during F)) : 2 " ,

"((A overlaps B) k (B before E) k (E finishes F)):3", “((A before C) k (C duing E)

k (E finishes F)):2", "((B before C) k (C during E) k (E finishes F)):2". For L5,

we have the longest pattern “((A overlaps B) h (B before C) h (C during E) h (E

finishes F)):2". As we cannot find any path with length longer than 4, the search for

large sequence associated with F terminates.

Consider nodes with event type E, we derive two prefix paths { � A ^̂ 1̂¾ '̂̂ B ^̂ ^¾'̂

C - 1 ' E), {A ^ # s : 3 B ^¾=^ C ^^' E)}. Similarly, by first finding the binary

predicates as L2, we obtain "(A before E):3", “(A before E):3", “(C during E):3".

For L3, we have "((A overlaps B) k (B before E)):3", "((A before C) k (C during

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 79

node LinkSeq

G (A during G):2,

((D before A) k (A during G)):2

~F (A before F):3, (B before F):3, (C during F):2, (E finishes F):3,

((A before E) k (E finishes F)):3, ((A before C) k (C during F)):2,

((A overlaps B) k (B before F)):3, ((B before C) & (C during F)):2,

((B before E) k (E finishes F)):3, ((C during E) & (E finishes F)):2,

((A overlaps B) k (B before C) k (C during F)):2,

((A overlaps B) k (B before E) k (E finishes F)):3,

((A before C) k (C during E) & (E finishes F)):2,

((B before C) & (C during E) & (E finishes F)):2,

((A overlaps B) k (B before C) k (C during E) k (E finishes F)):2

E (A before E):3, (B before E):3, (C during E):2,

((A overlaps B) & (B before E)):3, ((A before C) k (C during E)):2,

((B before C) & (C during E)):2,

((A overlaps B) & (B before C) k (C during E)):2

D _0

C (A before C):3, (B before C):3,

((A overlaps B) k (B before C)):3

B (A overlaps B):3

A (D before A):2

Table 5.3: Mining LinkSeq by traversing seqJree

E)):2", "((B before C) k (C during E)):2". The longest pattern gives L4 as “((A

overlaps B) & (B before C) & (C during E)):2" and terminates the search.

For nodes with event type D, we only find a path with length being 2 as (A ^^-^¾"^

D). However, it does not have enough support. Hence no Lk is found and the search

for node D terminates.

For other nodes with event type C, B and A, same mining mechanism is used as

finding any path from the seq-tree as Lk. The LinkSeq generated from each node are

summarized in Table 5.3.

The mining process mainly focuses in the discovery of any valid path starting

from an event in the Li look-up table to other preceding nodes along the path of

the seq-tree with different path lengths. The valid paths with enough support count

obtained is used for the generation of temporal patterns. The algorithm for mining

temporal pattern from seq-tree is shown in Figure 5.8. It can be summarized by the

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 80

following steps:

Look-up table : Start from any event of the Li look-up table. The order of events

in the look-up table is arbitrarily assigned. As we can find each corresponding

pattern associate with the event separately, the order of events of which we start

with the mining process is independent with the results obtained.

P a t h e x t r a c t i o n : After determining the associated event for the temporal pattern,

we extract any path of the seq-tree that leads to the associated event for further

support counting. Only prefix of the path is considered.

Valid path : By finding any valid path that links the associated event to other pre-

ceding nodes with k — 1 length, we generate potential k-item. By further exam-

ination of the counter values, those having enough support count become large

A>item in result.

P a t t e r n generat ion: From the kAtem obtained, we generate the corresponding

temporal pattern, LinkSeq, easily as one A:-item corresponds to one temporal

pattern.

During the search of any valid paths leading to the ending node a{ along the prefix

path, we start from any neighboring nodes with length of path being 1 to form L2.

We then form L3 by starting from the corresponding nodes which previously found

in L2, say bi. Again we find any neighboring nodes of b{ and form L3 with path

length being 2. The intuition is that any nodes connecting bi would end up with ai

also. This is obvious as when we can find a valid path from a neighboring node, say

Cj, reaching bi as an intermediate node, would reach ai through the branch previous

found in L2. Thus the mining process is performed recursively along the prefix paths

found to generate all Lk.

L e m m a 7 Algorithm 5.4 finds all the potentially large k-items by traversing the tree

and examining any valid paths.

P r o o f W i t h lemma5, we are certain that all the binary predicates along the sequences

are kept in the tree. As we find all binary predicates between events along the

sequences and the ordered of events are preserved in the paths of the tree, any possible

temporal pattern of the sequence can be found by finding any valid path linking the

nodes. Also only identical pattern shares the same path, all the events stored along

the path belong to the same sequence. With property 1, any possible temporal pattern

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 81

Input: A seq-tree T, minimum support minsup

Output: The set of frequent temporal patterns

Algori thm 5.4 Mining frequent temporal patterns with seq-tree
1 if T has only one branch

2 return all valid paths generated from the branch for each node in that branch with rel.count

> minsup

3 else

4 for each node with event type Cj in the Li look-up table

5 extract all prefix paths associates with Cj

6 for each k> 2

7 if there exist a path from node with event type e,- to other preceding nodes of length

=k-1 with rel.count > min.sup

8 generate corresponding Lk

9 end

10 end

11 end

12 end

Figure 5.8: Mining frequent temporal pattern from seq-tree

including the associated events can be found. Hence by scanning all the events in the

Li look-up table and traversing the tree, we generate all large A:-items. •

L e m m a 8 Any large k-item formed from Algorithm 5.4 represents a frequent tempo-

ral pattern.

P r o o f Based on property 2, we ensure a path starting from any node would only lead

to a deterministic node. Hence, no path represents a non-exist temporal pattern in

any sequence. In other words, each path we found corresponds to a temporal pattern.

By examining the counter values, we generate large fc-item which represents a specific

frequent temporal pattern. I

With the properties and lemmas above, we show that the algorithm correctly finds

the the complete set of frequent temporal patterns, LinkSeq. Without any candidates

generated during the process, we obtain all the Lk by traversing the tree independently

for each â in Li look-up table. For each frequent event Oi, an extracted set of prefix

paths is extracted. The mining process is then performed recursively along the prefix

paths to generate all Lk. As the seq-tree is usually smaller than the size of the

database, the mining process takes less storage than that of the previous methods,

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 82

LinkApp and LinkSeq, where large number of candidates are formed.

5.5 Performance Study

We use the same set of synthetic data introduced in the previous chapter. We compare

the performance of four methods, including LinkApp, modified LinkApp, LinkTwo

and LinkTree. Modified LinkApp is basically same as LinkApp except it generates L2

without C2 using the approach developed in Chapter 4, while the other three methods

are described in the previous sections. Note that LinkTwo also forms L2 without C2

as we found in the previous chapter that, this approach helps in improving the mining

process.

We start by studying the effect of minimum support {minsup) on the process-

ing time. We used 6 values of minsup as shown in Figure 5.9. The window size

{winsize) is set to be 200 time units for the test. The figure shows that the execu-

tion times for the four methods decrease when the minimum support increases. As

less large items are formed when the support threshold increases, the size of the can-

didate set in each iteration for the three methods, LinkTwo, LinkApp and modified

LinkApp, decreases dramatically. Thus less time is required for support counting. On

the other hand, for LinkTree, as less Lk are formed during the process, the time for

searching valid path decreases for greater support threshold. We observe that Link-

Tree outperforms the other three methods, especially for small support threshold. It

is likely that only a slight increase in the execution time for LinkTree. As no gener-

ation of candidates is needed, we avoid the high cost of support counting phase for

large number of candidates generated during the process. Comparing the other three

methods, LinkTwo works better. As for both LinkApp and modified LinkApp, we

generate AppSeq first in each iteration before we get LinkSeq. Further computation

time is needed to search from the corresponding binary predicates in L2, in addition

to find Lk.

Table 5.4 shows the number of LinkSeq obtained with different values of min.sup.

The number of sequences decreases with increasing value of min.sup.

We then study the scale-up effects which we examine how the performance variates

with the number of sequences. The number of sequences is increased ten-fold, ranging

from 10K to 100K. We set the min_sup = 0.001 for the four methods. Figure 5.10

shows the scalability results. LinkApp grows rapidly when comparing with the other

three methods. LinkTwo and modified LinkApp scales linearly in the same manner.

As more large items are formed in the first few passes of the mining process, the

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 83

15000 r r 1 1 1 1 • • t
(' \ ^ - LinkTree
、\ ••• , LinkTwo
、\ - o - Modified LinkApp
、\ — LinkApp |

^
10000- \\

I � \
• I \

5000 -''••,, \ \

\ -
S m O o i 0 ^ 9 0*1 0.11 0*12 0.13 ^ 4

Minimum Support (%)

Figure 5.9: Variation on minimum support

min_sup no. or resulting sequences max. sequence length

0.0007 31837 10

0.0008 17414 10

0.0009 6022 9

0.0010 2623 9

0.0012 m 6

0.0014 ^ 4

Table 5.4: Number of LinkSeq obtained with different minsup

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 84

1000| n 1 1 1 1 • . • •
I • • • LinkTree
I ••»• LinkTwo

900 • I -o- Modified UnkApp •
i 中 UnkApp

800- I

700- I

r。7
r

400 - 1

3 0 0 /

200 •

1 0 0 -

(ĵ v-TT.f.-r-TC , • — . . T'-»'-； r — ‘ ‘
10 20 30 40 50 60 70 80 90 100

Number of Sequences (K)

Figure 5.10: Scale-up: Number of sequences

approach of generating L2 without C2 did help in generating LinkSeq for LinkTwo

and modified LinkApp. On the other hand, LinkTree scales much better than the

other three methods. As the number of sequences grows up, the difference between

LinkTree and the other three methods becomes larger and larger. This shows the

advantage of eliminating the generation of large number of candidates during the

process.

We finally studied the scale-up as we increase the average number of events per

sequence. The number of sequences used is 10K and kept constant. We vary the

average number of events per sequence from 2.5 to 25 and set minsup = 0.0025 for

the four methods. Figure 5.11 shows how the methods scale up as the number of events

per sequence is increased. Like the case for increasing the number of sequences, the

execution time for LinkApp grows dramatically with increasing number of events per

sequence while LinkTwo and modified LinkApp scales up linearly in the same manner.

As there are tremendous number of L2 formed with increasing number of events in the

sequences, LinkApp suffers from the high cost of C2 in the first few passes. LinkTwo

and modified LinkApp uses the same approach to avoid this problem. Regarding

LinkTree, when the number of events per sequence increases, the execution time for

LinkTree increases more rapidly than that of LinkTwo and modified LinkApp. This

may due to the fact that longer sequences are formed, and thus longer paths along

the tree are obtained. Hence longer execution time for searching the valid paths for

generating Lk is required.

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 85

1000| 1 1 r~"7 1 1 1, I • I
I ~0 - LinkTree
I . ._ . LinkTwo

900 “ I - o - Modified LinkApp
I ~ t ~ LinkApp

800 • 1
700 - /

600- /
8 /
^ 500- /

I / ,
卜 400- / / -

300 _ Z /

• / 一 乂 “ 一 . …

V :-‘一
0i.-r--t ： ? ： > - » ' " . 1 ‘ 1 1

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Number of Events Per Sequence

Figure 5.11: Scale-up: Number of events per sequence

5.6 Discussions

As we can see, the use of sequence tree structure facilitates efficient support counting

of large items. The LinkSeq is in general simple in nature and only relative order

of events are concerned. This information is maintained by the seq-tree formed as

we insert all nodes from the root. We then suggest to apply similar mechanism for

mining AppSeq. However, when we look into the formation of AppSeq and LinkSeq,

we found that AppSeq is more complex in structure and requires the mapping of

start time and end time of the composite patterns during the mining process. This

involves the storage of pid-list with pid, start and end time of each composite item

represented by the node. For example, for the composite item "A overlaps B" with the

end time being [5,12],[12,22],[14,22] associated with node B. As a result, more memory

is needed to store the pid-list and more processing time is needed for looking up the

corresponding temporal relations between the composite pattern and the following

atomic pattern along the path. Hence, an overhead of increasing the processing time

in the mining makes it not favourable to employ the tree structure for mining AppSeq.

5.7 Summary

In this chapter, we propose several methods for discovering the second temporal pat-

tern, LinkSeq. LinkSeq is found comparatively simpler in structure than that of

AppSeq as examination of start time and end time is neglected. Only the orderings

of the binary predicates are essential for the mining process. Thus a tree-like struc-

ture with a mining algorithm, LinkTree, is proposed. Besides, we suggest to extract

CHAPTER 5. MINING TEMPORAL PATTERN II, LINKSEQ 86

LinkSeq from AppSeq and by modifying the previous method, AppOne, we obtain our

second method, LinkTwo. We compare the performance of the methods with a set of

experiments. Overall, LinkTree is suitable for mining LinkApp when the minimum

support threshold reduces.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Based on previous studies on temporal data mining and mining in sequence data,

we proposed and studied methods for mining temporal patterns for interval-based

events. We extend the current work to accommodate temporal interval data which

has long been overlooked in the past. Discovery of temporal pattern involving interval

data is useful in a number of complex data analysis scenarios. As other than serial

and parallel ordering of events, inter-relations such as "overlaps, during", etc., can

be found which enriches the expressive power of the temporal patterns. Interesting

relationships among events can be found and thus, give some insight into causal

relationships. Two interesting patterns, namely AppSeq and LinkSeq, are suggested

to describe the complex relations among events. Both patterns are simple and useful

to capture the temporal behavior of the events.

We developed several methods for discovering the two interesting patterns and a

set of experiments are used to compare the performance of the methods. Regarding

AppSeq, for comparison we consider the mining of a slightly more complex temporal

pattern, A2, which is a variate of the original pattern, A l . An Apriori-like approach

which an iterative method is used for mining both patterns. We propose to use an

item-list format to store the temporal data to facilitate fast computation in the sup-

port counting phase. From experiments, we find that the computation time required

for the original pattern, A 1 , is much more acceptable. On the other hand, using the

approach of generating binary predicates without generating 2-candidates with the

use of a tree-like structure is proved to be useful in improving the efficiency. We can

further investigate other data structures as well as algorithms that facilitate efficient

mining process.

87

CHAPTER 6. CONCLUSION AND FUTURE WORK 88

Another temporal pattern, LinkSeq, forms in a similar way as that of the previ-

ous pattern, AppSeq, but is found comparatively simpler in structure. An iterative

method, LinkTwo, using item-list is suggested. Besides, a tree-like structure with

a mining algorithm, LinkTree, is proposed for finding LinkSeq. It stores crucial in-

formation in a compact way as a tree such that only two scanning of the database

is required to find all the frequent pattern. Without generating any candidates, we

obtain the complete set of temporal patterns by traversing the tree. This approach

was shown to be efficient for mining LinkSeq.

In fact, there are tremendous way to express the temporal relations between in-

terval data. We discover that the number of temporal patterns can be prohibitively

large and also many of such patterns may be complicated and of little value to the

users. Hence we restrict our interest to two types of temporal patterns which are

simple and meaningful.

6.2 Future Work

So far, as we have only considered the discovery of frequent or "large" temporal

patterns. We may consider the generation of association rules of the form A ~>rd, B

where A and B are some temporal patterns. The meaning of such a rule is that for

some temporal relation reli, among the support of all frequent patterns of the form

A reli B, the percentage of support for the pattern A reU B is sufficiently high. This

can give some indication of causal relationship among temporal patterns of events

and can be studied.

Contrary to the case of time points, instead of taking the ordering of events as a

measure for finding interesting pattern, we may take the length of time interval that

interacts between two events as a measure other than only temporal relations. For

instance, "A overlaps B" where the overlapping interval lasts for 4 time units. This

can be read as "event B overlaps with event A for 4 time units before event A ends".

As more accurate information is extracted, we can further study this approach by

taking into consideration of time intervals where the event lasts.

On the other hand, so far we mainly work on two approaches in the discovery of

both patterns. One is an Apriori-like approach with the use of item-list to facilitate

efficient support counting process. The other is a tree-like structure which is used

for mining LinkSeq. In fact, other data structure like frequent item matrix which

proposed recently to find sequential pattern [36], may help in our mining problem.

We can further investigate this approach in the future.

Bibliography

1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence

database. In Proceedings of the 4th International Conference on Foundations of

Data Organization and Algorithms, pages 69-84, October 1993.

2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, pages

94-105, June 1998.

3] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval clas-

sifier for database mining applications. In Proceedings of the 18th International

Conference on Very Large Data Bases, pages 560-573, August 1992.

'4] R. Agrawal, T . Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In Proceedings of ACM SIGMOD International

Conference on Management ofData, pages 207-216, May 1993.

:5] R. Agrawal, K.I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in the

presence of noise, scaling, and translation in time-series databases. In Proceedings

of the 21st International Conference on Very Large Databases, pages 490-501,

September 1995.

6] R. Agrawal, G. Psaila, E.L. Wimmers, and M.Za{"it . Querying shapes of

histories. In Proceedings of the 21st International Conference on Very Large

Databases, pages 502-514, September 1995.

'7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of the 20th International Conference on Very Large Database, pages

487-499, September 1994.

:8] R. Agrawal and R. Srikant. Mining sequential patterns. In Pwcccdiugs of the

11th International Conference on Data Engineering, pages 3—14, March 1995.

89

BIBLIOGRAPHY 90

9] J.F. Allen. Maintaining knowledge about temporal intervals. Communications

ofthe ACM, 26(11):832-843, 1983.

10] T. Amagasa, M. Aritsugi, and Y . Kanamori. Implementing time-interval class

for managing temporal data. In Proceedings of the 9th International Workshop

on Database and Expert Systems Applications, pages 843-849, August 1998.

11] G. Berger and A. Tuzhilin. Discovering unexpected patterns in temporal data

using temporal logic. In Temporal Databases - Research and Practice, pages

281-309, 1998.

12] C. Bettini, S.Wang, and S. Jajodia. Temporal semantic assumptions and their

use in databases. IEEE Transactions on Knowledge and Data Engineering,

10(2):277-296, 1998.

13] C. Bettini, S. Wang, S. Jajodia, and J.L. Lin. Discovering frequent event patterns

with multiple granularities in time sequences. IEEE Transactions on Knowledge

and Data Engineering, 10(2):222-236, 1998.

14] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using

temporal description length. In Proceedings ofthe 24th International Conference

on Very Large Databases, pages 606-617, August 1998.

.15] R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and tempo-

ral rules in next generation databases. In Proceedings of the 10th International

Conference on Data Engineering, pages 264-273, February 1994.

16] X. Chen and I. Petrounias. An architecture for temporal data mining. In IEE

Colloquium on Knowledge Discovery and Data Mining, pages 8/1—8/4, May 1998.

17] X. Chen and I. Petrounias. Language support for temporal data mining. In

Proceedings of the 2nd European Symposium on Principles of Data Mining and

Knowledge Discovery, pages 282-290, September 1998.

18] X. Chen and 1. Petrounias. Mining temporal features in association rules. In Pro-

ceedings ofthe 3rd European Conference on Principles and Practice ofKnowledge

Discovery in Databases, pages 295-300, September 1999.

19] X. Chen, 1. Petrounias, and H. Heathfield. Discovering temporal association rules

in temporal databases. In International Workshop on Issues and Applications of

Database Techinology, pages 312-319, July 1998.

BIBLIOGRAPHY 91

20] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. In Proceed-

ings ofthe 1st European Symposium on Principles of Data Mining and Knowledge

Discovery, June 1997.

21] G. Das, K.I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery

from time series. In Proceedings of the 2nd European Symposium on Principles

of Data Mining and Knowledge Discovery, pages 16-22, September 1998.

22] R. Elmasri, G. Wuu, and V. Kouramajian. The time index and the monotonic

b+-tree. In Temporal databases: theory, design and implementation, Chapter 18,

1993.

23] R. Elmasri, G.T.J. Wuu, and Y.J. Kim. The time index: An access structure

for temporal data. In Proceedings of the 16th International Conference on Very

Large Data Bases, pages 1-12, August 1990.

24] M. Ester, H.P. Kriegel, and J. Sander. A density-based algorithm for discover-

ing clusters in large spatial databases. In Proceedings of the 2nd International

Conference on Knowledge Discovery and Data Mining, pages 226-231, August

1996.

25] C. Faloutsos, M. Ranganathan, and Y . Manolopoulos. Fast subsequence match-

ing in time-series databases. In Proceedings of the ACM SIGMOD Internation

Conference on Management of Data, June 1994.

26] U. Fayyad, D. Haussler, and P. Storoltz. Mining scientific data. Communications

ofthe ACM, 29(11):51-57, 1996.

27] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in

Knowledge Discovery and Data Mining. A A A I Press/MIT Press, 1996.

28] L. Forlizzi, R.H. Guting, E. Nardelli, and M. Schneider. A data model and data

structures for moving objects databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, May 2000.

29] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Ma-

chine Learning, 29(2):131-163, 1997.

30] A. Galton. Temporal logics and their applications. London: Academic Press,

1987.

BIBLIOGRAPHY 92

31] M.N. Garofalakis, R. Rastogi, and K. Shim. Spirit:sequential pattern mining

with regular expression constraints. In Proceedings of the 25th International

Conference on Very Large Database, pages 223-234, September 1999.

32] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for

large databases. In Proceedings ofthe ACMSIGMOD Internation conference on

Management of Data, pages 73-84, June 1998.

33] V. Guralnik and J. Srivastava. Event detection from time series data. In Proceed-

ings ofthe 5th ACMSIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 33-42, August 1999.

34] V. Guralnik, D. Wijesekera, and J. Srivastava. Pattern directed mining of se-

quence data. In Proceedings of the 4nd International Conference on Knowledge

Discovery and Data Mining, pages 51-57, 1998.

35] J. Han, G. Dong, and Y . Yin. Efficient mining of partial periodic patterns in

time series database. In Proceedings of the 15th International Conference on

Data Engineering, pages 106-115, March 1999.

36] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu. Freespan:

Frequent pattern-projected sequential pattern mining. In Proceedings of the

6th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, August 2000.

37] J. Han, J. Pei, and Y . Yin. Mining frequent patterns without candidate gener-

ation. In Proceedings of the SIGMOD 2000 Internation Conference on Manage-

ment of Data, pages 1-12, May 2000.

38] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspective on

databases and data mining. In Proceedings of the 1st International Conference

on Knowldege Discovery and Data Mining, pages 150-155, August 1995.

39] C.S. Jensen, C.E. Dyreson, and M. B6hlen et al. The consensus glossary of

temporal databae concepts - february 1998 version. In Temporal Databases -

Research and Practice, Lecture Notes in Computer Science, 1399, pages 338—

366, 1988.

40] C.S. Jensen and R.T. Snodgrass. Temporal data management. IEEE Transac-

tions on Knowledge and Data Engineering, l l (l) :36-43, 1999.

BIBLIOGRAPHY 93

41] R. J. Bayardo Jr. and R. Agrawal. Mining the most interesting rules. In Proceed-

ings ofthe 5th A CM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 145-154, August 1999.

42] D. Keim, H. Kriegel, and T. SeidL Supporting data mining of large databases

by visual feedback queries. In Proceedings of the 10th International Conference

on Data Engineering, pages 302-313, Febrary 1994.

43] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.

Finding interesting rules from large sets of discovered association rules. In

Proceedings of the 3rd International Conference on Information and Knowledge

Management, pages 401-407, November/December 1994.

44] N. Kline. An update of the temporal database bibliography. SIGMOD Record,

22(4):66-80, 1993.

45] K. Koperski, J. Han, and N. Stefanovic. An efficient two-step method for classifi-

cation of spatial data. In Proceedings of the International Symposium on Spatial

Data Handling, July 1998.

46] F. Korn, A. Labrinidis, Y . Kotidis, and C. Faloutsos. Ratio rules: A new

paradigm for fast, quantifiable data mining. In Prceedings of the 24th Inter-

national Conference on Very Large Databases, pages 582-593, August 1998.

47] P.J. Rousseeuw L. Kaufman. Finding groups in data : an introduction to cluster

analysis. John Wiley k Sons, 1990.

.48] B. Leban, D.D. McDonald, and D.R. Forster. A representation for collections of

temporal intervals. In Proceedings of the 13th National Conference on Artificial

Intelligence, pages 367-371, August 1996.

49] H. Mannila. Data mining: machine learning, statistics, and databases. In Pro-

ceedings ofthe 8th International Conference on Scientific and Statistical Database

Management, pages 18-20, June 1996.

50] H. Mannila and H. Toivonen. Discovering generalized episodes using minimal

occurrences. In Proceedings of the 2nd International Conference on Knowledge

Discovery and Data Mining, pages 146-151, August 1996.

51] H. Mannila, H. Toivonen, and A. Verkamo. Discovering frequent episodes in

sequences. In Proceedings of the 1st International Conference on Knowldege

Discovery and Data Mining, pages 210-215, August 1995.

BIBLIOGRAPHY 94

52] L.E. McKenzie. Bibliography: temporal databases. SIGMOD Record, 15(4):40-

52, 1986.

53] A. Montanari and B. Pernici. Temporal reasoning. In Temporal Databases:

Theory, Design and Implementation, pages 534-562, 1993.

54] R.T. Ng and J. Han. Efficient and effective clustering methods for spatial data

mining. In Proceedings of the 20th International Conference on Very Large

Database, pages 144-155, September 1994.

55] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In

Proceedings of the i4th International Conference on Data Engineering, pages

412-421, February 1998.

.56] B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: A

temporal logic approach. In Proceedings of the 2nd International Conference on

Knowledge Discovery and Data Mining, pages 351-354, August 1996.

57] J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining

association rules. In Proceedings of the ACM SIGMOD Internation Conference

on Management of Data, pages 175-186, June 1995.

58] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently

from web logs. In Proceedings of the Pacific-Asia Conference on Knowledge

Discovery and Data Mining, April 2000.

59] G. Piatetsky-Shapiro and W.J. Frawley. Knowledge Discovery in Databases.

A A A I Press/MIT Press, 1991.

60] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81—106, 1986.

61] A. Swami R. Agrawal, T. Imielinski. Database mining: A performance perspec-

tive. IEEE Transactions on Knowledge and Data Engineering, 5(6):914-925,

1993.

62] C.P. Rainsford. Accommodating Temporal Semantics in Data Mining and Knowl-

edge Discovery. PhD thesis, Computer and Information Science, University of

South Australia, November 1999.

63] C.P. Rainsford and J.F. Roddick. The attribute-oriented induction of rules from

temporal interval data. In Proceedings of the 8th International Database Work-

shop, pages 108-118, July 1997.

BIBLIOGRAPHY 95

64] C.P. Rainsford and J.F. Roddick. Adding temporal semantics to association

rules. In Proceedings of the 3rd European Conference on Principles and Practice

of Knowledge Discovery in Databases, pages 504-509, September 1999.

65] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting

patterns in association rules. In Proceedings ofthe 24th International Conference

on Very large Databases, pages 368-379, August 1998.

66] J.F. Roddick and M. Spiliopoulou. A bibliography of temporal, spatial, and

spatio-temporal data mining research. In Proceedings ofthe 5th ACMSIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 34-

38, August 1999.

67] John F. Roddick and Myra Spiliopoulou. Temporal data mining: Survey and

issues. IEEE Transactions on Knowledge and Data Engineering, l l (l) :36-43,

2000.

.68] B. Salzberg and V.J. Tsotras. Comparison of access methods for time-evolving

data. ACM Computing Surveys, 31(2):158-221, 1999.

69] M. Saraee and C. Theodoulidis. Knowledge discovery in temporal databases. In

Proceedings ofIEE Colloquium on Knowledge Discovery in Databases, pages 1-4,

February 1995.

70] P.G. Selfridge, D. Srivastava, and L.0. Wilson. Idea: Interactive data exploration

and analysis. In Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 24-34, June 1996.

71] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah.

Turbo-charging vertical mining of large datbases. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 22-33, May

2000.

72] R.T. Snodgrass and A. Gad et al A. Ilsoo. The TSQL2 Temporal Query Language.

Kluwer Academic Publishers, 1995.

73] M. Spiliopoulou and L.C. Faulstich. Wum: A tool for www utilization analy-

sis. In Proceedings of the International Workshop on the Web and Databases,

WebDB，98, March 1998.

BIBLIOGRAPHY %

74] R. Srikant and R. Agrawal. Mining quantitative association rules in large re-

lational tables. In Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 1-12, June 1996.

75] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of the 5th International Conference

on Extending Database Technology, pages 3-17, March 1996.

76] R.B. Stam and R. Snodgrass. A bibliography on temporal databases. Data

Engineering, 7(4):53-61, 1988.

77] A.U. TanseL Temporal relational data model. IEEE Transactions on Knowledge

and Data Engineering, 9(3):464-479, 1997.

78] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Tem-

poral Databases: Theory, Design and Implementation. Benjamin/Cummings,

1993.

79] A.U. Tansel and E. Tin. The expressive power of temporal relational query

languages. IEEE Transactions on Knowledge and Data Engineering, 9(1):120-

134, 1995.

80] D. Toman. Point vs. interval-based query languages for temporal databases. In

Proceedings of the 5th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-

ciples of Database Sys tems, pages 58-67, June 1996.

81] A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal

relational completeness. In Proceedings ofthe 16th International Conference on

Very Large Data Bases, pages 13-23, August 1990.

82] G.M. Weiss and H. Hirsh. Learning to predict rare events in event sequences.

In Proceedings of the 4th International Conference on Knowledge Discovery and

Data Mining, pages 359-363, August 1998.

83] Y . Wu, S. Jajodia, and X.S. Wang. Temporal database bibliography update. In

Temporal Databases - Research and Practice, Lecture Notes in Computer Science,

pages 338-366, 1998.

84] X. Ye and J. A. Keane. Mining association rules in temporal databases. In IEEE

International Conference on Systems, Man and Cybernetics, pages 2803-2808,

Oct 1998. ‘

BIBLIOGRAPHY 97

85] M.J. Zaki. Efficient enumeration of frquent seqeunces. In Proceedings of the 7th

International Conference on Information and Knowledge Management, pages
68-75, November 1998.

86] M.J. Zaki, N. Lesh, and M. Ogihara. Planmine: Sequence mining for plan fail-

ures. In Proceedings ofthe 4th International Conference on Knowledge Discovery

and Data Mining, pages 369-373, August 1998.

87] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast

discovery of assoication rules. In Proceedings ofthe 3rd International Conference

on Knowledge Discovery and Data Mining, pages 283-286, August 1997.

88] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering

method for very large databases. In Proceedings ofACM SIGMOD International

Conference on Management of Data, pages 103-114, June 1996.

5T5EQ9ED0

•__l saLJBjqtn >|hm:)

